WO2015041256A1 - タッチパネル装置とタッチパネルの駆動方法 - Google Patents

タッチパネル装置とタッチパネルの駆動方法 Download PDF

Info

Publication number
WO2015041256A1
WO2015041256A1 PCT/JP2014/074583 JP2014074583W WO2015041256A1 WO 2015041256 A1 WO2015041256 A1 WO 2015041256A1 JP 2014074583 W JP2014074583 W JP 2014074583W WO 2015041256 A1 WO2015041256 A1 WO 2015041256A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
signal
electrodes
drive signal
touch panel
Prior art date
Application number
PCT/JP2014/074583
Other languages
English (en)
French (fr)
Inventor
信道 高場
隆幸 田尻
一平 田原
辰吾 有川
Original Assignee
Avcテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avcテクノロジー株式会社 filed Critical Avcテクノロジー株式会社
Priority to US14/428,801 priority Critical patent/US9703420B2/en
Priority to JP2015514687A priority patent/JPWO2015041256A1/ja
Priority to CN201480002427.3A priority patent/CN104854541A/zh
Priority to KR1020157006627A priority patent/KR20160057346A/ko
Publication of WO2015041256A1 publication Critical patent/WO2015041256A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/05Digital input using the sampling of an analogue quantity at regular intervals of time, input from a/d converter or output to d/a converter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2211/00Indexing scheme relating to details of data-processing equipment not covered by groups G06F3/00 - G06F13/00
    • G06F2211/902Spectral purity improvement for digital function generators by adding a dither signal, e.g. noise

