WO2015040998A1 - Copper foil, copper foil with carrier foil, and copper-clad laminate - Google Patents

Copper foil, copper foil with carrier foil, and copper-clad laminate Download PDF

Info

Publication number
WO2015040998A1
WO2015040998A1 PCT/JP2014/071798 JP2014071798W WO2015040998A1 WO 2015040998 A1 WO2015040998 A1 WO 2015040998A1 JP 2014071798 W JP2014071798 W JP 2014071798W WO 2015040998 A1 WO2015040998 A1 WO 2015040998A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
copper
layer
foil
roughened
Prior art date
Application number
PCT/JP2014/071798
Other languages
French (fr)
Japanese (ja)
Inventor
裕昭 津吉
眞 細川
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020167007204A priority Critical patent/KR101920976B1/en
Priority to CN201480051363.6A priority patent/CN105556004B/en
Priority to MYPI2016700973A priority patent/MY182166A/en
Priority to JP2015515306A priority patent/JP6283664B2/en
Publication of WO2015040998A1 publication Critical patent/WO2015040998A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/52Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/63Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Definitions

  • the present application relates to a copper foil, a copper foil with a carrier foil, and a copper-clad laminate obtained using these copper foils.
  • the present invention relates to a copper foil provided with a roughening treatment layer having a finer concavo-convex structure on the surface of the copper foil than conventional.
  • the copper foil for this application is often provided with a shape that exhibits an anchor effect on the surface of the copper foil that serves as an adhesive surface.
  • adhesion of fine copper particles as disclosed in Patent Document 1, etc.
  • “unevenness formation by etching” as disclosed in Patent Document 2, etc. Has been performed on the surface of the copper foil.
  • Patent Document 3 in order to provide a copper-clad laminate for a printed circuit in which a copper foil and a laminated base material are firmly bonded with a tough and reactive adhesive,
  • a copper clad laminate in which copper foil is laminated and bonded on both sides a.
  • a general formula QRSiXYZ ... [1] (wherein Q is a functional group that reacts with the following resin composition, R is Q Or a silane coupling agent represented by the general formula T (SH) n ⁇ , a bonding group that links Si atom to each other, X, Y, and Z represent a hydrolyzable group or hydroxyl group bonded to Si atom.
  • T is an aromatic ring, an aliphatic ring, a heterocyclic ring, an aliphatic chain, and n is an integer of 2 or more
  • T is an aromatic ring, an aliphatic ring, a heterocyclic ring, an aliphatic chain, and n is an integer of 2 or more
  • Acrylic monomer, methacrylic monomer, polymer thereof or olefin (2) Diallyl phthalate, epoxy acrylate or epoxy methacrylate and their oligomer peroxide curable resin composition, (3) ethylene butylene copolymer and styrene copolymer in the molecule A thermoplastic elastomer peroxide curable resin composition, (4) an olefin copolymer resin composition containing a glycidyl group, and (5) a polyvinyl butyral resin resin composition having a side chain containing an unsaturated group.
  • an adhesive composed of a polyvinyl butyral resin and a resin composition of an amino resin having a spiroacetal ring and an epoxy resin, or an adhesive of the resin composition. It is possible to adopt a copper-clad laminate for printed circuits, which is directly bonded to the laminated substrate. It is.
  • Patent Document 4 provides a copper foil that does not contain chromium in the surface treatment layer and is excellent in the peel strength of the circuit after being processed into a printed wiring board, the chemical resistance deterioration rate of the peel strength, and the like.
  • a copper foil provided with a surface treatment layer on a bonding surface of a copper foil used when producing a copper clad laminate by bonding with an insulating resin base material, the surface treatment layer being a bonding surface of the copper foil It is disclosed to employ a copper foil characterized in that it is obtained by adhering a zinc component, a high melting point metal component having a melting point of 1400 ° C. or higher, and further a carbon component. It is disclosed that “the bonding surface of the copper foil is preferably one having a surface roughness (Rzjis) of 2.0 ⁇ m or less without being subjected to a roughening treatment”.
  • Such a non-roughened copper foil does not have a concavo-convex shape formed by a roughening treatment on the surface bonded to the insulating resin base material. For this reason, when performing circuit formation by etching the copper foil, it is not necessary to provide an over-etching time for removing the anchor shape (uneven shape) embedded in the insulating resin substrate side. Therefore, if non-roughened copper foil is used, a fine pitch circuit having a good etching factor can be formed.
  • this non-roughened copper foil does not have an anchor shape (uneven shape) embedded in the insulating resin substrate side, the adhesion of the non-roughened copper foil to the insulating resin substrate is roughened. It tends to be lower than that of the copper foil subjected to.
  • the copper foil according to the present application includes a roughening treatment layer having a fine concavo-convex structure formed from needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound, and The surface of the roughening treatment layer is provided with a silane coupling agent treatment layer on at least one surface.
  • Copper foil with carrier foil The copper foil with carrier foil according to the present application is characterized in that a carrier foil is provided on one side of the copper foil described above via a bonding interface layer.
  • Copper-clad laminate The copper-clad laminate according to the present application is obtained by using a copper foil or a copper foil with a carrier foil provided with the above-mentioned roughening treatment layer and silane coupling layer.
  • the copper foil or copper foil with carrier foil according to the present application is “a roughened layer having a fine concavo-convex structure formed by needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound”. It has. For this reason, the surface provided with the roughening treatment layer is used as an adhesive surface with the insulating resin base material, so that the insulating resin base of the non-roughened copper foil can be obtained by the nano-anchor effect by the convex portions forming the fine uneven structure. Good adhesion can be ensured compared to the adhesion to the material.
  • the fine concavo-convex structure is formed by extremely short needle-like or plate-like convex portions having a maximum length of 500 nm or less, a slight over-etching time is required when forming a circuit by etching.
  • the convex part of the state embedded in the insulating resin base material side can be dissolved and removed. Therefore, good etching performance equivalent to that of the non-roughened copper foil can be realized, and a fine pitch circuit having a good etching factor can be formed.
  • a silane coupling agent treatment layer on the surface of the roughening treatment layer, it is possible to realize moisture absorption deterioration resistance equivalent to that of a conventional roughening copper foil.
  • Form of copper foil The copper foil according to the present application was formed on at least one surface of the copper foil from needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound.
  • a roughening treatment layer having a fine concavo-convex structure and a silane coupling agent treatment layer on the surface of the roughening treatment layer are provided.
  • the copper foil which concerns on this application should just be equipped with the said roughening process layer in "at least one surface of copper foil", and the double-sided roughening process copper which provided the roughening process layer on both surfaces of copper foil Any of the single side
  • surface roughening process copper foil provided with the roughening process layer only in one side of foil and copper foil may be sufficient.
  • the copper foil according to the present application the copper foil may be an electrolytic copper foil or a rolled copper foil.
  • the thickness of the copper foil at this time is not particularly limited, and it is generally sufficient to recognize the copper foil as having a thickness of 200 ⁇ m or less.
  • the surface of the copper foil on which the roughening treatment layer and the silane coupling agent layer are provided may be referred to as a roughening treatment surface.
  • the roughened layer has a fine concavo-convex structure formed from needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound.
  • a scanning electron microscope observation image showing the surface of the roughened layer when the roughened layer referred to in the present application is provided on the double-side smooth electrolytic copper foil is shown in FIG. Shown in a). As shown in FIG.
  • FIG. 1 (b) is a further enlarged view of the surface of the roughened layer shown in FIG. 1 (a), and is a scanning electron microscope observation image at a magnification of 50000 times.
  • the “convex portion” means a protruding portion extending in a needle shape or a plate shape from the surface of the copper foil when the cross section of the copper foil is observed.
  • the projecting portion is composed of a single crystal of a copper composite compound or an aggregate of a plurality of crystals, and the convex portions are densely provided on the surface of the copper foil as shown in FIGS. 1 (a) and 1 (b). It has been.
  • FIG. 2 shows an electrode surface and a deposition surface of a general electrolytic copper foil, and observation images of the respective surfaces when the roughening treatment layer is provided on each surface.
  • the surface shape of each surface of the electrolytic copper foil is finer along the surface shape of each surface before the roughening treatment. It can be confirmed that the concavo-convex structure is formed and the macroscopic surface shape of each surface before the roughening treatment is maintained after the roughening treatment.
  • the roughening treatment layer is formed so that the needle-like or plate-like convex portion of the nm order covers the surface of the copper foil thinly along the surface shape of the copper foil. Since it is densely provided on the surface of the foil, it is considered that the macroscopic surface shape of the copper foil before the roughening treatment can be maintained.
  • the roughening treatment layer referred to in the present application has a fine concavo-convex structure formed by convex portions on the order of nm, and the maximum length of the convex portions is extremely small as 500 nm or less as described above. It is possible to suppress a change in the surface roughness on the roughening treatment surface side before and after the treatment. In other words, by providing the roughened layer on the copper foil having a smooth surface, the surface having the smooth surface before the roughened layer is maintained, and the surface with nano-structures having the fine concavo-convex structure is maintained. An anchor effect can be expressed.
  • FIG. 3 is a scanning electron microscope observation image showing a cross section of the copper foil according to the present application.
  • a portion observed in a thin line shape is a convex portion.
  • the surface of the copper foil is covered with innumerable convex portions densely packed with each other, and each convex portion is provided so as to protrude from the surface of the copper foil along the surface shape of the copper foil. Is done.
  • the “maximum length of the convex portion” means that when the length from the base end to the tip end of each convex portion observed in the shape of the line (line segment) in the cross section of the copper foil is measured.
  • the maximum length of the convex portion is preferably 400 nm or less, and more preferably 300 nm or less. As the maximum length of the convex portion becomes shorter, a fine uneven structure can be imparted to the surface of the copper foil, and the surface shape of the copper foil before the roughening treatment can be maintained. The change in height can be suppressed.
  • a fine pitch circuit can be formed.
  • the “thickness of the roughening treatment layer” corresponds to the thickness of the fine uneven structure provided on the surface layer portion of the copper foil.
  • the length and the protruding direction of each convex part forming the fine concavo-convex structure are not constant, and the protruding direction of each convex part is not parallel to the thickness direction of the copper foil. Therefore, the length of the convex portion and the height of the convex portion in the thickness direction of the copper foil do not match, and the maximum length of the convex portion and the maximum thickness of the roughening treatment layer also match. Without having a relationship of (thickness of the roughened layer) ⁇ (maximum length of the convex portion).
  • the thickness of the roughening treatment layer varies.
  • the average thickness of the roughened layer is 400 nm.
  • the maximum length of the convex portion is 500 nm or less, and when the average thickness of the roughened layer is 100 nm or more, the maximum length of the convex portion is 100 nm or more.
  • the average thickness of the roughened layer is preferably 100 nm or more, and the average thickness of the roughened layer is within the range of 100 nm to 350 nm. In some cases, it has been determined that it is possible to combine “good adhesion more than the non-roughened copper foil to the insulating resin base material” and “good etching performance equivalent to the non-roughened copper foil”. In FIG. 3, the roughened layer has an average thickness of 250 nm.
  • the length of the tip portion that can be separately observed from other convex portions is preferably 250 nm or less.
  • “the length of the tip portion that can be separately observed from other convex portions refers to the length shown below.
  • the surface of the roughened layer is observed with a scanning electron microscope as described above, the roughened layer is separated from the surface of the copper foil as described above with reference to FIGS.
  • the convex part protrudes in the shape of a needle or a plate, and the convex part is provided densely on the surface of the copper foil, the base end part of the convex part from the surface of the copper foil, that is, a copper composite compound
  • the interface between the convex portion and the copper foil cannot be observed. Therefore, when the copper foil is observed in a plane as described above, it is separated from other convex portions among the convex portions adjacent to each other while being densely packed, and exists independently as one convex portion.
  • the portion that can be observed when it is obtained is referred to as the “tip portion that can be observed separately from other convex portions”, and the length of the tip portion refers to the tip of the convex portion (ie, the tip of the tip portion). The length up to the position on the most proximal side that can be separated and observed from other convex portions.
  • the maximum length of the convex portion is approximately 500 nm or less, and as described above, due to the nanoanchor effect due to the fine uneven structure of the roughened layer.
  • the length of the tip portion that can be separately observed from other convex portions is 250 nm or less, there is no convex portion that protrudes long from the surface of the copper foil, and the surface of the roughening treatment layer has another surface.
  • the length of the tip portion of the convex portion is preferably 200 nm or less, and more preferably 100 nm or less. Moreover, when obtaining favorable adhesiveness with an insulating resin base material, the length of the tip portion of the convex portion is preferably 30 nm or more, and more preferably 50 nm or more.
  • the length of the tip portion of the convex portion is 1 ⁇ 2 or less with respect to the maximum length of the convex portion.
  • the ratio is 1 ⁇ 2 or less, while separating from other convex portions, the tip portion of the convex portion protrudes from the surface of the copper foil, so that the nano anchor effect can be exhibited, Since the convex portions adjacent to each other on the base end side of the convex portions are densely packed on the copper foil surface while being in contact with each other, the copper foil surface can be densely covered with the fine concavo-convex structure.
  • the silane coupling agent treatment layer provided on the roughened surface is composed of olefin functional silane, epoxy functional silane, vinyl functional silane, acrylic functional silane, amino functional silane and mercapto functional silane as a silane coupling agent. Either can be used to form.
  • silane coupling agents are represented by the general formula R—Si (OR ′) n (where R: an organic functional group typified by an amino group or vinyl group, OR ′: a methoxy group or an ethoxy group) And the like, n: 2 or 3.
  • silane coupling agent said here is shown more specifically, vinyltrimethoxysilane, vinylphenyltrimethoxylane, mainly using the same coupling agent as used for a glass cloth of a prepreg for a printed wiring board, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, Use N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, 3-acryloxypropylmethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, etc. Is possible .
  • silane coupling agents listed here do not adversely affect the subsequent etching process and the characteristics after becoming a printed wiring board even when used on the adhesive surface of the copper foil with the insulating resin substrate.
  • Which type is used in the silane coupling agent can be appropriately selected according to the type of the insulating resin base material, the method of using the copper foil, and the like.
  • the silane coupling agent described above contains water as a main solvent, the silane coupling agent component is contained in a concentration range of 0.5 g / L to 10 g / L, and the silane coupling agent has a room temperature level. It is preferable to use an agent treatment liquid.
  • concentration of the silane coupling agent in the silane coupling agent treatment liquid is less than 0.5 g / L, the adsorption rate of the silane coupling agent is slow, which is not suitable for general commercial profit, and the adsorption is not uniform. It becomes.
  • the concentration of the silane cup agent exceeds 10 g / L, the adsorption rate is not particularly high, and the performance quality such as moisture absorption resistance is not particularly improved. .
  • the adsorption method of the silane coupling agent to the copper foil surface using this silane coupling agent treatment liquid can employ an immersion method, a showering method, a spraying method, etc., and is not particularly limited. That is, any method can be used as long as the copper foil and the silane coupling agent treatment solution can be brought into contact with each other and adsorbed in accordance with the process design.
  • the silane coupling agent After the silane coupling agent is adsorbed on the surface of the roughening treatment layer, it is sufficiently dried to perform a condensation reaction between the —OH group on the surface of the roughening treatment layer and the adsorbed silane coupling agent. Promote and completely evaporate the water resulting from the condensation.
  • the drying method at this time For example, even if an electric heater is used or a blast method that blows warm air is not particularly limited, a drying method and drying conditions corresponding to the production line may be employed.
  • the roughening treatment layer functions as a light absorbing layer that absorbs light, and the surface of the roughening treatment surface is darkened to blackening, browning, or the like as compared to before the roughening treatment.
  • the roughened surface of the copper foil according to the present application has a special color tone, and the lightness L * value of the L * a * b * color system is 25 or less.
  • the maximum length of the convex portion constituting the roughening treatment layer may exceed 500 nm, which is not preferable.
  • the value of L * exceeds 25 even if the maximum length of the convex portion is 500 nm or less, the convex portion may not be provided sufficiently densely on the surface of the copper foil. .
  • the value of the lightness L * exceeds 25 it is considered that the roughening treatment is insufficient or the state of the roughening treatment is uneven.
  • the value of the lightness L * may be used as an indicator of the "surface state of the roughened surface", as the value of the lightness L * is less than 25, no relative "insulating resin substrate Arakado It can be considered that the surface state is better in obtaining “adhesiveness better than that of foil”, and if the value of the lightness L * is 20 or less, the reliability with respect to the adhesiveness with the insulating resin substrate is high. This is preferable because it improves dramatically.
  • the lightness L * in the present application was measured using a spectral color difference meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the whiteness plate attached to the measuring device was used for lightness calibration in accordance with JIS Z8722: 2000. . And the measurement of 3 times is performed regarding the same site
  • the convex part which forms the fine concavo-convex structure in the roughening process layer of the copper foil which concerns on this application consists of a copper complex compound.
  • the copper composite compound preferably contains copper oxide and cuprous oxide.
  • the high frequency signal does not flow through the roughened layer. That is, if the copper foil which concerns on this application is used, the high frequency characteristic equivalent to the non-roughened copper foil which is not provided with the roughening process layer will be shown regarding the transmission loss of a high frequency signal.
  • the roughened layer has good adhesion to a low dielectric constant and low dielectric loss tangent insulating resin substrate used for a high frequency substrate. Therefore, the copper foil which concerns on this application is very suitable as a high frequency circuit formation material by providing the said roughening process layer with respect to the untreated copper foil which was excellent in the following high frequency characteristics, for example.
  • a copper foil suitable for a high-frequency circuit forming material can be obtained by providing the roughening layer on an untreated copper foil having the following characteristics.
  • the copper foil according to the present application can be suitably used for manufacturing a microstrip line or a strip line by providing the roughening treatment layer for an untreated copper foil having the following characteristics. it can.
  • the surface roughness (Rz) and glossiness (Gs60 °) of the surface in close contact with the insulating resin substrate are within the following ranges, respectively.
  • the insulating resin base material is in close contact with both surfaces, and therefore the surface characteristics of both surfaces are preferably within the following range.
  • Cu obtained when the constituent elements of the roughened layer are analyzed by X-ray photoelectron spectroscopy hereinafter referred to as “XPS”.
  • the ratio of the peak area of Cu (I) (hereinafter referred to as the occupied area ratio) to the total area of the peak area of I) and the peak area of Cu (II) is preferably 50% or more.
  • each peak of Cu (I) and Cu (II) can be separated and detected.
  • the Cu (0) peak may be observed overlapping the shoulder portion of the large Cu (I) peak.
  • the peak of Cu (0) is observed overlappingly, it shall be considered as a Cu (I) peak including this shoulder part.
  • the constituent elements of the copper composite compound forming the fine concavo-convex structure layer are analyzed using XPS, and Cu (I) and 934 appearing at 932.4 eV corresponding to the binding energy of Cu 2p 3/2.
  • Each peak obtained by detecting photoelectrons of Cu (II) appearing at .3 eV is separated into waveforms, and the occupied area ratio of the Cu (I) peak is specified from the peak area of each component.
  • Quantum 2000 (beam condition: 40 W, 200 ⁇ m diameter) manufactured by ULVAC-PHI Co., Ltd. is used as an XPS analyzer
  • “MultiPack ver. 6.1A” is used as analysis software to perform state / semi-quantitative narrow measurement. be able to.
  • the Cu (I) peak obtained as described above is considered to be derived from monovalent copper constituting cuprous oxide (cuprous oxide: Cu 2 O). And it is thought that a Cu (II) peak originates in the bivalent copper which comprises copper oxide (cupric oxide: CuO). Furthermore, it is considered that the Cu (0) peak is derived from zero-valent copper constituting metallic copper. Therefore, when the occupation area ratio of the Cu (I) peak is less than 50%, the proportion of cuprous oxide in the copper composite compound constituting the roughened layer is smaller than the proportion of copper oxide. Copper oxide has higher solubility in acids such as an etchant than cuprous oxide.
  • the occupied area ratio of the Cu (I) peak is less than 50%, when the roughened surface side of the copper foil is bonded to the insulating resin substrate and the circuit is formed by the etching method, A roughening process layer becomes easy to melt
  • the occupied area ratio of the Cu (I) peak is 70% or more and 80% or more when the constituent elements of the copper composite compound that forms the roughened layer by XPS are analyzed. More preferably it is.
  • the component ratio of cuprous oxide having higher acid solubility resistance to the etching solution or the like becomes higher than that of copper oxide.
  • the acid solubility resistance of the roughened layer to the etching solution is improved, and it becomes possible to reduce the insertion of the etching solution during circuit formation, thereby forming a copper wiring having good adhesion to the insulating resin substrate. be able to.
  • the upper limit value of the occupied area ratio of the Cu (I) peak is not particularly limited, but is 99% or less. As the occupied area ratio of the Cu (I) peak decreases, the adhesiveness between the two surfaces when the roughened surface side of the copper foil is bonded to the insulating resin base material tends to be improved.
  • the exclusive area ratio of the Cu (I) peak is preferably 98% or less, and more preferably 95% or less.
  • the occupied area ratio of the Cu (I) peak is calculated by a calculation formula of Cu (I) / ⁇ Cu (I) + Cu (II) ⁇ ⁇ 100 (%).
  • the specific surface area (hereinafter simply referred to as “specific surface area”) measured by adsorbing krypton on the surface of the roughened layer is preferably 0.035 m 2 / g or more.
  • the specific surface area measured in this way is 0.035 m 2 / g or more
  • the average thickness of the roughened layer becomes 200 nm or more
  • the roughened surface provided with the roughened layer is insulated.
  • good adhesion can be ensured.
  • the upper limit value of the specific surface area is not particularly limited, the fine concavo-convex structure is formed by densely forming needle-like or plate-like convex portions having a maximum length of 500 nm or less.
  • the upper limit value of the specific surface area is calculated to be about 0.3 m 2 / g, and actually about 0.2 m 2 / g is the upper limit value.
  • the specific surface area is measured by using a specific surface area / pore distribution measuring device 3Flex manufactured by Micromeritics Co., Ltd. as a pretreatment by heating the sample at 300 ° C. for 2 hours. The above measurement can be performed by using krypton (Kr).
  • the roughening treatment layer according to the present application described above can be formed, for example, by subjecting the surface of the copper foil to a roughening treatment by the following wet method.
  • a copper compound containing copper oxide (cupric oxide) is formed on the surface of the copper foil by oxidizing the surface of the copper foil by a wet method using a solution.
  • the copper compound is reduced, and a part of the copper oxide is converted into cuprous oxide (cuprous oxide), thereby forming a “needle or plate comprising a copper composite compound containing copper oxide and cuprous oxide.
  • the fine concavo-convex structure formed from the convex portions can be formed on the surface of the copper foil.
  • the “fine concavo-convex structure” itself referred to in the present application is formed of a copper compound containing copper oxide at the stage where the surface of the copper foil is oxidized by a wet method. And when the said copper compound is reduce
  • a small amount of metallic copper may be contained in a copper composite compound containing copper oxide and cuprous oxide as main components.
  • an alkaline solution such as a sodium hydroxide solution when the wet roughening treatment is performed.
  • an alkaline solution such as a sodium hydroxide solution
  • a convex portion made of a copper compound containing needle-like or plate-like copper oxide can be formed on the surface of the copper foil.
  • the convex portion grows long, and the maximum length may exceed 500 nm, forming the fine concavo-convex structure referred to in the present application. It becomes difficult. Therefore, in order to form the fine concavo-convex structure, it is preferable to use an alkaline solution containing an oxidation inhibitor capable of finely suppressing oxidation on the copper foil surface.
  • Examples of such an oxidation inhibitor include an amino silane coupling agent. If the copper foil surface is oxidized using an alkaline solution containing an amino silane coupling agent, the amino silane coupling agent in the alkaline solution is adsorbed on the surface of the copper foil, and the copper foil surface by the alkaline solution Can be finely suppressed. As a result, the growth of copper oxide needle-like crystals can be suppressed, and the roughened layer referred to in the present application having an extremely fine concavo-convex structure on the order of nm can be formed.
  • amino-based silane coupling agent examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3- Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, etc. may be used. It can. All of these are dissolved in an alkaline solution and are stably held in the alkaline solution, and also exhibit the effect of finely suppressing the oxidation of the copper foil surface described above.
  • the fine concavo-convex structure formed by subjecting the surface of the copper foil to an oxidation treatment with an alkaline solution containing an amino-based silane coupling agent is substantially maintained even after the reduction treatment.
  • a roughening treatment layer having a fine concavo-convex structure on the order of nm formed by needle-like or plate-like convex portions having a maximum length of 500 nm or less, comprising copper oxide and cuprous oxide, and having a maximum length of 500 nm or less. can be obtained.
  • the roughening treatment layer is formed on both sides of the copper foil by a method such as immersing the copper foil in the treatment solution. It can be formed easily. Therefore, when this wet method is used, it becomes possible to easily obtain a double-sided roughened copper foil suitable for forming an inner layer circuit of a multilayer printed wiring board, and both the inner layer circuit and the interlayer insulating layer and the like are good. Adhesion can be ensured.
  • the roughened layer according to the present application is less likely to cause so-called powder falling during handling and the like, and can maintain a fine uneven structure on the surface. Accordingly, handling can be facilitated even when a double-side roughened copper foil is used.
  • Form of copper foil with carrier foil In the case of copper foil with carrier foil according to the present application, it is possible to apply all of the concepts applied to the copper foil described above. Therefore, only different parts will be described in detail.
  • the copper foil with carrier foil according to the present application is a copper foil with carrier foil having a layer configuration of carrier foil / bonding interface layer / copper foil layer, and the outer surface of the carrier foil and the outer surface of the copper foil layer.
  • a silane coupling agent treatment layer is provided on the surface of the roughening treatment layer.
  • the surface on which the roughening treatment layer is provided is referred to as a roughening treatment surface.
  • the copper foil with carrier foil includes “when both the outer surface of the carrier foil and the outer surface of the copper foil layer are roughened surfaces”.
  • the outer surface of the carrier foil is a surface exposed on the surface of the carrier foil constituting the copper foil with the carrier foil, and “the outer surface of the copper foil layer”. "Is the surface exposed on the surface of the copper foil layer constituting the copper foil with carrier foil.
  • the material for the carrier foil referred to here.
  • a carrier foil copper foil (here, a concept including rolled copper foil, electrolytic copper foil, etc., regardless of its production method), and copper components such as resin foil coated with copper on the surface are present on the surface.
  • copper foil here, a concept including rolled copper foil, electrolytic copper foil, etc., regardless of its production method
  • copper components such as resin foil coated with copper on the surface are present on the surface.
  • it can be used. Judging from the viewpoint of cost, it is preferable to use copper foil.
  • the thickness as carrier foil there is no limitation in particular also about the thickness as carrier foil. From the industrial point of view, the concept as a foil generally refers to a foil having a thickness of 200 ⁇ m or less, and it is sufficient to use this concept.
  • the bonding interface layer there is no particular limitation as long as it can be a peelable type product from which the carrier foil can be peeled off, as long as the characteristics required for the bonding interface layer are satisfied.
  • Either an inorganic bonding interface layer composed of an agent or an organic bonding interface layer composed of an organic agent can be used.
  • an inorganic agent which comprises an inorganic joining interface layer 1 type, or 2 or more types chosen from chromium, nickel, molybdenum, a tantalum, vanadium, tungsten, cobalt, and these oxides can be mixed and used, for example.
  • an organic joining interface layer comprised from an organic agent what consists of 1 type (s) or 2 or more types selected from a nitrogen containing organic compound, a sulfur containing organic compound, and carboxylic acid can be used.
  • the nitrogen-containing organic compound include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, which are triazole compounds having a substituent, and 1H. It is preferable to use -1,2,4-triazole, 3-amino-1H-1,2,4-triazole and the like.
  • the sulfur-containing organic compound it is preferable to use mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like.
  • the carboxylic acid it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid, or the like.
  • both of the inorganic bonding interface layer and the organic bonding interface layer can be preferably used.
  • the carrier foil has an appropriate peeling strength. From the viewpoint of ensuring the thickness stably, it is more preferable to use an organic bonding interface layer.
  • the method for forming the bonding interface layer with this organic agent is to dissolve the above-mentioned organic agent in a solvent and immerse the carrier foil in the solution, or to perform showering, spraying, dripping on the surface on which the bonding interface layer is to be formed.
  • concentration of the organic agent in the solvent is preferably in the range of 0.01 g / L to 10 g / L and the liquid temperature of 20 to 60 ° C. in all the organic agents described above.
  • an auxiliary metal layer such as Ni or Co may be formed on the surface of the organic bonding interface layer in order to improve the heat resistance of the bonding interface layer.
  • the copper foil layer is described as including not only a copper foil called an ultrathin copper foil of 12 ⁇ m or less but also a layer formed of a copper foil thicker than 12 ⁇ m. This is because in the case of a copper foil layer having a thickness of 12 ⁇ m or more, the carrier foil may be used to prevent surface contamination.
  • the carrier foil according to the present application is provided with the roughening treatment layer and the silane coupling agent treatment layer described in the description of the copper foil on the surface of the copper foil layer of the copper foil with carrier foil described above. It is a copper foil. That is, the copper foil with carrier foil according to the present application is obtained by subjecting the surface of the copper foil layer to roughening treatment (oxidation treatment and reduction treatment) and silane coupling agent treatment. Therefore, the duplicate description here is omitted.
  • Form of copper-clad laminate The copper-clad laminate according to the present application is obtained using a copper foil or a copper foil with a carrier foil provided with the above-mentioned roughening treatment layer. If the copper clad laminate at this time is obtained using a copper foil or a copper foil with a carrier foil according to the present application, the constituent components of the used insulating resin base material, the thickness, the laminating method, etc. There is no special limitation. Moreover, the copper clad laminated board here contains both a rigid type and a flexible type.
  • a copper clad laminate as a printed wiring board manufacturing material is obtained by removing the carrier foil after the copper foil with a carrier foil and an insulating resin base material are bonded together. Is obtained.
  • Example 1 a copper electrolyte solution having the composition described in the following is used, DSA is used as an anode, and a cathode (a titanium plate electrode whose surface is polished with No. 2000 polishing paper), a liquid temperature is 50 ° C., and a current density is 60 A / dm 2.
  • the electrolytic copper foil having a thickness of 18 ⁇ m was obtained.
  • the surface roughness (Rz) of the deposited surface of the obtained electrolytic copper foil was 0.2 ⁇ m, and the glossiness (Gs60 °) was 600.
  • the measurement of glossiness and the measurement of surface roughness are as follows.
  • Copper electrolyte composition Copper concentration: 80 g / L Free sulfuric acid concentration: 140 g / L Bis (3-sulfopropyl) disulfide concentration: 5 mg / L Diallyldimethylammonium chloride polymer concentration: 30 mg / L Chlorine concentration: 25mg / L
  • Glossiness was measured using a gloss meter PG-1M manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS Z 8741-1997, which is a glossiness measurement method.
  • Pretreatment The electrolytic copper foil produced as described above was immersed in an aqueous sodium hydroxide solution, subjected to alkaline degreasing treatment, and washed with water. And after immersing the electrolytic copper foil which this alkali degreasing process complete
  • the copper foil that had been subjected to the preliminary treatment was subjected to an oxidation treatment.
  • the electrolytic copper foil is treated with sodium hydroxide containing a liquid temperature of 70 ° C., pH 12, chlorous acid concentration of 150 g / L, and N-2- (aminoethyl) -3-aminopropyltrimethoxysilane concentration of 10 g / L. It was immersed in the solution for 2 minutes to form a fine concavo-convex structure made of a copper compound on the surface of the electrolytic copper foil.
  • the main component of the copper compound at this time is considered to be copper oxide.
  • a reduction treatment was performed on the electrolytic copper foil that had been subjected to the oxidation treatment.
  • a roughening treatment having a fine concavo-convex structure made of a copper composite compound containing copper oxide and cuprous oxide is obtained by reducing a part of the copper oxide to cuprous oxide on the surface of the electrolytic copper foil. A layer was formed.
  • Silane coupling agent treatment When the reduction treatment is completed, after washing with water, a silane coupling agent treatment solution (an aqueous solution containing 5 g / L of ⁇ -glycidoxypropyltrimethoxysilane using ion-exchanged water as a solvent) It sprayed on the roughening surface of the electrolytic copper foil after the said roughening process by the showering method, and adsorption
  • the adsorption of the silane coupling When the adsorption of the silane coupling is completed, the moisture on the surface is evaporated in an atmosphere at 120 ° C. using an electric heater, and the —OH group and the silane coupling agent on the roughened surface are The condensation reaction was promoted to obtain a copper foil according to the present application having a silane coupling agent treatment layer on the surface of the roughening treatment layer.
  • Lightness L * of the roughened surface The value of lightness L * of the copper foil obtained in this example was 10.
  • Hygroscopic deterioration performance evaluation results Using the copper foil of Example 1 and a 100 ⁇ m thick insulating resin substrate (MEGTRON4 manufactured by Panasonic Corporation), using a vacuum press machine, the pressing pressure is 2.9 MPa, the temperature Bonding was performed under the conditions of 190 ° C. and a press time of 90 minutes to produce a copper clad laminate. Next, using this copper-clad laminate, a test substrate having a 3.0 mm width peel strength measuring linear circuit was produced by an etching method. And using this test board
  • Example 2 a copper foil with a carrier foil using the electrolytic copper foil (untreated copper foil) produced in Example 1 as a carrier foil was produced according to the following procedure.
  • an organic agent layer was formed as a bonding interface layer on the deposition surface side of the carrier foil.
  • the carrier foil was immersed for 30 seconds in an organic material-containing dilute sulfuric acid aqueous solution having a sulfuric acid concentration of 150 g / L, a copper concentration of 10 g / L, a CBTA concentration of 800 ppm, and a liquid temperature of 30 ° C.
  • the contaminating component adhering to the surface of the carrier foil was acid-washed, and CBTA was adsorbed on the surface of the carrier foil to form an organic agent layer mainly composed of CBTA.
  • a nickel layer was formed as a refractory metal layer on the bonding interface layer.
  • a Watts bath having a nickel sulfate (NiSO 4 ⁇ 6H 2 O) concentration of 330 g / L, a nickel chloride (NiCl 2 ⁇ 6H 2 O) concentration of 45 g / L, a boric acid concentration of 35 g / L, and a pH of 3
  • Electrolysis was performed under electrolytic conditions of a liquid temperature of 45 ° C. and a current density of 2.5 A / dm 2 to form a nickel layer having a converted thickness of 0.01 ⁇ m on the bonding interface layer.
  • the electrolytic copper foil layer was formed on the said heat-resistant metal layer. Specifically, using a copper electrolytic solution having a copper concentration of 65 g / L and a sulfuric acid concentration of 150 g / L, electrolysis is performed under electrolytic conditions of a liquid temperature of 45 ° C. and a current density of 15 A / dm 2 , and the thickness is formed on the heat-resistant metal layer. A 2 ⁇ m electrolytic copper foil layer was formed. At this time, the surface roughness (Rz) on the deposition surface side of this electrolytic copper foil layer was 0.2 ⁇ m, and the glossiness [Gs (60 °)] was 600. The surface treatment was performed in the following procedure on the surface of the electrolytic copper foil layer of the electrolytic copper foil with carrier foil formed as described above.
  • Pretreatment The copper foil with carrier foil was subjected to alkali degreasing treatment and sulfuric acid treatment in the same manner as in Example 1 and washed with water.
  • the surface of the electrolytic copper foil layer is made of a copper compound by oxidizing the surface of the electrolytic copper foil layer of the copper foil with carrier foil after the preliminary treatment in the same manner as in Example 1. A fine relief structure was formed. Next, the surface on which the copper composite compound of the electrolytic copper foil layer of the copper foil with carrier foil after the oxidation treatment was formed was subjected to reduction treatment in the same manner as in Example 1, and the surface of the electrolytic copper foil layer was subjected to copper oxide and suboxide. A roughening treatment layer having a fine concavo-convex structure made of a copper composite compound containing copper oxide was formed.
  • Silane coupling agent treatment When the above reduction treatment was completed, a silane coupling agent treatment was performed in the same manner as in Example 1 to obtain a copper foil with a carrier foil according to the present application.
  • Lightness L * of roughened surface The value of lightness L * of the roughened surface of the electrolytic copper foil layer of the copper foil with carrier foil obtained in Example 2 was 18.
  • Moisture absorption degradation performance evaluation results The roughened surface of the electrolytic copper foil layer of the copper foil with carrier foil of Example 2 and an insulating resin base material (GHPL-830NS, manufactured by Mitsubishi Gas Chemical Co., Ltd.) having a thickness of 100 ⁇ m, Using a vacuum press machine, a copper-clad laminate was manufactured by bonding together under the conditions of a pressing pressure of 3.9 MPa, a temperature of 220 ° C., and a pressing time of 90 minutes. Then, the carrier foil on the surface of the copper-clad laminate is removed, and the exposed electrolytic copper foil layer is subjected to electrolytic copper plating so as to have a thickness of 18 ⁇ m, and an etching method is used to measure the peel strength.
  • GHPL-830NS insulating resin base material
  • a test substrate with a 4 mm wide linear circuit was produced. Then, using this test substrate, the normal peel strength and the peel strength after the PCT moisture absorption treatment were measured. However, the PCT moisture absorption treatment was performed by holding the test substrate for 24 hours (PCT test) in a high-temperature and high-pressure steam atmosphere of 121 ° C. ⁇ 2 atm. Further, the peel strength of the dried test substrate after the PCT treatment was measured, and the value at this time was defined as the peel strength after the PCT moisture absorption treatment.
  • [PCT moisture absorption deterioration rate (%)] 100 ⁇ ⁇ [normal peel strength] ⁇ [peel strength after PCT moisture absorption] ⁇ / [normal peel strength]
  • the anti-PCT moisture absorption deterioration rate was calculated according to the calculation formula.
  • [normal peel strength] 0.75 kgf / cm
  • [peel strength after moisture absorption treatment] 0.68 kgf / cm
  • [moisture resistance deterioration rate (%)] of the electrolytic copper foil of Example 1 ] 9.3%.
  • Example 2 Using the electrolytic copper foil (untreated electrolytic copper foil) produced in Example 1, surface treatment was performed in the following procedure.
  • the oxidation treatment (oxidation treatment time: 2 minutes) performed in the preliminary treatment and the roughening treatment and the silane coupling agent treatment after the roughening treatment are the same as those in Example 1.
  • the pH and dimethylamine borane concentration of the aqueous solution used for the reduction treatment were changed as follows, and these effects were verified.
  • the copper foil which concerns on this application was obtained by immersing for 1 minute in each of nine types of aqueous solution (room temperature) which combined these three levels, performing a reduction process, washing with water, and drying.
  • the copper foils obtained when the aqueous solution used for the reduction treatment had a pH of 12 were designated as “Execution Sample 12-a, Implementation Sample 12-b, and Implementation Sample 12-c”.
  • the “ ⁇ a” display when indicating each of the samples is when the dimethylamine borane concentration in the aqueous solution used for the reduction treatment is 5 g / L.
  • the “ ⁇ b” display is when the dimethylamine borane concentration in the aqueous solution used for the reduction treatment is 10 g / L.
  • “ ⁇ c” is indicated when the dimethylamine borane concentration in the aqueous solution used for the reduction treatment is 20 g / L.
  • Example 3 The scanning electron microscope observation images of all the working samples obtained in Example 3 were in the same form as shown in FIG. Then, when the state of the “fine irregularities made of a copper composite compound” on the surface of the roughened layer of each of the implementation samples is analyzed using XPS, the presence of “copper oxide” and “cuprous oxide” is clearly confirmed. Table 3 shows the occupation area ratio of the peak of Cu (I) with respect to the total area of the peak area of Cu (I) and the peak area of Cu (II). Further, as a result of this qualitative analysis, the presence of “—COO group” was clearly confirmed on the roughened surface. Further, in the same manner as in Example 1, a test substrate was produced using each sample. Then, using this test substrate, the normal peel strength and the peel strength after moisture absorption treatment were measured in the same manner as in Example 1. These results are shown together in Table 3.
  • Comparative Example 1 The copper foil of Comparative Example 1 is obtained by omitting the silane coupling agent treatment in the copper foil of Example 1. In contrast to the copper foil described in Example 1, the presence or absence of the silane coupling agent treatment is It is for confirming the influence which it has on moisture absorption degradation performance. Therefore, except for the silane coupling agent treatment, other manufacturing conditions are the same as those in the example, and therefore, a duplicate description is omitted and only the evaluation results are described below.
  • Lightness L * of the roughened surface The value of the lightness L * of the copper foil obtained in Comparative Example 1 was 10.
  • Comparative Example 2 The copper foil with carrier foil of Comparative Example 2 is obtained by subjecting the copper foil with carrier foil used in Example 2 to roughening treatment, rust prevention treatment, and silane coupling agent treatment according to the following procedure.
  • the copper foil with carrier foil described in Example 2 it is for confirming the influence of the difference in the roughening treatment layer on the PCT moisture absorption deterioration rate. Therefore, regarding the manufacturing conditions, portions different from those in the second embodiment will be described, and redundant description will be omitted.
  • Roughening treatment In the roughening treatment step, fine copper particles were deposited on the surface of the electrolytic copper foil layer of the copper foil with carrier foil. At this time, a burn plating condition in which a copper sulfate solution (sulfuric acid concentration 100 g / L, copper concentration 18 g / L), liquid temperature 25 ° C., current density 10 A / dm 2 , and energization time 10 seconds was adopted.
  • a copper sulfate solution sulfuric acid concentration 100 g / L, copper concentration 18 g / L
  • liquid temperature 25 ° C. current density 10 A / dm 2
  • energization time 10 seconds was adopted.
  • a copper sulfate solution (sulfuric acid concentration 150 g / L, copper concentration 65 g / L), liquid temperature 45 ° C., current density 15 A / dm 2 , energization time 20
  • a copper sulfate solution sulfuric acid concentration 150 g / L, copper concentration 65 g / L
  • liquid temperature 45 ° C. current density 15 A / dm 2
  • energization time 20 By adopting second smooth plating conditions, fine copper particles were fixed on the surface of the electrolytic copper foil layer.
  • Rust prevention treatment Here, the surface of the electrolytic copper foil layer of the carrier foil-attached copper foil having been subjected to the roughening treatment was subjected to a rust prevention treatment using zinc as a rust prevention element.
  • the rust prevention treatment layer uses a zinc sulfate bath, uses a zinc sulfate solution having a sulfuric acid concentration of 70 g / L and a zinc concentration of 20 g / L, a liquid temperature of 40 ° C., a current density of 15 A / dm 2 , and an energization time of 20
  • the zinc anticorrosive treatment layer was formed using the second condition.
  • Example 2 similarly to Example 2, the silane coupling agent treatment and drying were performed to obtain a copper foil with a carrier foil of Comparative Example 2.
  • Lightness L * of roughened surface The value of lightness L * of the copper foil obtained in Comparative Example 2 was 46.
  • Comparative Example 3 In Comparative Example 3, the same pretreatment as in Example 1 was performed using the same electrolytic copper foil as in Example 1, and instead of the roughening process in Example, blackening treatment and reduction treatment were performed to obtain Comparative Sample 3. It was. Hereinafter, the blackening process and the reduction process will be described.
  • Blackening treatment 10% by volume of “PRO BOND 80A OXIDE SOLUTION”, which is an oxidation treatment solution manufactured by Rohm & Haas Electronic Materials Co., Ltd.
  • a general blackening treatment was formed on the surface by immersing in an aqueous solution containing 20 vol% and having a liquid temperature of 85 ° C. for 5 minutes.
  • Reduction treatment The oxidized copper foil after the oxidation treatment is reduced to 6.7 vol% for “CIRCUPOSIT PB OXIDE CONVERTER 60C”, which is a reduction treatment solution manufactured by Rohm & Haas Electronic Materials Co., Ltd. 5% immersion in an aqueous solution having a liquid temperature of 35 ° C., washed with water, and dried to obtain a comparative sample having a reduction blackening treatment layer shown in FIG.
  • the state of the surface of the roughened layer of the surface-treated copper foil (comparative sample) obtained in this comparative example was analyzed using XPS, and the presence of “Cu (0)” was confirmed.
  • the presence of “Cu (II)” and “Cu (I)” was also confirmed, and the peak of Cu (I) relative to the total area of the peak area of Cu (I) and the peak area of Cu (II) was confirmed.
  • the occupied area ratio is as shown in Table 3.
  • the presence of “—COO group” was not confirmed on the roughened surface.
  • Example 1 Comparison between Example 1 and Comparative Example 1 The comparison between Example 1 and Comparative Example 1 is for confirming the effect of the silane coupling agent treatment.
  • the evaluation results of Example 1 and Comparative Example 1 are shown in Table 1 below.
  • Example 2 and Comparative Example 2 The comparison between Example 2 and Comparative Example 2 is that the copper foil with carrier foil according to the present application is a copper foil with carrier foil subjected to conventional roughening treatment, etc. On the other hand, it is for confirming what superiority is exhibited.
  • the evaluation results of Example 2 and Comparative Example 2 are shown in Table 2 below.
  • the copper foil with carrier foil of Comparative Example 2 is different from the copper foil with carrier foil of Example 2 in the roughening treatment method.
  • the “roughening surface shape” is Different.
  • the components which comprise a roughening process layer differ. Specifically, “copper oxide”, “cuprous oxide”, and “—COO group” were detected by XPS from the roughened surface of the copper foil with carrier foil of Example 2. These components are hardly detected from the roughened surface, and the roughened layer of the comparative example is composed of fine copper grains electrodeposited on the surface of the copper foil, so that the main component is mainly “copper” or “ Copper alloy ".
  • the needle-shaped or plate-shaped convex which consists of a copper complex compound It can be seen that the concavo-convex structure formed by the shaped portions is finer than the concavo-convex structure formed by the fine copper particles attached to the surface of the copper foil in the roughening treatment layer of Comparative Example 2.
  • Example 2 As a result, the moisture resistance deterioration rate of Example 2 is 9.3%, while the humidity resistance deterioration rate of Comparative Example 2 is reduced to 22.0%. Therefore, it is clear that the copper foil with carrier foil of Comparative Example 2 is not suitable for manufacturing printed wiring boards that are exposed to much water or various aqueous solutions as compared with the copper foil with carrier foil of Example 2.
  • Example 3 and Comparative Example 3 Comparison between Example 3 and Comparative Example 3: Next, referring to Table 3 below, Example 3 and Comparative Example 3 are compared.
  • the occupied area ratio of the Cu (I) peak is 83%. Therefore, in the occupied area ratio of the Cu (I) peak, it can be seen that there is no difference between Example 3 and Comparative Example 3.
  • the state analysis by XPS described above the detected components are different. The presence of “—COO group” was not confirmed on the roughened surface of the sample.
  • planar observation of the roughened surface of the comparative sample 3 is performed, a long and thick needle-like convex portion is observed, and the shape of the convex portion formed by the blackening treatment is an oxidation treatment performed on the implementation sample. Unlike the shape of the convex part formed later, the tip part is sharply pointed.
  • the thickness of the concavo-convex structure layer formed by the blackening treatment was 700 nm.
  • the tip of the convex part was rounded, and the uneven shape of the surface was greatly changed by the reduction process.
  • the cross section after the reduction treatment was observed for the comparative sample 3
  • the surface shape of the fine concavo-convex structure formed by the oxidation treatment was maintained after the reduction treatment. That is, it can be predicted that the convex portion formed in the comparative sample is very fragile as compared with the working sample, and a so-called problem of powder falling occurs.
  • the peel strength of the surface-treated copper foil obtained in Example 3 and Comparative Example 3 will be compared.
  • the peel strength of the working sample is 0.69 kgf / cm to 0.81 kgf / cm.
  • the peeling strength of the comparative sample was 0.33 kgf / cm, which was confirmed to be lower than the working sample.
  • the copper foil or carrier foil-attached copper foil according to the present application described above is “a roughened layer having a fine concavo-convex structure formed by needle-like or plate-like convex portions having a maximum length of 500 nm or less”. I have. For this reason, the surface provided with the roughening treatment layer is used as an adhesive surface with the insulating resin base material, so that the insulating resin base of the non-roughened copper foil can be obtained by the nano-anchor effect by the convex portions forming the fine uneven structure. Good adhesion can be ensured compared to the adhesion to the material.
  • the fine concavo-convex structure is formed by extremely short needle-like or plate-like convex portions having a maximum length of 500 nm or less, a slight over-etching time is required when forming a circuit by etching.
  • the convex part of the state embedded in the insulating resin base material side can be dissolved and removed. Therefore, good etching performance equivalent to that of the non-roughened copper foil can be realized, and a fine pitch circuit having a good etching factor can be formed.
  • a silane coupling agent treatment layer on the surface of the roughening treatment layer, it is possible to realize moisture absorption deterioration resistance equivalent to that of a conventional roughening copper foil.
  • the copper foil according to the present application can be provided with a roughening treatment layer on both sides of the copper foil, and powder formation is suppressed, so that the inner layer circuit formation of the multilayer printed wiring board is achieved. It can be set as the double-side roughening copper foil suitable for.

Abstract

The purpose of the present invention is to provide a copper foil that has better adhesiveness with an insulating resin substrate than an unroughened copper foil and has etchability as good as that of an unroughened copper foil. In order to achieve this purpose, used is a copper foil comprising a layer subjected to a roughening treatment on at least one surface of the copper foil, the copper foil being characterized in that the layer subjected to the roughening treatment comprises a composite copper compound and has a fine irregular structure formed from needle-shaped or plate-shaped convex sections with sizes of 500 nm or less, and in that a layer treated with a silane coupling agent is disposed on the surface of the layer subjected to the roughening treatment. Alternatively, used is a copper foil with a carrier foil comprising a carrier foil/joint interface layer/copper foil layer structure, the copper foil being characterized in that, on the surface of the copper foil layer, disposed is a layer subjected to a roughening treatment that comprises a composite copper compound and that has a fine irregular structure formed from needle-shaped or plate-shaped convex sections with sizes of 500 nm or less, and in that a layer treated with a silane coupling agent is disposed on the surface of the layer subjected to the roughening treatment.

