WO2015039603A1 - X射线装置以及具有该x射线装置的ct设备 - Google Patents

X射线装置以及具有该x射线装置的ct设备 Download PDF

Info

Publication number
WO2015039603A1
WO2015039603A1 PCT/CN2014/086743 CN2014086743W WO2015039603A1 WO 2015039603 A1 WO2015039603 A1 WO 2015039603A1 CN 2014086743 W CN2014086743 W CN 2014086743W WO 2015039603 A1 WO2015039603 A1 WO 2015039603A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
anode
cathode
ray apparatus
vacuum
Prior art date
Application number
PCT/CN2014/086743
Other languages
English (en)
French (fr)
Inventor
唐传祥
唐华平
陈怀璧
黄文会
张化一
郑曙昕
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310600370.4A external-priority patent/CN104470173B/zh
Priority claimed from CN201310426917.3A external-priority patent/CN104465279B/zh
Priority claimed from CN201310600016.1A external-priority patent/CN104470171A/zh
Priority claimed from CN201310600023.1A external-priority patent/CN104470172B/zh
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to KR1020167008295A priority Critical patent/KR101855931B1/ko
Priority to RU2016114671A priority patent/RU2655916C2/ru
Priority to JP2016543304A priority patent/JP6526014B2/ja
Publication of WO2015039603A1 publication Critical patent/WO2015039603A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/147Spot size control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/064Details of the emitter, e.g. material or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/066Details of electron optical components, e.g. cathode cups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/20Selection of substances for gas fillings; Means for obtaining or maintaining the desired pressure within the tube, e.g. by gettering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/32Supply voltage of the X-ray apparatus or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/068Multi-cathode assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/086Target geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • H01J35/13Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith

