WO2015039595A1 - X射线装置以及具有该x射线装置的ct设备 - Google Patents

X射线装置以及具有该x射线装置的ct设备 Download PDF

Info

Publication number
WO2015039595A1
WO2015039595A1 PCT/CN2014/086678 CN2014086678W WO2015039595A1 WO 2015039595 A1 WO2015039595 A1 WO 2015039595A1 CN 2014086678 W CN2014086678 W CN 2014086678W WO 2015039595 A1 WO2015039595 A1 WO 2015039595A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
filament
gate
vacuum
vacuum box
Prior art date
Application number
PCT/CN2014/086678
Other languages
English (en)
French (fr)
Inventor
唐华平
唐传祥
陈怀璧
黄文会
郑曙昕
张化一
刘耀红
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to RU2016114715A priority Critical patent/RU2652588C2/ru
Priority to JP2016543301A priority patent/JP6496321B2/ja
Priority to KR1020167008294A priority patent/KR101813575B1/ko
Publication of WO2015039595A1 publication Critical patent/WO2015039595A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/064Details of the emitter, e.g. material or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • H01J35/13Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/70Circuit arrangements for X-ray tubes with more than one anode; Circuit arrangements for apparatus comprising more than one X ray tube or more than one cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/068Multi-cathode assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith

Definitions

  • the present invention relates to a device for generating distributed X-rays, and more particularly to an arrangement in which an independent electron-emitting unit is arranged on a curved surface and an anode is arranged on an axis and controlled by a cathode or a gate in an X-ray source device.
  • a curved-array distributed X-ray apparatus that generates X-rays that change focus positions in a predetermined order and a CT apparatus having the X-ray apparatus.
  • X-rays have a wide range of applications in industrial non-destructive testing, safety inspection, medical diagnosis and treatment.
  • an X-ray fluoroscopic imaging apparatus made by utilizing the high penetration ability of X-rays plays an important role in all aspects of people's daily life.
  • a film-type planar fluoroscopy imaging device Early in this type of equipment was a film-type planar fluoroscopy imaging device.
  • the current advanced technology is a digital, multi-view and high-resolution stereo imaging device, such as CT (computed tomography), which can obtain high-definition three-dimensional graphics or slices.
  • CT computed tomography
  • the X-ray source and the detector need to move on the slip ring.
  • the movement speed of the X-ray source and the detector is usually very high, resulting in a decrease in the reliability and stability of the whole device.
  • the inspection speed of CT is also limited. Therefore, there is a need in the CT apparatus for an X-ray source that can produce multiple viewing angles without moving the position.
  • some techniques closely arrange a plurality of independent conventional X-ray sources on a circumference in order to achieve a plurality of viewing angles of a stationary X-ray source instead of the movement of the X-ray source, although this can also achieve multiple viewing angles, but the cost High, and the target pitch is different for different viewing angles, and the imaging quality (stereoscopic resolution) is poor.
  • a method for generating distributed X-rays is proposed in Patent Document 1 (US4926452).
  • the light source and method, the anode target has a large area, alleviating the problem of overheating of the target, and the position of the target varies circumferentially, and a plurality of viewing angles can be generated.
  • Patent Document 1 performs scanning deflection for obtaining an accelerated high-energy electron beam, there is a problem that control is difficult, target position is not discrete, and repeatability is poor, but it is still an effective method for generating a distributed light source. Further, a light source and a method for generating distributed X-rays are proposed, for example, in Patent Document 2 (US20110075802) and Patent Document 3 (WO2011/119629), the anode target having a large area, alleviating the problem of overheating of the target, and The target positions are dispersed and arranged in an array, and multiple viewing angles can be generated.
  • carbon nanotubes are used as cold cathodes, and the cold cathodes are arranged in an array, and the voltage between the cathode gates is used to control the field emission, thereby controlling each cathode to emit electrons in sequence, and bombarding the targets in the corresponding order position on the anode. Point to become a distributed X-ray source.
  • the voltage between the cathode gates is used to control the field emission, thereby controlling each cathode to emit electrons in sequence, and bombarding the targets in the corresponding order position on the anode. Point to become a distributed X-ray source.
  • the present invention has been made to solve the above problems, and an object thereof is to provide a curved array distributed X-ray which can generate a plurality of viewing angles without moving a light source and is advantageous for simplifying structure, improving system stability, reliability, and improving inspection efficiency.