Description

銅箔、キャリア箔付銅箔及び銅張積層板Copper foil, copper foil with carrier foil and copper clad laminate
 本件出願は、銅箔、キャリア箔付銅箔及びこれらの銅箔を用いて得られる銅張積層板に関する。特に、銅箔の表面に、従来に比べて、より微細な凹凸構造を有する粗化処理層を備えた銅箔に関する。 The present application relates to a copper foil, a copper foil with a carrier foil, and a copper-clad laminate obtained using these copper foils. In particular, the present invention relates to a copper foil provided with a roughening treatment layer having a finer concavo-convex structure on the surface of the copper foil than conventional.
 一般的に、市場を流通する銅箔の主な用途の一つに、プリント配線板の回路形成用途がある。当該用途の銅箔には、絶縁樹脂基材との密着性を向上させるため、接着面となる銅箔の表面に、アンカー効果を発揮する形状が設けられる場合が多い。従来、アンカー効果を発揮する形状を設けるために、特許文献1等に開示されているような「微細銅粒の付着」、特許文献2等に開示されているような「エッチングによる凹凸形成」等の粗化処理を銅箔の表面に施すことが行われてきた。 In general, one of the main uses of copper foil that circulates in the market is the use of printed wiring board circuits. In order to improve the adhesiveness with the insulating resin base material, the copper foil for this application is often provided with a shape that exhibits an anchor effect on the surface of the copper foil that serves as an adhesive surface. Conventionally, in order to provide a shape that exerts an anchor effect, “adhesion of fine copper particles” as disclosed in Patent Document 1, etc., “unevenness formation by etching” as disclosed in Patent Document 2, etc. Has been performed on the surface of the copper foil.
 ところが、近年は、ファインピッチ回路の形成に対する要求が顕著で、プリント配線板の製造技術も大きく進歩した結果、特許文献3及び特許文献4等に開示されるように、ファインピッチ回路を形成する際に、無粗化銅箔を使用する場合も増えてきた。 However, in recent years, the demand for the formation of fine pitch circuits is remarkable, and as a result of the great progress in the manufacturing technology of printed wiring boards, as disclosed in Patent Document 3 and Patent Document 4, etc., when forming a fine pitch circuit, In addition, the use of non-roughened copper foil has also increased.
 特許文献3には、強靭、かつ、反応性に富む接着剤により、銅箔と積層基材とが強固に接着されたプリント回路用銅張積層板を提供するため、「積層基材の片面または両面に銅箔が積層接着された銅張積層板において、a.前記銅箔上に一般式QRSiXYZ …〔1〕(但し、式中Qは下記の樹脂組成物と反応する官能基、RはQとSi原子とを連結する結合基、X,Y,ZはSi原子に結合する加水分解性の基または水酸基を表す)で示されるシランカップリング剤、または、一般式 T(SH)n ・・・〔2〕(但し、Tは芳香環,脂肪族環,複素環,脂肪族鎖であり、nは2以上の整数)で示されるチオール系カップリング剤よりなる接着性下地を介し、b.(1)アクリルモノマ、メタクリルモノマ、それらの重合体またはオレフィンとの共重合体、(2)ジアリルフタレート、エポキシアクリレートまたはエポキシメタクリレートおよびそれらのオリゴマの過酸化物硬化性樹脂組成物、(3)エチレンブチレン共重合体とスチレン共重合体とを分子内に含有する熱可塑性エラストマの過酸化物硬化性樹脂組成物、(4)グリシジル基を含有するオレフィン共重合体の樹脂組成物、(5)不飽和基を含む側鎖を有するポリビニルブチラール樹脂の樹脂組成物、または、(6)ポリビニルブチラール樹脂とスピロアセタール環を有するアミノ樹脂とエポキシ樹脂の樹脂組成物、からなる接着剤により積層基材と接着されているか、あるいは前記樹脂組成物の接着剤を兼ねた積層基材と直接接着されていることを特徴とするプリント回路用銅張積層板。」を採用すること等が開示されている。 In Patent Document 3, in order to provide a copper-clad laminate for a printed circuit in which a copper foil and a laminated base material are firmly bonded with a tough and reactive adhesive, In a copper clad laminate in which copper foil is laminated and bonded on both sides, a. A general formula QRSiXYZ ... [1] (wherein Q is a functional group that reacts with the following resin composition, R is Q Or a silane coupling agent represented by the general formula T (SH) n ··, a bonding group that links Si atom to each other, X, Y, and Z represent a hydrolyzable group or hydroxyl group bonded to Si atom. [2] (wherein T is an aromatic ring, an aliphatic ring, a heterocyclic ring, an aliphatic chain, and n is an integer of 2 or more) through an adhesive base made of a thiol-based coupling agent, b. (1) Acrylic monomer, methacrylic monomer, polymer thereof or olefin (2) Diallyl phthalate, epoxy acrylate or epoxy methacrylate and their oligomer peroxide curable resin composition, (3) ethylene butylene copolymer and styrene copolymer in the molecule A thermoplastic elastomer peroxide curable resin composition, (4) an olefin copolymer resin composition containing a glycidyl group, and (5) a polyvinyl butyral resin resin composition having a side chain containing an unsaturated group. Or (6) an adhesive composed of a polyvinyl butyral resin and a resin composition of an amino resin having a spiroacetal ring and an epoxy resin, or an adhesive of the resin composition. It is possible to adopt a copper-clad laminate for printed circuits, which is directly bonded to the laminated substrate. It is.
 特許文献4には、表面処理層にクロムを含まず、プリント配線板に加工して以降の回路の引き剥がし強さ、当該引き剥がし強さの耐薬品性劣化率等に優れる銅箔の提供を目的として、「絶縁樹脂基材と張り合わせて銅張積層板を製造する際に用いる銅箔の張り合わせ面に表面処理層を設けた銅箔であって、当該表面処理層は、銅箔の張り合わせ面に亜鉛成分を付着させ、融点1400℃以上の高融点金属成分を付着させ、更に炭素成分を付着させて得られることを特徴とする銅箔。」を採用すること等が開示され、この中で「前記銅箔の張り合わせ面は、粗化処理を施すことなく、表面粗さ(Rzjis)が2.0μm以下のものを用いることが好ましい。」ことが開示されている。 Patent Document 4 provides a copper foil that does not contain chromium in the surface treatment layer and is excellent in the peel strength of the circuit after being processed into a printed wiring board, the chemical resistance deterioration rate of the peel strength, and the like. As an object, “a copper foil provided with a surface treatment layer on a bonding surface of a copper foil used when producing a copper clad laminate by bonding with an insulating resin base material, the surface treatment layer being a bonding surface of the copper foil It is disclosed to employ a copper foil characterized in that it is obtained by adhering a zinc component, a high melting point metal component having a melting point of 1400 ° C. or higher, and further a carbon component. It is disclosed that “the bonding surface of the copper foil is preferably one having a surface roughness (Rzjis) of 2.0 μm or less without being subjected to a roughening treatment”.
 このような無粗化銅箔は、絶縁樹脂基材との接着表面に、粗化処理により形成された凹凸形状が存在しない。このため、当該銅箔をエッチング加工して回路形成を行う際に、絶縁樹脂基材側に埋まり込んだ状態のアンカー形状(凹凸形状)を除去するためのオーバーエッチングタイムを設ける必要がない。よって、無粗化銅箔を用いれば、エッチングファクターの良好なファインピッチ回路を形成することができる。 Such a non-roughened copper foil does not have a concavo-convex shape formed by a roughening treatment on the surface bonded to the insulating resin base material. For this reason, when performing circuit formation by etching the copper foil, it is not necessary to provide an over-etching time for removing the anchor shape (uneven shape) embedded in the insulating resin substrate side. Therefore, if non-roughened copper foil is used, a fine pitch circuit having a good etching factor can be formed.
特開平05-029740号公報JP 05-029740 A 特開2000-282265号公報JP 2000-282265 A 特開平09-074273号公報Japanese Patent Application Laid-Open No. 09-074273 特開2008-297569号公報JP 2008-297469 A
 しかしながら、この無粗化銅箔は、絶縁樹脂基材側に埋まり込んだ状態のアンカー形状(凹凸形状)が存在しないため、無粗化銅箔の絶縁樹脂基材に対する密着性は、粗化処理を施した銅箔に比べて低下する傾向にある。 However, since this non-roughened copper foil does not have an anchor shape (uneven shape) embedded in the insulating resin substrate side, the adhesion of the non-roughened copper foil to the insulating resin substrate is roughened. It tends to be lower than that of the copper foil subjected to.
 そのため、市場では、無粗化銅箔と絶縁樹脂基材との密着性よりも良好な密着性を有し、且つ、無粗化銅箔と同等の良好なエッチング性能を備える銅箔に対する要求が存在していた。 Therefore, in the market, there is a demand for a copper foil having better adhesion than that of the non-roughened copper foil and the insulating resin base material and having good etching performance equivalent to that of the non-roughened copper foil. Existed.
 そこで、本件発明者等の鋭意研究の結果、以下に示す粗化処理層を備えた銅箔を採用することで、当該粗化処理層の微細凹凸構造によるナノアンカー効果により、絶縁樹脂基材との間の良好な密着性を得ることができると共に、無粗化銅箔を用いた場合と同等の良好なエッチングファクターを備えたファインピッチ回路の形成が可能になることが分かった。さらに、粗化処理層の表面にシランカップリング層を設けることにより、従来の粗化銅箔と同等の耐吸湿劣化特性を備えることも見出した。以下、本件出願に係る銅箔について説明する。 Therefore, as a result of diligent research by the inventors of the present invention, by adopting a copper foil provided with the roughening treatment layer shown below, the nano-anchor effect due to the fine uneven structure of the roughening treatment layer, the insulating resin base material and It was found that a fine pitch circuit having a good etching factor equivalent to the case of using a non-roughened copper foil can be formed. Furthermore, it has also been found that by providing a silane coupling layer on the surface of the roughening treatment layer, the moisture absorption deterioration characteristics equivalent to those of a conventional roughened copper foil are provided. Hereinafter, the copper foil according to the present application will be described.
銅箔: 本件出願に係る銅箔は、銅複合化合物からなる最大長さが500nm以下のサイズの針状又は板状の凸状部より形成された微細凹凸構造を有する粗化処理層と、当該粗化処理層の表面にシランカップリング剤処理層とを少なくとも一面に備えたことを特徴とする。 Copper foil: The copper foil according to the present application includes a roughening treatment layer having a fine concavo-convex structure formed from needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound, and The surface of the roughening treatment layer is provided with a silane coupling agent treatment layer on at least one surface.
キャリア箔付銅箔: 本件出願に係るキャリア箔付銅箔は、上記記載の銅箔の片面に接合界面層を介してキャリア箔を備えたことを特徴とする。 Copper foil with carrier foil: The copper foil with carrier foil according to the present application is characterized in that a carrier foil is provided on one side of the copper foil described above via a bonding interface layer.
銅張積層板: 本件出願に係る銅張積層板は、上述の粗化処理層及びシランカップリング層を備える銅箔又はキャリア箔付銅箔を用いて得られることを特徴とする。 Copper-clad laminate: The copper-clad laminate according to the present application is obtained by using a copper foil or a copper foil with a carrier foil provided with the above-mentioned roughening treatment layer and silane coupling layer.
 本件出願に係る銅箔又はキャリア箔付銅箔は、「銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造を有する粗化処理層」を備えている。このため、当該粗化処理層を備える面を絶縁樹脂基材との接着面とすることにより、当該微細凹凸構造を形成する凸状部によるナノアンカー効果により、無粗化銅箔の絶縁樹脂基材に対する密着性に比べて、良好な密着性を確保することができる。また、当該微細凹凸構造は、最大長さが500nm以下の極めて短い針状又は板状の凸状部により形成されているため、エッチングにより回路形成を行う際に、僅かな時間のオーバーエッチングタイムを設けることにより絶縁樹脂基材側に埋まり込んだ状態の凸状部を溶解除去することができる。従って、無粗化銅箔と同等の良好なエッチング性能を実現することができ、エッチングファクターの良好なファインピッチ回路を形成することができる。さらに、この粗化処理層の表面にシランカップリング剤処理層を設けることにより、従来の粗化銅箔と同等の耐吸湿劣化特性を実現することができる。 The copper foil or copper foil with carrier foil according to the present application is “a roughened layer having a fine concavo-convex structure formed by needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound”. It has. For this reason, the surface provided with the roughening treatment layer is used as an adhesive surface with the insulating resin base material, so that the insulating resin base of the non-roughened copper foil can be obtained by the nano-anchor effect by the convex portions forming the fine uneven structure. Good adhesion can be ensured compared to the adhesion to the material. Further, since the fine concavo-convex structure is formed by extremely short needle-like or plate-like convex portions having a maximum length of 500 nm or less, a slight over-etching time is required when forming a circuit by etching. By providing, the convex part of the state embedded in the insulating resin base material side can be dissolved and removed. Therefore, good etching performance equivalent to that of the non-roughened copper foil can be realized, and a fine pitch circuit having a good etching factor can be formed. Furthermore, by providing a silane coupling agent treatment layer on the surface of the roughening treatment layer, it is possible to realize moisture absorption deterioration resistance equivalent to that of a conventional roughening copper foil.
本件出願に係る銅箔の粗化処理層の形態を説明するための走査型電子顕微鏡観察像である。It is a scanning electron microscope observation image for demonstrating the form of the roughening process layer of the copper foil which concerns on this application. 本件出願に係る銅箔において、電解銅箔の電極面及び析出面にそれぞれ粗化処理層を設けたときの、各粗化処理面の表面を示す走査型電子顕微鏡観察像である。In the copper foil which concerns on this application, it is a scanning electron microscope observation image which shows the surface of each roughening process surface when a roughening process layer is each provided in the electrode surface and precipitation surface of electrolytic copper foil. 本件出願に係る銅箔の粗化処理層が有する微細凹凸構造の断面を示す走査型電子顕微鏡観察像である。It is a scanning electron microscope observation image which shows the cross section of the fine concavo-convex structure which the roughening process layer of the copper foil which concerns on this application has. 比較例2の銅箔の粗化処理層の表面を示す走査型電子顕微鏡観察像である。It is a scanning electron microscope observation image which shows the surface of the roughening process layer of the copper foil of the comparative example 2. 比較例3の銅箔の還元黒化処理層の表面を示す走査型電子顕微鏡観察像である。It is a scanning electron microscope observation image which shows the surface of the reduction | restoration blackening process layer of the copper foil of the comparative example 3.
 以下、本件出願に係る「銅箔の形態」、「キャリア箔付銅箔の形態」及び「銅張積層板の形態」に関して説明する。 Hereinafter, the “form of copper foil”, “form of copper foil with carrier foil” and “form of copper-clad laminate” according to the present application will be described.
銅箔の形態: 本件出願に係る銅箔は、当該銅箔の少なくとも一つの表面に、銅複合化合物からなる最大長さが500nm以下のサイズの針状又は板状の凸状部より形成された微細凹凸構造を有する粗化処理層と、当該粗化処理層の表面にシランカップリング剤処理層とを備えたことを特徴とする。 Form of copper foil: The copper foil according to the present application was formed on at least one surface of the copper foil from needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound. A roughening treatment layer having a fine concavo-convex structure and a silane coupling agent treatment layer on the surface of the roughening treatment layer are provided.
 ここで、本件出願に係る銅箔は、「銅箔の少なくとも一つの表面」に上記粗化処理層を備えていればよく、銅箔の両面に粗化処理層を備えた両面粗化処理銅箔、銅箔の一方の面にのみ粗化処理層を備えた片面粗化処理銅箔のいずれであってもよい。また、本件出願に係る銅箔において、上記銅箔は、電解銅箔、圧延銅箔のいずれであってもよい。また、このときの銅箔の厚さに関しても、特段の限定は無く、一般的に200μm以下の厚さの銅箔と認識すれば足りる。さらに、以下において、当該銅箔の当該粗化処理層及びシランカップリング剤層が設けられた側の面を粗化処理面と称する場合がある。 Here, the copper foil which concerns on this application should just be equipped with the said roughening process layer in "at least one surface of copper foil", and the double-sided roughening process copper which provided the roughening process layer on both surfaces of copper foil Any of the single side | surface roughening process copper foil provided with the roughening process layer only in one side of foil and copper foil may be sufficient. In the copper foil according to the present application, the copper foil may be an electrolytic copper foil or a rolled copper foil. Also, the thickness of the copper foil at this time is not particularly limited, and it is generally sufficient to recognize the copper foil as having a thickness of 200 μm or less. Furthermore, below, the surface of the copper foil on which the roughening treatment layer and the silane coupling agent layer are provided may be referred to as a roughening treatment surface.
 本件出願に係る銅箔において、上述したとおり、当該粗化処理層は銅複合化合物からなる最大長さが500nm以下のサイズの針状又は板状の凸状部より形成された微細凹凸構造を有する。ここで、両面平滑電解銅箔に対して、本件出願にいう粗化処理層を設けたときの当該粗化処理層の表面を示す走査型電子顕微鏡観察像(倍率:20000倍)を図1(a)に示す。図1(a)に示すように、針状又は板状に突出した微細な凸状部が互いに隣接しながら密集することにより、電解銅箔の表面に極微細な凹凸構造が形成されており、これらの凸状部が電解銅箔の表面形状に沿って、電解銅箔の表面を被覆するように設けられている状態が観察される。なお、図1(b)は、図1(a)に示す粗化処理層の表面を更に拡大したものであり、倍率50000倍のときの走査型電子顕微鏡観察像である。但し、本件出願において、「凸状部」とは、当該銅箔の断面を観察したときに、銅箔の表面から針状又は板状に延びた突出部分をいうものとする。当該突出部分は銅複合化合物の単結晶又は複数の結晶の集合体により構成されており、図1(a)、(b)に示すように銅箔の表面に当該凸状部が密集して設けられている。 In the copper foil according to the present application, as described above, the roughened layer has a fine concavo-convex structure formed from needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound. . Here, a scanning electron microscope observation image (magnification: 20000 times) showing the surface of the roughened layer when the roughened layer referred to in the present application is provided on the double-side smooth electrolytic copper foil is shown in FIG. Shown in a). As shown in FIG. 1 (a), the fine convex and concave portions protruding in a needle shape or a plate shape are densely adjacent to each other, so that an extremely fine uneven structure is formed on the surface of the electrolytic copper foil, It is observed that these convex portions are provided so as to cover the surface of the electrolytic copper foil along the surface shape of the electrolytic copper foil. FIG. 1 (b) is a further enlarged view of the surface of the roughened layer shown in FIG. 1 (a), and is a scanning electron microscope observation image at a magnification of 50000 times. However, in the present application, the “convex portion” means a protruding portion extending in a needle shape or a plate shape from the surface of the copper foil when the cross section of the copper foil is observed. The projecting portion is composed of a single crystal of a copper composite compound or an aggregate of a plurality of crystals, and the convex portions are densely provided on the surface of the copper foil as shown in FIGS. 1 (a) and 1 (b). It has been.
 次に、図2に、一般的な電解銅箔の電極面及び析出面と、各面に対して上記粗化処理層を設けたときのそれぞれの表面の観察像を示す。図2に示すように、マクロ的に観察した場合、粗化処理層を設ける前後において、上記電解銅箔の各面の表面形状は、各面の粗化処理前の表面形状に沿って上記微細凹凸構造が形成されており、各面の粗化処理前のマクロ的表面形状が粗化処理後も維持されていることが確認できる。すなわち、本件出願に係る銅箔の場合、粗化処理層はnmオーダーの針状又は板状の凸状部が銅箔の表面形状に沿って、銅箔の表面を薄く被覆するように、銅箔の表面に密集して設けられるため、粗化処理前の銅箔のマクロ的表面形状を維持することができると考えられる。 Next, FIG. 2 shows an electrode surface and a deposition surface of a general electrolytic copper foil, and observation images of the respective surfaces when the roughening treatment layer is provided on each surface. As shown in FIG. 2, when observed macroscopically, before and after the roughening treatment layer is provided, the surface shape of each surface of the electrolytic copper foil is finer along the surface shape of each surface before the roughening treatment. It can be confirmed that the concavo-convex structure is formed and the macroscopic surface shape of each surface before the roughening treatment is maintained after the roughening treatment. That is, in the case of the copper foil according to the present application, the roughening treatment layer is formed so that the needle-like or plate-like convex portion of the nm order covers the surface of the copper foil thinly along the surface shape of the copper foil. Since it is densely provided on the surface of the foil, it is considered that the macroscopic surface shape of the copper foil before the roughening treatment can be maintained.
 この点に関して、粗化処理層を形成する前後における表面粗さの変化に基づいて検証する。上述した粗化処理前の両面平滑電解銅箔の析出面を、Zygo株式会社製 非接触三次元表面形状・粗さ測定機(型式:New-View 6000)を用いて、倍率:20倍、視野角:2.0、測定エリア:180μm×130μmの条件で測定すると、Ra=1.6nm、Rz=26nmであった。一方、図1(a)に示した本件出願にいう銅箔の表面を上記と同様に測定すると、Ra=2.3nm、Rz=39nmであった。すなわち、本件出願にいう粗化処理層は、nmオーダーの凸状部により形成された微細凹凸構造を有し、この凸状部の最大長さは上述のとおり500nm以下と極めて小さいため、粗化処理前後における粗化処理面側の表面粗さの変化を抑制することができる。換言すれば、表面の平滑な銅箔に対して、当該粗化処理層を設けることにより、粗化処理層を設ける前の平滑な表面を維持した状態で、その表面に上記微細凹凸構造によるナノアンカー効果を発現させることができる。 This point will be verified based on the change in surface roughness before and after forming the roughened layer. Using the non-contact three-dimensional surface shape / roughness measuring machine (model: New-View 6000) manufactured by Zygo Corporation, the deposited surface of the both-side smooth electrolytic copper foil before the roughening treatment described above was used. When measured under the conditions of angle: 2.0, measurement area: 180 μm × 130 μm, Ra = 1.6 nm and Rz = 26 nm. On the other hand, when the surface of the copper foil referred to in the present application shown in FIG. 1A was measured in the same manner as described above, Ra = 2.3 nm and Rz = 39 nm were obtained. That is, the roughening treatment layer referred to in the present application has a fine concavo-convex structure formed by convex portions on the order of nm, and the maximum length of the convex portions is extremely small as 500 nm or less as described above. It is possible to suppress a change in the surface roughness on the roughening treatment surface side before and after the treatment. In other words, by providing the roughened layer on the copper foil having a smooth surface, the surface having the smooth surface before the roughened layer is maintained, and the surface with nano-structures having the fine concavo-convex structure is maintained. An anchor effect can be expressed.
 次に、図3を参照しながら、上記凸状部の最大長さについて説明する。図3は、本件出願に係る銅箔の断面を示す走査型電子顕微鏡観察像である。図3に示すように、当該銅箔の断面において、細い線状に観察される部分が凸状部である。図3から、互いに密集した無数の凸状部により銅箔の表面が覆われており、各凸状部は銅箔の表面形状に沿って銅箔の表面から突出して設けられていることが確認される。本件出願において、「凸状部の最大長さ」とは、当該銅箔の断面において上記線(線分)状に観察される各凸状部の基端から先端までの長さを測定したときの最大値をいうものとする。当該凸状部の最大長さは400nm以下であることが好ましく、300nm以下であることが更に好ましい。当該凸状部の最大長さが短くなるほど、銅箔の表面により微細な凹凸構造を付与することができ、且つ、粗化処理前の銅箔の表面形状を維持することができることから、表面粗さの変化を抑制することができる。このため、微細なナノアンカー効果により当該銅箔と絶縁樹脂基材との良好な密着性を得ることができ、且つ、無粗化銅箔を用いた場合と同等のより良好なエッチングファクターを備えたファインピッチ回路の形成が可能になる。 Next, the maximum length of the convex portion will be described with reference to FIG. FIG. 3 is a scanning electron microscope observation image showing a cross section of the copper foil according to the present application. As shown in FIG. 3, in the cross section of the copper foil, a portion observed in a thin line shape is a convex portion. From FIG. 3, it is confirmed that the surface of the copper foil is covered with innumerable convex portions densely packed with each other, and each convex portion is provided so as to protrude from the surface of the copper foil along the surface shape of the copper foil. Is done. In the present application, the “maximum length of the convex portion” means that when the length from the base end to the tip end of each convex portion observed in the shape of the line (line segment) in the cross section of the copper foil is measured. The maximum value of. The maximum length of the convex portion is preferably 400 nm or less, and more preferably 300 nm or less. As the maximum length of the convex portion becomes shorter, a fine uneven structure can be imparted to the surface of the copper foil, and the surface shape of the copper foil before the roughening treatment can be maintained. The change in height can be suppressed. For this reason, it is possible to obtain good adhesion between the copper foil and the insulating resin base material by the fine nano-anchor effect, and it has a better etching factor equivalent to the case of using a non-roughened copper foil. A fine pitch circuit can be formed.