Definitions

  • the present invention relates to a device for generating distributed X-rays, and more particularly to arranging a plurality of independent hot cathode electron-emitting units in an external manner in an X-ray source device and using gate control or cathode control to generate a transformation in a predetermined order An X-ray external hot cathode distributed X-ray device at a focal position and a CT device having the device.
  • an X-ray source refers to an apparatus for generating X-rays, and is usually composed of an X-ray tube, a power supply and control system, an auxiliary device such as cooling and shielding, and the like, and the core thereof is an X-ray tube.
  • X-ray tubes are typically constructed of a cathode, anode, glass or ceramic housing.
  • the cathode is a direct-heating spiral tungsten wire. During operation, it is heated to a high temperature state by electric current to generate a beam of heat-emitting electron beams.
  • the cathode is surrounded by a front-end slotted metal cover, and the metal cover focuses the electrons.
  • the anode is a tungsten target embedded in the end face of the copper block.
  • a high voltage is applied between the anode and the cathode, and electrons generated by the cathode accelerate and move toward the anode under the action of an electric field, and strike the target surface to generate X-rays.
  • X-rays have a wide range of applications in industrial non-destructive testing, safety inspection, medical diagnosis and treatment.
  • an X-ray fluoroscopic imaging apparatus made by utilizing the high penetration ability of X-rays plays an important role in all aspects of people's daily life.
  • a film-type planar fluoroscopy imaging device Early in this type of equipment was a film-type planar fluoroscopy imaging device.
  • the current advanced technology is a digital, multi-view and high-resolution stereo imaging device, such as CT (computed tomography), which can obtain high-definition three-dimensional graphics or slices.
  • CT computed tomography
  • the X-ray source and the detector need to move on the slip ring.
  • the movement speed of the X-ray source and the detector is usually very high, resulting in a decrease in the reliability and stability of the whole device.
  • the inspection speed of CT is also limited. Therefore, there is a need in the CT apparatus for an X-ray source that can produce multiple viewing angles without moving the position.
  • some techniques closely arrange a plurality of independent conventional X-ray sources on a circumference in order to achieve a plurality of viewing angles of a stationary X-ray source instead of the movement of the X-ray source, although this can also achieve multiple viewing angles, but the cost High, and the target pitch is different for different viewing angles, and the imaging quality (stereoscopic resolution) is poor.
  • a light source and a method for generating distributed X-rays are proposed in Patent Document 1 (US 4,946,452).
  • the anode target has a large area, which alleviates the problem of overheating of the target, and the position of the target varies along the circumference and can be generated. Multiple perspectives.
  • Patent Document 1 performs scanning deflection for obtaining an accelerated high-energy electron beam, there is control Difficulty, non-discrete location and poor repeatability, but still an effective way to generate distributed light sources. Further, a light source and a method for generating distributed X-rays are proposed, for example, in Patent Document 2 (US20110075802) and Patent Document 3 (WO2011/119629), the anode target having a large area, alleviating the problem of overheating of the target, and The target positions are dispersed and arranged in an array, and multiple viewing angles can be generated.
  • carbon nanotubes are used as cold cathodes, and the cold cathodes are arranged in an array, and the voltage between the cathode gates is used to control the field emission, thereby controlling each cathode to emit electrons in sequence, and bombarding the targets in the corresponding order position on the anode. Point to become a distributed X-ray source.
  • the voltage between the cathode gates is used to control the field emission, thereby controlling each cathode to emit electrons in sequence, and bombarding the targets in the corresponding order position on the anode. Point to become a distributed X-ray source.
  • the present invention has been made to solve the above problems, and an object thereof is to provide an external hot cathode distributed which can generate a plurality of viewing angles without moving a light source and is advantageous for simplifying structure, improving system stability, reliability, and improving inspection efficiency.
  • the present invention provides an external hot cathode distributed X-ray apparatus, comprising: a vacuum box, which is sealed around and has a high internal vacuum; and a plurality of electron emission units, each of which is independent of each other And arranged in a line array on the side wall of the vacuum box; the anode is installed at an intermediate position inside the vacuum box, and is parallel to the arrangement direction of the electron emission unit in the length direction and in the width direction Forming an angle with a mounting angle of the electron-emitting unit at a predetermined angle; a power supply and control system having a high-voltage power source connected to the anode, an emission control device connected to each of the plurality of electron-emitting units, a control system for controlling each power source, the electron emission unit having: a heating filament; a cathode connected to the heating filament; a filament lead drawn from both ends of the heating filament; and an insulating support surrounding the heating filament And the cathode; a focusing electrode disposed at
  • a high voltage power supply connecting means for connecting the anode and the cable of the high voltage power source to be mounted near the anode of the vacuum box a side wall of one end; an emission control device connecting device for connecting the heating filament and the emission control device; a vacuum power source included in the power source and control system; and a vacuum device mounted on a side of the vacuum box On the wall, operation is performed using the vacuum power source to maintain a high vacuum within the vacuum box.
  • the electron emission unit further has: a gate mounted between the cathode and the focusing electrode and adjacent to the cathode; a gate lead, and The gate connection is connected to the emission control device through the insulating support.
  • the electron emission unit further has: a focusing section installed between the focusing pole and the connecting fixture; and a focusing device to surround the The configuration of the focus segment.
  • a focus power source included in the power source and control system; a focusing device connecting means for connecting the focusing means and the focusing Electricity source.
  • the electron emission units are mounted in two rows on two opposite side walls of the vacuum box.
  • the vacuum box is made of glass or ceramic.
  • the vacuum box is made of a metal material.
  • the plurality of electron emitting units are arranged in a straight line or in a segmented straight line shape.
  • the plurality of electron emitting units are arranged in a circular arc shape or a segmented circular arc shape.
  • the arrangement intervals of the plurality of electron emission units are uniform.
  • the arrangement intervals of the plurality of electron emission units are non-uniform.
  • the present invention provides a CT apparatus characterized in that the X-ray source used is an external hot cathode distributed X-ray apparatus as described above.
  • an external hot cathode distributed X-ray apparatus for generating X-rays which periodically change the focus position in a certain order in a light source apparatus.
  • the electron emission unit of the invention adopts a hot cathode, and has the advantages of large emission current and long life with respect to other designs; a plurality of electron emission units are independently fixed on the vacuum box, and a small two-pole or three-pole electron gun can be directly used.
  • the technology is mature, the cost is low, and the application is flexible.
  • the design of the long strip type large anode effectively alleviates the problem of overheating of the anode, which is beneficial to increase the power of the light source;
  • the electron emission unit can be arranged in a straight line, and the whole becomes a linear distributed X-ray device.
  • the electron-emitting units can also be arranged in a ring shape, and the whole is a ring-shaped distributed X-ray device, which is flexible in application; the design of the focusing electrode and the design of the external focusing device can achieve a very small focus.
  • the invention has large current, small target point, uniform target position distribution and good repeatability, high output power, simple structure, convenient control and low cost.
  • the distributed X-ray source of the present invention By applying the distributed X-ray source of the present invention to a CT device, multiple viewing angles can be generated without moving the light source, so that the slip ring motion can be omitted, which is advantageous for simplifying the structure, improving system stability, reliability, and improving inspection efficiency.
  • Figure 1 is a schematic illustration of the construction of an external hot cathode distributed X-ray apparatus of the present invention.
  • Fig. 2 is a schematic view showing the positional relationship between an anode and an electron-emitting unit in the present invention.
  • Fig. 3 is a schematic view showing the structure of an electron-emitting unit in the present invention.
  • Figure 4 is a schematic illustration of the structure of an emission control unit in the present invention.
  • Figure 5 is a schematic illustration of the structure of an electron-emitting unit having a grid and focusing means in the present invention.
  • Fig. 6 is a schematic diagram showing the structure of an emission control unit having a gate control in the present invention.
  • Fig. 7 is a schematic structural view of another electron-emitting unit in the present invention.
  • Fig. 8 is a plan view showing the structure of a cylindrical electron-emitting unit in the present invention, (A) is a case of a circular gate hole, and (B) is a case of a rectangular grid hole.
  • Fig. 9 is a plan view showing the structure of a rectangular parallelepiped electron-emitting unit in the present invention, wherein (A) is a case of a circular gate hole, and (B) is a case of a rectangular grid hole.
  • FIG 10 is a schematic view showing the structure of a cathode in the present invention,
  • A) is a planar circular cathode
  • B) is a planar rectangular cathode
  • C is a spherical arc-shaped cathode
  • D is a cylindrical arc-shaped cathode.
  • Figure 11 is a schematic view showing the structure of a grid in the present invention, (A) being a planar grid, (B) being a spherical grid, and (C) being a U-groove.
  • Figure 12 is a schematic illustration of autofocusing by control of the gate of the present invention.
  • Figure 13 is a schematic view showing the structure of an external hot cathode distributed X-ray apparatus arranged in a linear double-row arrangement in the present invention
  • (A) is a diagram showing the positional relationship between the electron-emitting unit, the anode and the vacuum box
  • ( B) is a diagram showing the positional relationship between the electron-emitting unit and the anode.
  • Fig. 14 is a view showing the structure of an arc-type double-row opposed external hot cathode distributed X-ray apparatus in the present invention.
  • Figure 15 is a schematic illustration of the main structure of a two-dimensional distributed X-ray apparatus of the present invention.
  • Figure 16 is a bottom plan view showing the anode structure of the two-dimensional distributed X-ray apparatus of the present invention.
  • Figure 17 is a schematic view showing an array of electron-emitting cells in which a gate is separated from a cathode in the present invention, (A) is a side view, (B) is a plan view of respective gate independent control modes, and (C) is a gate interconnection of each Top view of the cathode control mode.
  • Figure 18 is a distributed X-ray apparatus in which the filaments are connected in series in the present invention.
  • Figure 19 is a schematic illustration of the structure of a curved array distributed X-ray apparatus of the present invention.
  • Figure 20 is a schematic end view showing the structure of a curved array distributed X-ray apparatus of the present invention.
  • Figure 21 is a schematic illustration of the different structures of the anode in the present invention.
  • Fig. 22 is a view showing the arrangement relationship of an electron-emitting unit and an anode of the ring type distributed X-ray apparatus in the present invention.
  • FIG. 1 is a schematic illustration of the construction of an external hot cathode distributed X-ray apparatus of the present invention.
  • the external hot cathode distributed X-ray apparatus of the present invention comprises a plurality of electron-emitting units 1 (at least two, hereinafter also specifically referred to as electron-emitting units 11, 12, 13, 14, ).
  • the anode 2 the vacuum box 3, the high voltage power connection device 4, the emission control device connection device 5, and the power supply and control system 7.
  • the electron-emitting unit 1 is composed of a heating filament 101, a cathode 102, an insulating support member 103, a focusing electrode 104, a connection fixing member 105, a filament lead 106, and the like.
  • the anode 2 is installed in the middle of the inside of the vacuum box 3, and the electron-emitting unit 1 and the high-voltage power source connecting device 4 are mounted on the wall of the vacuum box 3 and constitute an integral sealing structure with the vacuum box 3.
  • FIG. 2 is a schematic view showing the relative positional relationship between the anode 2 and the electron-emitting unit 1 of the external hot cathode distributed X-ray apparatus of the present invention.
  • a plurality of electron-emitting units 1 are arranged in a straight line
  • an anode 2 is an elongated shape corresponding to the arrangement of the electron-emitting units 1
  • an anode 2 is longitudinally opposed to a plurality of electron-emitting units.
  • the alignment of the straight lines 1 is parallel, and an angle between the surface of the anode 2 facing the electron emission unit 1 and the surface of the electron emission unit 1 facing the anode 2 is formed at a predetermined angle in the width direction.
  • the electron emission unit 1 is configured to generate an electron beam flow as required, is mounted on the side wall of the vacuum box 3, and forms a sealing structure with the side walls of the vacuum box 3 through the connection fixing member 105, and the electron emission unit 1 is entirely outside the vacuum box 3.
  • the electron beam flow can enter the inside of the vacuum box 3 through an opening connecting the middle of the fixing member 105.
  • a structure of the electron-emitting unit 1 is shown in FIG. 3, and the electron-emitting unit 1 includes a heating filament 101, a cathode 102, an insulating support member 103, a focusing electrode 104, a connection fixing member 105, and a filament lead 106.
  • the cathode 102 is connected to the heating filament 101.
  • the heating filament 101 is usually made of a tungsten wire.
  • the cathode 102 is usually made of a material having high electron-emitting electron power, for example, cerium oxide, cerium citrate, lanthanum hexaboride or the like.
  • the insulating support member 103 surrounds the heating filament 101 and the cathode 102, and corresponds to a part of the housing of the electron-emitting unit 1, and is made of an insulating material, usually ceramic.
  • the filament lead 106 is led out to the outside of the electron-emitting unit 1 through the insulating support member 103, and a sealed structure is formed between the filament lead 106 and the insulating support member 103.
  • the focusing electrode 104 is mounted on the upper end of the insulating support member 103.
  • the focusing electrode 104 has a nose-cone design with an opening in the middle, and the center of the opening is vertically aligned with the center of the cathode 102.
  • the connection fixing member 105 is for sealingly connecting the electron emission unit 1 to the vacuum box 3, usually a knife edge flange, with an opening in the middle for allowing the electron beam current E to enter the vacuum box 3 from the electron emission unit 1.
  • the insulating support member 103, the focusing electrode 104, and the connecting fixing member 105 are closely coupled together to form a vacuum sealing structure of the electron emitting unit 1 except for the central opening of the connecting fixing member 105.
  • the power supply and control system 7 includes a control system 701, a high voltage power supply 702, a transmission control device 703, and the like.
  • the high voltage power source 702 is connected to the anode 2 through a high voltage power connection device 4 mounted on the wall of the vacuum box 3.
  • the emission control means 703 are respectively connected to the filament leads 106 of the respective electron-emitting units 1 by the emission control means connecting means 5, usually having the same number of emission control units as the number of the electron-emitting units 1.
  • a structure of a transmission control unit is shown in FIG. 4.
  • the emission control device 703 includes a plurality of transmission control units, each of which includes a negative high voltage module 70301, a low voltage direct current module 70302, and a high voltage isolation transformer 70303.
  • the negative high voltage module 70301 is configured to generate a negative high voltage pulse under the control of the control system 701, the output of which is connected to the primary side of the high voltage isolation transformer 70303; the low voltage direct current module 70302 is used to generate a current for heating and heating the heating filament 106.
  • Output connected to high voltage isolation transformer The low voltage ends of the two parallel parallel sides of the 70303 are output through the transformer windings from the high voltage ends of the two parallel parallel sides to the filament lead 106.
  • the emission control device connection device 5 is usually a cable with a connector, the number of which is the same as the number of the electron emission units 1. Further, the control system 701 controls the operating states of the high voltage power source 702 and the emission control device 703.
  • the vacuum box 3 is a peripherally sealed cavity housing having a high vacuum inside, and the housing may be made of an insulating material such as glass or ceramic.
  • a plurality of electron-emitting units 1 are mounted, and these electron-emitting units 1 are arranged in a straight line, and an elongated anode 2 is mounted inside (see Fig. 1), and the anode 2 is The longitudinal direction is parallel to the arrangement direction of the electron-emitting units 1.
  • the space inside the vacuum box 3 is sufficient for the movement of the electron beam in the electric field without any blocking.
  • the high vacuum in the vacuum box 3 is obtained by baking the exhaust gas in a high temperature exhaust furnace, and the degree of vacuum is usually better than 10 -3 Pa, and the recommended degree of vacuum is better than 10 -5 Pa.
  • the recommended housing of the vacuum box 3 is made of a metal material.
  • the electron-emitting unit 1 is connected to the wall of the vacuum box 3 by a connection fixing member 105 thereof, and the anode 2 is utilized.
  • the insulating support material is fixedly mounted in the vacuum box 3, and a sufficient distance is maintained between the anode 2 and the casing of the vacuum box 3, so that high-pressure ignition is not generated.
  • the high-voltage power source connecting device 4 is for connecting the cable of the anode 2 and the high-voltage power source 702 to the side wall of the vacuum box 3.
  • the high-voltage power connection device 4 is generally a tapered ceramic structure with a metal post inside, one end of which is connected to the anode 2, and the other end is closely connected to the wall of the vacuum box 3 to form a vacuum sealing structure.
  • a metal post inside the high voltage power connection 4 is used to form an electrical connection between the anode 2 and the cable connector of the high voltage power supply 702.
  • the high-voltage power connection device 4 and the cable connector are designed as a pluggable structure.
  • the electron emission unit 1 may further include a gate electrode 107 and a gate lead 108.
  • a structure of an electron-emitting unit 1 having a grid and focusing means is shown in FIG.
  • the gate 107 is disposed between the cathode 102 and the focusing electrode 104, adjacent to the cathode 102.
  • the gate 107 is generally a mesh structure, and the outer shape is generally the same as that of the cathode 102.
  • the gate lead 108 is connected to the gate.
  • the gate lead 108 is hermetically connected to the insulating support 103, and the gate lead 108 is connected to the emission control device 703 through the emission control device connecting device 5.
  • the emission control unit of the emission control device 703 may further include a negative bias module 70304, a positive bias module 70305, and a selection switch 70306.
  • a structure of a transmission control unit having gate control is shown in FIG. As shown in FIG.
