WO2022224684A1 - Copper member - Google Patents

Copper member Download PDF

Info

Publication number
WO2022224684A1
WO2022224684A1 PCT/JP2022/013649 JP2022013649W WO2022224684A1 WO 2022224684 A1 WO2022224684 A1 WO 2022224684A1 JP 2022013649 W JP2022013649 W JP 2022013649W WO 2022224684 A1 WO2022224684 A1 WO 2022224684A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper member
base material
resin base
layer containing
Prior art date
Application number
PCT/JP2022/013649
Other languages
French (fr)
Japanese (ja)
Inventor
直貴 小畠
牧子 佐藤
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to CN202280008657.5A priority Critical patent/CN116670326A/en
Priority to KR1020237021593A priority patent/KR20230170899A/en
Priority to JP2023516361A priority patent/JPWO2022224684A1/ja
Publication of WO2022224684A1 publication Critical patent/WO2022224684A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/63Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to copper members.
  • an ultra-thin copper foil with a carrier having a copper layer with a thickness of several ⁇ m formed on a support via a peeling layer is used, and after forming a seed layer on an insulating resin, a resist is laminated.
  • This is a technique of wiring by removing the resist and seed layer after forming a thick electrolytic copper plating on the patterned portion (see FIG. 1A).
  • the copper film thickness to be etched is thinner than the subtractive method, so the wiring can be made finer.
  • the SAP method it is common to form a seed layer made of copper on a resin substrate. Roughened by processing. At this time, the surface roughness (Ra) of the roughened surface of the insulating resin layer is 300 nm or more. Subsequently, a seed layer made of copper is formed on the insulating resin layer by electroless plating or the like. Next, a resist is formed on the portion of the seed layer where the wiring layer is not arranged. Further, a thick copper plating layer is formed by electroplating on the portions where the resist is not formed. Finally, after removing the resist, the exposed seed layer is etched. Thereby, a wiring pattern composed of the seed layer and the metal plating layer is formed on the resin substrate.
  • An object of the present invention is to provide a novel copper member.
  • a copper member having a layer containing copper oxide formed on at least part of its surface When the copper member is peeled off from the resin base material after being thermocompression bonded to the resin base material, The S/N ratio of the peak corresponding to the substance derived from the resin base material on the surface of the copper member obtained by attenuated total reflection absorption Fourier transform infrared spectroscopy (FT-IR/ATR method) is in the wavelength range of 700- 10 or less at 4000 cm ⁇ 1 , The composition ratio of the sum of the metals on the surface of the resin base material/(C+O) obtained by EDS elemental analysis is 0.4 or more, A copper member, wherein a seed layer formed on the resin base material has a thickness of 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • [5] [Total surface atomic composition percentage (atom%) of metal elements]/[C1s surface atomic composition percentage calculated from XPS measurement results on the surface of the resin base material from which the copper member was peeled off (atom%)] is 0.010 or more, the copper member according to item [4].
  • [6] The copper member according to [4], wherein the total surface atomic composition percentage of Cu2p3 and Ni2p3 detected by the Survey spectrum analysis is 1.5 atom % or more.
  • [7] The copper member according to [4], wherein the surface atomic composition percentage of Cu2p3 detected by the Survey spectrum analysis is 1.0 atom % or more.
  • the surface on which the layer containing the copper oxide is formed has an Ra of 0.04 ⁇ m or more, and the ratio of the Ra of the surface of the copper member peeled off from the resin base material to the Ra is 100. %, the copper member according to any one of [1] to [7]. [9] of [1] to [8], wherein the ratio of the surface area of the copper member peeled off from the resin substrate to the surface area of the surface on which the layer containing the copper oxide is formed is less than 100%.
  • the color difference ( ⁇ E * ab) between the surface on which the layer containing copper oxide is formed and the surface of the copper member peeled off from the resin substrate is 15 or more, [1] to [9] The copper member according to any one of .
  • the resin base material is polyphenylene ether (PPE), epoxy, polyphenylene oxide (PPO), polybenzoxazole (PBO), polytetrafluoroethylene (PTFE), liquid crystal polymer (LCP), or thermoplastic polyimide (TPI).
  • the copper member is thermocompression bonded to the resin substrate under the conditions of a temperature of 50° C. to 400° C., a pressure of 0 to 20 MPa, and a time of 1 minute to 5 hours, [1] to [11] ] The copper member as described in any one of ]. [13] The copper member according to any one of [1] to [12], wherein the layer containing copper oxide contains a metal other than copper.
  • a method for selecting a copper member having a layer containing copper oxide formed on at least part of the surface thereof comprising: a step of peeling off the copper member from the resin base material after thermocompression bonding to the resin base material; a step of analyzing the surface of the copper member peeled off from the resin base material by attenuated total reflection absorption Fourier transform infrared spectroscopy (FT-IR/ATR method); performing EDS elemental analysis on the surface of the resin base material from which the copper member has been removed; measuring the thickness of a seed layer formed on the resin base material from which the copper member has been removed; The S/N ratio of the peak corresponding to the substance derived from the resin base material on the surface of the copper member obtained by the FT-IR/ATR method is 10 or less in the wavelength range of 700-4000 cm -1 , The composition ratio of the sum of the metals on the surface of the copper member/(C+O)
  • a method for selecting a copper member having a layer containing copper oxide formed on at least a part of the surface comprising: a step of peeling off the copper member from the resin base material after thermocompression bonding to the resin base material; a step of performing Survey spectrum analysis of X-ray photoelectron spectroscopy (XPS) on the surface of the copper member peeled off from the resin base; performing EDS elemental analysis on the surface of the resin base material from which the copper member has been removed; measuring the thickness of a seed layer formed on the resin base material from which the copper member has been removed; metal atoms contained in the layer containing the copper oxide are detected from the surface of the resin base material from which the copper member has been peeled off; The composition ratio of the sum of the metals on the surface of the copper member/(C+O) obtained by the EDS elemental analysis is 0.4 or more, The seed layer has a thickness of 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • XPS X-ray photoelectron spectros
  • Selection method including. [17] partially coating the surface of the copper member with a silane coupling agent or a rust inhibitor; forming a layer containing the copper oxide by oxidizing the partially coated surface; The selection method of item [16], further comprising: [18] The selection method according to item [17], wherein the surface of the copper member is oxidized with an oxidizing agent.
  • the silane coupling agent is silane, tetraorgano-silane, aminoethyl-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (1-[3-(trimethoxysilyl)propyl]urea).
  • the rust inhibitor is 1H-tetrazole, 5-methyl-1H-tetrazole, 5-amino-1H-tetrazole, 5-phenyl-1H-tetrazole, 1,2,3-triazole, 1,2,4 -triazole, 1,2,3-benzotriazole, 5-methyl-1H-benzotriazole, 5-amino-1H-benzotriazole, 2-mercaptobenzothiazole, 1,3-dimethyl-5-pyrazolone, pyrrole, 3- methylpyrrole, 2,4-dimethylpyrrole, 2-ethylpyrrole, pyrazole, 3-aminopyrazole, 4-methylpyrazole, 3-amino-5-hydroxypyrazole, thiazole, 2-aminothiazole, 2-methylthiazole, 2- amino-5-methylthiazole, 2-ethylthiazole, benzothiazole, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-
  • the dissolving agent contains Ni chloride, zinc chloride, iron chloride, chromium chloride, ammonium citrate, potassium chloride, ammonium sulfate, ammonium chloride, nickel ammonium sulfate, ethylenediaminetetraacetic acid, diethanolglycine, L-glutamic acid diacetic acid tetra sodium, ethylenediamine-N,N'-disuccinic acid, sodium 3-hydroxy-2,2'-iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, N-(2-hydroxyethyl)iminodiacetic acid
  • the selection method according to item [23] which is selected from the group consisting of disodium, sodium gluconate, tin(II) chloride, and citric acid.
  • a method of manufacturing a copper member comprising: [29] A method for manufacturing a copper member according to item [13] or [14], 1) a step of partially coating the surface of a copper member with a silane coupling agent or a rust inhibitor; 2) a step of oxidizing the partially coated surface to form a layer containing the copper oxide; 3) forming a layer containing a metal other than copper on the oxidized surface;
  • a method of manufacturing a copper member comprising: [30] A method for manufacturing a copper member according to any one of [1] to [14], 1) forming a layer containing the copper oxide by oxidizing the partially coated surface; and 2) treating the oxidized surface with a dissolving agent.
  • the dissolving agent is Ni chloride, zinc chloride, iron chloride, chromium chloride, ammonium citrate, potassium chloride, ammonium sulfate, ammonium chloride, nickel ammonium sulfate, ethylenediaminetetraacetic acid, diethanolglycine, L-glutamic acid diacetic acid tetra sodium, ethylenediamine-N,N'-disuccinic acid, sodium 3-hydroxy-2,2'-iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, N-(2-hydroxyethyl)iminodiacetic acid.
  • the method for producing a copper member according to item [30] or [31] which contains a compound selected from the group consisting of disodium, sodium gluconate, tin(II) chloride, and citric acid.
  • FIG. 1 is a diagram showing scanning electron microscope observation photographs of a cross section produced by (A) the laminate manufacturing method (B) in one embodiment of the present invention, in comparison with the MSAP method of the prior art.
  • (A-1) and (B-1) represent the MSAP method
  • (A-2) and (B-2) represent the method of the present embodiment.
  • FIG. 1B is a schematic diagram of a seed layer, in accordance with one embodiment of the present invention.
  • the gray portion represents the insulating substrate layer
  • the black portion represents the portion of the copper member transferred to the insulating substrate layer.
  • FIG. 2 is a diagram showing the results of visual observation after the composite copper foils of Examples 1 to 6 and Comparative Examples 2 to 6 were pressure-bonded to a resin substrate and peeled off, and representative photographs of both surfaces. is. The result of visual observation is indicated by ⁇ when the surface of the copper foil is transferred to the resin side, and by ⁇ when it is not transferred.
  • FIG. 3 shows the results of XPS analysis of the resin substrates of Examples 1-3 and Comparative Examples 1-4.
  • FIG. 4 shows that the composite copper foils of Examples 1 to 3 and Comparative Examples 2 to 4 were thermally crimped to a resin substrate (R5670KJ) and peeled off, and then the surface of the composite copper foil was measured by the FT-IR/ATR method. These are the results of measurements.
  • FIG. 3 shows the results of XPS analysis of the resin substrates of Examples 1-3 and Comparative Examples 1-4.
  • FIG. 4 shows that the composite copper foils of Examples 1 to 3 and Comparative Examples 2 to 4 were thermally crimped
  • FIG. 5 shows the results of measuring the surfaces of the composite copper foils of Example 3 and Comparative Example 3 by the FT-IR/ATR method after the composite copper foils of Example 3 and Comparative Example 3 were thermocompression bonded to a resin substrate (R1551GG) and peeled off. be.
  • FIG. 6 shows that the composite copper foils of Examples 4 to 6 and Comparative Examples 5 to 6 were thermocompression bonded to a resin base material (R5680J) and peeled off, and then the surface of the composite copper foil was subjected to the FT-IR/ATR method. This is the result of the measurement.
  • FIG. 7 shows the results of measuring the surfaces of the composite copper foils of Example 3 and Comparative Example 3 by the FT-IR/ATR method after the composite copper foils of Example 3 and Comparative Example 3 were thermally bonded to a resin substrate (NX9255) and then peeled off. be.
  • FIG. 8 shows the composite copper foils of Example 3 and Comparative Example 3 after thermal compression bonding to the resin base material (CT-Z) and peeling, and then the surfaces of the composite copper foils were measured by the FT-IR/ATR method. This is the result.
  • FIG. 9 is a secondary electron image and an EDS image of Cu obtained by analyzing the surface of the resin base material with a field emission scanning electron microscope after the composite copper foil was thermally compressed to and peeled off from the resin base material.
  • FIG. 9 is a secondary electron image and an EDS image of Cu obtained by analyzing the surface of the resin base material with a field emission scanning electron microscope after the composite copper foil was thermally compressed to and peeled off from the resin base material.
  • FIG. 10 shows the cross section of the seed layer formed on the resin substrate after the composite copper foils of Examples 1, 2 and 3 and Comparative Examples 3 and 7 were thermally compressed and peeled off from the resin substrate.
  • FIG. 11 shows SEM images (magnification: 30,000) of cross sections of resins having seed layers of Examples 1, 2, and 3 and Comparative Example 7 that were plated.
  • One embodiment of the disclosure of the present specification is a method for manufacturing a laminate of an insulating base layer and a copper member, comprising a step of bonding an insulating base layer and a copper member having protrusions on the surface; forming a seed layer by peeling off the member to transfer the projections to the surface of the insulating base layer; forming a resist on a predetermined location on the surface of the seed layer; a method of manufacturing comprising the steps of depositing copper by copper plating the areas where the resist is not deposited, removing the resist, and removing the seed layer exposed by the removal of the resist. be.
  • the seed layer refers to the surface of the peeled copper member and the surface configured to include the bottom of the recesses formed in the insulating base layer by the protrusions of the copper member. Refers to the layer formed in between (FIG. 1B), so that the recess and the metal from the copper member transferred to the recess are contained within that layer.
  • the bottom of the recess refers to the farthest bottom from the surface of the stripped copper member among the bottoms of the plurality of recesses, and the surface configured to include the bottom of the recess is the surface of the stripped copper member. parallel to the surface.
  • Step of bonding an insulating base layer and a copper member ⁇ copper member> The surface of the copper member has fine protrusions.
  • the arithmetic mean roughness (Ra) of the surface of the copper member is preferably 0.03 ⁇ m or more, more preferably 0.05 ⁇ m or more, and is preferably 0.3 ⁇ m or less, more preferably 0.2 ⁇ m or less. .
  • the maximum height roughness (Rz) of the surface of the copper member is preferably 0.2 ⁇ m or more, more preferably 1.0 ⁇ m or more, and is preferably 2.0 ⁇ m or less, more preferably 1.7 ⁇ m or less. preferable.
  • Ra and Rz are too small, the adhesion to the resin substrate will be insufficient, and if they are too large, fine wiring formability and high frequency characteristics will be inferior.
  • Ra and Rz can be calculated by the method specified in JIS B 0601:2001 (in accordance with the international standard ISO4287-1997).
  • the average length (RSm) of the surface roughness curve element of the copper member is not particularly limited, but is 1500 nm or less, 1400 nm or less, 1300 nm or less, 1200 nm or less, 1100 nm or less, 1000 nm or less, 900 nm or less, 800 nm or less, 750 nm or less, It is preferably 700 nm or less, 650 nm or less, 600 nm or less, 550 nm or less, 450 nm or less, or 350 nm or less, and preferably 100 nm or more, 200 nm or more, or 300 nm or more.
  • RSm represents the average length of unevenness for one cycle included in the roughness curve at a certain reference length (lr) (that is, the length of the contour curve element: Xs1 to Xsm), It is calculated by the following formula.
  • RSm can be measured and calculated according to "Method for measuring surface roughness of fine ceramic thin film by atomic force microscope (JIS R 1683:2007)".
  • a layer containing copper oxide is formed on at least a part of the surface of the copper member.
  • the copper member specifically includes, but is not limited to, copper foils such as electrolytic copper foil, rolled copper foil, and copper foil with a carrier, copper wires, copper plates, and copper lead frames.
  • the copper member contains Cu as a main component, which is part of the structure, but a material made of pure copper with a Cu purity of 99.9% by mass or more is preferable, and is made of tough pitch copper, deoxidized copper, or oxygen-free copper. More preferably, it is made of oxygen-free copper with an oxygen content of 0.001% by mass to 0.0005% by mass.
  • the copper member is a copper foil
  • its thickness is not particularly limited, but is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, more preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the layer containing copper oxide is formed on the surface of the copper member and contains copper oxide (CuO) and/or cuprous oxide (Cu 2 O).
  • This layer containing copper oxide can be formed by oxidizing the surface of the copper member. This oxidation treatment roughens the surface of the copper member.
  • a surface roughening treatment step such as soft etching or etching is not necessary, but may be performed.
  • degreasing treatment acid cleaning for uniformizing the surface by removing a natural oxide film, or alkali treatment for preventing acid from being brought into the oxidation process may be performed after acid cleaning.
  • the method of alkali treatment is not particularly limited, but preferably 0.1 to 10 g/L, more preferably 1 to 2 g/L alkaline aqueous solution, such as sodium hydroxide aqueous solution, at 30 to 50 ° C. for 0.5 to 2 minutes. It should be treated to some extent.
  • the oxidizing agent is not particularly limited, and for example, an aqueous solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate, etc. can be used.
  • Various additives eg, phosphates such as trisodium phosphate dodecahydrate
  • surface active molecules may be added to the oxidizing agent.
  • Surface active molecules include porphyrins, porphyrin macrocycles, extended porphyrins, ring contracted porphyrins, linear porphyrin polymers, porphyrin sandwich coordination complexes, porphyrin sequences, silanes, tetraorgano-silanes, aminoethyl-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (1-[3-(trimethoxysilyl)propyl]urea) ((l-[3-(Trimethoxysilyl)propyl]urea)), (3-aminopropyl)triethoxysilane , ((3-glycidyloxypropyl)trimethoxysilane), (3-chloropropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)
  • the protrusions on the surface of the oxidized copper member may be adjusted using a dissolving agent.
  • the dissolving agent used in this dissolving step is not particularly limited, but is preferably a chelating agent, particularly a biodegradable chelating agent, such as ethylenediaminetetraacetic acid, diethanolglycine, tetrasodium L-glutamic acid diacetate, ethylenediamine-N,N'.
  • the pH of the solution for dissolution is not particularly limited, but it is preferably alkaline, more preferably pH 8 to 10.5, still more preferably pH 9.0 to 10.5, and pH 9.8 to 10.5. 2 is more preferred.
  • the surface of the layer containing copper oxide may be subjected to reduction treatment with a reducing agent, in which case cuprous oxide may be formed on the surface of the layer containing copper oxide.
  • a reducing agent in which case cuprous oxide may be formed on the surface of the layer containing copper oxide.
  • the reducing agent used in this reduction step include dimethylamine borane (DMAB), diborane, sodium borohydride, hydrazine and the like.
  • Pure copper has a specific resistance of 1.7 ⁇ 10 -8 ( ⁇ m), while copper oxide has a specific resistance of 1 to 10 ( ⁇ m).
  • Cuprous oxide is 1 ⁇ 10 6 to 1 ⁇ 10 7 ( ⁇ m), so the layer containing copper oxide has low conductivity. At most, transmission loss due to the skin effect is less likely to occur when forming a circuit of a printed wiring board or a semiconductor package substrate using the copper member according to the present invention.
  • the layer containing copper oxide may contain a metal other than copper.
  • the contained metal is not particularly limited, but contains at least one metal selected from the group consisting of Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au and Pt. good too.
  • metals having higher acid resistance and heat resistance than copper such as Ni, Pd, Au and Pt.
  • a layer containing a metal other than copper may be formed on the layer containing copper oxide.
  • This layer can be formed on the outermost surface of the copper member by plating.
  • the plating method is not particularly limited. Plating can be performed by electrolytic plating, electroless plating, vacuum deposition, chemical conversion treatment, or the like, but electrolytic plating is preferred because it is preferable to form a uniform and thin plating layer.
  • nickel plating and nickel alloy plating are preferable.
  • Metals formed by nickel plating and nickel alloy plating include, for example, pure nickel, Ni—Cu alloy, Ni—Cr alloy, Ni—Co alloy, Ni—Zn alloy, Ni—Mn alloy, Ni—Pb alloy, Ni— P alloy etc. are mentioned.
  • metal salts used for plating include nickel sulfate, nickel sulfamate, nickel chloride, nickel bromide, zinc oxide, zinc chloride, diamminedichloropalladium, iron sulfate, iron chloride, chromic anhydride, chromium chloride, sodium chromium sulfate, copper sulfate, copper pyrophosphate, cobalt sulfate, manganese sulfate, and the like;
  • the bath composition is, for example, nickel sulfate (100 g/L or more and 350 g/L or less), nickel sulfamate (100 g/L or more and 600 g/L or less), nickel chloride (0 g/L or more and 300 g/L or less). and mixtures thereof are preferred, but sodium citrate (0 g/L or more and 100 g/L or less) or boric acid (0 g/L or more and 60 g/L or less) may be contained as additives.
  • the copper oxide on the surface is first reduced, and an electric charge is used to turn it into cuprous oxide or pure copper. After that, the metal that forms the metal layer begins to deposit.
  • the amount of charge varies depending on the type of plating solution and the amount of copper oxide. For example, when Ni plating is applied to a copper member, 10 C per area dm 2 of the copper member to be electrolytically plated is required to keep the thickness within a preferable range. It is preferable to apply an electric charge of 90C or more, and it is more preferable to apply an electric charge of 20C or more and 65C or less.
  • the amount of metal deposited on the outermost surface of the copper member by plating is not particularly limited, it is preferably 0.8 to 6.0 mg/dm 2 .
  • the amount of adhered metal can be calculated by, for example, dissolving in an acidic solution, measuring the amount of metal by ICP analysis, and dividing the amount by the plane visual field area of the structure.
  • the surface of the copper member is partially coated with a coating agent such as a silane coupling agent or an antiseptic before the oxidation treatment; Steps such as treating the oxide-containing layer with a dissolving agent may be performed.
  • a coating agent such as a silane coupling agent or a preservative
  • the portion is prevented from being subjected to oxidation treatment, and voids are generated in the layer containing copper oxide, and the copper is removed from the copper member.
  • Layers containing oxides tend to break.
  • the dissolving agent is an agent that dissolves copper oxide, and by treating with the dissolving agent, the copper oxide near the interface between the copper member and the layer containing copper oxide is partially dissolved, The layer containing copper oxide is likely to break from the copper member.
  • Silane coupling agents are not particularly limited, but silane, tetraorgano-silane, aminoethyl-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (1-[3-(trimethoxysilyl)propyl]urea ) ((l-[3-(Trimethoxysilyl)propyl]urea)), (3-aminopropyl)triethoxysilane, ((3-glycidyloxypropyl)trimethoxysilane), (3-chloropropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propyl methacrylate, ethyltriacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane
  • Rust inhibitors are not particularly limited, but 1H-tetrazole, 5-methyl-1H-tetrazole, 5-amino-1H-tetrazole, 5-phenyl-1H-tetrazole, 1,2,3-triazole, 1,2,4 -triazole, 1,2,3-benzotriazole, 5-methyl-1H-benzotriazole, 5-amino-1H-benzotriazole, 2-mercaptobenzothiazole, 1,3-dimethyl-5-pyrazolone, pyrrole, 3- methylpyrrole, 2,4-dimethylpyrrole, 2-ethylpyrrole, pyrazole, 3-aminopyrazole, 4-methylpyrazole, 3-amino-5-hydroxypyrazole, thiazole, 2-aminothiazole, 2-methylthiazole, 2- amino-5-methylthiazole, 2-ethylthiazole, benzothiazole, imidazole, 2-methylimidazole, 2-ethylimid
  • the treatment with a silane coupling agent or antiseptic may be performed at any time before the oxidation treatment, such as degreasing, acid cleaning for uniform treatment by removing the native oxide film, or acid to the oxidation process after acid cleaning.
  • the dissolving agent for making it easier to break the layer containing copper oxide from the copper member is not limited to Ni chloride, as long as it contains a component that dissolves copper oxide, and chlorides (potassium chloride, zinc chloride , iron chloride, chromium chloride, etc.), ammonium salts (ammonium citrate, ammonium chloride, ammonium sulfate, nickel ammonium sulfate, etc.), chelating agents (ethylenediaminetetraacetic acid, diethanolglycine, L-glutamic acid diacetic acid/tetrasodium, ethylenediamine-N, N'-disuccinic acid, sodium 3-hydroxy-2,2'-iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, disodium N-(2-hydroxyethyl)iminodiacetate, sodium gluconate etc.), tin(II) chloride, and citric acid.
  • the copper member on which the layer containing copper oxide is formed is immersed in a Ni chloride solution (concentration of 45 g/L or more) at room temperature or at a temperature higher than room temperature for 5 seconds or more. is preferred.
  • a Ni chloride solution concentration of 45 g/L or more
  • treatment may be performed simultaneously with oxidation treatment, or treatment may be performed simultaneously with plating treatment after oxidation treatment.
  • Ni chloride is contained in the plating solution, and a layer containing copper oxide is formed in the plating solution for 5 seconds, 10 seconds, 15 seconds, 20 seconds, 30 seconds, 1 minute, or 2 minutes before plating.
  • the formed copper member may be immersed.
  • the immersion time can be appropriately changed depending on the oxide film thickness.
  • the base material of the insulating base material layer should be such that when the surface of the copper member on which the unevenness is formed is bonded to the insulating base material layer, the surface profile including the uneven shape of the copper member is transferred to the resin base material.
  • a resin substrate is preferable.
  • the resin base material is a material containing resin as a main component, but the type of resin is not particularly limited, and may be a thermoplastic resin or a thermosetting resin, polyphenylene ether (PPE), Epoxy, polyphenylene oxide (PPO), polybenzoxazole (PBO), polytetrafluoroethylene (PTFE), liquid crystal polymer (LCP), thermoplastic polyimide (TPI), fluororesin, polyetherimide, polyetheretherketone, polycyclo Olefins, bismaleimide resins, low dielectric constant polyimides, cyanate resins, or mixed resins thereof can be exemplified.
  • the resin base material may further contain an inorganic filler or glass fiber.
  • the dielectric constant of the insulating substrate layer used is preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.8 or less.
  • the bonding method is not particularly limited, but thermal press fitting is preferred.
  • the resin base material and the copper member may be adhered and laminated, and then heat treated under predetermined conditions.
  • predetermined conditions eg, temperature, pressure, time, etc.
  • Predetermined conditions include, for example, the following conditions.
  • a copper member is heated to the resin base material by applying a pressure of 0 to 20 MPa at a temperature of 50 ° C. to 300 ° C. for 1 minute to 5 hours. Crimping is preferred.
  • the resin substrate is GX13 (manufactured by Ajinomoto Fine-Techno Co., Ltd.), it is heated while being pressurized at 1.0 MPa and held at 180° C. for 60 minutes for thermocompression bonding.
  • the resin base material contains or consists of a PPE resin
  • a copper member is attached to the resin base material by applying a pressure of 0 to 20 MPa at a temperature of 50° C. to 350° C. for 1 minute to 5 hours. Thermocompression bonding is preferred.
  • the resin substrate is R5620 (manufactured by Panasonic)
  • the temperature and pressure are increased to 2.0 to 3.0 MPa after thermocompression bonding while heating to 100 ° C. under a pressure of 0.5 MPa. , 200 to 210° C. for 120 minutes for further thermocompression bonding.
  • the temperature and pressure are increased to 3.0 to 4.0 MPa after thermocompression bonding while heating to 110 ° C. under a pressure of 0.5 MPa. , and 195° C. for 75 minutes for thermocompression bonding.
  • the heat of the copper member is applied to the resin base material by applying a pressure of 0 to 20 MPa at a temperature of 50 ° C. to 400 ° C. for 1 minute to 5 hours. Crimping is preferred.
  • a copper member is formed on the resin substrate by applying a pressure of 0 to 20 MPa at a temperature of 50 ° C. to 400 ° C. for 1 minute to 5 hours.
  • Heat crimping is preferred.
  • the resin substrate is CT-Z (manufactured by Kuraray)
  • it is heated under a pressure of 0 MPa, held at 260 ° C. for 15 minutes, further heated while being pressurized at 4 MPa, and held at 300 ° C. for 10 minutes. heat press.
  • Step of peeling off the copper member After the copper member is attached to the insulating base layer, when the copper member is peeled off from the insulating base layer under predetermined conditions, the protrusions on the surface of the copper member are removed from the insulating base layer. to form a seed layer on the surface of the insulating base layer. Therefore, the surface of the insulating base layer becomes flat.
  • the thickness of the seed layer may be 2.50 ⁇ m or less, more preferably 2.00 ⁇ m or less, and even more preferably 1.70 ⁇ m or less. Moreover, it is preferably 0.01 ⁇ m or more, more preferably 0.10 ⁇ m or more, and even more preferably 0.36 ⁇ m or more. If the thickness is less than 0.01 ⁇ m, the plating formability is poor and the adhesion to the insulating substrate is lowered. If it exceeds 2.50 ⁇ m, the wiring formability is deteriorated.
  • the method for measuring the thickness of the seed layer is not particularly limited, and for example, the thickness of the seed layer may be measured in the SEM image.
  • the seed layer thus produced is used as it is as part of the circuit.
  • the adhesion between the copper and the insulating base layer is improved.
  • the conditions for peeling off the copper member from the insulating base layer are not particularly limited, but a 90° peeling test (Japanese Industrial Standards (JIS) C5016 "Flexible printed wiring board test method"; corresponding international standards IEC249-1: 1982, IEC326- 2:1990).
  • the method of peeling off the copper member from the insulating base material layer is not particularly limited, but a machine may be used, or a manual operation may be performed.
  • the metal transferred to the surface of the insulating substrate layer after peeling off the copper member can be analyzed by various methods (e.g., X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), ICP emission spectroscopy). (Inductively Coupled Plasma Emission Spectroscopy, ICP-OES/ICP-AES)).
  • XPS X-ray photoelectron spectroscopy
  • EDS energy dispersive X-ray spectroscopy
  • ICP emission spectroscopy ICP emission spectroscopy
  • ICP-OES/ICP-AES Inductively Coupled Plasma Emission Spectroscopy
  • XPS is a technique for performing energy analysis by irradiating an object with X-rays and capturing photoelectrons e ⁇ emitted as the object is ionized.
  • XPS it is possible to examine the types, abundances, chemical bonding states, etc. of elements present on the surface of the sample or from the surface to a predetermined depth (for example, up to a depth of 6 nm).
  • the diameter of the analysis spot (that is, the diameter of the cross section of the cylindrical portion that can be analyzed so that the cross section is circular) is suitably 1 ⁇ m or more and 1 mm or less.
  • the metal atoms contained in the layer containing copper oxide may be detected from the surface of the insulating base material from which the copper member has been peeled off by XPS Survey spectrum analysis.
  • the metal contained in the convex part of the copper member is insulated so as to fill 70% or more, 80% or more, 90% or more, 95% or more, 99% or more, or 99.9% or more of the concave part of the transferred surface profile. Transfer to the substrate layer is preferred.
  • the metal fills most of the recesses in the insulating base layer, when the surface of the insulating base layer is measured by XPS, the total peak intensity of the main peaks of the spectrum of metal atoms is higher than the peak intensity of the main peak of the spectrum of C1s. will also grow.
  • the main peak is the peak with the highest intensity among multiple peaks of the metal element.
  • Cu is 2p3 orbital
  • Sn is 3d5 orbital
  • Ag is 3d5 orbital
  • Zn is 2p3 orbital
  • Al is 2p orbital
  • Ti is 2p3 orbital
  • Bi is 4f7 orbital
  • Cr is 2p3 orbital
  • Fe is 2p3 orbital
  • Co is 2p3
  • the main peak is the 2p3 orbital of Ni, the 3d5 orbital of Pd, the 4f7 orbital of Au, and the 4f7 orbital of Pt.
  • the peak intensity of the spectrum referred to here means the height in the vertical axis direction of the XPS spectrum data.
  • the ratio of Cu2p3 to the total atoms on the surface of the insulating base layer from which the copper member is peeled off, as measured by XPS, is 1.0 atom% or more, 1.8 atom% or more, 2.8 atom% or more, 3.0 atom% or more, It is preferably 4.0 atom % or more, 5.0 atom % or more, or 6.0 atom %.
  • the ratio of the surface atomic composition percentage of Cu2p3 / the surface atomic composition percentage of C1s is 0.010 or more, 0.015 or more, 0.020 or more, 0 It is preferably 0.025 or more, 0.030 or more, 0.035 or more, 0.040 or more, 0.045 or more, 0.050 or more, or 0.10 or more.
  • the total atomic composition percentage of the metal atoms on the surface of the peeled insulating base layer measured by X-ray photoelectron spectroscopy (XPS) is 1.0 atom. % or more, 1.5 atom % or more, 1.8 atom % or more, 2.8 atom % or more, 3.0 atom % or more, 4.0 atom % or more, 5.0 atom % or more, or 6.0 atom %.
  • the value of the ratio of (total atomic composition percentage of metal atoms on the surface of the peeled insulating base layer):(atomic composition percentage of C1s on the surface of the peeled insulating base layer) is 0.010. 0.015 or more, 0.020 or more, 0.025 or more, 0.030 or more, 0.035 or more, 0.040 or more, 0.045 or more, 0.050 or more, or 0.10 or more preferable.
  • the ratio of Cu should be 1 atom% or more, preferably 4 atom% or more, and 7 atom% or more. It is more preferably 10 atom % or more, further preferably 11.4 atom % or more.
  • the transfer efficiency indicates the rate at which the metal contained in the protrusions formed on the copper member is transferred to the insulating base layer.
  • composition ratio of the sum of the metals on the surface of the insulating base layer from which the copper member has been peeled off/(C+O) measured by EDS may be 0.38 or more, preferably 0.40 or more. , is more preferably 0.42 or more, and more preferably 0.43 or more.
  • the amount of substances derived from the insulating base layer detected from the surface of the copper member peeled off from the insulating base layer is preferably below the detection limit or, if detected, is a small amount. This is because, in that case, when the copper member is peeled off, breakage in the insulating base material layer can be sufficiently suppressed.
  • the method for detecting substances derived from the insulating base layer is not particularly limited, and a method suitable for the target substance may be used. For example, in the case of organic substances, attenuated total reflection absorption Fourier transform infrared spectroscopy (FT-IR method) ("Infrared and Raman Spectroscopy: Principles and Spectral Interpretation" by Peter Larkin).
  • the FT - IR method is an infrared spectroscopic method in which the substance to be measured is irradiated with infrared rays, and the compound is identified and / or quantified using the infrared absorption spectrum.
  • the N ratio is preferably 10 or less and 9 or less, more preferably 8 or less and 7 or less, and preferably no peak derived from the resin substrate is detected.
  • the ratio of Ra after peeling to Ra before bonding on the surface of the copper member on which the layer having the protrusions is formed is less than 100%, less than 96%, less than 95%, less than 94%, less than 93%, and 92%. preferably less than, less than 91%, less than 90%, less than 80%, less than 70%, less than 65% or less than 60%.
  • a smaller ratio means that the metal forming the layer having protrusions transferred to the insulating base layer.
  • the ratio of the surface area after peeling to the surface area before bonding of the copper member on which the layer having the convex portion is formed is less than 100%, less than 98%, less than 97%, less than 96%, less than 95%, less than 94%. , less than 93%, less than 92%, less than 91%, less than 90%, less than 80% or less than 75%.
  • a smaller ratio means that the metal forming the layer having protrusions transferred to the insulating base layer.
  • the surface area can be measured using a confocal microscope or an atomic force microscope.
  • ⁇ E * ab between the surface of the copper member before thermocompression bonding and the surface of the copper member after peeling is 13 or more, 15 or more, 20 or more, 25 or more, 30 or more, or 35 or more. It means that the larger the difference, the more the metal forming the protrusions transferred to the insulating base layer.
  • the adhesiveness between the resin substrate and the seed layer is enhanced by forming irregularities that serve as anchors in the resin.
  • relatively large unevenness was formed on the surface to ensure adhesion, but this caused copper to precipitate deep from the resin surface layer, so when the seed layer was etched and removed, a small amount of copper remained. tended to A deep etching process was necessary because this trace amount of remaining copper could cause a short circuit between wirings.
  • the effect of increasing adhesion by unevenness forming treatment and electroless copper plating film is that selectivity to resin substrates is high, and sufficient adhesion effect can be obtained only in some cases such as ABF (Ajinomoto Build-Up Film). It is only a resin base material.
  • an ultra-thin copper foil with a carrier is used, but the thickness of the ultra-thin copper foil layer must be 1.5 ⁇ m or more from the viewpoint of handling, etc.
  • roughening treatment of 1 ⁇ m or more is performed. ing.
  • the adhesion between the resin substrate and the seed layer is enhanced.
  • a deep etching process was required.
  • the seed layer obtained by the method of the present disclosure has a smaller surface roughness than the case where the surface is roughened by desmear treatment in the conventional SAP method or the case where the ultra-thin copper foil with a carrier is roughened in the conventional MSAP method. Also, it is possible to avoid problems such as residual copper after etching, pattern skipping due to side etching in fine patterns, and transmission loss of high-frequency signals due to unevenness. In addition, although the surface roughness is small, fine unevenness is densely present, so that the insulating base material and copper are sufficiently adhered to each other.
  • the resist may contain, for example, a material that is cured or dissolved by exposure to light, and is not particularly limited, but is preferably formed of a dry film resist (DFR), a positive liquid resist, or a negative liquid resist.
  • DFR dry film resist
  • DFR preferably contains a binder polymer that contributes to film formability, a monomer that undergoes a photopolymerization reaction upon UV irradiation (for example, an acrylic ester-based or methacrylic ester-based monomer), and a photopolymerization initiator.
  • a dry film having a three-layer structure of cover form/photoresist/carrier film is preferably used for forming the DFR.
  • a DFR, which is a resist can be formed on the structure by laminating the photoresist on the structure while peeling off the cover film, and then peeling off the carrier film after the lamination.
  • Liquid resists include novolak resins that are soluble in organic solvents.
  • the resist can be formed by coating the surface of the structure, drying it, and then dissolving or curing the resist by light irradiation.
  • the thickness of the resist is not particularly limited, it is preferably 1 ⁇ m to 200 ⁇ m.
  • the surface of the seed layer may be plated to form a second seed layer.
  • the method of plating treatment is not particularly limited, and may be electrolytic plating or electroless plating.
  • a film may be formed by a plating method.
  • the second seed layer refers to a metal thin film formed by plating.
  • the thickness of the second seed layer is not particularly limited, and may be about 0.02 to 2 ⁇ m. .
  • the method of copper plating treatment is not particularly limited, and plating treatment can be performed using a known method.
  • the method of removing the resist is not particularly limited, and known methods such as a method using fuming nitric acid or sulfuric acid-hydrogen peroxide mixture, and a dry ashing method using O 2 plasma or the like can be used.
  • Step of Removing Seed Layer The method for removing the seed layer is not particularly limited, and known methods such as quick etching and flash etching using a sulfuric acid-hydrogen peroxide-based etchant can be used.
  • One embodiment of the present invention is a method for selecting a copper member having a layer containing copper oxide formed on at least part of the surface thereof, wherein the copper member is thermally compressed to a resin base material and then pulled from the resin base material.
  • a step of peeling a step of analyzing the surface of the copper member peeled off from the resin base material by attenuated total reflection absorption Fourier transform infrared spectroscopy (FT-IR / ATR method), and a resin base material with the copper member peeled off.
  • FT-IR / ATR method attenuated total reflection absorption Fourier transform infrared spectroscopy
  • a step of performing EDS elemental analysis on the surface of the copper member a step of measuring the thickness of the seed layer formed on the resin base material from which the copper member is peeled off, and a copper member obtained by the FT-IR / ATR method.
  • the S/N ratio of the peak corresponding to the substance derived from the resin substrate on the surface is 10 or less in the wavelength range 700-4000 cm -1 , and the total metal on the surface of the copper member obtained by EDS elemental analysis / ( C+O) composition ratio is 0.4 or more, and the thickness of the seed layer is 0.1 ⁇ m or more and 2.0 ⁇ m or less, selecting a copper member.
  • Another embodiment of the present invention is a method for selecting a copper member having a layer containing copper oxide formed on at least part of the surface thereof, wherein the copper member is thermally compressed to a resin base material, and then A step of peeling off, a step of performing Survey spectrum analysis of X-ray photoelectron spectroscopy (XPS) on the surface of the copper member peeled off from the resin substrate, and a surface of the resin substrate from which the copper member was peeled off , a step of performing EDS elemental analysis, a step of measuring the thickness of the seed layer formed on the resin base material from which the copper member has been peeled off, and The composition ratio of total metal on the surface of the copper member/(C+O) detected from the surface of the peeled resin base material and obtained by EDS elemental analysis is 0.4 or more, and the thickness of the seed layer is 0.4. selecting a copper member having a thickness of 1 ⁇ m or more and 2.0 ⁇ m or less.
  • XPS X-ray photoelectron
  • Each step can be performed according to the details described in the manufacturing method of the laminate.
  • this selection method it is possible to select a copper member having good plating and wiring forming properties when a circuit is formed.
  • Comparative Example 7 an ultra-thin copper foil with a carrier (MT18FL, ultra-thin copper foil thickness: 1.5 ⁇ m) manufactured by Mitsui Mining & Smelting Co., Ltd. was used as it was. In addition, Comparative Example 1 does not use a composite copper foil as described later.
  • MT18FL ultra-thin copper foil thickness: 1.5 ⁇ m
  • Example 1 potassium carbonate 2.5 g / L; KBE-903 (3-aminopropyltriethoxysilane; manufactured by Shin-Etsu Silicone Co., Ltd.) 1 vol%
  • Example 3 contains 2.5 g/L of potassium carbonate; 0.06 g/L of potassium bicarbonate;
  • Examples 4 to 6 contain 5 g/L of potassium hydroxide
  • Comparative Example 2 is a solution of 2.5 g/L of potassium carbonate
  • Comparative Example 3 is a solution of potassium carbonate 2.5 g / L; potassium hydrogen carbonate 0.06 g / L;
  • Comparative Example 5 is potassium hydroxide 5 g / L; KBM-603 (N-2-(aminoethyl)-3 -Aminopropyltrimethoxysilane; manufactured by Shin-Etsu Silicone Co., Ltd.) 5 vol%
  • Comparative Example 6 contains potassium hydroxide
  • Comparative Example 3 contains sodium chlorite 58.8 g/L as an oxidizing agent; potassium hydroxide 8.8 g/L; potassium carbonate 3 g/L; KBM-403 (3-glycidoxypropyltrimethoxysilane; Shin-Etsu Silicone Co., Ltd.) 2 g/L solution was used.
  • Examples 1 and 2 and Comparative Examples 5 and 6 were immersed in the oxidizing agent at 73° C. for 6 minutes, and Examples 3 to 6 and Comparative Examples 2 and 3 were immersed in the oxidizing agent at 73° C. for 2 minutes.
  • Example 4 was treated at 45° C. for 10 seconds using a solution of 45 g/L of tin(II) chloride dihydrate and 1 mL/L of hydrochloric acid.
  • Example 5 was treated at 45° C. for 60 seconds using a solution of 45 g/L of ammonium chloride.
  • Example 6 was treated at 45° C. for 60 seconds using a 50% citric acid solution of 45 mL/L.
  • a laminate sample was obtained by laminating prepreg on a test piece and thermocompression bonding in a vacuum using a vacuum high pressure press.
  • the resin base material is R5670KJ (manufactured by Panasonic)
  • the temperature and pressure are increased to 2.94 MPa and 210° C. for 120 minutes after thermocompression bonding while heating to 110° C. under a pressure of 0.49 MPa. It was thermocompression bonded by holding.
  • the resin base material is R5680J (manufactured by Panasonic) after heat-pressing while heating to 110 ° C. under a pressure of 0.5 MPa, the temperature and pressure are increased, and held for 75 minutes at 3.5 MPa and 195 ° C. It was thermocompression bonded by doing.
  • the resin substrate is NX9255 (manufactured by Park Electrochemical)
  • it is heated to 260°C while pressurizing at 0.69 MPa, and the pressure is increased to 1.5 MPa and heated to 385°C. It was thermocompression bonded by holding for 1 minute.
  • the resin substrate is R1551GG (manufactured by Panasonic)
  • it is heated under a pressure of 1 MPa, and after reaching 100 ° C., it is held at that temperature for 10 minutes, and then further heated under a pressure of 3.3 MPa to 180 ° C. After the temperature was reached, the temperature was maintained for 50 minutes for thermocompression bonding.
  • the resin substrate is CT-Z (manufactured by Kuraray Co., Ltd.), it is heated under a pressure of 0 MPa, held at 260° C. for 15 minutes, further heated while being pressurized at 4 MPa, and held at 300° C. for 10 minutes. crimped.
  • the copper member was peeled off from the resin substrate according to the 90° peeling test (Japanese Industrial Standards (JIS) C5016) for these laminate samples (Fig. 1). Visual observation results are shown in Figure 2-1. Photographs of the surfaces of the resin side and the copper foil side after peeling off are shown in Fig. 2-2 for representative combinations.
  • Example 1 since the composite copper foil was not plated, only Cu atoms were transferred and detected on the resin substrate side. In Examples 2 and 3, since Ni plating was performed, Cu atoms and Ni atoms were transferred and detected on the resin side.
  • the ratio of C1s was smaller in both Examples and Comparative Examples 5 and 6 than in Comparative Examples 1 to 4. In the examples, it is believed that the proportion of C1s on the surface was relatively decreased due to the transfer of cupric oxide or cuprous oxide.
  • R1551GG When using R1551GG as a resin base material, it is around 1200 cm -1 , when using R5670KJ and R5680J, it is around 1190 cm -1 , when using NX9255, it is around 1232 cm -1, and when CT - Z is used, it is 1741 cm -1 .
  • the maximum peak detectable wavelength was taken to be around 1 (the arrows in FIGS. 4 to 8 indicate the maximum peak detectable wavelength).
  • the S/N ratio was calculated using the noise value (N) as the difference between the maximum and minimum values of the peaks detected at a wavelength of 3800-3850 cm ⁇ 1 .
  • Elemental Analysis by EDS (Energy Dispersive X-ray Spectrometer)> First, elemental analysis was performed using an EDS (energy dispersive X-ray spectroscope) (manufactured by Oxford, trade name: X-Max Extreme) (conditions: acceleration voltage of 10 kV, magnification of 30,000 times).
  • FIG. 9 shows a typical secondary electron image and an EDS elemental mapping image of Cu
  • Table 6 (Example) and Table 7 (Comparative Example) show the ratio of each element of C, O, Ni, Cu, and Sn ( atom %), and the value of the ratio (sum of ratios of metal elements/(sum of ratios of C and O)) calculated from these values.
  • the ratio of Cu is 10 atom % or more, and Cu transfers at a high ratio, and (the sum of the ratios of metal elements/(the sum of the ratios of C and O)) is 0.4 or more. , good plating formability.
  • the proportion of Cu was 0.1 atom % or less, and almost no Cu was transferred, resulting in poor plating formability.
  • Comparative Examples 5 and 6 (the sum of the proportions of the metal elements/(the sum of the proportions of C and O)) is as low as less than 0.4, and these are also poor in plating formability.
  • the resin having a seed layer produced using the composite copper foil of the example has good plating formability in terms of surface element composition.
  • Seed layer thickness The thickness of the seed layer was then measured. Specifically, in the cross section of SEM (magnification: 10,000 times), for the layer in which the copper protrusions are embedded in the resin base material, the upper side corresponding to the upper surface of the layer and the lower side corresponding to the lower surface of the layer are in contact with each other. The maximum distance between two parallel straight lines was examined, and the distance was taken as the thickness of the seed layer.
  • FIG. 10 shows a representative SEM image, and Tables 6 and 7 show the thickness measurement results.
  • the wiring formability is good.
  • Comparative Examples 2 and 3 since the thickness of the seed layer was 0 ⁇ m and metal transfer did not occur, almost no plating was formed.
  • Comparative Example 7 since the seed layer is too thick, it is difficult to miniaturize the circuit, and the wiring formability is also poor as shown in ⁇ 3> below.
  • the resin having a seed layer produced using the composite copper foil of the example has good wiring formability in terms of the thickness of the seed layer.
  • electrolytic copper plating was performed at a current density of 1 A/dm 2 at 30° C. for 30 minutes to form an electrolytic copper plating film with a thickness of 15 ⁇ m.
  • the seed layer under the plating resist was dissolved and removed by etching using a mixed solution of sulfuric acid and hydrogen peroxide to obtain a laminated wiring circuit board.
  • the resin having the seed layer of Example 3 was subjected to electroplating alone to form a second seed layer. Specifically, using a commercially available electrolytic copper plating solution, an electrolytic copper plating film was formed at a current density of 1 A/dm 2 at 30°C.
  • FIG. 11 shows SEM cross-sectional images (30000 times) of Examples 1, 2 and 3 and Comparative Example 7.
  • electrolytic copper plating was performed at a current density of 1 A/dm 2 at 30° C. for 30 minutes to form an electrolytic copper plating film with a thickness of 15 ⁇ m.
  • the seed layer under the plating resist was dissolved and removed by etching using a mixed solution of sulfuric acid and hydrogen peroxide to obtain a laminated wiring circuit board.
  • Comparative Example 7 has a low etching factor and poor wiring formability.