Definitions

  • the present invention relates to a touch panel device and a touch panel driving method.
  • Touch panel devices are disclosed in Patent Documents 1 to 3. These touch panel devices apply a drive signal (pulse signal) to the transmission electrode, convert the charge / discharge current output from the reception electrode to IV (current-voltage), integrate the voltage signal, and convert the integrated value to AD. It converts and detects the presence or absence of a touch and a touch position based on a digital value.
  • a drive signal pulse signal
  • IV current-voltage
  • Each of the touch panel devices described in Patent Documents 1 to 3 integrates the voltage signal after IV conversion over a plurality of pulse periods. For this reason, it takes time to detect touch / non-touch at one intersection of the transmission electrode and the reception electrode. In particular, when the size of the touch panel is increased, the number of intersections increases rapidly, and the time required for touch detection for one frame becomes longer.
  • touch panel devices since these touch panel devices also integrate noise during the integration period, the reliability of the signal after integration is low.
  • the touch panel is often used by being laminated with a display device such as a liquid crystal display panel, and it is inevitable to mix periodic noise or the like accompanying the driving of the liquid crystal display panel. Measures such as providing a noise filter in the previous stage of the integration circuit are conceivable. However, even if measures are taken, it is inevitable that a certain amount of noise is mixed into the integration target signal. In addition, the filter cannot suppress noise other than noise of a predetermined frequency.
  • the panel when the panel is enlarged, the time from when the drive signal is applied to the transmission electrode until the signal reaches the AD converter circuit due to the delay due to the resistance and stray capacitance of the reception electrode, the transmission electrode that applies the drive signal Varies depending on the position. For this reason, the AD conversion timing deviates from the timing at which the output voltage of the IV conversion circuit shows a peak. For this reason, touch / non-touch detection may be inaccurate.
  • Patent Document 2 discloses that AD conversion timing is adjusted. However, this only adjusts the timing uniformly so that the noise is minimized. Therefore, it is inevitable that the AD conversion timing deviates from the peak of the voltage signal after current / voltage conversion.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a touch panel device capable of high-speed operation and capable of accurately detecting a touch position and a touch panel driving method.
  • the touch panel device of the present invention includes: A panel body in which a plurality of first electrodes that run parallel to each other and a plurality of second electrodes that run parallel to each other are arranged in a grid pattern; A detection unit that applies a drive signal to the first electrode, samples an induction signal induced to the second electrode by applying the drive signal, and detects a touch position based on the sampling value; The detection unit samples the induction signal in a sampling period set at a predetermined timing according to the first electrode to which the drive signal is applied. It is characterized by that.
  • the sampling period is set, for example, at a timing that is predetermined according to the first electrode when the drive signal is applied and includes a peak timing of the waveform of the induction signal.
  • the sampling period is shorter than one cycle of the drive signal, for example.
  • the detection unit for example, samples the induction signal for a certain sampling period after applying a predetermined time for each first electrode to which the drive signal is applied after applying the drive signal.
  • the detection unit for example, after applying a drive signal, passes a predetermined time for each combination of the first electrode to which the drive signal is applied and the second electrode from which the induction signal is induced. From, the induction signal is sampled for a certain sampling period.
  • the detection unit is, for example, Applying means for applying a driving signal to the plurality of first electrodes;
  • Each of the plurality of second electrodes is connected to one end, and comprises sampling means for sampling a signal induced in the second electrode,
  • the set time is determined so that the first electrode becomes longer as it is away from one end of the second electrode, with reference to the application timing of the drive signal to each first electrode.
  • the detection unit is, for example, Applying means for sequentially applying a driving signal to the plurality of first electrodes; A current-voltage converter that sequentially selects the plurality of second electrodes, converts a current flowing through the selected second electrode into a voltage signal, and an AD converter that samples the converted voltage signal and converts it into digital data When, Means for determining the presence or absence of touch from the digital data converted by the AD converter; Is provided.
  • the touch panel driving method of the present invention includes: A drive signal is applied to the first electrode of the panel in which a plurality of first electrodes parallel to each other and a plurality of second electrodes parallel to each other are arranged in a grid pattern; Sampling an induction signal induced in the second electrode by applying a drive signal in a sampling period set at a predetermined timing according to the first electrode to which the drive signal is applied; It is characterized by that.
  • the sampling period can be set to a short period including, for example, a timing at which the induction signal shows a peak.
  • a timing at which the induction signal shows a peak With this setting, it is possible to sample an induction signal having a relatively large signal level.
  • the influence of noise can be limited only to the sampling period, and even if the timing at which the peak of the induction signal shows varies from transmission electrode to transmission electrode, it is not easily affected. For this reason, the touch position can be detected more accurately.
  • the speed since it is not necessary to integrate the induction signal in the time direction, the speed can be increased. Therefore, according to the present invention, it is possible to provide a touch panel device capable of high-speed operation and capable of detecting a touch position more accurately.
  • FIG. 1 is a block diagram of a touch panel device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram of an AD conversion unit illustrated in FIG. 1. It is a block diagram of the sampling timing setting part shown in FIG. It is a figure which shows the example of the count value according to transmission electrode stored in the table shown in FIG. (A)-(e) is a figure which shows the operation
  • the touch panel device 11 of the present embodiment includes a panel body 21 having a touch surface on which a touch operation is performed, and a detection unit 31 that detects a touch position on the touch surface of the panel body 21. ing.
  • the panel body 21 includes a plurality of transmitting electrodes (first electrodes) X1 to X7 that run parallel to each other and a plurality of receiving electrodes (second electrodes) Y1 to Y7 that run parallel to each other in a grid pattern. Yes.
  • the transmission electrodes X1 to X7 and the reception electrodes Y1 to Y7 are protected by a protective insulating film on the surface side, and the surface of the protective insulating film becomes a touch surface on which a touch operation with a finger or the like is performed.
  • the transmission electrodes X1 to X7 and the reception electrodes Y1 to Y7 are supported by an insulating support sheet. Transmitting electrodes X1 to X7 are provided on the front side of the support sheet, and receiving electrodes Y1 to Y7 are provided on the back side of the support sheet.
  • a capacitor is formed at an electrode intersection where the transmission electrodes X1 to X7 and the reception electrodes Y1 to Y7 overlap with each other with the support sheet interposed therebetween.
  • the capacitance of the capacitor at the electrode intersection is substantially reduced accordingly.
  • This charge / discharge current is generated by electrostatic induction between the transmission electrode X and the reception electrode Y, and is a kind of induction signal.
  • the detection unit 31 detects the touch position by detecting the change in the charge / discharge current, that is, the dielectric signal.
  • the detection unit 31 sequentially applies drive signals (pulse signals) to the transmission electrodes X1 to X7 of the panel body 21, detects charge / discharge currents flowing through the reception electrodes Y1 to Y7, and detects whether there is a touch based on the detected current change. And the position of the touch.
  • the detection unit 31 includes a pulse signal generation unit 32, a transmission unit 33, a reception unit 34, an IV (current / voltage) conversion unit 35, an AD (analog / digital) conversion unit 36, a touch determination unit 37, and a sampling timing.
  • a setting unit 38 and a timing control unit 39 are provided.
  • the pulse signal generator 32 periodically generates drive signals to be applied to the transmission electrodes X1 to X7 according to the control of the timing controller 39.
  • the transmission unit 33 is connected to the pulse signal generation unit 32 and the transmission electrodes X1 to X7, and applies the drive signal generated by the pulse signal generation unit 32 to the transmission electrodes X1 to X7.
  • This current is a charge / discharge current that flows through the reception electrode Yj due to the drive signal being applied to the transmission electrode Xi.
  • This charge / discharge current is generated by electrostatic induction between the transmission electrode X and the reception electrode Y, and is a kind of induction signal.
  • the IV (current-voltage) conversion unit 35 converts the charge / discharge current I flowing through the reception electrode Yj via the reception unit 34 into a voltage signal E corresponding to the current value.
  • This voltage signal E is also generated by electrostatic induction between the transmission electrode X and the reception electrode Y, and is a kind of induction signal.
  • the charge / discharge current I flowing through the receiving electrode Yj is an alternating current in which currents of opposite polarities appear alternately corresponding to the rising edge and falling edge of the drive signal.
  • the voltage signal E output from the IV conversion unit 35 is also an alternating signal whose polarity is inverted corresponding to the rising edge and falling edge of the drive signal, as shown in FIG.
  • the delay time TD from the time when the drive voltage is applied to the transmission electrode Xi to the time Tm at which the voltage signal E output from the IV converter 35 shows a peak is , And varies depending on the position of the transmission electrode Xi. More specifically, as the transmission electrode Xi moves away from the receiving unit 34, the delay time TD increases.
  • X1> X2>. . . > X7 that is, TD1> TD2>. . . > TD7.
  • the AD converter 36 shown in FIG. 1 samples the analog voltage signal E output from the IV converter 35 and converts the sampling value into a digital signal.
  • the output of the IV conversion unit 35 is directly supplied to the AD conversion unit 36 without passing through an integration circuit or the like.
  • the AD conversion unit 36 includes a sampling switch 361, a sampling capacitor 362, an AD conversion circuit 363, and a latch 364 as shown in FIG.