  • the negative high voltage module 70301 is used to generate a negative high voltage, and its output is connected to the primary side of the high voltage isolation transformer 70303; the commercial power is connected to the low voltage end of the two parallel parallel sides of the high voltage isolation transformer 70303, and through the transformer winding
  • the power supplies suspended from the high voltage are output from the high voltage terminals of the two parallel parallel sides, and are respectively supplied to the DC module 70302, the negative bias module 70304, and the positive bias module 70305.
  • the DC module 70302 generates a current for heating and heating the heating filament 101; the negative biasing module 70304 and the positive biasing module 70305 respectively generate a negative voltage and a positive voltage and output to the two inputs of the selection switch 70306, and the selection switch 70306 is A voltage is output to the gate lead 108 by the control device 701 and finally applied to the gate 107.
  • the electron emission unit 1 may further include a focus section 109 and a focusing means 110.
  • the focus segment 109 is connected to the focus electrode 104 and the connection fixture 105.
  • the focusing electrode 104, the focusing segment 109 and the connecting fixture 105 may be a single piece of metal, or three metal parts may be joined together by welding.
  • the focusing device 110 is mounted outside the focusing section 109, and the focusing device 110 Usually the focus line package. Focusing device 110 is coupled to focus power source 704 by focusing device connection device 6, which operates under the drive of focus power source 704, which is controlled by power source and control system 7.
  • the external hot cathode distributed X-ray device further includes a focusing device connection device 6, and the power supply and control system 7 further includes a focus power source 704.
  • the external hot cathode distributed X-ray apparatus of the present invention may further include a vacuum apparatus 8 and a vacuum power source 705 including a vacuum pump 801 and a vacuum valve 802 mounted on the side wall of the vacuum box 3.
  • the vacuum pump 801 operates under the action of a vacuum power source 705 for maintaining a high vacuum inside the vacuum box 3.
  • the vacuum pump 801 preferably uses a vacuum ion pump.
  • Vacuum valve 802 is typically an all-metal vacuum valve that can withstand high temperature bakes, such as an all-metal manual flapper valve. Vacuum valve 802 is typically in a closed state. Accordingly, the power and control system 7 of the external hot cathode distributed X-ray device further includes a vacuum power supply (Vacc PS) 705 of the vacuum device 8.
  • Vacc PS vacuum power supply
  • FIG. 7 is a schematic structural view of another electron-emitting unit which can be used in the present invention.
  • the electron-emitting unit 1 is composed of a heating filament 101A, a cathode 102A, a grid 103A, an insulating support 104A, a connecting fixture 109A, and the like.
  • the electron-emitting unit 1 constitutes an integral sealing structure with the wall of the vacuum box 3 by means of the connection fixing member 109A, but is not limited thereto, as long as the electron-emitting unit 1 can be mounted on the wall of the vacuum box 3 and the whole is placed in the vacuum box 3 Outside (ie, the cathode end of the electron-emitting unit 1 (including the heating filament 101A, the cathode 102A, the gate 103A) and the lead terminals of the electron-emitting unit 1 (including the filament lead 105A, the gate lead 108A, and the connecting fixture 109A) It is outside the vacuum box 3 and can be installed by other means.
  • the cathode end of the electron-emitting unit 1 including the heating filament 101A, the cathode 102A, the gate 103A
  • the lead terminals of the electron-emitting unit 1 including the filament lead 105A, the gate lead 108A, and the connecting fixture 109A
  • the electron emission unit 1 includes a heating filament 101A, a cathode 102A, a gate 103A, an insulating support 104A, a filament lead 105A, a connection fixture 109A, and the gate 103A is composed of a grid 106A, a grid 107A, and a gate lead 108A.
  • the cathode 102A is connected to the heating filament 101A, and the heating filament 101A is usually made of a tungsten wire.
  • the cathode 102A is usually made of a material having high electron-emitting electron power, for example, cerium oxide, cerium citrate, lanthanum hexaboride or the like.
  • the insulating support member 104A surrounds the heating filament 101A and the cathode 102A, and corresponds to the housing of the electron-emitting unit 1, and is made of an insulating material, usually ceramic.
  • the filament lead 105A is taken out to the lower end of the electron emission unit 1 through the insulating support 104A (but is not limited thereto, as long as it is taken out to the outside of the electron emission unit 1), and is sealed between the filament lead 105A and the insulating support 104A. structure.
  • the gate electrode 103A is mounted on the upper end of the insulating support 104A (i.e., disposed on the opening of the insulating support 104A) and is opposed to the cathode 102A, and preferably the gate 103A is vertically aligned with the center of the cathode 102A.
  • the gate 103A includes a grid 106A, a grid 107A, a gate lead 108A, the grid 106A, the grid 107A, and the gate lead 108A are made of metal.
  • the grid 106A is made of stainless steel.
  • 107A is a molybdenum material
  • the gate lead 108A is a kovar (alloy) material.
  • the gate lead 108A is led out to the lower end of the electron emission unit 1 through the insulating support 104A (but is not limited thereto, as long as it is taken out to the outside of the electron emission unit 1), between the gate lead 108A and the insulating support 104A To seal the structure.
  • the filament lead 105A is connected to the gate lead 108A to the hair Shooting control device 703.
  • the main body is a metal plate (for example, stainless steel material), that is, the grid frame 106A, and an opening is formed in the middle of the grid frame 106A, and the shape of the opening may be square. Or a circle or the like, a wire mesh (for example, a molybdenum material), that is, a mesh 107A is fixed at a position of the opening, and a lead (for example, a Kovar material) is drawn from a position of the metal plate.
  • the pole lead 108A is capable of connecting the gate 103A to a potential.
  • the gate electrode 103A is located directly above the cathode 102A, and the center of the above-mentioned opening of the gate electrode 103A is aligned with the center of the cathode 102A (i.e., up and down on a vertical line), and the shape of the opening corresponds to the shape of the cathode 102A.
  • the size of the opening is smaller than the area of the cathode 102A.
  • the structure of the gate electrode 103A is not limited to the above configuration.
  • the relative position between the gate 103A and the cathode 102A is fixed by the insulating support 104A.
  • connection fixing member 109A it is recommended that the main body is a circular knife edge flange, and an opening is formed in the middle, and the shape of the opening may be square or circular, etc., at the position of the opening.
  • the outer edge of the upper end of the insulating support member 104A is sealingly connected, such as a welded joint, and the outer edge of the knife edge flange is formed with a screw hole.
  • the electron emission unit 1 can be fixed to the wall of the vacuum box 3 by a bolt connection, and the knife edge and the vacuum box A vacuum sealed connection is formed between the walls of 3. This is a flexible structure that is easy to disassemble, and can be flexibly replaced when one of the plurality of electron-emitting units 1 fails.
  • connection fixing member 109A is to realize the sealing connection between the insulating support member 104A and the vacuum box 3, and there are various flexible ways, such as welding through a metal flange transition or a high temperature molten sealing connection of glass. , or ceramic metallization and metal welding.
  • the electron-emitting unit 1 may have a cylindrical structure, that is, the insulating support member 104A is cylindrical, and the cathode 102A, the grid holder 106A, and the grid 107A may be both circular or rectangular at the same time.
  • a top view of a cylindrical electron-emitting unit 1 is shown in Fig. 8, in which (A) shows a structure in which the cathode 102A, the grid frame 106A, and the grid 107A are both circular, and (B) shows The cathode 102A, the grid frame 106A, and the grid 107A have a rectangular structure at the same time.
  • the surface of the cathode 102A in order to achieve a better convergence effect of electrons generated on the surface of the cathode 102A, it is generally preferred to process the surface of the cathode 102A into a spherical arc shape (as shown in Fig. 10(C)).
  • the diameter of the surface of the cathode 102A is usually several mm, for example, 2 mm in diameter, and the diameter of the opening of the grid 107A mounted on the grid frame 106A is usually several mm, for example, 1 mm in diameter.
  • the distance from the gate 103A to the surface of the cathode 102A is usually from a few tenths of a mm to several mm, for example, 2 mm.
  • a cylindrical arc shape is generally preferred, which facilitates further convergence of the electron beam current in the narrow side direction.
  • the length of the arc surface is several mm to several tens of mm
  • the width is several mm, for example, 10 mm in length and 2 mm in width.
  • the grid 107A is rectangular, preferably having a width of 1 mm and a length of 10 mm.
  • FIG. 10 shows a case where the cathodes 102A are respectively of a planar circular shape, a planar rectangular shape, a spherical arc shape, and a cylindrical arc shape.
  • the electron emission unit 1 may also be a rectangular parallelepiped structure, that is, the insulating support member 104A is a rectangular parallelepiped, and the cathode 102A, the grid frame 106A, and the grid 107A may be both circular at the same time or at the same time rectangular.
  • a top view of a rectangular parallelepiped electron-emitting unit 1 is shown in Fig. 9, in which (A) shows a structure in which the cathode 102A, the grid frame 106A, and the grid 107A are both circular, and (B) shows The cathode 102A, the grid frame 106A, and the grid 107A are simultaneously rectangular Shaped structure.
  • the diagonal lines in FIGS. 8 and 9 are for the purpose of distinguishing between different components, and are not for the cross-section.
  • the structure of the grid 107A may be a flat type, a spherical type, or a U-groove type, and a spherical type is recommended because of a spherical type grid. Will make the electron beam have a better focusing effect.
  • the emission control means 703 changes only the state of the gate of one of the adjacent electron-emitting units, at the same time, only one of the adjacent electron-emitting units performs electron emission to form an electron beam stream,
  • the electric field on both sides of the gate of the electron-emitting unit has an autofocus effect on the beam current.
  • the arrow between the electron-emitting unit 1 and the anode 2 in the figure indicates the direction of electron motion (inverse power line direction).
  • the anode 2 is a high voltage + 160 kV, and the arrow between the electron-emitting unit 1 and the anode 2 of the large electric field is directed from the electron-emitting unit 1 to the anode 2, that is, as long as the electron-emitting unit 1 emits The electron beam current will move toward the anode 2.
  • the voltage of the gate 103A of the electron-emitting unit 13 is changed from -500 V to +2000 V, and the electron-emitting unit 13 enters.
  • the voltages of the gates 103A of the adjacent electron-emitting units 12 and the electron-emitting units 14 are still -500 V, and if the electron-emitting units 12, 14 have electron emission, the electrons are emitted from the electron-emitting units 12 and the electron-emitting units 14
  • the gate electrode 103A moves toward the gate electrode 103A of the electron emission unit 13, but since there is no electron emission in the electron emission units 12, 14, the electron beam emitted from the electron emission unit 13 is directed from the electron emission unit 13
  • the electric fields of the adjacent electron-emitting units 12 and the electron-emitting units 14 are squeezed, and thus have an autofocus effect.
  • the external hot cathode distributed X-ray device of the present invention operates in a high vacuum state
  • the method for obtaining and maintaining the high vacuum may be: installing the anode 2 in the vacuum box 3, and connecting the high voltage power supply device 4 And the vacuum device 8 completes the sealing connection on the wall of the vacuum box 3, and is sealed with a blind plate flange at the electron-emitting unit connection of the side wall of the vacuum box 3, so that the vacuum box 3 integrally forms a sealed structure;
  • the air is baked and degassed in a vacuum furnace, and the vacuum valve 802 is connected to the external vacuum pumping system for removing the gas adsorbed by the materials of the components; and then, in the clean environment at normal temperature, the vacuum valve 802 is injected into the vacuum box 3.
  • nitrogen gas is injected from the vacuum valve 802 into the inside of the vacuum box 3 to form protection; in the shortest time, the electron-emitting unit to be replaced is removed, and a new electron-emitting unit is installed; vacuum
  • the valve 802 is connected to an external vacuum pumping device to evacuate the vacuum box 3; when the inside of the vacuum box 3 reaches a high vacuum again, the vacuum valve 802 is closed to maintain a high vacuum inside the vacuum box 3.
  • FIG. 13 shows a structure of an external hot cathode distributed X-ray apparatus in which linear double-rows are arranged opposite to each other
  • (A) is a diagram showing the positional relationship between the electron-emitting unit 1, the anode 2 and the vacuum box 3.
  • (B) is a view showing the positional relationship between the electron-emitting unit 1 and the anode 2. As shown in FIG.
  • a plurality of electron-emitting units 1 are respectively arranged in two rows on two opposite side walls of the vacuum box 3, and the anode 2 is disposed in the middle of the inside of the vacuum box 3.
  • the faces of the anode 2 opposite to the two rows of electron-emitting units 1 are both inclined, and the electron beam current E generated by the electron-emitting unit 1 is accelerated by the electric field between the electron-emitting unit 1 and the anode 2.
  • the inclined surface of the anode 2 is bombarded to generate X-rays, and the outgoing direction of the useful X-rays is the oblique direction of the slope of the anode 2. Since the two rows of electron-emitting units 1 are arranged opposite each other, the anode 2 has two inclined faces, and the X-rays generated by the two inclined faces are emitted in the same direction.
  • Fig. 14 is a view showing the positional relationship of the electron-emitting unit 1 and the anode 2 of the arc-shaped external hot cathode distributed X-ray apparatus of the present invention.
  • the two rows of electron-emitting units 1 are arranged circumferentially and respectively arranged on two opposite sides of the vacuum box 3, the two sides are parallel to each other, and the extending direction of the arrangement of the electron-emitting units 1 is an arc, and the arc of the arrangement can be determined according to needs. .
  • the anode 2 is arranged in the middle of the vacuum box 3, that is, in the middle of the two rows of opposite electron-emitting units 1, and the surfaces of the anodes 2 facing the two rows of electron-emitting units 1 are inclined, and the inclined directions of the two inclined surfaces all point to the center of the arc O.
  • the electron beam current E is emitted from the upper surface of the electron-emitting unit 1, is accelerated by the high-voltage electric field between the anode 2 and the electron-emitting unit 1, and finally bombards the anode 2, forming two rows of circular arcs on the two inclined faces of the anode 2.
  • the series of X-ray targets, the useful X-ray exit direction points to the center of the arc.
  • the vacuum box 3 of the arc-shaped external hot cathode distributed X-ray apparatus is also a circular arc type, or ring shape, corresponding to the arrangement of the electron emission unit 1 and the shape of the anode 2.
  • the outgoing X-rays of the circular-array distributed X-ray device are directed to the center of the circular arc and can be applied to the case where the radial arrangement of the radiation source is required.
  • the arrangement of the electron emission units may be linear, or may be a segmental straight shape such as an L shape or a U shape, and further, each electron emission
  • the arrangement of the cells may be an arc shape, or may be a segmented arc shape, for example, a curve formed by connecting arc segments of different diameters or a combination of a straight line segment and an arc segment.
  • the arrangement pitch of each of the electron emission units may be uniform or non-uniform.
  • the electron-emitting unit can also be arranged in a two-dimensional array distribution manner, whereby a two-dimensional array distributed X-ray apparatus can be obtained.
  • the two-dimensional array distributed X-ray apparatus has a plurality of electron-emitting units 1 (at least four, and later specifically referred to as electron-emitting units 11a, 12a, 13a, 14a, ..., electron emission).
  • the electron emission unit may be any one of the electron emission units as described above, and the anode 2 is provided by the anode plate 201 and mounted on the anode plate 201 and with the electron emission unit 1
  • the plurality of targets 202 are arranged in correspondence, but the anode 2 is not limited to this structure, and an anode which is generally used in the art may be used.
  • a plurality of electron-emitting units 1 are disposed on one side wall of the vacuum box 3 in a two-dimensional arrangement and are parallel to the plane in which the anode sheets 201 are located. Further, as described above, the electron-emitting unit 1 as a whole is outside the vacuum box 3, and the anode The pole 2 is disposed inside the vacuum box 3.
  • FIG. 15 A schematic structural view of the spatial arrangement of the electron-emitting unit 1 and the anode 2 is shown in Fig. 15 (here, the illustration of the vacuum box 3 is omitted).
  • the electron-emitting units 1 are arranged in two rows on one plane (i.e., one side wall of the vacuum box 3), and the electron-emitting units 1 of the front and rear rows are staggered (see Fig. 15), but are not limited thereto, even before and after The electron-emitting units are not interlaced with each other.
  • the target 202 on the anode 2 is in one-to-one correspondence with the electron-emitting unit 1, the top surface of the target 202 is directed to the electron-emitting unit 1, and the line connecting the center of the electron-emitting unit 1 and the center of the target 202 is perpendicular to the plane of the anode plate 201.
  • the line is also the moving path of the electron beam stream E emitted by the electron-emitting unit 1.
  • the electron bombardment target produces X-rays, the exit direction of the useful X-rays is parallel to the plane of the anode plate 201, and each useful X-ray is parallel to each other.
  • the anode 2 includes an anode plate 201 and a plurality of targets 202 distributed in a two-dimensional array.
  • the anode plate 201 is a flat plate made of a metal material, and is preferably a high temperature resistant metal material, which is completely parallel to the plane formed by the upper surface of the electron-emitting unit 1, and when a positive high voltage is applied to the anode 2, it is usually From several tens of kV to several hundred kV, typically for example 180 kV, a parallel high voltage electric field is formed between the anode plate 201 and the electron emission unit 1.
  • the target 202 is mounted on the anode plate 201 in a position corresponding to the position of the electron-emitting unit 1, respectively, and the surface of the target 202 is usually made of a high-temperature resistant heavy metal material such as tungsten or a tungsten alloy.
  • the target 202 has a circular frustum structure, and the height is usually several mm, for example, 3 mm.
  • the larger diameter bottom surface is connected to the anode plate 201.
  • the diameter of the top surface is small, usually several mm, for example, 2 mm, and the top surface is not connected to the anode plate.
  • 201 parallel usually with a small angle of a few degrees to a dozen degrees, to facilitate the emission of useful X-rays generated by electronic targets.
  • All of the targets 202 are arranged in such a manner that the top surface is inclined in the same direction, that is, the direction in which all the useful X-rays are emitted is uniform.
  • This structural design of the target corresponds to a small protrusion that grows on the anode plate 201, changing the local electric field distribution of the surface of the anode plate 201, so that the electron beam has an autofocus effect before bombarding the target, making the target point smaller. , is conducive to improving image quality.
  • the anode plate 201 uses a common metal, and only the surface of the target 202 is tungsten or a tungsten alloy, thereby reducing the cost.
  • the electron emission unit may be a structure in which the gate electrode and the cathode are separated.
  • An array of electron-emitting cells separated from the gate and cathode is shown in FIG.
  • the flat gate 9 is composed of an insulating frame 901, a grid 902, a grid 903, and a gate lead 904.