Abstract

The purpose of the present invention is to provide a novel copper member. Provided is a copper member in which a layer containing a copper oxide is formed on at least part of the surface thereof, wherein: the peak S/N ratio corresponding to a substance derived from a resin base material at the surface of the copper member, as obtained by attenuated total reflection absorption Fourier transform infrared spectrometry (FT-IR/ATR method) when the copper member is thermal-pressure-bonded to a resin base material and then separated from the resin base material, is not more than 10 in the wavelength range of 700-4,000 cm-1; the compositional ratio of the total of metal/(C+O) at the surface of the copper member, as obtained by EDS elemental analysis, is not less than 0.4; and the thickness of a seed layer formed in the resin base material is 0.1-2.0 μm.

Description

銅部材copper material
 本発明は銅部材に関する。 The present invention relates to copper members.
 近年、配線の微細化の要求が高まっており、従来の銅箔付きの絶縁樹脂を用いて不要な銅部分をエッチング除去するサブトラクティブ法(特開2005-223226号公報;特開2010-267891号公報;特開2002-176242号公報)による配線化では微細化の要求を満足できない。そのため、セミアディティブ(SAP)法やモディファイドセミアディティブ(MSAP)法といった配線化技術が用いられている。MSAP法は、サブトラクティブ法と比べて、工法上エッチングする銅膜厚が薄いため配線の微細化が可能である。 In recent years, the demand for miniaturization of wiring has increased, and a subtractive method (JP 2005-223226; JP 2010-267891) of etching away unnecessary copper parts using a conventional insulating resin with copper foil. The wiring according to Japanese Patent Application Laid-Open No. 2002-176242 cannot satisfy the demand for miniaturization. Therefore, wiring techniques such as the semi-additive (SAP) method and the modified semi-additive (MSAP) method are used. Compared to the subtractive method, the MSAP method enables miniaturization of wiring because the film thickness of the copper to be etched is thin due to the method.
 MSAP法では、支持体上に剥離層を介して形成された数μm厚の銅層を有するキャリア付き極薄銅箔を用い、絶縁樹脂上にシード層を形成した後、レジストを積層して形成したパターン部に電解銅めっきを厚く形成した後、レジスト及びシード層を除去することで配線化する技術である(図1A参照)。サブトラクティブ法と比べて工法上エッチングする銅膜厚が薄いため配線の微細化が可能である。 In the MSAP method, an ultra-thin copper foil with a carrier having a copper layer with a thickness of several μm formed on a support via a peeling layer is used, and after forming a seed layer on an insulating resin, a resist is laminated. This is a technique of wiring by removing the resist and seed layer after forming a thick electrolytic copper plating on the patterned portion (see FIG. 1A). Compared to the subtractive method, the copper film thickness to be etched is thinner than the subtractive method, so the wiring can be made finer.
 SAP法では樹脂基板上に銅からなるシード層を形成することが一般的であるが、樹脂基板とシード層との密着を得るために、絶縁樹脂層の表面を、過マンガン酸法などによるデスミア処理によって粗面化する。このときの絶縁樹脂層の粗化面の表面粗さ(Ra)は300nm以上になる。続いて、無電解めっきなどにより絶縁樹脂層上に銅からなるシード層を形成する。次いで、シード層の上の、配線層が配置されない部分に、レジストを形成する。さらに、レジストが形成されていない部分には、電解めっきによって、銅めっき層を厚く形成する。最後に、レジストを除去した後に、露出しているシード層をエッチングする。これにより、シード層および金属めっき層からなる配線パターンが樹脂基板上に形成される。 In the SAP method, it is common to form a seed layer made of copper on a resin substrate. Roughened by processing. At this time, the surface roughness (Ra) of the roughened surface of the insulating resin layer is 300 nm or more. Subsequently, a seed layer made of copper is formed on the insulating resin layer by electroless plating or the like. Next, a resist is formed on the portion of the seed layer where the wiring layer is not arranged. Further, a thick copper plating layer is formed by electroplating on the portions where the resist is not formed. Finally, after removing the resist, the exposed seed layer is etched. Thereby, a wiring pattern composed of the seed layer and the metal plating layer is formed on the resin substrate.
 本発明では、新規な銅部材を提供することを目的とする。 An object of the present invention is to provide a novel copper member.
[1]表面の少なくとも一部に銅酸化物を含む層が形成された銅部材であって、
  前記銅部材を、樹脂基材に熱圧着した後に前記樹脂基材から引き剥がした時、
   減衰全反射吸収フーリエ変換赤外分光法(FT-IR/ATR法)によって得られる、前記銅部材の表面における、樹脂基材由来の物質に対応するピークのS/N比が、波長範囲700-4000cm-1において10以下であり、
   EDS元素分析によって得られる、前記樹脂基材の表面の金属の合計/(C+O)の組成割合が0.4以上であり、
   前記樹脂基材において形成されるシード層の厚さが0.1μm以上、2.0μm以下である、銅部材。
[2] 前記ピークのS/N比が7以下である、[1]項に記載の銅部材。
[3] 銅部材の表面の少なくとも一部に銅酸化物を含む層が形成された銅部材であって、  前記銅部材を、樹脂基材に熱圧着した後に前記樹脂基材から引き剥がした時、
   X線光電子分光法(XPS)のSurvey spectrum分析によって、前記銅酸化物を含む層に含まれる金属原子が、前記銅部材が引き剥がされた前記樹脂基材の表面から検出され、
   EDS元素分析によって得られる、前記樹脂基材の表面の金属の合計/(C+O)の組成割合が0.4以上であり、
   前記樹脂基材において形成されるシード層の厚さが0.1μm以上、2.0μm以下である、銅部材。
銅部材。
[4] 前記銅部材が引き剥がされた前記樹脂基材の表面から検出される金属元素のメインピークの強度の合計がC1sのピーク強度よりも大きい、[3]項に記載の銅部材。
[5] 前記銅部材が引き剥がされた前記樹脂基材の表面において、XPSによる測定結果から算出された
[金属元素の表面原子組成百分率(atom%)の合計]/[C1sの表面原子組成百分率(atom%)]
が0.010以上である、[4]項に記載の銅部材。
[6] 前記Survey spectrum分析によって検出されるCu2p3とNi2p3の表面原子組成百分率の合計が1.5atom%以上である、[4]項に記載の銅部材。
[7] 前記Survey spectrum分析によって検出されるCu2p3の表面原子組成百分率が1.0atom%以上である、[4]項に記載の銅部材。
[8] 前記銅酸化物を含む層が形成された表面のRaが0.04μm以上であって、前記Raに対する、前記樹脂基材から引き剥がされた前記銅部材の表面のRaの割合が100%未満である、[1]~[7]のいずれか一項に記載の銅部材。
[9] 前記銅酸化物を含む層が形成された表面の表面積に対する、前記樹脂基材から引き剥がされた前記銅部材の表面積の割合が100%未満である、[1]~[8]のいずれか一項に記載の銅部材。
[10] 前記銅酸化物を含む層が形成された表面と前記樹脂基材から引き剥がされた前記銅部材の表面の色差(ΔEab)が15以上である、[1]~[9]のいずれか一項に記載の銅部材。
[11] 前記樹脂基材は、ポリフェニレンエーテル(PPE)、エポキシ、ポリフェニレンオキシド(PPO)、ポリベンゾオキサゾール(PBO)、ポリテトラフルオロエチレン(PTFE)、液晶ポリマー(LCP)、または熱可塑性ポリイミド(TPI)、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミド及びシアネート樹脂からなる群から選択された少なくとも1つの絶縁性樹脂を含有する、[1]~[10]のいずれか一項に記載の銅部材。
[12] 前記銅部材が、前記樹脂基材に、50℃~400℃の温度、0~20MPaの圧力、1分~5時間の時間、の条件で熱圧着される、[1]~[11]のいずれか一項に記載の銅部材。
[13] 前記銅酸化物を含む層が銅以外の金属を含む、[1]~[12]のいずれか一項に記載の銅部材。
[14] 前記銅以外の金属がNiである、[13]項に記載の銅部材。
[15] 表面の少なくとも一部に銅酸化物を含む層が形成された銅部材の選択方法であって、
 前記銅部材を、樹脂基材に熱圧着した後に前記樹脂基材から引き剥がす工程と、
 前記樹脂基材から引き剥がされた前記銅部材の表面を減衰全反射吸収フーリエ変換赤外分光法(FT-IR/ATR法)で解析する工程と、
 前記銅部材を引き剥がした前記樹脂基材の表面に対し、EDS元素分析を行う工程と、 前記銅部材を引き剥がした前記樹脂基材において形成されるシード層の厚さを測定する工程と、
 前記FT-IR/ATR法によって得られる、前記銅部材の表面における、樹脂基材由来の物質に対応するピークのS/N比が、波長範囲700-4000cm-1において10以下であり、
 前記EDS元素分析によって得られる、前記銅部材の表面の金属の合計/(C+O)の組成割合が0.4以上であり、
 前記シード層の厚さが0.1μm以上、2.0μm以下である、銅部材を選択する工程と、
を含む選択方法。
[16] 表面の少なくとも一部に銅酸化物を含む層が形成された銅部材の選択方法であって、
 前記銅部材を、樹脂基材に熱圧着した後に前記樹脂基材から引き剥がす工程と、
 前記樹脂基材から引き剥がされた前記銅部材の表面に対し、X線光電子分光法(XPS)のSurvey spectrum分析を行う工程と、
 前記銅部材を引き剥がした前記樹脂基材の表面に対し、EDS元素分析を行う工程と、 前記銅部材を引き剥がした前記樹脂基材において形成されるシード層の厚さを測定する工程と、
  前記銅酸化物を含む層に含まれる金属原子が、前記銅部材が引き剥がされた前記樹脂基材の表面から検出され、
  前記EDS元素分析によって得られる、前記銅部材の表面の金属の合計/(C+O)の組成割合が0.4以上であり、
  前記シード層の厚さが0.1μm以上、2.0μm以下である、
 銅部材を選択する工程と、
を含む選択方法。
[17] 前記銅部材の表面をシランカップリング剤または防錆剤で部分コートする工程と、
 前記部分コートされた前記表面を酸化処理することにより前記銅酸化物を含む層を形成する工程と、
をさらに含む、[16]項の選択方法。
[18] 前記銅部材の前記表面が酸化剤によって酸化処理される、[17]項の選択方法。
[19] 前記シランカップリング剤が、シラン、テトラオルガノ-シラン、アミノエチル-アミノプロピルトリメトキシシラン、(3-アミノプロピル)トリメトキシシラン、(1-[3-(トリメトキシシリル)プロピル]ウレア)((l-[3-(Trimethoxysilyl)propyl]urea))、(3-アミノプロピル)トリエトキシシラン、((3-グリシジルオキシプロピル)トリメトキシシラン)、(3-クロロプロピル)トリメトキシシラン、(3-グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3-(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2-メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン-トリメトキシシランからなる群から選択される、[17]または[18]項に記載の選択方法。
[20] 前記防錆剤が、1H-テトラゾール、5-メチル-1H-テトラゾール、5-アミノ-1H-テトラゾール、5-フェニル-1H-テトラゾール、1,2,3-トリアゾール、1,2,4-トリアゾール、1,2,3-ベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、5-アミノ-1H-ベンゾトリアゾール、2-メルカプトベンゾチアゾール、1,3-ジメチル-5-ピラゾロン、ピロール、3-メチルピロール、2,4-ジメチルピロール、2-エチルピロール、ピラゾール、3-アミノピラゾール、4-メチルピラゾール、3-アミノ-5-ヒドロキシピラゾール、チアゾール、2-アミノチアゾール、2-メチルチアゾール、2-アミノ-5-メチルチアゾール、2-エチルチアゾール、ベンゾチアゾール、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-ブチルイミダゾール、5-アミノイミダゾール、6-アミノイミダゾール、ベンゾイミダゾール、2-(メチルチオ)ベンゾイミダゾールからなる群から選択される、[17]または[18]項に記載の選択方法。
[21] 前記酸化処理された前記表面に、銅以外の金属を含む層を形成する工程をさらに含む、[17]~[20]のいずれか一項に記載の選択方法。
[22] 前記銅以外の金属がNiである、[21]項に記載の選択方法。
[23] 前記銅部材の前記表面を酸化処理する工程と、
 前記酸化処理された前記表面を溶解剤で処理することにより前記銅酸化物を含む層を形成する工程と、
をさらに含む、[16]項の選択方法。
[24] 前記銅部材の前記表面が酸化剤によって酸化処理される、[23]項の選択方法。
[25] 前記溶解剤が、塩化Ni、塩化亜鉛、塩化鉄、塩化クロム、クエン酸アンモニウム、塩化カリウム、硫酸アンモニウム、塩化アンモニウム、硫酸ニッケルアンモニウム、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウム、塩化スズ(II)、及びクエン酸からなる群から選択される、[23]項に記載の選択方法。
[26] 前記溶解剤で処理された前記表面に、銅以外の金属を含む層を形成する工程をさらに有する、[23]~[25]のいずれか一項に記載の選択方法。
[27] 前記銅以外の金属がNiである、[26]項に記載の選択方法。
[28] [1]~[14]のいずれか一項に記載の銅部材の製造方法であって、
 1)銅部材の前記表面をシランカップリング剤または防錆剤で部分コートする工程;及び
 2)前記部分コートされた前記表面を酸化処理することにより前記銅酸化物を含む層を形成する工程; 
を含む、銅部材の製造方法。
[29] [13]または[14]項に記載の銅部材の製造方法であって、
 1)銅部材の前記表面をシランカップリング剤または防錆剤で部分コートする工程; 2)前記部分コートされた前記表面を酸化処理することにより前記銅酸化物を含む層を形成する工程;
 3)酸化処理された前記表面に、銅以外の金属を含む層を形成する工程;
を含む、銅部材の製造方法。
[30] [1]~[14]のいずれか一項に記載の銅部材の製造方法であって、
 1)前記部分コートされた前記表面を酸化処理することにより前記銅酸化物を含む層を形成する工程; および
 2)前記酸化処理された前記表面を溶解剤で処理する工程
を含む、銅部材の製造方法。
[31] [13]または[14]項に記載の銅部材の製造方法であって、
 1)前記銅部材の前記表面を酸化処理することにより前記銅酸化物を含む層を形成する工程;
 2)前記酸化処理された前記表面を溶解剤で処理する工程;及び
 3)前記溶解剤で処理された前記表面に銅以外の金属を含む層を形成する工程;
を含み、
 前記溶解剤が、前記銅酸化物を溶解する成分を含む、銅部材の製造方法。
[32] 前記溶解剤が、塩化Ni、塩化亜鉛、塩化鉄、塩化クロム、クエン酸アンモニウム、塩化カリウム、硫酸アンモニウム、塩化アンモニウム、硫酸ニッケルアンモニウム、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウム、塩化スズ(II)、およびクエン酸からなる群から選択される化合物を含む、[30]または[31]項に記載の銅部材の製造方法。
[33] 前記銅以外の金属がNiである、[29]または[31]項に記載の銅部材の製造方法。
[1] A copper member having a layer containing copper oxide formed on at least part of its surface,
When the copper member is peeled off from the resin base material after being thermocompression bonded to the resin base material,
The S/N ratio of the peak corresponding to the substance derived from the resin base material on the surface of the copper member obtained by attenuated total reflection absorption Fourier transform infrared spectroscopy (FT-IR/ATR method) is in the wavelength range of 700- 10 or less at 4000 cm −1 ,
The composition ratio of the sum of the metals on the surface of the resin base material/(C+O) obtained by EDS elemental analysis is 0.4 or more,
A copper member, wherein a seed layer formed on the resin base material has a thickness of 0.1 μm or more and 2.0 μm or less.
[2] The copper member according to [1], wherein the peak S/N ratio is 7 or less.
[3] A copper member having a layer containing copper oxide formed on at least a part of the surface of the copper member, wherein the copper member is thermally compressed to a resin base material and then peeled off from the resin base material. ,
By Survey spectrum analysis of X-ray photoelectron spectroscopy (XPS), metal atoms contained in the layer containing copper oxide are detected from the surface of the resin base material from which the copper member is peeled off,
The composition ratio of the sum of the metals on the surface of the resin base material/(C+O) obtained by EDS elemental analysis is 0.4 or more,
A copper member, wherein a seed layer formed on the resin base material has a thickness of 0.1 μm or more and 2.0 μm or less.
copper material.
[4] The copper member according to item [3], wherein the total intensity of the main peaks of the metal elements detected from the surface of the resin base material from which the copper member has been peeled off is greater than the C1s peak intensity.
[5] [Total surface atomic composition percentage (atom%) of metal elements]/[C1s surface atomic composition percentage calculated from XPS measurement results on the surface of the resin base material from which the copper member was peeled off (atom%)]
is 0.010 or more, the copper member according to item [4].
[6] The copper member according to [4], wherein the total surface atomic composition percentage of Cu2p3 and Ni2p3 detected by the Survey spectrum analysis is 1.5 atom % or more.
[7] The copper member according to [4], wherein the surface atomic composition percentage of Cu2p3 detected by the Survey spectrum analysis is 1.0 atom % or more.
[8] The surface on which the layer containing the copper oxide is formed has an Ra of 0.04 μm or more, and the ratio of the Ra of the surface of the copper member peeled off from the resin base material to the Ra is 100. %, the copper member according to any one of [1] to [7].
[9] of [1] to [8], wherein the ratio of the surface area of the copper member peeled off from the resin substrate to the surface area of the surface on which the layer containing the copper oxide is formed is less than 100%. The copper member according to any one of the items.
[10] The color difference (ΔE * ab) between the surface on which the layer containing copper oxide is formed and the surface of the copper member peeled off from the resin substrate is 15 or more, [1] to [9] The copper member according to any one of .
[11] The resin base material is polyphenylene ether (PPE), epoxy, polyphenylene oxide (PPO), polybenzoxazole (PBO), polytetrafluoroethylene (PTFE), liquid crystal polymer (LCP), or thermoplastic polyimide (TPI). ), containing at least one insulating resin selected from the group consisting of fluororesin, polyetherimide, polyetheretherketone, polycycloolefin, bismaleimide resin, low dielectric constant polyimide and cyanate resin, [1]- The copper member according to any one of [10].
[12] The copper member is thermocompression bonded to the resin substrate under the conditions of a temperature of 50° C. to 400° C., a pressure of 0 to 20 MPa, and a time of 1 minute to 5 hours, [1] to [11] ] The copper member as described in any one of ].
[13] The copper member according to any one of [1] to [12], wherein the layer containing copper oxide contains a metal other than copper.
[14] The copper member according to item [13], wherein the metal other than copper is Ni.
[15] A method for selecting a copper member having a layer containing copper oxide formed on at least part of the surface thereof, comprising:
a step of peeling off the copper member from the resin base material after thermocompression bonding to the resin base material;
a step of analyzing the surface of the copper member peeled off from the resin base material by attenuated total reflection absorption Fourier transform infrared spectroscopy (FT-IR/ATR method);
performing EDS elemental analysis on the surface of the resin base material from which the copper member has been removed; measuring the thickness of a seed layer formed on the resin base material from which the copper member has been removed;
The S/N ratio of the peak corresponding to the substance derived from the resin base material on the surface of the copper member obtained by the FT-IR/ATR method is 10 or less in the wavelength range of 700-4000 cm -1 ,
The composition ratio of the sum of the metals on the surface of the copper member/(C+O) obtained by the EDS elemental analysis is 0.4 or more,
a step of selecting a copper member having a thickness of the seed layer of 0.1 μm or more and 2.0 μm or less;
Selection method including.
[16] A method for selecting a copper member having a layer containing copper oxide formed on at least a part of the surface, comprising:
a step of peeling off the copper member from the resin base material after thermocompression bonding to the resin base material;
a step of performing Survey spectrum analysis of X-ray photoelectron spectroscopy (XPS) on the surface of the copper member peeled off from the resin base;
performing EDS elemental analysis on the surface of the resin base material from which the copper member has been removed; measuring the thickness of a seed layer formed on the resin base material from which the copper member has been removed;
metal atoms contained in the layer containing the copper oxide are detected from the surface of the resin base material from which the copper member has been peeled off;
The composition ratio of the sum of the metals on the surface of the copper member/(C+O) obtained by the EDS elemental analysis is 0.4 or more,
The seed layer has a thickness of 0.1 μm or more and 2.0 μm or less.
selecting a copper member;
Selection method including.
[17] partially coating the surface of the copper member with a silane coupling agent or a rust inhibitor;
forming a layer containing the copper oxide by oxidizing the partially coated surface;
The selection method of item [16], further comprising:
[18] The selection method according to item [17], wherein the surface of the copper member is oxidized with an oxidizing agent.
[19] The silane coupling agent is silane, tetraorgano-silane, aminoethyl-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (1-[3-(trimethoxysilyl)propyl]urea). ) ((l-[3-(Trimethoxysilyl)propyl]urea)), (3-aminopropyl)triethoxysilane, ((3-glycidyloxypropyl)trimethoxysilane), (3-chloropropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propyl methacrylate, ethyltriacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane, tris(2-methoxyethoxy) ( vinyl)silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chlorotriethoxysilane, ethylene-trimethoxysilane, [17] or [18] Selection method described in section.
[20] The rust inhibitor is 1H-tetrazole, 5-methyl-1H-tetrazole, 5-amino-1H-tetrazole, 5-phenyl-1H-tetrazole, 1,2,3-triazole, 1,2,4 -triazole, 1,2,3-benzotriazole, 5-methyl-1H-benzotriazole, 5-amino-1H-benzotriazole, 2-mercaptobenzothiazole, 1,3-dimethyl-5-pyrazolone, pyrrole, 3- methylpyrrole, 2,4-dimethylpyrrole, 2-ethylpyrrole, pyrazole, 3-aminopyrazole, 4-methylpyrazole, 3-amino-5-hydroxypyrazole, thiazole, 2-aminothiazole, 2-methylthiazole, 2- amino-5-methylthiazole, 2-ethylthiazole, benzothiazole, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-butylimidazole, 5-aminoimidazole, 6-aminoimidazole, benzimidazole, 2-(methylthio) The selection method according to item [17] or [18], which is selected from the group consisting of benzimidazoles.
[21] The selection method according to any one of [17] to [20], further comprising forming a layer containing a metal other than copper on the oxidized surface.
[22] The selection method according to item [21], wherein the metal other than copper is Ni.
[23] oxidizing the surface of the copper member;
forming a layer containing the copper oxide by treating the oxidized surface with a dissolving agent;
The selection method of item [16], further comprising:
[24] The selection method according to item [23], wherein the surface of the copper member is oxidized with an oxidizing agent.
[25] The dissolving agent contains Ni chloride, zinc chloride, iron chloride, chromium chloride, ammonium citrate, potassium chloride, ammonium sulfate, ammonium chloride, nickel ammonium sulfate, ethylenediaminetetraacetic acid, diethanolglycine, L-glutamic acid diacetic acid tetra sodium, ethylenediamine-N,N'-disuccinic acid, sodium 3-hydroxy-2,2'-iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, N-(2-hydroxyethyl)iminodiacetic acid The selection method according to item [23], which is selected from the group consisting of disodium, sodium gluconate, tin(II) chloride, and citric acid.
[26] The selection method according to any one of [23] to [25], further comprising forming a layer containing a metal other than copper on the surface treated with the dissolving agent.
[27] The selection method according to item [26], wherein the metal other than copper is Ni.
[28] A method for manufacturing a copper member according to any one of [1] to [14],
1) a step of partially coating the surface of a copper member with a silane coupling agent or a rust inhibitor; and 2) a step of oxidizing the partially coated surface to form a layer containing the copper oxide;
A method of manufacturing a copper member, comprising:
[29] A method for manufacturing a copper member according to item [13] or [14],
1) a step of partially coating the surface of a copper member with a silane coupling agent or a rust inhibitor; 2) a step of oxidizing the partially coated surface to form a layer containing the copper oxide;
3) forming a layer containing a metal other than copper on the oxidized surface;
A method of manufacturing a copper member, comprising:
[30] A method for manufacturing a copper member according to any one of [1] to [14],
1) forming a layer containing the copper oxide by oxidizing the partially coated surface; and 2) treating the oxidized surface with a dissolving agent. Production method.
[31] A method for manufacturing a copper member according to [13] or [14],
1) forming a layer containing the copper oxide by oxidizing the surface of the copper member;
2) treating the oxidation-treated surface with a dissolving agent; and 3) forming a layer containing a metal other than copper on the surface treated with the dissolving agent;
including
A method for producing a copper member, wherein the dissolving agent contains a component that dissolves the copper oxide.
[32] The dissolving agent is Ni chloride, zinc chloride, iron chloride, chromium chloride, ammonium citrate, potassium chloride, ammonium sulfate, ammonium chloride, nickel ammonium sulfate, ethylenediaminetetraacetic acid, diethanolglycine, L-glutamic acid diacetic acid tetra sodium, ethylenediamine-N,N'-disuccinic acid, sodium 3-hydroxy-2,2'-iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, N-(2-hydroxyethyl)iminodiacetic acid The method for producing a copper member according to item [30] or [31], which contains a compound selected from the group consisting of disodium, sodium gluconate, tin(II) chloride, and citric acid.
[33] The method for producing a copper member according to item [29] or [31], wherein the metal other than copper is Ni.
==関連文献とのクロスリファレンス==
 本出願は、2021年4月20日付で出願した日本国特許出願特願2021-071460に基づく優先権を主張するものであり、当該基礎出願を引用することにより、本明細書に含めるものとする。
== Cross-reference with related literature ==
This application claims priority based on Japanese Patent Application No. 2021-071460 filed on April 20, 2021, and is incorporated herein by reference to the basic application. .