  • the sampling switch 361 is configured by a semiconductor switch or the like and is turned on / off by the S / H signal from the sampling timing setting unit 38, and supplies the voltage signal E output from the IV conversion unit 35 to the sampling capacitor 362 in the on period.
  • the ON period as shown in FIGS. 7A and 7B, before and after the timing Tm at which the voltage signal E after IV conversion becomes maximum, regardless of the transmission electrode Xi to which the drive signal is applied. It is controlled so as to reach a certain period TP of Ta.
  • the sampling capacitor 362 shown in FIG. 2 is charged by the supplied voltage E during the period when the sampling switch 361 is on, and holds the charging voltage.
  • the AD conversion circuit 363 converts the voltage held in the sampling capacitor 362 into digital data and outputs the digital data.
  • the latch 364 includes a D-FF (flip-flop) or the like, and latches digital data output from the AD conversion circuit 363 in response to a latch signal supplied from a sampling timing setting unit 38 to be described later. As a result, as shown in FIGS. 7B and 7C, the digital data output from the AD conversion unit 36 is switched.
  • D-FF flip-flop
  • the touch determination unit 37 shown in FIG. 1 determines the presence / absence of a touch and the position of the touch from the digital data output from the AD conversion unit 36, and outputs a detection signal. For example, in the touch determination unit 37, the digital data output from the AD conversion unit 36 at the timing when the transmission unit 33 applies the drive signal to the transmission electrode Xi and the reception unit 34 captures the charging / discharging current of the reception electrode Yj. Is smaller than the reference value (standard value), it is determined that there is a touch at the electrode intersection position (i, j). In this case, the touch determination unit 37 outputs a detection signal indicating that there is a touch and the position (i, j).
  • the sampling timing setting unit 38 sets the timing for turning on the sampling switch 361 of the AD conversion unit 36.
  • the delay period TD from the application of the drive signal to the timing Tm at which the peak of the voltage signal E after IV conversion appears varies depending on the position of the transmission electrode Xi, and TD1 > TD2>. . . > TD7.
  • the sampling timing setting unit 38 controls the sampling and conversion timing based on the delay time TD. More specifically, the sampling timing setting unit 38 causes the AD conversion unit 36 to sample the voltage signal E only during a certain sampling period TP including the timing at which the voltage signal E exhibits a peak, based on the delay time TD. The timing of sampling and conversion is controlled so that the sampling voltage is converted into digital data. Note that, unlike the integration period of the prior art, the sampling period TP has a length of 1 ⁇ 2 period or less of the drive signal and half or less of the voltage signal E.
  • the sampling timing setting unit 38 includes a table 381, a control unit 382, and a counter 383 as shown in FIG.
  • a count value corresponding to the time TS shown in FIG. 7 is set for each of the transmission electrodes X1 to X7. More specifically, the table 381 has a count value corresponding to the time “TD ⁇ Tb”.
  • TD is a period from application of the drive signal (from the rising edge of the drive signal) to timing Tm at which the voltage signal E exhibits a peak.
  • Tb indicates a sampling period before the peak timing Tm.
  • the count value set in the table 381 is appropriately obtained from experiment or theory.
  • the control unit 382 receives a signal instructing switching of the transmission electrode Xi from the timing control unit 39, the control unit 382 reads the count value for the designated transmission electrode from the table 381 and sets it in the counter 383.
  • the control unit 382 turns on the S / H signal and turns on the sampling switch 361.
  • control unit 382 sets a count value corresponding to the sampling period TP in the counter 383 and starts the count operation.
  • the counter 383 notifies the control unit 382 when the counting is completed.
  • the control unit 382 turns off the S / H signal and turns off the sampling switch 361. Subsequently, the control unit 382 outputs a latch signal to the latch 364 to latch the output data of the AD conversion circuit 363. As a result, only the voltage in the vicinity of the peak timing Tm of the voltage signal E is sampled and held by the sampling capacitor 362 and converted into digital data.
  • the AD converter 36 samples and holds the voltage signal E for a certain period TP including the timing at which the voltage signal E shows a peak, regardless of which transmission electrode Xi is selected, and AD converts this. . Tb> Ta and Ta ⁇ 0 are desirable.
  • the timing control unit 39 shown in FIG. 1 includes a processor and controls the entire operation sequence.
  • the timing control unit 39 causes the pulse signal generation unit 32 to generate a drive signal (pulse) periodically. Further, the timing control unit 39 controls the transmission unit 33 to apply the drive signal generated by the pulse signal generation unit 32 to the transmission electrode Xi as shown in FIGS.
  • the timing control unit 39 causes the receiving unit 34 to switch the receiving electrodes Y1 to Y7 in order and take in the current I.
  • the timing control unit 39 notifies the touch determination unit 37 of the selected combination (i, j) of the transmission electrode Xi and the reception electrode Yj.
  • the timing control unit 39 notifies the sampling timing setting unit 38 of switching of selection of transmission electrodes, switching of driving signals, and the like.
  • the timing control circuit 39 causes the pulse signal generator 32 to generate and output a drive signal at a constant period.
  • the timing control unit 39 controls the transmission unit 33 to apply the drive signal generated by the pulse signal generation unit 32 to the transmission electrode Xi by 7 pulses as shown in FIGS. 5 (a) to 5 (c). Apply sequentially.
  • the timing control unit 39 further controls the reception unit 34 to sequentially select the reception electrodes Y1 to Y7 in the reception unit 34 as shown in FIG. 5 (d) in accordance with the timing at which the drive signal is applied.
  • the current I flows by the voltage induced in the reception electrode Yj by the drive signal applied to the transmission electrode Xi.
  • the IV conversion unit 35 converts the current I into a voltage signal E.
  • the voltage signal E has an alternating waveform in which a positive polarity peak and a negative polarity peak alternately appear corresponding to the rising edge and falling edge of the drive signal.
  • the control unit 382 of the sampling timing setting unit 38 causes the counter 383 to start counting a predetermined count value for each transmission electrode stored in the table 381 at the timing of the rising edge of the drive signal. Thereafter, when the period TS determined for each transmission electrode elapses and the counter 383 counts up, the control unit 382 turns on the sampling switch 361 constituting the AD conversion unit 36 by the S / H signal. Thereby, sampling of the voltage signal E is started.
  • the control unit 382 causes the counter 383 to start counting corresponding to the sampling period TP.
  • the control unit 382 turns off the sampling switch 361 by the S / H signal. Subsequently, the control unit 382 outputs a latch signal to the latch 364 and latches the digital data output from the AD conversion circuit 363.
  • the AD conversion unit 36 samples the voltage signal E at relatively the same timing including the peak timing Tm of the voltage signal E regardless of the position of the transmission electrode and the variation in the delay time TD caused thereby.
  • the touch determination unit 37 detects a change in the digital data output from the AD conversion unit 36, and for example, is the same at a position where digital data smaller than the digital value obtained at the surrounding electrode crossing position is obtained or between frames. When relatively small digital data is obtained for the position, it is determined that there is a touch at that position, and a detection signal is output.
  • the AD conversion unit 36 samples the voltage signal E only in the sampling period TP in the vicinity of the timing Tm at which the voltage signal E exhibits a peak, regardless of the variation in the delay time TD. Therefore, sampling can be performed during a period in which the voltage level of the voltage signal E is relatively large regardless of the variation in the delay time TD. Accordingly, the sampling can be performed for a short period of time, the variation of the sampling value is small, and it is hardly affected by noise.
  • the sampling capacitor 361 integrates the voltage signal E for a certain time (for example, ns order).
  • this time integration is for sample hold for AD conversion, and time integration of the voltage signal E only during the sample hold period TP.
  • the integration circuit of the prior art (for example, described in the cited documents 1 to 3) integrates the voltage signal over several pulse periods and is functionally different from the sampling capacitor 361.
  • only one positive peak portion of the voltage signal E is a sampling target
  • the present invention is not limited to this, and only one negative peak portion may be a sampling target.
  • the falling edge of the drive signal may be set as the drive signal application timing.
  • the vicinity of two peaks for one drive pulse may be set as the sampling period TP.
  • digital data obtained by sampling during each sampling period TP may be output, or may be output after being averaged.
  • the delay time increases as the transmission electrode X is closer to 1 and the reception electrode Y is closer to 1
  • the delay time increases as the transmission electrode X is closer to 7 and the reception electrode Y is closer to 7.
  • the count value counted by the counter 383 may be set in the table 381 in accordance with the combination of the transmission electrode X and the reception electrode Y as illustrated in FIG. The count value to be set is obtained in advance by experiment or theory.
  • the sampling timing of the AD conversion unit 36 is adjusted.
  • the voltage signal E output from the IV conversion unit 35 is delayed by a time corresponding to the position of the transmission electrode X to which the drive signal is applied, Sampling and AD conversion may be performed when a certain time has elapsed from the output of the drive signal of the AD converter 36.
  • the delay circuit may be, for example, an RC type delay circuit whose capacitance changes according to the control signal. Further, the delay circuit may be configured by a clock delay circuit such as a counter decode or a flip-flop.
  • the method itself is arbitrary.
  • the number of transmission electrodes and the number of reception electrodes are set to 7.
  • the number of transmission electrodes and the number of reception electrodes are arbitrary.
  • FIGS. 2 and 3 An example of the circuit configuration of the AD conversion unit 36 and an example of the circuit configuration of the sampling timing setting unit 38 are shown in FIGS. 2 and 3, respectively. These are merely examples, and can be appropriately changed as long as substantially the same function can be realized.
  • the sampling switch 361 and the sampling capacitor 362 are removed, the voltage signal E is converted into digital data by the AD conversion circuit 363, and the sampling timing setting unit 38 receives the peak timing Tm.
  • a latch signal may be output (or immediately thereafter) and latched by the latch 364.
  • an amplifier circuit or the like may be disposed after the IV conversion unit 35 and the amplified voltage signal E may be AD converted by the AD conversion unit 36. In this case, it is desirable to obtain the count value set in the table 381 in consideration of the delay time TD including the delay of the amplifier circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

