JPWO2017018232A1 - Roughening copper foil, copper clad laminate and printed wiring board - Google Patents

Roughening copper foil, copper clad laminate and printed wiring board Download PDF

Info

Publication number
JPWO2017018232A1
JPWO2017018232A1 JP2017529857A JP2017529857A JPWO2017018232A1 JP WO2017018232 A1 JPWO2017018232 A1 JP WO2017018232A1 JP 2017529857 A JP2017529857 A JP 2017529857A JP 2017529857 A JP2017529857 A JP 2017529857A JP WO2017018232 A1 JPWO2017018232 A1 JP WO2017018232A1
Authority
JP
Japan
Prior art keywords
copper foil
roughened
copper
roughening
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017529857A
Other languages
Japanese (ja)
Other versions
JP6342078B2 (en
Inventor
裕昭 津吉
裕昭 津吉
歩 立岡
歩 立岡
眞 細川
眞 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2017018232A1 publication Critical patent/JPWO2017018232A1/en
Application granted granted Critical
Publication of JP6342078B2 publication Critical patent/JP6342078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/63Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Abstract

ファインピッチ回路形成や高周波用途に適した低粗度の微細凹凸でありながらも、樹脂との密着性のみならず耐擦れ性にも優れ、それ故、銅張積層板の加工ないしプリント配線板の製造において何らかの物に擦れた後においても、樹脂との優れた密着性を安定して発揮することが可能な粗化処理銅箔が提供される。本発明の粗化処理銅箔は、針状結晶及び/又は板状結晶で構成される微細凹凸を備えた粗化処理面を少なくとも一方の側に有する。粗化処理面は、ISO25178に準拠して測定される最大高さSzが1.5μm以下であり、かつ、ISO25178に準拠して測定される山頂点の算術平均曲Spcが1300mm−1以下である。Although it is a low roughness fine irregularity suitable for fine pitch circuit formation and high frequency applications, it is excellent not only in adhesion to the resin but also in abrasion resistance. Therefore, processing of copper-clad laminate or printed wiring board Provided is a roughened copper foil capable of stably exhibiting excellent adhesion with a resin even after being rubbed against something in production. The roughened copper foil of this invention has the roughened surface provided with the fine unevenness | corrugation comprised with a needle-like crystal and / or a plate-like crystal on at least one side. The roughened surface has a maximum height Sz measured in accordance with ISO25178 of 1.5 μm or less, and an arithmetic average music Spc at the peak measured in accordance with ISO25178 is 1300 mm−1 or less. .

Description

本発明は粗化処理銅箔、銅張積層板及びプリント配線板に関するものである。   The present invention relates to a roughened copper foil, a copper clad laminate, and a printed wiring board.

ファインピッチ回路の形成に適したプリント配線板銅箔として、酸化処理及び還元処理(以下、酸化還元処理と総称することがある)を経て形成された微細凹凸を粗化処理面として備えた粗化処理銅箔が提案されている。   As a printed wiring board copper foil suitable for the formation of fine pitch circuits, roughening with fine irregularities formed as a roughening treatment surface through oxidation treatment and reduction treatment (hereinafter sometimes referred to as redox treatment). Treated copper foil has been proposed.

例えば、特許文献1(国際公開第2014/126193号)には、最大長さが500nm以下の銅複合化合物からなる針状又は板状の微細凹凸で形成した粗化処理層を表面に備えた表面処理銅箔が開示されている。また、特許文献2(国際公開第2015/040998号)には、銅複合化合物からなる最大長さが500nm以下のサイズの針状又は板状の凸状部より形成された微細凹凸を有する粗化処理層と、当該粗化処理層の表面にシランカップリング剤処理層とを少なくとも一面に備えた銅箔が開示されている。これらの文献の粗化処理銅箔によれば、粗化処理層の微細凹凸によるアンカー効果により絶縁樹脂基材との間の良好な密着性を得ることができると共に、良好なエッチングファクターを備えたファインピッチ回路の形成が可能になるとされている。特許文献1及び2に開示される微細凹凸を有する粗化処理層はいずれも、アルカリ脱脂等の予備処理を行った後、酸化還元処理を経て形成されている。こうして形成される微細凹凸は銅複合化合物の針状結晶及び/又は板状結晶で構成される特有の形状を有するものであり、かかる微細凹凸を備えた粗化処理面は、微細銅粒の付着により形成された粗化処理面や、エッチングにより凹凸が付与された粗化処理面よりも概して微細である。   For example, Patent Document 1 (International Publication No. 2014/126193) discloses a surface provided with a roughening treatment layer formed of needle-like or plate-like fine irregularities made of a copper composite compound having a maximum length of 500 nm or less. A treated copper foil is disclosed. Further, Patent Document 2 (International Publication No. 2015/040998) discloses roughening having fine irregularities formed from needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound. A copper foil provided with at least one surface of a treatment layer and a silane coupling agent treatment layer on the surface of the roughening treatment layer is disclosed. According to the roughened copper foils of these documents, it is possible to obtain good adhesion with the insulating resin base material due to the anchor effect due to the fine unevenness of the roughened layer and to have a good etching factor. It is said that a fine pitch circuit can be formed. Each of the roughening treatment layers having fine irregularities disclosed in Patent Documents 1 and 2 is formed through a redox treatment after a preliminary treatment such as alkaline degreasing. The fine irregularities thus formed have a specific shape composed of needle-like crystals and / or plate-like crystals of a copper composite compound, and the roughened surface provided with such fine irregularities is attached with fine copper particles. The roughened surface is generally finer than the roughened surface formed by etching or the roughened surface provided with irregularities by etching.

一方、近年の携帯用電子機器等の高機能化に伴い、大量の情報の高速処理をすべく信号の高周波化が進んでおり、高周波用途に適したプリント配線板が求められている。このような高周波用プリント配線板には、高周波信号を品質低下させずに伝送可能とするために、伝送損失の低減が望まれる。プリント配線板は配線パターンに加工された銅箔と絶縁樹脂基材とを備えたものであるが、伝送損失は、銅箔に起因する導体損失と、絶縁樹脂基材に起因する誘電体損失とから主としてなる。また、導体損失は、高周波になるほど顕著に現れる銅箔の表皮効果によって更に大きくなりうる。このため、高周波用途における伝送損失の低減を図るべく、導体損失を低減可能な銅箔として、低粗度の銅箔が求められている。この点、特許文献2には上述した粗化処理層を備えた銅箔が高周波回路形成材料として好適であるとされている。   On the other hand, with the advancement of functions of portable electronic devices and the like in recent years, the frequency of signals has been increased to perform high-speed processing of a large amount of information, and a printed wiring board suitable for high-frequency applications is required. Such a high-frequency printed wiring board is desired to reduce transmission loss in order to enable transmission of high-frequency signals without degrading quality. A printed wiring board is provided with a copper foil processed into a wiring pattern and an insulating resin base material, but the transmission loss is a conductor loss due to the copper foil and a dielectric loss due to the insulating resin base material. It consists mainly of Also, the conductor loss can be further increased by the skin effect of the copper foil that appears more prominently at higher frequencies. For this reason, in order to reduce transmission loss in high frequency applications, low-roughness copper foil is required as a copper foil that can reduce conductor loss. In this regard, Patent Document 2 describes that the copper foil provided with the above-described roughening treatment layer is suitable as a high-frequency circuit forming material.

国際公開第2014/126193号International Publication No. 2014/126193 国際公開第2015/040998号International Publication No. 2015/040998

しかしながら、酸化還元処理を経て形成された微細凹凸は、銅箔同士の擦れ(例えば銅箔をロール状態から引き出す際に起こりうる)、あるいは他の部材(例えば搬送ローラ等)との擦れによって形状劣化しやすい。これは、上記のような微細凹凸は銅複合化合物の針状結晶及び/又は板状結晶で構成されるため、針状結晶及び/又は板状結晶が折れたり、或いは場合によっては倒れたりすることがあるためである。このように擦れて形状劣化した微細凹凸は、粗化処理銅箔の外観を損ねるだけでなく、微細凹凸による絶縁樹脂基材に対するアンカー効果を低減させる。このため、外観不良や性能の劣化(特に樹脂との密着性の低下)による歩留まりの低下を招くとの懸念がある。   However, the fine irregularities formed through the oxidation-reduction treatment are deteriorated in shape by rubbing between copper foils (which may occur when the copper foil is pulled out from the roll state) or rubbing with other members (for example, a transport roller). It's easy to do. This is because the fine irregularities as described above are composed of needle-like crystals and / or plate-like crystals of a copper composite compound, so that the needle-like crystals and / or the plate-like crystals may break or fall down in some cases. Because there is. The fine irregularities whose shape is deteriorated by rubbing in this way not only impairs the appearance of the roughened copper foil, but also reduces the anchor effect on the insulating resin substrate due to the fine irregularities. For this reason, there is a concern that the yield may be reduced due to poor appearance or deterioration of performance (particularly a decrease in adhesion to the resin).