図1は、本発明の一実施形態における(A)積層体の製造方法(B)作製した断面の走査電子顕微鏡観察写真を、従来技術のMSAP法と比較して示した図である。(A-1)(B-1)がMSAP法、(A-2)(B-2)が本実施形態の方法を表す。FIG. 1 is a diagram showing scanning electron microscope observation photographs of a cross section produced by (A) the laminate manufacturing method (B) in one embodiment of the present invention, in comparison with the MSAP method of the prior art. (A-1) and (B-1) represent the MSAP method, and (A-2) and (B-2) represent the method of the present embodiment. 図1Bは、本発明の一実施態様における、シード層の模式図である。グレーの部分は絶縁基材層、黒の部分は絶縁基材層に転移した銅部材の部分を表す。銅部材を絶縁基材層から引き剥がした時、(A)絶縁基材層のちょうど表面で、銅部材が引き剥がされた場合の一例(B)絶縁基材層の表面から離れ、銅部材の凸部より胴部際の内側で銅部材が引き剥がされた場合の一例を示す。2本の直線は、それぞれ、引き剥がされた銅部材の表面と、銅部材の凸部によって絶縁基材層に形成された凹部の最底部を含むように構成される面の位置に相当する。この2本の直線で挟まれた部分がシード層であって、矢印で表された2本の直線の間隔がシード層の厚さになる。FIG. 1B is a schematic diagram of a seed layer, in accordance with one embodiment of the present invention. The gray portion represents the insulating substrate layer, and the black portion represents the portion of the copper member transferred to the insulating substrate layer. When the copper member is peeled off from the insulating base layer, (A) an example of the case where the copper member is peeled off just at the surface of the insulating base layer (B) is separated from the surface of the insulating base layer and the copper member is peeled off. An example of the case where the copper member is peeled off on the inner side of the trunk portion from the convex portion is shown. The two straight lines respectively correspond to the surface of the peeled copper member and the positions of the planes configured to include the bottoms of the recesses formed in the insulating base layer by the protrusions of the copper member. The portion sandwiched between these two straight lines is the seed layer, and the distance between the two straight lines indicated by arrows is the thickness of the seed layer. 図2は、実施例1~6及び比較例2~6の複合銅箔を樹脂基材に圧着して引き剥がした後の目視観察による結果、および両側の表面の代表的な写真を示した図である。目視観察による結果は、銅箔の表面が樹脂側に転移している場合は〇、転移していない場合は×と記したFIG. 2 is a diagram showing the results of visual observation after the composite copper foils of Examples 1 to 6 and Comparative Examples 2 to 6 were pressure-bonded to a resin substrate and peeled off, and representative photographs of both surfaces. is. The result of visual observation is indicated by 〇 when the surface of the copper foil is transferred to the resin side, and by × when it is not transferred. 図3は、実施例1~3及び比較例1~4の樹脂基材のXPS解析の結果を示す図である。FIG. 3 shows the results of XPS analysis of the resin substrates of Examples 1-3 and Comparative Examples 1-4. 図4は、実施例1~3及び比較例2~4の複合銅箔を、樹脂基材(R5670KJ)に熱圧着して引き剥がした後、複合銅箔の表面をFT-IR/ATR法で測定した結果である。FIG. 4 shows that the composite copper foils of Examples 1 to 3 and Comparative Examples 2 to 4 were thermally crimped to a resin substrate (R5670KJ) and peeled off, and then the surface of the composite copper foil was measured by the FT-IR/ATR method. These are the results of measurements. 図5は、実施例3及び比較例3の複合銅箔を、樹脂基材(R1551GG)に熱圧着し、引き剥がした後、複合銅箔の表面をFT-IR/ATR法で測定した結果である。FIG. 5 shows the results of measuring the surfaces of the composite copper foils of Example 3 and Comparative Example 3 by the FT-IR/ATR method after the composite copper foils of Example 3 and Comparative Example 3 were thermocompression bonded to a resin substrate (R1551GG) and peeled off. be. 図6は、実施例4~6及び比較例5~6の複合銅箔を、樹脂基材(R5680J)に熱圧着して、引き剥がした後、複合銅箔の表面をFT-IR/ATR法で測定した結果である。FIG. 6 shows that the composite copper foils of Examples 4 to 6 and Comparative Examples 5 to 6 were thermocompression bonded to a resin base material (R5680J) and peeled off, and then the surface of the composite copper foil was subjected to the FT-IR/ATR method. This is the result of the measurement. 図7は、実施例3及び比較例3の複合銅箔を、樹脂基材(NX9255)に熱圧着後、引き剥がした後、複合銅箔の表面をFT-IR/ATR法で測定した結果である。FIG. 7 shows the results of measuring the surfaces of the composite copper foils of Example 3 and Comparative Example 3 by the FT-IR/ATR method after the composite copper foils of Example 3 and Comparative Example 3 were thermally bonded to a resin substrate (NX9255) and then peeled off. be. 図8は、実施例3及び比較例3の複合銅箔を、樹脂基材(CT-Z)に熱圧着後、引き剥がした後、複合銅箔の表面をFT-IR/ATR法で測定した結果である。FIG. 8 shows the composite copper foils of Example 3 and Comparative Example 3 after thermal compression bonding to the resin base material (CT-Z) and peeling, and then the surfaces of the composite copper foils were measured by the FT-IR/ATR method. This is the result. 図9は、複合銅箔を、樹脂基材に熱圧着して引き剥がした後、樹脂基材の表面を電界放出形走査電子顕微鏡で解析した2次電子像およびCuのEDS画像である。FIG. 9 is a secondary electron image and an EDS image of Cu obtained by analyzing the surface of the resin base material with a field emission scanning electron microscope after the composite copper foil was thermally compressed to and peeled off from the resin base material. 図10は、実施例1,2,3及び比較例3,7の複合銅箔を、樹脂基材に熱圧着して引き剥がした後、樹脂基材に形成されるシード層の断面を観察したSEM画像である。FIG. 10 shows the cross section of the seed layer formed on the resin substrate after the composite copper foils of Examples 1, 2 and 3 and Comparative Examples 3 and 7 were thermally compressed and peeled off from the resin substrate. SEM image. 図11は、実施例1,2,3および比較例7のシード層を有する樹脂に対してめっき処理を行って断面を観察したSEM画像(30000倍)である。FIG. 11 shows SEM images (magnification: 30,000) of cross sections of resins having seed layers of Examples 1, 2, and 3 and Comparative Example 7 that were plated.
 以下、本発明の好ましい実施の形態につき、添付図面を用いて詳細に説明するが、必ずしもこれに限定するわけではない。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not necessarily limited to these. It should be noted that the objects, features, advantages, and ideas of the present invention are apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. can. DETAILED DESCRIPTION OF THE INVENTION The embodiments, specific examples, and the like set forth below are indicative of preferred embodiments of the invention, and are presented by way of illustration or description, without regard to the invention. It is not limited. Based on the description herein, it will be apparent to those skilled in the art that various alterations and modifications can be made within the spirit and scope of the invention disclosed herein.
 ==絶縁基材層と銅部材の積層体の製造方法==
 本明細書の開示の一実施形態は、絶縁基材層と銅部材の積層体の製造方法であって、絶縁基材層と、表面に凸部を有する銅部材とを貼り合わせる工程と、銅部材を引き剥がすことによって、凸部を絶縁基材層表面に転移させ、シード層を形成する工程と、シード層の表面上の所定の場所にレジストを形成する工程と、シード層の表面であってレジストが積層していない領域を銅めっき処理することによって、銅を積層する工程と、レジストを除去する工程と、レジストの除去によって露出したシード層を除去する工程と、を含む、製造方法である。なお、本明細書で、シード層とは、引き剥がされた銅部材の表面と、銅部材の凸部によって絶縁基材層に形成された凹部の最底部を含むように構成される面との間に形成される層をいい(図1B)、従って、その凹部、および凹部に転移した銅部材由来の金属は、その層の中に含まれる。凹部の最底部は、複数ある凹部の底部のうち、引き剥がされた銅部材の表面から最も遠い底部をいい、凹部の最底部を含むように構成される面は、引き剥がされた銅部材の表面と平行である。
==Method for manufacturing laminate of insulating substrate layer and copper member==
One embodiment of the disclosure of the present specification is a method for manufacturing a laminate of an insulating base layer and a copper member, comprising a step of bonding an insulating base layer and a copper member having protrusions on the surface; forming a seed layer by peeling off the member to transfer the projections to the surface of the insulating base layer; forming a resist on a predetermined location on the surface of the seed layer; a method of manufacturing comprising the steps of depositing copper by copper plating the areas where the resist is not deposited, removing the resist, and removing the seed layer exposed by the removal of the resist. be. In this specification, the seed layer refers to the surface of the peeled copper member and the surface configured to include the bottom of the recesses formed in the insulating base layer by the protrusions of the copper member. Refers to the layer formed in between (FIG. 1B), so that the recess and the metal from the copper member transferred to the recess are contained within that layer. The bottom of the recess refers to the farthest bottom from the surface of the stripped copper member among the bottoms of the plurality of recesses, and the surface configured to include the bottom of the recess is the surface of the stripped copper member. parallel to the surface.
[1]絶縁基材層と銅部材とを貼り合わせる工程
<銅部材>
 銅部材の表面は、微細な凸部を有する。
 銅部材の表面の算術平均粗さ(Ra)は0.03μm以上が好ましく、0.05μm以上がより好ましく、また、0.3μm以下であることが好ましく、0.2μm以下であることがより好ましい。
[1] Step of bonding an insulating base layer and a copper member <copper member>
The surface of the copper member has fine protrusions.
The arithmetic mean roughness (Ra) of the surface of the copper member is preferably 0.03 μm or more, more preferably 0.05 μm or more, and is preferably 0.3 μm or less, more preferably 0.2 μm or less. .
 銅部材の表面の最大高さ粗さ(Rz)は0.2μm以上が好ましく、1.0μm以上がより好ましく、また、2.0μm以下であることが好ましく、1.7μm以下であることがより好ましい。 The maximum height roughness (Rz) of the surface of the copper member is preferably 0.2 μm or more, more preferably 1.0 μm or more, and is preferably 2.0 μm or less, more preferably 1.7 μm or less. preferable.
 Ra、Rzが小さすぎると樹脂基材との密着性が不足し、大きすぎると微細配線形成性や高周波特性が劣ることになる。 If Ra and Rz are too small, the adhesion to the resin substrate will be insufficient, and if they are too large, fine wiring formability and high frequency characteristics will be inferior.
 ここで、算術平均粗さ(Ra)とは基準長さlにおいて、以下の式で表される輪郭曲線(y=Z(x))におけるZ(x)(すなわち凸部の高さと凹部の深さ)の絶対値の平均を表す。
Figure JPOXMLDOC01-appb-M000001
Here, the arithmetic average roughness (Ra) is Z (x) (that is, the height of the convex portion and the depth of the concave portion) in the contour curve (y = Z (x)) represented by the following formula at the reference length l It represents the average of the absolute values of
Figure JPOXMLDOC01-appb-M000001
 最大高さ粗さ(Rz)とは基準長さlにおいて、輪郭曲線(y=Z(x))の凸部の高さZpの最大値と凹部の深さZvの最大値の和を表す。 The maximum height roughness (Rz) represents the sum of the maximum value of the height Zp of the convex portion and the maximum value of the depth Zv of the concave portion of the contour curve (y=Z(x)) at the reference length l.
 Ra、RzはJIS B 0601:2001(国際基準ISO4287-1997準拠)に定められた方法により算出できる。  Ra and Rz can be calculated by the method specified in JIS B 0601:2001 (in accordance with the international standard ISO4287-1997).
 銅部材の表面の粗さ曲線要素の平均長さ(RSm)は、特に限定しないが、1500nm以下、1400nm以下、1300nm以下、1200nm以下、1100nm以下、1000nm以下、900nm以下、800nm以下、750nm以下、700nm以下、650nm以下、600nm以下、550nm以下、450nm以下、又は350nm以下が好ましく、100nm以上、200nm以上又は300nm以上が好ましい。ここで、RSmとは、ある基準長さ(lr)における粗さ曲線に含まれる1周期分の凹凸が生じている長さ(すなわち輪郭曲線要素の長さ:Xs1~Xsm)の平均を表し、以下の式で算出される。
Figure JPOXMLDOC01-appb-M000002
The average length (RSm) of the surface roughness curve element of the copper member is not particularly limited, but is 1500 nm or less, 1400 nm or less, 1300 nm or less, 1200 nm or less, 1100 nm or less, 1000 nm or less, 900 nm or less, 800 nm or less, 750 nm or less, It is preferably 700 nm or less, 650 nm or less, 600 nm or less, 550 nm or less, 450 nm or less, or 350 nm or less, and preferably 100 nm or more, 200 nm or more, or 300 nm or more. Here, RSm represents the average length of unevenness for one cycle included in the roughness curve at a certain reference length (lr) (that is, the length of the contour curve element: Xs1 to Xsm), It is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000002
 ここで算術平均粗さ(Ra)の10%を凹凸における最小の高さとし、基準長さ(lr)の1%を最小の長さとして1周期分の凹凸を定義する。一例として、RSmは「原子間力顕微鏡によるファインセラミック薄膜の表面粗さ測定方法(JIS R 1683:2007)」に準じて測定算出することができる。 Here, 10% of the arithmetic mean roughness (Ra) is defined as the minimum height of the unevenness, and 1% of the reference length (lr) is defined as the minimum length, and the unevenness for one cycle is defined. As an example, RSm can be measured and calculated according to "Method for measuring surface roughness of fine ceramic thin film by atomic force microscope (JIS R 1683:2007)".
 銅部材は、少なくとも一部の表面に銅酸化物を含む層が形成されている。銅部材は、具体的には、電解銅箔や圧延銅箔およびキャリア付き銅箔等の銅箔、銅線、銅板、銅製リードフレームであるが、これらに限定されない。銅部材には、構造の一部となる、Cuが主成分として含まれるが、Cu純度が99.9質量%以上の純銅からなる材料が好ましく、タフピッチ銅、脱酸銅、無酸素銅で形成されていることがより好ましく、含有酸素量が0.001質量%~0.0005質量%の無酸素銅で形成されていることがさらに好ましい。 A layer containing copper oxide is formed on at least a part of the surface of the copper member. The copper member specifically includes, but is not limited to, copper foils such as electrolytic copper foil, rolled copper foil, and copper foil with a carrier, copper wires, copper plates, and copper lead frames. The copper member contains Cu as a main component, which is part of the structure, but a material made of pure copper with a Cu purity of 99.9% by mass or more is preferable, and is made of tough pitch copper, deoxidized copper, or oxygen-free copper. More preferably, it is made of oxygen-free copper with an oxygen content of 0.001% by mass to 0.0005% by mass.
 銅部材が銅箔の場合、その厚さは特に限定されないが、0.1μm以上100μm以下が好ましく、0.5μm以上50μm以下がより好ましい。 When the copper member is a copper foil, its thickness is not particularly limited, but is preferably 0.1 μm or more and 100 μm or less, more preferably 0.5 μm or more and 50 μm or less.
<銅部材の製造方法>
 銅酸化物を含む層は、銅部材の表面に形成され、酸化銅(CuO)及び/又は亜酸化銅(CuO)を含む。この銅酸化物を含む層は、銅部材表面を酸化処理することにより、形成することができる。この酸化処理によって、銅部材表面が粗面化される。
<Manufacturing method of copper member>
The layer containing copper oxide is formed on the surface of the copper member and contains copper oxide (CuO) and/or cuprous oxide (Cu 2 O). This layer containing copper oxide can be formed by oxidizing the surface of the copper member. This oxidation treatment roughens the surface of the copper member.
 この酸化工程以前に、ソフトエッチング又はエッチングなどの粗面化処理工程は必要ないが、行ってもよい。また、酸化処理以前に、脱脂処理、自然酸化膜除去によって表面を均一化するための酸洗浄、または酸洗浄後に酸化工程への酸の持ち込みを防止するためのアルカリ処理を行ってもよい。アルカリ処理の方法は特に限定されないが、好ましくは0.1~10g/L、より好ましくは1~2g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30~50℃、0.5~2分間程度処理すればよい。 Before this oxidation step, a surface roughening treatment step such as soft etching or etching is not necessary, but may be performed. In addition, before oxidation treatment, degreasing treatment, acid cleaning for uniformizing the surface by removing a natural oxide film, or alkali treatment for preventing acid from being brought into the oxidation process may be performed after acid cleaning. The method of alkali treatment is not particularly limited, but preferably 0.1 to 10 g/L, more preferably 1 to 2 g/L alkaline aqueous solution, such as sodium hydroxide aqueous solution, at 30 to 50 ° C. for 0.5 to 2 minutes. It should be treated to some extent.
 酸化剤は特に限定されず、例えば、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウム等の水溶液を用いることができる。酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩)や表面活性分子を添加してもよい。表面活性分子としては、ポルフィリン、ポルフィリン大員環、拡張ポルフィリン、環縮小ポルフィリン、直鎖ポルフィリンポリマー、ポルフィリンサンドイッチ配位錯体、ポルフィリン配列、シラン、テトラオルガノ-シラン、アミノエチル-アミノプロピルトリメトキシシラン、(3-アミノプロピル)トリメトキシシラン、(1-[3-(トリメトキシシリル)プロピル]ウレア)((l-[3-(Trimethoxysilyl)propyl]urea))、(3-アミノプロピル)トリエトキシシラン、((3-グリシジルオキシプロピル)トリメトキシシラン)、(3-クロロプロピル)トリメトキシシラン、(3-グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3-(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2-メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン-トリメトキシシラン、アミン、糖などを例示できる。酸化反応条件は特に限定されないが、酸化用薬液の液温は40~95℃であることが好ましく、45~80℃であることがより好ましい。反応時間は0.5~30分であることが好ましく、1~10分であることがより好ましい。 The oxidizing agent is not particularly limited, and for example, an aqueous solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate, etc. can be used. Various additives (eg, phosphates such as trisodium phosphate dodecahydrate) and surface active molecules may be added to the oxidizing agent. Surface active molecules include porphyrins, porphyrin macrocycles, extended porphyrins, ring contracted porphyrins, linear porphyrin polymers, porphyrin sandwich coordination complexes, porphyrin sequences, silanes, tetraorgano-silanes, aminoethyl-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (1-[3-(trimethoxysilyl)propyl]urea) ((l-[3-(Trimethoxysilyl)propyl]urea)), (3-aminopropyl)triethoxysilane , ((3-glycidyloxypropyl)trimethoxysilane), (3-chloropropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propyl methacrylate, ethyl triacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane, tris(2-methoxyethoxy)(vinyl)silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chloro Examples include triethoxysilane, ethylene-trimethoxysilane, amines and sugars. The oxidation reaction conditions are not particularly limited, but the liquid temperature of the oxidizing chemical is preferably 40 to 95°C, more preferably 45 to 80°C. The reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
 銅酸化物を含む層に対し、溶解剤を用いて、酸化された銅部材表面の凸部が調整されていてもよい。この溶解工程で用いる溶解剤は特に限定されないが、キレート剤、特に生分解性キレート剤であることが好ましく、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウムなどが例示できる。溶解用薬液のpHは特に限定されないが、アルカリ性であることが好ましく、pH8~10.5であることがより好ましく、pH9.0~10.5であることがさらに好ましく、pH9.8~10.2であることがさらに好ましい。 For the layer containing copper oxide, the protrusions on the surface of the oxidized copper member may be adjusted using a dissolving agent. The dissolving agent used in this dissolving step is not particularly limited, but is preferably a chelating agent, particularly a biodegradable chelating agent, such as ethylenediaminetetraacetic acid, diethanolglycine, tetrasodium L-glutamic acid diacetate, ethylenediamine-N,N'. -disuccinic acid, sodium 3-hydroxy-2,2'-iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, disodium N-(2-hydroxyethyl)iminodiacetate, sodium gluconate, etc. I can give an example. The pH of the solution for dissolution is not particularly limited, but it is preferably alkaline, more preferably pH 8 to 10.5, still more preferably pH 9.0 to 10.5, and pH 9.8 to 10.5. 2 is more preferred.
 また、この銅酸化物を含む層の表面を還元剤により還元処理してもよく、その場合、銅酸化物を含む層の表面に亜酸化銅が形成されてもよい。この還元工程で用いる還元剤としては、ジメチルアミンボラン(DMAB)、ジボラン、水素化ホウ素ナトリウム、ヒドラジン等が例示できる。 Further, the surface of the layer containing copper oxide may be subjected to reduction treatment with a reducing agent, in which case cuprous oxide may be formed on the surface of the layer containing copper oxide. Examples of the reducing agent used in this reduction step include dimethylamine borane (DMAB), diborane, sodium borohydride, hydrazine and the like.
 純銅の比抵抗値が1.7×10-8(Ωm)なのに対して、酸化銅は1~10(Ωm)
、亜酸化銅は1×10~1×10(Ωm)であるため、銅酸化物を含む層は導電性が低く、例え、樹脂基材に転移した銅酸化物を含む層の量が多くても、本発明に係る銅部材を用いてプリント配線基板や半導体パッケージ基板の回路を形成する際、表皮効果による伝送損失が起こりにくい。
Pure copper has a specific resistance of 1.7×10 -8 (Ωm), while copper oxide has a specific resistance of 1 to 10 (Ωm).
, Cuprous oxide is 1×10 6 to 1×10 7 (Ωm), so the layer containing copper oxide has low conductivity. At most, transmission loss due to the skin effect is less likely to occur when forming a circuit of a printed wiring board or a semiconductor package substrate using the copper member according to the present invention.
 銅酸化物を含む層は銅以外の金属を含んでいてもよい。含まれる金属は特に限定されないが、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属が含まれていてもよい。特に耐酸性及び耐熱性を有するためには、銅よりも耐酸性及び耐熱性の高い金属、例えばNi、Pd、AuおよびPtが含まれることが好ましい。 The layer containing copper oxide may contain a metal other than copper. The contained metal is not particularly limited, but contains at least one metal selected from the group consisting of Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au and Pt. good too. In particular, in order to have acid resistance and heat resistance, it is preferable to contain metals having higher acid resistance and heat resistance than copper, such as Ni, Pd, Au and Pt.
 銅酸化物を含む層の上に銅以外の金属を含む層を形成させてもよい。この層は、めっきによって銅部材の最表面に形成させることができる。めっきの方法は特に限定されず、例えば、銅以外の金属として、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、Au、Pt、あるいは様々な合金を用い、電解めっき、無電解めっき、真空蒸着、化成処理などでめっきすることができるが、一様で薄いめっき層を形成することが好ましいため、電解めっきが好ましい。 A layer containing a metal other than copper may be formed on the layer containing copper oxide. This layer can be formed on the outermost surface of the copper member by plating. The plating method is not particularly limited. Plating can be performed by electrolytic plating, electroless plating, vacuum deposition, chemical conversion treatment, or the like, but electrolytic plating is preferred because it is preferable to form a uniform and thin plating layer.
 電解めっきの場合はニッケルめっき及びニッケル合金めっきが好ましい。ニッケルめっき及びニッケル合金めっきで形成される金属は、例えば、純ニッケル、Ni-Cu合金、Ni-Cr合金、Ni-Co合金 、Ni-Zn合金、Ni-Mn合金、Ni-Pb合金、Ni-P合金等が挙げられる。 In the case of electrolytic plating, nickel plating and nickel alloy plating are preferable. Metals formed by nickel plating and nickel alloy plating include, for example, pure nickel, Ni—Cu alloy, Ni—Cr alloy, Ni—Co alloy, Ni—Zn alloy, Ni—Mn alloy, Ni—Pb alloy, Ni— P alloy etc. are mentioned.
 めっきに用いる金属塩として、例えば、硫酸ニッケル、スルファミン酸ニッケル、塩化ニッケル、臭化ニッケル、酸化亜鉛、塩化亜鉛、ジアンミンジクロロパラジウム、硫酸鉄、塩化鉄、無水クロム酸、塩化クロム、硫酸クロムナトリウム、硫酸銅、ピロリン酸銅、硫酸コバルト、硫酸マンガンなどが挙げられる。 Examples of metal salts used for plating include nickel sulfate, nickel sulfamate, nickel chloride, nickel bromide, zinc oxide, zinc chloride, diamminedichloropalladium, iron sulfate, iron chloride, chromic anhydride, chromium chloride, sodium chromium sulfate, copper sulfate, copper pyrophosphate, cobalt sulfate, manganese sulfate, and the like;
 ニッケルめっきにおいて、その浴組成は、例えば、硫酸ニッケル(100g/L以上350g/L以下)、スルファミン酸ニッケル(100g/L以上600g/L以下)、塩化ニッケル(0g/L以上300g/L以下)及びこれらの混合物を含むものが好ましいが、添加剤としてクエン酸ナトリウム(0g/L以上100g/L以下)やホウ酸(0g/L以上60g/L以下)が含まれていてもよい。 In nickel plating, the bath composition is, for example, nickel sulfate (100 g/L or more and 350 g/L or less), nickel sulfamate (100 g/L or more and 600 g/L or less), nickel chloride (0 g/L or more and 300 g/L or less). and mixtures thereof are preferred, but sodium citrate (0 g/L or more and 100 g/L or less) or boric acid (0 g/L or more and 60 g/L or less) may be contained as additives.
 酸化処理をされた銅箔表面に電解めっきを施す場合、まず表面の酸化銅が還元され、亜酸化銅又は純銅になるのに電荷が使われるため、めっきされるまでに時間のラグが生じ、その後、金属層を形成する金属が析出し始める。その電荷量はめっき液種や銅酸化物量によって異なるが、例えば、Niめっきを銅部材に施す場合、その厚さを好ましい範囲に収めるためには電解めっき処理する銅部材の面積dmあたり、10C以上90C以下の電荷を与えることが好ましく、20C以上65C以下の電荷を与えることがより好ましい。 When electrolytic plating is applied to the surface of a copper foil that has been oxidized, the copper oxide on the surface is first reduced, and an electric charge is used to turn it into cuprous oxide or pure copper. After that, the metal that forms the metal layer begins to deposit. The amount of charge varies depending on the type of plating solution and the amount of copper oxide. For example, when Ni plating is applied to a copper member, 10 C per area dm 2 of the copper member to be electrolytically plated is required to keep the thickness within a preferable range. It is preferable to apply an electric charge of 90C or more, and it is more preferable to apply an electric charge of 20C or more and 65C or less.
 めっきによって銅部材の最表面に形成された金属の付着量は特に限定されないが、0.8~6.0mg/dmであることが好ましい。なお、金属の付着量は、例えば酸性溶液で溶解し、ICP分析によって金属量を測定し、構造体の平面視野面積で除して算出することができる。 Although the amount of metal deposited on the outermost surface of the copper member by plating is not particularly limited, it is preferably 0.8 to 6.0 mg/dm 2 . The amount of adhered metal can be calculated by, for example, dissolving in an acidic solution, measuring the amount of metal by ICP analysis, and dividing the amount by the plane visual field area of the structure.
 銅酸化物を含む層が銅部材から破断しやすくするために、1)酸化処理前にシランカップリング剤または防腐剤等のコート剤で銅部材表面を部分コートする、2)酸化処理後に、銅酸化物を含む層を溶解剤で処理する、などの工程を行ってもよい。シランカップリング剤または防腐剤等のコート剤で銅部材表面を部分的にコートすることにより、その部分が酸化処理を受けることを免れ、銅酸化物を含む層に空隙が生じ、銅部材から銅酸化物を含む層が破断しやすくなる。ここで、溶解剤とは、銅酸化物を溶解する薬剤であって、溶解剤で処理することによって、銅部材と銅酸化物を含む層の界面付近の銅酸化物が部分的に溶解され、銅酸化物を含む層が銅部材から破断しやすくなる。 In order to facilitate the breakage of the layer containing copper oxide from the copper member, 1) the surface of the copper member is partially coated with a coating agent such as a silane coupling agent or an antiseptic before the oxidation treatment; Steps such as treating the oxide-containing layer with a dissolving agent may be performed. By partially coating the surface of the copper member with a coating agent such as a silane coupling agent or a preservative, the portion is prevented from being subjected to oxidation treatment, and voids are generated in the layer containing copper oxide, and the copper is removed from the copper member. Layers containing oxides tend to break. Here, the dissolving agent is an agent that dissolves copper oxide, and by treating with the dissolving agent, the copper oxide near the interface between the copper member and the layer containing copper oxide is partially dissolved, The layer containing copper oxide is likely to break from the copper member.