 タッチパネル装置(11)は、並走する複数の第1の電極(X)と交差する複数の第2の電極(Y)を備えるパネル本体(21)と、検出部(31)を備える。検出部(31)は、駆動信号を第1の電極(X)に順次印加する送信部(33)と、第2の電極(Y)を走査して、第2の電極(Y)に流れる電流を電圧信号に変換する電流電圧変換部(35)と、電圧信号をサンプリングし、デジタルデータに変換するAD変換部(36)と、変換したデジタルデータからタッチ位置を判別するタッチ判別部(37)とを備える。AD変換部(36)は、駆動信号を印加してから、第1の電極(X)別に定められている設定時間を経過し且つ誘導信号の波形のピークを含むサンプリング期間に、誘導信号をサンプリングする。

Description

タッチパネル装置とタッチパネルの駆動方法
 本発明は、タッチパネル装置とタッチパネルの駆動方法に関する。
 タッチパネル装置が、特許文献1~3に開示されている。これらのタッチパネル装置は、送信電極に駆動信号(パルス状信号)を印加し、受信電極から出力される充放電電流をIV(電流-電圧)変換し、電圧信号を積分して、積分値をAD変換し、デジタル値に基づいてタッチの有無及びタッチ位置を検出する。
特開2011-128857号公報 特開2011-128858号公報 特開2011-175335号公報
 特許文献1~3に記載されたタッチパネル装置は、何れも、IV変換後の電圧信号を複数のパルス期間に亘って、積分する。このため、送信電極と受信電極の1つの交差部でのタッチ・非タッチの検出に時間がかかってしまう。特に、タッチパネルが大型化した場合、交差部の数が急激に増加するため、1フレーム分のタッチ検出に要する時間が長くなってしまう。
 また、これらのタッチパネル装置は、積分期間の間、ノイズも積分してしまうため、積分後の信号の信頼性が低い。特に、タッチパネルは、液晶表示パネル等の表示装置と積層して使用されることが多く、液晶表示パネルの駆動に伴う周期ノイズ等の混入が避けられない。積分回路の前段にノイズフィルタを設ける等の対策が考えられる。しかし、対策をしても、ある程度のノイズが積分対象の信号に混入することは避けられない。また、フィルタは予定されている周波数のノイズ以外のノイズを抑制できない。
 また、パネルが大型化すると、受信電極の抵抗と浮遊容量による遅延により、送信電極に駆動信号を印加してから、AD変換回路に信号が到達するまでの時間が、駆動信号を印加する送信電極の位置によって変化する。このため、AD変換のタイミングが、IV変換回路の出力電圧がピークを示すタイミングからずれてしまう。このため、タッチ・非タッチの検出が不正確になる虞がある。
 この問題に関連して、特許文献2には、AD変換のタイミングを調整することが開示されている。ただし、これは、ノイズが最小となるように、タイミングを画一的に調整するだけである。従って、AD変換のタイミングが電流・電圧変換後の電圧信号のピークからずれたタイミングになってしまうことは避けられない。
 本発明は、上記実状に鑑みてなされたものであり、高速動作可能で、タッチ位置の正確な検出が可能なタッチパネル装置とタッチパネルの駆動方法を提供することを目的とする。
 上記目的を達成するため、本発明のタッチパネル装置は、
 互いに並走する複数の第1の電極と互いに並走する複数の第2の電極が格子状に配置されたパネル本体と、
 前記第1の電極に駆動信号を印加し、駆動信号の印加により前記第2の電極に誘導される誘導信号をサンプリングして、サンプリング値に基づいてタッチ位置を検出する検出部と、を備え、
 前記検出部は、駆動信号を印加する第1の電極に応じて予め定められたタイミングに設定されたサンプリング期間に、前記誘導信号をサンプリングする、
 ことを特徴とする。
 前記サンプリング期間は、例えば、駆動信号が印加され第1の電極に応じて予め定められたタイミングで、且つ、誘導信号の波形のピークのタイミングを含む期間に設定されている。
 前記サンプリング期間は、例えば、駆動信号の1周期よりも短い。
 前記検出部は、例えば、駆動信号を印加してから、該駆動信号を印加した第1の電極別に予め定められている設定時間を経過してから、一定のサンプリング期間、誘導信号をサンプリングする。
 前記検出部は、例えば、駆動信号を印加してから、該駆動信号を印加した第1の電極と誘導信号が誘導された第2の電極の組み合わせ別に予め定められている設定時間を経過してから、一定のサンプリング期間、誘導信号をサンプリングする。
 前記検出部は、例えば、
 駆動信号を前記複数の第1の電極に印加する印加手段と、
 前記複数の第2の電極のそれぞれ一端部に接続され、前記第2の電極に誘導された信号をサンプリングするサンプリング手段から構成され、
 前記設定時間は、各第1の電極への駆動信号の印加タイミングを基準とし、前記第1の電極が前記第2の電極の一端部から離れるに従って大きくなるように定められている。
 前記検出部は、例えば、
 駆動信号を前記複数の第1の電極に順次印加する印加手段と、
 前記複数の第2の電極を順次選択して、選択した第2の電極に流れる電流を電圧信号に変換する電流電圧変換部と
 変換された電圧信号をサンプリングし、デジタルデータに変換するAD変換部と、
 前記AD変換部の変換したデジタルデータからタッチの有無を判別する手段と、
を備える。
 上記目的を達成するため、本発明のタッチパネルの駆動方法は、
 互いに並走する複数の第1の電極と互いに並走する複数の第2の電極が格子状に配置されたパネルの前記第1の電極に駆動信号を印加し、
 駆動信号の印加により前記第2の電極に誘導される誘導信号を、駆動信号を印加する第1の電極に応じて予め定められたタイミングに設定されたサンプリング期間にサンプリングする、
 ことを特徴とする。
 上記構成によれば、サンプリング期間を、例えば、誘導信号がピークを示すタイミングを含む短い期間に設定することができる。このような設定にすれば、相対的に大きな信号レベルの誘導信号をサンプリングできる。また、ノイズの影響をサンプリング期間のみに限定することができ、さらに、誘導信号のピークを示すタイミングが送信電極別にばらついてもその影響を受けにくい。このため、タッチ位置のより正確な検出が可能となる。
 また、時間方向に誘導信号を積分する必要がないため、高速化が可能である。
 従って、本発明によれば、高速動作が可能で、タッチ位置のより正確な検出が可能なタッチパネル装置を提供することができる。
本発明の実施の形態1に係るタッチパネル装置のブロック図である。 図1に示すAD変換部のブロック図である。 図1に示すサンプリングタイミング設定部のブロック図である。 図3に示すテーブルに格納される送信電極別のカウント値の例を示す図である。 (a)~(e)は、図1に示す各部の信号の動作波形を示す図である。 (a)、(b)は、図5に示す波形の一部拡大図であり、送信電極により遅延時間TDが変動することを説明するための図である。 サンプリングタイミングを説明するための図である。 図3に示すテーブルに格納される送信電極と受信電極の組み合わせ別のカウント値の例を示す図である。
 以下、本発明の実施の形態に係るタッチパネル装置11とタッチパネルの駆動方法を、図面を参照しながら説明する。
 図1に示すように、本実施形態のタッチパネル装置11は、タッチ操作が行われるタッチ面を備えたパネル本体21と、パネル本体21のタッチ面上のタッチ位置を検出する検出部31とを備えている。
 パネル本体21には、互いに並走する複数の送信電極(第1の電極)X1~X7と、互いに並走する複数の受信電極(第2の電極)Y1~Y7とが格子状に配置されている。
 送信電極X1~X7及び受信電極Y1~Y7は、表面側の保護絶縁膜により保護され、この保護絶縁膜の表面が、指等によるタッチ操作が行われるタッチ面となる。送信電極X1~X7及び受信電極Y1~Y7は絶縁性の支持シートにより支持されている。この支持シートの表面側に送信電極X1~X7が設けられ、支持シートの裏面側に受信電極Y1~Y7が設けられている。
 送信電極X1~X7と受信電極Y1~Y7とが支持シートを挟んで重なり合う電極交点にはコンデンサが形成される。指等によるタッチ操作が行われると、これに応じて電極交点のコンデンサの静電容量が実質的に減少する。
 検出部31が送信電極Xi(i=1~7)に駆動信号(パルス状電圧信号)を印加すると、電極間に存在するコンデンサを介して、受信電極Y1~Y7に充放電電流が流れる。この充放電電流は、送信電極Xと受信電極Yとの間の静電誘導により発生するものであり、一種の誘導信号である。このとき、タッチ操作があると、タッチ位置の電極交点のコンデンサの静電容量が減少し、受信電極Yj(j=1~7)に流れる充放電電流が減少する。検出部31は、この充放電電流、即ち、誘電信号の変化を検出することにより、タッチ位置を検出する。