 ここで、本件出願に係る銅箔において、「粗化処理層の厚さ」とは、当該銅箔の表層部分に設けられた微細凹凸構造の厚さに相当する。微細凹凸構造を形成する各凸状部の長さや突出方向は一定ではなく、各凸状部の突出方向は銅箔の厚さ方向に対して平行ではない。このため、上記凸状部の長さと、当該銅箔の厚さ方向における当該凸状部の高さとは一致せず、上記凸状部の最大長さと、粗化処理層の最大厚さとも一致せず、(当該粗化処理層の厚さ)≦(上記凸状部の最大長さ)の関係を有する。また、当該微細凹凸構造は、凸状部が銅箔表面に密集して設けられることにより形成されたものであるため、粗化処理層の厚さにはバラツキがある。しかしながら、当該凸状部の最大長さと、粗化処理層との間には一定の相関関係があり、本件発明者等が繰り返し試験を行った結果、当該粗化処理層の平均厚さが400nm以下である場合、上記凸状部の最大長さは500nm以下となり、当該粗化処理層の平均厚さが100nm以上である場合、上記凸状部の最大長さは100nm以上となる。絶縁樹脂基材との良好な密着性を得る上で、当該粗化処理層の平均厚さは100nm以上であることが好ましく、粗化処理層の平均厚さが100nm以上350nm以下の範囲内である場合、「絶縁樹脂基材に対する無粗化銅箔以上の良好な密着性」と「無粗化銅箔と同等の良好なエッチング性能」を兼ね備えることが可能であると判断している。なお、図3では、粗化処理層の平均厚さが250nmのものを示している。 Here, in the copper foil according to the present application, the “thickness of the roughening treatment layer” corresponds to the thickness of the fine uneven structure provided on the surface layer portion of the copper foil. The length and the protruding direction of each convex part forming the fine concavo-convex structure are not constant, and the protruding direction of each convex part is not parallel to the thickness direction of the copper foil. Therefore, the length of the convex portion and the height of the convex portion in the thickness direction of the copper foil do not match, and the maximum length of the convex portion and the maximum thickness of the roughening treatment layer also match. Without having a relationship of (thickness of the roughened layer) ≦ (maximum length of the convex portion). Further, since the fine concavo-convex structure is formed by providing the convex portions densely on the surface of the copper foil, the thickness of the roughening treatment layer varies. However, there is a certain correlation between the maximum length of the convex portion and the roughened layer, and as a result of repeated tests by the inventors, the average thickness of the roughened layer is 400 nm. When it is below, the maximum length of the convex portion is 500 nm or less, and when the average thickness of the roughened layer is 100 nm or more, the maximum length of the convex portion is 100 nm or more. In order to obtain good adhesion to the insulating resin substrate, the average thickness of the roughened layer is preferably 100 nm or more, and the average thickness of the roughened layer is within the range of 100 nm to 350 nm. In some cases, it has been determined that it is possible to combine “good adhesion more than the non-roughened copper foil to the insulating resin base material” and “good etching performance equivalent to the non-roughened copper foil”. In FIG. 3, the roughened layer has an average thickness of 250 nm.
 また、本件出願に係る銅箔において、走査型電子顕微鏡を用いて、傾斜角45°、50000倍以上の倍率で当該粗化処理層の表面を平面的に観察したときに、互いに隣接する凸状部のうち、他の凸状部と分離観察可能な先端部分の長さが250nm以下であることが好ましい。ここで、「他の凸状部と分離観察可能な先端部分の長さ(以下、「先端部分の長さ」と略す場合があるものとする)」とは、以下に示す長さをいう。例えば、走査型電子顕微鏡により上述のように粗化処理層の表面を観察すると、図1(a)、(b)を参照しながら上述したように、当該粗化処理層は銅箔の表面から凸状部が針状又は板状に突出しており、当該凸状部が銅箔の表面に密集して設けられているため、銅箔の表面から凸状部の基端部、すなわち銅複合化合物からなる凸状部と銅箔との界面を観察することができない。そこで、上述のように当該銅箔を平面的に観察したときに、互いに密集しながら隣接する凸状部のうち、他の凸状部と分離して、一つの凸状部として独立に存在し得ると観察することが可能な部分を上記「他の凸状部と分離観察可能な先端部分」と称し、この先端部分の長さとは、当該凸状部の先端(すなわち先端部分の先端)から、他の凸状部と分離観察可能な最も基端部側の位置までの長さをいうものとする。 Further, in the copper foil according to the present application, when the surface of the roughened layer is observed planarly at an inclination angle of 45 ° and a magnification of 50000 times or more using a scanning electron microscope, convex shapes adjacent to each other. Among the portions, the length of the tip portion that can be separately observed from other convex portions is preferably 250 nm or less. Here, “the length of the tip portion that can be separately observed from other convex portions (hereinafter, may be abbreviated as“ the length of the tip portion ”)” refers to the length shown below. For example, when the surface of the roughened layer is observed with a scanning electron microscope as described above, the roughened layer is separated from the surface of the copper foil as described above with reference to FIGS. Since the convex part protrudes in the shape of a needle or a plate, and the convex part is provided densely on the surface of the copper foil, the base end part of the convex part from the surface of the copper foil, that is, a copper composite compound The interface between the convex portion and the copper foil cannot be observed. Therefore, when the copper foil is observed in a plane as described above, it is separated from other convex portions among the convex portions adjacent to each other while being densely packed, and exists independently as one convex portion. The portion that can be observed when it is obtained is referred to as the “tip portion that can be observed separately from other convex portions”, and the length of the tip portion refers to the tip of the convex portion (ie, the tip of the tip portion). The length up to the position on the most proximal side that can be separated and observed from other convex portions.
 当該凸状部の先端部分の長さが、250nm以下である場合、上記凸状部の最大長さは概ね500nm以下となり、上述したとおり、当該粗化処理層の微細凹凸構造によるナノアンカー効果により、絶縁樹脂基材との間の良好な密着性を得ることができると共に、無粗化銅箔を用いた場合と同等の良好なエッチングファクターを備えたファインピッチ回路の形成が可能になる。また、他の凸状部と分離観察可能な先端部分の長さが250nm以下である場合、銅箔の表面から長く突出する凸状部が存在せず、当該粗化処理層の表面に他の物体が接触しても、折れにくくなる。すなわち、耐擦傷性の高い粗化処理層とすることができる。従って、当該銅箔は、ハンドリングの際等にいわゆる粉落ちが生じにくく、表面の微細凹凸構造を維持することができ、周囲に酸化銅の微粉が飛散したり、付着するのを防止することができる。従って、当該銅箔を用いて、プリント配線板の回路形成を行った場合、粉落ちに起因した配線間の絶縁不良を生じにくくすることができる。これらの観点から、当該凸状部の先端部分の長さは、200nm以下であることが好ましく、100nm以下であることがより好ましい。また、絶縁樹脂基材との良好な密着性を得る上で、当該凸状部の先端部分の長さは、30nm以上であることが好ましく、50nm以上であることがより好ましい。 When the length of the tip portion of the convex portion is 250 nm or less, the maximum length of the convex portion is approximately 500 nm or less, and as described above, due to the nanoanchor effect due to the fine uneven structure of the roughened layer. In addition to being able to obtain good adhesion between the insulating resin base material, it is possible to form a fine pitch circuit having a good etching factor equivalent to the case of using a non-roughened copper foil. In addition, when the length of the tip portion that can be separately observed from other convex portions is 250 nm or less, there is no convex portion that protrudes long from the surface of the copper foil, and the surface of the roughening treatment layer has another surface. Even if an object comes into contact, it is difficult to break. That is, a roughened layer having high scratch resistance can be obtained. Therefore, the copper foil is less prone to so-called powder falling during handling, etc., can maintain a fine concavo-convex structure on the surface, and can prevent copper oxide fine powder from scattering or adhering to the surroundings. it can. Therefore, when the circuit formation of a printed wiring board is performed using the said copper foil, it can be made difficult to produce the insulation defect between wiring resulting from powder fall. From these viewpoints, the length of the tip portion of the convex portion is preferably 200 nm or less, and more preferably 100 nm or less. Moreover, when obtaining favorable adhesiveness with an insulating resin base material, the length of the tip portion of the convex portion is preferably 30 nm or more, and more preferably 50 nm or more.
 さらに、当該凸状部の上記最大長さに対して、当該凸状部の上記先端部分の長さが1/2以下であることが好ましい。当該比率が1/2以下である場合、他の凸状部と分離しながら、銅箔の表面から凸状部の先端部分が突出することにより、上記ナノアンカー効果を発揮させることができると共に、当該凸状部の基端部側において隣接する凸状部同士が互いに接触しながら銅箔表面に密集するため、銅箔表面をこの微細凹凸構造により密に被覆することができる。 Furthermore, it is preferable that the length of the tip portion of the convex portion is ½ or less with respect to the maximum length of the convex portion. When the ratio is ½ or less, while separating from other convex portions, the tip portion of the convex portion protrudes from the surface of the copper foil, so that the nano anchor effect can be exhibited, Since the convex portions adjacent to each other on the base end side of the convex portions are densely packed on the copper foil surface while being in contact with each other, the copper foil surface can be densely covered with the fine concavo-convex structure.
 そして、本件出願に係る銅箔の場合、粗化処理層の表面に、シランカップリング剤処理層が存在することにより、プリント配線板に加工したときの耐吸湿劣化特性の改善が可能となる。当該粗化処理面に設けるシランカップリング剤処理層は、シランカップリング剤としてオレフィン官能性シラン、エポキシ官能性シラン、ビニル官能性シラン、アクリル官能性シラン、アミノ官能性シラン及びメルカプト官能性シランのいずれかを使用して形成することが可能である。これらのシランカップリング剤は、一般式 R-Si(OR’)nで表記される(ここで、R:アミノ基やビニル基などに代表される有機官能基、OR’:メトキシ基またはエトキシ基などに代表される加水分解基、n:2または3である。)。 And, in the case of the copper foil according to the present application, the presence of the silane coupling agent treatment layer on the surface of the roughening treatment layer makes it possible to improve the moisture absorption resistance deterioration characteristics when processed into a printed wiring board. The silane coupling agent treatment layer provided on the roughened surface is composed of olefin functional silane, epoxy functional silane, vinyl functional silane, acrylic functional silane, amino functional silane and mercapto functional silane as a silane coupling agent. Either can be used to form. These silane coupling agents are represented by the general formula R—Si (OR ′) n (where R: an organic functional group typified by an amino group or vinyl group, OR ′: a methoxy group or an ethoxy group) And the like, n: 2 or 3.
 ここで言うシランカップリング剤を、より具体的に示すとすれば、プリント配線板用にプリプレグのガラスクロスに用いられると同様のカップリング剤を中心にビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、4-グリシジルブチルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、3-アクリロキシプロピルメトキシシラン、γ-メルカプトプロピルトリメトキシシラン等を用いることが可能である。 If the silane coupling agent said here is shown more specifically, vinyltrimethoxysilane, vinylphenyltrimethoxylane, mainly using the same coupling agent as used for a glass cloth of a prepreg for a printed wiring board, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, Use N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, 3-acryloxypropylmethoxysilane, γ-mercaptopropyltrimethoxysilane, etc. Is possible .
 ここに列挙したシランカップリング剤は、銅箔の絶縁樹脂基材との接着面に使用しても、後のエッチング工程及びプリント配線板となった後の特性に悪影響を与えないものである。このシランカップリング剤の中でいずれの種類を使用するかは、絶縁樹脂基材の種類、銅箔の使用方法等に応じて、適宜選択が可能である。 The silane coupling agents listed here do not adversely affect the subsequent etching process and the characteristics after becoming a printed wiring board even when used on the adhesive surface of the copper foil with the insulating resin substrate. Which type is used in the silane coupling agent can be appropriately selected according to the type of the insulating resin base material, the method of using the copper foil, and the like.
 以上に述べたシランカップリング剤は、水を主溶媒として、当該シランカップリング剤成分を0.5g/L~10g/Lの濃度範囲となるように含有させ、室温レベルの温度としたシランカップ剤処理液を用いることが好ましい。このシランカップ剤処理液のシランカップリング剤濃度が0.5g/Lを下回る場合は、シランカップリング剤の吸着速度が遅く、一般的な商業ベースの採算に合わず、吸着も不均一なものとなる。一方、当該シランカップ剤濃度が10g/Lを超えるものとしても、特に吸着速度が速くなることもなく、耐吸湿劣化性等の性能品質を特に向上させるものでもなく、不経済となるため好ましくない。 The silane coupling agent described above contains water as a main solvent, the silane coupling agent component is contained in a concentration range of 0.5 g / L to 10 g / L, and the silane coupling agent has a room temperature level. It is preferable to use an agent treatment liquid. When the concentration of the silane coupling agent in the silane coupling agent treatment liquid is less than 0.5 g / L, the adsorption rate of the silane coupling agent is slow, which is not suitable for general commercial profit, and the adsorption is not uniform. It becomes. On the other hand, even if the concentration of the silane cup agent exceeds 10 g / L, the adsorption rate is not particularly high, and the performance quality such as moisture absorption resistance is not particularly improved. .
 このシランカップリング剤処理液を用いた銅箔表面へのシランカップリング剤の吸着方法は、浸漬法、シャワーリング法、噴霧法等の採用が可能であり、特に限定はない。即ち、工程設計に合わせて、最も均一に銅箔とシランカップリング剤処理液とを接触させ、吸着させることのできる方法であればよい。 The adsorption method of the silane coupling agent to the copper foil surface using this silane coupling agent treatment liquid can employ an immersion method, a showering method, a spraying method, etc., and is not particularly limited. That is, any method can be used as long as the copper foil and the silane coupling agent treatment solution can be brought into contact with each other and adsorbed in accordance with the process design.
 当該粗化処理層の表面にシランカップリング剤を吸着させた後は、十分な乾燥を行い、当該粗化処理層の表面にある-OH基と、吸着したシランカップリング剤との縮合反応を促進させ、縮合の結果生じる水分を完全に蒸発させる。このときの乾燥方法に関して特段の限定は無い。例えば、電熱器を使用しても、温風を吹き付ける衝風法であっても、特に制限はなく、製造ラインに応じた乾燥方法と乾燥条件を採用すればよい。 After the silane coupling agent is adsorbed on the surface of the roughening treatment layer, it is sufficiently dried to perform a condensation reaction between the —OH group on the surface of the roughening treatment layer and the adsorbed silane coupling agent. Promote and completely evaporate the water resulting from the condensation. There is no special limitation regarding the drying method at this time. For example, even if an electric heater is used or a blast method that blows warm air is not particularly limited, a drying method and drying conditions corresponding to the production line may be employed.
 以上に述べた当該銅箔の粗化処理面には、500nm以下の最大長さの針状又は板状の凸状部が互いに隣接しながら密集して設けられており、各凸状部間の距離(ピッチ)は可視光の波長域よりも短いと考えられる。このため、粗化処理層に入射した可視光は、微細凹凸構造内で乱反射を繰り返す結果、減衰する。すなわち、当該粗化処理層は、光を吸収する吸光層として機能し、当該粗化処理面の表面は粗化処理前と比較すると黒色化、茶褐色化等に暗色化する。即ち、本件出願に係る銅箔の粗化処理面は、その色調にも特色があり、L表色系の明度L の値は25以下となる。この明度L の値が25を超えて明るい色調となる場合、粗化処理層を構成する上記凸状部の最大長さが500nmを超える場合があるため好ましくない。また、Lの値が25を超える場合、上記凸状部の最大長さが500nm以下であっても、当該凸状部が銅箔の表面に十分に密集して設けられていない場合がある。このように、明度L の値が25を超える場合、粗化処理が不十分である、又は粗化処理の状態にムラがあることが考えられ、「絶縁樹脂基材に対する無粗化銅箔以上の良好な密着性」を得ることが出来ない恐れがあるため好ましくない。すなわち、この明度L の値は、「粗化処理面の表面状態」を表す指標として用いることができ、明度Lの値が25よりも小さくなるほど、「絶縁樹脂基材に対する無粗化銅箔以上の良好な密着性」を得る上で、より良好な表面状態であると考えることができ、当該明度Lの値が20以下であると絶縁樹脂基材との密着性に対する信頼性が飛躍的に向上するため好ましい。本件出願における明度L の測定は、日本電色工業株式会社製 分光色差計 SE2000を用いて、明度の校正には測定装置に付属の白色版を用い、JIS Z8722:2000に準拠して行った。そして、同一部位に関して3回の測定を行い、3回の明度L の測定データの平均値を、本件出願に言う明度L の値として記載している。なお、念のために記載しておくが、このL表色系の明度L の値は、シランカップリング剤処理層の有無によって、変動することはなく、粗化処理層の微細凹凸構造の表面形状のみにより定まるものである。 On the roughened surface of the copper foil described above, needle-like or plate-like convex portions having a maximum length of 500 nm or less are densely provided adjacent to each other, and between the convex portions. The distance (pitch) is considered to be shorter than the wavelength range of visible light. For this reason, visible light incident on the roughened layer is attenuated as a result of repeated irregular reflection in the fine concavo-convex structure. That is, the roughening treatment layer functions as a light absorbing layer that absorbs light, and the surface of the roughening treatment surface is darkened to blackening, browning, or the like as compared to before the roughening treatment. That is, the roughened surface of the copper foil according to the present application has a special color tone, and the lightness L * value of the L * a * b * color system is 25 or less. When the value of the lightness L * exceeds 25 and the color tone becomes bright, the maximum length of the convex portion constituting the roughening treatment layer may exceed 500 nm, which is not preferable. Moreover, when the value of L * exceeds 25, even if the maximum length of the convex portion is 500 nm or less, the convex portion may not be provided sufficiently densely on the surface of the copper foil. . Thus, when the value of the lightness L * exceeds 25, it is considered that the roughening treatment is insufficient or the state of the roughening treatment is uneven. This is not preferable because there is a fear that the above “adhesiveness” cannot be obtained. That is, the value of the lightness L * may be used as an indicator of the "surface state of the roughened surface", as the value of the lightness L * is less than 25, no relative "insulating resin substrate Arakado It can be considered that the surface state is better in obtaining “adhesiveness better than that of foil”, and if the value of the lightness L * is 20 or less, the reliability with respect to the adhesiveness with the insulating resin substrate is high. This is preferable because it improves dramatically. The lightness L * in the present application was measured using a spectral color difference meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the whiteness plate attached to the measuring device was used for lightness calibration in accordance with JIS Z8722: 2000. . And the measurement of 3 times is performed regarding the same site | part, and the average value of the measurement data of 3 times lightness L * is described as the value of the lightness L * said to this application. It should be noted that the value of the lightness L * of the L * a * b * color system does not vary depending on the presence or absence of the silane coupling agent-treated layer. This is determined only by the surface shape of the fine uneven structure.
 そして、本件出願に係る銅箔の粗化処理層において、微細凹凸構造を形成する凸状部は、銅複合化合物からなる。本件出願において、この銅複合化合物は、酸化銅及び亜酸化銅を含有することが好ましい。 And the convex part which forms the fine concavo-convex structure in the roughening process layer of the copper foil which concerns on this application consists of a copper complex compound. In the present application, the copper composite compound preferably contains copper oxide and cuprous oxide.
 ところで、上述したように、従来、絶縁樹脂基材との密着性を得るためには、「微細銅粒の付着」、「エッチングによる凹凸形成」等の粗化処理を銅箔の表面に施すことが行われてきた。しかしながら、高周波回路を形成する際に、このような従来の粗化処理が施された銅箔を用いた場合、銅箔表面に形成された凹凸構造は導体であるため、いわゆる表皮効果のため高周波信号の伝送損失が生じる。これに対して、本件出願に係る銅箔では、酸化銅及び亜酸化銅を含有する銅複合化合物からなる凸状部により、上記微細凹凸構造を形成しているため、銅箔の表面に設けられた粗化処理層には高周波信号が流れない。つまり、本件出願に係る銅箔を用いれば、高周波信号の伝送損失に関して、粗化処理層を備えていない無粗化銅箔と同等の高周波特性を示す。また、当該粗化処理層は、高周波基板に使用される低誘電率、低誘電正接の絶縁樹脂基材に対する密着性が良好である。従って、本件出願に係る銅箔は、例えば、以下のような高周波特性の優れた未処理銅箔に対して、上記粗化処理層を設けることにより、高周波回路形成材料として極めて好適である。 By the way, as described above, conventionally, in order to obtain adhesiveness with the insulating resin base material, roughening treatment such as “adhesion of fine copper particles” and “unevenness formation by etching” is performed on the surface of the copper foil. Has been done. However, when copper foil that has been subjected to such a conventional roughening treatment is used when forming a high-frequency circuit, the uneven structure formed on the surface of the copper foil is a conductor. Signal transmission loss occurs. On the other hand, in the copper foil according to the present application, since the fine concavo-convex structure is formed by the convex portion made of the copper composite compound containing copper oxide and cuprous oxide, the copper foil is provided on the surface of the copper foil. The high frequency signal does not flow through the roughened layer. That is, if the copper foil which concerns on this application is used, the high frequency characteristic equivalent to the non-roughened copper foil which is not provided with the roughening process layer will be shown regarding the transmission loss of a high frequency signal. In addition, the roughened layer has good adhesion to a low dielectric constant and low dielectric loss tangent insulating resin substrate used for a high frequency substrate. Therefore, the copper foil which concerns on this application is very suitable as a high frequency circuit formation material by providing the said roughening process layer with respect to the untreated copper foil which was excellent in the following high frequency characteristics, for example.
 具体的には、以下のような特性を有する未処理銅箔に対して、上記粗化処理層を設けることにより、高周波回路形成材料に適した銅箔とすることができる。また、下記の特性を有する未処理銅箔に対して、上記粗化処理層を設けることにより、本件出願に係る銅箔はマイクロストリップライン、或いはストリップラインを製造する際にも好適に用いることができる。但し、マイクロストリップライン、或いはストリップライン用途に当該銅箔を用いる場合、それぞれ絶縁樹脂基材との密着する側の面の表面粗さ(Rz)、光沢度(Gs60°)が下記の範囲内であることが好ましい。即ち、ストリップライン用途に当該銅箔を用いる場合、両面に絶縁樹脂基材が密着されるため、両面の表面特性が以下の範囲内であることが好ましい。 Specifically, a copper foil suitable for a high-frequency circuit forming material can be obtained by providing the roughening layer on an untreated copper foil having the following characteristics. Moreover, the copper foil according to the present application can be suitably used for manufacturing a microstrip line or a strip line by providing the roughening treatment layer for an untreated copper foil having the following characteristics. it can. However, when using the copper foil for microstripline or stripline applications, the surface roughness (Rz) and glossiness (Gs60 °) of the surface in close contact with the insulating resin substrate are within the following ranges, respectively. Preferably there is. That is, when the copper foil is used for stripline use, the insulating resin base material is in close contact with both surfaces, and therefore the surface characteristics of both surfaces are preferably within the following range.
表面粗さ(Rz):1.5μm以下、好ましくは1.0μm以下
表面の光沢度(Gs60°):100以上、好ましくは300以上
未処理銅箔自体の導電率:99.8%以上
未処理銅箔内の不純物濃度:100ppm以下(但し、不純物とはS、N、C、Clの総含有量をいうものとする。)
Surface roughness (Rz): 1.5 μm or less, preferably 1.0 μm or less Surface glossiness (Gs 60 °): 100 or more, preferably 300 or more Conductivity of untreated copper foil itself: 99.8% or more untreated Impurity concentration in the copper foil: 100 ppm or less (provided that the impurity means the total content of S, N, C, and Cl)
 また、本件出願に係る銅箔において、X線光電子分光分析法(X-ray Photoelectron Spectroscopy;以下、「XPS」と称する。)により上記粗化処理層の構成元素を分析したときに得られるCu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対して、Cu(I)のピーク面積が占める割合(以下、占有面積率)が50%以上であることが好ましい。 Further, in the copper foil according to the present application, Cu obtained when the constituent elements of the roughened layer are analyzed by X-ray photoelectron spectroscopy (hereinafter referred to as “XPS”). The ratio of the peak area of Cu (I) (hereinafter referred to as the occupied area ratio) to the total area of the peak area of I) and the peak area of Cu (II) is preferably 50% or more.