  • the grid 902 is disposed on the insulating frame 901
  • the grid 903 is disposed at an opening formed in the grid 902, and the gate lead 904 is drawn from the grid 902.
  • the cathode array 10 is composed of a plurality of cathode structures closely arranged, each cathode structure being composed of a filament 1001, a cathode 1002, and an insulating support member 1004.
  • the plate grid 9 is above the cathode array 10 and the distance between the two is small, typically a few mm, for example 3 mm.
  • the gate structure composed of the grid plate 902, the grid 903, and the gate lead 904 has a one-to-one correspondence with the cathode structure, and the center of the circle of each grid 903 coincides with the center of the circle of each cathode 1002 as viewed in the vertical direction.
  • the gate structure may be a structure in which the respective gate leads are independently drawn and the state control is independently performed by the gate control means.
  • Each cathode 1002 of the cathode array 10 can be at the same potential, such as ground, each gate being switched between two states of minus several hundred volts and several thousand kilovolts, for example, switching between -500V and +2000V, thereby controlling each electron-emitting unit.
  • the working state for example, if a certain gate is -500V at a certain time, the electric field between the gate and the corresponding cathode is a negative electric field, and electrons emitted from the cathode are confined to the cathode.
  • the gate electrodes may be in parallel with each of the gate leads, and at the same potential, the operating state of each of the electron-emitting units is controlled by the filament power source.
  • all of the gates are at -500V, each cathode filament is independently drawn, the voltage difference between the two terminals of each cathode filament is constant, and the overall voltage of each cathode is switched between 0V and -2500V.
  • the cathode is at a potential of 0V, a negative electric field between the gate and the cathode, and electrons emitted from the cathode are confined to the surface of the cathode.
  • the voltage of the cathode becomes -2500V, between the gate and the corresponding cathode.
  • the electric field becomes a positive electric field, and electrons emitted from the cathode move toward the gate and pass through the grid, are emitted into an accelerating electric field between the gate and the anode, accelerate and eventually bombard the target, and generate X-rays at corresponding target positions. .
  • the filament leads of the respective electron-emitting units may be respectively connected to respective output ends of the filament power source, or may be integrally connected to one output end of the filament power source after being connected in series.
  • a schematic diagram of a filament lead of an electron-emitting unit connected in series to a filament power source is shown in FIG.
  • the cathodes are at the same potential, and the respective gate leads need to be independently led out, and the operating state of the electron-emitting unit is controlled by the gate control device.
  • the array of electron-emitting units may be two rows or a plurality of rows.
  • the target of the anode may be a circular frustum structure, a cylindrical structure, a square structure, a polygonal structure, or other polygonal protrusions, or other irregular protrusions. And other structures.
  • the top surface of the target of the anode may be a flat surface, a bevel surface, a spherical surface, or other irregular surface.
  • the two-dimensional array arrangement of the electron-emitting units may be linearly extended in both directions, or one direction may be a straight line extension and the other direction may be an arc extension, or one direction may be a straight line. Stretching while the other direction is a segmental straight line extension, and may also be a combination of one direction extending in a straight line and the other direction being a segmented curved stretching.
  • the two-dimensional array arrangement of the electron-emitting units may be evenly spaced in two directions, and may be uniform in each direction and inconsistent in the two directions, or may be evenly spaced in one direction. If the direction is uneven, the interval between the two directions may be uneven.
  • the electron-emitting units can also be arranged in a curved array, whereby a curved array distributed X-ray device can be obtained.
  • Figure 19 is a block diagram showing the structure of a curved array distributed X-ray apparatus of the present invention.
  • Figure 20 is a schematic side view showing the internal structure of a curved array distributed X-ray apparatus of the present invention.
  • Figure 21 is a schematic illustration of the different configurations of the anode of the present invention.
  • a plurality of electron-emitting units 1 are along the axis on the curved surface.
  • the directions are arranged in a plurality of rows facing the axis O.
  • the anode 2 is arranged on the axis O of the curved surface.
  • the electron-emitting unit 1 is mounted on the wall of the vacuum box 3, and is entirely outside the vacuum box 3, and the anode 2 is mounted in the vacuum box.
  • Figure 20 is a schematic side view showing the internal structure of a curved array distributed X-ray apparatus of the present invention. Specifically, Fig. 20 is a schematic view showing the internal structure of a cylindrical array distributed X-ray apparatus.
  • the electron emission units 1 are arranged in a plurality of rows along the axial direction on the cylindrical surface, and the upper surface (electron emission surface) of the electron emission unit 1 faces the axis O.
  • the anode 2 is arranged on the axis O of the cylinder.
  • the electron-emitting unit 1 is at the same low potential, the anode 2 is at a high potential, and a positive electric field is formed between the anode 2 and the electron-emitting unit 1, and an electric field is concentrated from the surface of each electron-emitting unit 1 toward the axis of the anode 2, the electron beam
  • the stream E moves from the electron-emitting unit 1 to the axis of the anode 2, bombards the anode 2, and finally generates X-rays.
  • the above-mentioned electron-emitting unit 1 is arranged in a plurality of rows on the curved surface along the axial direction facing the axis, and the plurality of rows of electron-emitting units may be aligned in front and rear rows, or the recommended front-rear row positions may be shifted so that each electron-emitting unit generates The position of the electron beam bombarding the anode is not coincident.
  • the anode 2 has a hollow pipe-like structure capable of causing a coolant to flow inside thereof.
  • the structure of an anode and its support member in the present invention is shown in FIG.
  • the anode 2 is composed of an anode support 201A, an anode conduit 202A, and an anode target surface 203A.
  • the anode support 201A is mounted on the anode conduit 202A and is coupled to the top end (small end) of the high voltage power connection unit 4 for supporting and fixing the anode 2.
  • the anode pipe 202A is a main structure of the anode 2, and both ends are respectively connected to one ends of the two cooling connecting devices 9A, and the inside thereof communicates with the cooling connecting device 9A to become a passage for circulating circulation of the coolant.
  • the anode pipe 202A is usually made of a metal material resistant to high temperature, and has various structural forms, and is recommended as a circular pipe. Further, in some cases, for example, in the case where the anode heat power is small, the anode 2 may also be a cylindrical structure of a non-hollow pipe.
  • the anode target surface 203A is a position where the electron beam bombards the anode tube 202A, and has various designs on the fine structure. For example, as shown in FIG.
  • the outer circular surface of the anode tube 202A is the bombardment position of the electron beam.
  • the anode pipe 202A is entirely made of a high temperature resistant heavy metal material, such as tungsten or a tungsten alloy.
  • FIG. 21 (2) the outer circumference of the anode pipe 202A is cut away to form a small inclined plane.
  • the oblique plane becomes the bombardment position of the electron beam, and the oblique direction of the oblique plane is a useful X-ray exit direction.
  • This structural design is advantageous for the direction of the useful X-rays to be uniformly drawn.
  • an anode target surface 203A is specially designed on the outer surface of the anode pipe 202A, and the anode target surface 203A is made of a high temperature resistant heavy metal material, such as tungsten or a tungsten alloy, and has a thickness of not less than 20 ⁇ m (micrometer), by plating, pasting, welding or the like. It is fixed on a small inclined plane which is machined on the outer edge of the anode pipe 202A. In this case, the anode pipe 202A can be made of a common metal material, so that the cost can be reduced.
  • a high temperature resistant heavy metal material such as tungsten or a tungsten alloy
  • the above-mentioned axis may be a straight line or an arc, and the whole may be a linear distributed X-ray device or a ring-shaped distributed X-ray device to meet different application requirements.
  • An effect diagram of an annularly distributed electron-emitting unit and anode arrangement is shown in FIG.
  • the anode 2 is arranged on a planar circumference
  • the electron-emitting unit 1 is disposed below the anode 2
  • the two rows of electron-emitting units 1 are circumferentially arranged in the direction of the anode 2 while being arranged on a circular arc surface centered on the center of the anode 2.
  • each electron-emitting unit 1 is directed to the axis of the anode 2.
  • the electron beam stream E is emitted from the electron-emitting unit 1, is accelerated by a high-voltage electric field between the anode 2 and the electron-emitting unit 1, bombards the lower edge of the anode 2, and forms a circular array of X-ray targets on the anode 2.
  • the useful X-ray exit directions are directed to the center of the circumference of the anode 2.
  • the arrangement and the shape of the anode 2 are also a ring-shaped structure.
  • the circular distributed X-ray device can be a complete ring or a length of a ring, and can be applied to a situation where a circular arrangement of the ray source is required.
  • the array of electron-emitting units may be two rows or a plurality of rows.
  • each electron-emitting unit has the ability to independently emit an electron beam stream, and may be a discrete structure or an associated connection in a specific structure. Structure.
  • curved surface refers to various forms of curved surfaces, including cylindrical surfaces, torus surfaces, elliptical surfaces, or curved surfaces composed of segmented straight lines, such as regular polygonal columns. For surfaces such as faces or segmented arcs, it is recommended to have a cylindrical surface and a toroidal surface as described above.
  • the "axis” refers to the true axis or the form axis of various forms of the curved surface on which the electron-emitting unit is disposed, for example, the axis of the cylindrical surface refers to the central axis of the cylinder, and the ring
  • the axis of the face refers to the central axis inside the ring
  • the axis of the elliptical surface refers to the paraxial axis close to the ellipse of the segment
  • the axis of the regular polygonal cylinder refers to the axis formed by the center of the regular polygon.
  • the inner tube cut surface of the anode may be a circular hole, a square hole, a polygonal hole, an internal gear-like hole with a fin structure, or other shape capable of increasing a heat dissipation area.
  • the curved array of the electron-emitting units is arranged in a line in which the arrangement direction is a curve and in the other arrangement direction is a straight line, a segmented line, an arc, a segmented arc, or a straight line segment and an arc segment. combination.
  • the curved array arrangement of the electron-emitting units may be uniformly spaced in two directions, and may be evenly spaced in each direction, the two directions may be inconsistent, or may be evenly spaced in one direction, and the other may be If the direction is not uniform, the interval between the two directions may be uneven.
  • the outer shape of the vacuum box may be a rectangular parallelepiped shape as a whole, a cylindrical shape, a circular ring shape, or other structures that do not affect the relative arrangement relationship between the electron emission unit and the anode.
  • the external hot cathode distributed X-ray apparatus of the present invention comprises a plurality of electron emission units 1, an anode 2, a vacuum box 3, a high voltage power connection device 4, a transmission control device connection device 5, and a focus.
  • the device connection device 6, the vacuum device 8, and the power supply and control system 7 are comprised.
  • a plurality of electron-emitting units 1 are arranged in a linear array on one side wall of the vacuum box 3, each of the electron-emitting units 1 is independent of each other, and the elongated anode 2 is installed in the middle of the vacuum box 3 in the direction of the linear arrangement.
  • the alignment lines of the anode 2 and the electron-emitting unit 1 are parallel to each other, and the vertical section of the line type arrangement, the anode 2 forms a small angle with the upper surface of the electron-emitting unit 1.
  • the electron emission unit 1 includes a heating filament 101, a cathode 102, a gate 107, an insulating support 103, a focusing electrode 104, a focusing section 109, a connection fixture 105, a filament lead 106, a gate lead 108, and a focusing device 110.
  • the high voltage power connection device 4 is mounted on the side wall of the vacuum box 3, internally connected to the anode 2, and externally connected to the high voltage cable in a pluggable form.
  • the emission control device connection device 5 connects the filament lead 106 and the gate lead 108 of each of the electron emission units 1 to each of the emission control devices 703.
  • the vacuum device 8 is mounted on the side wall of the vacuum box 3, and the vacuum device 8 includes a vacuum pump 801 and a vacuum valve 802.
  • Power and control system 7 includes control The system 701, the high voltage power supply 702, the emission control device 703, the focus power supply 704, the vacuum power supply 705, and the like, pass through the power cable and the control cable and the heating filament 101, the gate 107 and the anode 2 of the plurality of electron emission units 1 of the system.
  • the vacuum device 8 and the like are connected.
  • the emission control device 703 is composed of a plurality of emission control units (the same number as the electron emission unit 1), and each emission control unit is composed of a negative high voltage module 70301, a DC module 70302, a high voltage isolation transformer 70303, and a negative bias module 70304.
  • the positive bias module 70305 and the selection switch 70306 are formed.
  • the power supply and control system 7 controls the focus power source 704, the emission control device 703, and the high voltage power source 702.
  • the respective units of the emission control device 703 start to work, and the negative high voltage module 70301 generates a negative high voltage output to the primary side of the high voltage isolation transformer 70303, so that a set of parallel ends of the secondary side of the high voltage isolation transformer 70303 is suspended at a high voltage, that is, the DC module 70302, negative
  • the biasing module 70304, the positive biasing module 70305, and the selection switch 70306 are all at the same negative high voltage.
  • the DC module 70302 generates a direct current floating on the negative high voltage to the heating filament 101, and the heating filament 101 heats the cathode 102. At a high temperature (e.g., 500 to 2000 ° C) emission state, the cathode 102 generates a large amount of electrons on its surface.
  • Negative biasing module 70304 and positive biasing module 70305 respectively generate a negative voltage and a positive voltage suspended at a negative high voltage, and selection switch 70306 typically connects a negative voltage strobe to gate 107.
  • the filament 101, the cathode 102 and the gate 107 are both at a negative high voltage, usually a few kilovolts to a negative tens of kilovolts, and the focusing electrode 104 is connected to the focusing section 109 and connected through the fixing member 105.
  • a small accelerating electric field is formed between the gate 107 and the focusing electrode 104.
  • the gate 107 also has a lower negative voltage relative to the cathode 102. Therefore, electrons generated by the cathode 102 cannot pass through the gate 107 and are confined to the surface of the cathode 102 by the gate 107.
  • the high voltage power supply 702 places the anode 2 at a very high positive high voltage, typically a positive tens of kilovolts to hundreds of kilovolts, in the electron-emitting unit 1 (ie, the side wall of the vacuum box 3, typically ground potential) and the anode 2 A positive large acceleration electric field is formed between them.
  • the power supply and control system 7 causes the output of the selection switch 70306 of one of the emission control units of the emission control device 703 to be switched from a negative voltage to a positive voltage in accordance with an instruction or a preset program, and in accordance with the timing.
  • the output signals of the selection switches 70306 of the respective emission control units respectively connected to the respective electron-emitting units 1 are converted. For example, at time 1, the output of the selection switch 70306 of the first emission control unit of the emission control device 703 is switched from a negative voltage to a positive voltage, and in the corresponding electron emission unit 11, the electric field between the gate 107 and the cathode 102 is changed.
  • the small-diameter electron beam enters the inside of the vacuum chamber 3 through a hole connecting the center of the fixing member 105, is accelerated by a large acceleration electric field between the electron-emitting unit 11 and the anode 2, obtains energy, bombards the anode 2, and generates a target on the anode 2. 21, and, at the position of the target point 21, an emission of X-rays is generated.
  • the output of the selection switch 70306 of the second emission control unit of the emission control device 703 is switched from a negative voltage to a positive voltage, the corresponding electron emission unit 12 emits electrons, a target 22 is generated on the anode 2, and at the target point The 22 position produces an emission of X-rays.
  • the output of the selection switch 70306 of the third emission control unit of the emission control device 703 is cut by a negative voltage
  • the corresponding electron-emitting unit 13 emits electrons, generates a target 23 on the anode 2, and generates an emission of X-rays at a position of the target 23, and so on, and then the position of the target 24 generates an emission of X-rays, and then The position of the target 25 produces an emission of X-rays... and cycles back and forth.
  • the power source and control system 7 causes the respective electron-emitting units 1 to alternately operate at predetermined timings to emit electron beams by the emission control means 703, and alternately generate X-rays at different positions of the anode 2, thereby becoming distributed X-rays. source.
  • the power supply and control system 7 controls each power supply to drive the various components to coordinate according to the setting program, and can receive external commands through the communication interface and the human-machine interface, modify and set key parameters of the system, update the program and Make automatic control adjustments.
  • the present invention is directed to an external hot cathode distributed X-ray apparatus for generating X-rays that periodically change a focus position in a predetermined order in a light source apparatus.
  • the electron emission unit of the invention adopts a hot cathode, and has the advantages of large emission current and long life with respect to other designs; a plurality of electron emission units are independently fixed on the vacuum box, and a small two-pole or three-pole electron gun can be directly used.
  • the technology is mature, the cost is low, and the application is flexible.
  • the design of the long strip type large anode effectively alleviates the problem of overheating of the anode, which is beneficial to increase the power of the light source;
  • the electron emission unit can be arranged in a straight line, and the whole becomes a linear distributed X-ray device.
  • the electron-emitting units can also be arranged in a ring shape, and the whole is a ring-shaped distributed X-ray device, which is flexible in application; the design of the focusing electrode and the design of the external focusing device can achieve a very small focus.
  • the invention has large current, small target point, uniform target position distribution and good repeatability, high output power, simple structure, convenient control and low cost.
  • the external hot cathode distributed X-ray source of the present invention is applied to a CT device, and multiple viewing angles can be generated without moving the light source, so that the slip ring motion can be omitted, which is advantageous for simplifying the structure and improving system stability and reliability. Improve inspection efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • X-Ray Techniques (AREA)