本発明者らは、今般、酸化還元処理を経て形成された微細凹凸の形状を制御して、ISO25178に準拠して測定される最大高さSzが1.5μm以下であり、かつ、ISO25178に準拠して測定される山頂点の算術平均曲Spcが1300mm−1以下であるようにすることで、ファインピッチ回路形成や高周波用途に適した低粗度の微細凹凸でありながらも、樹脂との密着性のみならず耐擦れ性にも優れ、それ故、銅張積層板の加工ないしプリント配線板の製造において何らかの物に擦れた後においても、樹脂との優れた密着性を安定して発揮させることができるとの知見を得た。The present inventors have recently controlled the shape of fine irregularities formed through oxidation-reduction treatment, and the maximum height Sz measured in conformity with ISO25178 is 1.5 μm or less, and conforms to ISO25178. The arithmetic average music Spc at the peak of the peak measured in this way is 1300 mm −1 or less, so that it is in close contact with the resin even though it has fine roughness and low roughness suitable for fine pitch circuit formation and high frequency applications. Excellent resistance to rubbing as well as high resistance, and therefore stable adhesion to the resin even after rubbing against something in the processing of copper-clad laminates or printed wiring boards I got the knowledge that I can do it.

したがって、本発明の目的は、ファインピッチ回路形成や高周波用途に適した低粗度の微細凹凸でありながらも、樹脂との密着性のみならず耐擦れ性にも優れ、それ故、銅張積層板の加工ないしプリント配線板の製造において何らかの物に擦れた後においても、樹脂との優れた密着性を安定して発揮することが可能な粗化処理銅箔を提供することにある。   Therefore, the object of the present invention is not only the fine roughness of the low roughness suitable for fine pitch circuit formation and high frequency applications, but also excellent in not only the adhesion to the resin but also the abrasion resistance, and therefore, the copper-clad laminate An object of the present invention is to provide a roughened copper foil capable of stably exhibiting excellent adhesion to a resin even after being rubbed against something in the processing of a board or the production of a printed wiring board.

本発明の一態様によれば、針状結晶及び/又は板状結晶で構成される微細凹凸を備えた粗化処理面を少なくとも一方の側に有する粗化処理銅箔であって、前記粗化処理面は、ISO25178に準拠して測定される最大高さSzが1.5μm以下であり、かつ、ISO25178に準拠して測定される山頂点の算術平均曲Spcが1300mm−1以下である、粗化処理銅箔が提供される。According to one aspect of the present invention, there is provided a roughened copper foil having a roughened surface on at least one side provided with fine irregularities composed of needle-like crystals and / or plate-like crystals, The processed surface has a maximum height Sz measured in accordance with ISO 25178 of 1.5 μm or less, and an arithmetic average music Spc at the peak of the mountain measured in accordance with ISO 25178 is 1300 mm −1 or less. A treated copper foil is provided.

本発明の他の一態様によれば、上記態様の粗化処理銅箔を備えた、銅張積層板が提供される。   According to the other one aspect | mode of this invention, the copper clad laminated board provided with the roughening process copper foil of the said aspect is provided.

本発明の他の一態様によれば、上記態様の粗化処理銅箔を備えた、プリント配線板が提供される。   According to the other one aspect | mode of this invention, the printed wiring board provided with the roughening process copper foil of the said aspect is provided.

定義
本発明を特定するために用いられる用語ないしパラメータの定義を以下に示す。
Definitions The definitions of terms and parameters used to specify the present invention are shown below.

本明細書において「最大高さSz」とは、ISO25178に準拠して測定される、表面の最も高い点から最も低い点までの距離を表すパラメータである。最大高さSzは、粗化処理面における所定の測定面積(例えば22500μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。In this specification, the “maximum height Sz” is a parameter representing the distance from the highest point to the lowest point on the surface, measured in accordance with ISO25178. The maximum height Sz can be calculated by measuring a surface profile of a predetermined measurement area (for example, a two-dimensional region of 22,500 μm 2 ) on the roughened surface with a commercially available laser microscope.

本明細書において「山頂点の算術平均曲Spc」とは、ISO25178に準拠して測定される、定義領域中における山頂点の主曲率の算術平均を表すパラメータである。この値が小さいことは、他の物体と接触する点が丸みを帯びていることを示す。一方、この値が大きいことは、他の物体と接触する点が尖っていることを示す。端的に言えば、山頂点の算術平均曲Spcは、レーザー顕微鏡にて測定可能な、こぶの丸みを表すパラメータであるといえる。山頂点の算術平均曲Spcは、粗化処理面における所定の測定面積(例えば100μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。In this specification, the “arithmetic mean music Spc at the peak” is a parameter representing the arithmetic average of the principal curvatures at the peak in the definition area, which is measured in accordance with ISO25178. A small value indicates that the point in contact with another object is rounded. On the other hand, a large value indicates that a point in contact with another object is sharp. In short, the arithmetic mean song Spc at the top of the mountain can be said to be a parameter representing the roundness of the hump that can be measured with a laser microscope. The arithmetic mean music Spc at the top of the mountain can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional region of 100 μm 2 ) on the roughened surface with a commercially available laser microscope.

本明細書において、電解銅箔の「電極面」とは電解銅箔作製時に陰極と接していた側の面を指す。   In this specification, the “electrode surface” of the electrolytic copper foil refers to the surface on the side that was in contact with the cathode during the production of the electrolytic copper foil.

本明細書において、電解銅箔の「析出面」とは電解銅箔作製時に電解銅が析出されていく側の面、すなわち陰極と接していない側の面を指す。   In the present specification, the “deposition surface” of the electrolytic copper foil refers to the surface on the side where the electrolytic copper is deposited during the production of the electrolytic copper foil, that is, the surface not in contact with the cathode.

粗化処理銅箔
本発明の銅箔は粗化処理銅箔である。この粗化処理銅箔は少なくとも一方の側に粗化処理面を有する。粗化処理面は、針状結晶及び/又は板状結晶で構成される微細凹凸を備えており、かかる微細凹凸は、酸化還元処理を経て形成されうるものであり、典型的には、針状結晶及び/又は板状結晶が銅箔面に対して略垂直及び/又は斜め方向に生い茂った形状(例えば芝生状)に観察されるものである。そして、この粗化処理面は、ISO25178に準拠して測定される最大高さSzが1.5μm以下であり、かつ、ISO25178に準拠して測定される山頂点の算術平均曲Spcが1300mm−1以下である。このように、酸化還元処理を経て形成された微細凹凸の形状を制御して、最大高さSzが1.5μm以下であり、かつ、山頂点の算術平均曲Spcが1300mm−1以下であるようにすることで、ファインピッチ回路形成や高周波用途に適した低粗度の微細凹凸でありながらも、樹脂との密着性のみならず耐擦れ性にも優れ、それ故、銅張積層板の加工ないしプリント配線板の製造において何らかの物に擦れた後においても、樹脂との優れた密着性を安定して発揮させることが可能となる。特に、上述した定義のとおり、山頂点の算術平均曲Spcはこぶの丸みを表すパラメータであり、その値が小さいほど他の物体と接触する点が丸みを帯びていることを示す。したがって、上記優れた耐擦れ性は、このSpcを1300mm−1以下と小さくすることで、針状結晶及び/又は板状結晶が折れたり又は倒れたりしにくくなるためではないかと考えられる。すなわち、前述したとおり、従来の酸化還元処理を経て形成された微細凹凸は、銅箔同士の擦れや他の部材との擦れによって形状劣化しやすく、外観不良や性能の劣化(特に樹脂との密着性の低下)による歩留まりの低下を招くとの懸念があったが、本発明の粗化処理銅箔によれば、そのような技術的課題を解決することができる。
Roughened copper foil The copper foil of the present invention is a roughened copper foil. This roughened copper foil has a roughened surface on at least one side. The roughened surface is provided with fine irregularities composed of needle-like crystals and / or plate-like crystals, and such fine irregularities can be formed through oxidation-reduction treatment. The crystal and / or plate-like crystal is observed in a shape (for example, a lawn shape) that grows substantially perpendicularly and / or obliquely to the copper foil surface. The roughened surface has a maximum height Sz measured in accordance with ISO25178 of 1.5 μm or less, and an arithmetic average music Spc at the peak measured in accordance with ISO25178 is 1300 mm −1. It is as follows. In this way, the shape of the fine irregularities formed through the oxidation-reduction treatment is controlled so that the maximum height Sz is 1.5 μm or less and the arithmetic mean music Spc at the peak is 1300 mm −1 or less. This makes it possible to form fine pitch circuits and low roughness fine irregularities suitable for high frequency applications, but also has excellent resistance to abrasion as well as adhesion to the resin. In addition, even after rubbing against something in the production of a printed wiring board, it is possible to stably exhibit excellent adhesion with a resin. In particular, as defined above, the arithmetic mean song Spc at the peak of the mountain is a parameter representing the roundness of the hump, and the smaller the value, the rounder the point that comes into contact with another object. Therefore, it is considered that the above excellent rub resistance is because it becomes difficult for needle-like crystals and / or plate-like crystals to be broken or fall down by reducing this Spc to 1300 mm −1 or less. That is, as described above, the fine irregularities formed through the conventional oxidation-reduction treatment are likely to deteriorate in shape due to rubbing between copper foils and rubbing with other members, resulting in poor appearance and performance (particularly adhesion to the resin). However, according to the roughened copper foil of the present invention, such a technical problem can be solved.