  • Apparatus and CT apparatus having the curved array distributed X-ray apparatus.
  • the present invention provides a curved array distributed X-ray apparatus, comprising: a vacuum box sealed around and having a high vacuum inside; and a plurality of electron emission units on a wall of the vacuum box Arranging in a plurality of rows on the curved surface along the axial direction of the curved surface facing the axis; the anode, which is made of metal and disposed in the vacuum box in a manner arranged on the axis; a power supply and a control system, a high voltage power supply connected to the anode, a filament power supply connected to each of the plurality of electron emission units, a gate control device connected to each of the plurality of electron emission units, and a power supply for each power source a controlled control system, the anode comprising: an anode conduit, composed of metal and having a hollow tubular shape; an anode support disposed on the anode conduit; an anode target surface disposed on an outer surface of the anode conduit and The electron emission units face each other.
  • the anode target surface is an inclined plane formed by cutting a part of an outer circumference of the anode duct.
  • the anode target surface is formed by forming a heavy metal tungsten or a tungsten alloy material on an inclined plane formed by cutting a part of the outer circumference of the anode duct.
  • the electron emission unit has: a filament; a cathode connected to the filament; an insulating support having an opening and surrounding the filament and the cathode; a filament lead drawn from both ends of the filament; a gate disposed above the cathode in a manner opposed to the cathode, a surface of the gate facing the axis; a connecting fixture, and the insulating support Connecting, mounting the electron-emitting unit on the wall of the vacuum chamber to form a vacuum sealed connection, the grid having: a grid frame made of metal and having an opening formed in the middle; a metal made and fixed at the position of the opening of the grid frame; a gate lead drawn from the grid, the filament lead and the gate lead being led through the insulating support to External to the electron-emitting unit, the filament lead is connected to the filament power supply, and the gate lead is connected to the gate control device.
  • connection fixing member is connected to an outer edge of a lower end of the insulating support member, and a cathode end of the electron emission unit is located in the vacuum box, the electron emission unit The lead ends are located outside the vacuum box.
  • connection fixing member is connected to an upper end of the insulating support, and the electron emission unit is entirely outside the vacuum box.
  • a cooling device in the curved array distributed X-ray apparatus of the present invention, there is further provided: a cooling device; a cooling connection device connected to both ends of the anode and connected to the cooling device outside the vacuum box, mounted in a vacuum A side of the cartridge adjacent the end of the anode; a cooling control device included in the power supply and control system for controlling the cooling device.
  • a high-voltage power supply connecting device that connects the anode and the cable of the high-voltage power source to be mounted at one end of the vacuum box near the anode a side wall; a filament power connection device for connecting the filament and the filament power; a gate control device connecting device for connecting the gate of the electron emission unit and the gate control device; vacuum a power source included in the power source and control system; a vacuum device mounted on a sidewall of the vacuum box, operating with the vacuum power source, maintaining the High vacuum inside the vacuum box.
  • the curved array array of the plurality of electron-emitting units is a curved line in one direction and a straight line or a segmented straight line in the other direction.
  • the curved array of the plurality of electron-emitting units is arranged in one direction as a curve and in the other direction as an arc, a segmented arc, or a straight line and The combination of arcs.
  • the gate control apparatus includes a controller, a negative high voltage module, a positive high voltage module, and a plurality of high voltage switching elements, each of the plurality of high voltage switching elements being at least a control terminal, two input terminals, and an output terminal, wherein a withstand voltage between each end point is at least greater than a maximum voltage formed by the negative high voltage module and the positive high voltage module, and the negative high voltage module is One input of each of the high voltage switching elements provides a stable negative high voltage, the positive high voltage module providing a stable positive high voltage to the other input of each of the plurality of high voltage switching elements, the controller Each of the plurality of high voltage switching elements is independently controlled, and the gate control device further has a plurality of control signal output channels, and an output of one of the high voltage switching elements is coupled to one of the control signal output channels.
  • the present invention provides a CT apparatus characterized by comprising the above-described curved array distributed X-ray apparatus.
  • the invention mainly provides a curved array distributed X-ray device.
  • a curved array distributed X-ray device comprising a plurality of electron emission units arranged on a curved surface, an anode, a vacuum box, a high voltage power connection device, a filament power connection device, a gate control device connection device, a cooling connection device, a vacuum device , cooling devices, power supplies and control systems.