Abstract

一种外置热阴极分布式X射线装置具备:真空盒(3),四周密封且内部为高真空;多个电子发射单元(1),每个电子发射单元(1)互相独立且排成线形阵列安装在真空盒(3)的侧壁上;阳极(2),安装在真空盒(3)内的中部,在长度方向上与电子发射单元(1)的排列线平行且在宽度方向上与电子发射单元(1)的安装平面形成预定角度的夹角;电源与控制系统(7),具有高压电源(702)、聚焦电源(704)、发射控制装置(703)及控制系统(701),电子发射单元(1)具有:加热灯丝(101);与加热灯丝(101)连接的阴极(102);包围阴极(102)与灯丝(101)的绝缘支撑件(103);聚焦极(104),以位于阴极(102)的上方的方式配置在绝缘支撑件(103)的顶端;连接固定件(105),配置在聚焦极(104)的上方,与真空盒(3)的盒壁密封连接,灯丝引线(106)穿过绝缘支撑件(103)与发射控制装置(703)连接。

Description

X射线装置以及具有该X射线装置的CT设备 技术领域
本发明涉及一种产生分布式X射线的装置,特别涉及在一个X射线光源设备中通过外置方式布置多个独立的热阴极电子发射单元并且利用栅极控制或者阴极控制来产生按照预定顺序变换焦点位置的X射线的外置热阴极分布式X射线装置以及具有该装置的CT设备。
背景技术
一般地,X射线光源是指产生X射线的设备,通常由X射线管、电源与控制系统、冷却及屏蔽等辅助装置等构成,其核心是X射线管。X射线管通常由阴极、阳极、玻璃或陶瓷外壳构成。阴极为直热式螺旋钨丝,在工作时,通过电流,加热到一种高温状态,产生热发射的电子束流,阴极被一个前端开槽的金属罩包围,金属罩使电子聚焦。阳极为在铜块端面镶嵌的钨靶,在工作时,在阳极和阴极之间施加有高压,阴极产生的电子在电场作用下加速运动飞向阳极,并且撞击靶面,从而产生X射线。
X射线在工业无损检测、安全检查、医学诊断和治疗等领域具有广泛的应用。特别是,利用X射线的高穿透能力制成的X射线透视成像设备在人们日常生活的方方面面发挥着重要作用。这类设备早期的是胶片式的平面透视成像设备,目前的先进技术是数字化、多视角并且高分辨率的立体成像设备,例如CT(computed tomography),可以获得高清晰度的三维立体图形或切片图像,是先进的高端应用。
在现有的CT设备中,X射线源和探测器需要在滑环上运动,为了提高检查速度,通常X射线源和探测器的运动速度非常高,导致设备整体的可靠性和稳定性降低,此外,受运动速度的限制,CT的检查速度也受到了限制。因此,在CT设备中需要一种能够不移动位置就能产生多个视角的X射线源。
为了解决现有CT设备中滑环带来的可靠性、稳定性问题和检查速度问题以及阳极靶点耐热问题,在现有专利文献中提供了一些方法。例如旋转靶X射线源,可以在一定程度上解决阳极靶过热的问题,但是,其结构复杂并且产生X射线的靶点相对于X射线源整体仍然是一个确定的靶点位置。例如,有的技术为了实现固定不动X射线源的多个视角而在一个圆周上紧密排列多个独立的传统X射线源来取代X射线源的运动,虽然这样也能够实现多视角,但是成本高,并且,不同视角的靶点间距大,成像质量(立体分辨率)很差。此外,在专利文献1(US4926452)中提出了一种产生分布式X射线的光源以及方法,阳极靶具有很大的面积,缓解了靶过热的问题,并且,靶点位置沿圆周变化,可以产生多个视角。虽然专利文献1是对获得加速的高能量电子束进行扫描偏转,存在控制 难度大、靶点位置不分立以及重复性差的问题,但仍然是一种能产生分布式光源的有效方法。此外,例如在专利文献2(US20110075802)与专利文献3(WO2011/119629)中提出了一种产生分布式X射线的光源以及方法,阳极靶具有很大的面积,缓解了靶过热的问题,并且,靶点位置分散固定且阵列式排列,可以产生多个视角。此外,采用碳纳米管做为冷阴极,并且对冷阴极进行阵列排布,利用阴极栅极间的电压控制场发射,从而控制每一个阴极按顺序发射电子,在阳极上按相应顺序位置轰击靶点,成为分布式X射线源。但是,存在生产工艺复杂、碳纳米管的发射能力与寿命不高的不足之处。
发明内容
本发明是为了解决上述课题而提出的,其目的在于提供一种无需移动光源就能产生多个视角并且有利于简化结构、提高系统稳定性、可靠性、提高检查效率的外置热阴极分布式X射线装置以及具有该外置热阴极分布式X射线装置的CT设备。
为了实现上述目的,本发明提供一种外置热阴极分布式X射线装置,其特征在于,具备:真空盒,四周密封并且内部为高真空;多个电子发射单元,每个电子发射单元互相独立且排成线形阵列安装在所述真空盒的侧壁上;阳极,安装在所述真空盒内部的中间位置,并且,在长度方向上与所述电子发射单元的排列方向平行且在宽度方向上与所述电子发射单元的安装平面形成预定角度的夹角;电源与控制系统,具有与所述阳极连接的高压电源、与所述多个电子发射单元的每一个连接的发射控制装置、用于对各电源进行控制的控制系统,所述电子发射单元具有:加热灯丝;与所述加热灯丝连接的阴极;从所述加热灯丝的两端引出的灯丝引线;绝缘支撑件,包围所述加热灯丝以及所述阴极;聚焦极,以位于所述阴极的上方的方式配置在所述绝缘支撑件的顶端;连接固定件,配置在所述聚焦极的上方,与所述真空盒的盒壁密封连接,所述灯丝引线穿过所述绝缘支撑件与所述发射控制装置连接。
此外,在本发明中的外置热阴极分布式X射线装置中,还具有:高压电源连接装置,将所述阳极和所述高压电源的电缆连接,安装在所述真空盒的靠近所述阳极的一端的侧壁;发射控制装置连接装置,用于连接所述加热灯丝和所述发射控制装置;真空电源,包括在所述电源与控制系统内;真空装置,安装在所述真空盒的侧壁上,利用所述真空电源进行工作,维持所述真空盒内的高真空。
此外,在本发明中的外置热阴极分布式X射线装置中,所述电子发射单元还具有:栅极,安装在所述阴极与所述聚焦极之间并且紧邻阴极;栅极引线,与所述栅极连接,穿过所述绝缘支撑件,与所述发射控制装置连接。
此外,在本发明中的外置热阴极分布式X射线装置中,所述电子发射单元还具有:聚焦段,安装在所述聚焦极与所述连接固定件之间;聚焦装置,以包围所述聚焦段的方式配置。
此外,在本发明中的外置热阴极分布式X射线装置中,还具有:聚焦电源,包括在所述电源与控制系统内;聚焦装置连接装置,用于连接所述聚焦装置和所述聚焦电 源。
此外,在本发明中的外置热阴极分布式X射线装置中,所述电子发射单元分两排安装在所述真空盒的两个相对的侧壁上。
此外,在本发明中的外置热阴极分布式X射线装置中,所述真空盒由玻璃或陶瓷制成。
此外,在本发明中的外置热阴极分布式X射线装置中,所述真空盒由金属材料制成。
此外,在本发明中的外置热阴极分布式X射线装置中,所述多个电子发射单元排列成直线形或者是分段直线形。
此外,在本发明中的外置热阴极分布式X射线装置中,所述多个电子发射单元排列成圆弧形或者是分段圆弧形。
此外,在本发明中的外置热阴极分布式X射线装置中,所述多个电子发射单元的排列间隔是均匀的。
此外,在本发明中的外置热阴极分布式X射线装置中,所述多个电子发射单元的排列间隔是非均匀的。
此外,本发明提供一种CT设备,其特征在于,所使用的X射线源是如上所述的外置热阴极分布式X射线装置。
根据本发明,主要是提供一种外置热阴极分布式X射线装置,在一个光源设备中产生按某种顺序周期变换焦点位置的X射线。本发明的电子发射单元采用热阴极,相对于其它设计具有发射电流大、寿命长的优点;多个电子发射单元各自独立固定在真空盒上,且可直接使用小型的二极或三极电子枪,技术成熟,成本低,应用灵活;采用长条型大阳极的设计,有效缓解了阳极过热的问题,有利于提高光源的功率;电子发射单元可以直线排列,整体成为直线型分布式X射线装置,电子发射单元也可以环形排列,整体成为环型分布式X射线装置,应用灵活;通过聚焦极的设计,和外部聚焦装置的设计,电子束可是实现非常小的焦点。相对其它分布式X射线光源设备,本发明电流大,靶点小,靶点位置分布均匀且重复性好,输出功率高,结构简单,控制方便,成本低。
将本发明的分布式X射线光源应用于CT设备,无需移动光源就能产生多个视角,因此可以省略滑环运动,有利于简化结构,提高系统稳定性、可靠性,提高检查效率。
附图说明
图1是本发明的外置热阴极分布式X射线装置的结构的示意图。
图2是本发明中的阳极与电子发射单元的位置关系的示意图。
图3是本发明中的一种电子发射单元的结构的示意图。
图4是本发明中的一种发射控制单元的结构的示意图。
图5是本发明中的一种具有栅极和聚焦装置的电子发射单元的结构的示意图。
图6是本发明中的一种具有栅极控制的发射控制单元的结构的示意图。
图7是本发明中的另一种电子发射单元的结构示意图。
图8是本发明中的圆柱形电子发射单元的结构的俯视图,(A)是圆形栅孔的情况,(B)是长方形栅孔的情况。
图9是本发明中的长方体形电子发射单元的结构俯视图,(A)是圆形栅孔的情况,(B)是长方形栅孔的情况。
图10是本发明中的阴极的结构示意图,(A)是平面圆形的阴极,(B)是平面长方形的阴极,(C)是球面圆弧形的阴极,(D)是圆柱弧面形的阴极。
图11是本发明中的栅网的结构示意图,(A)是平面型栅网,(B)是球面型栅网,(C)是U槽型栅网。
图12是本发明的利用栅极的控制进行的自动聚焦的示意图。
图13是本发明中的一种直线型双排对置布置的外置热阴极分布式X射线装置的结构的示意图,(A)是电子发射单元、阳极与真空盒的位置关系的图,(B)是电子发射单元与阳极的位置关系的图。
图14是本发明中的一种圆弧型双排对置布置的外置热阴极分布式X射线装置的结构的示意图。
图15是本发明的二维分布式X射线装置的主要结构的示意图。
图16是本发明中的二维分布式X射线装置的阳极结构的仰视图。
图17是本发明中的栅极与阴极分离的电子发射单元阵列的示意图,(A)是侧视图,(B)是各个栅极独立控制模式的俯视图,(C)是各个栅极互连并且阴极控制模式的俯视图。
图18是本发明中的灯丝串联的分布式X射线装置。
图19是本发明的曲面阵列分布式X射线装置的结构的示意图。
图20是本发明的曲面阵列分布式X射线装置的结构的端面示意图。
图21是本发明中的阳极的不同结构的示意图。
图22是在本发明中的环型分布式X射线装置的电子发射单元与阳极的布置关系的示意图。
附图标记说明:
1电子发射单元;2阳极;3真空盒;4高压电源连接装置;5发射控制装置连接装置;6聚焦装置连接装置;7电源与控制系统;8真空装置;E电子束流;X X射线;O圆弧的圆心;101加热灯丝;102阴极;103绝缘支撑件;104聚焦极;105连接固定件;106灯丝引线;107栅极;108栅极引线;109聚焦段;110聚焦装置;701控制系统;702高压电源;703发射控制装置;704聚焦电源;70301负高压模块;70302直流模块;70303高压隔离变压器;70304负电压模块;70305正电压模块;70306开关模块;801真空泵;802真空阀。
具体实施方式
以下,参照附图详细地对本发明进行说明。
图1是本发明的外置热阴极分布式X射线装置的结构的示意图。如图1所示,本发明的外置热阴极分布式X射线装置包括多个电子发射单元1(至少两个,以后也具体地称为电子发射单元11、12、13、14、……)、阳极2、真空盒3、高压电源连接装置4、发射控制装置连接装置5、以及电源与控制系统7。此外,电子发射单元1由加热灯丝101、阴极102、绝缘支撑件103、聚焦极104、连接固定件105、灯丝引线106等组成。阳极2安装在真空盒3内部的中间,电子发射单元1与高压电源连接装置4安装在真空盒3的盒壁上并且与真空盒3构成整体密封结构。
图2是本发明的外置热阴极分布式X射线装置的阳极2与电子发射单元1的相对位置关系的示意图。如图2所示,多个电子发射单元1排列在一条直线上,阳极2是与电子发射单元1的排列相对应的长条形状,并且,阳极2在长度方向上与由多个电子发射单元1排列而成的直线平行,在宽度方向上,阳极2的面向电子发射单元1的表面与电子发射单元1的面向阳极2的表面之间形成预定角度的夹角。
电子发射单元1用于按要求产生电子束流,安装在真空盒3的侧壁上,通过连接固定件105与真空盒3的侧壁构成密封结构,电子发射单元1整体处于真空盒3之外,电子束流可通过连接固定件105中间的开孔进入真空盒3内部。此外,在图3中示出了电子发射单元1的一种结构,电子发射单元1包括加热灯丝101、阴极102、绝缘支撑件103、聚焦极104、连接固定件105、灯丝引线106。阴极102与加热灯丝101连接在一起,加热灯丝101通常采用钨丝,阴极102通常采用热发射电子能力强的材料,例如,氧化钡、钪酸盐、六硼化镧等。绝缘支撑件103包围加热灯丝101和阴极102,相当于电子发射单元1的部分壳体,采用绝缘材料,通常为陶瓷。灯丝引线106穿过绝缘支撑件103而被引出到电子发射单元1的外部,灯丝引线106与绝缘支撑件103之间为密封结构。聚焦极104安装在绝缘支撑件103的上端,聚焦极104为鼻锥形设计,中间有开孔,并且该开孔的中心与阴极102的中心上下对齐。连接固定件105用于将电子发射单元1与真空盒3密封连接,通常为刀口法兰,中间有开孔,用于使电子束流E从电子发射单元1进入到真空盒3中。绝缘支撑件103、聚焦极104、连接固定件105紧密连接在一起,使电子发射单元1的除连接固定件105的中心开孔外的其他部分形成一个真空密封结构。
此外,电源与控制系统7包括控制系统701、高压电源702、发射控制装置703等。高压电源702通过安装在真空盒3的盒壁上的高压电源连接装置4与阳极2相连接。发射控制装置703通过发射控制装置连接装置5分别与各个电子发射单元1的灯丝引线106连接,通常具有与电子发射单元1的数量相同数量的发射控制单元。在图4中示出了一种发射控制单元的结构,发射控制装置703包括多个发射控制单元,每一个发射控制单元包括负高压模块70301、低压直流模块70302、高压隔离变压器70303。其中,负高压模块70301用于在控制系统701的控制下产生负的高压脉冲,其输出连接到高压隔离变压器70303的原边;低压直流模块70302用于产生对加热灯丝106供电加热的电流,其输出连接到高压隔离变压器 70303的两组并联副边的低压端,并经过变压器绕组,从两组并联副边的高压端输出到灯丝引线106。发射控制装置连接装置5通常为带连接头的电缆,数量与电子发射单元1的数量相同。此外,控制系统701对高压电源702、发射控制装置703的工作状态进行控制。
此外,真空盒3是四周密封的空腔壳体,其内部为高真空,壳体可以由玻璃或陶瓷等绝缘材料构成。在真空盒3的侧壁上(参见图1)安装有多个电子发射单元1,这些电子发射单元1排列成直线,在内部(参见图1)安装有长条形的阳极2,阳极2在长度方向上与电子发射单元1的排列方向平行。真空盒3内部的空间足够电子束流在电场中的运动而不会产生任何阻挡。真空盒3内的高真空是通过在高温排气炉内烘烤排气获得的,其真空度通常优于10-3Pa,推荐的真空度优于10-5Pa。
此外,推荐的真空盒3的壳体是金属材料,在采用金属材料的情况下,电子发射单元1通过其连接固定件105与真空盒3的壁进行刀口法兰密封方式的连接,阳极2利用绝缘支撑材料在真空盒3内进行固定安装,并且,阳极2与真空盒3的壳体之间保持足够的距离,不会产生高压打火。
此外,高压电源连接装置4用于将阳极2和高压电源702的电缆连接,安装在真空盒3的侧壁。高压电源连接装置4通常为内部带金属柱的锥形陶瓷结构,一端与阳极2相连接,另一端与真空盒3的盒壁紧密连接,一起形成真空密封结构。高压电源连接装置4内部的金属柱用于使阳极2和高压电源702的电缆接头形成电路连接。通常高压电源连接装置4与电缆接头之间设计为可插拔式结构。