粗化処理面における最大高さSzは1.5μm以下であり、好ましくは1.2μm以下、より好ましくは1.0μm以下である。このような範囲内のSzであると、ファインピッチ回路形成や高周波用途により適したものとなる。特に、このように低粗度であると高周波信号伝送において問題となる銅箔の表皮効果を低減して、銅箔に起因する導体損失を低減し、それにより高周波信号の伝送損失を有意に低減することができる。Szの下限値は特に限定されないが、樹脂との密着性向上の観点から、Szは0.1μm以上が好ましく、より好ましくは0.2μm以上、さらに好ましくは0.3μm以上である。   The maximum height Sz on the roughened surface is 1.5 μm or less, preferably 1.2 μm or less, more preferably 1.0 μm or less. Sz within such a range is more suitable for fine pitch circuit formation and high frequency applications. In particular, such low roughness reduces the skin effect of copper foil, which is a problem in high-frequency signal transmission, and reduces conductor loss due to copper foil, thereby significantly reducing high-frequency signal transmission loss. can do. The lower limit of Sz is not particularly limited, but Sz is preferably 0.1 μm or more, more preferably 0.2 μm or more, and still more preferably 0.3 μm or more, from the viewpoint of improving adhesion with the resin.

粗化処理面における山頂点の算術平均曲Spcは1300mm−1以下であり、好ましくは1200mm−1以下、より好ましくは1000mm−1以下である。これらの範囲内のSpcであると、より擦れ難い丸みを帯びたコブ形状にできるため、耐擦れ性を向上させることができる。Spcの下限値は特に限定されないが、100mm−1以上が好ましく、より好ましくは200mm−1以上、さらに好ましくは300mm−1以上である。The arithmetic mean music Spc of the peak on the roughened surface is 1300 mm −1 or less, preferably 1200 mm −1 or less, more preferably 1000 mm −1 or less. If it is Spc within these ranges, it is possible to form a rounded bump shape that is more difficult to rub, and thus the rub resistance can be improved. The lower limit of Spc is not particularly limited, but is preferably 100 mm −1 or more, more preferably 200 mm −1 or more, and further preferably 300 mm −1 or more.

上述のとおり、粗化処理面の微細凹凸は針状結晶及び/又は板状結晶で構成される。針状結晶及び/又は板状結晶の高さ(すなわち針状結晶及び/又は板状結晶の根元から垂直方向に測定される高さ)は、50〜400nmであるのが好ましく、より好ましくは100〜400nm、さらに好ましくは150〜350nmである。   As described above, the fine irregularities on the roughened surface are constituted by needle crystals and / or plate crystals. The height of the acicular crystal and / or plate crystal (that is, the height measured in the vertical direction from the root of the acicular crystal and / or plate crystal) is preferably 50 to 400 nm, more preferably 100. It is -400 nm, More preferably, it is 150-350 nm.

本発明の粗化処理銅箔の厚さは特に限定されないが、0.1〜35μmが好ましく、より好ましくは0.5〜18μmである。なお、本発明の粗化処理銅箔は、通常の銅箔の表面に粗化処理を行ったものに限らず、キャリア付銅箔の銅箔表面に粗化処理を行ったものであってもよい。   Although the thickness of the roughening copper foil of this invention is not specifically limited, 0.1-35 micrometers is preferable, More preferably, it is 0.5-18 micrometers. In addition, the roughening copper foil of this invention is not restricted to what roughened the surface of normal copper foil, Even if it roughened the copper foil surface of copper foil with a carrier. Good.

製造方法
本発明による粗化処理銅箔は、あらゆる方法によって製造されたものであってよいが、酸化還元処理を経て製造されるのが好ましい。以下、本発明による粗化処理銅箔の好ましい製造方法の一例を説明する。この好ましい製造方法は、最大高さSzが1.5μm以下の表面を有する銅箔を用意する工程と、上記表面に対して予備処理、酸化処理及び還元処理を順次行う粗化工程(酸化還元処理)とを含んでなる。
Production Method The roughened copper foil according to the present invention may be produced by any method, but is preferably produced through an oxidation-reduction treatment. Hereinafter, an example of the preferable manufacturing method of the roughening copper foil by this invention is demonstrated. This preferred manufacturing method includes a step of preparing a copper foil having a surface having a maximum height Sz of 1.5 μm or less, and a roughening step (oxidation-reduction treatment) in which preliminary treatment, oxidation treatment, and reduction treatment are sequentially performed on the surface. ).

(1)銅箔の準備
粗化処理銅箔の製造に使用する銅箔としては電解銅箔及び圧延銅箔の双方の使用が可能であり、より好ましくは電解銅箔である。また、銅箔は、無粗化の銅箔であってもよいし、予備的粗化を施したものであってもよい。銅箔の厚さは特に限定されないが、0.1〜35μmが好ましく、より好ましくは0.5〜18μmである。銅箔がキャリア付銅箔の形態で準備される場合には、銅箔は、無電解銅めっき法及び電解銅めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってもよい。
(1) Preparation of copper foil As copper foil used for manufacture of a roughening process copper foil, use of both electrolytic copper foil and rolled copper foil is possible, More preferably, it is electrolytic copper foil. Further, the copper foil may be a non-roughened copper foil or a pre-roughened copper foil. Although the thickness of copper foil is not specifically limited, 0.1-35 micrometers is preferable, More preferably, it is 0.5-18 micrometers. When the copper foil is prepared in the form of a copper foil with a carrier, the copper foil is prepared by a wet film formation method such as an electroless copper plating method and an electrolytic copper plating method, a dry film formation method such as sputtering and chemical vapor deposition, or It may be formed by a combination thereof.

粗化処理が行われることになる銅箔の表面は、ISO25178に準拠して測定される最大高さSzが1.5μm以下であるのが好ましく、より好ましくは1.2μm以下、さらに好ましくは1.0μm以下である。上記範囲内であると、本発明の粗化処理銅箔に要求される表面プロファイル、特に1.5μm以下の最大高さSzを粗化処理面に実現しやすくなる。Szの下限値は特に限定されないが、Szは0.1μm以上が好ましく、より好ましくは0.2μm以上、さらに好ましくは0.3μm以上である。   The surface of the copper foil to be roughened preferably has a maximum height Sz measured in accordance with ISO25178 of 1.5 μm or less, more preferably 1.2 μm or less, and even more preferably 1 0.0 μm or less. Within the above range, the surface profile required for the roughened copper foil of the present invention, in particular, the maximum height Sz of 1.5 μm or less can be easily realized on the roughened surface. The lower limit value of Sz is not particularly limited, but Sz is preferably 0.1 μm or more, more preferably 0.2 μm or more, and further preferably 0.3 μm or more.