 ここで、XPSにより、上記微細凹凸構造層の構成元素を分析する方法を説明する。XPSにより微細凹凸構造層の構成元素を分析すると、Cu(I)及びCu(II)の各ピークを分離して検出できる。但し、Cu(I)及びCu(II)の各ピークを分離して検出した場合、大きなCu(I)ピークのショルダー部分に、Cu(0)ピークが重複して観測される場合がある。このようにCu(0)のピークが重複して観察された場合は、このショルダー部分を含めてCu(I)ピークとみなすものとする。すなわち、本願発明では、XPSを用いて微細凹凸構造層を形成する銅複合化合物の構成元素を分析し、Cu 2p 3/2の結合エネルギーに対応する932.4eVに現れるCu(I)、及び934.3eVに現れるCu(II)の光電子を検出して得られる各ピークを波形分離して、各成分のピーク面積からCu(I)ピークの占有面積率を特定する。但し、XPSの分析装置としてアルバック・ファイ株式会社製のQuantum2000(ビーム条件:40W、200μm径)を用い、解析ソフトウェアとして「MultiPack ver.6.1A」を用いて状態・半定量用ナロー測定を行うことができる。 Here, a method for analyzing constituent elements of the fine concavo-convex structure layer by XPS will be described. When the constituent elements of the fine concavo-convex structure layer are analyzed by XPS, each peak of Cu (I) and Cu (II) can be separated and detected. However, when the Cu (I) and Cu (II) peaks are separated and detected, the Cu (0) peak may be observed overlapping the shoulder portion of the large Cu (I) peak. Thus, when the peak of Cu (0) is observed overlappingly, it shall be considered as a Cu (I) peak including this shoulder part. That is, in the present invention, the constituent elements of the copper composite compound forming the fine concavo-convex structure layer are analyzed using XPS, and Cu (I) and 934 appearing at 932.4 eV corresponding to the binding energy of Cu 2p 3/2. Each peak obtained by detecting photoelectrons of Cu (II) appearing at .3 eV is separated into waveforms, and the occupied area ratio of the Cu (I) peak is specified from the peak area of each component. However, Quantum 2000 (beam condition: 40 W, 200 μm diameter) manufactured by ULVAC-PHI Co., Ltd. is used as an XPS analyzer, and “MultiPack ver. 6.1A” is used as analysis software to perform state / semi-quantitative narrow measurement. be able to.
 以上のようにして得られたCu(I)ピークは、亜酸化銅(酸化第一銅:CuO)を構成する1価の銅に由来すると考えられる。そして、Cu(II)ピークは、酸化銅(酸化第二銅:CuO)を構成する2価の銅に由来すると考えられる。更に、Cu(0)ピークは、金属銅を構成する0価の銅に由来すると考えられる。従って、Cu(I)ピークの占有面積率が50%未満の場合には、当該粗化処理層を構成する銅複合化合物における亜酸化銅が占める割合が酸化銅が占める割合よりも小さい。酸化銅は、亜酸化銅と比較すると、エッチング液等の酸に対する溶解性が高い。従って、Cu(I)ピークの占有面積率が50%未満の場合には、当該銅箔の粗化処理面側を絶縁樹脂基材に張り合わせ、エッチング法により回路形成を行った場合、エッチング液に粗化処理層が溶解し易くなり、事後的に銅配線と絶縁樹脂基材との間の密着性が低下する場合がある。当該観点から、XPSにより粗化処理層を形成する銅複合化合物の構成元素を分析したときの、上記Cu(I)ピークの占有面積率が70%以上であることがより好ましく、80%以上であることが更に好ましい。Cu(I)ピークの占有面積率が増加する程、酸化銅よりもエッチング液等に対する耐酸溶解性の高い亜酸化銅の成分比が高くなる。従って、粗化処理層のエッチング液等に対する耐酸溶解性が向上し、回路形成時におけるエッチング液の差し込みを低減することが可能になり、絶縁樹脂基材と密着性の良好な銅配線を形成することができる。一方、Cu(I)ピークの占有面積率の上限値は特に限定されるものではないが、99%以下とする。Cu(I)ピークの占有面積率が低くなるほど、絶縁樹脂基材に対して当該銅箔の粗化処理面側を張り合わせたときの両者の密着性が向上する傾向にある。従って、両者の良好な密着性を得るため、Cu(I)ピークの専有面積率は98%以下が好ましく、95%以下がより好ましい。なお、Cu(I)ピークの占有面積率は、Cu(I)/{Cu(I)+Cu(II)} ×100(%)の計算式で算出するものとする。 The Cu (I) peak obtained as described above is considered to be derived from monovalent copper constituting cuprous oxide (cuprous oxide: Cu 2 O). And it is thought that a Cu (II) peak originates in the bivalent copper which comprises copper oxide (cupric oxide: CuO). Furthermore, it is considered that the Cu (0) peak is derived from zero-valent copper constituting metallic copper. Therefore, when the occupation area ratio of the Cu (I) peak is less than 50%, the proportion of cuprous oxide in the copper composite compound constituting the roughened layer is smaller than the proportion of copper oxide. Copper oxide has higher solubility in acids such as an etchant than cuprous oxide. Therefore, when the occupied area ratio of the Cu (I) peak is less than 50%, when the roughened surface side of the copper foil is bonded to the insulating resin substrate and the circuit is formed by the etching method, A roughening process layer becomes easy to melt | dissolve and the adhesiveness between copper wiring and an insulating resin base material may fall afterwards. From this viewpoint, it is more preferable that the occupied area ratio of the Cu (I) peak is 70% or more and 80% or more when the constituent elements of the copper composite compound that forms the roughened layer by XPS are analyzed. More preferably it is. As the occupied area ratio of the Cu (I) peak increases, the component ratio of cuprous oxide having higher acid solubility resistance to the etching solution or the like becomes higher than that of copper oxide. Therefore, the acid solubility resistance of the roughened layer to the etching solution is improved, and it becomes possible to reduce the insertion of the etching solution during circuit formation, thereby forming a copper wiring having good adhesion to the insulating resin substrate. be able to. On the other hand, the upper limit value of the occupied area ratio of the Cu (I) peak is not particularly limited, but is 99% or less. As the occupied area ratio of the Cu (I) peak decreases, the adhesiveness between the two surfaces when the roughened surface side of the copper foil is bonded to the insulating resin base material tends to be improved. Therefore, in order to obtain good adhesion between the two, the exclusive area ratio of the Cu (I) peak is preferably 98% or less, and more preferably 95% or less. Note that the occupied area ratio of the Cu (I) peak is calculated by a calculation formula of Cu (I) / {Cu (I) + Cu (II)} × 100 (%).
 また、本願発明において、粗化処理層の表面にクリプトンを吸着させて測定したときの比表面積(以下、単に「比表面積」と称する。)が、0.035m/g以上であることが好ましい。このように測定した比表面積が、0.035m/g以上であると、当該粗化処理層の上記平均厚さが200nm以上になり、当該粗化処理層を備えた粗化処理面を絶縁樹脂基材に張り合わせたときに、良好な密着性を確保することができる。比表面積の上限値は特に限定されるものではないが、当該微細凹凸構造は、最大長さが500nm以下の針状又は板状の凸状部が密集して形成されたものであり、当該微細凹凸構造の表面形状を満足する上で上記比表面積の上限値は計算上0.3m/g程度となり、実際には0.2m/g程度が上限値となる。なお、当該比表面積は、マイクロメリティクス社製 比表面積・細孔分布測定装置 3Flexを用いて、試料に300℃×2時間の加熱を前処理として行い、吸着温度に液体窒素温度、吸着ガスにクリプトン(Kr)を用いることにより、上記測定を行うことができる。 In the present invention, the specific surface area (hereinafter simply referred to as “specific surface area”) measured by adsorbing krypton on the surface of the roughened layer is preferably 0.035 m 2 / g or more. . When the specific surface area measured in this way is 0.035 m 2 / g or more, the average thickness of the roughened layer becomes 200 nm or more, and the roughened surface provided with the roughened layer is insulated. When bonded to a resin base material, good adhesion can be ensured. Although the upper limit value of the specific surface area is not particularly limited, the fine concavo-convex structure is formed by densely forming needle-like or plate-like convex portions having a maximum length of 500 nm or less. In satisfying the surface shape of the concavo-convex structure, the upper limit value of the specific surface area is calculated to be about 0.3 m 2 / g, and actually about 0.2 m 2 / g is the upper limit value. In addition, the specific surface area is measured by using a specific surface area / pore distribution measuring device 3Flex manufactured by Micromeritics Co., Ltd. as a pretreatment by heating the sample at 300 ° C. for 2 hours. The above measurement can be performed by using krypton (Kr).
 以上述べた本件出願に係る粗化処理層は、例えば、次のような湿式による粗化処理を銅箔の表面に施すことにより形成することができる。まず、溶液を用いた湿式法で銅箔の表面に酸化処理を施すことで、銅箔表面に酸化銅(酸化第二銅)を含有する銅化合物を形成する。その後、当該銅化合物を還元処理して酸化銅の一部を亜酸化銅(酸化第一銅)に転換させることにより、酸化銅及び亜酸化銅を含有する銅複合化合物からなる「針状又は板状の凸状部より形成された微細凹凸構造」を銅箔の表面に形成することができる。ここで、本件出願にいう「微細凹凸構造」自体は、銅箔の表面を湿式法で酸化処理した段階で、酸化銅を含有する銅化合物により形成される。そして、当該銅化合物を還元処理したときに、この銅化合物により形成された微細凹凸構造の形状をほぼ維持したまま、酸化銅の一部が亜酸化銅に転換されて、酸化銅及び亜酸化銅を含有する銅複合化合物からなる「微細凹凸構造」となる。このように銅箔の表面に湿式法で適正な酸化処理を施した後に、還元処理を施すことで、上述のようなnmオーダーの「微細凹凸構造」の形成が可能となる。なお、酸化銅及び亜酸化銅を主成分とする銅複合化合物に金属銅が少量含有してもよい。 The roughening treatment layer according to the present application described above can be formed, for example, by subjecting the surface of the copper foil to a roughening treatment by the following wet method. First, a copper compound containing copper oxide (cupric oxide) is formed on the surface of the copper foil by oxidizing the surface of the copper foil by a wet method using a solution. Thereafter, the copper compound is reduced, and a part of the copper oxide is converted into cuprous oxide (cuprous oxide), thereby forming a “needle or plate comprising a copper composite compound containing copper oxide and cuprous oxide. The fine concavo-convex structure formed from the convex portions can be formed on the surface of the copper foil. Here, the “fine concavo-convex structure” itself referred to in the present application is formed of a copper compound containing copper oxide at the stage where the surface of the copper foil is oxidized by a wet method. And when the said copper compound is reduce | restored, a part of copper oxide is converted into a cuprous oxide, maintaining the shape of the fine concavo-convex structure formed with this copper compound, and a copper oxide and a cuprous oxide. It becomes the "fine concavo-convex structure" which consists of a copper complex compound containing. As described above, by performing an appropriate oxidation treatment on the surface of the copper foil by a wet method and then performing a reduction treatment, it is possible to form the “fine concavo-convex structure” of the nm order as described above. In addition, a small amount of metallic copper may be contained in a copper composite compound containing copper oxide and cuprous oxide as main components.
 例えば、上記湿式による粗化処理を施す際には、水酸化ナトリウム溶液等のアルカリ溶液を用いることが好ましい。アルカリ溶液により、銅箔の表面を酸化することにより、銅箔の表面に針状又は板状の酸化銅を含有する銅化合物からなる凸状部を形成することができる。ここで、アルカリ溶液により銅箔の表面に対して酸化処理を施した場合、当該凸状部が長く成長し、最大長さが500nmを超える場合があり、本件出願にいう微細凹凸構造を形成することが困難になる。そこで、上記微細凹凸構造を形成するために、銅箔表面における酸化を微細に抑制可能な酸化抑制剤を含むアルカリ溶液を用いることが好ましい。 For example, it is preferable to use an alkaline solution such as a sodium hydroxide solution when the wet roughening treatment is performed. By oxidizing the surface of the copper foil with an alkaline solution, a convex portion made of a copper compound containing needle-like or plate-like copper oxide can be formed on the surface of the copper foil. Here, when an oxidation treatment is performed on the surface of the copper foil with an alkaline solution, the convex portion grows long, and the maximum length may exceed 500 nm, forming the fine concavo-convex structure referred to in the present application. It becomes difficult. Therefore, in order to form the fine concavo-convex structure, it is preferable to use an alkaline solution containing an oxidation inhibitor capable of finely suppressing oxidation on the copper foil surface.
 このような酸化抑制剤として、例えば、アミノ系シランカップリング剤を挙げることができる。アミノ系シランカップリング剤を含むアルカリ溶液を用いて、銅箔表面に酸化処理を施せば、当該アルカリ溶液中のアミノ系シランカップリング剤が銅箔の表面に吸着し、アルカリ溶液による銅箔表面の酸化を微細に抑制することができる。その結果、酸化銅の針状結晶の成長を抑制することができ、nmオーダーの極めて微細な凹凸構造を有する本件出願にいう粗化処理層を形成することができる。 Examples of such an oxidation inhibitor include an amino silane coupling agent. If the copper foil surface is oxidized using an alkaline solution containing an amino silane coupling agent, the amino silane coupling agent in the alkaline solution is adsorbed on the surface of the copper foil, and the copper foil surface by the alkaline solution Can be finely suppressed. As a result, the growth of copper oxide needle-like crystals can be suppressed, and the roughened layer referred to in the present application having an extremely fine concavo-convex structure on the order of nm can be formed.
 上記アミノ系シランカップリング剤として、具体的には、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等を用いることができる。これらはいずれもアルカリ性溶液に溶解し、アルカリ性溶液中に安定に保持されると共に、上述した銅箔表面の酸化を微細に抑制する効果を発揮する。 Specific examples of the amino-based silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3- Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, etc. may be used. it can. All of these are dissolved in an alkaline solution and are stably held in the alkaline solution, and also exhibit the effect of finely suppressing the oxidation of the copper foil surface described above.
 以上のように、アミノ系シランカップリング剤を含むアルカリ溶液により、銅箔の表面に酸化処理を施すことにより形成された微細凹凸構造は、その後、還元処理を施してもその形状がほぼ維持される。その結果、酸化銅及び亜酸化銅を含み、これら銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成されたnmオーダーの微細凹凸構造を有する粗化処理層を得ることができる。なお、還元処理において、還元剤濃度、溶液pH、溶液温度等を調整することにより、粗化処理層を形成する銅複合化合物の構成元素をXPSを用いて定性分析したときに得られるCu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対して、Cu(I)のピークの占有面積率を適宜調整できる。また、上記方法で形成した粗化処理層の微細凹凸構造の構成元素をXPSにより分析すると、「-COOH」の存在が検出される。 As described above, the fine concavo-convex structure formed by subjecting the surface of the copper foil to an oxidation treatment with an alkaline solution containing an amino-based silane coupling agent is substantially maintained even after the reduction treatment. The As a result, a roughening treatment layer having a fine concavo-convex structure on the order of nm formed by needle-like or plate-like convex portions having a maximum length of 500 nm or less, comprising copper oxide and cuprous oxide, and having a maximum length of 500 nm or less. Can be obtained. In the reduction treatment, Cu (I) obtained when the constituent elements of the copper composite compound forming the roughening treatment layer are qualitatively analyzed using XPS by adjusting the reducing agent concentration, solution pH, solution temperature, and the like. ) And the total area of the Cu (II) peak area, the occupied area ratio of the Cu (I) peak can be appropriately adjusted. Further, when the constituent elements of the fine concavo-convex structure of the roughened layer formed by the above method are analyzed by XPS, the presence of “—COOH” is detected.
 上述したように酸化処理及び還元処理は、各処理溶液を用いた湿式法により行うことができるため、処理溶液中に銅箔を浸漬する等の方法により銅箔の両面に上記粗化処理層を簡易に形成することができる。よって、この湿式法を利用すると、多層プリント配線板の内層回路の形成に適した両面粗化処理銅箔を容易に得ることが可能となり、内層回路の両面においてそれぞれ層間絶縁層等との良好な密着性を確保することができる。 As described above, since the oxidation treatment and the reduction treatment can be performed by a wet method using each treatment solution, the roughening treatment layer is formed on both sides of the copper foil by a method such as immersing the copper foil in the treatment solution. It can be formed easily. Therefore, when this wet method is used, it becomes possible to easily obtain a double-sided roughened copper foil suitable for forming an inner layer circuit of a multilayer printed wiring board, and both the inner layer circuit and the interlayer insulating layer and the like are good. Adhesion can be ensured.
 また、本件出願に係る粗化処理層は、上述したとおり、ハンドリングの際等にいわゆる粉落ちが生じにくく、表面の微細凹凸構造を維持することができる。従って、両面粗化処理銅箔とした場合にも、ハンドリングを容易にすることができる。 In addition, as described above, the roughened layer according to the present application is less likely to cause so-called powder falling during handling and the like, and can maintain a fine uneven structure on the surface. Accordingly, handling can be facilitated even when a double-side roughened copper foil is used.
キャリア箔付銅箔の形態: 本件出願に係るキャリア箔付銅箔の場合、上述の銅箔に適用した概念の全てを適用することが可能である。よって、相違する部分に関してのみ詳細に説明する。 Form of copper foil with carrier foil: In the case of copper foil with carrier foil according to the present application, it is possible to apply all of the concepts applied to the copper foil described above. Therefore, only different parts will be described in detail.
 本件出願に係るキャリア箔付銅箔は、キャリア箔/接合界面層/銅箔層の層構成を備えるキャリア箔付銅箔であって、当該キャリア箔の外表面及び当該銅箔層の外表面の内の少なくとも銅箔層の外表面に、銅複合化合物からなる最大長さが500nm以下のサイズの針状又は板状の凸状部より形成された微細凹凸構造を有する粗化処理層を備え、当該粗化処理層の表面にシランカップリング剤処理層を設けたことを特徴とする。ここで、本件出願に係るキャリア箔付銅箔においても、粗化処理層が設けられた側の面を粗化処理面と称する。また、本件出願に係るキャリア箔付銅箔は、「キャリア箔の外表面及び銅箔層の外表面の双方の表面が粗化処理面である場合」も含まれる。ここで、念のために述べておくが、「キャリア箔の外表面」とは、キャリア箔付銅箔を構成するキャリア箔の表面に露出した面のことであり、「銅箔層の外表面」とは、キャリア箔付銅箔を構成する銅箔層の表面に露出した面のことである。 The copper foil with carrier foil according to the present application is a copper foil with carrier foil having a layer configuration of carrier foil / bonding interface layer / copper foil layer, and the outer surface of the carrier foil and the outer surface of the copper foil layer. A roughening treatment layer having a fine concavo-convex structure formed from needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound on the outer surface of at least the copper foil layer inside, A silane coupling agent treatment layer is provided on the surface of the roughening treatment layer. Here, also in the copper foil with carrier foil according to the present application, the surface on which the roughening treatment layer is provided is referred to as a roughening treatment surface. The copper foil with carrier foil according to the present application includes “when both the outer surface of the carrier foil and the outer surface of the copper foil layer are roughened surfaces”. Here, it should be noted that “the outer surface of the carrier foil” is a surface exposed on the surface of the carrier foil constituting the copper foil with the carrier foil, and “the outer surface of the copper foil layer”. "Is the surface exposed on the surface of the copper foil layer constituting the copper foil with carrier foil.
 ここで言うキャリア箔に関して、特に材質の限定はない。キャリア箔として、銅箔(ここでは、圧延銅箔、電解銅箔等を含む概念であり、その製造方法は問わない。)、表面が銅でコーティングされた樹脂箔等、銅成分が表面に存在する箔である限り使用可能である。コスト的観点から判断すると、銅箔の使用が好ましい。また、キャリア箔としての厚さについても、特に限定はない。工業的視点から、箔としての概念は、一般に200μm厚以下のものを箔と称しており、この概念を用いれば足りる。 There is no particular limitation on the material for the carrier foil referred to here. As a carrier foil, copper foil (here, a concept including rolled copper foil, electrolytic copper foil, etc., regardless of its production method), and copper components such as resin foil coated with copper on the surface are present on the surface. As long as it is a foil to be used, it can be used. Judging from the viewpoint of cost, it is preferable to use copper foil. Moreover, there is no limitation in particular also about the thickness as carrier foil. From the industrial point of view, the concept as a foil generally refers to a foil having a thickness of 200 μm or less, and it is sufficient to use this concept.
 次に、接合界面層に関しては、キャリア箔を引き剥がすことの可能なピーラブルタイプの製品とできるものであれば、特段の限定は無く、接合界面層に要求される特性を満足する限り、無機剤から構成される無機接合界面層、有機剤から構成される有機接合界面層のいずれも用いることができる。無機接合界面層を構成する無機剤としては、例えば、クロム、ニッケル、モリブデン、タンタル、バナジウム、タングステン、コバルト及びこれらの酸化物から選ばれる1種又は2種以上を混合して用いることができる。また、有機剤から構成される有機接合界面層としては、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸の中から選択される1種又は2種以上からなるものを用いることができる。具体的には、窒素含有有機化合物としては、置換基を有するトリアゾール化合物である1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等を用いることが好ましい。硫黄含有有機化合物には、メルカプトベンゾチアゾール、チオシアヌル酸及び2-ベンズイミダゾールチオール等を用いることが好ましい。カルボン酸は、特にモノカルボン酸を用いることが好ましく、中でもオレイン酸、リノール酸及びリノレイン酸等を用いることが好ましい。本件出願においては、無機接合界面層及び有機接合界面層のいずれも好ましく用いることができるが、絶縁樹脂基材との積層時において熱が負荷された場合などにもキャリア箔の適正な引き剥がし強さを安定的に確保できるという観点から、有機接合界面層を用いることがより好ましい。 Next, with respect to the bonding interface layer, there is no particular limitation as long as it can be a peelable type product from which the carrier foil can be peeled off, as long as the characteristics required for the bonding interface layer are satisfied. Either an inorganic bonding interface layer composed of an agent or an organic bonding interface layer composed of an organic agent can be used. As an inorganic agent which comprises an inorganic joining interface layer, 1 type, or 2 or more types chosen from chromium, nickel, molybdenum, a tantalum, vanadium, tungsten, cobalt, and these oxides can be mixed and used, for example. Moreover, as an organic joining interface layer comprised from an organic agent, what consists of 1 type (s) or 2 or more types selected from a nitrogen containing organic compound, a sulfur containing organic compound, and carboxylic acid can be used. Specifically, examples of the nitrogen-containing organic compound include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, which are triazole compounds having a substituent, and 1H. It is preferable to use -1,2,4-triazole, 3-amino-1H-1,2,4-triazole and the like. For the sulfur-containing organic compound, it is preferable to use mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like. As the carboxylic acid, it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid, or the like. In the present application, both of the inorganic bonding interface layer and the organic bonding interface layer can be preferably used. However, when the heat is applied at the time of lamination with the insulating resin base material, the carrier foil has an appropriate peeling strength. From the viewpoint of ensuring the thickness stably, it is more preferable to use an organic bonding interface layer.
 この有機剤による接合界面層の形成方法は、上述した有機剤を溶媒に溶解させ、その溶液中にキャリア箔を浸漬させるか、接合界面層を形成しようとする面に対するシャワーリング、噴霧法、滴下法及び電着法等を用いて行うことができ、特に限定した手法を採用する必要性はない。このときの溶媒中の有機剤の濃度は、上述した有機剤の全てにおいて、濃度0.01g/L~10g/L、液温20~60℃の範囲が好ましい。また、有機接合界面層を形成した後、接合界面層の耐熱性等を向上するために、当該有機接合界面層の表面にNi、Co等の補助金属層を形成しても良い。 The method for forming the bonding interface layer with this organic agent is to dissolve the above-mentioned organic agent in a solvent and immerse the carrier foil in the solution, or to perform showering, spraying, dripping on the surface on which the bonding interface layer is to be formed. There is no need to employ a particularly limited method. At this time, the concentration of the organic agent in the solvent is preferably in the range of 0.01 g / L to 10 g / L and the liquid temperature of 20 to 60 ° C. in all the organic agents described above. Further, after the organic bonding interface layer is formed, an auxiliary metal layer such as Ni or Co may be formed on the surface of the organic bonding interface layer in order to improve the heat resistance of the bonding interface layer.
 そして、銅箔層は、12μm以下の極薄銅箔といわれる銅箔のみならず、12μmより厚い銅箔で形成された層を含むものとして記載している。12μm以上の厚さの銅箔層の場合には、キャリア箔を表面の汚染防止として利用される場合があるからである。 The copper foil layer is described as including not only a copper foil called an ultrathin copper foil of 12 μm or less but also a layer formed of a copper foil thicker than 12 μm. This is because in the case of a copper foil layer having a thickness of 12 μm or more, the carrier foil may be used to prevent surface contamination.
 以上に述べてきたキャリア箔付銅箔の銅箔層の表面に、上述の銅箔の説明で述べた粗化処理層及びシランカップリング剤処理層を設けたものが、本件出願に係るキャリア箔付銅箔である。すなわち、上記銅箔層の表面に粗化処理(酸化処理と還元処理)、シランカップリング剤処理を施したものが本件出願に係るキャリア箔付銅箔である。よって、ここでの重複した説明は省略する。 The carrier foil according to the present application is provided with the roughening treatment layer and the silane coupling agent treatment layer described in the description of the copper foil on the surface of the copper foil layer of the copper foil with carrier foil described above. It is a copper foil. That is, the copper foil with carrier foil according to the present application is obtained by subjecting the surface of the copper foil layer to roughening treatment (oxidation treatment and reduction treatment) and silane coupling agent treatment. Therefore, the duplicate description here is omitted.