 シランカップリング剤は特に限定しないが、シラン、テトラオルガノ-シラン、アミノエチル-アミノプロピルトリメトキシシラン、(3-アミノプロピル)トリメトキシシラン、(1-[3-(トリメトキシシリル)プロピル]ウレア)((l-[3-(Trimethoxysilyl)propyl]urea))、(3-アミノプロピル)トリエトキシシラン、((3-グリシジルオキシプロピル)トリメトキシシラン)、(3-クロロプロピル)トリメトキシシラン、(3-グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3-(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2-メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、およびエチレン-トリメトキシシランから選択されてもよい。 Silane coupling agents are not particularly limited, but silane, tetraorgano-silane, aminoethyl-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (1-[3-(trimethoxysilyl)propyl]urea ) ((l-[3-(Trimethoxysilyl)propyl]urea)), (3-aminopropyl)triethoxysilane, ((3-glycidyloxypropyl)trimethoxysilane), (3-chloropropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propyl methacrylate, ethyltriacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane, tris(2-methoxyethoxy) ( vinyl)silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chlorotriethoxysilane, and ethylene-trimethoxysilane.
 防錆剤は特に限定しないが、1H-テトラゾール、5-メチル-1H-テトラゾール、5-アミノ-1H-テトラゾール、5-フェニル-1H-テトラゾール、1,2,3-トリアゾール、1,2,4-トリアゾール、1,2,3-ベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、5-アミノ-1H-ベンゾトリアゾール、2-メルカプトベンゾチアゾール、1,3-ジメチル-5-ピラゾロン、ピロール、3-メチルピロール、2,4-ジメチルピロール、2-エチルピロール、ピラゾール、3-アミノピラゾール、4-メチルピラゾール、3-アミノ-5-ヒドロキシピラゾール、チアゾール、2-アミノチアゾール、2-メチルチアゾール、2-アミノ-5-メチルチアゾール、2-エチルチアゾール、ベンゾチアゾール、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-ブチルイミダゾール、5-アミノイミダゾール、6-アミノイミダゾール、ベンゾイミダゾール、2-(メチルチオ)ベンゾイミダゾールから選択されてもよい。 Rust inhibitors are not particularly limited, but 1H-tetrazole, 5-methyl-1H-tetrazole, 5-amino-1H-tetrazole, 5-phenyl-1H-tetrazole, 1,2,3-triazole, 1,2,4 -triazole, 1,2,3-benzotriazole, 5-methyl-1H-benzotriazole, 5-amino-1H-benzotriazole, 2-mercaptobenzothiazole, 1,3-dimethyl-5-pyrazolone, pyrrole, 3- methylpyrrole, 2,4-dimethylpyrrole, 2-ethylpyrrole, pyrazole, 3-aminopyrazole, 4-methylpyrazole, 3-amino-5-hydroxypyrazole, thiazole, 2-aminothiazole, 2-methylthiazole, 2- amino-5-methylthiazole, 2-ethylthiazole, benzothiazole, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-butylimidazole, 5-aminoimidazole, 6-aminoimidazole, benzimidazole, 2-(methylthio) It may be selected from benzimidazoles.
 シランカップリング剤または防腐剤による処理は、酸化処理前であればいつ行われてもよく、脱脂処理、自然酸化膜除去を行い均一処理するための酸洗浄、または酸洗浄後に酸化工程への酸の持ち込みを防止するためのアルカリ処理と共に行われてもよい。
 シランカップリング剤または防腐剤による処理は、銅部材表面を部分的に(例えば、1%、5%、10%、20%、30%、40%、50%、60%、70%、80%又は90%以上で、100%未満)コートすることが好ましく、そのためには、0.1%、0.5%、1%又は2%以上の濃度で、室温で30秒、1分又は2分以上反応させることが好ましい。
The treatment with a silane coupling agent or antiseptic may be performed at any time before the oxidation treatment, such as degreasing, acid cleaning for uniform treatment by removing the native oxide film, or acid to the oxidation process after acid cleaning. may be carried out with an alkaline treatment to prevent the introduction of
Treatment with a silane coupling agent or preservative partially (e.g., 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% or more and less than 100%), preferably at a concentration of 0.1%, 0.5%, 1% or 2% or more at room temperature for 30 seconds, 1 minute or 2 minutes It is preferable to carry out the above reactions.
 銅酸化物を含む層を銅部材から破断させやすくするための溶解剤は、銅酸化物を溶解する成分が含まれていればよく、塩化Niに限定されず、塩化物(塩化カリウム、塩化亜鉛、塩化鉄、塩化クロムなど)、アンモニウム塩(クエン酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、硫酸ニッケルアンモニウムなど)、キレート剤(エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウムなど)、塩化スズ(II)、およびクエン酸から選択されてもよい。 The dissolving agent for making it easier to break the layer containing copper oxide from the copper member is not limited to Ni chloride, as long as it contains a component that dissolves copper oxide, and chlorides (potassium chloride, zinc chloride , iron chloride, chromium chloride, etc.), ammonium salts (ammonium citrate, ammonium chloride, ammonium sulfate, nickel ammonium sulfate, etc.), chelating agents (ethylenediaminetetraacetic acid, diethanolglycine, L-glutamic acid diacetic acid/tetrasodium, ethylenediamine-N, N'-disuccinic acid, sodium 3-hydroxy-2,2'-iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, disodium N-(2-hydroxyethyl)iminodiacetate, sodium gluconate etc.), tin(II) chloride, and citric acid.
 塩化Niで処理する場合は、特に限定しないが、塩化Ni溶液(濃度45g/L以上)に室温または室温より高い温度で5秒以上、銅酸化物を含む層が形成された銅部材を浸漬することが好ましい。また、塩化Ni単独で処理するだけではなく、酸化処理と同時に行ってもよいし、酸化処理後、めっき処理と同時に行ってもよい。例えば、めっき液の中に塩化Niを含有させ、めっき前に5秒、10秒、15秒、20秒、30秒、1分、または2分間めっき液の中に、銅酸化物を含む層が形成された銅部材を浸漬してもよい。浸漬する時間は、酸化膜厚により適宜変更可能である。 In the case of treatment with Ni chloride, there is no particular limitation, but the copper member on which the layer containing copper oxide is formed is immersed in a Ni chloride solution (concentration of 45 g/L or more) at room temperature or at a temperature higher than room temperature for 5 seconds or more. is preferred. In addition to treatment with Ni chloride alone, treatment may be performed simultaneously with oxidation treatment, or treatment may be performed simultaneously with plating treatment after oxidation treatment. For example, Ni chloride is contained in the plating solution, and a layer containing copper oxide is formed in the plating solution for 5 seconds, 10 seconds, 15 seconds, 20 seconds, 30 seconds, 1 minute, or 2 minutes before plating. The formed copper member may be immersed. The immersion time can be appropriately changed depending on the oxide film thickness.
<絶縁基材層>
 絶縁基材層の基材は、凹凸が形成された銅部材の表面を絶縁基材層に貼り合わせたとき、銅部材の凹凸形状を含む表面プロファイルが樹脂基材に転写されるものであれば特に限定されないが、樹脂基材が好ましい。樹脂基材は、樹脂を主成分として含有する材料であるが、樹脂の種類は特に限定されず、熱可塑性樹脂であっても、熱硬化性樹脂であってもよく、ポリフェニレンエーテル(PPE)、エポキシ、ポリフェニレンオキシド(PPO)、ポリベンゾオキサゾール(PBO)、ポリテトラフルオロエチレン(PTFE)、液晶ポリマー(LCP)、熱可塑性ポリイミド(TPI)、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミド、シアネート樹脂、またはこれらの混合樹脂が例示できる。樹脂基材はさらに無機フィラーやガラス繊維を含んでいてもよい。使用される絶縁基材層の比誘電率は5.0以下が好ましく、4.0以下がより好ましく、3.8以下がさらに好ましい。
<Insulating base layer>
The base material of the insulating base material layer should be such that when the surface of the copper member on which the unevenness is formed is bonded to the insulating base material layer, the surface profile including the uneven shape of the copper member is transferred to the resin base material. Although not particularly limited, a resin substrate is preferable. The resin base material is a material containing resin as a main component, but the type of resin is not particularly limited, and may be a thermoplastic resin or a thermosetting resin, polyphenylene ether (PPE), Epoxy, polyphenylene oxide (PPO), polybenzoxazole (PBO), polytetrafluoroethylene (PTFE), liquid crystal polymer (LCP), thermoplastic polyimide (TPI), fluororesin, polyetherimide, polyetheretherketone, polycyclo Olefins, bismaleimide resins, low dielectric constant polyimides, cyanate resins, or mixed resins thereof can be exemplified. The resin base material may further contain an inorganic filler or glass fiber. The dielectric constant of the insulating substrate layer used is preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.8 or less.
<貼り合わせ>
 凹凸が形成された銅部材の表面を絶縁基材層に貼り合わせると、銅部材の凹凸形状を含む表面プロファイルが樹脂基材に転写される。従って、絶縁基材層表面には、銅部材表面の凸部に相補する凹部、また凹部に相補する凸部が形成される。
<Lamination>
When the surface of the copper member having the unevenness is attached to the insulating substrate layer, the surface profile including the uneven shape of the copper member is transferred to the resin substrate. Accordingly, recesses that complement the protrusions on the surface of the copper member and protrusions that complement the recesses are formed on the surface of the insulating base layer.
 貼り合わせる方法は特に限定されないが、熱圧着(thermal press fitting)であることが好ましい。樹脂基材を銅部材の表面に熱圧着するには、例えば、樹脂基材と銅部材を密着させて積層した後、所定の条件で熱処理すればよい。所定の条件(例えば、温度、圧力、時間など)として、各基材メーカーの推奨条件を用いてもよい。所定の条件とは、例えば以下のような条件が考えられる。 The bonding method is not particularly limited, but thermal press fitting is preferred. In order to bond the resin base material to the surface of the copper member by thermocompression, for example, the resin base material and the copper member may be adhered and laminated, and then heat treated under predetermined conditions. As predetermined conditions (eg, temperature, pressure, time, etc.), conditions recommended by each substrate manufacturer may be used. Predetermined conditions include, for example, the following conditions.
 1)樹脂基材がエポキシ樹脂を含むか、またはエポキシ樹脂からなる場合、50℃~300℃の温度で0~20MPaの圧力を1分~5時間かけることにより、樹脂基材に銅部材を熱圧着することが好ましい。 1) When the resin base material contains or consists of an epoxy resin, a copper member is heated to the resin base material by applying a pressure of 0 to 20 MPa at a temperature of 50 ° C. to 300 ° C. for 1 minute to 5 hours. Crimping is preferred.
 たとえば、
1-1)樹脂基材が、R-1551(Panasonic製)の場合、1MPaの圧力下で加熱し、100℃に到達後、その温度で5~10分保持し;
その後3.3MPaの圧力下でさらに加熱し、170~180℃に到達後、その温度で50分間保持することで熱圧着する。
for example,
1-1) When the resin substrate is R-1551 (manufactured by Panasonic), heat under a pressure of 1 MPa, reach 100 ° C., and hold at that temperature for 5 to 10 minutes;
After that, it is further heated under a pressure of 3.3 MPa, and after reaching 170 to 180° C., it is held at that temperature for 50 minutes for thermocompression bonding.
1-2)樹脂基材が、R-1410A(Panasonic製)の場合、1MPaの圧力下で加熱し、130℃到達後、その温度で10分保持し;その後2.9MPaの圧力下でさらに加熱し、200℃到達後、その温度で70分間保持することで熱圧着する。 1-2) When the resin substrate is R-1410A (manufactured by Panasonic), heat under a pressure of 1 MPa, and after reaching 130 ° C., hold at that temperature for 10 minutes; Then further heat under a pressure of 2.9 MPa. After reaching 200° C., the temperature is maintained for 70 minutes for thermocompression bonding.
1-3)樹脂基材が、EM-285(EMC製)の場合、0.4MPaの圧力下で加熱し、100℃到達後、圧力を2.4~2.9MPaに上げてさらに加熱し、195℃到達後、その温度で50分間保持することで熱圧着する。 1-3) When the resin substrate is EM-285 (manufactured by EMC), heat under a pressure of 0.4 MPa, and after reaching 100° C., increase the pressure to 2.4 to 2.9 MPa and further heat, After reaching 195° C., the temperature is maintained for 50 minutes for thermocompression bonding.
1-4)樹脂基材が、GX13(味の素ファインテクノ製)の場合、1.0MPaで加圧しながら加熱し、180℃で60分間保持することで熱圧着する。 1-4) When the resin substrate is GX13 (manufactured by Ajinomoto Fine-Techno Co., Ltd.), it is heated while being pressurized at 1.0 MPa and held at 180° C. for 60 minutes for thermocompression bonding.
 2)樹脂基材が、PPE樹脂を含むか、またはPPE樹脂からなる場合、50℃~350℃の温度で0~20MPaの圧力を1分~5時間かけることにより、樹脂基材に銅部材を熱圧着することが好ましい。  2) When the resin base material contains or consists of a PPE resin, a copper member is attached to the resin base material by applying a pressure of 0 to 20 MPa at a temperature of 50° C. to 350° C. for 1 minute to 5 hours. Thermocompression bonding is preferred. 
 たとえば、
2-1)樹脂基材が、R5620(Panasonic製)の場合、0.5MPaの圧力下で100℃になるまで加熱しながら熱圧着した後、温度と圧力を上げ、2.0~3.0MPa、200~210℃で、120分間保持することでさらに熱圧着する。
for example,
2-1) When the resin substrate is R5620 (manufactured by Panasonic), the temperature and pressure are increased to 2.0 to 3.0 MPa after thermocompression bonding while heating to 100 ° C. under a pressure of 0.5 MPa. , 200 to 210° C. for 120 minutes for further thermocompression bonding.
2-2)樹脂基材が、R5670(Panasonic製)の場合、0.49MPaの圧力下で110℃になるまで加熱しながら熱圧着した後、温度と圧力を上げ、2.94MPa、210℃で120分間保持することで熱圧着する。 2-2) When the resin base material is R5670 (manufactured by Panasonic), the temperature and pressure are increased to 2.94 MPa and 210° C. after thermocompression bonding while heating to 110° C. under a pressure of 0.49 MPa. It is thermocompression bonded by holding for 120 minutes.
2-3)樹脂基材が、R5680(Panasonic製)の場合、0.5MPaの圧力下で110℃になるまで加熱しながら熱圧着した後、温度と圧力を上げ、3.0~4.0MPa、195℃で、75分間保持することで熱圧着する。 2-3) When the resin base material is R5680 (manufactured by Panasonic), the temperature and pressure are increased to 3.0 to 4.0 MPa after thermocompression bonding while heating to 110 ° C. under a pressure of 0.5 MPa. , and 195° C. for 75 minutes for thermocompression bonding.
2-4)樹脂基材が、N-22(Nelco製)の場合、1.6~2.3MPaで加圧しながら加熱し、177℃で30分間保持後、さらに加熱し、216℃で60分間保持することで熱圧着する。 2-4) When the resin substrate is N-22 (manufactured by Nelco), heat while pressurizing at 1.6 to 2.3 MPa, hold at 177° C. for 30 minutes, further heat, and heat at 216° C. for 60 minutes. It is thermocompression bonded by holding.
 3)樹脂基材が、PTFE樹脂を含むか、PTFE樹脂からなる場合、50℃~400℃の温度で0~20MPaの圧力を1分~5時間かけることにより、樹脂基材に銅部材熱を圧着することが好ましい。 3) When the resin base material contains or is made of PTFE resin, the heat of the copper member is applied to the resin base material by applying a pressure of 0 to 20 MPa at a temperature of 50 ° C. to 400 ° C. for 1 minute to 5 hours. Crimping is preferred.
 たとえば、
3-1)樹脂基材が、NX9255(パークエレクトロケミカル製)の場合、0.69MPaで加圧しながら260℃になるまで加熱し、1.03~1.72MPaに圧力をあげて385℃になるまで加熱し、385℃で10分間保持することで熱圧着する。
for example,
3-1) When the resin base material is NX9255 (manufactured by Park Electrochemical), heat to 260°C while applying pressure at 0.69 MPa, and increase the pressure to 1.03 to 1.72 MPa to reach 385°C. and held at 385° C. for 10 minutes for thermocompression bonding.
3-2)樹脂基材が、RO3003(ロジャース製)の場合、プレス開始50分(おおよそ220℃)以降、2.4MPaに加圧し、371℃で30~60分間保持することで熱圧着する。 3-2) When the resin base material is RO3003 (manufactured by Rogers), after 50 minutes (approximately 220° C.) from the start of pressing, a pressure of 2.4 MPa is applied and held at 371° C. for 30 to 60 minutes for thermocompression bonding.
 4)樹脂基材が、液晶ポリマー(LCP)を含むか、LCPからなる場合、50℃~400℃の温度で0~20MPaの圧力を1分~5時間かけることにより、樹脂基材に銅部材熱を圧着することが好ましい。たとえば、樹脂基材がCT-Z(クラレ製)の場合、0MPaの圧力下で加熱し、260℃で15分間保持後、4MPaで加圧しながらさらに加熱し、300℃で10分間保持することで熱圧着する。 4) When the resin substrate contains or consists of a liquid crystal polymer (LCP), a copper member is formed on the resin substrate by applying a pressure of 0 to 20 MPa at a temperature of 50 ° C. to 400 ° C. for 1 minute to 5 hours. Heat crimping is preferred. For example, when the resin substrate is CT-Z (manufactured by Kuraray), it is heated under a pressure of 0 MPa, held at 260 ° C. for 15 minutes, further heated while being pressurized at 4 MPa, and held at 300 ° C. for 10 minutes. heat press.
[2]銅部材を引き剥がす工程
 絶縁基材層に銅部材を貼り合わせた後に、絶縁基材層から銅部材を所定の条件で引き剥がすと、銅部材の表面の凸部が絶縁基材層に転移し、絶縁基材層の表面にシード層を形成する。従って、絶縁基材層の表面は平坦になる。
[2] Step of peeling off the copper member After the copper member is attached to the insulating base layer, when the copper member is peeled off from the insulating base layer under predetermined conditions, the protrusions on the surface of the copper member are removed from the insulating base layer. to form a seed layer on the surface of the insulating base layer. Therefore, the surface of the insulating base layer becomes flat.
 シード層の厚さは、2.50μm以下であればよいが、2.00μm以下がより好ましく、1.70μm以下がさらに好ましい。また、0.01μm以上であることが好ましく、0.10μm以上であることがより好ましく、0.36μm以上であることがさらに好ましい。厚さが0.01μm未満であると、めっき形成性が悪く、かつ絶縁基材との密着性が低下する。2.50μm超であると、配線形成性が悪くなる。なお、シード層の厚さを測定する方法は特に限定されず、例えば、SEM画像において、シード層の厚さを実測すればよい。 The thickness of the seed layer may be 2.50 μm or less, more preferably 2.00 μm or less, and even more preferably 1.70 μm or less. Moreover, it is preferably 0.01 μm or more, more preferably 0.10 μm or more, and even more preferably 0.36 μm or more. If the thickness is less than 0.01 μm, the plating formability is poor and the adhesion to the insulating substrate is lowered. If it exceeds 2.50 μm, the wiring formability is deteriorated. The method for measuring the thickness of the seed layer is not particularly limited, and for example, the thickness of the seed layer may be measured in the SEM image.
 本開示の方法では、このようにして作られたシード層を、そのまま回路の一部として利用する。絶縁基材層に転移した銅部材の表面の凸部を除去する工程を経ないことにより、銅と絶縁基材層との密着性が良好になる。 In the method of the present disclosure, the seed layer thus produced is used as it is as part of the circuit. By omitting the step of removing the protrusions on the surface of the copper member transferred to the insulating base layer, the adhesion between the copper and the insulating base layer is improved.
 絶縁基材層から銅部材を引き剥がす条件は、特に限定しないが、90°剥離試験(日本工業規格(JIS)C5016「フレキシブルプリント配線板試験方法」;対応国際規格IEC249-1:1982、IEC326-2:1990 )に基づいて、行うことができる。絶縁基材層から銅部材を引き剥がす方法も特に限定しないが、機械を用いてもよく、手で、すなわち、人力で行ってもよい。 The conditions for peeling off the copper member from the insulating base layer are not particularly limited, but a 90° peeling test (Japanese Industrial Standards (JIS) C5016 "Flexible printed wiring board test method"; corresponding international standards IEC249-1: 1982, IEC326- 2:1990). The method of peeling off the copper member from the insulating base material layer is not particularly limited, but a machine may be used, or a manual operation may be performed.
 銅部材を引き剥がした後の絶縁基材層の表面に転移した金属は、様々な方法(たとえば、X線光電子分光法(XPS)、エネルギー分散型X線分光法(EDS)、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法、ICP-OES/ICP-AES))を用いて検出できる。例えば、表面に銅酸化物を含む層を有する銅部材を引き剥がした後の絶縁基材層には、銅酸化物を含む層に含まれる金属が転移している。 The metal transferred to the surface of the insulating substrate layer after peeling off the copper member can be analyzed by various methods (e.g., X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), ICP emission spectroscopy). (Inductively Coupled Plasma Emission Spectroscopy, ICP-OES/ICP-AES)). For example, the metal contained in the layer containing copper oxide is transferred to the insulating substrate layer after peeling off the copper member having the layer containing copper oxide on the surface.
 XPSはX線を物体に照射し、物体のイオン化に伴い放出される光電子e-を捕捉することによりエネルギー分析を行う手法である。XPSによって、試料表面、あるいは表面から所定の深さまで(たとえば、6nmの深さまで)に存在する元素の種類、存在量、化学結合状態等を調べることができる。分析スポット径(すなわち、分析できる円柱形部分を断面が円になるように切った時の断面の直径)としては、1μm以上~1mm以下が適している。ここでは、XPSのSurvey spectrum分析によって、銅酸化物を含む層に含まれる金属原子が、銅部材が引き剥がされた絶縁基材の表面から検出されればよい。 XPS is a technique for performing energy analysis by irradiating an object with X-rays and capturing photoelectrons e emitted as the object is ionized. By XPS, it is possible to examine the types, abundances, chemical bonding states, etc. of elements present on the surface of the sample or from the surface to a predetermined depth (for example, up to a depth of 6 nm). The diameter of the analysis spot (that is, the diameter of the cross section of the cylindrical portion that can be analyzed so that the cross section is circular) is suitably 1 μm or more and 1 mm or less. Here, the metal atoms contained in the layer containing copper oxide may be detected from the surface of the insulating base material from which the copper member has been peeled off by XPS Survey spectrum analysis.
 銅部材の凸部に含まれる金属は、転写された表面プロファイルの凹部の70%以上、80%以上、90%以上、95%以上、99%以上、または99.9%以上を埋めるように絶縁基材層に転移することが好ましい。金属が絶縁基材層の凹部の大部分を埋めると、XPSで絶縁基材層表面を測定した時に、金属原子のスペクトルのメインピークのピーク強度の合計がC1sのスペクトルのメインピークのピーク強度よりも大きくなる。メインピークとは、金属元素の複数種あるピークのうち、最も強度の大きいピークをいう。例えば、Cuは2p3軌道、Snは3d5軌道、Agは3d5軌道、Znは2p3軌道、Alは2p軌道、Tiは2p3軌道、Biは4f7軌道、Crは2p3軌道、Feは2p3軌道、Coは2p3軌道、Niは2p3軌道、Pdは3d5軌道、Auは4f7軌道、Ptは4f7軌道のピークがメインピークである。なお、ここで言うスペクトルのピークの強度とは、XPSのスペクトルデータの縦軸方向の高さを意味する。 The metal contained in the convex part of the copper member is insulated so as to fill 70% or more, 80% or more, 90% or more, 95% or more, 99% or more, or 99.9% or more of the concave part of the transferred surface profile. Transfer to the substrate layer is preferred. When the metal fills most of the recesses in the insulating base layer, when the surface of the insulating base layer is measured by XPS, the total peak intensity of the main peaks of the spectrum of metal atoms is higher than the peak intensity of the main peak of the spectrum of C1s. will also grow. The main peak is the peak with the highest intensity among multiple peaks of the metal element. For example, Cu is 2p3 orbital, Sn is 3d5 orbital, Ag is 3d5 orbital, Zn is 2p3 orbital, Al is 2p orbital, Ti is 2p3 orbital, Bi is 4f7 orbital, Cr is 2p3 orbital, Fe is 2p3 orbital, Co is 2p3 The main peak is the 2p3 orbital of Ni, the 3d5 orbital of Pd, the 4f7 orbital of Au, and the 4f7 orbital of Pt. The peak intensity of the spectrum referred to here means the height in the vertical axis direction of the XPS spectrum data.
 XPSにより測定された、銅部材を引き剥がした絶縁基材層の表面における原子全体に対するCu2p3の割合が1.0atom%以上、1.8atom%以上、2.8atom%以上、3.0atom%以上、4.0atom%以上、5.0atom%以上、又は6.0atom%であることが好ましい。あるいは、XPSによって、転写後の銅部材表面を測定した時の、Cu2p3の表面原子組成百分率/C1sの表面原子組成百分率の割合が、0.010以上、0.015以上、0.020以上、0.025以上、0.030以上、0.035以上、0.040以上、0.045以上、0.050以上又は0.10以上であることが好ましい。 The ratio of Cu2p3 to the total atoms on the surface of the insulating base layer from which the copper member is peeled off, as measured by XPS, is 1.0 atom% or more, 1.8 atom% or more, 2.8 atom% or more, 3.0 atom% or more, It is preferably 4.0 atom % or more, 5.0 atom % or more, or 6.0 atom %. Alternatively, when the copper member surface after transfer is measured by XPS, the ratio of the surface atomic composition percentage of Cu2p3 / the surface atomic composition percentage of C1s is 0.010 or more, 0.015 or more, 0.020 or more, 0 It is preferably 0.025 or more, 0.030 or more, 0.035 or more, 0.040 or more, 0.045 or more, 0.050 or more, or 0.10 or more.
 銅部材の凸部が銅以外の金属を含む場合は、X線光電子分光法(XPS)により測定された引き剥がされた絶縁基材層の表面における金属原子の原子組成百分率の合計が1.0atom%以上、1.5atom%以上、1.8atom%以上、2.8atom%以上、3.0atom%以上、4.0atom%以上、5.0atom%以上、又は6.0atom%であることが好ましい。あるいは、(引き剥がされた絶縁基材層の表面における金属原子の原子組成百分率の合計):(引き剥がされた絶縁基材層の表面におけるC1sの原子組成百分率)の比の値が0.010以上、0.015以上、0.020以上、0.025以上、0.030以上、0.035以上、0.040以上、0.045以上、0.050以上又は0.10以上であることが好ましい。 When the convex portion of the copper member contains a metal other than copper, the total atomic composition percentage of the metal atoms on the surface of the peeled insulating base layer measured by X-ray photoelectron spectroscopy (XPS) is 1.0 atom. % or more, 1.5 atom % or more, 1.8 atom % or more, 2.8 atom % or more, 3.0 atom % or more, 4.0 atom % or more, 5.0 atom % or more, or 6.0 atom %. Alternatively, the value of the ratio of (total atomic composition percentage of metal atoms on the surface of the peeled insulating base layer):(atomic composition percentage of C1s on the surface of the peeled insulating base layer) is 0.010. 0.015 or more, 0.020 or more, 0.025 or more, 0.030 or more, 0.035 or more, 0.040 or more, 0.045 or more, 0.050 or more, or 0.10 or more preferable.
 また、EDSによって測定された、銅部材を引き剥がした絶縁基材層の表面における元素組成について、Cuの割合が1atom%以上であればよく、4atom%以上であることが好ましく、7atom%以上であることがより好ましく、10atom%以上であることがさらに好ましく、11.4atom%以上であることがさらに好ましい。Cuの割合が大きくなるほど、銅部材の凸部の転写効率が良くなり、めっき形成性が向上する。
ここで、転写効率とは、銅部材に形成された凸部に含まれる金属が絶縁基材層に転移する割合のことを示す。
In addition, regarding the elemental composition of the surface of the insulating base material layer from which the copper member was peeled off, measured by EDS, the ratio of Cu should be 1 atom% or more, preferably 4 atom% or more, and 7 atom% or more. It is more preferably 10 atom % or more, further preferably 11.4 atom % or more. As the proportion of Cu increases, the transfer efficiency of the projections of the copper member improves, and the plating formability improves.