(2)粗化処理(酸化還元処理)
こうして上記低いSzが付与された銅箔の表面に対して、予備処理、酸化処理及び還元処理を順次行う湿式による粗化工程を施すのが好ましい。特に、溶液を用いた湿式法で銅箔の表面に酸化処理を施すことで、銅箔表面に酸化銅(酸化第二銅)を含有する銅化合物を形成する。その後、当該銅化合物を還元処理して酸化銅の一部を亜酸化銅(酸化第一銅)に転換させることにより、酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状結晶及び/又は板状結晶で構成される微細凹凸を銅箔の表面に形成することができる。ここで、微細凹凸は、銅箔の表面を湿式法で酸化処理した段階で、酸化銅を主成分とする銅化合物により形成される。そして、当該銅化合物を還元処理したときに、この銅化合物により形成された微細凹凸の形状を概ね維持したまま、酸化銅の一部が亜酸化銅に転換されて、酸化銅及び亜酸化銅を含有する銅複合化合物からなる微細凹凸となる。このように銅箔の表面に湿式法で適正な酸化処理を施した後に、還元処理を施すことで、nmオーダーの微細凹凸の形成が可能となる。
(2) Roughening treatment (redox treatment)
Thus, it is preferable to subject the surface of the copper foil provided with the low Sz to a wet roughening step in which preliminary treatment, oxidation treatment, and reduction treatment are sequentially performed. In particular, a copper compound containing copper oxide (cupric oxide) is formed on the surface of the copper foil by oxidizing the surface of the copper foil by a wet method using a solution. Thereafter, the copper compound is reduced to convert a part of the copper oxide into cuprous oxide (cuprous oxide), thereby forming needle-like crystals composed of a copper composite compound containing copper oxide and cuprous oxide and / Or the fine unevenness | corrugation comprised with a plate-shaped crystal | crystallization can be formed in the surface of copper foil. Here, the fine irregularities are formed of a copper compound containing copper oxide as a main component at the stage where the surface of the copper foil is oxidized by a wet method. When the copper compound is reduced, a part of the copper oxide is converted into cuprous oxide while maintaining the shape of the fine irregularities formed by the copper compound, and the copper oxide and the cuprous oxide are reduced. It becomes the fine unevenness | corrugation which consists of a copper complex compound to contain. Thus, after performing the appropriate oxidation process by the wet method on the surface of copper foil, the reduction | restoration process is performed, and it becomes possible to form the fine unevenness | corrugation of nm order.

(2a)予備処理
酸化処理に先立ち、銅箔に対して脱脂等の予備処理を施すのが好ましい。この予備処理は、銅箔を水酸化ナトリウム水溶液に浸漬してアルカリ脱脂処理を行った後、水洗するのが好ましい。好ましい水酸化ナトリウム水溶液はNaOH濃度20〜60g/L、液温30〜60℃であり、好ましい浸漬時間は2秒〜5分である。また、アルカリ脱脂処理が施された銅箔を硫酸系水溶液に浸漬した後、水洗するのが好ましい。好ましい硫酸系水溶液は硫酸濃度1〜20質量%、液温20〜50℃であり、好ましい浸漬時間は2秒〜5分である。
(2a) Pretreatment Prior to the oxidation treatment, the copper foil is preferably subjected to a pretreatment such as degreasing. In this preliminary treatment, it is preferable that the copper foil is immersed in an aqueous sodium hydroxide solution to perform an alkaline degreasing treatment and then washed with water. A preferable aqueous sodium hydroxide solution has a NaOH concentration of 20 to 60 g / L, a liquid temperature of 30 to 60 ° C., and a preferable immersion time is 2 seconds to 5 minutes. Moreover, after immersing the copper foil in which the alkali degreasing process was performed in sulfuric acid type aqueous solution, it is preferable to wash with water. A preferable sulfuric acid aqueous solution has a sulfuric acid concentration of 1 to 20% by mass and a liquid temperature of 20 to 50 ° C., and a preferable immersion time is 2 seconds to 5 minutes.

(2b)酸化処理
上記予備処理が施された銅箔に対して水酸化ナトリウム溶液等のアルカリ溶液を用いて酸化処理を行う。アルカリ溶液で銅箔の表面を酸化することにより、酸化銅を主成分とする銅複合化合物からなる針状結晶及び/又は板状結晶で構成される微細凹凸を銅箔の表面に形成することができる。このとき、アルカリ溶液の温度は60〜85℃が好ましく、アルカリ溶液のpHは10〜14が好ましい。また、アルカリ溶液は酸化の観点から塩素酸塩、亜塩素酸塩、次亜塩素酸塩、過塩素酸塩を含むのが好ましく、その濃度は100〜500g/Lが好ましい。酸化処理は電解銅箔をアルカリ溶液に浸漬することにより行うのが好ましく、その浸漬時間(すなわち酸化時間)は10秒〜20分が好ましく、より好ましくは30秒〜10分である。
(2b) Oxidation treatment The copper foil subjected to the above pretreatment is subjected to an oxidation treatment using an alkaline solution such as a sodium hydroxide solution. By oxidizing the surface of the copper foil with an alkaline solution, fine irregularities composed of needle-like crystals and / or plate-like crystals made of a copper composite compound mainly composed of copper oxide can be formed on the surface of the copper foil. it can. At this time, the temperature of the alkaline solution is preferably 60 to 85 ° C., and the pH of the alkaline solution is preferably 10 to 14. Moreover, it is preferable that an alkaline solution contains a chlorate, a chlorite, a hypochlorite, and a perchlorate from a viewpoint of oxidation, and the density | concentration has preferable 100-500 g / L. The oxidation treatment is preferably performed by immersing the electrolytic copper foil in an alkaline solution, and the immersion time (that is, the oxidation time) is preferably 10 seconds to 20 minutes, more preferably 30 seconds to 10 minutes.

酸化処理に用いるアルカリ溶液は酸化抑制剤をさらに含むのが好ましい。すなわち、アルカリ溶液により銅箔の表面に対して酸化処理を施した場合、当該凸状部が過度に成長し、所望の長さを超える場合があり、所望の微細凹凸を形成することが困難になる。そこで、上記微細凹凸を形成するために、銅箔表面における酸化を抑制可能な酸化抑制剤を含むアルカリ溶液を用いることが好ましい。好ましい酸化抑制剤の例としては、アミノ系シランカップリング剤が挙げられる。アミノ系シランカップリング剤を含むアルカリ溶液を用いて銅箔表面に酸化処理を施すことで、当該アルカリ溶液中のアミノ系シランカップリング剤が銅箔の表面に吸着し、アルカリ溶液による銅箔表面の酸化を抑制することができる。その結果、酸化銅の針状結晶及び/又は板状結晶の成長を抑制することができ、極めて微細な凹凸を備えた望ましい粗化処理面を形成することができる。アミノ系シランカップリング剤の具体例としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン等が挙げられ、特に好ましくはN−2−(アミノエチル)−3−アミノプロピルトリメトキシシランである。これらはいずれもアルカリ性溶液に溶解し、アルカリ性溶液中に安定に保持されると共に、上述した銅箔表面の酸化を抑制する効果を発揮する。アルカリ溶液におけるアミノ系シランカップリング剤(例えばN−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン)の好ましい濃度は0.01〜20g/Lであり、より好ましくは0.02〜20g/Lである。   The alkaline solution used for the oxidation treatment preferably further contains an oxidation inhibitor. That is, when the surface of the copper foil is oxidized with an alkaline solution, the convex portion may grow excessively and exceed the desired length, making it difficult to form the desired fine irregularities. Become. Therefore, in order to form the fine irregularities, it is preferable to use an alkaline solution containing an oxidation inhibitor capable of suppressing oxidation on the copper foil surface. An example of a preferred oxidation inhibitor is an amino silane coupling agent. By subjecting the copper foil surface to an oxidation treatment using an alkaline solution containing an amino silane coupling agent, the amino silane coupling agent in the alkaline solution is adsorbed on the surface of the copper foil, and the copper foil surface by the alkaline solution Can be suppressed. As a result, it is possible to suppress the growth of copper oxide needle-like crystals and / or plate-like crystals, and to form a desirable roughened surface with extremely fine irregularities. Specific examples of the amino silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyl. Trimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane and the like are particularly preferable. Is N-2- (aminoethyl) -3-aminopropyltrimethoxysilane. All of these are dissolved in an alkaline solution, stably held in the alkaline solution, and exhibit the effect of suppressing oxidation of the copper foil surface described above. The preferable concentration of the amino-based silane coupling agent (for example, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) in the alkaline solution is 0.01 to 20 g / L, more preferably 0.02 to 20 g. / L.