銅張積層板の形態: 本件出願に係る銅張積層板は、上述の粗化処理層を備える銅箔又はキャリア箔付銅箔を用いて得られることを特徴とする。このときの銅張積層板は、本件出願に係る銅箔又はキャリア箔付銅箔を使用して得られるものであれば、使用した絶縁樹脂基材の構成成分、厚さ、張り合わせ方法等に関して、特段の限定は無い。また、ここでいう銅張積層板は、リジッドタイプ、フレキシブルタイプの双方を含む。なお、厳密に言えば、キャリア箔付銅箔の場合、キャリア箔付銅箔と絶縁樹脂基材とを張り合わせた後に、キャリア箔を除去することで、プリント配線板製造材料としての銅張積層板が得られる。 Form of copper-clad laminate: The copper-clad laminate according to the present application is obtained using a copper foil or a copper foil with a carrier foil provided with the above-mentioned roughening treatment layer. If the copper clad laminate at this time is obtained using a copper foil or a copper foil with a carrier foil according to the present application, the constituent components of the used insulating resin base material, the thickness, the laminating method, etc. There is no special limitation. Moreover, the copper clad laminated board here contains both a rigid type and a flexible type. Strictly speaking, in the case of a copper foil with a carrier foil, a copper clad laminate as a printed wiring board manufacturing material is obtained by removing the carrier foil after the copper foil with a carrier foil and an insulating resin base material are bonded together. Is obtained.
 実施例1では、以下 に記載した組成の銅電解液を用い、陽極にDSA、陰極(表面を2000番の研磨紙で研磨したチタン板電極)を用い、液温50℃、電流密度60A/dm2の条件で電解して、18μm厚さの電解銅箔を得た。得られた電解銅箔の析出面の表面粗さ(Rz)は0.2μm、光沢度(Gs60°)は600であった。なお、光沢度の測定及び表面粗度の測定は、以下のとおりである。 In Example 1, a copper electrolyte solution having the composition described in the following is used, DSA is used as an anode, and a cathode (a titanium plate electrode whose surface is polished with No. 2000 polishing paper), a liquid temperature is 50 ° C., and a current density is 60 A / dm 2. The electrolytic copper foil having a thickness of 18 μm was obtained. The surface roughness (Rz) of the deposited surface of the obtained electrolytic copper foil was 0.2 μm, and the glossiness (Gs60 °) was 600. In addition, the measurement of glossiness and the measurement of surface roughness are as follows.
〔銅電解液組成〕
銅濃度                      : 80g/L
フリー硫酸濃度                  : 140g/L
ビス(3-スルホプロピル)ジスルフィド濃度    : 5mg/L
ジアリルジメチルアンモニウムクロライド重合体濃度 : 30mg/L
塩素濃度                     : 25mg/L
[Copper electrolyte composition]
Copper concentration: 80 g / L
Free sulfuric acid concentration: 140 g / L
Bis (3-sulfopropyl) disulfide concentration: 5 mg / L
Diallyldimethylammonium chloride polymer concentration: 30 mg / L
Chlorine concentration: 25mg / L
〔光沢度の測定〕
 日本電色工業株式会社製光沢計PG-1M型を用い、光沢度の測定方法であるJIS Z 8741-1997に準拠して、光沢度の測定を行った。
[Glossiness measurement]
Glossiness was measured using a gloss meter PG-1M manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS Z 8741-1997, which is a glossiness measurement method.
〔粗度の測定〕
 株式会社キーエンス レーザーマイクロスコープ VK-X100を用い、表面粗度の測定方法であるJIS B 0601-2001に準拠して、測定範囲:150μm角として、表面粗度の測定を行った。
(Measurement of roughness)
Using a Keyence Laser Microscope VK-X100, the surface roughness was measured in accordance with JIS B 0601-2001, which is a surface roughness measurement method, with a measurement range of 150 μm square.
予備処理: 上述のように製造した電解銅箔を、水酸化ナトリウム水溶液に浸漬して、アルカリ脱脂処理を行い、水洗を行った。そして、このアルカリ脱脂処理の終了した電解銅箔を、硫酸濃度が5質量%の硫酸系溶液に1分間浸漬した後、水洗を行った。 Pretreatment: The electrolytic copper foil produced as described above was immersed in an aqueous sodium hydroxide solution, subjected to alkaline degreasing treatment, and washed with water. And after immersing the electrolytic copper foil which this alkali degreasing process complete | finished in the sulfuric acid type solution whose sulfuric acid concentration is 5 mass% for 1 minute, it washed with water.
粗化処理: 前記予備処理の終了した銅箔に対して、酸化処理を施した。酸化処理では、当該電解銅箔を、液温70℃、pH12、亜塩素酸濃度150g/L、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン濃度10g/Lを含む水酸化ナトリウム溶液に2分間浸漬して電解銅箔の表面に銅化合物からなる微細凹凸構造を形成した。このときの銅化合物の主成分は酸化銅であると考えられる。 Roughening treatment: The copper foil that had been subjected to the preliminary treatment was subjected to an oxidation treatment. In the oxidation treatment, the electrolytic copper foil is treated with sodium hydroxide containing a liquid temperature of 70 ° C., pH 12, chlorous acid concentration of 150 g / L, and N-2- (aminoethyl) -3-aminopropyltrimethoxysilane concentration of 10 g / L. It was immersed in the solution for 2 minutes to form a fine concavo-convex structure made of a copper compound on the surface of the electrolytic copper foil. The main component of the copper compound at this time is considered to be copper oxide.
 次に、酸化処理の終了した電解銅箔に対して、還元処理を施した。還元処理では、酸化処理の終了した電解銅箔を、炭酸ナトリウムと水酸化ナトリウムを用いてpH=12に調整したジメチルアミンボラン濃度20g/Lの水溶液(室温)中に1分間浸漬して還元処理を行い、その後、水洗し、乾燥した。これらの工程により、電解銅箔の表面に上記酸化銅の一部を還元して亜酸化銅にすることにより、酸化銅及び亜酸化銅を含む銅複合化合物からなる微細凹凸構造を有する粗化処理層を形成した。 Next, a reduction treatment was performed on the electrolytic copper foil that had been subjected to the oxidation treatment. In the reduction treatment, the electrolytic copper foil after the oxidation treatment is immersed in an aqueous solution (room temperature) having a dimethylamine borane concentration of 20 g / L adjusted to pH = 12 using sodium carbonate and sodium hydroxide for 1 minute. And then washed with water and dried. By these steps, a roughening treatment having a fine concavo-convex structure made of a copper composite compound containing copper oxide and cuprous oxide is obtained by reducing a part of the copper oxide to cuprous oxide on the surface of the electrolytic copper foil. A layer was formed.
シランカップリング剤処理: 還元処理が完了すると、水洗後、シランカップリング剤処理液(イオン交換水を溶媒として、γ-グリシドキシプロピルトリメトキシシランを5g/L濃度含有させた水溶液)を、シャワーリング法で上記粗化処理後の電解銅箔の粗化処理面に吹き付け、シランカップリング剤の吸着を行った。そして、シランカップリングの吸着が終了すると、電熱器を用いて雰囲気温度120℃とした雰囲気中で、表面の水分を蒸発させ、当該粗化処理面にある-OH基とシランカップリング剤との縮合反応を促進させ、粗化処理層の表面にシランカップリング剤処理層を備えた本件出願に係る銅箔を得た。 Silane coupling agent treatment: When the reduction treatment is completed, after washing with water, a silane coupling agent treatment solution (an aqueous solution containing 5 g / L of γ-glycidoxypropyltrimethoxysilane using ion-exchanged water as a solvent) It sprayed on the roughening surface of the electrolytic copper foil after the said roughening process by the showering method, and adsorption | suction of the silane coupling agent was performed. When the adsorption of the silane coupling is completed, the moisture on the surface is evaporated in an atmosphere at 120 ° C. using an electric heater, and the —OH group and the silane coupling agent on the roughened surface are The condensation reaction was promoted to obtain a copper foil according to the present application having a silane coupling agent treatment layer on the surface of the roughening treatment layer.
<銅箔の評価>
粗化処理面の形状観察結果: この実施例で得られた銅箔の走査型電子顕微鏡観察像を図1に示す。
<Evaluation of copper foil>
Shape observation result of roughened surface: Scanning electron microscope image of the copper foil obtained in this example is shown in FIG.
粗化処理面の定性分析結果: この粗化処理面をXPSを用いて定性分析をすると、「酸化銅」、「亜酸化銅」の存在が明瞭に確認され、Cu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対する、Cu(I)のピークの占有面積率は95%であった。また、この定性分析の結果、粗化処理面には「-COO基」の存在も明瞭に確認された。 Result of qualitative analysis of roughened surface: Qualitative analysis of this roughened surface using XPS clearly confirmed the presence of “copper oxide” and “cuprous oxide”, and the peak area of Cu (I) The occupied area ratio of the peak of Cu (I) with respect to the total area with the peak area of Cu (II) was 95%. Further, as a result of this qualitative analysis, the presence of “—COO group” was clearly confirmed on the roughened surface.
粗化処理面の明度L: この実施例で得られた銅箔の明度L の値は10であった。 Lightness L * of the roughened surface: The value of lightness L * of the copper foil obtained in this example was 10.
耐吸湿劣化性能評価結果: 実施例1の銅箔と、100μm厚さの絶縁樹脂基材(パナソニック株式会社製 MEGTRON4)とを用い、真空プレス機を使用して、プレス圧を2.9MPa、温度190℃、プレス時間90分の条件で張り合わせて銅張積層板を製造した。次に、この銅張積層板を用いて、エッチング法で、3.0mm幅の引き剥がし強さ測定用直線回路を備える試験基板を作製した。そして、この試験基板を用いて、常態引き剥がし強さ及び吸湿処理後の引き剥がし強さをそれぞれ測定した。但し、吸湿処理は、沸騰させたイオン交換水中でこの試験基板を2時間煮沸処理することにより行った。また、吸湿処理後、乾燥させた試験基板について引き剥がし強さを測定し、このときの値を吸湿処理後の引き剥がし強さとした。これらの測定結果に基づき、[耐湿性劣化率(%)]=100×{[常態引き剥がし強さ]-[吸湿処理後の引き剥がし強さ]}/[常態引き剥がし強さ]の計算式に従って、吸湿劣化率を算出した。その結果、実施例1の電解銅箔の[常態引き剥がし強さ]=0.68kgf/cm、[吸湿処理後の引き剥がし強さ]=0.58kgf/cm、[耐湿性劣化率(%)]=14.8%であった。 Hygroscopic deterioration performance evaluation results: Using the copper foil of Example 1 and a 100 μm thick insulating resin substrate (MEGTRON4 manufactured by Panasonic Corporation), using a vacuum press machine, the pressing pressure is 2.9 MPa, the temperature Bonding was performed under the conditions of 190 ° C. and a press time of 90 minutes to produce a copper clad laminate. Next, using this copper-clad laminate, a test substrate having a 3.0 mm width peel strength measuring linear circuit was produced by an etching method. And using this test board | substrate, the normal state peeling strength and the peeling strength after a moisture absorption process were measured, respectively. However, the moisture absorption treatment was performed by boiling the test substrate in boiling ion exchange water for 2 hours. Further, the peel strength of the dried test substrate after the moisture absorption treatment was measured, and the value at this time was defined as the peel strength after the moisture absorption treatment. Based on these measurement results, [moisture resistance degradation rate (%)] = 100 × {[normal peel strength] − [peel strength after moisture absorption]} / [normal peel strength] Thus, the moisture absorption deterioration rate was calculated. As a result, [normal state peeling strength] = 0.68 kgf / cm, [peeling strength after moisture absorption treatment] = 0.58 kgf / cm, [moisture resistance deterioration rate (%)] of the electrolytic copper foil of Example 1 ] = 14.8%.
 この実施例2では、実施例1で製造した電解銅箔(未処理銅箔)をキャリア箔とするキャリア箔付銅箔を以下の手順で製造した。 In Example 2, a copper foil with a carrier foil using the electrolytic copper foil (untreated copper foil) produced in Example 1 as a carrier foil was produced according to the following procedure.
 まず、キャリア箔の析出面側に、有機剤層を接合界面層として形成した。具体的には、硫酸濃度150g/L、銅濃度10g/L、CBTA濃度800ppm、液温30℃の有機材含有希硫酸水溶液に対して、キャリア箔を30秒間浸漬した。これにより、キャリア箔の表面に付着した汚染成分が酸洗浄されると共に、キャリア箔の表面にCBTAが吸着され、CBTAを主成分とする有機剤層を形成した。 First, an organic agent layer was formed as a bonding interface layer on the deposition surface side of the carrier foil. Specifically, the carrier foil was immersed for 30 seconds in an organic material-containing dilute sulfuric acid aqueous solution having a sulfuric acid concentration of 150 g / L, a copper concentration of 10 g / L, a CBTA concentration of 800 ppm, and a liquid temperature of 30 ° C. Thereby, the contaminating component adhering to the surface of the carrier foil was acid-washed, and CBTA was adsorbed on the surface of the carrier foil to form an organic agent layer mainly composed of CBTA.
 次に、上記接合界面層上にニッケル層を耐熱金属層として形成した。具体的には、硫酸ニッケル(NiSO・6HO)濃度330g/L、塩化ニッケル(NiCl・6HO)濃度45g/L、ホウ酸濃度35g/L、pH3のワット浴を用いて、液温45℃、電流密度2.5A/dmの電解条件で電解して、換算厚さが0.01μmのニッケル層を上記接合界面層上に形成した。 Next, a nickel layer was formed as a refractory metal layer on the bonding interface layer. Specifically, using a Watts bath having a nickel sulfate (NiSO 4 · 6H 2 O) concentration of 330 g / L, a nickel chloride (NiCl 2 · 6H 2 O) concentration of 45 g / L, a boric acid concentration of 35 g / L, and a pH of 3, Electrolysis was performed under electrolytic conditions of a liquid temperature of 45 ° C. and a current density of 2.5 A / dm 2 to form a nickel layer having a converted thickness of 0.01 μm on the bonding interface layer.
 そして、上記耐熱金属層上に電解銅箔層を形成した。具体的には、銅濃度65g/L、硫酸濃度150g/Lの銅電解溶液を用い、液温45℃、電流密度15A/dmの電解条件で電解して、耐熱金属層上に厚さが2μmの電解銅箔層を形成した。このとき、この電解銅箔層の析出面側の表面粗さ(Rz)は0.2μm、光沢度[Gs(60°)]は600であった。このようにして形成したキャリア箔付電解銅箔の電解銅箔層の表面に対して、以下の手順で表面処理を施した。 And the electrolytic copper foil layer was formed on the said heat-resistant metal layer. Specifically, using a copper electrolytic solution having a copper concentration of 65 g / L and a sulfuric acid concentration of 150 g / L, electrolysis is performed under electrolytic conditions of a liquid temperature of 45 ° C. and a current density of 15 A / dm 2 , and the thickness is formed on the heat-resistant metal layer. A 2 μm electrolytic copper foil layer was formed. At this time, the surface roughness (Rz) on the deposition surface side of this electrolytic copper foil layer was 0.2 μm, and the glossiness [Gs (60 °)] was 600. The surface treatment was performed in the following procedure on the surface of the electrolytic copper foil layer of the electrolytic copper foil with carrier foil formed as described above.
予備処理: 当該キャリア箔付銅箔を、実施例1と同様にしてアルカリ脱脂処理及び硫酸処理を行い、水洗した。 Pretreatment: The copper foil with carrier foil was subjected to alkali degreasing treatment and sulfuric acid treatment in the same manner as in Example 1 and washed with water.
粗化処理: 前記予備処理の終了したキャリア箔付銅箔の電解銅箔層に対して、実施例1と同様の方法でその表面を酸化処理し、電解銅箔層の表面に銅化合物からなる微細凹凸構造を形成した。次に、酸化処理の終了したキャリア箔付銅箔の電解銅箔層の銅複合化合物を形成した表面を、実施例1と同様に還元処理を施し、電解銅箔層の表面に酸化銅及び亜酸化銅を含む銅複合化合物からなる微細凹凸構造を有する粗化処理層を形成した。 Roughening treatment: The surface of the electrolytic copper foil layer is made of a copper compound by oxidizing the surface of the electrolytic copper foil layer of the copper foil with carrier foil after the preliminary treatment in the same manner as in Example 1. A fine relief structure was formed. Next, the surface on which the copper composite compound of the electrolytic copper foil layer of the copper foil with carrier foil after the oxidation treatment was formed was subjected to reduction treatment in the same manner as in Example 1, and the surface of the electrolytic copper foil layer was subjected to copper oxide and suboxide. A roughening treatment layer having a fine concavo-convex structure made of a copper composite compound containing copper oxide was formed.
シランカップリング剤処理: 上述の還元処理が完了すると、実施例1と同様の手法でシランカップリング剤処理を施し、本件出願に係るキャリア箔付銅箔を得た。 Silane coupling agent treatment: When the above reduction treatment was completed, a silane coupling agent treatment was performed in the same manner as in Example 1 to obtain a copper foil with a carrier foil according to the present application.
<キャリア箔付銅箔の評価>
粗化処理面の形状観察結果: この実施例2で得られたキャリア箔付銅箔の電解銅箔層の粗化処理面の走査型電子顕微鏡観察像は、図1に示したと同様の形態を備えていた。
<Evaluation of copper foil with carrier foil>
Results of observation of shape of roughened surface: Scanning electron microscope image of the roughened surface of the electrolytic copper foil layer of the copper foil with carrier foil obtained in Example 2 has the same form as shown in FIG. I was prepared.
粗化処理面の定性分析結果: このキャリア箔付銅箔の電解銅箔層及びキャリア箔の粗化処理面をXPSを用いて定性分析をすると、「酸化銅」、「亜酸化銅」の存在が明瞭に確認され、Cu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対する、Cu(I)のピークの占有面積率は92%であった。また、この定性分析の結果、粗化処理面には「-COO基」の存在も明瞭に確認された。 Results of qualitative analysis of the roughened surface: Qualitative analysis of the copper foil layer with carrier foil and the roughened surface of the carrier foil using XPS reveals the presence of “copper oxide” and “cuprous oxide”. Was clearly confirmed, and the occupied area ratio of the peak of Cu (I) with respect to the total area of the peak area of Cu (I) and the peak area of Cu (II) was 92%. Further, as a result of this qualitative analysis, the presence of “—COO group” was clearly confirmed on the roughened surface.
粗化処理面の明度L: この実施例2で得られたキャリア箔付銅箔の電解銅箔層の粗化処理面の明度L の値は18であった。 Lightness L * of roughened surface: The value of lightness L * of the roughened surface of the electrolytic copper foil layer of the copper foil with carrier foil obtained in Example 2 was 18.
耐吸湿劣化性能評価結果: 実施例2のキャリア箔付銅箔の電解銅箔層の粗化処理面と、100μm厚さの絶縁樹脂基材(三菱瓦斯化学株式会社製 GHPL-830NS)とを、真空プレス機を使用して、プレス圧を3.9MPa、温度を220℃、プレス時間が90分の条件で張り合わせて銅張積層板を製造した。そして、この銅張積層板の表面にあるキャリア箔を除去して、露出した電解銅箔層を18μm厚さになるように電解銅めっきを行い、エッチング法により、引き剥がし強さ測定用の0.4mm幅の直線回路を備える試験基板を作製した。そして、この試験基板を用いて、常態引き剥がし強さ及びPCT吸湿処理後の引き剥がし強さを測定した。但し、PCT吸湿処理は、121℃×2気圧の高温高圧の水蒸気雰囲気中にこの試験基板を24時間保持(PCT試験)することにより行った。また、PCT処理後、乾燥させた試験基板について引き剥がし強さを測定し、このときの値をPCT吸湿処理後の引き剥がし強さとした。これらの測定結果に基づき、[耐PCT吸湿劣化率(%)]=100×{[常態引き剥がし強さ]-[PCT吸湿処理後の引き剥がし強さ]}/[常態引き剥がし強さ]の計算式に従って、耐PCT吸湿劣化率を算出した。その結果、実施例1の電解銅箔の[常態引き剥がし強さ]=0.75kgf/cm、[吸湿処理後の引き剥がし強さ]=0.68kgf/cm、[耐湿性劣化率(%)]=9.3%であった。 Moisture absorption degradation performance evaluation results: The roughened surface of the electrolytic copper foil layer of the copper foil with carrier foil of Example 2 and an insulating resin base material (GHPL-830NS, manufactured by Mitsubishi Gas Chemical Co., Ltd.) having a thickness of 100 μm, Using a vacuum press machine, a copper-clad laminate was manufactured by bonding together under the conditions of a pressing pressure of 3.9 MPa, a temperature of 220 ° C., and a pressing time of 90 minutes. Then, the carrier foil on the surface of the copper-clad laminate is removed, and the exposed electrolytic copper foil layer is subjected to electrolytic copper plating so as to have a thickness of 18 μm, and an etching method is used to measure the peel strength. A test substrate with a 4 mm wide linear circuit was produced. Then, using this test substrate, the normal peel strength and the peel strength after the PCT moisture absorption treatment were measured. However, the PCT moisture absorption treatment was performed by holding the test substrate for 24 hours (PCT test) in a high-temperature and high-pressure steam atmosphere of 121 ° C. × 2 atm. Further, the peel strength of the dried test substrate after the PCT treatment was measured, and the value at this time was defined as the peel strength after the PCT moisture absorption treatment. Based on these measurement results, [PCT moisture absorption deterioration rate (%)] = 100 × {[normal peel strength] − [peel strength after PCT moisture absorption]} / [normal peel strength] The anti-PCT moisture absorption deterioration rate was calculated according to the calculation formula. As a result, [normal peel strength] = 0.75 kgf / cm, [peel strength after moisture absorption treatment] = 0.68 kgf / cm, [moisture resistance deterioration rate (%)] of the electrolytic copper foil of Example 1 ] = 9.3%.
 実施例1で製造した電解銅箔(未処理電解銅箔)を用いて、以下の手順で表面処理を施した。予備処理、粗化処理において行う酸化処理(酸化処理時間:2分間)及び粗化処理後のシランカップリング剤処理に関しては、実施例1と同じである。そして、この実施例3では、還元処理に用いる水溶液のpH及びジメチルアミンボラン濃度を下記のように変化させて、これらの影響を検証した。 Using the electrolytic copper foil (untreated electrolytic copper foil) produced in Example 1, surface treatment was performed in the following procedure. The oxidation treatment (oxidation treatment time: 2 minutes) performed in the preliminary treatment and the roughening treatment and the silane coupling agent treatment after the roughening treatment are the same as those in Example 1. And in this Example 3, the pH and dimethylamine borane concentration of the aqueous solution used for the reduction treatment were changed as follows, and these effects were verified.
還元処理: 酸化処理の終了した電解銅箔を、炭酸ナトリウムと水酸化ナトリウムを用いてpH=11,12,13の3水準とし、ジメチルアミンボラン濃度が5g/L、10g/L、20g/Lの3水準を組合わせた9種類の各水溶液(室温)中に1分間浸漬して還元処理を行い、水洗し、乾燥して、本件出願に係る銅箔を得た。還元処理に用いる水溶液がpH=11のときに得られた銅箔を「実施試料11-a,実施試料11-b,実施試料11-c」とした。また、還元処理に用いる水溶液がpH=12のときに得られた銅箔を「実施試料12-a,実施試料12-b,実施試料12-c」とした。そして、還元処理に用いる水溶液がpH=13のときに得られた銅箔を「実施試料13-a,実施試料13-b,実施試料13-c」とした。そして、各実施試料を示す際の「-a」表示が、還元処理に用いる水溶液中のジメチルアミンボラン濃度が5g/Lの場合である。そして、「-b」表示が、還元処理に用いる水溶液中のジメチルアミンボラン濃度が10g/Lの場合である。「-c」表示が、還元処理に用いる水溶液中のジメチルアミンボラン濃度が20g/Lの場合である。 Reduction treatment: The electrolytic copper foil that has undergone the oxidation treatment is adjusted to three levels of pH = 11, 12, and 13 using sodium carbonate and sodium hydroxide, and the dimethylamine borane concentrations are 5 g / L, 10 g / L, and 20 g / L. The copper foil which concerns on this application was obtained by immersing for 1 minute in each of nine types of aqueous solution (room temperature) which combined these three levels, performing a reduction process, washing with water, and drying. The copper foils obtained when the aqueous solution used for the reduction treatment had pH = 11 were designated as “Execution Sample 11-a, Implementation Sample 11-b, Implementation Sample 11-c”. Further, the copper foils obtained when the aqueous solution used for the reduction treatment had a pH of 12 were designated as “Execution Sample 12-a, Implementation Sample 12-b, and Implementation Sample 12-c”. The copper foils obtained when the aqueous solution used for the reduction treatment had pH = 13 were designated as “Example 13-a, Example 13-b, Example 13-c”. In addition, the “−a” display when indicating each of the samples is when the dimethylamine borane concentration in the aqueous solution used for the reduction treatment is 5 g / L. The “−b” display is when the dimethylamine borane concentration in the aqueous solution used for the reduction treatment is 10 g / L. “−c” is indicated when the dimethylamine borane concentration in the aqueous solution used for the reduction treatment is 20 g / L.
 この実施例3で得られた全ての実施試料の走査型電子顕微鏡観察像は、図1に示したと同様の形態であった。そして、この各実施試料の粗化処理層の表面にある「銅複合化合物からなる微細凹凸」を、XPSを用いて状態分析すると、「酸化銅」、「亜酸化銅」の存在が明瞭に確認され、Cu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対する、Cu(I)のピークの占有面積率は表3に示す。また、この定性分析の結果、粗化処理面には「-COO基」の存在も明瞭に確認された。さらに、実施例1と同様にして、各試料を用いて試験基板を作製した。そして、この試験基板を用いて実施例1と同様にして常態引き剥がし強さ、吸湿処理後の引き剥がし強さを測定した。これらの結果を併せて表3に示す。 The scanning electron microscope observation images of all the working samples obtained in Example 3 were in the same form as shown in FIG. Then, when the state of the “fine irregularities made of a copper composite compound” on the surface of the roughened layer of each of the implementation samples is analyzed using XPS, the presence of “copper oxide” and “cuprous oxide” is clearly confirmed. Table 3 shows the occupation area ratio of the peak of Cu (I) with respect to the total area of the peak area of Cu (I) and the peak area of Cu (II). Further, as a result of this qualitative analysis, the presence of “—COO group” was clearly confirmed on the roughened surface. Further, in the same manner as in Example 1, a test substrate was produced using each sample. Then, using this test substrate, the normal peel strength and the peel strength after moisture absorption treatment were measured in the same manner as in Example 1. These results are shown together in Table 3.