Here, the transfer efficiency indicates the rate at which the metal contained in the protrusions formed on the copper member is transferred to the insulating base layer.
 また、EDSによって測定された、銅部材を引き剥がした絶縁基材層の表面の金属の合計/(C+O)の組成割合が0.38以上であればよく、0.40以上であることが好ましく、0.42以上であることがより好ましく、0.43以上であることがさらに好ましい。金属/(C+O)の組成割合が小さくなるほど、めっき形成性が悪くなる。Cの割合が大きいことは、転写効率が悪いことを示し、Oの割合が大きいことは、めっきの付着が阻害されることを示すからである。 In addition, the composition ratio of the sum of the metals on the surface of the insulating base layer from which the copper member has been peeled off/(C+O) measured by EDS may be 0.38 or more, preferably 0.40 or more. , is more preferably 0.42 or more, and more preferably 0.43 or more. The smaller the metal/(C+O) composition ratio, the worse the plating formability. This is because a high proportion of C indicates poor transfer efficiency, and a high proportion of O indicates inhibition of plating adhesion.
 絶縁基材層から引き剥がされた銅部材の表面から検出される、絶縁基材層由来の物質の量は、検出限界以下であるか、検出されても少量であることが好ましい。その場合、銅部材を引き剥がした時に、絶縁基材層での破断を十分に抑制できているからである。絶縁基材層由来の物質の検出方法は特に限定されず、目的の物質に合った方法を用いればよいが、例えば有機物の場合、減衰全反射吸収フーリエ変換赤外分光法(FT-IR法)による絶縁基材層由来のピークの検出によって行うことができる(「Infrared and Raman Spectroscopy : Principles and Spectral Interpretation (Peter Larkin著)」)。FT-IR法とは、測定対象の物質に赤外線を照射し、赤外線吸収スペクトルを利用して化合物を同定及び/又は定量する赤外分光法であり、波長範囲700-4000cm-1において、S/N比が10以下、9以下が好ましく、8以下、7以下がより好ましく、樹脂基材由来のピークが検出されないことが好ましい。 The amount of substances derived from the insulating base layer detected from the surface of the copper member peeled off from the insulating base layer is preferably below the detection limit or, if detected, is a small amount. This is because, in that case, when the copper member is peeled off, breakage in the insulating base material layer can be sufficiently suppressed. The method for detecting substances derived from the insulating base layer is not particularly limited, and a method suitable for the target substance may be used. For example, in the case of organic substances, attenuated total reflection absorption Fourier transform infrared spectroscopy (FT-IR method) ("Infrared and Raman Spectroscopy: Principles and Spectral Interpretation" by Peter Larkin). The FT - IR method is an infrared spectroscopic method in which the substance to be measured is irradiated with infrared rays, and the compound is identified and / or quantified using the infrared absorption spectrum. The N ratio is preferably 10 or less and 9 or less, more preferably 8 or less and 7 or less, and preferably no peak derived from the resin substrate is detected.
 凸部を有する層が形成された銅部材の表面の貼り合わせ前のRaに対する引き剥がし後のRaの割合が100%未満、96%未満、95%未満、94%未満、93%未満、92%未満、91%未満、90%未満、80%未満、70%未満、65%未満又は60%未満であることが好ましい。この割合が小さいほど、凸部を有する層を形成する金属が絶縁基材層に転移したことを意味する。 The ratio of Ra after peeling to Ra before bonding on the surface of the copper member on which the layer having the protrusions is formed is less than 100%, less than 96%, less than 95%, less than 94%, less than 93%, and 92%. preferably less than, less than 91%, less than 90%, less than 80%, less than 70%, less than 65% or less than 60%. A smaller ratio means that the metal forming the layer having protrusions transferred to the insulating base layer.
 凸部を有する層が形成された銅部材の貼り合わせ前の表面積に対する引き剥がし後の表面積の割合が、100%未満、98%未満、97%未満、96%未満、95%未満、94%未満、93%未満、92%未満、91%未満、90%未満、80%未満又は75%未満であることが好ましい。この割合が小さいほど、凸部を有する層を形成する金属が絶縁基材層に転移したことを意味する。なお、表面積は、コンフォーカル顕微鏡や原子間力顕微鏡を用いて測定することができる。 The ratio of the surface area after peeling to the surface area before bonding of the copper member on which the layer having the convex portion is formed is less than 100%, less than 98%, less than 97%, less than 96%, less than 95%, less than 94%. , less than 93%, less than 92%, less than 91%, less than 90%, less than 80% or less than 75%. A smaller ratio means that the metal forming the layer having protrusions transferred to the insulating base layer. The surface area can be measured using a confocal microscope or an atomic force microscope.
 熱圧着前の銅部材の表面と引き剥がされた後の銅部材の表面のΔEabが13以上、15以上、20以上、25以上、30以上、又は35以上であることが好ましい。この差が大きいほど、凸部を形成する金属が絶縁基材層に転移したことを意味する。 It is preferable that ΔE * ab between the surface of the copper member before thermocompression bonding and the surface of the copper member after peeling is 13 or more, 15 or more, 20 or more, 25 or more, 30 or more, or 35 or more. It means that the larger the difference, the more the metal forming the protrusions transferred to the insulating base layer.
 従来のSAP法では、上述のように、樹脂にアンカーとなる凹凸を形成させることで、樹脂基板とシード層との密着性を高めている。その際、密着を確保するために表面に比較的大きな凹凸を形成していたが、それによって樹脂表層から深くまで銅が析出するため、シード層をエッチングして除去する際に微量の銅が残存しがちであった。この残存する微量の銅が、配線間のショートを引き起こす原因となり得るため、深いエッチング処理が必要であった。さらに、凹凸形成処理と無電解銅めっき皮膜とによる密着性増加の効果は、樹脂基材選択性が高く、十分に密着効果が得られるのは、ABF(Ajinomoto Build-Up Film)など一部の樹脂基材だけである。 In the conventional SAP method, as described above, the adhesiveness between the resin substrate and the seed layer is enhanced by forming irregularities that serve as anchors in the resin. At that time, relatively large unevenness was formed on the surface to ensure adhesion, but this caused copper to precipitate deep from the resin surface layer, so when the seed layer was etched and removed, a small amount of copper remained. tended to A deep etching process was necessary because this trace amount of remaining copper could cause a short circuit between wirings. Furthermore, the effect of increasing adhesion by unevenness forming treatment and electroless copper plating film is that selectivity to resin substrates is high, and sufficient adhesion effect can be obtained only in some cases such as ABF (Ajinomoto Build-Up Film). It is only a resin base material.
 従来のMSAP法では、キャリア付き極薄銅箔が用いられるが、極薄銅箔層の厚みは取り扱いなどの観点から1.5μm以上が必要であり、加えて1μm以上の粗化処理が施されている。この粗化処理が施されたシード層を樹脂上に形成することで、樹脂基板とシード層の密着性を高めている。その際、極薄銅箔層と粗化処理部を含む数μm厚の銅層を除去する必要があるため、深いエッチング処理が必要であった。 In the conventional MSAP method, an ultra-thin copper foil with a carrier is used, but the thickness of the ultra-thin copper foil layer must be 1.5 μm or more from the viewpoint of handling, etc. In addition, roughening treatment of 1 μm or more is performed. ing. By forming the roughened seed layer on the resin, the adhesion between the resin substrate and the seed layer is enhanced. At that time, since it is necessary to remove the copper layer with a thickness of several μm including the ultra-thin copper foil layer and the roughened portion, a deep etching process was required.
 しかし、近年の微細パターンでは、多量の銅のエッチング処理を行うと、サイドエッチングによってパターン飛びが発生し、パターンが消失することがある。また、配線層は樹脂基板の粗化面上に形成されるので、凹凸が大きいと高周波信号の伝送損失が生じやすくなる。 However, in recent fine patterns, when a large amount of copper is etched, pattern skipping occurs due to side etching, and the pattern may disappear. Further, since the wiring layer is formed on the roughened surface of the resin substrate, if the unevenness is large, transmission loss of high-frequency signals is likely to occur.
 本開示の方法によって得られたシード層は、従来のSAP法におけるデスミア処理によって粗面化した場合や従来のMSAP法におけるキャリア付き極薄銅箔を粗化した場合よりも表面粗さが小さいため、エッチング後の銅の残存、微細パターンにおけるサイドエッチングによるパターン飛び、凹凸の影響による高周波信号の伝送損失の発生などの問題を回避することが可能となる。また、表面粗さは小さいが、微細な凹凸が緻密に存在するため、絶縁基材と銅が十分に密着する。 The seed layer obtained by the method of the present disclosure has a smaller surface roughness than the case where the surface is roughened by desmear treatment in the conventional SAP method or the case where the ultra-thin copper foil with a carrier is roughened in the conventional MSAP method. Also, it is possible to avoid problems such as residual copper after etching, pattern skipping due to side etching in fine patterns, and transmission loss of high-frequency signals due to unevenness. In addition, although the surface roughness is small, fine unevenness is densely present, so that the insulating base material and copper are sufficiently adhered to each other.
[3]シード層の表面上の所定の場所にレジストを形成する工程
 銅部材を引き剥がした後、シード層の表面上の所定の場所にレジストを形成する。レジストが形成される位置は、後に、回路となる銅が積層されない部分である。
[3] Step of Forming Resist at Predetermined Locations on the Surface of the Seed Layer After peeling off the copper member, resist is formed at predetermined locations on the surface of the seed layer. The position where the resist is formed is the part where the copper which later becomes the circuit is not laminated.
 レジストは、例えば、感光によって硬化又は溶解する材料を含んでもよく、特に限定しないが、ドライフィルムレジスト(DFR)、ポジ型液状レジスト、またはネガ型液状レジストで形成されていることが好ましい。 The resist may contain, for example, a material that is cured or dissolved by exposure to light, and is not particularly limited, but is preferably formed of a dry film resist (DFR), a positive liquid resist, or a negative liquid resist.
 DFRには、フィルム形成性に寄与するバインダーポリマー、及びUV照射により光重合反応を起こすモノマー(たとえば、アクリルエステル系又はメタクリルエステル系モノマー)と光重合開始剤を含むことが好ましい。DFRの形成には、カバーフォルム/フォトレジスト/キャリアフィルムの3層構造を有するドライフィルムを用いることが好ましい。カバーフィルムをはがしながら、フォトレジストを構造体に熱圧着して積層し、積層後キャリアフィルムをはがすことにより、構造体にレジストであるDFRを形成することができる。 DFR preferably contains a binder polymer that contributes to film formability, a monomer that undergoes a photopolymerization reaction upon UV irradiation (for example, an acrylic ester-based or methacrylic ester-based monomer), and a photopolymerization initiator. A dry film having a three-layer structure of cover form/photoresist/carrier film is preferably used for forming the DFR. A DFR, which is a resist, can be formed on the structure by laminating the photoresist on the structure while peeling off the cover film, and then peeling off the carrier film after the lamination.
 液状レジストとしては、有機溶剤に可溶化したノボラック樹脂などがあげられる。液状レジストについては、構造体表面に塗布後、乾燥させた後、光照射することによってレジストを溶解、または硬化させ、レジストを形成することができる。 Liquid resists include novolak resins that are soluble in organic solvents. As for the liquid resist, the resist can be formed by coating the surface of the structure, drying it, and then dissolving or curing the resist by light irradiation.
 レジストの厚さは特に限定しないが、1μm~200μmが好ましい。 Although the thickness of the resist is not particularly limited, it is preferably 1 μm to 200 μm.
 シード層を形成した後、レジストを形成する前に、シード層の表面をめっき処理し、第2のシード層を形成してもよい。めっき処理の方法は、特に限定されず、電解めっきでも無電解めっきでもよいが、例えばNi,Sn,Al,Cr,Co,Cuのうちから選ばれた1種の金属を用い、公知の無電解めっき方法で成膜してもよい。ここで、第2のシード層とは、めっき処理で形成された金属の薄膜をいう。第2のシード層の厚さは特に限定されず、0.02~2μm程度であってもよいが、絶縁基材層の表面のシード層と合わせて全体で2.5μm以下になるのが好ましい。 After forming the seed layer and before forming the resist, the surface of the seed layer may be plated to form a second seed layer. The method of plating treatment is not particularly limited, and may be electrolytic plating or electroless plating. A film may be formed by a plating method. Here, the second seed layer refers to a metal thin film formed by plating. The thickness of the second seed layer is not particularly limited, and may be about 0.02 to 2 μm. .
[4]銅の積層工程
 次に、シード層の表面であってレジストが積層していない領域を銅めっき処理することによって、銅を積層する。この積層された銅が、後に回路として機能する。
 銅めっき処理の方法は特に限定されず、公知の方法を用いて、めっき処理ができる。
[4] Copper Lamination Step Next, copper is laminated by copper-plating a region on the surface of the seed layer where the resist is not laminated. This laminated copper later functions as a circuit.
The method of copper plating treatment is not particularly limited, and plating treatment can be performed using a known method.
[5]レジストの除去工程
 レジストの除去方法は、特に限定されず、発煙硝酸や硫酸過水を用いる方法や、O2プラズマ等を利用するドライアッシング法など、公知の方法を用いることができる。
[5] Resist Removal Step The method of removing the resist is not particularly limited, and known methods such as a method using fuming nitric acid or sulfuric acid-hydrogen peroxide mixture, and a dry ashing method using O 2 plasma or the like can be used.
[6]シード層の除去工程
 シード層の除去方法は、特に限定されず、例えば硫酸-過酸化水素系のエッチング剤を用いたクイックエッチングやフラッシュエッチングなど、公知の方法を用いることができる。
[6] Step of Removing Seed Layer The method for removing the seed layer is not particularly limited, and known methods such as quick etching and flash etching using a sulfuric acid-hydrogen peroxide-based etchant can be used.
==銅部材の選択方法==
 本発明の一実施形態は、表面の少なくとも一部に銅酸化物を含む層が形成された銅部材の選択方法であって、銅部材を、樹脂基材に熱圧着した後に樹脂基材から引き剥がす工程と、樹脂基材から引き剥がされた銅部材の表面を減衰全反射吸収フーリエ変換赤外分光法(FT-IR/ATR法)で解析する工程と、銅部材を引き剥がした樹脂基材の表面に対し、EDS元素分析を行う工程と、銅部材を引き剥がした樹脂基材において形成されるシード層の厚さを測定する工程と、FT-IR/ATR法によって得られる、銅部材の表面における、樹脂基材由来の物質に対応するピークのS/N比が、波長範囲700-4000cm-1において10以下であり、EDS元素分析によって得られる、銅部材の表面の金属の合計/(C+O)の組成割合が0.4以上であり、シード層の厚さが0.1μm以上、2.0μm以下である、銅部材を選択する工程と、を含む選択方法である。
== How to select copper materials ==
One embodiment of the present invention is a method for selecting a copper member having a layer containing copper oxide formed on at least part of the surface thereof, wherein the copper member is thermally compressed to a resin base material and then pulled from the resin base material. A step of peeling, a step of analyzing the surface of the copper member peeled off from the resin base material by attenuated total reflection absorption Fourier transform infrared spectroscopy (FT-IR / ATR method), and a resin base material with the copper member peeled off. A step of performing EDS elemental analysis on the surface of the copper member, a step of measuring the thickness of the seed layer formed on the resin base material from which the copper member is peeled off, and a copper member obtained by the FT-IR / ATR method. The S/N ratio of the peak corresponding to the substance derived from the resin substrate on the surface is 10 or less in the wavelength range 700-4000 cm -1 , and the total metal on the surface of the copper member obtained by EDS elemental analysis / ( C+O) composition ratio is 0.4 or more, and the thickness of the seed layer is 0.1 μm or more and 2.0 μm or less, selecting a copper member.
 本発明の他の実施形態は、表面の少なくとも一部に銅酸化物を含む層が形成された銅部材の選択方法であって、銅部材を、樹脂基材に熱圧着した後に樹脂基材から引き剥がす工程と、樹脂基材から引き剥がされた銅部材の表面に対し、X線光電子分光法(XPS)のSurvey spectrum分析を行う工程と、銅部材を引き剥がした樹脂基材の表面に対し、EDS元素分析を行う工程と、銅部材を引き剥がした樹脂基材において形成されるシード層の厚さを測定する工程と、銅酸化物を含む層に含まれる金属原子が、銅部材が引き剥がされた樹脂基材の表面から検出され、EDS元素分析によって得られる、銅部材の表面の金属の合計/(C+O)の組成割合が0.4以上であり、シード層の厚さが0.1μm以上、2.0μm以下である、銅部材を選択する工程と、を含む選択方法である。 Another embodiment of the present invention is a method for selecting a copper member having a layer containing copper oxide formed on at least part of the surface thereof, wherein the copper member is thermally compressed to a resin base material, and then A step of peeling off, a step of performing Survey spectrum analysis of X-ray photoelectron spectroscopy (XPS) on the surface of the copper member peeled off from the resin substrate, and a surface of the resin substrate from which the copper member was peeled off , a step of performing EDS elemental analysis, a step of measuring the thickness of the seed layer formed on the resin base material from which the copper member has been peeled off, and The composition ratio of total metal on the surface of the copper member/(C+O) detected from the surface of the peeled resin base material and obtained by EDS elemental analysis is 0.4 or more, and the thickness of the seed layer is 0.4. selecting a copper member having a thickness of 1 μm or more and 2.0 μm or less.
 各工程は、積層体の製造方法に記載した詳細に準じて行うことができる。この選択方法によって、回路形成を行ったときに、めっき形成性および配線形成性の良好な銅部材を選択することができる。 Each step can be performed according to the details described in the manufacturing method of the laminate. By this selection method, it is possible to select a copper member having good plating and wiring forming properties when a circuit is formed.
[1]複合銅箔の製造
 実施例1~6、比較例2~3は、古河電気工業株式会社製の銅箔(DR-WS、厚さ:18μm)のシャイニー面(光沢面。反対面と比較したときに平坦である面。)を用いた。比較例4は、古河電気工業株式会社製の銅箔(FV-WS、厚さ:18μm)のマット面を用い、未処理のまま試験片とした。比較例5~6は、古河電気工業株式会社製の銅箔(DR-WS、厚さ:18μm)のシャイニー面(光沢面。反対面と比較したときに平坦である面。)を用いた。比較例7は三井金属鉱業株式会社製のキャリア付き極薄銅箔(MT18FL、極薄銅箔厚み:1.5μm)をそのまま用いた。なお、比較例1は、後述のように複合銅箔を用いていない。
[1] Production of composite copper foil Examples 1 to 6 and Comparative Examples 2 to 3 are copper foils (DR-WS, thickness: 18 μm) manufactured by Furukawa Electric Co., Ltd. Shiny surface (glossy surface. A surface that is flat when compared.) was used. In Comparative Example 4, a matte surface of a copper foil (FV-WS, thickness: 18 μm) manufactured by Furukawa Electric Co., Ltd. was used as an untreated test piece. In Comparative Examples 5 and 6, the shiny side (glossy side, flat side compared to the opposite side) of Furukawa Electric Co., Ltd. copper foil (DR-WS, thickness: 18 μm) was used. In Comparative Example 7, an ultra-thin copper foil with a carrier (MT18FL, ultra-thin copper foil thickness: 1.5 μm) manufactured by Mitsui Mining & Smelting Co., Ltd. was used as it was. In addition, Comparative Example 1 does not use a composite copper foil as described later.
(1)前処理
 まず、銅箔を以下に記載の溶液で、25℃1分間浸漬した。すなわち、
 実施例1及び2は、炭酸カリウム2.5g/L;KBE-903(3-アミノプロピルトリエトキシシラン;信越シリコーン社製)1vol%、
 実施例3は、炭酸カリウム2.5g/L;炭酸水素カリウム0.06g/L、
 実施例4~6は、水酸化カリウム5g/L、
 比較例2は、炭酸カリウム2.5g/Lの溶液、
 比較例3は、炭酸カリウム2.5g/Lの溶液;炭酸水素カリウム0.06g/L、 比較例5は、水酸化カリウム5g/L;KBM-603(N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン;信越シリコーン社製)5vol%、
 比較例6は、水酸化カリウム5g/L;BTA(ベンゾトリアゾール)1wt%、
を用いた。
(1) Pretreatment First, a copper foil was immersed in the solution described below at 25°C for 1 minute. i.e.
In Examples 1 and 2, potassium carbonate 2.5 g / L; KBE-903 (3-aminopropyltriethoxysilane; manufactured by Shin-Etsu Silicone Co., Ltd.) 1 vol%,
Example 3 contains 2.5 g/L of potassium carbonate; 0.06 g/L of potassium bicarbonate;
Examples 4 to 6 contain 5 g/L of potassium hydroxide,
Comparative Example 2 is a solution of 2.5 g/L of potassium carbonate,
Comparative Example 3 is a solution of potassium carbonate 2.5 g / L; potassium hydrogen carbonate 0.06 g / L; Comparative Example 5 is potassium hydroxide 5 g / L; KBM-603 (N-2-(aminoethyl)-3 -Aminopropyltrimethoxysilane; manufactured by Shin-Etsu Silicone Co., Ltd.) 5 vol%,
Comparative Example 6 contains potassium hydroxide 5 g/L; BTA (benzotriazole) 1 wt%;
was used.
(2)酸化処理
 前処理を行った銅箔を、酸化剤に浸漬して酸化処理を行った。
 実施例1、2及び比較例2、5、6は、酸化剤として、亜塩素酸ナトリウム58.3g/L;水酸化カリウム20g/L;炭酸カリウム39.1g/Lの溶液を用いた。
 実施例3~6は、酸化剤として亜塩素酸ナトリウム45g/L;水酸化カリウム12g/L;KBM-403(3-グリシドキシプロピルトリメトキシシラン;信越シリコーン社製)2g/Lの溶液を用いた。
 比較例3は、酸化剤として、亜塩素酸ナトリウム58.8g/L;水酸化カリウム8.8g/L;炭酸カリウム3g/L;KBM-403(3-グリシドキシプロピルトリメトキシシラン;信越シリコーン社製)2g/Lの溶液を用いた。
 実施例1、2及び比較例5、6は酸化剤に73℃で6分間浸漬し、実施例3~6、比較例2及び3は酸化剤に73℃で2分間浸漬した。
(2) Oxidation Treatment The pretreated copper foil was immersed in an oxidizing agent for oxidation treatment.
In Examples 1 and 2 and Comparative Examples 2, 5 and 6, a solution of 58.3 g/L of sodium chlorite, 20 g/L of potassium hydroxide and 39.1 g/L of potassium carbonate was used as the oxidizing agent.
In Examples 3 to 6, sodium chlorite 45 g/L; potassium hydroxide 12 g/L; Using.
Comparative Example 3 contains sodium chlorite 58.8 g/L as an oxidizing agent; potassium hydroxide 8.8 g/L; potassium carbonate 3 g/L; KBM-403 (3-glycidoxypropyltrimethoxysilane; Shin-Etsu Silicone Co., Ltd.) 2 g/L solution was used.
Examples 1 and 2 and Comparative Examples 5 and 6 were immersed in the oxidizing agent at 73° C. for 6 minutes, and Examples 3 to 6 and Comparative Examples 2 and 3 were immersed in the oxidizing agent at 73° C. for 2 minutes.
(3)めっき前処理
 酸化処理後、実施例4~6は、以下のように溶解剤を用いてめっき前処理を行った。
 実施例4は、塩化スズ(II)・二水和物45g/L;塩酸1mL/Lの溶液を用い、45℃で10秒処理した。
 実施例5は、塩化アンモニウム45g/Lの溶液を用い、45℃で60秒処理した。
 実施例6は、50%クエン酸溶液45mL/Lの溶液を用い、45℃で60秒処理した。
(3) Plating Pretreatment After oxidation treatment, Examples 4 to 6 were subjected to plating pretreatment using a dissolving agent as follows.
Example 4 was treated at 45° C. for 10 seconds using a solution of 45 g/L of tin(II) chloride dihydrate and 1 mL/L of hydrochloric acid.
Example 5 was treated at 45° C. for 60 seconds using a solution of 45 g/L of ammonium chloride.
Example 6 was treated at 45° C. for 60 seconds using a 50% citric acid solution of 45 mL/L.
(4)電解めっき処理
 酸化処理後、実施例2、3及び比較例3は、第1のNi電解めっき液(硫酸ニッケル240g/L;塩化ニッケル45g/L;クエン酸ナトリウム20g/L)を用いて電解めっきを行った。実施例4~6は、めっき前処理後、第2のNi電解めっき液(硫酸ニッケル240g/L;クエン酸ナトリウム20g/L)を用いて電解めっきを行った。実施例3は電解めっき前にNi電解めっき液に1分間浸漬させた。実施例2は50℃で電流密度0.5A/dm×116秒(=58C/dm銅箔面積)で電解めっきを行った。実施例3~6、及び比較例3は50℃で電流密度0.5A/dm×45秒(=22.5C/dm銅箔面積)で電解めっきを行った。
(4) Electroplating treatment After oxidation treatment, in Examples 2 and 3 and Comparative Example 3, the first Ni electroplating solution (240 g/L nickel sulfate; 45 g/L nickel chloride; 20 g/L sodium citrate) was used. electroplating was performed. In Examples 4 to 6, electroplating was performed using a second Ni electroplating solution (240 g/L of nickel sulfate; 20 g/L of sodium citrate) after pretreatment for plating. Example 3 was immersed in the Ni electrolytic plating solution for 1 minute before electrolytic plating. In Example 2, electrolytic plating was performed at 50° C. with a current density of 0.5 A/dm 2 ×116 seconds (=58 C/dm 2 copper foil area). In Examples 3 to 6 and Comparative Example 3, electrolytic plating was performed at 50° C. with a current density of 0.5 A/dm 2 ×45 seconds (=22.5 C/dm 2 copper foil area).
 実施例及び比較例について、各々同じ上記条件で複数の試験片を作製した。表1に上記条件をまとめた。
Figure JPOXMLDOC01-appb-T000003
For Examples and Comparative Examples, a plurality of test pieces were produced under the same conditions described above. Table 1 summarizes the above conditions.
Figure JPOXMLDOC01-appb-T000003
<2.樹脂基材の圧着及び引き剥がし>
(1)方法
 実施例1~6及び比較例2~7の試験片に対し、プリプレグとして、R5670KJ(Panasonic製)、R5680J(Panasonic製)、CT-Z(クラレ製)、NX9255(パークエレクトロケミカル製)、及びR1551GG(Panasonic製)を用いて、樹脂基材の引き剥がし試験を行った。
<2. Crimping and peeling of resin substrate>
(1) Method For the test pieces of Examples 1 to 6 and Comparative Examples 2 to 7, R5670KJ (manufactured by Panasonic), R5680J (manufactured by Panasonic), CT-Z (manufactured by Kuraray), NX9255 (manufactured by Park Electrochemical) as prepregs ), and R1551GG (manufactured by Panasonic), a resin substrate peeling test was performed.