(2c)還元処理
上記酸化処理が施された銅箔(以下、酸化処理銅箔という)に対して還元処理液を用いて還元処理を行う。還元処理により酸化銅の一部を亜酸化銅(酸化第一銅)に転換させることで、酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状結晶及び/又は板状結晶で構成される微細凹凸を銅箔の表面に形成することができる。この還元処理は、酸化処理銅箔に還元処理液を接触させることにより行えばよいが、このとき還元処理液中の溶存酸素量を上げるのが、1300mm−1以下の山頂点の算術平均曲Spcの粗化処理面を形成する上で好ましい。溶存酸素量を上げることで、溶存酸素による酸化効果と還元剤による還元力とのバランスを取ることができ、それによって上記Spcが実現できるものと考えられる。還元処理液中の溶存酸素量を上げる手法としては、還元処理液を攪拌しながら酸化処理銅箔を浸漬させる手法、及び酸化処理銅箔に還元処理液をシャワーで掛ける手法が挙げられる。特に好ましくは、簡便に望ましいSpcを実現できる点で、還元処理液をシャワーで掛ける手法であり、この場合、シャワーで還元処理液を掛ける時間は2〜60秒程度の短時間であってよく、より好ましくは5〜30秒である。なお、好ましい還元処理液はジメチルアミンボラン水溶液であり、この水溶液はジメチルアミンボランを10〜40g/Lの濃度で含有するのが好ましい。また、ジメチルアミンボラン水溶液は炭酸ナトリウムと水酸化ナトリウムを用いてpH12〜14に調整されるのが好ましい。このときの水溶液の温度は特に限定されず、室温であってよい。こうして還元処理を行った銅箔は水洗し、乾燥するのが好ましい。
(2c) Reduction treatment The copper foil that has been subjected to the oxidation treatment (hereinafter referred to as the oxidation-treated copper foil) is subjected to a reduction treatment using a reduction treatment solution. By converting a part of copper oxide into cuprous oxide (cuprous oxide) by reduction treatment, it is composed of needle-like crystals and / or plate-like crystals made of a copper composite compound containing copper oxide and cuprous oxide. Can be formed on the surface of the copper foil. This reduction treatment may be performed by bringing the reduction treatment liquid into contact with the oxidation treatment copper foil. At this time, the amount of dissolved oxygen in the reduction treatment liquid is increased by the arithmetic average song Spc at the peak of 1300 mm −1 or less. It is preferable in forming the roughened surface. It is considered that by increasing the amount of dissolved oxygen, it is possible to balance the oxidation effect of dissolved oxygen and the reducing power of the reducing agent, thereby realizing the above-mentioned Spc. Examples of a technique for increasing the amount of dissolved oxygen in the reduction treatment liquid include a technique for immersing the oxidation-treated copper foil while stirring the reduction treatment liquid, and a technique for applying the reduction treatment liquid to the oxidation-treated copper foil with a shower. Particularly preferably, it is a method of applying the reduction treatment liquid in a shower because it can easily achieve a desirable Spc. In this case, the time for applying the reduction treatment liquid in the shower may be as short as about 2 to 60 seconds, More preferably, it is 5 to 30 seconds. A preferred reduction treatment solution is a dimethylamine borane aqueous solution, and this aqueous solution preferably contains dimethylamine borane at a concentration of 10 to 40 g / L. The aqueous dimethylamine borane solution is preferably adjusted to pH 12 to 14 using sodium carbonate and sodium hydroxide. The temperature of the aqueous solution at this time is not particularly limited, and may be room temperature. The copper foil thus subjected to the reduction treatment is preferably washed with water and dried.

(3)防錆処理
所望により、粗化処理後の銅箔に防錆処理を施し、防錆層を形成してもよい。防錆層の例としては、無機成分を用いた無機防錆層、有機成分を用いた有機防錆層、及びそれらの組合せが挙げられる。好ましい無機防錆層は、亜鉛、スズ、ニッケル、コバルト、モリブデン、タングステン、チタン、クロム等の元素を1種以上含むものである。好ましい有機防錆層は、トリアゾール化合物を含むものであり、より好ましくはベンゾトリアゾール、カルボキシベンゾトリアゾール、メチルベンゾトリアゾール、アミノトリアゾール、ニトロベンゾトリアゾール、ヒドロキシベンゾトリアゾール、クロロベンゾトリアゾール、エチルベンゾトリアゾール、ナフトトリアゾール、又はそれらの任意の組合せを含む。
(3) Rust prevention treatment If desired, the copper foil after the roughening treatment may be subjected to a rust prevention treatment to form a rust prevention layer. Examples of the rust preventive layer include an inorganic rust preventive layer using an inorganic component, an organic rust preventive layer using an organic component, and combinations thereof. A preferable inorganic rust preventive layer contains one or more elements such as zinc, tin, nickel, cobalt, molybdenum, tungsten, titanium, and chromium. Preferred organic anticorrosive layers are those containing a triazole compound, more preferably benzotriazole, carboxybenzotriazole, methylbenzotriazole, aminotriazole, nitrobenzotriazole, hydroxybenzotriazole, chlorobenzotriazole, ethylbenzotriazole, naphthotriazole. Or any combination thereof.

(4)シランカップリング剤処理
所望により、粗化処理後の銅箔にシランカップリング剤処理を施し、シランカップリング剤層を形成してもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4−グリシジルブチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3−アミノプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−3−(4−(3−アミノプロポキシ)ブトキシ)プロピル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3−メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3−メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。
(4) Silane coupling agent treatment If desired, the copper foil after the roughening treatment may be treated with a silane coupling agent to form a silane coupling agent layer. Thereby, moisture resistance, chemical resistance, adhesiveness with an adhesive agent, etc. can be improved. The silane coupling agent layer can be formed by appropriately diluting and applying a silane coupling agent and drying. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane, N-2 (amino Amino functions such as ethyl) 3-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane Silane coupling agent, or mercapto functional silane coupling agent such as 3-mercaptopropyltrimethoxysilane, or olefin functional silane coupling agent such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or 3-methacryloxypropyl Trime Acrylic-functional silane coupling agent such as Kishishiran, or imidazole functional silane coupling agent such as imidazole silane, or triazine functional silane coupling agents such as triazine silane.

なお、上述したような防錆処理と上述したようなシランカップリング剤処理の両方を行ってもよい。   In addition, you may perform both a rust prevention process as mentioned above and a silane coupling agent process as mentioned above.

銅張積層板
本発明の粗化処理銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えた銅張積層板、又は上記粗化処理銅箔を用いて得られた銅張積層板が提供される。この銅張積層板は、本発明の粗化処理銅箔と、この粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなる。粗化処理銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1〜1000μmが好ましく、より好ましくは2〜400μmであり、さらに好ましくは3〜200μmである。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め銅箔表面に塗布されるプライマー樹脂層を介して粗化処理銅箔に設けられていてもよい。
Copper- clad laminate The roughened copper foil of the present invention is preferably used for the production of a copper-clad laminate for printed wiring boards. That is, according to the preferable aspect of this invention, the copper clad laminated board provided with the said roughened copper foil or the copper clad laminated board obtained using the said roughened copper foil is provided. This copper-clad laminate includes the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil. The roughened copper foil may be provided on one side of the resin layer or on both sides. The resin layer comprises a resin, preferably an insulating resin. The resin layer is preferably a prepreg and / or a resin sheet. The prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper is impregnated with a synthetic resin. Preferable examples of the insulating resin include an epoxy resin, a cyanate resin, a bismaleimide triazine resin (BT resin), a polyphenylene ether resin, and a phenol resin. Examples of the insulating resin that constitutes the resin sheet include insulating resins such as epoxy resins, polyimide resins, and polyester resins. Moreover, the filler particle etc. which consist of various inorganic particles, such as a silica and an alumina, may contain in the resin layer from a viewpoint of improving insulation. Although the thickness of a resin layer is not specifically limited, 1-1000 micrometers is preferable, More preferably, it is 2-400 micrometers, More preferably, it is 3-200 micrometers. The resin layer may be composed of a plurality of layers. A resin layer such as a prepreg and / or a resin sheet may be provided on the roughened copper foil via a primer resin layer applied to the surface of the copper foil in advance.

プリント配線板
本発明の粗化処理銅箔はプリント配線板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えたプリント配線板、又は上記粗化処理銅箔を用いて得られたプリント配線板が提供される。本態様によるプリント配線板は、樹脂層と、銅層とがこの順に積層された層構成を含んでなる。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の粗化処理銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の粗化処理銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の粗化処理銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、粗化処理銅箔を配線層の全部又は一部としてモディファイド・セミアディティブ(MSAP)法、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、粗化処理銅箔を除去してセミアディティブ(SAP)法で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。
Printed wiring board The roughened copper foil of the present invention is preferably used for the production of a printed wiring board. That is, according to the preferable aspect of this invention, the printed wiring board provided with the said roughening process copper foil or the printed wiring board obtained using the said roughening process copper foil is provided. The printed wiring board according to this aspect includes a layer configuration in which a resin layer and a copper layer are laminated in this order. The resin layer is as described above for the copper-clad laminate. In any case, a known layer structure can be adopted for the printed wiring board. As a specific example related to the printed wiring board, a single-sided or double-sided printed wiring board formed with a circuit on a laminated body obtained by bonding the roughened copper foil of the present invention to one side or both sides of the prepreg, and multilayered these. A multilayer printed wiring board etc. are mentioned. Other specific examples include a flexible printed wiring board, a COF, a TAB tape, and the like that form a circuit by forming the roughened copper foil of the present invention on a resin film. As another specific example, a copper foil with resin (RCC) in which the above-described resin layer is applied to the roughened copper foil of the present invention is formed, and the resin layer is laminated on the above-described printed circuit board as an insulating adhesive layer. After that, the build-up wiring board in which the circuit is formed by using the modified semi-additive (MSAP) method, the subtractive method, etc., with the roughened copper foil as a whole or a part of the wiring layer, and the roughened copper foil are removed. Examples thereof include a build-up wiring board in which a circuit is formed by a semi-additive (SAP) method, and a direct build-up on wafer in which the lamination of a copper foil with resin and circuit formation are alternately repeated on a semiconductor integrated circuit.