比較例Comparative example
[比較例1]
 比較例1の銅箔は、実施例1の銅箔において、シランカップリング剤処理を省略したものであり、実施例1に記載の銅箔と対比して、シランカップリング剤処理の有無が、耐吸湿劣化性能に与える影響を確認するためのものである。従って、シランカップリング剤処理を除いて、その他の製造条件に関しては、実施例と同様であるため、重複した説明は省略し、評価結果に関してのみ以下に述べる。
[Comparative Example 1]
The copper foil of Comparative Example 1 is obtained by omitting the silane coupling agent treatment in the copper foil of Example 1. In contrast to the copper foil described in Example 1, the presence or absence of the silane coupling agent treatment is It is for confirming the influence which it has on moisture absorption degradation performance. Therefore, except for the silane coupling agent treatment, other manufacturing conditions are the same as those in the example, and therefore, a duplicate description is omitted and only the evaluation results are described below.
<銅箔の評価>
粗化処理面の形状観察結果: この比較例1で得られた銅箔の走査型電子顕微鏡観察像は、図1に示したもので同様であった。
<Evaluation of copper foil>
Shape observation result of roughened surface: The scanning electron microscope image of the copper foil obtained in Comparative Example 1 was the same as that shown in FIG.
粗化処理面の定性分析結果: この粗化処理面をXPSを用いて定性分析をすると、「酸化銅」、「亜酸化銅」の存在が明瞭に確認され、Cu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対する、Cu(I)のピークの占有面積率は95%であった。また、この定性分析の結果、粗化処理面には「-COO基」の存在も明瞭に確認された。 Result of qualitative analysis of roughened surface: Qualitative analysis of this roughened surface using XPS clearly confirmed the presence of “copper oxide” and “cuprous oxide”, and the peak area of Cu (I) The occupied area ratio of the peak of Cu (I) with respect to the total area with the peak area of Cu (II) was 95%. Further, as a result of this qualitative analysis, the presence of “—COO group” was clearly confirmed on the roughened surface.
粗化処理面の明度L: この比較例1で得られた銅箔の明度L の値は10であった。 Lightness L * of the roughened surface: The value of the lightness L * of the copper foil obtained in Comparative Example 1 was 10.
耐吸湿劣化性能評価結果: 比較例1の銅箔を用いて、実施例1と同様にして試験基板を作製した。そして、この試験基板を用いて実施例1と同様にして常態引き剥がし強さ、吸湿処理後の引き剥がし強さを測定した。その結果、比較例1の電解銅箔の[常態引き剥がし強さ]=0.65kgf/cm、[吸湿処理後の引き剥がし強さ]=0.40kgf/cm、[耐湿性劣化率(%)]=38.6%であった。 Hygroscopic deterioration performance evaluation results: Using the copper foil of Comparative Example 1, a test substrate was produced in the same manner as in Example 1. Then, using this test substrate, the normal peel strength and the peel strength after moisture absorption treatment were measured in the same manner as in Example 1. As a result, [normal peel strength] = 0.65 kgf / cm, [peel strength after moisture absorption treatment] = 0.40 kgf / cm, [moisture resistance deterioration rate (%)] of the electrolytic copper foil of Comparative Example 1 ] = 38.6%.
[比較例2]
 比較例2のキャリア箔付銅箔は、実施例2で用いたキャリア箔付銅箔に下記の手順で粗化処理、防錆処理、シランカップリング剤処理を施したものある。ここでは、実施例2に記載のキャリア箔付銅箔と対比して、粗化処理層の相違が耐PCT吸湿劣化率に与える影響を確認するためのものである。従って、製造条件に関しては、実施例2と異なる部分に関して述べ、重複した説明は省略する。
[Comparative Example 2]
The copper foil with carrier foil of Comparative Example 2 is obtained by subjecting the copper foil with carrier foil used in Example 2 to roughening treatment, rust prevention treatment, and silane coupling agent treatment according to the following procedure. Here, in contrast to the copper foil with carrier foil described in Example 2, it is for confirming the influence of the difference in the roughening treatment layer on the PCT moisture absorption deterioration rate. Therefore, regarding the manufacturing conditions, portions different from those in the second embodiment will be described, and redundant description will be omitted.
粗化処理: 粗化処理工程では、キャリア箔付銅箔の電解銅箔層の表面に微細銅粒を析出付着させた。このとき、硫酸銅溶液(硫酸濃度100g/L、銅濃度18g/L)、液温25℃、電流密度10A/dm、通電時間が10秒のヤケメッキ条件を採用した。そして、この微細銅粒の脱落を防止するため、被せメッキとして、硫酸銅溶液(硫酸濃度150g/L、銅濃度65g/L)、液温45℃、電流密度15A/dm、通電時間が20秒の平滑メッキ条件を採用して、電解銅箔層の表面に微細銅粒子を定着させた。 Roughening treatment: In the roughening treatment step, fine copper particles were deposited on the surface of the electrolytic copper foil layer of the copper foil with carrier foil. At this time, a burn plating condition in which a copper sulfate solution (sulfuric acid concentration 100 g / L, copper concentration 18 g / L), liquid temperature 25 ° C., current density 10 A / dm 2 , and energization time 10 seconds was adopted. In order to prevent the fine copper particles from falling off, as the covering plating, a copper sulfate solution (sulfuric acid concentration 150 g / L, copper concentration 65 g / L), liquid temperature 45 ° C., current density 15 A / dm 2 , energization time 20 By adopting second smooth plating conditions, fine copper particles were fixed on the surface of the electrolytic copper foil layer.
防錆処理: ここでは粗化処理の終了したキャリア箔付銅箔の電解銅箔層の表面に、防錆元素として亜鉛を用いて防錆処理を施した。このときの防錆処理層は、硫酸亜鉛浴を用い、硫酸濃度70g/L、亜鉛濃度20g/Lの硫酸亜鉛溶液を用いて、液温40℃、電流密度15A/dm、通電時間が20秒の条件を採用して亜鉛防錆処理層を形成した。 Rust prevention treatment: Here, the surface of the electrolytic copper foil layer of the carrier foil-attached copper foil having been subjected to the roughening treatment was subjected to a rust prevention treatment using zinc as a rust prevention element. At this time, the rust prevention treatment layer uses a zinc sulfate bath, uses a zinc sulfate solution having a sulfuric acid concentration of 70 g / L and a zinc concentration of 20 g / L, a liquid temperature of 40 ° C., a current density of 15 A / dm 2 , and an energization time of 20 The zinc anticorrosive treatment layer was formed using the second condition.
 以下、実施例2と同様に、シランカップリング剤処理及び乾燥を行って、比較例2のキャリア箔付銅箔を得た。 Hereinafter, similarly to Example 2, the silane coupling agent treatment and drying were performed to obtain a copper foil with a carrier foil of Comparative Example 2.
<キャリア箔付銅箔の評価>
粗化処理面の形状観察結果: この比較例2で得られたキャリア箔付銅箔の電解銅箔層の粗化表面の走査型電子顕微鏡観察像を図4に示す。
<Evaluation of copper foil with carrier foil>
Result of Observation of Shape on Roughened Surface: A scanning electron microscope image of the roughened surface of the electrolytic copper foil layer of the copper foil with carrier foil obtained in Comparative Example 2 is shown in FIG.
粗化処理面の定性分析結果: この粗化処理面をXPSを用いて定性分析をすると、亜鉛成分が検出された一方で、「酸化銅」、「亜酸化銅」及び「-COO基」は、殆ど確認されなかった。 Result of qualitative analysis of roughened surface: Qualitative analysis of this roughened surface using XPS detected zinc components, while “copper oxide”, “cuprous oxide” and “—COO group” It was hardly confirmed.
粗化処理面の明度L: この比較例2で得られた銅箔の明度L の値は46であった。 Lightness L * of roughened surface: The value of lightness L * of the copper foil obtained in Comparative Example 2 was 46.
耐吸湿劣化性能評価結果: 比較例2の銅箔を、実施例2と同様にして、試験基板を作製した。そして、この試験基板を用いて実施例2と同様にして常態引き剥がし強さ、吸湿処理後の引き剥がし強さを測定した。その結果、比較例2の電解銅箔の[常態引き剥がし強さ]=0.59kgf/cm、[吸湿処理後の引き剥がし強さ]=0.46kgf/cm、[耐湿性劣化率(%)]=22.0%であった。 Hygroscopic deterioration performance evaluation results: A test board was prepared in the same manner as in Example 2 using the copper foil of Comparative Example 2. Then, using this test substrate, the normal peel strength and the peel strength after moisture absorption treatment were measured in the same manner as in Example 2. As a result, [normal state peeling strength] = 0.59 kgf / cm, [peeling strength after moisture absorption treatment] = 0.46 kgf / cm, [moisture resistance deterioration rate (%)] of the electrolytic copper foil of Comparative Example 2 ] = 22.0%.
[比較例3]
 比較例3では、実施例1と同じ電解銅箔を用いて、実施例1と同じ予備処理を施し、実施例の粗化処理に代えて、黒化処理及び還元処理を施し比較試料3を得た。以下、黒化処理及び還元処理について説明する。
[Comparative Example 3]
In Comparative Example 3, the same pretreatment as in Example 1 was performed using the same electrolytic copper foil as in Example 1, and instead of the roughening process in Example, blackening treatment and reduction treatment were performed to obtain Comparative Sample 3. It was. Hereinafter, the blackening process and the reduction process will be described.
黒化処理: 前記予備処理の終了した電解銅箔を、ローム・アンド・ハース電子材料株式会社製の酸化処理液である「PRO BOND 80A OXIDE SOLUTION」を10vol%、「PRO BOND 80B OXIDE SOLUTION」を20vol%含有する液温85℃の水溶液に5分間浸漬して、表面に一般的な黒化処理を形成した。 Blackening treatment: 10% by volume of “PRO BOND 80A OXIDE SOLUTION”, which is an oxidation treatment solution manufactured by Rohm & Haas Electronic Materials Co., Ltd. A general blackening treatment was formed on the surface by immersing in an aqueous solution containing 20 vol% and having a liquid temperature of 85 ° C. for 5 minutes.
還元処理: 酸化処理の終了した電解銅箔を、ローム・アンド・ハース電子材料株式会社製の還元処理液である「CIRCUPOSIT PB OXIDE CONVERTER 60C」を6.7vol%、「CUPOSIT Z」を1.5vol%含有する液温35℃の水溶液に5分間浸漬して、水洗し、乾燥して、図5に示す還元黒化処理層を備える比較試料を得た。 Reduction treatment: The oxidized copper foil after the oxidation treatment is reduced to 6.7 vol% for “CIRCUPOSIT PB OXIDE CONVERTER 60C”, which is a reduction treatment solution manufactured by Rohm & Haas Electronic Materials Co., Ltd. 5% immersion in an aqueous solution having a liquid temperature of 35 ° C., washed with water, and dried to obtain a comparative sample having a reduction blackening treatment layer shown in FIG.
 この比較例で得られた表面処理銅箔(比較試料)の粗化処理層の表面をXPSを用いて状態分析すると、「Cu(0)」の存在が確認された。また、「Cu(II)」及び「Cu(I)」の存在も確認され、Cu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対する、Cu(I)のピークの占有面積率は表3に示すとおりである。しかしながら、この定性分析の結果、粗化処理面には「-COO基」の存在は確認されなかった。 The state of the surface of the roughened layer of the surface-treated copper foil (comparative sample) obtained in this comparative example was analyzed using XPS, and the presence of “Cu (0)” was confirmed. In addition, the presence of “Cu (II)” and “Cu (I)” was also confirmed, and the peak of Cu (I) relative to the total area of the peak area of Cu (I) and the peak area of Cu (II) was confirmed. The occupied area ratio is as shown in Table 3. However, as a result of this qualitative analysis, the presence of “—COO group” was not confirmed on the roughened surface.
[実施例と比較例との対比]
実施例1と比較例1との対比: この実施例1と比較例1との対比は、シランカップリング剤処理の効果を確認するためのものである。実施例1と比較例1との評価結果を、以下の表1に示す。
[Contrast between Example and Comparative Example]
Comparison between Example 1 and Comparative Example 1 The comparison between Example 1 and Comparative Example 1 is for confirming the effect of the silane coupling agent treatment. The evaluation results of Example 1 and Comparative Example 1 are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1から明らかなように、比較例1の銅箔は、実施例1の銅箔のシランカップリング剤処理を省略したものであるから、「粗化処理面の形状」、「粗化処理面の定性分析」、「粗化処理面の明度L」においては、同一の評価結果を示している。そして、引き剥がし強さに関しても、「常態引き剥がし強さ」に関しては、実施例1と比較例1とに大きな差異は見られない。ところが、「吸湿処理後の引き剥がし強さ」は、比較例1の値が、実施例1の値に比べ、低くなっている。その結果、実施例1の耐湿性劣化率が14.8%であるのに対し、比較例1の耐湿性劣化率は38.6%まで低下している。よって、比較例1の銅箔は、水又は各種水溶液に多く晒されるプリント配線板製造には適さないことが明らかである。 As apparent from Table 1, since the copper foil of Comparative Example 1 is obtained by omitting the silane coupling agent treatment of the copper foil of Example 1, the “roughening treatment surface shape”, “roughening treatment” The same evaluation results are shown in “Qualitative analysis of surface” and “Lightness L * of roughened surface”. As for the peel strength, there is no significant difference between Example 1 and Comparative Example 1 with respect to “normal peel strength”. However, as for “stripping strength after moisture absorption treatment”, the value of Comparative Example 1 is lower than the value of Example 1. As a result, while the moisture resistance deterioration rate of Example 1 is 14.8%, the humidity resistance deterioration rate of Comparative Example 1 is reduced to 38.6%. Therefore, it is clear that the copper foil of Comparative Example 1 is not suitable for manufacturing a printed wiring board that is exposed to a large amount of water or various aqueous solutions.
実施例2と比較例2との対比: この実施例2と比較例2との対比は、本件出願に係るキャリア箔付銅箔が、従来の粗化処理等を施したキャリア箔付銅箔に対して、どのような優位性を発揮するかを確認するためのものである。実施例2と比較例2との評価結果を、以下の表2に示す。 Comparison between Example 2 and Comparative Example 2: The comparison between Example 2 and Comparative Example 2 is that the copper foil with carrier foil according to the present application is a copper foil with carrier foil subjected to conventional roughening treatment, etc. On the other hand, it is for confirming what superiority is exhibited. The evaluation results of Example 2 and Comparative Example 2 are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例2のキャリア箔付銅箔は、実施例2のキャリア箔付銅箔と、粗化処理方法が異なり、その結果、この表2から明らかなように、「粗化処理面の形状」が異なる。また、実施例2と比較例2とでは、粗化処理方法が異なるため、粗化処理層を構成する成分が異なる。具体的には、実施例2のキャリア箔付銅箔の粗化処理面からは、XPSにより「酸化銅」、「亜酸化銅」、「-COO基」が検出されたが、比較例2の粗化処理面からはこれらの成分は殆ど検出されず、比較例の粗化処理層は銅箔表面に電着させた微細銅粒により構成されるため、その主成分は主として「銅」又は「銅合金」である。そして、実施例2の明度Lの値は比較例2の明度Lの値はよりも小さいことから、実施例2の粗化処理層において、銅複合化合物からなる針状又は板状の凸状部により形成された凹凸構造は、比較例2の粗化処理層において銅箔の表面に付着された微細銅粒により形成された凹凸構造よりも微細であることがわかる。 The copper foil with carrier foil of Comparative Example 2 is different from the copper foil with carrier foil of Example 2 in the roughening treatment method. As a result, as is apparent from Table 2, the “roughening surface shape” is Different. Moreover, since the roughening method differs in Example 2 and Comparative Example 2, the components which comprise a roughening process layer differ. Specifically, “copper oxide”, “cuprous oxide”, and “—COO group” were detected by XPS from the roughened surface of the copper foil with carrier foil of Example 2. These components are hardly detected from the roughened surface, and the roughened layer of the comparative example is composed of fine copper grains electrodeposited on the surface of the copper foil, so that the main component is mainly “copper” or “ Copper alloy ". And since the value of the lightness L * of Example 2 is smaller than the value of the lightness L * of Comparative Example 2, in the roughening process layer of Example 2, the needle-shaped or plate-shaped convex which consists of a copper complex compound It can be seen that the concavo-convex structure formed by the shaped portions is finer than the concavo-convex structure formed by the fine copper particles attached to the surface of the copper foil in the roughening treatment layer of Comparative Example 2.
 また、「常態引き剥がし強さ」をみると、比較例2のキャリア箔付銅箔を用いて回路形成を行った場合よりも、実施例2のキャリア箔付銅箔を用いて回路形成を行った方が引き剥がし強さが高い値を示している。このことは、実施例としての図1と比較例としての図4における表面の粗化状態の違いからも明らかである。すなわち、比較例2の粗化処理層と比べると、実施例2の粗化処理層の方が微細な凸状部により形成されており、比表面積が多いためと考えられる。そして、「吸湿処理後の引き剥がし強さ」も、比較例2の値が、実施例2の値に比べ、低くなっている。その結果、実施例2の耐湿性劣化率が9.3%であるのに対し、比較例2の耐湿性劣化率は22.0%まで低下している。よって、比較例2のキャリア箔付銅箔は、実施例2のキャリア箔付銅箔に比べて、水又は各種水溶液に多く晒されるプリント配線板製造には適さないことが明らかである。 Moreover, when "normal peeling strength" is seen, compared with the case where circuit formation is performed using the copper foil with a carrier foil of the comparative example 2, circuit formation is performed using the copper foil with a carrier foil of Example 2. Indicates a higher peel strength. This is also clear from the difference in the roughened state of the surface in FIG. 1 as an example and FIG. 4 as a comparative example. That is, it is considered that the roughened layer of Example 2 is formed with fine convex portions and has a larger specific surface area than the roughened layer of Comparative Example 2. And the value of Comparative Example 2 is also lower than the value of Example 2 for “stripping strength after moisture absorption treatment”. As a result, the moisture resistance deterioration rate of Example 2 is 9.3%, while the humidity resistance deterioration rate of Comparative Example 2 is reduced to 22.0%. Therefore, it is clear that the copper foil with carrier foil of Comparative Example 2 is not suitable for manufacturing printed wiring boards that are exposed to much water or various aqueous solutions as compared with the copper foil with carrier foil of Example 2.
実施例3と比較例3との対比:次に、以下の表3を参照して、実施例3と比較例3との対比を行う。 Comparison between Example 3 and Comparative Example 3: Next, referring to Table 3 below, Example 3 and Comparative Example 3 are compared.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3において、Cu(I)ピークの占有面積率に着目し、還元処理に用いる水溶液がpH=11のときに得られた表面処理銅箔(実施試料11-a,実施試料11-b,実施試料11-c)と、還元処理に用いる水溶液がpH=12のときに得られた表面処理銅箔(実施試料12-a,実施試料12-b,実施試料12-c)と、還元処理に用いる水溶液がpH=13のときに得られた表面処理銅箔(実施試料13-a,実施試料13-b,実施試料13-c)とをみると、Cu(I)ピークの占有面積率が、59%~99%の範囲となっている。これに対し、比較試料でも、Cu(I)ピークの占有面積率が83%となっている。よって、Cu(I)ピークの占有面積率においては、実施例3と比較例3との差異は無いことが分かるが、上述のXPSによる状態分析でみると、検出成分が異なり、比較例3の試料の粗化処理面には「-COO基」の存在は確認されなかった。一方、比較試料3の粗化処理面の平面観察を行うと、長く、太い針状の凸状部が観察され、黒化処理により形成された凸状部の形状が実施試料で実施した酸化処理後に形成された凸状部の形状とは異なり、その先端部が鋭く尖っている。黒化処理によって形成されたこの凹凸構造層の厚さは700nmであった。しかし、還元処理を行って還元黒化処理すると、凸状部の先端部が丸くなり、還元処理により表面の凹凸形状が大きく変化した。比較試料3について、還元処理後の断面を観察すると、黒化処理後に形成された針状の凸状部が、還元処理により細く、微細に断裂していることが確認された。これに対して、実施例3等の実施試料では、酸化処理により形成された微細凹凸構造の表面形状が、還元処理後も維持されていることが確認された。すなわち、実施試料に比べ、比較試料において形成した凸状部は非常に脆く、いわゆる粉落ちの問題が生じることが予測できる。 In Table 3, paying attention to the area occupied by the Cu (I) peak, the surface-treated copper foils obtained when the aqueous solution used for the reduction treatment had pH = 11 (Example 11-a, Example 11-b, Example) Sample 11-c), surface-treated copper foils obtained when the aqueous solution used for the reduction treatment had a pH = 12 (Example Sample 12-a, Example Sample 12-b, Example Sample 12-c), and reduction treatment Looking at the surface-treated copper foils (Example 13-a, Example 13-b, Example 13-c) obtained when the aqueous solution used had a pH = 13, the occupied area ratio of the Cu (I) peak was The range is 59% to 99%. On the other hand, even in the comparative sample, the occupied area ratio of the Cu (I) peak is 83%. Therefore, in the occupied area ratio of the Cu (I) peak, it can be seen that there is no difference between Example 3 and Comparative Example 3. However, when the state analysis by XPS described above is used, the detected components are different. The presence of “—COO group” was not confirmed on the roughened surface of the sample. On the other hand, when planar observation of the roughened surface of the comparative sample 3 is performed, a long and thick needle-like convex portion is observed, and the shape of the convex portion formed by the blackening treatment is an oxidation treatment performed on the implementation sample. Unlike the shape of the convex part formed later, the tip part is sharply pointed. The thickness of the concavo-convex structure layer formed by the blackening treatment was 700 nm. However, when the reduction blackening process was performed by performing the reduction process, the tip of the convex part was rounded, and the uneven shape of the surface was greatly changed by the reduction process. When the cross section after the reduction treatment was observed for the comparative sample 3, it was confirmed that the needle-like convex portions formed after the blackening treatment were thin and finely broken by the reduction treatment. On the other hand, in the working samples of Example 3 and the like, it was confirmed that the surface shape of the fine concavo-convex structure formed by the oxidation treatment was maintained after the reduction treatment. That is, it can be predicted that the convex portion formed in the comparative sample is very fragile as compared with the working sample, and a so-called problem of powder falling occurs.
 そこで、実施例3と比較例3とで得られた表面処理銅箔の引き剥がし強さを対比してみる。この結果、実施試料の引き剥がし強さは、0.69kgf/cm~0.81kgf/cmである。これに対して、比較試料の引き剥がし強さは0.33kgf/cmであり、実施試料よりも低いことが確認された。 Therefore, the peel strength of the surface-treated copper foil obtained in Example 3 and Comparative Example 3 will be compared. As a result, the peel strength of the working sample is 0.69 kgf / cm to 0.81 kgf / cm. On the other hand, the peeling strength of the comparative sample was 0.33 kgf / cm, which was confirmed to be lower than the working sample.
 以上に述べた本件出願に係る銅箔又はキャリア箔付銅箔は、「最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造を有する粗化処理層」を備えている。このため、当該粗化処理層を備える面を絶縁樹脂基材との接着面とすることにより、当該微細凹凸構造を形成する凸状部によるナノアンカー効果により、無粗化銅箔の絶縁樹脂基材に対する密着性に比べて、良好な密着性を確保することができる。また、当該微細凹凸構造は、最大長さが500nm以下の極めて短い針状又は板状の凸状部により形成されているため、エッチングにより回路形成を行う際に、僅かな時間のオーバーエッチングタイムを設けることにより絶縁樹脂基材側に埋まり込んだ状態の凸状部を溶解除去することができる。従って、無粗化銅箔と同等の良好なエッチング性能を実現することができ、エッチングファクターの良好なファインピッチ回路を形成することができる。さらに、この粗化処理層の表面にシランカップリング剤処理層を設けることにより、従来の粗化銅箔と同等の耐吸湿劣化特性を実現することができる。 従って、全てのプリント配線板製造材料等として有用に使用することが可能である。また、上述のように、本件出願に係る銅箔は、銅箔の両面に粗化処理層を設けることができ、且つ、粉落ち等が抑制されているため、多層プリント配線板の内層回路形成に好適な両面粗化処理銅箔とすることができる。 The copper foil or carrier foil-attached copper foil according to the present application described above is “a roughened layer having a fine concavo-convex structure formed by needle-like or plate-like convex portions having a maximum length of 500 nm or less”. I have. For this reason, the surface provided with the roughening treatment layer is used as an adhesive surface with the insulating resin base material, so that the insulating resin base of the non-roughened copper foil can be obtained by the nano-anchor effect by the convex portions forming the fine uneven structure. Good adhesion can be ensured compared to the adhesion to the material. Further, since the fine concavo-convex structure is formed by extremely short needle-like or plate-like convex portions having a maximum length of 500 nm or less, a slight over-etching time is required when forming a circuit by etching. By providing, the convex part of the state embedded in the insulating resin base material side can be dissolved and removed. Therefore, good etching performance equivalent to that of the non-roughened copper foil can be realized, and a fine pitch circuit having a good etching factor can be formed. Furthermore, by providing a silane coupling agent treatment layer on the surface of the roughening treatment layer, it is possible to realize moisture absorption deterioration resistance equivalent to that of a conventional roughening copper foil. Therefore, it can be usefully used as all printed wiring board manufacturing materials. In addition, as described above, the copper foil according to the present application can be provided with a roughening treatment layer on both sides of the copper foil, and powder formation is suppressed, so that the inner layer circuit formation of the multilayer printed wiring board is achieved. It can be set as the double-side roughening copper foil suitable for.