 まず、試験片に対し、プリプレグを積層し、真空高圧プレス機を用いて真空中で熱圧着することにより、積層体試料を得た。なお、樹脂基材がR5670KJ(Panasonic製)の場合は、0.49MPaの圧力下で110℃になるまで加熱しながら熱圧着した後、温度と圧力を上げ、2.94MPa、210℃で120分間保持することで熱圧着した。樹脂基材がR5680J(Panasonic製)の場合は、0.5MPaの圧力下で110℃になるまで加熱しながら熱圧着した後、温度と圧力を上げ、3.5MPa、195℃で、75分間保持することで熱圧着した。樹脂基材がNX9255(パークエレクトロケミカル製)の場合は、0.69MPaで加圧しながら260℃になるまで加熱し、1.5MPaに圧力をあげて385℃になるまで加熱し、385℃で10分間保持することで熱圧着した。樹脂基材がR1551GG(Panasonic製)の場合は、1MPaの圧力下で加熱し、100℃に到達後、その温度で10分保持し、その後3.3MPaの圧力下でさらに加熱し、180℃に到達後、その温度で50分間保持することで熱圧着した。樹脂基材がCT-Z(クラレ製)の場合は、0MPaの圧力下で加熱し、260℃で15分間保持後、4MPaで加圧しながらさらに加熱し、300℃で10分間保持することで熱圧着した。これらの積層体試料に対して90°剥離試験(日本工業規格(JIS)C5016)に準じて、銅部材を樹脂基材から引き剥がした(図1)。目視による観察結果を図2-1に示す。また、代表的な組み合わせについて、引き剥がした後の樹脂側および銅箔側の表面の写真を図2-2に示す。 First, a laminate sample was obtained by laminating prepreg on a test piece and thermocompression bonding in a vacuum using a vacuum high pressure press. When the resin base material is R5670KJ (manufactured by Panasonic), the temperature and pressure are increased to 2.94 MPa and 210° C. for 120 minutes after thermocompression bonding while heating to 110° C. under a pressure of 0.49 MPa. It was thermocompression bonded by holding. When the resin base material is R5680J (manufactured by Panasonic), after heat-pressing while heating to 110 ° C. under a pressure of 0.5 MPa, the temperature and pressure are increased, and held for 75 minutes at 3.5 MPa and 195 ° C. It was thermocompression bonded by doing. When the resin substrate is NX9255 (manufactured by Park Electrochemical), it is heated to 260°C while pressurizing at 0.69 MPa, and the pressure is increased to 1.5 MPa and heated to 385°C. It was thermocompression bonded by holding for 1 minute. When the resin substrate is R1551GG (manufactured by Panasonic), it is heated under a pressure of 1 MPa, and after reaching 100 ° C., it is held at that temperature for 10 minutes, and then further heated under a pressure of 3.3 MPa to 180 ° C. After the temperature was reached, the temperature was maintained for 50 minutes for thermocompression bonding. When the resin substrate is CT-Z (manufactured by Kuraray Co., Ltd.), it is heated under a pressure of 0 MPa, held at 260° C. for 15 minutes, further heated while being pressurized at 4 MPa, and held at 300° C. for 10 minutes. crimped. The copper member was peeled off from the resin substrate according to the 90° peeling test (Japanese Industrial Standards (JIS) C5016) for these laminate samples (Fig. 1). Visual observation results are shown in Figure 2-1. Photographs of the surfaces of the resin side and the copper foil side after peeling off are shown in Fig. 2-2 for representative combinations.
 図2から、実施例及び比較例5~6では、銅箔の表面が樹脂側に転移しているのが容易に観察できるのに対し、比較例2~4では、銅箔の表面は樹脂側に転移していなかった。
このことを物質として証明するため、以下のように表面解析を行った。
From FIG. 2, it can be easily observed that the surface of the copper foil is transferred to the resin side in Examples and Comparative Examples 5 and 6, whereas in Comparative Examples 2 and 4, the surface of the copper foil is on the resin side. had not metastasized to
In order to prove this as a substance, surface analysis was performed as follows.
<3.引き剥がした後の樹脂基材の表面解析>
 引き剥がした後の樹脂基材の表面の元素分析を行った。具体的には、得られた樹脂基材を、QuanteraSXM(ULVAC-PHI製)を用いて以下の条件で分析を行った。陰性対照として何も処理していない樹脂基材(R5670KJ;MEGTRON6)を分析した(比較例1)。
(1)Survey spectrum
 まず、以下の条件で元素を検出した。
  X線光源: 単色化Al Kα(1486.6eV)
  X線ビーム径: 100μm(25w15kV)
  パスエネルギー: 280eV,1eVステップ
  ポイント分析: φ100μm
  積算回数 8回
<3. Surface analysis of resin substrate after peeling off>
Elemental analysis was performed on the surface of the resin base material after peeling off. Specifically, the obtained resin base material was analyzed using Quantera SXM (manufactured by ULVAC-PHI) under the following conditions. As a negative control, an untreated resin base material (R5670KJ; MEGTRON6) was analyzed (Comparative Example 1).
(1) Survey spectrum
First, elements were detected under the following conditions.
X-ray source: monochromatic Al Kα (1486.6 eV)
X-ray beam diameter: 100 μm (25w15kV)
Pass energy: 280 eV, 1 eV step Point analysis: φ100 μm
Accumulated times 8 times
 結果を表2及び図3に示す。
 実施例及び比較例5~6において、転移した銅原子に由来するCu2p3のスペクトルのピーク強度が樹脂基材に起因するC1sのスペクトルのピーク強度よりも大きいのに対して、比較例1~4ではCu2p3のスペクトルのピークが検出されないか、その強度がC1sのスペクトルのピーク強度よりも小さかった。これは、比較例においては、銅原子が、樹脂基材にほとんど転移していないか、XPSで検出できる樹脂基材表層部分にはほとんど存在していないことを示す。
The results are shown in Table 2 and FIG.
In Examples and Comparative Examples 5 and 6, the peak intensity of the Cu2p3 spectrum derived from the transferred copper atoms is greater than the peak intensity of the C1s spectrum derived from the resin base material, whereas in Comparative Examples 1 to 4 The Cu2p3 spectrum peak was not detected or its intensity was lower than that of the C1s spectrum. This indicates that, in the comparative example, almost no copper atoms were transferred to the resin base material, or almost no copper atoms were present in the surface layer of the resin base material detectable by XPS.
 実施例1では複合銅箔がめっき処理をされていないため、Cu原子のみが転移し、樹脂基材側で検出された。実施例2及び3では、Niめっき処理がされているため、Cu原子とNi原子が転移し、樹脂側で検出された。 In Example 1, since the composite copper foil was not plated, only Cu atoms were transferred and detected on the resin substrate side. In Examples 2 and 3, since Ni plating was performed, Cu atoms and Ni atoms were transferred and detected on the resin side.
 また、比較例1~4に比べて実施例及び比較例5~6はいずれもC1sの割合が小さかった。実施例では、酸化銅又は亜酸化銅が転移されたことにより、表面におけるC1sの割合が相対的に小さくなったと考えられる。
Figure JPOXMLDOC01-appb-T000004
In addition, the ratio of C1s was smaller in both Examples and Comparative Examples 5 and 6 than in Comparative Examples 1 to 4. In the examples, it is believed that the proportion of C1s on the surface was relatively decreased due to the transfer of cupric oxide or cuprous oxide.
Figure JPOXMLDOC01-appb-T000004
<4.熱圧着前と引き剥がし後の複合銅箔のRa及び表面積の測定>
(1)方法
 実施例1~6及び比較例2~6の複合銅箔試験片について、熱圧着前と引き剥がし後の表面積を、共焦点顕微鏡 OPTELICS H1200(レーザーテック株式会社製)を用いて算出した。測定条件として、モードはコンフォーカルモード、スキャンエリアは100μm×100μm、Light sourceはBlue、カットオフ値は1/5
とした。オブジェクトレンズはx100、コンタクトレンズはx14、デジタルズームはx1、Zピッチは10nmの設定とし、3箇所のデータを取得し、表面積は3箇所の平均値とした。
<4. Measurement of Ra and Surface Area of Composite Copper Foil Before Thermocompression and After Peeling>
(1) Method For the composite copper foil test pieces of Examples 1 to 6 and Comparative Examples 2 to 6, the surface area before thermocompression bonding and after peeling was calculated using a confocal microscope OPTELICS H1200 (manufactured by Lasertec Co., Ltd.). . As measurement conditions, the mode is confocal mode, the scan area is 100 μm × 100 μm, the light source is Blue, and the cutoff value is 1/5.
and The object lens was set to x100, the contact lens was set to x14, the digital zoom was set to x1, and the Z pitch was set to 10 nm.
(2)結果 
 表3に記載のように、熱圧着前と引き剥がし後では、実施例及び比較例5~6ではRa及び表面積が減少したのに対し、比較例2~4では逆に増加した。これは実施例では、複合銅箔の凸部全部または一部が樹脂側に転移したのに対して、比較例2~4では逆に樹脂の一部が複合銅箔に転移したことを示している。
Figure JPOXMLDOC01-appb-T000005
(2) Results
As shown in Table 3, before thermal compression bonding and after peeling, Ra and surface area decreased in Examples and Comparative Examples 5 and 6, whereas they increased in Comparative Examples 2 and 4. This indicates that all or part of the protrusions of the composite copper foil were transferred to the resin side in the examples, whereas in Comparative Examples 2 to 4, part of the resin was transferred to the composite copper foil. there is
Figure JPOXMLDOC01-appb-T000005
<5.熱圧着前と引き剥がし後の複合銅箔のΔEabの算出>
(1)方法
 熱圧着前と引き剥がし後の各複合銅箔試験片の銅箔表面の色差(L、a、b)を測定し、得られた値から、以下の式に従い、ΔEabを算出した。
ΔEab = [(ΔL + (Δa + (Δb ]1/2
<5. Calculation of ΔE * ab of Composite Copper Foil Before Thermocompression and After Peeling>
(1) Method The color difference (L * , a * , b * ) of the copper foil surface of each composite copper foil test piece before thermocompression bonding and after peeling was measured, and from the obtained values, ΔE * ab was calculated.
ΔE * ab = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2
(2)結果 
 表4に記載のように、熱圧着前と引き剥がし後で、実施例及び比較例5~6ではΔEabが15以上なのに対して、比較例2~4では15未満であった。これは、実施例及び比較例5~6では銅酸化物を含む層に含まれる金属が樹脂基材に転移するため、銅部材の色変化が大きくなるのに対して、比較例2~4では銅酸化物を含む層はそのまま銅部材に残るため、銅部材の色変化は小さくなるため、銅酸化物を含む層に含まれる金属が多く転移するほど、それらの差が大きくなるからである。実際、図2の写真においても、引き剥がし後に、実施例及び比較例5~6では樹脂側の着色が大きいが、比較例2~4では樹脂側はほぼ白いままである。
Figure JPOXMLDOC01-appb-T000006
(2) Results
As shown in Table 4, before thermocompression bonding and after peeling, ΔE * ab was 15 or more in Examples and Comparative Examples 5 and 6, while it was less than 15 in Comparative Examples 2 and 4. This is because in Examples and Comparative Examples 5 and 6, the metal contained in the layer containing copper oxide is transferred to the resin base material, so that the color change of the copper member increases, whereas in Comparative Examples 2 and 4, the color change is large. Since the layer containing copper oxide remains as it is on the copper member, the color change of the copper member becomes small, so the more the metal contained in the layer containing copper oxide transfers, the greater the difference therebetween. In fact, even in the photograph of FIG. 2, after peeling off, the resin side of Example and Comparative Examples 5 and 6 is highly colored, while the resin side of Comparative Examples 2 and 4 remains almost white.
Figure JPOXMLDOC01-appb-T000006
<6.減衰全反射吸収フーリエ変換赤外分光法(FT-IR/ATR法)による転移後の複合銅箔表面の解析>
(1)方法
 樹脂基材として、R1551GG(エポキシ系)、R5670KJ、R5680J(以上、PPE系)、NX9255(PTFE系)、またはCT-Z(LCP系)を用いて熱圧着し、引き剥がした後の各複合銅箔試験片をFT-IR/ATR法により以下の測定条件で解析した。
測定条件
Parkin Elmer製 Specrtum100
ATR法
クリスタル:ゲルマニウム
分解能:4
スキャン数:4回
圧力(フォースゲージ):40±5 [N]
スペクトル表示:吸光度
<6. Analysis of Composite Copper Foil Surface after Transfer by Attenuated Total Reflection Absorption Fourier Transform Infrared Spectroscopy (FT-IR/ATR Method)>
(1) Method After thermal compression using R1551GG (epoxy), R5670KJ, R5680J (all PPE), NX9255 (PTFE), or CT-Z (LCP) as the resin substrate, and peeling off Each composite copper foil test piece was analyzed by the FT-IR/ATR method under the following measurement conditions.
Measurement conditions Specrtum 100 made by Parkin Elmer
ATR method Crystal: Germanium Resolution: 4
Number of scans: 4 Pressure (force gauge): 40±5 [N]
Spectral display: Absorbance
(2)S/N(シグナル/ノイズ)比の算出
 複合銅箔と熱圧着する時と同じ条件で樹脂基材のみを加熱及び加圧処理後、樹脂基材をFT-IRで測定し、樹脂由来のピークがない任意の波長を50cm-1の範囲で選定した。本実施例では、3800-3850cm-1を樹脂由来のピークがない波長とした。
さらに、波長範囲700-4000cm-1において、最大ピークを検出した波長を同定した。樹脂基材としてR1551GGを用いた場合は1200cm-1付近、R5670KJおよびR5680Jを用いた場合は1190cm-1付近、NX9255を用いた場合は1232cm-1付近、CT-Zを用いた場合は、1741cm-1付近を最大ピーク検出波長とした(図4~8の矢印が最大ピーク検出波長を示す)。
(2) Calculation of S/N (signal/noise) ratio After heating and pressurizing only the resin substrate under the same conditions as when thermocompression bonding with the composite copper foil, the resin substrate was measured by FT-IR, and the resin An arbitrary wavelength with no originating peak was chosen in the range of 50 cm −1 . In this example, 3800-3850 cm −1 was set as a wavelength without a resin-derived peak.
Furthermore, the wavelength at which the maximum peak was detected was identified in the wavelength range of 700-4000 cm −1 . When using R1551GG as a resin base material, it is around 1200 cm -1 , when using R5670KJ and R5680J, it is around 1190 cm -1 , when using NX9255, it is around 1232 cm -1, and when CT - Z is used, it is 1741 cm -1 . The maximum peak detectable wavelength was taken to be around 1 (the arrows in FIGS. 4 to 8 indicate the maximum peak detectable wavelength).
 転移後の銅部材表面をFT-IRで測定し、最大ピーク検出波長におけるピークの両端の極点間を直線で結んだベースラインを引き、ベースラインとピークの最大高さの差をシグナル値(S)とした。波長3800-3850cm-1において、検出されるピークの最大値と最小値の差をノイズ値(N)として、S/N比を算出した。 Measure the surface of the copper member after the transfer by FT-IR, draw a baseline connecting the poles of both ends of the peak at the maximum peak detection wavelength with a straight line, and measure the difference between the maximum height of the baseline and the peak as the signal value (S ). The S/N ratio was calculated using the noise value (N) as the difference between the maximum and minimum values of the peaks detected at a wavelength of 3800-3850 cm −1 .
(3)結果
 結果を図4~8及び表5に示す。
Figure JPOXMLDOC01-appb-T000007
(3) Results Results are shown in FIGS.
Figure JPOXMLDOC01-appb-T000007
 表5に示すように、実施例及び比較例5~6では複合銅箔側に樹脂由来の有機物に対応するS/N比が10以上のピークは検出されなかったが、比較例2~4では、複合銅箔側に樹脂由来の有機物に対応するS/N比が10以上のピークが検出された。 As shown in Table 5, in Examples and Comparative Examples 5 and 6, no peak with an S/N ratio of 10 or more corresponding to resin-derived organic substances was detected on the composite copper foil side, but in Comparative Examples 2 and 4, , a peak with an S/N ratio of 10 or more corresponding to the resin-derived organic matter was detected on the composite copper foil side.
 これは、比較例2~4では、複合銅箔表面の金属はほとんど転移せず、樹脂基材から複合銅箔を引き剥がす時に樹脂の凝集破壊が生じ、破壊された樹脂が複合銅箔表面に付着するため樹脂由来の有機物に対応するピークが検出されたためである。一方、実施例及び比較例5~6では複合銅箔表面の金属は樹脂基材へ転移したために、樹脂基材から複合銅箔を引き剥がした後の複合銅箔には樹脂の付着はほとんどなく、樹脂由来の有機物に対応するS/N比が10以上のピークは検出されなかった。 This is because in Comparative Examples 2 to 4, the metal on the surface of the composite copper foil hardly transferred, and cohesive failure of the resin occurred when the composite copper foil was peeled off from the resin substrate, and the broken resin was transferred to the surface of the composite copper foil. This is because the peak corresponding to the resin-derived organic matter was detected due to adhesion. On the other hand, in Examples and Comparative Examples 5 and 6, since the metal on the surface of the composite copper foil was transferred to the resin base material, the resin hardly adhered to the composite copper foil after the composite copper foil was peeled off from the resin base material. , peaks with an S/N ratio of 10 or more corresponding to resin-derived organic substances were not detected.
 すなわち、比較例2~4は銅酸化物を含む層と樹脂基材の接着強度より、銅酸化物を含む層と銅部材との接着強度が大きいため、複合銅箔表面の金属は転移せずに樹脂の凝集破壊が生じる。一方、実施例及び比較例5~6は銅酸化物を含む層と銅部材との接着強度が銅酸化物層と樹脂基材との接着強度より小さいため、複合銅箔表面の金属が転移するので樹脂の付着は殆どない。 That is, in Comparative Examples 2 to 4, the adhesion strength between the layer containing copper oxide and the copper member is greater than the adhesion strength between the layer containing copper oxide and the resin base material, so the metal on the surface of the composite copper foil does not transfer. Cohesive failure of the resin occurs. On the other hand, in Examples and Comparative Examples 5 and 6, the adhesive strength between the copper oxide-containing layer and the copper member is smaller than the adhesive strength between the copper oxide layer and the resin base material, so the metal on the surface of the composite copper foil transfers. Therefore, there is almost no adhesion of resin.
[2]樹脂表面及びシード層の解析
 [1]で作製した複合銅箔を、樹脂基材に熱圧着した後に樹脂基材から引き剥がし、樹脂基材側の表面およびシード層を解析した。樹脂基材にはR5670KJ(Panasonic製)を用い、0.49MPaの圧力下で110℃になるまで加熱しながら熱圧着した後、温度と圧力を上げ、2.94MPa、210℃で120分間保持することで熱圧着した。
[2] Analysis of Resin Surface and Seed Layer The composite copper foil prepared in [1] was thermally bonded to the resin substrate and then peeled off from the resin substrate, and the surface and seed layer on the resin substrate side were analyzed. R5670KJ (manufactured by Panasonic) is used as the resin base material, and after thermal compression bonding while heating to 110 ° C. under a pressure of 0.49 MPa, the temperature and pressure are increased, and held at 2.94 MPa and 210 ° C. for 120 minutes. It was thermo-compressed.
<1.EDS(エネルギー分散形X線分光器)による元素分析>
 まず、EDS(エネルギー分散型X線分光器)(Oxford社製、商品名:X-Max Extreme)を用いて元素分析を行った(条件:加速電圧10kV、倍率30,000倍)。図9に、代表的な2次電子像およびCuのEDS元素マッピング画像を、表6(実施例)及び表7(比較例)に、C、O、Ni、Cu、Snの各元素の割合(atom%)、及びそれらの値から算出した(金属元素の割合の和/(CおよびOの割合の和))の比の値を示す。
<1. Elemental Analysis by EDS (Energy Dispersive X-ray Spectrometer)>
First, elemental analysis was performed using an EDS (energy dispersive X-ray spectroscope) (manufactured by Oxford, trade name: X-Max Extreme) (conditions: acceleration voltage of 10 kV, magnification of 30,000 times). FIG. 9 shows a typical secondary electron image and an EDS elemental mapping image of Cu, and Table 6 (Example) and Table 7 (Comparative Example) show the ratio of each element of C, O, Ni, Cu, and Sn ( atom %), and the value of the ratio (sum of ratios of metal elements/(sum of ratios of C and O)) calculated from these values.
 実施例では、Cuの割合が10atom%以上と、Cuが高い割合で転移し、かつ、(金属元素の割合の和/(CおよびOの割合の和))が0.4以上得られており、めっき形成性が良い。一方、比較例2及び3では、Cuの割合が0.1atom%以下であり、ほとんどCuが転移しておらず、めっき形成性が悪い。また、比較例5及び6では、(金属元素の割合の和/(CおよびOの割合の和))が0.4未満と低くなっており、これらもめっき形成性が悪い。 In the examples, the ratio of Cu is 10 atom % or more, and Cu transfers at a high ratio, and (the sum of the ratios of metal elements/(the sum of the ratios of C and O)) is 0.4 or more. , good plating formability. On the other hand, in Comparative Examples 2 and 3, the proportion of Cu was 0.1 atom % or less, and almost no Cu was transferred, resulting in poor plating formability. In Comparative Examples 5 and 6, (the sum of the proportions of the metal elements/(the sum of the proportions of C and O)) is as low as less than 0.4, and these are also poor in plating formability.
 このように、実施例の複合銅箔を用いて製造した、シード層を有する樹脂は、表面元素組成の点で、めっき形成性が良好である。 Thus, the resin having a seed layer produced using the composite copper foil of the example has good plating formability in terms of surface element composition.
<2.シード層の厚さ>
 次に、シード層の厚さを測定した。具体的には、SEM(倍率10000倍)の断面において、樹脂基材に銅の凸部が埋め込まれている層について、層の上面に対応する上辺と層の下面に対応する下辺にそれぞれ接触する2本の平行な直線の中で最大間隔のものを調べ、その間隔を、シード層の厚さとした。図10に代表的なSEM像を、表6および表7に厚さの測定結果を示す。
<2. Seed layer thickness>
The thickness of the seed layer was then measured. Specifically, in the cross section of SEM (magnification: 10,000 times), for the layer in which the copper protrusions are embedded in the resin base material, the upper side corresponding to the upper surface of the layer and the lower side corresponding to the lower surface of the layer are in contact with each other. The maximum distance between two parallel straight lines was examined, and the distance was taken as the thickness of the seed layer. FIG. 10 shows a representative SEM image, and Tables 6 and 7 show the thickness measurement results.
 実施例では、シード層の厚さが0.36~1.70μmと薄いため、配線形成性が良い。一方、比較例2及び3では、シード層の厚さが0μmであり、金属の転移が生じていないため、めっきがほとんど形成しない。比較例7は、シード層が厚すぎるため、回路の微細化が難しく、下記<3>に示すように配線形成性も悪い。 In the example, since the seed layer has a thin thickness of 0.36 to 1.70 μm, the wiring formability is good. On the other hand, in Comparative Examples 2 and 3, since the thickness of the seed layer was 0 μm and metal transfer did not occur, almost no plating was formed. In Comparative Example 7, since the seed layer is too thick, it is difficult to miniaturize the circuit, and the wiring formability is also poor as shown in <3> below.
 このように、実施例の複合銅箔を用いて製造した、シード層を有する樹脂は、シード層の厚さの点で、配線形成性が良好である。 As described above, the resin having a seed layer produced using the composite copper foil of the example has good wiring formability in terms of the thickness of the seed layer.
<3.めっき形成性>
(1)実施例1~6および比較例2~7のシード層を有する樹脂に対して、以下のように無電解めっき処理の後、めっき処理を行い、第2のシード層を形成した。
<3. Plating formability>
(1) The resins having seed layers of Examples 1 to 6 and Comparative Examples 2 to 7 were electroless plated and then plated to form second seed layers.
 まず、100mL/L HCl溶液で、25℃1分前処理をした。その後、触媒OPC-80キャタリストM(奥野製薬製)を含有した250mL/L HCl溶液で30℃、5分処理し、水洗後、活性化処理を行った。さらに水洗後、無電解銅めっき液OPC-700(奥野製薬製)を用い、 80℃10分処理したのち、水洗した。 First, it was pretreated with a 100 mL/L HCl solution at 25°C for 1 minute. After that, it was treated with a 250 mL/L HCl solution containing catalyst OPC-80 Catalyst M (manufactured by Okuno Seiyaku Co., Ltd.) at 30° C. for 5 minutes, washed with water, and then subjected to activation treatment. After washing with water, it was treated with an electroless copper plating solution OPC-700 (manufactured by Okuno Seiyaku Co., Ltd.) at 80° C. for 10 minutes, and then washed with water.
 次に、市販の感光性ドライフィルムを貼り付け、マスクを介して露光を行い、0.8%炭酸水素ナトリウムで現像処理を行うことでめっきレジストを形成した。そして、市販の電解銅めっき液を用い、電流密度1A/dm、30℃で30分間電解銅めっきを施すことで厚さ15μmの電解銅めっき膜を形成した。 Next, a commercially available photosensitive dry film was attached, exposed through a mask, and developed with 0.8% sodium hydrogen carbonate to form a plating resist. Then, using a commercially available electrolytic copper plating solution, electrolytic copper plating was performed at a current density of 1 A/dm 2 at 30° C. for 30 minutes to form an electrolytic copper plating film with a thickness of 15 μm.
 さらに、めっきレジストを5%水酸化カリウムで剥離除去した後、そのめっきレジスト下のシード層を硫酸と過酸化水素の混合液を用いるエッチングにて溶解除去することで積層配線回路板を得た。
(2)実施例3のシード層を有する樹脂に対しては、電解めっき処理のみを行い、第2のシード層を形成した。具体的には、市販の電解銅めっき液を用い、電流密度1A/dm、30℃で電解銅めっき膜を形成した。
Further, after the plating resist was peeled off with 5% potassium hydroxide, the seed layer under the plating resist was dissolved and removed by etching using a mixed solution of sulfuric acid and hydrogen peroxide to obtain a laminated wiring circuit board.
(2) The resin having the seed layer of Example 3 was subjected to electroplating alone to form a second seed layer. Specifically, using a commercially available electrolytic copper plating solution, an electrolytic copper plating film was formed at a current density of 1 A/dm 2 at 30°C.
 (3)銅めっき膜を形成した後にセロテープ(登録商標)(ニチバン製)を貼り付け、セロテープ(登録商標)を剥離した後にSEM断面画像(30000倍)を解析し、0.1μm以上めっきが形成されていれば〇、形成されていなければ×とした。図11に、実施例1,2,3及び比較例7のSEM断面画像(30000倍)を示す。 (3) After the copper plating film is formed, Cellotape (registered trademark) (manufactured by Nichiban) is attached, and after removing the Cellotape (registered trademark), an SEM cross-sectional image (30000 times) is analyzed, and plating of 0.1 μm or more is formed. If it was formed, it was evaluated as 〇, and if it was not formed, it was evaluated as ×. FIG. 11 shows SEM cross-sectional images (30000 times) of Examples 1, 2 and 3 and Comparative Example 7. FIG.
<4.配線形成性>
 シード層を有する樹脂に対し、形成したシード層上に市販の感光性ドライフィルムを貼り付け、マスクを介して露光を行い、0.8%炭酸水素ナトリウムで現像処理を行うことでめっきレジストを形成した。
<4. Wiring Formability>
For the resin having a seed layer, a commercially available photosensitive dry film is pasted on the formed seed layer, exposed through a mask, and developed with 0.8% sodium bicarbonate to form a plating resist. did.
 そして、市販の電解銅めっき液を用い、電流密度1A/dm、30℃で30分間電解銅めっきを施すことで厚さ15μmの電解銅めっき膜を形成した。 Then, using a commercially available electrolytic copper plating solution, electrolytic copper plating was performed at a current density of 1 A/dm 2 at 30° C. for 30 minutes to form an electrolytic copper plating film with a thickness of 15 μm.
 さらに、めっきレジストを5%水酸化カリウムで剥離除去した後、そのめっきレジスト下のシード層を硫酸と過酸化水素の混合液を用いるエッチングにて溶解除去することで積層配線回路板を得た Furthermore, after the plating resist was removed with 5% potassium hydroxide, the seed layer under the plating resist was dissolved and removed by etching using a mixed solution of sulfuric acid and hydrogen peroxide to obtain a laminated wiring circuit board.
 試験片のSEM断面画像から、以下の式を用いてエッチングファクターを算出した。結果を表6及び表7に示す。
Figure JPOXMLDOC01-appb-M000008
From the SEM cross-sectional image of the test piece, the etching factor was calculated using the following formula. The results are shown in Tables 6 and 7.
Figure JPOXMLDOC01-appb-M000008
 エッチングファクターが小さいほど、台形状の配線の上下辺の幅の差が大きくなり、台形状が極端になる。微細化のため、底辺の幅を短くすると、上底の幅を確保できなくなるため、微細化に適さなくなる。 The smaller the etching factor, the greater the width difference between the upper and lower sides of the trapezoidal wiring, and the trapezoidal shape becomes extreme. If the width of the base is shortened for miniaturization, the width of the upper base cannot be secured, which is not suitable for miniaturization.
 表6及び7より、比較例2、3、5、6は配線が形成できず、比較例7は、エッチングファクターが低く、配線形成性が悪い。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 
As can be seen from Tables 6 and 7, no wiring can be formed in Comparative Examples 2, 3, 5 and 6, and Comparative Example 7 has a low etching factor and poor wiring formability.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010