  • the electron-emitting unit has at least two rows arranged on the curved surface (including the cylindrical surface and the toroidal surface) in the axial direction, and the anode is arranged on the curved surface axis, and the inside has a pipe through which the coolant circulates.
  • the high-voltage power connection device, the electron-emitting unit, the vacuum device, and the cooling connection device are mounted on the wall of the vacuum box to form an integral sealing structure together with the vacuum box.
  • the cathode generates electrons under the heating of the filament, and typically the gate has a negative voltage of a hundred volts relative to the cathode, confining electrons within the electron-emitting unit.
  • the control system controls the logic according to a certain setting, so that the gate of each electron-emitting unit obtains a positive high-voltage pulse of a kilovolt level, and the grid of the electron-emitting unit A positive electric field is generated between the pole and the cathode, and the electron rapidly flies toward the gate and passes through the grid to enter a high-voltage accelerating electric field region between the electron-emitting unit and the anode, and is accelerated by an electric field of several tens to several hundreds of kilovolts. Obtain energy and eventually bombard the anode to produce X-rays.
  • the present invention is directed to an array of distributed X-ray devices comprising curved surfaces (including cylindrical surfaces and toroidal surfaces) for generating X-rays that periodically change the focus position in a sequence in a light source device.
  • the electron-emitting unit of the invention adopts a hot cathode, and has the advantages of large emission current and long life; control of the working state of each electron-emitting unit by gate control or cathode control, convenient and flexible; tubular anode has cooling design and solves anode Overheating problem; the surface array of the electron emission unit is arranged to increase the target density; the surface of the electron emission unit can be arranged in a cylindrical surface or a toroidal surface, and the whole becomes a linear distributed X-ray device or a ring-shaped distributed X-ray device. Flexible application.
  • the distributed X-ray source of the present invention By applying the distributed X-ray source of the present invention to a CT device, multiple viewing angles can be generated without moving the light source, so that the slip ring motion can be omitted, which is advantageous for simplifying the structure, improving system stability, reliability, and improving inspection efficiency.
  • Figure 1 is a schematic illustration of the internal structure of a curved array distributed X-ray apparatus of the present invention.
  • FIG. 2 is a schematic end view showing the internal structure of a curved array distributed X-ray apparatus of the present invention.
  • Figure 3 is a schematic illustration of the different configurations of the anode of the present invention.
  • FIG. 4 is a schematic structural view of an electron-emitting unit of the present invention.
  • Fig. 5 is a schematic structural view of another electron-emitting unit of the present invention.
  • Figure 6 is a schematic illustration of the overall composition of a curved array distributed X-ray device of the present invention.
  • Figure 7 is a schematic illustration of an anode and various cooling connection structures in the present invention.
  • Fig. 8 is a schematic view showing the configuration of a gate control device in the present invention.
  • Figure 9 is a schematic view showing the arrangement relationship of an internal electron-emitting unit and an anode of a ring-type distributed X-ray apparatus of the present invention.
  • Figure 1 is a schematic illustration of the internal structure of a curved array distributed X-ray apparatus of the present invention.
  • the curved-array distributed X-ray apparatus of the present invention comprises a plurality of electron-emitting units 1 (at least four, and later specifically referred to as electron-emitting units 11a, 11b, 12a, 12b, 13a, 13b, 14a, 14b, ...), anode 2, vacuum box 3, high voltage power source connection device 4, filament power source connection device 5, gate control device connection device 6, vacuum device 8, cooling connection device 9, cooling device 10, and
  • the power supply is composed of a control system 7 in which the electron-emitting units 1 are arranged in a plurality of rows on the curved surface facing the axis O in the axial direction, and furthermore, the anode 2 is arranged on the axis O of the curved surface.
  • the electron emission unit 1, the high voltage power supply connection device 4, the vacuum device 8, and the cooling connection device 9 are mounted on the wall of the vacuum box 3 and form an integral sealing structure with the vacuum box 3, and the anode 2 is mounted in the vacuum box.
  • FIG. 2 is a schematic end view showing the internal structure of a curved array distributed X-ray apparatus of the present invention.
  • FIG. 2 is a schematic view showing the internal structure of a cylindrical array distributed X-ray apparatus.