此外,在本发明的外置热阴极分布式X射线装置中,电子发射单元1还可以包括栅极107和栅极引线108。在图5中示出了一种具有栅极和聚焦装置的电子发射单元1的结构。如图5所示,栅极107设置在阴极102与聚焦极104之间,紧邻阴极102,栅极107通常为网状结构,外形通常与阴极102的形状相同,栅极引线108连接于栅极107并且穿过绝缘支撑件103被引出到电子发射单元1的外部,栅极引线108与绝缘支撑件103之间密封连接,栅极引线108通过发射控制装置连接装置5连接到发射控制装置703。
此外,在本发明的外置热阴极分布式X射线装置中,发射控制装置703的发射控制单元还可以包括负偏压模块70304、正偏压模块70305、选择开关70306。在图6中示出了一种具有栅极控制的发射控制单元的结构。如图6所示,负高压模块70301用于产生负高压,其输出连接到高压隔离变压器70303的原边;市电连接到高压隔离变压器70303的两组并联副边的低压端,并经过变压器绕组,从两组并联副边的高压端输出悬浮在高压上的电源,分别供给到直流模块70302、负偏压模块70304和正偏压模块70305。直流模块70302产生对加热灯丝101供电加热的电流;负偏压模块70304和正偏压模块70305分别产生一个负的电压和一个正的电压并输出到选择开关70306的两个输入端,选择开关70306在控制装置701的作用下选择一个电压输出到栅极引线108,并最终施加到栅极107上。
此外,在本发明的外置热阴极分布式X射线装置中,电子发射单元1还可以包括聚焦段109和聚焦装置110。如图5所示,聚焦段109连接在聚焦极104和连接固定件105之 间,聚焦极104、聚焦段109和连接固定件105可以是一个金属件加工而成的整体,也可以三个金属部件通过焊接连接在一起,聚焦装置110安装在聚焦段109外,聚焦装置110通常是聚焦线包。聚焦装置110通过聚焦装置连接装置6连接到聚焦电源704,聚焦装置110在聚焦电源704的驱动下工作,聚焦电源704的工作状态受电源与控制系统7的控制。相应地,外置热阴极分布式X射线装置还包括聚焦装置连接装置6,电源与控制系统7还包括聚焦电源704。
此外,本发明的外置热阴极分布式X射线装置还可以包括真空装置8和真空电源705,真空装置8包括真空泵801和真空阀802,真空装置8安装在真空盒3的侧壁上。真空泵801在真空电源705的作用下进行工作,用于维持真空盒3内的高真空。通常,外置热阴极分布式X射线装置在工作时,电子束流轰击阳极2,阳极2会发热并释放少量气体,通过使用真空泵801,能够将这部分气体快速抽出,从而维持真空盒3内部的高真空度。真空泵801优选使用真空离子泵。真空阀802通常选用可以承受高温烘烤的全金属真空阀门,如全金属手动插板阀。真空阀802通常处于关闭状态。相应地,外置热阴极分布式X射线装置的电源与控制系统7还包括真空装置8的真空电源(Vacc PS)705。
此外,在本发明中也能够使用其他结构的电子发射单元。图7是能够在本发明中使用的另一种电子发射单元的结构示意图。如图7所示,电子发射单元1由加热灯丝101A、阴极102A、栅极103A、绝缘支撑件104A、连接固定件109A等组成。
电子发射单元1利用连接固定件109A与真空盒3的壁构成整体密封结构,但是并不限于此,只要能够将电子发射单元1安装在真空盒3的盒壁上并且使其整体处于真空盒3之外(即,电子发射单元1的阴极端(包括加热灯丝101A、阴极102A、栅极103A)以及电子发射单元1的引线端(包括灯丝引线105A、栅极引线108A、连接固定件109A)都处于真空盒3的外部),也可以利用其它方式安装。电子发射单元1包括加热灯丝101A、阴极102A、栅极103A、绝缘支撑件104A、灯丝引线105A、连接固定件109A,并且,栅极103A由栅极架106A、栅网107A、栅极引线108A组成。阴极102A与加热灯丝101A连接在一起,加热灯丝101A通常采用钨丝,阴极102A通常采用热发射电子能力强的材料,例如,氧化钡、钪酸盐、六硼化镧等。绝缘支撑件104A包围加热灯丝101A和阴极102A,相当于电子发射单元1的壳体,采用绝缘材料,通常为陶瓷。灯丝引线105A穿过绝缘支撑件104A而被引出到电子发射单元1的下端(但不限于此,只要引出到电子发射单元1的外部即可),灯丝引线105A与绝缘支撑件104A之间为密封结构。栅极103A安装在绝缘支撑件104A的上端(即,配置在绝缘支撑件104A的开口上)并且与阴极102A对置,优选栅极103A与阴极102A的中心上下对齐。此外,栅极103A包括栅极架106A、栅网107A、栅极引线108A,栅极架106A、栅网107A、栅极引线108A均为金属制成,通常栅极架106A为不锈钢材料,栅网107A为钼材料,栅极引线108A为可伐(合金)材料。栅极引线108A穿过绝缘支撑件104A而被引出到电子发射单元1的下端(但不限于此,只要引出到电子发射单元1的外部即可),栅极引线108A与绝缘支撑件104A之间为密封结构。灯丝引线105A与栅极引线108A连接到发 射控制装置703。
此外,具体地,关于栅极103A的结构,其主体是一块金属板(例如,不锈钢材料)即栅极架106A,在栅极架106A的中间形成有开孔,该开孔的形状可以是方形或圆形等,在该开孔的位置固定有金属丝网(例如,钼材料)即栅网107A,并且,从金属板的某个位置引出一根引线(例如,可伐合金材料)即栅极引线108A,从而能够将栅极103A连接到一个电位。此外,栅极103A位于阴极102A的正上方,栅极103A的上述开孔的中心与阴极102A的中心对准(即,上下在一条垂线上),开孔的形状与阴极102A的形状相对应,通常开孔的大小比阴极102A的面积小。但是,只要是电子束流能够通过栅极103A,栅极103A的结构并不限于上述结构。此外,栅极103A与阴极102A之间通过绝缘支撑件104A进行相对位置固定。
此外,具体地,关于连接固定件109A的结构,推荐的,其主体是一个圆形刀口法兰,中间形成有开孔,该开孔的形状可以是方形或圆形等,在开孔的位置与绝缘支撑件104A的上端外沿密封连接,如焊接连接,刀口法兰的外沿形成有螺钉孔,可以通过螺栓连接将电子发射单元1固定在真空盒3的壁上,其刀口与真空盒3的壁之间形成真空密封连接。这是一种方便拆卸的灵活结构,当多个电子发射单元1中的某一个发生故障时,可以灵活更换。需要指出的是,连接固定件109A的功能是实现绝缘支撑件104A与真空盒3之间的密封连接,可以有多种灵活的方式,如通过金属法兰过渡的焊接,或者玻璃高温熔融密封连接,或者陶瓷金属化后与金属的焊接等方式。
此外,电子发射单元1可以是圆柱形的结构,即,绝缘支撑件104A为圆柱形,而阴极102A、栅极架106A、栅网107A可以同时为圆形或者同时为长方形。在图8中示出了一种圆柱形的电子发射单元1的俯视图,其中,(A)示出了阴极102A、栅极架106A、栅网107A同时为圆形的结构,(B)示出了阴极102A、栅极架106A、栅网107A同时为长方形的结构。此外,对于圆形阴极,为了使阴极102A的表面产生的电子实现更好的汇聚效果,通常优选将阴极102A的表面加工成球面圆弧形(如图10(C)所示)。阴极102A的表面的直径通常为几mm,例如直径2mm,在栅极架106A上所安装的栅网107A的开孔的直径通常为几mm,例如直径1mm。此外,从栅极103A到阴极102A的表面的距离通常为零点几mm到几mm,例如2mm。此外,对于长方形阴极,为了使阴极102A的表面产生的电子实现更好的汇聚效果,通常优选的是圆柱弧面形,这样有利于窄边方向的电子束流进一步会聚。通常弧面长度为几mm到几十mm,宽度为几mm,例如长10mm、宽2mm。与此相应地,栅网107A为长方形,优选其宽度为1mm、长度为10mm。在图10中示出了阴极102A分别为平面圆形、平面长方形、球面圆弧形、圆柱弧面形这四种结构的情况。
此外,电子发射单元1也可以是长方体型结构,即,绝缘支撑件104A为长方体,而阴极102A、栅极架106A、栅网107A可以同时为圆形,或者同时为长方形。在图9中示出了一种长方体形的电子发射单元1的俯视图,其中(A)示出了阴极102A、栅极架106A、栅网107A同时为圆形的结构,(B)示出了阴极102A、栅极架106A、栅网107A同时为长方 形的结构。需要指出的是,图8以及图9中的斜纹线是为了便于区分各个不同的部件,不是表示剖面。
此外,具体地,关于栅网107A的结构,如图11所示,可以是平面型,也可以是球面型,还可以是U槽型,推荐的是球面型,这是因为球面型的栅网会使得电子束具有更好的聚焦效果。
此外,如果发射控制装置703只改变相邻的电子发射单元中的一个电子发射单元的栅极的状态,在同一时刻,相邻的电子发射单元只有一个进行电子发射而形成电子束流时,则该电子发射单元的栅极两侧的电场对该电子束流具有自动聚焦的效果。如图12所示,图中的用电子发射单元1与阳极2之间的箭头表示电子运动的方向(逆电力线方向)。在图12中,阳极2为高电压+160kV,大电场的在电子发射单元1与阳极2之间的箭头都是从电子发射单元1指向阳极2,也就是说,只要电子发射单元1发射出电子束流,则电子束流都会向阳极2运动。考察电子发射单元1的表面的局部电场状态,在相邻的电子发射单元12、13、14中,电子发射单元13的栅极103A的电压由-500V变为+2000V,则电子发射单元13进入电子发射状态,相邻的电子发射单元12和电子发射单元14的栅极103A的电压仍然为-500V,如果电子发射单元12、14存在电子发射,则电子从电子发射单元12和电子发射单元14的栅极103A向电子发射单元13的栅极103A运动,但是,由于在电子发射单元12、14不存在电子发射,所以,从电子发射单元13发射出来的电子束受到了从电子发射单元13指向相邻的电子发射单元12和电子发射单元14的电场的作用而受到挤压,因此,具有自动聚焦效果。
需要指出的是,本发明的外置热阴极分布式X射线装置工作于高真空状态,高真空的获得和维持方法可以是:将阳极2在真空盒3内完成安装,将高压电源连接装置4及真空装置8在真空盒3的壁上完成密封连接,在真空盒3侧壁的电子发射单元连接处先用盲板法兰密封,使真空盒3整体形成一个密封结构;然后将该结构置于真空炉中烘烤去气,真空阀802连接外部真空抽气系统,目的在于去除各部件的材料所吸附的气体;然后,在常温洁净环境中,从真空阀802向真空盒3内注入氮气,形成保护环境,再打开电子发射单元连接处的盲板法兰并安装电子发射单元,逐个进行;所有电子发射单元安装好后,从真空阀802连接外部真空抽气系统抽气,并再次进行烘烤排气,使真空盒3的内部为高真空;在烘烤排气的过程中可进行各个电子发射单元的阴极的激活;烘烤排气完成后,关闭真空阀802,使真空盒3内部保持高真空;外置热阴极分布式X射线装置工作过程中,阳极释放的少量气体由真空泵801抽除,维持真空盒3内部的高真空。当某一个电子发射单元损坏或者到寿命需要更换时,从真空阀802往真空盒3内部注入氮气形成保护;在最短时间内,拆下需要更换的电子发射单元,安装新的电子发射单元;真空阀802连接外部真空抽气设备,对真空盒3抽真空;当真空盒3内部再次达到高真空时,关闭真空阀802,使真空盒3内部保持高真空。
此外,需要特别指出的是,在本发明的外置热阴极分布式X射线装置中,电子 发射单元1可以排列在真空盒3的一个侧壁上,也可以在真空盒3的两个相对侧壁上按相同的延展方向同时排列。在图13中示出了一种直线形双排对置布置的外置热阴极分布式X射线装置的结构,(A)是电子发射单元1、阳极2与真空盒3的位置关系的图,(B)是电子发射单元1与阳极2的位置关系的图。如图13(A)所示,多个电子发射单元1分两排分别布置在真空盒3的两个相对侧壁上,阳极2布置在真空盒3内的中部。如图13(B)所示,阳极2与两排电子发射单元1所相对的面均为斜面,电子发射单元1产生的电子束流E受到电子发射单元1与阳极2之间的电场加速,轰击阳极2的斜面,产生X射线,有用的X射线的出射方向为阳极2斜面的倾斜方向。因为两排电子发射单元1相对布置,所以,阳极2有两个斜面,两个斜面产生的X射线向相同的方向出射。
此外,需要特别指出的是,本发明的外置热阴极分布式X射线装置可以是直线型排列,也可以是圆弧型排列,从而满足不同的应用需求。在图14中示出了本发明的圆弧型外置热阴极分布式X射线装置的电子发射单元1和阳极2的位置关系的示意图。两排电子发射单元1沿圆周布置,分别布置在真空盒3的两个相对侧面上,这两个侧面互相平行,电子发射单元1排列的延展方向为弧线,布置的弧度大小可以根据需要确定。阳极2布置在真空盒3内的中部,即两排相对的电子发射单元1的中间,阳极2面对两排电子发射单元1的表面均为斜面,两斜面的倾斜方向均指向圆弧的中心O。电子束流E从电子发射单元1的上表面发射出来,受到阳极2与电子发射单元1之间的高压电场加速,最终轰击阳极2,在阳极2的两个斜面上形成两排圆弧形排列的系列X射线靶点,有用的X射线的出射方向指向圆弧的中心。关于圆弧型外置热阴极分布式X射线装置的真空盒3,与电子发射单元1的布置和阳极2的形状对应地也是圆弧型,或者称为环形。圆弧型分布式X射线装置的出射X射线都指向圆弧的圆心,能够应用于需要射线源圆形排列的情况。
此外,需要特别指出的是,在外置热阴极分布式X射线装置中,各电子发射单元的排列可以是直线形,也可以是例如L形或者U形等分段直线形,此外,各电子发射单元的排列可以是弧形,还可以是分段弧线形,例如,由不同直径的弧形段连接而成的曲线或者直线段与弧线段的组合等。
此外,需要特别指出的是,在本发明的外置热阴极分布式X射线装置中,各电子发射单元的排列间距可以是均匀的,也可以是非均匀的。
此外,在本发明中也能够采用二维阵列分布的方式来配置电子发射单元,由此,能够得到二维阵列分布式X射线装置。如图15、16所示,二维阵列分布式X射线装置具有多个电子发射单元1(至少四个,以后也具体地称为电子发射单元11a、12a、13a、14a、……、电子发射单元11b、12b、13b、14b、……),电子发射单元可以是如前所述的电子发射单元的任意一种,阳极2由阳极板201和安装在阳极板201上并且与电子发射单元1对应排列的多个靶子202组成,但是,阳极2并不限于该结构,使用本领域内通常的阳极即可。此外,多个电子发射单元1以二维排列的方式配置在真空盒3的一个侧壁上,并且与阳极板201所在的平面互相平行。此外,如前所述那样,电子发射单元1整体处于真空盒3的外部,而阳 极2设置在真空盒3的内部。
在图15中示出了电子发射单元1和阳极2的空间布置的结构示意图(此处,省略了真空盒3的图示)。电子发射单元1分成两排布置在一个平面(即,真空盒3的一个侧壁)上,并且,前后排的电子发射单元1交错排列(参见图15),但是并不限于此,即便前后排的电子发射单元不彼此交错也可以。阳极2上的靶子202与电子发射单元1一一对应,靶子202的顶面指向电子发射单元1,电子发射单元1的中心与靶子202的中心的连线垂直于阳极板201的平面,此连线也是电子发射单元1所发射的电子束流E的运动路径。电子轰击靶子产生X射线,有用的X射线的出射方向平行于阳极板201的平面,并且,各有用的X射线互相平行。
在图16中示出了阳极2的一种结构。阳极2包括:阳极板201;二维阵列分布的多个靶子202。阳极板201为平板,由金属材料制成,并且优选是耐高温的金属材料,与电子发射单元1的上表面所构成的平面完全平行,当在阳极2上施加有正的高压时,通常为几十kV到几百kV,典型的例如180kV,从而在阳极板201和电子发射单元1之间形成平行的高压电场。靶子202安装在阳极板201上,其位置以分别与电子发射单元1的位置对应的方式布置,靶子202的表面通常使用耐高温的重金属材料,例如钨或者钨合金。靶子202为圆形锥台结构,高度通常为几mm,例如3mm,直径较大的底面与阳极板201连接,顶面的直径较小,通常为几mm,例如2mm,顶面不与阳极板201平行,通常有一个几度至十几度的小的夹角,便于电子打靶所产生的有用X射线发射出来。所有的靶子202以顶面倾斜方向一致的方式进行布置,也即所有的有用X射线的出射方向一致。靶子的这种结构设计,相当于在阳极板201上长出的小突起,改变了阳极板201的表面的局部电场分布,使得电子束在轰击靶子前具有自动聚焦的效果,使得靶点变小,有利于提高图像质量。在阳极的设计中,阳极板201使用普通金属,只有靶子202的表面为钨或者钨合金,因此降低了成本。