Claims (33)

  1.  表面の少なくとも一部に銅酸化物を含む層が形成された銅部材であって、
      前記銅部材を、樹脂基材に熱圧着した後に前記樹脂基材から引き剥がした時、
       減衰全反射吸収フーリエ変換赤外分光法(FT-IR/ATR法)によって得られる、前記銅部材の表面における、樹脂基材由来の物質に対応するピークのS/N比が、波長範囲700-4000cm-1において10以下であり、
       EDS元素分析によって得られる、前記樹脂基材の表面の金属の合計/(C+O)の組成割合が0.4以上であり、
       前記樹脂基材において形成されるシード層の厚さが0.1μm以上、2.0μm以下である、銅部材。
    A copper member having a layer containing copper oxide formed on at least part of the surface,
    When the copper member is peeled off from the resin base material after being thermocompression bonded to the resin base material,
    The S/N ratio of the peak corresponding to the substance derived from the resin base material on the surface of the copper member obtained by attenuated total reflection absorption Fourier transform infrared spectroscopy (FT-IR/ATR method) is in the wavelength range of 700- 10 or less at 4000 cm −1 ,
    The composition ratio of the sum of the metals on the surface of the resin base material/(C+O) obtained by EDS elemental analysis is 0.4 or more,
    A copper member, wherein a seed layer formed on the resin base material has a thickness of 0.1 μm or more and 2.0 μm or less.
  2.  前記ピークのS/N比が7以下である、請求項1に記載の銅部材。 The copper member according to claim 1, wherein the peak S/N ratio is 7 or less.
  3.  銅部材の表面の少なくとも一部に銅酸化物を含む層が形成された銅部材であって、
      前記銅部材を、樹脂基材に熱圧着した後に前記樹脂基材から引き剥がした時、
       X線光電子分光法(XPS)のSurvey spectrum分析によって、前記銅酸化物を含む層に含まれる金属原子が、前記銅部材が引き剥がされた前記樹脂基材の表面から検出され、
       EDS元素分析によって得られる、前記樹脂基材の表面の金属の合計/(C+O)の組成割合が0.4以上であり、
       前記樹脂基材において形成されるシード層の厚さが0.1μm以上、2.0μm以下である、銅部材。
    銅部材。
    A copper member having a layer containing copper oxide formed on at least part of the surface of the copper member,
    When the copper member is peeled off from the resin base material after being thermocompression bonded to the resin base material,
    By Survey spectrum analysis of X-ray photoelectron spectroscopy (XPS), metal atoms contained in the layer containing copper oxide are detected from the surface of the resin base material from which the copper member is peeled off,
    The composition ratio of the sum of the metals on the surface of the resin base material/(C+O) obtained by EDS elemental analysis is 0.4 or more,
    A copper member, wherein a seed layer formed on the resin base material has a thickness of 0.1 μm or more and 2.0 μm or less.
    copper material.
  4.  前記銅部材が引き剥がされた前記樹脂基材の表面から検出される金属元素のメインピークの強度の合計がC1sのピーク強度よりも大きい、請求項3に記載の銅部材。 The copper member according to claim 3, wherein the total intensity of the main peaks of the metal elements detected from the surface of the resin base material from which the copper member has been peeled off is greater than the peak intensity of C1s.
  5.  前記銅部材が引き剥がされた前記樹脂基材の表面において、XPSによる測定結果から算出された
    [金属元素の表面原子組成百分率(atom%)の合計]/[C1sの表面原子組成百分率(atom%)]
    が0.010以上である、請求項4に記載の銅部材。
    On the surface of the resin base material from which the copper member was peeled off, [sum of surface atomic composition percentages (atom%) of metal elements] / [surface atomic composition percentage (atom%) of C1s calculated from XPS measurement results )]
    is 0.010 or more, the copper member according to claim 4.
  6.  前記Survey spectrum分析によって検出されるCu2p3とNi2p3の表面原子組成百分率の合計が1.5atom%以上である、請求項4に記載の銅部材。 The copper member according to claim 4, wherein the total surface atomic composition percentage of Cu2p3 and Ni2p3 detected by the Survey spectrum analysis is 1.5 atom% or more.
  7.  前記Survey spectrum分析によって検出されるCu2p3の表面原子組成百分率が1.0atom%以上である、請求項4に記載の銅部材。 5. The copper member according to claim 4, wherein the surface atomic composition percentage of Cu2p3 detected by the Survey spectrum analysis is 1.0 atom % or more.
  8.  前記銅酸化物を含む層が形成された表面のRaが0.04μm以上であって、前記Raに対する、前記樹脂基材から引き剥がされた前記銅部材の表面のRaの割合が100%未満である、請求項1~7のいずれか一項に記載の銅部材。 The Ra of the surface on which the layer containing the copper oxide is formed is 0.04 μm or more, and the Ra ratio of the surface of the copper member peeled off from the resin base material to the Ra is less than 100%. A copper member according to any one of claims 1 to 7.
  9.  前記銅酸化物を含む層が形成された表面の表面積に対する、前記樹脂基材から引き剥がされた前記銅部材の表面積の割合が100%未満である、請求項1~8のいずれか一項に記載の銅部材。 The ratio of the surface area of the copper member peeled off from the resin substrate to the surface area on which the layer containing copper oxide is formed is less than 100%, according to any one of claims 1 to 8 A copper member as described.
  10.  前記銅酸化物を含む層が形成された表面と前記樹脂基材から引き剥がされた前記銅部材の表面の色差(ΔEab)が15以上である、請求項1~9のいずれか一項に記載の銅部材。 10. The color difference (ΔE * ab) between the surface on which the layer containing copper oxide is formed and the surface of the copper member peeled off from the resin substrate is 15 or more. The copper member as described in .
  11.  前記樹脂基材は、ポリフェニレンエーテル(PPE)、エポキシ、ポリフェニレンオキシド(PPO)、ポリベンゾオキサゾール(PBO)、ポリテトラフルオロエチレン(PTFE)、液晶ポリマー(LCP)、または熱可塑性ポリイミド(TPI)、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミド及びシアネート樹脂からなる群から選択された少なくとも1つの絶縁性樹脂を含有する、請求項1~10のいずれか一項に記載の銅部材。 The resin base material includes polyphenylene ether (PPE), epoxy, polyphenylene oxide (PPO), polybenzoxazole (PBO), polytetrafluoroethylene (PTFE), liquid crystal polymer (LCP), thermoplastic polyimide (TPI), fluorine Any one of claims 1 to 10, containing at least one insulating resin selected from the group consisting of resin, polyetherimide, polyetheretherketone, polycycloolefin, bismaleimide resin, low dielectric constant polyimide and cyanate resin. The copper member according to claim 1.
  12.  前記銅部材が、前記樹脂基材に、50℃~400℃の温度、0~20MPaの圧力、1分~5時間の時間、の条件で熱圧着される、請求項1~11のいずれか一項に記載の銅部材。 12. The copper member is thermocompression bonded to the resin substrate under conditions of a temperature of 50° C. to 400° C., a pressure of 0 to 20 MPa, and a time of 1 minute to 5 hours. The copper member according to the item.
  13.  前記銅酸化物を含む層が銅以外の金属を含む、請求項1~12のいずれか一項に記載の銅部材。 The copper member according to any one of claims 1 to 12, wherein the layer containing copper oxide contains a metal other than copper.
  14.  前記銅以外の金属がNiである、請求項13に記載の銅部材。 The copper member according to claim 13, wherein the metal other than copper is Ni.
  15.  表面の少なくとも一部に銅酸化物を含む層が形成された銅部材の選択方法であって、 前記銅部材を、樹脂基材に熱圧着した後に前記樹脂基材から引き剥がす工程と、
     前記樹脂基材から引き剥がされた前記銅部材の表面を減衰全反射吸収フーリエ変換赤外分光法(FT-IR/ATR法)で解析する工程と、
     前記銅部材を引き剥がした前記樹脂基材の表面に対し、EDS元素分析を行う工程と、 前記銅部材を引き剥がした前記樹脂基材において形成されるシード層の厚さを測定する工程と、
     前記FT-IR/ATR法によって得られる、前記銅部材の表面における、樹脂基材由来の物質に対応するピークのS/N比が、波長範囲700-4000cm-1において10以下であり、
     前記EDS元素分析によって得られる、前記銅部材の表面の金属の合計/(C+O)の組成割合が0.4以上であり、
     前記シード層の厚さが0.1μm以上、2.0μm以下である、銅部材を選択する工程と、
    を含む選択方法。
    A method for selecting a copper member having a layer containing copper oxide formed on at least a part of the surface thereof, the method comprising the step of thermally compressing the copper member to a resin base material and then peeling the copper member off the resin base material;
    a step of analyzing the surface of the copper member peeled off from the resin base material by attenuated total reflection absorption Fourier transform infrared spectroscopy (FT-IR/ATR method);
    performing EDS elemental analysis on the surface of the resin base material from which the copper member has been removed; measuring the thickness of a seed layer formed on the resin base material from which the copper member has been removed;
    The S/N ratio of the peak corresponding to the substance derived from the resin base material on the surface of the copper member obtained by the FT-IR/ATR method is 10 or less in the wavelength range of 700-4000 cm -1 ,
    The composition ratio of the sum of the metals on the surface of the copper member/(C+O) obtained by the EDS elemental analysis is 0.4 or more,
    a step of selecting a copper member having a thickness of the seed layer of 0.1 μm or more and 2.0 μm or less;
    Selection method including.
  16.  表面の少なくとも一部に銅酸化物を含む層が形成された銅部材の選択方法であって、 前記銅部材を、樹脂基材に熱圧着した後に前記樹脂基材から引き剥がす工程と、
     前記樹脂基材から引き剥がされた前記銅部材の表面に対し、X線光電子分光法(XPS)のSurvey spectrum分析を行う工程と、
     前記銅部材を引き剥がした前記樹脂基材の表面に対し、EDS元素分析を行う工程と、 前記銅部材を引き剥がした前記樹脂基材において形成されるシード層の厚さを測定する工程と、
      前記銅酸化物を含む層に含まれる金属原子が、前記銅部材が引き剥がされた前記樹脂基材の表面から検出され、
      前記EDS元素分析によって得られる、前記銅部材の表面の金属の合計/(C+O)の組成割合が0.4以上であり、
      前記シード層の厚さが0.1μm以上、2.0μm以下である、
     銅部材を選択する工程と、
    を含む選択方法。
    A method for selecting a copper member having a layer containing copper oxide formed on at least a part of the surface thereof, the method comprising the step of thermally compressing the copper member to a resin base material and then peeling the copper member off the resin base material;
    a step of performing Survey spectrum analysis of X-ray photoelectron spectroscopy (XPS) on the surface of the copper member peeled off from the resin base;
    performing EDS elemental analysis on the surface of the resin base material from which the copper member has been removed; measuring the thickness of a seed layer formed on the resin base material from which the copper member has been removed;
    metal atoms contained in the layer containing the copper oxide are detected from the surface of the resin base material from which the copper member has been peeled off;
    The composition ratio of the sum of the metals on the surface of the copper member/(C+O) obtained by the EDS elemental analysis is 0.4 or more,
    The seed layer has a thickness of 0.1 μm or more and 2.0 μm or less.
    selecting a copper member;
    Selection method including.
  17.  前記銅部材の表面をシランカップリング剤または防錆剤で部分コートする工程と、
     前記部分コートされた前記表面を酸化処理することにより前記銅酸化物を含む層を形成する工程と、
    をさらに含む、請求項16の選択方法。
    a step of partially coating the surface of the copper member with a silane coupling agent or a rust inhibitor;
    forming a layer containing the copper oxide by oxidizing the partially coated surface;
    17. The method of claim 16, further comprising:
  18.  前記銅部材の前記表面が酸化剤によって酸化処理される、請求項17の選択方法。 The selection method according to claim 17, wherein the surface of the copper member is oxidized with an oxidizing agent.
  19.  前記シランカップリング剤が、シラン、テトラオルガノ-シラン、アミノエチル-アミノプロピルトリメトキシシラン、(3-アミノプロピル)トリメトキシシラン、(1-[3-(トリメトキシシリル)プロピル]ウレア)((l-[3-(Trimethoxysilyl)propyl]urea))、(3-アミノプロピル)トリエトキシシラン、((3-グリシジルオキシプロピル)トリメトキシシラン)、(3-クロロプロピル)トリメトキシシラン、(3-グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3-(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2-メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン-トリメトキシシランからなる群から選択される、請求項17または18に記載の選択方法。 The silane coupling agent is silane, tetraorgano-silane, aminoethyl-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (1-[3-(trimethoxysilyl)propyl]urea) (( l-[3-(Trimethoxysilyl)propyl]urea)), (3-aminopropyl)triethoxysilane, ((3-glycidyloxypropyl)trimethoxysilane), (3-chloropropyl)trimethoxysilane, (3- glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propyl methacrylate, ethyltriacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane, tris(2-methoxyethoxy)(vinyl)silane , chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chlorotriethoxysilane, ethylene-trimethoxysilane. .
  20.  前記防錆剤が、1H-テトラゾール、5-メチル-1H-テトラゾール、5-アミノ-1H-テトラゾール、5-フェニル-1H-テトラゾール、1,2,3-トリアゾール、1,2,4-トリアゾール、1,2,3-ベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、5-アミノ-1H-ベンゾトリアゾール、2-メルカプトベンゾチアゾール、1,3-ジメチル-5-ピラゾロン、ピロール、3-メチルピロール、2,4-ジメチルピロール、2-エチルピロール、ピラゾール、3-アミノピラゾール、4-メチルピラゾール、3-アミノ-5-ヒドロキシピラゾール、チアゾール、2-アミノチアゾール、2-メチルチアゾール、2-アミノ-5-メチルチアゾール、2-エチルチアゾール、ベンゾチアゾール、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-ブチルイミダゾール、5-アミノイミダゾール、6-アミノイミダゾール、ベンゾイミダゾール、2-(メチルチオ)ベンゾイミダゾールからなる群から選択される、請求項17または18に記載の選択方法。 The rust inhibitor is 1H-tetrazole, 5-methyl-1H-tetrazole, 5-amino-1H-tetrazole, 5-phenyl-1H-tetrazole, 1,2,3-triazole, 1,2,4-triazole, 1,2,3-benzotriazole, 5-methyl-1H-benzotriazole, 5-amino-1H-benzotriazole, 2-mercaptobenzothiazole, 1,3-dimethyl-5-pyrazolone, pyrrole, 3-methylpyrrole, 2,4-dimethylpyrrole, 2-ethylpyrrole, pyrazole, 3-aminopyrazole, 4-methylpyrazole, 3-amino-5-hydroxypyrazole, thiazole, 2-aminothiazole, 2-methylthiazole, 2-amino-5 - from methylthiazole, 2-ethylthiazole, benzothiazole, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-butylimidazole, 5-aminoimidazole, 6-aminoimidazole, benzimidazole, 2-(methylthio)benzimidazole 19. The selection method according to claim 17 or 18, selected from the group consisting of:
  21.  前記酸化処理された前記表面に、銅以外の金属を含む層を形成する工程をさらに含む、請求項17~20のいずれか一項に記載の選択方法。 The selection method according to any one of claims 17 to 20, further comprising the step of forming a layer containing a metal other than copper on the oxidized surface.
  22.  前記銅以外の金属がNiである、請求項21に記載の選択方法。 The selection method according to claim 21, wherein the metal other than copper is Ni.
  23.  前記銅部材の前記表面を酸化処理する工程と、
     前記酸化処理された前記表面を溶解剤で処理することにより前記銅酸化物を含む層を形成する工程と、
    をさらに含む、請求項16の選択方法。
    oxidizing the surface of the copper member;
    forming a layer containing the copper oxide by treating the oxidized surface with a dissolving agent;
    17. The method of claim 16, further comprising:
  24.  前記銅部材の前記表面が酸化剤によって酸化処理される、請求項23の選択方法。 The selection method according to claim 23, wherein said surface of said copper member is oxidized with an oxidizing agent.
  25.  前記溶解剤が、塩化Ni、塩化亜鉛、塩化鉄、塩化クロム、クエン酸アンモニウム、塩化カリウム、硫酸アンモニウム、塩化アンモニウム、硫酸ニッケルアンモニウム、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウム、塩化スズ(II)、及びクエン酸からなる群から選択される、請求項23に記載の選択方法。 The dissolving agent is Ni chloride, zinc chloride, iron chloride, chromium chloride, ammonium citrate, potassium chloride, ammonium sulfate, ammonium chloride, nickel ammonium sulfate, ethylenediaminetetraacetic acid, diethanolglycine, L-glutamic acid diacetate/tetrasodium, ethylenediamine. -N,N'-disuccinic acid, sodium 3-hydroxy-2,2'-iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, disodium N-(2-hydroxyethyl)iminodiacetate, 24. The method of selection according to claim 23, selected from the group consisting of sodium gluconate, tin(II) chloride, and citric acid.
  26.  前記溶解剤で処理された前記表面に、銅以外の金属を含む層を形成する工程をさらに有する、請求項23~25のいずれか一項に記載の選択方法。 The selection method according to any one of claims 23 to 25, further comprising forming a layer containing a metal other than copper on the surface treated with the dissolving agent.
  27.  前記銅以外の金属がNiである、請求項26に記載の選択方法。 The selection method according to claim 26, wherein the metal other than copper is Ni.
  28.  請求項1~14のいずれか一項に記載の銅部材の製造方法であって、
     1)銅部材の前記表面をシランカップリング剤または防錆剤で部分コートする工程;及び
     2)前記部分コートされた前記表面を酸化処理することにより前記銅酸化物を含む層を形成する工程; 
    を含む、銅部材の製造方法。
    A method for manufacturing a copper member according to any one of claims 1 to 14,
    1) a step of partially coating the surface of a copper member with a silane coupling agent or a rust inhibitor; and 2) a step of oxidizing the partially coated surface to form a layer containing the copper oxide;
    A method of manufacturing a copper member, comprising:
  29.  請求項13または14に記載の銅部材の製造方法であって、
     1)銅部材の前記表面をシランカップリング剤または防錆剤で部分コートする工程; 2)前記部分コートされた前記表面を酸化処理することにより前記銅酸化物を含む層を形成する工程;
     3)酸化処理された前記表面に、銅以外の金属を含む層を形成する工程;
    を含む、銅部材の製造方法。
    A method for manufacturing a copper member according to claim 13 or 14,
    1) a step of partially coating the surface of a copper member with a silane coupling agent or a rust inhibitor; 2) a step of oxidizing the partially coated surface to form a layer containing the copper oxide;
    3) forming a layer containing a metal other than copper on the oxidized surface;
    A method of manufacturing a copper member, comprising:
  30.  請求項1~14のいずれか一項に記載の銅部材の製造方法であって、
     1)前記部分コートされた前記表面を酸化処理することにより前記銅酸化物を含む層を形成する工程; および
     2)前記酸化処理された前記表面を溶解剤で処理する工程
    を含む、銅部材の製造方法。
    A method for manufacturing a copper member according to any one of claims 1 to 14,
    1) forming a layer containing the copper oxide by oxidizing the partially coated surface; and 2) treating the oxidized surface with a dissolving agent. Production method.
  31.  請求項13または14に記載の銅部材の製造方法であって、
     1)前記銅部材の前記表面を酸化処理することにより前記銅酸化物を含む層を形成する工程;
     2)前記酸化処理された前記表面を溶解剤で処理する工程;及び
     3)前記溶解剤で処理された前記表面に銅以外の金属を含む層を形成する工程;
    を含み、
     前記溶解剤が、前記銅酸化物を溶解する成分を含む、銅部材の製造方法。
    A method for manufacturing a copper member according to claim 13 or 14,
    1) forming a layer containing the copper oxide by oxidizing the surface of the copper member;
    2) treating the oxidation-treated surface with a dissolving agent; and 3) forming a layer containing a metal other than copper on the surface treated with the dissolving agent;
    including
    A method for producing a copper member, wherein the dissolving agent contains a component that dissolves the copper oxide.
  32.  前記溶解剤が、塩化Ni、塩化亜鉛、塩化鉄、塩化クロム、クエン酸アンモニウム、塩化カリウム、硫酸アンモニウム、塩化アンモニウム、硫酸ニッケルアンモニウム、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウム、塩化スズ(II)、およびクエン酸からなる群から選択される化合物を含む、
    請求項30または31に記載の銅部材の製造方法。
    The dissolving agent is Ni chloride, zinc chloride, iron chloride, chromium chloride, ammonium citrate, potassium chloride, ammonium sulfate, ammonium chloride, nickel ammonium sulfate, ethylenediaminetetraacetic acid, diethanolglycine, L-glutamic acid diacetate/tetrasodium, ethylenediamine. -N,N'-disuccinic acid, sodium 3-hydroxy-2,2'-iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, disodium N-(2-hydroxyethyl)iminodiacetate, a compound selected from the group consisting of sodium gluconate, tin(II) chloride, and citric acid;
    A method for manufacturing a copper member according to claim 30 or 31.
  33.  前記銅以外の金属がNiである、請求項29または31に記載の銅部材の製造方法。
     