  • the electron emission units 1 are arranged in a plurality of rows along the axial direction on the cylindrical surface, and the upper surface (electron emission surface) of the electron emission unit 1 faces the axis O.
  • the anode 2 is arranged on the axis O of the cylinder.
  • the electron-emitting unit 1 is at the same low potential
  • the anode 2 is at a high potential
  • a positive electric field is formed between the anode 2 and the electron-emitting unit 1
  • an electric field is concentrated from the surface of each electron-emitting unit 1 toward the axis of the anode 2, the electron beam Stream E from electron emission unit 1 Moving toward the axis of the anode 2, bombarding the anode 2, eventually producing X-rays.
  • the above-mentioned electron-emitting unit 1 is arranged in a plurality of rows on the curved surface along the axial direction facing the axis, and the plurality of rows of electron-emitting units may be aligned in front and rear rows, or the recommended front-rear row positions may be shifted so that each electron-emitting unit generates The position of the electron beam bombarding the anode is not coincident.
  • the anode 2 has a hollow pipe-like structure capable of causing a coolant to flow inside thereof.
  • the structure of an anode and its support in the present invention is shown in FIG.
  • the anode 2 is composed of an anode support 201, an anode conduit 202, and an anode target surface 203.
  • the anode support 201 is mounted on the anode conduit 202 and is coupled to the top end (small end) of the high voltage power connection unit 4 for supporting and securing the anode 2.
  • the anode pipe 202 is a main structure of the anode 2, and both ends are respectively connected to one ends of the two cooling connecting devices 9, and the inside communicates with the cooling connecting device 9 to become a circulating flow passage of the coolant.
  • the anode pipe 202 is usually made of a metal material resistant to high temperature and has various structural forms. It is recommended to be a circular pipe. Further, in some cases, for example, in the case where the anode heat power is small, the anode 2 may also be a cylindrical structure of a non-hollow pipe.
  • the anode target surface 203 is a position where the electron beam bombards the anode tube 202, and has various designs on the fine structure. For example, as shown in FIG. 3(1), the outer circular surface of the anode tube 202 is the bombardment position of the electron beam.
  • the anode tube 202 is entirely made of a high temperature resistant heavy metal material, such as tungsten or a tungsten alloy. As shown in FIG.
  • anode target surface 203 is specially designed on the outer surface of the anode pipe 202, and the anode target surface 203 is made of a high temperature resistant heavy metal material, such as tungsten or tungsten alloy, and has a thickness of not less than 20 ⁇ m (micrometer), by plating, pasting, welding or the like. It is fixed on a small inclined plane which is machined on the outer edge of the anode pipe 202.
  • the anode pipe 202 can be made of a common metal material, so that the cost can be reduced.
  • FIG. 4 A specific structure of an electron-emitting unit 1 is shown in FIG. 4, specifically a mode in which the cathode 102 is integrated with the gate 103 and controlled by the gate 103.
  • the electron emission unit 1 includes a filament 101, a cathode 102, a gate 103, an insulating support 104, a filament lead 105, and a connection fixture 109.
  • the gate 103 is composed of a grid 106, a grid 107, and a gate lead. 108 composition.
  • the position where the filament 101, the cathode 102, the gate 103, and the like are located is defined as the cathode end of the electron-emitting unit.
  • the position at which the fixing member 109 is located is defined as the lead end of the electron-emitting unit.
  • the cathode 102 is connected to the filament 101.
  • the filament 101 is usually made of a tungsten wire.
  • the cathode 102 is usually made of a material having high electron-emitting electrons such as cerium oxide, cerium citrate, lanthanum hexaboride or the like.
  • the insulating support member 104 surrounds the filament 101 and the cathode 102, and corresponds to the housing of the electron-emitting unit 1, and is made of an insulating material, usually ceramic.
  • the filament lead 105 and the gate lead 108 are led out from the lead end of the electron-emitting unit 1 through the insulating support 104, and the filament lead 105 and the gate lead 108 and the insulating support 104 are vacuum-sealed.
  • the gate 103 is mounted on the upper end of the insulating support 104 (i.e., disposed on the opening of the insulating support 104) and is opposed to the cathode 102.
  • the gate 103 is vertically aligned with the center of the cathode 102.
  • the gate 103 includes the grid 106.
  • the grid 107, the gate lead 108, and the grid 106, the grid 107, and the gate lead 108 are made of metal.