 検出部31は、パネル本体21の送信電極X1~X7に駆動信号(パルス信号)を順次印加し、受信電極Y1~Y7に流れる充放電電流を検出し、検出した電流の変化から、タッチの有無及びタッチの位置を検出するものである。検出部31は、パルス信号生成部32と、送信部33と、受信部34と、IV(電流電圧)変換部35と、AD(アナログデジタル)変換部36と、タッチ判別部37と、サンプリングタイミング設定部38と、タイミング制御部39とを備える。
 パルス信号生成部32は、タイミング制御部39の制御に従って、送信電極X1~X7に印加する駆動信号を周期的に生成する。
 送信部33は、パルス信号生成部32と送信電極X1~X7に接続され、パルス信号生成部32が生成した駆動信号を送信電極X1~X7に印加する。送信部33は、例えば、マルチプレクサから構成される。送信部33は、図5(a)~(c)に例示するように、第iの送信電極Xi(i=1~7)に、受信電極Yの数(本実施形態では7)に等しい数の駆動パルスを印加した後、第(i+1)の送信電極X(i+1)に駆動パルスを印加する。
 図1に示す受信部34は、タイミング制御部39の制御に従って、図5(d)に示すように、受信電極Y1~Y7をスキャンして、受信電極Yj(j=1~7)を流れる電流を取り込む。この電流は、駆動信号が送信電極Xiに印加されたことに起因して受信電極Yjを流れる充放電電流である。この充放電電流は、送信電極Xと受信電極Yとの間の静電誘導により発生するものであり、一種の誘導信号である。
 IV(電流-電圧)変換部35は、受信部34を介して受信電極Yjを流れる充放電電流Iを、電流値に対応する電圧信号Eに変換する。この電圧信号Eも、送信電極Xと受信電極Yとの間の静電誘導により発生するものであり、一種の誘導信号である。受信電極Yjを流れる充放電電流Iは、駆動信号の立ち上がりエッジと立ち下がりエッジに対応して、逆極性の電流が交互に現れる交番電流となる。このため、IV変換部35の出力する電圧信号Eも、図5(f)に示すように、駆動信号の立ち上がりエッジと立ち下がりエッジに対応して極性が反転する交番信号となる。
 また、図6(a)、(b)に示すように、駆動電圧を送信電極Xiに印加してから、IV変換部35が出力する電圧信号Eがピークを示すタイミングTmまでの遅延時間TDは、送信電極Xiの位置により変動する。具体的に説明すると、送信電極Xiが受信部34から離れるに従って、遅延時間TDが大きくなる。遅延時間TDに関しては、X1>X2>...>X7、即ち、TD1>TD2>...>TD7となる。
 図1に示すAD変換部36は、IV変換部35から出力されたアナログ電圧信号Eをサンプリングし、サンプリング値をデジタル信号に変換する。本実施形態では、IV変換部35の出力は、積分回路等を経ずにAD変換部36に直接供給されている。
 AD変換部36は、図2に示すように、サンプリングスイッチ361と、サンプリングコンデンサ362と、AD変換回路363と、ラッチ364を備える。
 サンプリングスイッチ361は、半導体スイッチ等から構成されサンプリングタイミング設定部38からのS/H信号によりオン・オフし、オン期間では、IV変換部35の出力する電圧信号Eをサンプリングコンデンサ362に供給する。そのオン期間は、駆動信号が印加される送信電極Xiにかかわらず、図7(a)、(b)に示すように、IV変換後の電圧信号Eが最大となるタイミングTmの前Tbと後Taの一定期間TPとなるように制御される。
 図2に示すサンプリングコンデンサ362は、サンプリングスイッチ361がオンしている期間に、供給されている電圧Eにより充電され、充電電圧を保持する。
 AD変換回路363は、サンプリングコンデンサ362に保持されている電圧をデジタルデータに変換して出力する。
 ラッチ364は、D-FF(フリップフロップ)等から構成され、AD変換回路363が出力したデジタルデータを、後述するサンプリングタイミング設定部38から供給されるラッチ信号に応答して、ラッチする。これにより、図7(b)、(c)に示すように、AD変換部36の出力するデジタルデータが切り替わる。
 図1に示すタッチ判別部37は、AD変換部36が出力するデジタルデータからタッチの有無、タッチの位置を判別し、検出信号を出力する。例えば、タッチ判別部37は、送信部33が駆動信号を送信電極Xiに印加し、受信部34が受信電極Yjの充放電電流を取り込んでいるタイミングで、AD変換部36から出力されたデジタルデータが基準値(標準値)より小さい場合には、電極交差位置(i,j)にタッチがあったと判別する。この場合、タッチ判別部37は、タッチがあったこと、その位置(i,j)を示す検出信号を出力する。
 サンプリングタイミング設定部38は、AD変換部36のサンプリングスイッチ361をオンするタイミングを設定する。
 図6(a)、(b)に示したように、駆動信号の印加から、IV変換後の電圧信号Eのピークが現れるタイミングTmまでの遅延期間TDは、送信電極Xiの位置により異なり、TD1>TD2>...>TD7である。
 このため、固定タイミングで、サンプリング期間TPを設定すると、一部の送信電極について適切なサンプリングタイミングとなっても、他の送信電極については、電圧信号Eがピークを示していない不適切なタイミングとなってしまう。
 そこで、サンプリングタイミング設定部38は、遅延時間TDに基づいて、サンプリング及び変換のタイミングを制御する。より具体的に説明すると、サンプリングタイミング設定部38は、遅延時間TDに基づいて、電圧信号Eがピークを示すタイミングを含む一定期間のサンプリング期間TPだけ、AD変換部36に電圧信号Eをサンプリングさせ、サンプリング電圧をデジタルデータに変換させるように、サンプリング及び変換のタイミングを制御する。
 なお、サンプリング期間TPは、従来技術の積分期間と異なり、駆動信号の1/2周期以下、電圧信号Eの半周期以下の長さを有する。
 このような調整を可能とするため、サンプリングタイミング設定部38は、図3に示すように、テーブル381と制御部382とカウンタ383とを備える。
 テーブル381には、図4に示すように、各送信電極X1~X7について、図7に示す時間TSに相当するカウント値が設定されている。より具体的に説明すると、テーブル381には、「TD-Tb」の時間に相当するカウント値が設定されている。ここで、TDは、駆動信号を印加してから(駆動信号の立ち上がりエッジから)、電圧信号Eがピークを示すタイミングTmまでの期間である。Tbは、ピークタイミングTm前のサンプリング期間を示す。テーブル381に設定するカウント値は、実験或いは理論から適宜求められる。
 制御部382は、タイミング制御部39から送信電極Xiの切り換えを指示する信号を受信すると、指示された送信電極用のカウント値をテーブル381から読み出し、カウンタ383にセットする。
 続いて、制御部382は、タイミング制御部39から駆動信号の印加(立ち上がりエッジ)を示すタイミング信号を受信すると、カウンタ383のカウント動作を起動する。
 これにより、カウンタ383はカウントを開始し、駆動信号の印加から期間TS(=TD-Tb)が経過して、設定されたカウントを終了すると、制御部382に通知する。制御部382は、S/H信号をオンして、サンプリングスイッチ361をオンする。
 続いて、制御部382は、カウンタ383に、サンプリング期間TPに相当するカウント値をセットし、カウント動作を起動する。
 カウンタ383は、カウントを終了すると、制御部382に通知する。制御部382は、S/H信号をオフし、サンプリングスイッチ361をオフする。制御部382は、続いて、ラッチ364にラッチ信号を出力して、AD変換回路363の出力データをラッチさせる。これにより、電圧信号EのピークタイミングTm近傍の電圧のみがサンプリングコンデンサ362にサンプルホールドリングされ、デジタルデータに変換される。
 こうして、AD変換部36は、何れの送信電極Xiが選択されているかにかかわらず、電圧信号Eがピークを示すタイミングを含む一定期間TPの電圧信号Eをサンプリングホールドし、これを、AD変換する。なお、Tb>Ta、Ta≠0が望ましい。
 図1に示すタイミング制御部39は、プロセッサなどから構成され、全体の動作シーケンスを制御する。