Claims (19)

  1. 銅複合化合物からなる最大長さが500nm以下のサイズの針状又は板状の凸状部より形成された微細凹凸構造を有する粗化処理層と、当該粗化処理層の表面にシランカップリング剤処理層とを少なくとも一面に備えたことを特徴とする銅箔。 A roughening treatment layer having a fine concavo-convex structure formed from needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound, and a silane coupling agent on the surface of the roughening treatment layer A copper foil comprising a treatment layer on at least one surface.
  2. 走査型電子顕微鏡を用いて、傾斜角45°、50000倍以上の倍率で前記粗化処理層の表面を観察したときに、互いに隣接する凸状部のうち、他の凸状部と分離観察可能な先端部分の長さが250nm以下である請求項1に記載の銅箔。 When the surface of the roughened layer is observed with a scanning electron microscope at an inclination angle of 45 ° and a magnification of 50000 times or more, it can be observed separately from other convex portions among adjacent convex portions. The copper foil according to claim 1, wherein the length of the leading end portion is 250 nm or less.
  3. 前記凸状部の前記最大長さに対して、前記凸状部の前記先端部分の長さが1/2以下である請求項2に記載の銅箔。 The copper foil according to claim 2, wherein a length of the tip portion of the convex portion is ½ or less with respect to the maximum length of the convex portion.
  4. 前記粗化処理層の表面にクリプトンを吸着して測定した比表面積が0.035m/g以上である請求項1~請求項3のいずれか一項に記載の銅箔。 The copper foil according to any one of claims 1 to 3, wherein a specific surface area measured by adsorbing krypton on the surface of the roughening treatment layer is 0.035 m 2 / g or more.
  5. 前記銅複合化合物は、酸化銅及び亜酸化銅を含有する請求項1~請求項4のいずれか一項に記載の銅箔。 The copper foil according to any one of claims 1 to 4, wherein the copper composite compound contains copper oxide and cuprous oxide.
  6. X線光電子分光分析法により前記粗化処理層の構成元素を分析したときに得られるCu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対して、Cu(I)のピーク面積が占める割合が50%以上である請求項1~請求項5のいずれか一項に記載の銅箔。 With respect to the total area of the peak area of Cu (I) and the peak area of Cu (II) obtained when the constituent elements of the roughened layer are analyzed by X-ray photoelectron spectroscopy, Cu (I) The copper foil according to any one of claims 1 to 5, wherein a ratio occupied by the peak area of is 50% or more.
  7. 前記シランカップリング剤処理層は、オレフィン官能性シラン、エポキシ官能性シラン、ビニル官能性シラン、アクリル官能性シラン、アミノ官能性シラン及びメルカプト官能性シランのいずれかを用いて形成したものである請求項1~請求項6のいずれか一項に記載の銅箔。 The silane coupling agent treatment layer is formed using any one of olefin functional silane, epoxy functional silane, vinyl functional silane, acrylic functional silane, amino functional silane and mercapto functional silane. The copper foil according to any one of claims 1 to 6.
  8. 当該銅箔の前記粗化処理層側の表面のL表色系における明度L の値が25以下である請求項1~請求項7のいずれか一項に記載の銅箔。 The copper foil according to any one of claims 1 to 7, wherein a value of the lightness L * in the L * a * b * color system of the roughening layer side surface of the copper foil is 25 or less. .
  9. 請求項1~請求項8のいずれか一項に記載の銅箔の片面に接合界面層を介してキャリア箔を備えたことを特徴とするキャリア箔付銅箔。 A copper foil with a carrier foil, comprising a carrier foil on one side of the copper foil according to any one of claims 1 to 8 via a bonding interface layer.
  10. 走査型電子顕微鏡を用いて、試料の傾斜角45°、50000倍以上の倍率で前記粗化処理層の表面を観察したときに、互いに隣接する凸状部のうち、他の凸状部と分離観察可能な先端部分の長さが250nm以下である請求項9に記載のキャリア箔付銅箔。 Using a scanning electron microscope, when the surface of the roughened layer is observed at a tilt angle of 45 ° and a magnification of 50000 times or more, it is separated from other convex portions among the convex portions adjacent to each other. The copper foil with a carrier foil according to claim 9, wherein the length of the observable tip portion is 250 nm or less.
  11. 前記凸状部の前記最大長さに対して、前記凸状部の前記先端部分の長さが1/2以下である請求項10に記載のキャリア箔付銅箔。 The copper foil with a carrier foil according to claim 10, wherein a length of the tip portion of the convex portion is ½ or less with respect to the maximum length of the convex portion.
  12. 前記粗化処理層の表面にクリプトンを吸着して測定した比表面積が0.035m/g以上である請求項9~請求項12のいずれか一項に記載のキャリア箔付銅箔。 The copper foil with a carrier foil according to any one of claims 9 to 12, wherein a specific surface area measured by adsorbing krypton on the surface of the roughening treatment layer is 0.035 m 2 / g or more.
  13. 前記銅複合化合物は、酸化銅及び亜酸化銅を含有する請求項9~請求項12のいずれか一項に記載の銅箔。 The copper foil according to any one of claims 9 to 12, wherein the copper composite compound contains copper oxide and cuprous oxide.
  14. X線光電子分光分析法により前記粗化処理層の構成元素を分析したときに得られるCu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対して、Cu(I)のピーク面積が占める割合が50%以上である請求項9~請求項13のいずれか一項に記載の銅箔。 With respect to the total area of the peak area of Cu (I) and the peak area of Cu (II) obtained when the constituent elements of the roughened layer are analyzed by X-ray photoelectron spectroscopy, Cu (I) The copper foil according to any one of claims 9 to 13, wherein a ratio occupied by a peak area of is 50% or more.
  15. 前記銅複合化合物は、酸化銅及び亜酸化銅を含有する請求項9~請求項14のいずれか一項に記載のキャリア箔付銅箔。 The copper foil with a carrier foil according to any one of claims 9 to 14, wherein the copper composite compound contains copper oxide and cuprous oxide.
  16. 前記シランカップリング剤処理層は、オレフィン官能性シラン、エポキシ官能性シラン、ビニル官能性シラン、アクリル官能性シラン、アミノ官能性シラン及びメルカプト官能性シランのいずれかを用いて形成したものである請求項9~請求項15のいずれか一項に記載のキャリア箔付銅箔。 The silane coupling agent treatment layer is formed using any one of olefin functional silane, epoxy functional silane, vinyl functional silane, acrylic functional silane, amino functional silane and mercapto functional silane. Item 16. A copper foil with a carrier foil according to any one of Items 9 to 15.
  17. 当該キャリア箔付銅箔の前記粗化処理層を備える面における、L表色系の明度L の値が25以下である請求項9~請求項16のいずれか一項に記載のキャリア箔付銅箔。 The value of the lightness L * of the L * a * b * color system on the surface of the copper foil with carrier foil on which the roughening layer is provided is 25 or less. The copper foil with a carrier foil of description.
  18. 請求項1~請求項8のいずれか一項に記載の銅箔を用いて得られることを特徴とする銅張積層板。 A copper-clad laminate obtained by using the copper foil according to any one of claims 1 to 8.
  19. 請求項9~請求項17のいずれか一項に記載のキャリア箔付銅箔を用いて得られることを特徴とする銅張積層板。 A copper clad laminate obtained using the copper foil with a carrier foil according to any one of claims 9 to 17.
PCT/JP2014/071798 2013-09-20 2014-08-20 Copper foil, copper foil with carrier foil, and copper-clad laminate WO2015040998A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167007204A KR101920976B1 (en) 2013-09-20 2014-08-20 Copper foil, copper foil with carrier foil, and copper-clad laminate
CN201480051363.6A CN105556004B (en) 2013-09-20 2014-08-20 Copper foil, copper foil and copper clad laminate with carrier foils
MYPI2016700973A MY182166A (en) 2013-09-20 2014-08-20 Copper foil, copper foil with carrier foil, and copper-clad laminate
JP2015515306A JP6283664B2 (en) 2013-09-20 2014-08-20 Copper foil, copper foil with carrier foil and copper clad laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-195940 2013-09-20
JP2013195940 2013-09-20