本発明を以下の例によってさらに具体的に説明する。   The present invention is more specifically described by the following examples.

例1〜10
本発明の粗化処理銅箔の作製を以下のようにして行った。
Examples 1-10
The roughened copper foil of the present invention was produced as follows.

(1)電解銅箔の作製
銅電解液として以下に示される組成の硫酸酸性硫酸銅溶液を用い、陰極にチタン製の回転電極を用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dmで電解し、厚さ12μmの電解銅箔を得た。この電解銅箔の析出面及び電極面の最大高さSzを後述する手法にて測定したところ、析出面のSzが0.8μm、電極面のSzが1.2μmであった。
<硫酸酸性硫酸銅溶液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:260g/L
‐ ビス(3−スルホプロピル)ジスルフィド濃度:30mg/L
‐ ジアリルジメチルアンモニウムクロライド重合体濃度:50mg/L
‐ 塩素濃度:40mg/L
(1) Production of electrolytic copper foil Using a copper sulfate acidic copper sulfate solution having the composition shown below as a copper electrolyte, using a rotating electrode made of titanium as a cathode, and using DSA (dimensional stability anode) as an anode, Electrolysis was performed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 to obtain an electrolytic copper foil having a thickness of 12 μm. When the deposition surface of this electrolytic copper foil and the maximum height Sz of the electrode surface were measured by the method described later, the Sz of the deposition surface was 0.8 μm and the Sz of the electrode surface was 1.2 μm.
<Composition of sulfuric acid copper sulfate solution>
-Copper concentration: 80 g / L
-Sulfuric acid concentration: 260 g / L
-Bis (3-sulfopropyl) disulfide concentration: 30 mg / L
-Diallyldimethylammonium chloride polymer concentration: 50 mg / L
-Chlorine concentration: 40 mg / L

(2)粗化処理(酸化還元処理)
上記得られた電解銅箔の電極面側(例1〜5)又は析出面側(例6〜10)に対して、以下に示される3段階のプロセスで粗化処理(酸化還元処理)を行った。すなわち、以下に示される予備処理、酸化処理及び還元処理をこの順に行った。
(2) Roughening treatment (redox treatment)
The electrode surface side (Examples 1 to 5) or the deposition surface side (Examples 6 to 10) of the obtained electrolytic copper foil is subjected to a roughening treatment (oxidation reduction treatment) in a three-stage process shown below. It was. That is, the following pretreatment, oxidation treatment, and reduction treatment were performed in this order.

<予備処理>
上記(1)で得られた電解銅箔をNaOH濃度50g/Lの水酸化ナトリウム水溶液に液温40℃で1分間浸漬して、アルカリ脱脂処理を行った後、水洗した。このアルカリ脱脂処理が施された電解銅箔を硫酸濃度が5質量%の硫酸系水溶液に1分間浸漬した後、水洗した。
<Preliminary processing>
The electrolytic copper foil obtained in the above (1) was immersed in an aqueous sodium hydroxide solution having a NaOH concentration of 50 g / L for 1 minute at a liquid temperature of 40 ° C., subjected to an alkaline degreasing treatment, and then washed with water. The electrolytic copper foil subjected to the alkaline degreasing treatment was immersed in a sulfuric acid aqueous solution having a sulfuric acid concentration of 5 mass% for 1 minute, and then washed with water.

<酸化処理>
上記予備処理が施された電解銅箔に対して酸化処理を行った。この酸化処理は、当該電解銅箔を液温70℃、pH=12、亜塩素酸濃度が150g/L、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン濃度が10g/Lの水酸化ナトリウム溶液に、表1に示される時間浸漬させることにより行った。こうして、電解銅箔の両面に、酸化銅を主成分とする銅複合化合物からなる針状結晶及び/又は板状結晶で構成される微細凹凸を形成した。
<Oxidation treatment>
An oxidation treatment was performed on the electrolytic copper foil subjected to the preliminary treatment. In this oxidation treatment, the electrolytic copper foil has a liquid temperature of 70 ° C., a pH = 12, a chlorous acid concentration of 150 g / L, and an N-2- (aminoethyl) -3-aminopropyltrimethoxysilane concentration of 10 g / L. It was performed by immersing in a sodium hydroxide solution for the time shown in Table 1. In this way, the fine unevenness | corrugation comprised by the acicular crystal | crystallization and / or plate-like crystal which consist of a copper complex compound which has copper oxide as a main component was formed in both surfaces of the electrolytic copper foil.

<還元処理>
上記酸化処理が施された試料に対して還元処理を行った。この還元処理は、上記酸化処理により微細凹凸が形成された電解銅箔の電極面側又は析出面側に、炭酸ナトリウムと水酸化ナトリウムを用いてpH=12に調整したジメチルアミンボラン濃度が20g/Lの水溶液を10秒間シャワーで掛けることにより行った。このときの水溶液の温度は室温とした。こうして還元処理を行った試料を水洗し、乾燥した。これらの工程により、電解銅箔の一方の面側の酸化銅の一部を還元して亜酸化銅とし、酸化銅及び亜酸化銅を含む銅複合化合物からなる微細凹凸を有する粗化処理面とした。こうして針状結晶及び/又は板状結晶で構成される微細凹凸を備えた粗化処理面を少なくとも一方の側に有する粗化処理銅箔を得た。
<Reduction treatment>
A reduction treatment was performed on the sample subjected to the oxidation treatment. In this reduction treatment, the concentration of dimethylamine borane adjusted to pH = 12 using sodium carbonate and sodium hydroxide on the electrode surface side or the precipitation surface side of the electrolytic copper foil on which fine irregularities were formed by the oxidation treatment was 20 g / This was carried out by applying an aqueous solution of L in a shower for 10 seconds. The temperature of the aqueous solution at this time was room temperature. The sample thus reduced was washed with water and dried. Through these steps, a part of the copper oxide on one side of the electrolytic copper foil is reduced to cuprous oxide, and a roughened surface having fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide, and did. In this way, a roughened copper foil having a roughened surface provided with fine irregularities composed of needle-like crystals and / or plate-like crystals on at least one side was obtained.

例11(比較)
還元処理における水溶液の付着を、シャワーを用いる代わりに、酸化処理が施された試料を水溶液中に浸漬することにより行ったこと以外は、例2と同様にして、粗化処理銅箔の作製を行った。
Example 11 (Comparison)
A roughened copper foil was prepared in the same manner as in Example 2 except that the aqueous solution in the reduction treatment was attached by immersing the oxidized sample in the aqueous solution instead of using a shower. went.

例12及び13(比較)
例1の(1)と同様にして得られた電解銅箔の析出面側(例12)又は電極面側(例13)に対して例1の(2)と同様にして予備処理を行った後、以下に示される従来の酸化処理及び還元処理(酸化還元処理)を施すことにより、粗化処理銅箔の作製を行った。
Examples 12 and 13 (Comparison)
Pretreatment was performed in the same manner as (2) in Example 1 on the deposition surface side (Example 12) or electrode surface side (Example 13) of the electrolytic copper foil obtained in the same manner as in Example 1 (1). Then, the roughening process copper foil was produced by performing the conventional oxidation process and reduction process (redox process) which are shown below.

<酸化処理>
上記電解銅箔に対して酸化処理を行った。この酸化処理は、上記電解銅箔を、ローム・アンド・ハース電子材料株式会社製の酸化処理液である「PRO BOND 80A OXIDE SOLUTION」を10vol%及び「PRO BOND 80B OXIDE SOLUTION」を20vol%含有する液温85℃の水溶液に5分間浸漬することにより行った。
<Oxidation treatment>
The electrolytic copper foil was oxidized. This oxidation treatment contains 10 vol% of “PRO BOND 80A OXIDE SOLUTION” and 20 vol% of “PRO BOND 80B OXIDE SOLUTION”, which is an oxidation treatment solution manufactured by Rohm & Haas Electronic Materials Co., Ltd. It was performed by immersing in an aqueous solution having a liquid temperature of 85 ° C. for 5 minutes.

<還元処理>
上記酸化処理を施した電解銅箔に対して還元処理を行った。この還元処理は、上記酸化処理を施した電解銅箔に、ローム・アンド・ハース電子材料株式会社製の還元処理液である「CIRCUPOSIT PB OXIDE CONVERTER 60C」を6.7vol%、「CUPOSITZ」を1.5vol%含有する液温35℃の水溶液を10秒間シャワーで掛けることにより行った。こうして還元処理を行った試料を水洗し、乾燥した。
<Reduction treatment>
Reduction treatment was performed on the electrolytic copper foil subjected to the oxidation treatment. In this reduction treatment, “CIRCUPOSIT PB OXIDE CONVERTER 60C”, which is a reduction treatment solution manufactured by Rohm & Haas Electronic Materials Co., Ltd., is 6.7 vol%, and “CUPOSITZ” is 1%. It was performed by applying an aqueous solution containing 5 vol% of a liquid temperature of 35 ° C. with a shower for 10 seconds. The sample thus reduced was washed with water and dried.