 具体的には、タイミング制御部39は、パルス信号生成部32に周期的に駆動信号(パルス)を生成させる。また、タイミング制御部39は、送信部33を制御して、パルス信号生成部32が生成した駆動信号を、図5(a)~(c)に示すように、送信電極Xiに印加させる。
 さらに、タイミング制御部39は、図5(d)に示すように、受信部34に、受信電極Y1~Y7を順番に切り換えて、その電流Iを取り込ませる。
 また、タイミング制御部39は、タッチ判別部37に、選択されている送信電極Xiと受信電極Yjの組み合わせ(i,j)を通知する。
 また、タイミング制御部39は、サンプリングタイミング設定部38に、送信電極の選択の切り換え、駆動信号の切り換えなどを通知する。
 次に、上記構成を有するタッチパネル装置11のタッチ検出動作(タッチパネルの駆動方法)を説明する。
 電源が投入されると、タイミング制御回路39は、パルス信号生成部32に一定周期で駆動信号を生成し、出力させる。
 続いて、タイミング制御部39は、送信部33を制御して、図5(a)~(c)に示すように、送信電極Xiに7パルスずつ、パルス信号生成部32が生成した駆動信号を順次印加させる。
 タイミング制御部39は、さらに、受信部34を制御して、駆動信号が印加されるタイミングにあわせて、図5(d)に示すように、受信部34に、受信電極Y1~Y7を順次選択させる。
 これにより、送信電極Xiに印加された駆動信号により、受信電極Yjに誘導された電圧により電流Iが流れる。IV変換部35は、この電流Iを電圧信号Eに変換する。
 電圧信号Eは、図5(e)に示すように、駆動信号の立ち上がりエッジと立ち下がりエッジに対応して、正極性のピークと負極性のピークが交互に現れる交番波形となる。
 サンプリングタイミング設定部38の制御部382は、駆動信号の立ち上がりエッジのタイミングで、テーブル381に格納されている送信電極毎に予め定められたカウント値のカウントをカウンタ383に開始させる。その後、送信電極毎に定められた期間TSが経過して、カウンタ383がカウントアップした時点で、制御部382は、S/H信号により、AD変換部36を構成するサンプリングスイッチ361をオンする。これにより、電圧信号Eのサンプリングを開始する。
 制御部382は、カウンタ383に、サンプリング期間TPに相当するカウントを開始させる。サンプリング期間TPが経過し、カウンタがカウントアップすると、制御部382は、S/H信号により、サンプリングスイッチ361をオフする。続いて、制御部382は、ラッチ364にラッチ信号を出力して、AD変換回路363が出力しているデジタルデータをラッチさせる。
 これにより、AD変換部36は、送信電極の位置及びそれに起因する遅延時間TDのばらつきにかかわらず、電圧信号EのピークタイミングTmを含む相対的に同一のタイミングで電圧信号Eをサンプリングする。
 タッチ判別部37は、AD変換部36が出力するデジタルデータの変化を検出し、例えば、周辺の電極交差位置で得られるデジタル値よりも小さいデジタルデータが得られた位置、或いは、フレーム間で同一位置について相対的に小さいデジタルデータが得られたときに、その位置にタッチがあったと判別し、検出信号を出力する。
 このような構成によれば、AD変換部36は、遅延時間TDの変動にかかわらず、電圧信号Eがピークを示すタイミングTmの近傍のサンプリング期間TPでのみ電圧信号Eをサンプリングする。従って、遅延時間TDの変動にかかわらず、電圧信号Eの電圧レベルが相対的に大きい期間にサンプリングを行うことができる。従って、サンプリングが短期間ですみ、サンプリング値のばらつきが小さく、また、ノイズの影響を受けにくい。また、IV変換部35の出力を時間積分する積分回路を設ける必要がなく、高速動作が可能で、ノイズの影響を受けにくいタッチパネルを提供できる。
 なお、本実施の形態においても、サンプリングコンデンサ361が、電圧信号Eを一定程度時間(例えば、nsオーダー)積分している。しかしながら、この時間積分は、AD変換用のサンプルホールドのためのものであり、サンプルホールド期間TPのみ電圧信号Eを時間積分するものである。これに対し、従来技術(例えば、引用文献1~3に記載)の積分回路は、数パルス期間に渡って電圧信号を積分しており、機能的にサンプリングコンデンサ361とは異なる。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 例えば、上記実施の形態においては、電圧信号Eの正極性の1つピーク部分のみをサンプリングの対象とし、これに限定されず、負極性の1つのピーク部分のみをサンプリングの対象としてもよい。この場合、駆動信号の立ち下がりエッジを駆動信号の印加タイミングとすればよい。
 また、IV変換部35の後段に絶対値増幅器を配置するなどして、1つの駆動パルスについて、2つのピークの近傍をサンプリング期間TPとしてもよい。この場合、各サンプリング期間TPにサンプリングして得られたデジタルデータをそれぞれ出力してもよく、平均化して出力する等してもよい。
 上記実施の形態では、受信電極Yでの信号の遅延を検討して、送信電極Xの位置に応じて、サンプリングのタイミングを調整する例を示したが、送信電極Xでの遅延を考慮してもよい。この場合には、送信電極Xが1番に近く且つ受信電極Yが1番に近い程、遅延時間が大きく、送信電極Xが7番に近く且つ受信電極Yが7番に近い程、遅延時間が小さくなる。従って、この関係に合致するように、図8に例示するように、送信電極Xと受信電極Yの組み合わせに応じて、カウンタ383のカウントするカウント値をテーブル381に設定すればよい。なお、設定するカウント値は、実験或いは理論により予め求められる。
 上記実施の形態では、AD変換部36のサンプリングタイミングを調整したが、例えば、IV変換部35の出力する電圧信号Eを、駆動信号を印加する送信電極Xの位置に応じた時間だけ遅延させ、AD変換部36の駆動信号の出力から一定の時間経過した時点でサンプリング及びAD変換を行うようにしてもよい。遅延回路は、例えば、制御信号に応じて容量が変化するR-C型の遅延回路等でもよい。また、遅延回路を、カウンタデコードや、フリップフロップなどのクロック遅延回路で構成してもよい。
 このように、電圧信号Eがピークを示すタイミングTmとAD変換部36のサンプリング期間TPとを相対的に一致させることができれば、その手法自体は任意である。
 また、上記実施形態では、電流電圧変換を行う例を示したが、受信電極の電圧をそのままサンプリングしてAD変換することも可能である。
 実施形態では、理解を容易にするため、送信電極の数及び受信電極の数を7としたが、送信電極の数及び受信電極の数は任意である。
 AD変換部36の回路構成の一例、サンプリングタイミング設定部38の回路構成の一例をそれぞれ図2と図3に示した。これらは一例であり、実質的に同一の機能を実現できるならば、適宜変更可能である。例えば、図2に示すAD変換部36の回路構成で、サンプリングスイッチ361とサンプリングコンデンサ362を取り払い、電圧信号EをAD変換回路363でデジタルデータに変換し、サンプリングタイミング設定部38が、ピークタイミングTm(又はその直後)にラッチ信号を出力し、ラッチ364にラッチさせるようにしてもよい。この場合は、実質的に、ピークタイミングTm(又はその直後)の電圧信号EをサンプリングしてAD変換していることになり、ピークタイミングTm(又はその直後)=サンプリングタイミング=ラッチタイミングとなる。
 また、IV変換部35の後段に、増幅回路等を配置し、増幅した電圧信号EをAD変換部36でAD変換するようにしてもよい。この場合、増幅回路の遅延を含めた遅延時間TDを考慮して、テーブル381に設定するカウント値を求めることが望ましい。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本出願は、2013年9月17日に出願された日本国特許出願2013-192425号に基づくものであり、その明細書、特許請求の範囲、図面および要約書を含むものである。上記日本国特許出願における開示は、その全体が本明細書中に参照として含まれる。
 11 タッチパネル装置
 21 パネル本体
 31 検出部
 32 パルス信号生成部
 33 送信部
 34 受信部
 35 IV変換部
 36 AD変換部
 37 タッチ判別部
 38 サンプリングタイミング設定部
 39 タイミング制御部
 361 サンプリングスイッチ
 362 サンプリングコンデンサ
 363 AD変換回路
 364 ラッチ
 381 テーブル
 382 制御部
 383 カウンタ