Publications (1)

Publication Number Publication Date
WO2015040998A1 true WO2015040998A1 (en) 2015-03-26

Family

ID=52688654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071798 WO2015040998A1 (en) 2013-09-20 2014-08-20 Copper foil, copper foil with carrier foil, and copper-clad laminate

Country Status (6)

Country Link
JP (2) JP6283664B2 (en)
KR (1) KR101920976B1 (en)
CN (1) CN105556004B (en)
MY (1) MY182166A (en)
TW (1) TWI587757B (en)
WO (1) WO2015040998A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151935A1 (en) * 2014-03-31 2015-10-08 三井金属鉱業株式会社 Copper foil with carrier foil, copper clad laminate, and printed circuit board
JP6087028B1 (en) * 2015-09-30 2017-03-01 三井金属鉱業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
WO2017073121A1 (en) * 2015-10-28 2017-05-04 三井金属鉱業株式会社 Method for manufacturing printed wiring board
JP6178035B1 (en) * 2016-03-03 2017-08-09 三井金属鉱業株式会社 Method for producing copper clad laminate
WO2017150043A1 (en) * 2016-03-03 2017-09-08 三井金属鉱業株式会社 Production method for copper-clad laminate plate
JPWO2017018232A1 (en) * 2015-07-29 2017-09-21 三井金属鉱業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
JP2018016886A (en) * 2016-07-15 2018-02-01 ナミックス株式会社 Production method of copper foil used for printed wiring board
US20190013212A1 (en) * 2016-02-29 2019-01-10 Mitsui Mining & Smelting Co., Ltd. Copper foil with carrier, production method for same, production method for coreless support with wiring layer, and production method for printed circuit board
US10280501B2 (en) 2015-09-30 2019-05-07 Mitsui Mining & Smelting Co., Ltd. Roughened copper foil, copper clad laminate, and printed circuit board
JP2019119935A (en) * 2018-01-05 2019-07-22 長春石油化學股▲分▼有限公司 Surface treated copper foil for high speed printed circuit board products including the copper foil and method for manufacturing the same
CN111108817A (en) * 2017-11-10 2020-05-05 纳美仕有限公司 Object with roughened copper surface
US20200332431A1 (en) * 2017-11-10 2020-10-22 Namics Corporation Composite copper foil
KR20210020899A (en) 2018-06-20 2021-02-24 나믹스 가부시끼가이샤 Harmonized copper foil, copper clad laminate and printed wiring board
US20220123446A1 (en) * 2020-10-20 2022-04-21 Prime Planet Energy & Solutions, Inc. Secondary battery
WO2022202921A1 (en) * 2021-03-25 2022-09-29 ナミックス株式会社 Method for manufacturing laminate
WO2022202540A1 (en) * 2021-03-26 2022-09-29 三井金属鉱業株式会社 Roughened copper foil, copper foil equipped with carrier, copper-cladded laminate board, and printed wiring board
WO2022202541A1 (en) * 2021-03-26 2022-09-29 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-cladded laminate board, and printed wiring board
WO2022224684A1 (en) * 2021-04-20 2022-10-27 ナミックス株式会社 Copper member

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6110581B2 (en) * 2014-12-05 2017-04-05 三井金属鉱業株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board for high-frequency signal transmission circuit formation
JP6294862B2 (en) * 2015-12-09 2018-03-14 古河電気工業株式会社 Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
TWI616336B (en) * 2016-03-03 2018-03-01 三井金屬鑛業股份有限公司 Method for manufacturing copper-clad laminate
WO2019111914A1 (en) * 2017-12-05 2019-06-13 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board each using same
JP2019220647A (en) * 2018-06-22 2019-12-26 株式会社アルバック Surface treatment method, printed wiring board manufacturing method, and surface treatment device
US10581081B1 (en) 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
JP7352939B2 (en) * 2019-05-09 2023-09-29 ナミックス株式会社 composite copper parts
JP7456578B2 (en) * 2019-05-09 2024-03-27 ナミックス株式会社 Copper surface processing equipment
JP7409602B2 (en) * 2019-05-09 2024-01-09 ナミックス株式会社 composite copper parts
CN112533388B (en) * 2019-09-19 2022-10-18 比亚迪股份有限公司 Ceramic copper-clad plate and preparation method thereof
CN110838408A (en) * 2019-10-10 2020-02-25 深圳市峰泳科技有限公司 Planar capacitor with high stripping force and high dielectric constant and preparation method thereof
JPWO2021132191A1 (en) * 2019-12-26 2021-07-01
WO2021172096A1 (en) * 2020-02-28 2021-09-02 ナミックス株式会社 Composite copper member having voids
WO2021220524A1 (en) * 2020-04-27 2021-11-04 ナミックス株式会社 Composite copper member
KR20230007390A (en) * 2020-04-27 2023-01-12 나믹스 가부시끼가이샤 composite copper member
EP4057782A1 (en) * 2021-03-12 2022-09-14 Atotech Deutschland GmbH & Co. KG Method for increasing adhesion strength between copper and an organic material and reducing halo and wedge void formation by modifying the copper surface and/or by using heteroaromatic silane compounds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060965A (en) * 2000-08-10 2002-02-28 Meltex Inc Treating solution and treating method for reducing copper oxide
JP2003008199A (en) * 2001-06-13 2003-01-10 Internatl Business Mach Corp <Ibm> Method for roughening copper surface of printed wiring board and printed wiring board and its producing method
JP2006249519A (en) * 2005-03-11 2006-09-21 Hitachi Chem Co Ltd Surface treatment method for copper and copper
JP2009221592A (en) * 2007-10-31 2009-10-01 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and process for producing the electrolytic copper foil
WO2010110092A1 (en) * 2009-03-27 2010-09-30 日鉱金属株式会社 Copper foil for printed wiring board and method for producing same
JP2010236058A (en) * 2009-03-31 2010-10-21 Mitsui Mining & Smelting Co Ltd Roughening-processed copper foil, method of manufacturing roughening-processed copper foil and copper clad laminate
JP2014148692A (en) * 2012-06-11 2014-08-21 Jx Nippon Mining & Metals Corp Surface-treated copper foil and laminate, printed wiring board, and electronic apparatus with use of the foil, and manufacturing method of printed wiring board

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1024981C (en) * 1991-02-04 1994-06-08 陈晓旼 Adhesion method of copper to resin
JP3123109B2 (en) * 1991-05-09 2001-01-09 凸版印刷株式会社 Multilayer wiring board and its manufacturing method
JPH08222857A (en) * 1995-02-16 1996-08-30 Mitsui Mining & Smelting Co Ltd Copper foil and high-density multilayered printed circuit board using the foil for its internal-layer circuit
JPH10242638A (en) * 1996-12-19 1998-09-11 Ibiden Co Ltd Multilayer printed wiring board and its manufacture
CN1236109C (en) * 1999-09-29 2006-01-11 欧罗巴金属公开有限公司 Electrochemical method for forming inorganic covering layer on surface of copper material
CN1316066C (en) * 2002-06-04 2007-05-16 三井金属矿业株式会社 Surface treatment copper foil for low dielectric substrate, copper clad laminate including the same and printed wiring board
TW200535259A (en) * 2004-02-06 2005-11-01 Furukawa Circuit Foil Treated copper foil and circuit board
KR100852863B1 (en) * 2004-02-17 2008-08-18 닛코킨조쿠 가부시키가이샤 Copper foil having blackened surface or layer
US8809696B2 (en) * 2008-10-27 2014-08-19 Hitachi Chemical Company, Ltd. Method for surface treatment of copper and copper
JP4441658B1 (en) * 2008-12-19 2010-03-31 国立大学法人東北大学 Copper wiring forming method, copper wiring, and semiconductor device
JP5634103B2 (en) * 2010-04-06 2014-12-03 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
JP5204908B1 (en) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper foil with carrier for printed wiring board and printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060965A (en) * 2000-08-10 2002-02-28 Meltex Inc Treating solution and treating method for reducing copper oxide
JP2003008199A (en) * 2001-06-13 2003-01-10 Internatl Business Mach Corp <Ibm> Method for roughening copper surface of printed wiring board and printed wiring board and its producing method
JP2006249519A (en) * 2005-03-11 2006-09-21 Hitachi Chem Co Ltd Surface treatment method for copper and copper
JP2009221592A (en) * 2007-10-31 2009-10-01 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and process for producing the electrolytic copper foil
WO2010110092A1 (en) * 2009-03-27 2010-09-30 日鉱金属株式会社 Copper foil for printed wiring board and method for producing same
JP2010236058A (en) * 2009-03-31 2010-10-21 Mitsui Mining & Smelting Co Ltd Roughening-processed copper foil, method of manufacturing roughening-processed copper foil and copper clad laminate
JP2014148692A (en) * 2012-06-11 2014-08-21 Jx Nippon Mining & Metals Corp Surface-treated copper foil and laminate, printed wiring board, and electronic apparatus with use of the foil, and manufacturing method of printed wiring board

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151935A1 (en) * 2014-03-31 2015-10-08 三井金属鉱業株式会社 Copper foil with carrier foil, copper clad laminate, and printed circuit board
JPWO2017018232A1 (en) * 2015-07-29 2017-09-21 三井金属鉱業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
KR20180036693A (en) 2015-07-29 2018-04-09 미쓰이금속광업주식회사 Roughened copper foil, copper clad laminate and printed wiring board
JP6087028B1 (en) * 2015-09-30 2017-03-01 三井金属鉱業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
US10280501B2 (en) 2015-09-30 2019-05-07 Mitsui Mining & Smelting Co., Ltd. Roughened copper foil, copper clad laminate, and printed circuit board
JP6131395B1 (en) * 2015-10-28 2017-05-17 三井金属鉱業株式会社 Method for manufacturing printed wiring board
CN108029202B (en) * 2015-10-28 2020-01-21 三井金属矿业株式会社 Method for manufacturing printed circuit board
KR102039844B1 (en) 2015-10-28 2019-11-01 미쓰이금속광업주식회사 Manufacturing method of printed wiring board
WO2017073121A1 (en) * 2015-10-28 2017-05-04 三井金属鉱業株式会社 Method for manufacturing printed wiring board
KR20180041167A (en) * 2015-10-28 2018-04-23 미쓰이금속광업주식회사 Manufacturing method of printed wiring board
CN108029202A (en) * 2015-10-28 2018-05-11 三井金属矿业株式会社 The manufacture method of printed circuit board (PCB)
TWI711127B (en) * 2016-02-29 2020-11-21 日商三井金屬鑛業股份有限公司 Copper foil with carrier and its manufacturing method, and manufacturing method of coreless support with wiring layer and printed wiring board
US10886146B2 (en) * 2016-02-29 2021-01-05 Mitsui Mining & Smelting Co., Ltd. Copper foil with carrier, production method for same, production method for coreless support with wiring layer, and production method for printed circuit board
US20190013212A1 (en) * 2016-02-29 2019-01-10 Mitsui Mining & Smelting Co., Ltd. Copper foil with carrier, production method for same, production method for coreless support with wiring layer, and production method for printed circuit board
CN107614753A (en) * 2016-03-03 2018-01-19 三井金属矿业株式会社 The manufacture method of copper-clad laminated board
KR101846141B1 (en) 2016-03-03 2018-04-05 미쓰이금속광업주식회사 Manufacturing method of copper clad laminate
WO2017150043A1 (en) * 2016-03-03 2017-09-08 三井金属鉱業株式会社 Production method for copper-clad laminate plate
JP6178035B1 (en) * 2016-03-03 2017-08-09 三井金属鉱業株式会社 Method for producing copper clad laminate
US10244635B2 (en) 2016-03-03 2019-03-26 Mitsui Mining & Smelting Co., Ltd. Production method for copper-clad laminate plate
JP2018016886A (en) * 2016-07-15 2018-02-01 ナミックス株式会社 Production method of copper foil used for printed wiring board
US11781236B2 (en) * 2017-11-10 2023-10-10 Namics Corporation Composite copper foil
CN111108817A (en) * 2017-11-10 2020-05-05 纳美仕有限公司 Object with roughened copper surface
US20200332431A1 (en) * 2017-11-10 2020-10-22 Namics Corporation Composite copper foil
CN111108817B (en) * 2017-11-10 2024-03-01 纳美仕有限公司 Object with roughened copper surface
JP2019119935A (en) * 2018-01-05 2019-07-22 長春石油化學股▲分▼有限公司 Surface treated copper foil for high speed printed circuit board products including the copper foil and method for manufacturing the same
KR20210020899A (en) 2018-06-20 2021-02-24 나믹스 가부시끼가이샤 Harmonized copper foil, copper clad laminate and printed wiring board
US20220123446A1 (en) * 2020-10-20 2022-04-21 Prime Planet Energy & Solutions, Inc. Secondary battery
WO2022202921A1 (en) * 2021-03-25 2022-09-29 ナミックス株式会社 Method for manufacturing laminate
WO2022202540A1 (en) * 2021-03-26 2022-09-29 三井金属鉱業株式会社 Roughened copper foil, copper foil equipped with carrier, copper-cladded laminate board, and printed wiring board
WO2022202541A1 (en) * 2021-03-26 2022-09-29 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-cladded laminate board, and printed wiring board
WO2022224684A1 (en) * 2021-04-20 2022-10-27 ナミックス株式会社 Copper member

Also Published As

Publication number Publication date
TW201524279A (en) 2015-06-16
KR101920976B1 (en) 2018-11-21
MY182166A (en) 2021-01-18
JP6283664B2 (en) 2018-02-21
KR20160060046A (en) 2016-05-27
JP6297124B2 (en) 2018-03-20
JPWO2015040998A1 (en) 2017-03-02
JP2017048467A (en) 2017-03-09
TWI587757B (en) 2017-06-11
CN105556004B (en) 2018-11-30
CN105556004A (en) 2016-05-04

Similar Documents

Publication Publication Date Title
JP6297124B2 (en) Copper foil, copper foil with carrier foil and copper clad laminate
JP5809361B2 (en) Surface-treated copper foil and copper-clad laminate obtained by using surface-treated copper foil
JP5400960B2 (en) Surface treated copper foil
WO2017179416A1 (en) Treated surface copper foil, copper foil with carrier as well as methods for manufacturing copper-clad laminate and printed circuit board using same
TWI719567B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP6013426B2 (en) Copper foil for printed circuit
TWI609780B (en) Roughening copper foil, copper clad laminate and printed wiring board
JP5925961B2 (en) Copper foil with carrier foil, copper-clad laminate and printed wiring board manufacturing method
JP5475897B1 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
KR101931895B1 (en) Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board
JP5406905B2 (en) A method for producing a copper foil for a printed circuit board comprising a fine granular surface that has high peel strength and is environmentally friendly.
TW201942370A (en) Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board
JP7259093B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP2009117706A (en) Copper foil for flexible printed wiring board and manufacturing method thereof, and flexible printed wiring board
JP5650023B2 (en) Copper foil for printed wiring board and laminated board using the same
JP5074822B2 (en) Surface treated copper foil
JP2016008343A (en) Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and production method of the surface-treated copper foil
JP5728117B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP6081883B2 (en) Copper foil, laminated board using the same, method for manufacturing electronic device, and method for manufacturing printed wiring board

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051363.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015515306

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167007204

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845058

Country of ref document: EP

Kind code of ref document: A1