此外,在本发明中,电子发射单元可以是栅极和阴极分离的结构。在图17中示出了一种栅极和阴极分离的电子发射单元阵列。在图17中,平板栅极9由绝缘骨架板901、栅板902、栅网903、栅极引线904组成。如图所示,栅板902设置于绝缘骨架板901,并且,栅网903设置于在栅板902上形成的开孔的位置,栅极引线904从栅板902引出。阴极阵列10由多个阴极结构紧密排列组成,每个阴极结构由灯丝1001、阴极1002、绝缘支撑件1004构成。平板栅极9处于阴极阵列10的上方并且这二者的距离很小,通常为几mm,例如3mm。由栅板902、栅网903、栅极引线904构成的栅极结构与阴极结构一一对应,并且,从垂直方向观察,各个栅网903的圆中心与各个阴极1002的圆中心两两重合。
此外,如图17(B)所示,在本发明中,栅极结构可以是各个栅极引线独立引出并且由栅极控制装置独立进行状态控制的结构。阴极阵列10的各个阴极1002可以处于相同电位例如接地,每一个栅极在负几百伏与正几千伏两个状态切换,例如在-500V和+2000V之间切换,从而控制各个电子发射单元的工作状态,例如,某个栅极在某时刻为-500V,则该栅极与对应的阴极之间的电场为负电场,从阴极发射的电子被限制在阴极的 表面,在下一时刻栅极电压变为+2000V时,该栅极与对应阴极之间的电场变为正电场,从阴极发射的电子向栅极运动并且穿过栅网,发射到栅极与阳极之间的加速电场中,获得加速并且最终轰击阳极,在对应的靶子位置产生X射线。
此外,如图17(C)所示,栅极也可以是各个栅极引线并联,处于同一电位,由灯丝电源来控制各个电子发射单元的工作状态。例如所有的栅极处于-500V,各个阴极灯丝独立引出,每个阴极灯丝的两个端点之间的电压差恒定,每个阴极的整体电压在0V与-2500V两个状态之间切换。在某时刻,阴极处于0V电位,栅极与阴极之间为负电场,从阴极发射的电子被限制在阴极的表面,在下一时刻,阴极的电压变为-2500V,栅极与对应阴极之间的电场变为正电场,从阴极发射的电子向栅极运动并且穿过栅网,发射到栅极与阳极之间的加速电场中,获得加速并且最终轰击靶子,在对应的靶子位置产生X射线。
此外,在本发明的二维分布式X射线装置中,各电子发射单元的灯丝引线可以是各自独立连接到灯丝电源的各个输出端,也可以是串联连接之后整体连接到灯丝电源的一个输出端。在图18中示出一种电子发射单元的灯丝引线串联连接到灯丝电源的示意图。在电子发射单元的灯丝引线串联连接的系统中,通常阴极都处于相同的电位,各个栅极引线需要独立引出,通过栅极控制装置来控制电子发射单元的工作状态。
此外,在本发明中,电子发射单元的阵列可以是二排也可以是多排。
此外,在本发明的中,阳极的靶子可以是圆形锥台结构,也可以是圆柱结构,可以方台结构,还可以是多棱台结构,或者其它多边形凸起,或者其它不规则凸起等结构。
此外,在本发明中,阳极的靶子的顶面可以是平面,也可以是斜面、还可以是球面、或者其它不规则的表面。
此外,在本发明中,电子发射单元的二维阵列排布可以是两个方向均为直线伸展,也可以是一个方向为直线伸展而另一个方向为弧线伸展,也可以是一个方向为直线伸展而另一个方向为分段直线伸展,还可以是一个方向为直线伸展而另一个方向为分段弧形伸展等多种组合形式。
此外,在本发明中,电子发射单元的二维阵列排布可以是两个方向间隔均匀一致的,可以是每个方向间隔均匀而两个方向间隔不一致的,也可以是一个方向间隔均匀而另一个方向间隔不均匀的,还可以是两个方向的间隔都不均匀的。
此外,在本发明中,电子发射单元也能够以曲面阵列分布的方式设置,由此,能够得到曲面阵列分布式X射线装置。图19是本发明的曲面阵列分布式X射线装置的结构示意图。图20是本发明的曲面阵列分布式X射线装置内部结构的端面示意图。图21是本发明的阳极的不同结构的示意图。
如图所示,多个电子发射单元1(至少四个,以后也具体地称为电子发射单元11a、11b、12a、12b、13a、13b、14a、14b、……)在曲面上沿着轴线方向面向轴线O排列多排,此外,阳极2布置在曲面的轴线O上。此外,如前所述那样,电子发射单元1安装在真空盒3的盒壁上,并且整体处于真空盒3的外部,而阳极2安装在真空盒内。
此外,上述的曲面包括圆柱面和圆环面。图20是本发明的一种曲面阵列分布式X射线装置的内部结构的端面示意图,具体地说,在图20中示出了一种圆柱面阵列分布式X射线装置的内部结构的示意图。电子发射单元1在圆柱面上沿着轴线方向排列多排,并且,电子发射单元1的上表面(电子发射面)面向轴线O。阳极2布置在圆柱的轴线O上。通常,电子发射单元1处于相同的低电位,阳极2处于高电位,在阳极2与电子发射单元1之间构成正电场,电场从各电子发射单元1的表面向阳极2的轴线汇聚,电子束流E从电子发射单元1向阳极2的轴线运动,轰击阳极2,最终产生X射线。
此外,上述的电子发射单元1在曲面上沿着轴线方向面向轴线排列多排,多排电子发射单元可以是前后排对齐,也可以是推荐的前后排位置错开,使得每一个电子发射单元产生的电子束轰击阳极的位置是不重合的。
此外,阳极2具有中空管道状的结构,能够使冷却剂在其内部流动。在图21中示出了本发明中的一种阳极及其支撑件的结构。阳极2由阳极支撑件201A、阳极管道202A、阳极靶面203A组成。阳极支撑件201A安装在阳极管道202A上并且与高压电源连接装置4的顶端(小端)连接在一起,用于对阳极2进行支撑以及固定。阳极管道202A是阳极2的主体结构,两端分别与两个冷却连接装置9A的一端连接,并且内部与冷却连接装置9A连通,成为冷却剂的循环流动的通道。阳极管道202A通常选用耐高温的金属材料,有多种结构方式,推荐为圆形的管道。此外,在某些情况下,例如阳极热功率较小的情况下,阳极2也可以是非中空管道的柱形结构。此外,阳极靶面203A是电子束轰击阳极管道202A的位置,在细微结构上有多种设计,例如,如图21(1)所示,阳极管道202A的外圆面就是电子束的轰击位置,在此种情况下,阳极管道202A整体采用耐高温重金属材料,例如,钨或者钨合金,如图21(2)所示,阳极管道202A的外圆被切除一部分而形成一个小的斜平面,该斜平面成为电子束的轰击位置,该斜平面的倾斜方向为有用的X射线的出射方向,这种结构设计有利于有用的X射线的方向一致引出,优选的是,如图21(3)所示,在阳极管道202A的外表面专门设计有阳极靶面203A,阳极靶面203A采用耐高温重金属材料,例如钨或者钨合金,厚度不小于20μm(微米),通过电镀、粘贴、焊接或者其它方式被固定在阳极管道202A的外沿加工出的小斜平面上,在此种情况下,阳极管道202A可以采用普通金属材料,从而能够降低成本。
此外,在本发明中,上述的轴线可以是直线,也可以是圆弧,整体成为线状分布式X射线装置或者环状分布式X射线装置,以满足不同的应用需求。在图22中示出了一种环状分布的电子发射单元和阳极布置的效果图。阳极2布置在一个平面圆周上,电子发射单元1布置在阳极2的下方,两排电子发射单元1按阳极2的方向成圆周排列,同时排列在以阳极2的中心为轴线的圆弧面上,即每个电子发射单元1的表面指向阳极2的轴线。电子束流E从电子发射单元1发射出来,受到阳极2与电子发射单元1之间的高压电场加速,轰击阳极2的下沿靶面,在阳极2上形成圆形排列的阵列X射线靶点,有用的X射线的出射方向都指向阳极2所在圆周的圆心。环状分布式X射线装置的真空盒3与其内部的电子发射单元1 的布置和阳极2的形状对应也是一种环型结构。环状分布式X射线装置可以是一个完整的环,也可以是一段环长,可以应用于需要射线源圆形排列的场合。
此外,在本发明中,电子发射单元的阵列可以是两排也可以是多排。
此外,在本发明中对电子发射单元的描述中,“独立”是指每个电子发射单元具有独立发射电子束流的能力,在具体结构上可以是分立的结构,也可以是某种关联连接的结构。
此外,本发明的曲面阵列分布式X射线装置的描述中,“曲面”是指各种形式的曲面,包括圆柱面、圆环面、椭圆面、或者分段直线构成的曲面,例如正多边形柱面或者分段弧线构成的曲面等,推荐的是如前面所述的圆柱面和圆环面。
此外,本发明中对阳极布置位置的描述中,“轴线”是指电子发射单元所布置的各种形式的曲面的真实轴线或者形式轴线,例如圆柱面的轴线是指圆柱的中心轴线,圆环面的轴线是指圆环内部的中心轴线,椭圆曲面的轴线是指靠近该段椭圆的近轴轴线,正多边形柱面的轴线是指正多边形的中心所构成的轴线。
此外,在本发明中,阳极内部管道切面可以是圆形孔、方形孔、多边形孔、带散热片结构的内齿轮状孔、或者能增加散热面积的其它形状。
此外,在本发明中,电子发射单元的曲面阵列排布在一个排列方向为曲线而在另一个排列方向为直线、分段直线、弧线、分段弧线、或者直线段与弧线段的组合。
此外,在本发明中,电子发射单元的曲面阵列排布可以是两个方向间隔均匀一致的,可以是每个方向间隔均匀,两个方向间隔不一致的,也可以是一个方向间隔均匀,另一个方向间隔不均匀的,还可以是两个方向的间隔都不均匀的。
此外,在本发明中,真空盒的外形整体上可以是长方体形,也可以是圆柱体形,也可以是圆环体形,还可以是其它不影响电子发射单元与阳极的相对布置关系的其它结构。
(系统组成)
如图1~图6所示,本发明的外置热阴极分布式X射线装置由多个电子发射单元1、阳极2、真空盒3、高压电源连接装置4、发射控制装置连接装置5、聚焦装置连接装置6、真空装置8以及电源与控制系统7组成。多个电子发射单元1排成线形阵列安装在真空盒3的一个侧壁上,每个电子发射单元1互相独立,长条形的阳极2安装在真空盒3内的中部,在线型排列方向上,阳极2与电子发射单元1的排列线互相平行,在线型排列的垂直切面,阳极2与电子发射单元1的上表面形成一个小的夹角。电子发射单元1包括加热灯丝101、阴极102、栅极107、绝缘支撑件103、聚焦极104、聚焦段109、连接固定件105、灯丝引线106、栅极引线108、聚焦装置110。高压电源连接装置4安装在真空盒3的侧壁上,内部与阳极2相连,外部以可插拔的形式连接高压电缆。发射控制装置连接装置5将每一个电子发射单元1的灯丝引线106和栅极引线108连接到发射控制装置703的每一个发射控制单元。真空装置8安装在真空盒3的侧壁上,真空装置8包括真空泵801和真空阀802。电源与控制系统7包括控制 系统701、高压电源702、发射控制装置703、聚焦电源704、真空电源705等多个模块,通过电力电缆和控制电缆与系统的多个电子发射单元1的加热灯丝101、栅极107以及阳极2、真空装置8等部件相连接。其中发射控制装置703由多个(与电子发射单元1的数量相同)相同的发射控制单元构成,每一个发射控制单元由负高压模块70301、直流模块70302、高压隔离变压器70303、负偏压模块70304、正偏压模块70305、选择开关70306组成。
(工作原理)
在本发明的外置热阴极分布式X射线装置中,电源与控制系统7对聚焦电源704、发射控制装置703与高压电源702进行控制。发射控制装置703的各个单元开始工作,负高压模块70301产生负高压输出到高压隔离变压器70303的原边,使得高压隔离变压器70303副边的一组并联端悬浮在高压上,即直流模块70302、负偏压模块70304、正偏压模块70305、选择开关70306均处于一个相同的负高压上,直流模块70302产生一个悬浮于此负高压上的直流电流供给到加热灯丝101,加热灯丝101将阴极102加热到高温(例如,500~2000℃)发射状态,阴极102在其表面产生大量电子。负偏压模块70304和正偏压模块70305分别产生一个悬浮于负高压上的负电压和正电压,选择开关70306通常将负电压选通连接到栅极107。在电子发射单元1内,灯丝101、阴极102与栅极107均处于负高压,通常为负的几千伏到负的几十千伏,而聚焦极104连接聚焦段109并通过连接固定件105连接到真空盒3的侧壁,处于接地电位,所以,在栅极107与聚焦极104之间形成一个小的加速电场。但是,栅极107相对阴极102还具有一个更低的负电压,因此,阴极102产生的电子不能通过栅极107,被栅极107限制在阴极102的表面。高压电源702使阳极2处于非常高的正高压,通常为正的几十千伏到几百千伏,在电子发射单元1(也即真空盒3的侧壁,通常接地电位)与阳极2之间形成正的大加速电场。
在需要产生X射线的情况下,电源与控制系统7按照指令或者预先设定程序使发射控制装置703的某一个发射控制单元的选择开关70306的输出由负电压切换为正电压,并且按照时序来变换分别与各电子发射单元1相连接的各发射控制单元的选择开关70306的输出信号。例如,在时刻1,发射控制装置703的第一发射控制单元的选择开关70306的输出由负电压切换为正电压,在对应的电子发射单元11内,栅极107与阴极102之间的电场变为正电场,电子从阴极102的表面向栅极107运动,透过栅网进入到栅极107与聚焦极104之间的加速电场获得第一次加速,聚焦极104的鼻锥形状使电子束在第一次加速过程中自动聚集,电子束的直径变小,电子束进入聚焦段109内部后,受到外部聚焦装置110施加的聚焦磁场作用,电子束的直径进一步变小。小直径的电子束通过连接固定件105中心的孔进入真空盒3内部,受到电子发射单元11与阳极2之间的大加速电场加速,获得能量,轰击阳极2,在阳极2上产生一个靶点21,并且,在靶点21的位置产生X射线的发射。在时刻2,发射控制装置703的第二发射控制单元的选择开关70306的输出由负电压切换为正电压,对应的电子发射单元12发射电子,在阳极2上产生靶点22,并且在靶点22位置产生X射线的发射。在时刻3,发射控制装置703的第三发射控制单元的选择开关70306的输出由负电压切 换为正电压,对应的电子发射单元13发射电子,在阳极2上产生靶点23,并且在靶点23位置产生X射线的发射,依次类推,然后靶点24位置产生X射线的发射,然后靶点25位置产生X射线的发射……,并且循环往复。因此,电源与控制系统7利用发射控制装置703使各个电子发射单元1按照预定时序交替地进行工作而发射电子束,并且,在阳极2的不同位置交替地产生X射线,从而成为分布式X射线源。
此外,阳极2受到电子束流轰击时释放的气体被真空泵801实时抽走,真空盒3内维持高真空,这样有利于长时间稳定运行。电源与控制系统7除了对各电源进行控制以使按照设定程序驱动各个部件协调工作,同时可以通过通讯接口和人机界面接收外部命令,对系统的关键参数进行修改和设定,更新程序和进行自动控制调整。
此外,通过将本发明的外置热阴极分布式X射线装置应用于CT设备,从而能够得到系统稳定性及可靠性好并且检查效率高的CT设备。
(效果)
本发明主要是提供一种外置热阴极分布式X射线装置,在一个光源设备中产生按照预定顺序周期性地变换焦点位置的X射线。本发明的电子发射单元采用热阴极,相对于其它设计具有发射电流大、寿命长的优点;多个电子发射单元各自独立固定在真空盒上,且可直接使用小型的二极或三极电子枪,技术成熟,成本低,应用灵活;采用长条型大阳极的设计,有效缓解了阳极过热的问题,有利于提高光源的功率;电子发射单元可以直线排列,整体成为直线型分布式X射线装置,电子发射单元也可以环形排列,整体成为环型分布式X射线装置,应用灵活;通过聚焦极的设计,和外部聚焦装置的设计,电子束可是实现非常小的焦点。相对其它分布式X射线光源设备,本发明电流大,靶点小,靶点位置分布均匀且重复性好,输出功率高,结构简单,控制方便,成本低。
此外,将本发明的外置热阴极分布式X射线光源应用于CT设备,无需移动光源就能产生多个视角,因此可以省略滑环运动,有利于简化结构,提高系统稳定性、可靠性,提高检查效率。
如上所述,对本申请发明进行了说明,但是并不限于此,应该理解为能够在本发明宗旨的范围内对上述实施方式进行各种组合以及各种变更。