Claims (8)

  1.  互いに並走する複数の第1の電極と互いに並走する複数の第2の電極が格子状に配置されたパネル本体と、
     前記第1の電極に駆動信号を印加し、駆動信号の印加により前記第2の電極に誘導される誘導信号をサンプリングして、サンプリング値に基づいてタッチ位置を検出する検出部と、を備え、
     前記検出部は、駆動信号を印加する第1の電極に応じて予め定められたタイミングに設定されたサンプリング期間に、前記誘導信号をサンプリングする、
     ことを特徴とするタッチパネル装置。
  2.  前記サンプリング期間は、駆動信号が印加され第1の電極に応じて予め定められたタイミングで、且つ、誘導信号の波形のピークのタイミングを含む期間に設定されている、
    ことを特徴とする請求項1に記載のタッチパネル装置。
  3.  前記サンプリング期間は、駆動信号の1周期よりも短い、ことを特徴とする請求項1又は2に記載のタッチパネル装置。
  4.  前記検出部は、駆動信号を印加してから、該駆動信号を印加した第1の電極別に予め定められている設定時間を経過してから、一定のサンプリング期間、誘導信号をサンプリングする、ことを特徴とする請求項1、2又は3に記載のタッチパネル装置。
  5.  前記検出部は、駆動信号を印加してから、該駆動信号を印加した第1の電極と誘導信号が誘導された第2の電極の組み合わせ別に予め定められている設定時間を経過してから、一定のサンプリング期間、誘導信号をサンプリングする、ことを特徴とする請求項1、2又は3に記載のタッチパネル装置。
  6.  前記検出部は、
     駆動信号を前記複数の第1の電極に印加する印加手段と、
     前記複数の第2の電極のそれぞれ一端部に接続され、前記第2の電極に誘導された信号をサンプリングするサンプリング手段から構成され、
     前記設定時間は、各第1の電極への駆動信号の印加タイミングを基準とし、前記第1の電極が前記第2の電極の一端部から離れるに従って大きくなるように定められている、ことを特徴とする請求項4又は5に記載のタッチパネル装置。
  7.  前記検出部は、
     駆動信号を前記複数の第1の電極に順次印加する印加手段と、
     前記複数の第2の電極を順次選択して、選択した第2の電極に流れる電流を電圧信号に変換する電流電圧変換部と
     変換された電圧信号をサンプリングし、デジタルデータに変換するAD変換部と、
     前記AD変換部の変換したデジタルデータからタッチの有無を判別する手段と、
    を備える、
    ことを特徴とする請求項1乃至5の何れか1項に記載のタッチパネル装置。
  8.  互いに並走する複数の第1の電極と互いに並走する複数の第2の電極が格子状に配置されたパネルの前記第1の電極に駆動信号を印加し、
     駆動信号の印加により前記第2の電極に誘導される誘導信号を、駆動信号を印加する第1の電極に応じて予め定められたタイミングに設定されたサンプリング期間にサンプリングする、
     ことを特徴とするタッチパネルの駆動方法。
PCT/JP2014/074583 2013-09-17 2014-09-17 タッチパネル装置とタッチパネルの駆動方法 WO2015041256A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/428,801 US9703420B2 (en) 2013-09-17 2014-09-17 Touch panel device and touch panel driving method
JP2015514687A JPWO2015041256A1 (ja) 2013-09-17 2014-09-17 タッチパネル装置とタッチパネルの駆動方法
CN201480002427.3A CN104854541A (zh) 2013-09-17 2014-09-17 触摸面板装置和触摸面板的驱动方法
KR1020157006627A KR20160057346A (ko) 2013-09-17 2014-09-17 터치 패널 장치와 터치 패널의 구동 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-192425 2013-09-17
JP2013192425 2013-09-17