例14及び15(比較)
還元処理を、シャワーを用いる代わりに、酸化処理が施された試料を水溶液中に5分間浸漬することにより行ったこと以外は、例12(例14の場合)又は例13(例15の場合)と同様にして、粗化処理銅箔の作製を行った。
Examples 14 and 15 (Comparison)
Example 12 (in the case of Example 14) or Example 13 (in the case of Example 15) except that the reduction treatment was performed by immersing the oxidized sample in an aqueous solution for 5 minutes instead of using a shower. In the same manner as above, a roughened copper foil was prepared.

評価
例1〜15において作製された粗化処理銅箔について、以下に示される各種評価を行った。
Various evaluation shown below was performed about the roughening process copper foil produced in Evaluation Examples 1-15.

<最大高さSz>
レーザー顕微鏡(株式会社キーエンス製、VK−X100)を用いた表面性状解析により、粗化処理銅箔の粗化処理面における最大高さSzの測定をISO25178に準拠して行った。具体的には、粗化処理銅箔の粗化処理面における面積22500μmの二次元領域の表面プロファイルをレーザー法により測定した。同一サンプルに対して3か所測定したときの平均値を最大高さSzの値として採用した。前述した各例における粗化処理前の電解銅箔の析出面又は電極面の最大高さSzの測定も上記同様の手順にて行われた。
<Maximum height Sz>
The maximum height Sz on the roughened surface of the roughened copper foil was measured according to ISO25178 by surface texture analysis using a laser microscope (manufactured by Keyence Corporation, VK-X100). Specifically, the surface profile of a two-dimensional area with an area of 22500 μm 2 on the roughened surface of the roughened copper foil was measured by a laser method. The average value when measuring three places on the same sample was adopted as the value of the maximum height Sz. Measurement of the maximum height Sz of the deposited surface or electrode surface of the electrolytic copper foil before the roughening treatment in each of the examples described above was also performed in the same procedure as described above.

<山頂点の算術平均曲Spc>
レーザー顕微鏡(株式会社キーエンス製、VK−X100)を用いた表面性状解析により、粗化処理銅箔の粗化処理面における山頂点の算術平均曲Spcの測定をISO25178に準拠して行った。具体的には、粗化処理銅箔の粗化処理面における面積100μmの二次元領域の表面プロファイルを、レーザー法により測定した。同一サンプルに対して10か所測定したときの平均値を山頂点の算術平均曲Spcとして採用した。
<The arithmetic mean song Spc at the top of the mountain>
The arithmetic average music Spc at the peak of the roughened surface of the roughened copper foil was measured according to ISO25178 by surface texture analysis using a laser microscope (manufactured by Keyence Corporation, VK-X100). Specifically, the surface profile of a two-dimensional region having an area of 100 μm 2 on the roughened surface of the roughened copper foil was measured by a laser method. The average value when 10 places were measured for the same sample was adopted as the arithmetic average song Spc at the top of the mountain.

<耐擦れ性−擦れ試験前後の明度差ΔL>
粗化処理銅箔の耐擦れ性を評価するために、擦れ試験前後における粗化処理銅箔の粗化処理面の(L表色系における)明度Lの変化(ΔL)を測定した。明度Lの測定は、分光色差計(日本電色工業株式会社製、SE2000)を用いて、JIS Z8722:2000に準拠して行った。このとき、明度の校正には測定装置に付属の白色板を用いた。この測定は同一部位に対して3回行い、3回の測定値の平均値を当該粗化処理銅箔の明度Lの値として採用した。次いで、擦れ試験として、作製した粗化処理銅箔を複数枚積層し、得られた積層体の上から5kgf/cmの荷重を掛けながら、積層体の内部に位置する1枚の粗化処理銅箔を引き抜いた。引き抜いた粗化処理銅箔の粗化処理面の明度Lを上記と同様にして測定した。こうして得られた擦れ試験前後の明度Lの差(ΔL)を耐擦れ性の評価指標とした。具体的には、擦れ試験前後の明度差ΔLが10以下のものを「良好」と、10を超えるものを「劣る」と判定した。
<Rubbing resistance-brightness difference ΔL before and after rubbing test>
In order to evaluate the rubbing resistance of the roughened copper foil, the change in lightness L * (in the L * a * b * color system) of the roughened copper foil before and after the rubbing test (ΔL) Was measured. The lightness L * was measured according to JIS Z8722: 2000 using a spectral color difference meter (SE2000, manufactured by Nippon Denshoku Industries Co., Ltd.). At this time, the white plate attached to the measuring apparatus was used for the brightness calibration. This measurement was performed three times for the same part, and the average value of the three measurements was adopted as the value of the lightness L * of the roughened copper foil. Next, as a rubbing test, a plurality of the prepared roughened copper foils were laminated, and one roughening treatment located inside the laminate while applying a load of 5 kgf / cm 2 from the top of the obtained laminate. The copper foil was pulled out. The lightness L * of the roughened surface of the drawn roughened copper foil was measured in the same manner as described above. The difference (ΔL) in brightness L * before and after the rubbing test thus obtained was used as an evaluation index for rubbing resistance. Specifically, a lightness difference ΔL before and after the rubbing test was determined to be “good” and a lightness difference ΔL exceeding 10 was determined to be “poor”.

<樹脂との密着性−擦れ試験後の引き剥がし強さ>
絶縁樹脂基材として、プリプレグ(パナソニック株式会社製、MEGTRON4、厚み100μm)2枚を用意して、積み重ねた。この積み重ねたプリプレグに、上記擦れ試験を行った粗化処理銅箔(荷重を掛けながら積層体から引き抜いたもの)をその粗化処理面がプリプレグと当接するように積層し、真空プレス機を使用して、プレス圧2.9MPa、温度200℃、プレス時間90分の条件でプレスして銅張積層板を作製した。次に、この銅張積層板にエッチング法により、3.0mm幅の引き剥がし強さ測定用直線回路を備えた試験基板を作製した。こうして形成した直線回路を、JIS C6481−1996に準拠して絶縁樹脂基材から引き剥がして、引き剥がし強さ(kgf/cm)を測定した。
<Adhesion with resin-peeling strength after rubbing test>
As the insulating resin base material, two prepregs (manufactured by Panasonic Corporation, MEGRON4, thickness 100 μm) were prepared and stacked. On this stacked prepreg, the roughened copper foil (extracted from the laminate while applying a load) subjected to the above rubbing test is laminated so that the roughened surface comes into contact with the prepreg, and a vacuum press is used. Then, a copper-clad laminate was produced by pressing under conditions of a pressing pressure of 2.9 MPa, a temperature of 200 ° C., and a pressing time of 90 minutes. Next, a test substrate provided with a 3.0 mm width peeling strength measuring linear circuit was fabricated on this copper-clad laminate by an etching method. The linear circuit thus formed was peeled off from the insulating resin substrate according to JIS C6481-1996, and the peel strength (kgf / cm) was measured.

結果
例1〜15において得られた評価結果は表1に示されるとおりであった。表1に示されるように、本発明の条件を満たす例1〜10で作製した粗化処理銅箔は、耐擦れ性、及び擦れ試験後の樹脂との密着性の両方に優れるものであった。
Results The evaluation results obtained in Examples 1 to 15 were as shown in Table 1. As shown in Table 1, the roughened copper foil produced in Examples 1 to 10 satisfying the conditions of the present invention was excellent in both rub resistance and adhesion to the resin after the rub test. .