    The method for producing a copper member according to claim 29 or 31, wherein the metal other than copper is Ni.
PCT/JP2022/013649 2021-04-20 2022-03-23 Copper member WO2022224684A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280008657.5A CN116670326A (en) 2021-04-20 2022-03-23 Copper component
KR1020237021593A KR20230170899A (en) 2021-04-20 2022-03-23 copper member
JP2023516361A JPWO2022224684A1 (en) 2021-04-20 2022-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021071460 2021-04-20
JP2021-071460 2021-04-20

Publications (1)

Publication Number Publication Date
WO2022224684A1 true WO2022224684A1 (en) 2022-10-27

Family

ID=83722285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013649 WO2022224684A1 (en) 2021-04-20 2022-03-23 Copper member

Country Status (5)

Country Link
JP (1) JPWO2022224684A1 (en)
KR (1) KR20230170899A (en)
CN (1) CN116670326A (en)
TW (1) TW202311563A (en)
WO (1) WO2022224684A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822620B (en) * 2023-03-24 2023-11-11 景碩科技股份有限公司 Pre-treatment method for copper foil substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036660A (en) * 1998-07-17 2000-02-02 Hitachi Chem Co Ltd Manufacture of build-up multilayer interconnection board
WO2015040998A1 (en) * 2013-09-20 2015-03-26 三井金属鉱業株式会社 Copper foil, copper foil with carrier foil, and copper-clad laminate
WO2017056534A1 (en) * 2015-09-30 2017-04-06 三井金属鉱業株式会社 Roughened copper foil, copper clad laminate, and printed circuit board
WO2019244541A1 (en) * 2018-06-20 2019-12-26 ナミックス株式会社 Roughened copper foil, copper clad laminate and printed wiring board
JP6806405B1 (en) * 2020-04-27 2021-01-06 ナミックス株式会社 Composite copper member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036660A (en) * 1998-07-17 2000-02-02 Hitachi Chem Co Ltd Manufacture of build-up multilayer interconnection board
WO2015040998A1 (en) * 2013-09-20 2015-03-26 三井金属鉱業株式会社 Copper foil, copper foil with carrier foil, and copper-clad laminate
WO2017056534A1 (en) * 2015-09-30 2017-04-06 三井金属鉱業株式会社 Roughened copper foil, copper clad laminate, and printed circuit board
WO2019244541A1 (en) * 2018-06-20 2019-12-26 ナミックス株式会社 Roughened copper foil, copper clad laminate and printed wiring board
JP6806405B1 (en) * 2020-04-27 2021-01-06 ナミックス株式会社 Composite copper member

Also Published As

Publication number Publication date
JPWO2022224684A1 (en) 2022-10-27
TW202311563A (en) 2023-03-16
KR20230170899A (en) 2023-12-19
CN116670326A (en) 2023-08-29

Similar Documents

Publication Publication Date Title
TWI587757B (en) Copper foil, copper foil with carrier foil, and copper clad laminate
US11781236B2 (en) Composite copper foil
JP7013003B2 (en) Objects with a roughened copper surface
WO2022224684A1 (en) Copper member
US20230142375A1 (en) Composite copper components
WO2022202921A1 (en) Method for manufacturing laminate
WO2022201563A1 (en) Laminate for wiring board
TW202226911A (en) Copper member, conductor for printed wiring board, member for printed wiring board, printed wiring board, printed circuit board, and manufacturing methods therefor
WO2021172096A1 (en) Composite copper member having voids
WO2022224683A1 (en) System for producing composite copper member
WO2021193470A1 (en) Composite copper wiring line ahd multilayer body having resist layer
JP7352939B2 (en) composite copper parts
WO2020226160A1 (en) Composite copper member
WO2020226159A1 (en) Method for manufacturing metal member having metal layer
TW202316919A (en) Metal member
JP2023145211A (en) Method for manufacturing printed wiring board
JP2023051784A (en) Copper member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023516361

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280008657.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791461

Country of ref document: EP

Kind code of ref document: A1