Publications (1)

Publication Number Publication Date
WO2015041256A1 true WO2015041256A1 (ja) 2015-03-26

Family

ID=52688903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074583 WO2015041256A1 (ja) 2013-09-17 2014-09-17 タッチパネル装置とタッチパネルの駆動方法

Country Status (5)

Country Link
US (1) US9703420B2 (ja)
JP (1) JPWO2015041256A1 (ja)
KR (1) KR20160057346A (ja)
CN (1) CN104854541A (ja)
WO (1) WO2015041256A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068955A1 (ja) * 2015-10-19 2017-04-27 富士フイルム株式会社 指示受付装置、情報処理装置、信号処理方法、及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6498766B2 (ja) * 2015-07-08 2019-04-10 シャープ株式会社 タッチパネル装置
KR102375274B1 (ko) * 2015-09-10 2022-03-18 삼성디스플레이 주식회사 터치 감지 장치 및 이를 포함하는 표시 장치
US20170090609A1 (en) * 2015-09-25 2017-03-30 Synaptics Incorporated Oversampled step and wait system for capacitive sensing
CN113168818A (zh) * 2018-09-03 2021-07-23 德克萨斯仪器股份有限公司 触摸传感器电路
CN109375803B (zh) * 2018-09-29 2021-01-05 基合半导体(宁波)有限公司 一种触摸屏及移动终端
JP7302556B2 (ja) * 2020-09-03 2023-07-04 横河電機株式会社 測定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159947A (ja) * 1999-12-02 2001-06-12 Canon Inc 駆動制御装置および駆動制御方法および記憶媒体
JP2013065212A (ja) * 2011-09-16 2013-04-11 Sharp Corp タッチパネルコントローラ、タッチパネル装置、タッチパネル駆動方法、および電子情報機器
JP2013077042A (ja) * 2011-09-29 2013-04-25 Japan Display West Co Ltd 表示装置、タッチ検出装置、駆動方法、および電子機器
JP5273328B1 (ja) * 2011-11-11 2013-08-28 パナソニック株式会社 タッチパネル装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229887B2 (ja) * 2008-08-06 2013-07-03 株式会社ワコム 位置検出装置
TWI400646B (zh) * 2009-08-12 2013-07-01 Htc Corp 觸控感測元件之壓力偵測方法以及使用該方法之電子裝置
CN101996014B (zh) * 2009-08-21 2013-08-14 宏达国际电子股份有限公司 触控感测元件的压力侦测方法以及使用该方法的电子装置
JP4850946B2 (ja) 2009-12-17 2012-01-11 パナソニック株式会社 タッチパネル装置
JP4913859B2 (ja) 2009-12-17 2012-04-11 パナソニック株式会社 タッチパネル装置
CA2722831A1 (en) * 2009-12-17 2011-06-17 Panasonic Corporation Touch screen device
JP5264800B2 (ja) 2010-02-23 2013-08-14 パナソニック株式会社 タッチパネル装置
TW201335820A (zh) * 2012-02-17 2013-09-01 Elan Microelectronics Corp 觸控面板的抗雜訊干擾驅動方法及其觸控面板裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159947A (ja) * 1999-12-02 2001-06-12 Canon Inc 駆動制御装置および駆動制御方法および記憶媒体
JP2013065212A (ja) * 2011-09-16 2013-04-11 Sharp Corp タッチパネルコントローラ、タッチパネル装置、タッチパネル駆動方法、および電子情報機器
JP2013077042A (ja) * 2011-09-29 2013-04-25 Japan Display West Co Ltd 表示装置、タッチ検出装置、駆動方法、および電子機器
JP5273328B1 (ja) * 2011-11-11 2013-08-28 パナソニック株式会社 タッチパネル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068955A1 (ja) * 2015-10-19 2017-04-27 富士フイルム株式会社 指示受付装置、情報処理装置、信号処理方法、及びプログラム
US10551982B2 (en) 2015-10-19 2020-02-04 Fujifilm Corporation Instruction reception apparatus, information processing apparatus, signal processing method, and program

Also Published As

Publication number Publication date
KR20160057346A (ko) 2016-05-23
CN104854541A (zh) 2015-08-19
US20160216835A1 (en) 2016-07-28
JPWO2015041256A1 (ja) 2017-03-02
US9703420B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2015041256A1 (ja) タッチパネル装置とタッチパネルの駆動方法
TWI463769B (zh) 充電幫浦裝置
US8222946B2 (en) Capacitive touching apparatus
US9524056B2 (en) Capacitive voltage information sensing circuit and related anti-noise touch circuit
US7015716B2 (en) Method for detecting a power load of a power supply module according to duty cycle detection, and related device
US20120044013A1 (en) Electrostatic capacitance-type input device
US20110090173A1 (en) Sensing circuit for use with capacitive touch panel
US9197207B2 (en) Touch sensor circuit and touch display device
US20120112817A1 (en) Method and apparatus for capacitance sensing
KR20150143242A (ko) 도통 검출 회로, 이를 포함하는 정류 스위치 제어 회로, 및 정류 스위치 제어 회로가 적용된 전력 공급 장치
JP2013020479A (ja) タッチパネル装置
WO2014097365A1 (ja) 制御装置、制御方法、および表示装置
US20110157081A1 (en) Sensing circuit for use with capacitive touch panel
JP2011243081A (ja) タッチパネル装置
EP1435563A2 (en) Input apparatus having electrostatic sensor
JP2011166240A (ja) 静電容量検出方式および静電容量検出装置
JP2014067212A (ja) 静電容量式タッチパネル
JP5492892B2 (ja) 電子部品に印加された電圧の少なくとも一つの値を測定する装置
CN105786273A (zh) 一种电容式触摸屏及其检测电路及电子设备
KR20130020554A (ko) 터치 패널 제어 시스템 및 제어 방법
KR101996084B1 (ko) 터치 스크린 패널의 노이즈 저감을 위한 방법 및 장치
TW201631458A (zh) 觸控面板裝置及觸控面板之驅動方法
US9106144B2 (en) Voltage converting apparatus and sub-harmonic detector thereof
KR101507137B1 (ko) 터치 인식시스템 및 터치 인식방법
CN109962605B (zh) 一种全桥整流器及自适应调节装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20157006627

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14428801

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015514687

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846239

Country of ref document: EP

Kind code of ref document: A1