Claims (34)

  1. 一种X射线装置,其特征在于,具备:
    真空盒,四周密封并且内部为高真空;
    多个电子发射单元,每个电子发射单元互相独立且排成线形阵列安装在所述真空盒的侧壁上;
    阳极,安装在所述真空盒内部的中间位置,并且,在长度方向上与所述电子发射单元的排列方向平行且在宽度方向上与所述电子发射单元的安装平面形成预定角度的夹角。
  2. 如权利要求1所述的X射线装置,其特征在于,
    每个电子发射单元的整体处于所述真空盒之外;来自所述电子发射单元的电子束流轰击所述阳极,从而在所述阳极的靶点位置产生X射线的发射。
  3. 如权利要求1所述的X射线装置,其特征在于,
    多个电子发射单元,在所述真空盒的侧壁上以二维排列的方式布置,并且,每个电子发射单元的整体处于所述真空盒之外;以及
    来自所述电子发射单元的电子束流轰击所述阳极,从而在所述阳极的靶点位置产生X射线的发射。
  4. 如权利要求3所述的X射线装置,其特征在于,
    所述电子发射单元以二维排列的方式安装在所述真空盒的两个相对的侧壁上。
  5. 如权利要求1所述的X射线装置,其特征在于,
    多个电子发射单元,在所述真空盒的侧壁上以在曲面上沿所述曲面的轴线方向面向所述轴线排列多排的方式配置,并且,每个电子发射单元的整体处于所述真空盒之外;以及
    阳极,由金属构成并且以布置在所述轴线上的方式配置在所述真空盒内部的中间位置,
    来自所述电子发射单元的电子束流轰击所述阳极,从而在所述阳极的靶点位置产生X射线的发射。
  6. 如权利要求1所述的X射线装置,其特征在于,所述X射线装置还具有:
    电源与控制系统,具有与所述阳极连接的高压电源、与所述多个电子发射单元的每一个连接的发射控制装置、用于对各电源进行控制的控制系统,
    所述电子发射单元具有:加热灯丝;与所述加热灯丝连接的阴极;从所述加热灯丝的两端引出的灯丝引线;绝缘支撑件,包围所述加热灯丝以及所述阴极;聚焦极,以位于所述阴极的上方的方式配置在所述绝缘支撑件的顶端;连接固定件,配置在所述聚焦极的上方,与所述真空盒的盒壁密封连接,
    所述灯丝引线穿过所述绝缘支撑件与所述发射控制装置连接。
  7. 如权利要求6所述的X射线装置,其特征在于,
    还具有:高压电源连接装置,将所述阳极和所述高压电源的电缆连接,安装在所述真空盒的靠近所述阳极的一端的侧壁;发射控制装置连接装置,用于连接所述加热灯丝和所述发射控制装置;真空电源,包括在所述电源与控制系统内;真空装置,安装在所述真空盒的侧壁上,利用所述真空电源进行工作,维持所述真空盒内的高真空。
  8. 如权利要求6所述的X射线装置,其特征在于,
    所述电子发射单元还具有:栅极,以与所述阴极对置的方式配置在所述阴极的上方,安装在所述阴极与所述聚焦极之间并且紧邻阴极;栅极引线,与所述栅极连接,穿过所述绝缘支撑件,与所述发射控制装置连接。
  9. 如权利要求6所述的X射线装置,其特征在于,
    所述电子发射单元还具有:聚焦段,安装在所述聚焦极与所述连接固定件之间;聚焦装置,以包围所述聚焦段的方式配置。
  10. 如权利要求9所述的X射线装置,其特征在于,
    还具有:聚焦电源,包括在所述电源与控制系统内;聚焦装置连接装置,用于连接所述聚焦装置和所述聚焦电源。
  11. 如权利要求1所述的X射线装置,其特征在于,
    所述电子发射单元分两排安装在所述真空盒的两个相对的侧壁上。
  12. 如权利要求1所述的X射线装置,其特征在于,
    所述真空盒由玻璃或陶瓷制成。
  13. 如权利要求1所述的X射线装置,其特征在于,
    所述真空盒由金属材料制成。
  14. 如权利要求6~13的任意一项所述的X射线装置,其特征在于,
    所述多个电子发射单元排列成直线形或者分段直线形。
  15. 如权利要求6~13的任意一项所述的X射线装置,其特征在于,
    所述多个电子发射单元排列成圆弧形或者分段弧线形。
  16. 如权利要求6~13的任意一项所述的X射线装置,其特征在于,
    所述多个电子发射单元的排列间隔是均匀的。
  17. 如权利要求6~13的任意一项所述的X射线装置,其特征在于,
    所述多个电子发射单元的排列间隔是非均匀的。
  18. 如权利要求2所述的X射线装置,其特征在于,
    还具备:电源与控制系统,具有与所述阳极连接的高压电源、与所述多个电子发射单元的每一个连接的发射控制装置、用于对各电源进行控制的控制系统,
    所述阳极在长度方向上与所述电子发射单元的排列方向平行且在宽度方向上与所述电子发射单元的安装平面形成预定角度的夹角,
    所述电子发射单元具有:加热灯丝;与所述加热灯丝连接的阴极;灯丝引线,从所述加热灯丝的两端引出并且与所述发射控制装置连接;栅极,以与所述阴极对置的方式配 置在所述阴极的上方;绝缘支撑件,具有开口,并且,包围所述加热灯丝以及所述阴极;连接固定件,连接在所述绝缘支撑件的上端外沿,
    所述栅极具有:栅极架,由金属制成并且在中间形成有开孔;栅网,由金属制成并且固定在所述栅极架的所述开孔的位置;栅极引线,从所述栅极架引出并且与所述发射控制装置连接,
    所述栅极以与所述阴极对置的方式配置在所述绝缘支撑件的所述开口上,
    所述灯丝引线以及所述栅极引线穿过所述绝缘支撑件从所述电子发射单元引出到外部,
    所述连接固定件与所述真空盒的盒壁密封连接。
  19. 如权利要求18所述的X射线装置,其特征在于,
    还具有:高压电源连接装置,将所述阳极和所述高压电源的电缆连接,安装在所述真空盒的靠近所述阳极的一端的侧壁;发射控制装置连接装置,用于将所述加热灯丝以及所述栅极引线和所述发射控制装置连接;真空电源,包括在所述电源与控制系统内;真空装置,安装在所述真空盒的侧壁上,利用所述真空电源进行工作,维持所述真空盒内的高真空。
  20. 如权利要求18或19所述的X射线装置,其特征在于,
    所述绝缘支撑件为圆柱形,所述栅极架、所述阴极以及所述栅网为圆形。
  21. 如权利要求18或19所述的X射线装置,其特征在于,
    所述绝缘支撑件为圆柱形,所述栅极架、所述阴极以及所述栅网为长方形。
  22. 如权利要求18或19所述的X射线装置,其特征在于,
    所述绝缘支撑件为长方体形,所述栅极架、所述阴极以及所述栅网为圆形。
  23. 如权利要求18或19所述的X射线装置,其特征在于,
    所述绝缘支撑件为长方体形,所述栅极架、所述阴极以及所述栅网为长方形。
  24. 如权利要求18或19所述的X射线装置,其特征在于,
    所述栅网为平面形、球面形或者U槽形。
  25. 如权利要求3所述的X射线装置,其特征在于,
    所述阳极包括:阳极板,由金属材料制成并且与所述电子发射单元的上表面平行;多个靶子,安装在所述阳极板上并且以分别与所述电子发射单元的位置对应的方式布置,
    所述靶子的底面与所述阳极板连接并且顶面与所述阳极板形成预定的角度。
  26. 如权利要求1或3所述的X射线装置,其特征在于,
    所述电子发射单元包括:平板栅极,由绝缘骨架板、栅板、栅网、栅极引线构成;阴极阵列,由多个阴极结构紧密排列构成,每个阴极结构由灯丝、与所述灯丝连接的阴极、从所述灯丝的两端引出的灯丝引线、包围所述灯丝以及所述阴极的绝缘支撑件构成,
    所述栅板设置于所述绝缘骨架板,并且,所述栅网设置于在所述栅板上形成的开孔的位置,所述栅极引线从所述栅板引出,
    所述平板栅极位于所述阴极阵列的上方,在垂直方向上,所述栅网的中心与所述阴极的中心两两重合,
    所述灯丝引线和所述栅极引线分别与所述发射控制装置连接,
    所述阳极包括:阳极板,由金属材料制成并且与所述电子发射单元的上表面平行;多个靶子,安装在所述阳极板上并且以分别与所述电子发射单元的位置对应的方式布置,
    所述靶子的底面与所述阳极板连接并且顶面与所述阳极板形成预定的角度。
  27. 如权利要求1、3、4、6至13、25和26的任意一项所述的X射线装置,其特征在于,
    所述多个电子发射单元排列的阵列在两个方向上均为直线、或者一个方向为直线另一个方向为分段直线。
  28. 如权利要求1、3、4、6至13、25和26的任意一项所述的X射线装置,其特征在于,
    所述多个电子发射单元排列的阵列在一个方向上为直线并且在另一个方向上为弧线或者分段弧线。
  29. 如权利要求1或5所述的X射线装置,其特征在于,
    所述阳极包括:阳极管道,由金属构成并且具有中空的管状形状;阳极支撑件,配置在所述阳极管道上;阳极靶面,设置在所述阳极管道的外表面并且与所述电子发射单元相面对。
  30. 如权利要求29所述的X射线装置,其特征在于,
    所述阳极靶面是所述阳极管道的外圆被切除一部分而形成的斜平面。
  31. 如权利要求29所述的X射线装置,其特征在于,
    所述阳极靶面是在将所述阳极管道的外圆切除一部分所形成斜平面上形成有重金属材料钨或者钨合金而形成的。
  32. 如权利要求5、29至32的任意一项所述的X射线装置,其特征在于,
    所述轴线为直线或者分段直线。
  33. 如权利要求5、29至32的任意一项所述的X射线装置,其特征在于,
    所述轴线为圆弧或者分段圆弧。
  34. 一种CT设备,其特征在于,
    所使用的X射线源是权利要求1~33的任意一项所述的X射线装置。
PCT/CN2014/086743 2013-09-18 2014-09-17 X射线装置以及具有该x射线装置的ct设备 WO2015039603A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167008295A KR101855931B1 (ko) 2013-09-18 2014-09-17 X선장치 및 이를 구비하는 ct장비
RU2016114671A RU2655916C2 (ru) 2013-09-18 2014-09-17 Устройство рентгеновского излучения и кт-оборудование, содержащее его
JP2016543304A JP6526014B2 (ja) 2013-09-18 2014-09-17 X線装置及び該x線装置を有するctデバイス

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201310426917.3 2013-09-18
CN201310600370.4A CN104470173B (zh) 2013-09-18 2013-09-18 X射线装置以及具有该x射线装置的ct设备
CN201310600370.4 2013-09-18
CN201310600016.1 2013-09-18
CN201310600023.1 2013-09-18
CN201310426917.3A CN104465279B (zh) 2013-09-18 2013-09-18 X射线装置以及具有该x射线装置的ct设备
CN201310600016.1A CN104470171A (zh) 2013-09-18 2013-09-18 X射线装置以及具有该x射线装置的ct设备
CN201310600023.1A CN104470172B (zh) 2013-09-18 2013-09-18 X射线装置以及具有该x射线装置的ct设备

Publications (1)

Publication Number Publication Date
WO2015039603A1 true WO2015039603A1 (zh) 2015-03-26

Family

ID=51582273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086743 WO2015039603A1 (zh) 2013-09-18 2014-09-17 X射线装置以及具有该x射线装置的ct设备

Country Status (8)

Country Link
US (1) US9653251B2 (zh)
EP (1) EP2858087B1 (zh)
JP (1) JP6526014B2 (zh)
KR (1) KR101855931B1 (zh)
ES (1) ES2749725T3 (zh)
PL (1) PL2858087T3 (zh)
RU (1) RU2655916C2 (zh)
WO (1) WO2015039603A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470176B (zh) * 2013-09-18 2017-11-14 同方威视技术股份有限公司 X射线装置以及具有该x射线装置的ct设备
KR20150051820A (ko) * 2013-11-05 2015-05-13 삼성전자주식회사 투과형 평판 엑스레이 발생 장치 및 엑스레이 영상 시스템
GB2531326B (en) * 2014-10-16 2020-08-05 Adaptix Ltd An X-Ray emitter panel and a method of designing such an X-Ray emitter panel
US9484177B2 (en) * 2014-12-31 2016-11-01 Rad Source Technologies, Inc. Longitudinal high dose output, through transmission target X-ray system and methods of use
US11282668B2 (en) * 2016-03-31 2022-03-22 Nano-X Imaging Ltd. X-ray tube and a controller thereof
CN106653528B (zh) * 2016-12-29 2019-01-29 清华大学 阴极组件及具有该阴极组件的x射线光源与ct设备
DE102017000994B4 (de) * 2017-02-01 2019-11-21 Esspen Gmbh Computertomograph
FR3069098B1 (fr) * 2017-07-11 2020-11-06 Thales Sa Source generatrice de rayons ionisants compacte, ensemble comprenant plusieurs sources et procede de realisation de la source
CN107481912B (zh) * 2017-09-18 2019-06-11 同方威视技术股份有限公司 阳极靶、射线光源、计算机断层扫描设备及成像方法
US20190189384A1 (en) * 2017-12-18 2019-06-20 Varex Imaging Corporation Bipolar grid for controlling an electron beam in an x-ray tube
CN108122723B (zh) * 2017-12-25 2020-04-03 北京纳米维景科技有限公司 一种弧形多焦点固定阳极栅控射线源
RU2697258C1 (ru) * 2018-03-05 2019-08-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Рентгеновский источник и способ генерации рентгеновского излучения
RU188395U1 (ru) * 2018-12-25 2019-04-11 Общество с ограниченной ответственностью "Синтез НПФ" Рентгеновский излучатель
RU2703588C1 (ru) * 2018-12-25 2019-10-21 Общество с ограниченной ответственностью "Синтез НПФ" Рентгеновский излучатель
CN112243310B (zh) * 2019-07-16 2022-04-22 清华大学 多射线源加速器和检查方法
US11404235B2 (en) 2020-02-05 2022-08-02 John Thomas Canazon X-ray tube with distributed filaments
EP3933881A1 (en) * 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids
US11901153B2 (en) * 2021-03-05 2024-02-13 Pct Ebeam And Integration, Llc X-ray machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142652A (en) * 1990-08-20 1992-08-25 Siemens Aktiengesellschaft X-ray arrangement comprising an x-ray radiator having an elongated cathode
CN101494150A (zh) * 2009-02-27 2009-07-29 东南大学 一种冷阴极聚焦型x射线管
CN101569529A (zh) * 2008-05-01 2009-11-04 通用电气公司 用于多点x射线源的虚拟矩阵控制方案
CN102299036A (zh) * 2011-07-18 2011-12-28 东南大学 基于场发射冷阴极的阵列x射线源

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL40068C (zh) * 1934-04-14
DE2729353A1 (de) * 1977-06-29 1979-01-11 Siemens Ag Roentgenroehre mit wanderndem brennfleck
JPS6092741A (ja) * 1983-10-26 1985-05-24 株式会社東芝 高速x線ct装置
US4926452A (en) 1987-10-30 1990-05-15 Four Pi Systems Corporation Automated laminography system for inspection of electronics
JPH04231941A (ja) * 1990-12-28 1992-08-20 Shimadzu Corp 回転陰極x線管
JPH0541191A (ja) * 1991-07-31 1993-02-19 Shimadzu Corp 環状x線管
US5438605A (en) * 1992-01-06 1995-08-01 Picker International, Inc. Ring tube x-ray source with active vacuum pumping
CA2410892A1 (en) * 2001-02-28 2002-11-29 Mitsubishi Heavy Industries, Ltd. Multi-radiation source x-ray ct apparatus
JP2004357724A (ja) * 2003-05-30 2004-12-24 Toshiba Corp X線ct装置、x線発生装置及びx線ct装置のデータ収集方法
JP4268471B2 (ja) * 2003-07-09 2009-05-27 スタンレー電気株式会社 冷陰極の製造方法、及び冷陰極を用いた装置
JP2005110722A (ja) * 2003-10-02 2005-04-28 Shimadzu Corp X線管およびx線撮影装置
JP2009509580A (ja) * 2005-09-23 2009-03-12 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル 多重化コンピュータ断層撮影のための方法、システム、及びコンピュータプログラム製品
JP5294653B2 (ja) 2008-02-28 2013-09-18 キヤノン株式会社 マルチx線発生装置及びx線撮影装置
US8953746B2 (en) * 2008-08-29 2015-02-10 Analogic Corporation Multi-cathode X-ray tubes with staggered focal spots, and systems and methods using same
JP2010080348A (ja) * 2008-09-26 2010-04-08 Toshiba Corp X線管装置
US20110075802A1 (en) 2009-09-29 2011-03-31 Moritz Beckmann Field emission x-ray source with magnetic focal spot screening
WO2010109401A1 (en) * 2009-03-27 2010-09-30 Koninklijke Philips Electronics N.V. Structured electron emitter for coded source imaging with an x-ray tube
DE102009017649B4 (de) 2009-04-16 2015-04-09 Siemens Aktiengesellschaft Emissionsstromregelung für Röntgenröhren
US8989351B2 (en) * 2009-05-12 2015-03-24 Koninklijke Philips N.V. X-ray source with a plurality of electron emitters
JP5678289B2 (ja) * 2009-09-11 2015-02-25 株式会社昭和真空 イオンガン及びそれに用いるグリッド
US8576988B2 (en) 2009-09-15 2013-11-05 Koninklijke Philips N.V. Distributed X-ray source and X-ray imaging system comprising the same
CN102870189B (zh) * 2010-03-22 2016-08-10 新鸿电子有限公司 带有智能电子控制系统的多波束x-射线源和相关方法
DE102010027871B4 (de) 2010-04-16 2013-11-21 Siemens Aktiengesellschaft Ringkathodensegment mit Nanostruktur als Elektronenemitter
DE102011076912B4 (de) * 2011-06-03 2015-08-20 Siemens Aktiengesellschaft Röntgengerät umfassend eine Multi-Fokus-Röntgenröhre
CN102938359B (zh) 2012-10-31 2015-04-08 丹东奥龙射线仪器集团有限公司 X射线管电子束聚焦装置
CN203563254U (zh) 2013-09-18 2014-04-23 同方威视技术股份有限公司 X射线装置及具有该x射线装置的ct设备
CN203590580U (zh) 2013-09-18 2014-05-07 清华大学 X射线装置以及具有该x射线装置的ct设备
CN203734907U (zh) 2013-09-18 2014-07-23 同方威视技术股份有限公司 X射线装置以及具有该x射线装置的ct设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142652A (en) * 1990-08-20 1992-08-25 Siemens Aktiengesellschaft X-ray arrangement comprising an x-ray radiator having an elongated cathode
CN101569529A (zh) * 2008-05-01 2009-11-04 通用电气公司 用于多点x射线源的虚拟矩阵控制方案
CN101494150A (zh) * 2009-02-27 2009-07-29 东南大学 一种冷阴极聚焦型x射线管
CN102299036A (zh) * 2011-07-18 2011-12-28 东南大学 基于场发射冷阴极的阵列x射线源

Also Published As

Publication number Publication date
RU2016114671A (ru) 2017-10-23
JP6526014B2 (ja) 2019-06-05
RU2655916C2 (ru) 2018-05-30
EP2858087A1 (en) 2015-04-08
ES2749725T3 (es) 2020-03-23
JP2016537795A (ja) 2016-12-01
US9653251B2 (en) 2017-05-16
US20150078532A1 (en) 2015-03-19
KR101855931B1 (ko) 2018-05-10
KR20160083848A (ko) 2016-07-12
PL2858087T3 (pl) 2019-12-31
EP2858087B1 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2015039603A1 (zh) X射线装置以及具有该x射线装置的ct设备
US9585235B2 (en) Cathode control multi-cathode distributed X-ray apparatus and CT device having said apparatus
WO2015039602A1 (zh) X射线装置以及具有该x射线装置的ct设备
WO2015039594A1 (zh) X射线装置及具有该x射线装置的ct设备
WO2015039595A1 (zh) X射线装置以及具有该x射线装置的ct设备
CN104465279B (zh) X射线装置以及具有该x射线装置的ct设备
CN203590580U (zh) X射线装置以及具有该x射线装置的ct设备
CN104470171A (zh) X射线装置以及具有该x射线装置的ct设备
CN104470172B (zh) X射线装置以及具有该x射线装置的ct设备
CN104470173B (zh) X射线装置以及具有该x射线装置的ct设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016543304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167008295

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016114671

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14845987

Country of ref document: EP

Kind code of ref document: A1