Figure 2017018232
Figure 2017018232

Claims (7)

針状結晶及び/又は板状結晶で構成される微細凹凸を備えた粗化処理面を少なくとも一方の側に有する粗化処理銅箔であって、前記粗化処理面は、ISO25178に準拠して測定される最大高さSzが1.5μm以下であり、かつ、ISO25178に準拠して測定される山頂点の算術平均曲Spcが1300mm−1以下である、粗化処理銅箔。A roughened copper foil having a roughened surface provided with fine irregularities composed of needle-like crystals and / or plate-like crystals on at least one side, the roughened surface according to ISO25178 A roughened copper foil having a maximum height Sz to be measured of 1.5 μm or less and an arithmetic average music Spc at the peak of the mountain measured in accordance with ISO25178 of 1300 mm −1 or less. 前記針状結晶及び/又は板状結晶の高さが、50〜400nmである、請求項1に記載の粗化処理銅箔。   The roughening copper foil of Claim 1 whose height of the said acicular crystal | crystallization and / or a plate-shaped crystal | crystallization is 50-400 nm. 前記最大高さSzが0.2〜1.0μmである、請求項1又は2に記載の粗化処理銅箔。   The roughened copper foil according to claim 1 or 2, wherein the maximum height Sz is 0.2 to 1.0 µm. 前記山頂点の算術平均曲Spcが200〜1000mm−1である、請求項1〜3のいずれか一項に記載の粗化処理銅箔。The roughening copper foil as described in any one of Claims 1-3 whose arithmetic mean music Spc of the said peak is 200-1000 mm < -1 >. 前記微細凹凸が酸化還元処理を経て形成されたものである、請求項1〜4のいずれか一項に記載の粗化処理銅箔。   The roughening-treated copper foil as described in any one of Claims 1-4 in which the said fine unevenness | corrugation is formed through oxidation-reduction processing. 請求項1〜5のいずれか一項に記載の粗化処理銅箔を備えた、銅張積層板。   The copper clad laminated board provided with the roughening process copper foil as described in any one of Claims 1-5. 請求項1〜5のいずれか一項に記載の粗化処理銅箔を備えた、プリント配線板。

The printed wiring board provided with the roughening process copper foil as described in any one of Claims 1-5.

JP2017529857A 2015-07-29 2016-07-14 Roughening copper foil, copper clad laminate and printed wiring board Active JP6342078B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015149717 2015-07-29
JP2015149717 2015-07-29
PCT/JP2016/070876 WO2017018232A1 (en) 2015-07-29 2016-07-14 Roughened copper foil, copper-clad laminate, and printed wiring board

Publications (2)

Publication Number Publication Date
JPWO2017018232A1 true JPWO2017018232A1 (en) 2017-09-21
JP6342078B2 JP6342078B2 (en) 2018-06-13

Family

ID=57885564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017529857A Active JP6342078B2 (en) 2015-07-29 2016-07-14 Roughening copper foil, copper clad laminate and printed wiring board

Country Status (6)

Country Link
JP (1) JP6342078B2 (en)
KR (1) KR102490491B1 (en)
CN (1) CN107923047B (en)
MY (1) MY186397A (en)
TW (1) TWI609780B (en)
WO (1) WO2017018232A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6945523B2 (en) * 2016-04-14 2021-10-06 三井金属鉱業株式会社 Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them.
KR102136794B1 (en) * 2017-03-09 2020-07-22 케이씨에프테크놀로지스 주식회사 Copper foil having improved adheshion property, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
SG11202009376SA (en) * 2018-03-30 2020-10-29 Mitsui Mining & Smelting Co Copper-clad laminate
KR102479331B1 (en) * 2018-04-25 2022-12-19 후루카와 덴키 고교 가부시키가이샤 Surface treated copper foil, copper clad laminate, and printed wiring board
EP3567993B1 (en) * 2018-05-08 2022-02-23 Atotech Deutschland GmbH & Co. KG A method for increasing adhesion strength between a surface of copper or copper alloy and an organic layer, and acidic aqueous non-etching protector solution
JP6985745B2 (en) * 2018-06-20 2021-12-22 ナミックス株式会社 Roughened copper foil, copper-clad laminate and printed wiring board
WO2020031721A1 (en) * 2018-08-10 2020-02-13 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
WO2020067141A1 (en) * 2018-09-26 2020-04-02 積水ポリマテック株式会社 Heat conductive sheet
JP6805217B2 (en) * 2018-10-18 2020-12-23 Jx金属株式会社 Conductive materials, molded products and electronic components
US10581081B1 (en) * 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
EP3943222A4 (en) * 2019-03-22 2022-08-03 MOLDINO Tool Engineering, Ltd. Coated cutting tool
JP7328671B2 (en) * 2019-05-09 2023-08-17 ナミックス株式会社 laminate
JP7456578B2 (en) * 2019-05-09 2024-03-27 ナミックス株式会社 Copper surface processing equipment
WO2022014648A1 (en) * 2020-07-16 2022-01-20 三井金属鉱業株式会社 Copper-clad laminate plate and printed wiring board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076091A (en) * 2003-09-01 2005-03-24 Furukawa Circuit Foil Kk Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
JP2006179537A (en) * 2004-12-21 2006-07-06 Nikko Kinzoku Kk Roughened rolling copper foil for high frequency circuit and its production process
WO2010110092A1 (en) * 2009-03-27 2010-09-30 日鉱金属株式会社 Copper foil for printed wiring board and method for producing same
JP2013225447A (en) * 2012-04-23 2013-10-31 Mitsui Mining & Smelting Co Ltd Electrode foil and electronic device
WO2014081041A1 (en) * 2012-11-26 2014-05-30 Jx日鉱日石金属株式会社 Surface-treated electrolytic copper foil, laminate, and printed circuit board
WO2014126193A1 (en) * 2013-02-14 2014-08-21 三井金属鉱業株式会社 Surface-treated copper foil, and copper-clad laminate obtained using surface-treated copper foil
JP2015042765A (en) * 2013-07-23 2015-03-05 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, printed wiring board, printed circuit board, copper clad laminate, and method for manufacturing printed wiring board
WO2015040998A1 (en) * 2013-09-20 2015-03-26 三井金属鉱業株式会社 Copper foil, copper foil with carrier foil, and copper-clad laminate
JP2015134953A (en) * 2014-01-17 2015-07-27 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY168616A (en) * 2013-07-23 2018-11-14 Jx Nippon Mining & Metals Corp Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076091A (en) * 2003-09-01 2005-03-24 Furukawa Circuit Foil Kk Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
JP2006179537A (en) * 2004-12-21 2006-07-06 Nikko Kinzoku Kk Roughened rolling copper foil for high frequency circuit and its production process
WO2010110092A1 (en) * 2009-03-27 2010-09-30 日鉱金属株式会社 Copper foil for printed wiring board and method for producing same
JP2013225447A (en) * 2012-04-23 2013-10-31 Mitsui Mining & Smelting Co Ltd Electrode foil and electronic device
WO2014081041A1 (en) * 2012-11-26 2014-05-30 Jx日鉱日石金属株式会社 Surface-treated electrolytic copper foil, laminate, and printed circuit board
WO2014126193A1 (en) * 2013-02-14 2014-08-21 三井金属鉱業株式会社 Surface-treated copper foil, and copper-clad laminate obtained using surface-treated copper foil
JP2015042765A (en) * 2013-07-23 2015-03-05 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, printed wiring board, printed circuit board, copper clad laminate, and method for manufacturing printed wiring board
WO2015040998A1 (en) * 2013-09-20 2015-03-26 三井金属鉱業株式会社 Copper foil, copper foil with carrier foil, and copper-clad laminate
JP2015134953A (en) * 2014-01-17 2015-07-27 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board

Also Published As

Publication number Publication date
KR102490491B1 (en) 2023-01-19
TW201710079A (en) 2017-03-16
CN107923047A (en) 2018-04-17
WO2017018232A1 (en) 2017-02-02
KR20180036693A (en) 2018-04-09
JP6342078B2 (en) 2018-06-13
CN107923047B (en) 2020-05-01
MY186397A (en) 2021-07-22
TWI609780B (en) 2018-01-01

Similar Documents

Publication Publication Date Title
JP6342078B2 (en) Roughening copper foil, copper clad laminate and printed wiring board
JP6193534B2 (en) Roughening copper foil, copper clad laminate and printed wiring board
TWI587757B (en) Copper foil, copper foil with carrier foil, and copper clad laminate
US10244635B2 (en) Production method for copper-clad laminate plate
WO2017179416A1 (en) Treated surface copper foil, copper foil with carrier as well as methods for manufacturing copper-clad laminate and printed circuit board using same
TWI808183B (en) Coarse treatment of copper foil, copper-clad laminates and printed wiring boards
US10280501B2 (en) Roughened copper foil, copper clad laminate, and printed circuit board
WO2018211951A1 (en) Roughened copper foil, carrier-attached copper foil, copper clad laminate, and printed wiring board
WO2021193246A1 (en) Roughened copper foil, copper-cladded laminate board, and printed wiring board
JP6110581B2 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board for high-frequency signal transmission circuit formation
JPWO2020105289A1 (en) Surface-treated copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
TWI616336B (en) Method for manufacturing copper-clad laminate
JP6178035B1 (en) Method for producing copper clad laminate
WO2021157363A1 (en) Roughened copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board
CN111757607B (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP6975845B2 (en) Manufacturing method of surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2022209989A1 (en) Roughened copper foil, copper-cladded laminate board, and printed wiring board
JP6087028B1 (en) Roughening copper foil, copper clad laminate and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170601

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170601

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180515

R150 Certificate of patent or registration of utility model

Ref document number: 6342078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250