  • the grid 106 is made of stainless steel or kovable material
  • the grid 107 is molybdenum.
  • the gate lead 108 is a stainless steel material or a kovable material.
  • the main body is a metal plate (for example, stainless steel material), that is, the grid frame 106, and an opening is formed in the middle of the grid frame 106, and the shape of the opening may be square. Or a circle or the like, a wire mesh (for example, a molybdenum material), that is, a grid 107 is fixed at the position of the opening, and a lead (for example, a stainless steel material), that is, a gate lead, is taken out from a position of the metal plate. 108, the gate 103 can be connected to a potential.
  • a metal plate for example, stainless steel material
  • an opening is formed in the middle of the grid frame 106
  • the shape of the opening may be square.
  • a wire mesh for example, a molybdenum material
  • a lead for example, a stainless steel material
  • the gate 103 is located directly above the cathode 102, and the center of the opening of the gate 103 is aligned with the center of the cathode 102 (i.e., up and down on a vertical line), and the shape of the opening corresponds to the shape of the cathode 102.
  • the size of the opening is smaller than the area of the cathode 102.
  • the structure of the gate electrode 103 is not limited to the above configuration.
  • the relative position between the gate 103 and the cathode 102 is fixed by the insulating support 104.
  • connection fixing member 109 it is recommended that the main body is a circular knife edge flange, and an opening is formed in the middle, and the shape of the opening may be square or circular, etc., at the position of the opening.
  • the outer edge of the lower end of the insulating support member 104 is sealingly connected, such as a welded joint, and the outer edge of the knife edge flange is formed with a screw hole, and the electron emission unit 1 can be fixed to the wall of the vacuum box 3 by bolting, the knife edge and the vacuum
  • a vacuum sealed connection is formed between the walls of the cartridge 3 (in this case, the cathode end of the electron-emitting unit 1 is located in the vacuum chamber 3, and the lead end of the electron-emitting unit 1 is located outside the vacuum chamber 3).
  • the function of the connecting fixture 109 is to achieve a sealed connection between the insulating support 104 and the vacuum box 3, and can be flexibly implemented in various flexible manners, such as welding through a metal flange or a high temperature molten sealing connection of glass. , or ceramic metallization and metal welding.
  • the electron emission unit 1 includes a filament 101, a cathode 102, a gate 103, an insulating support 104, a filament lead 105, a gate lead 108, and a connection fixture 109.
  • the cathode 102 is connected to the filament 101.
  • the gate 103 is located directly above the cathode 102.
  • the outer shape is the same as that of the cathode 102, and is adjacent to the upper surface of the cathode 102.
  • the insulating support member 104 surrounds the filament 101 and the cathode 102, and is led out from both ends of the filament 101.
  • the filament lead 105 and the gate lead 108 drawn from the gate 103 are led out to the outside of the electron-emitting unit 1 through the insulating support 104, and the filament lead 105 and the gate lead 108 and the insulating support 104 are vacuum-sealed. structure.
  • the connection fixing member 109 is attached to the upper end of the insulating support member 104, and the electron emission unit 1 is entirely outside the vacuum box 3.
  • the electron emission unit 1 may be a unitary structure, or may be a structure in which the cathode 102 and the gate 103 are separated, and the working state of the electron emission unit 1 may be controlled by the cathode 102, or the electron emission unit may be passed through the gate 103. The working state of 1 is controlled.
  • FIG. An overall structure of a curved array distributed X-ray apparatus is shown in FIG.
  • the vacuum box 3 is a peripherally sealed cavity housing, the inside of which is a high vacuum
  • the electron emission unit 1 is used to generate an electron beam flow as required, is mounted on the wall of the vacuum box 3
  • the anode 2 is used to form a high voltage acceleration.
  • the electric field and the X-ray generation are installed inside the vacuum box 3, and the high-voltage power connection device 4 is used to connect the cable of the anode 2 and the high-voltage power source 702 to the side of the vacuum box 3 near the end of the anode 2, and the cooling connection device 9 is used.
  • the two ends of the anode 2 are connected, and a cooling device 10 is connected outside the vacuum box 3 to constitute a coolant circulation circuit, which is installed on the side of the vacuum box 3 near the end of the anode 2, and the filament power connection device 5 is used for connection.
  • the filament 101 and the filament power supply 704, the filament power connection device 5 is usually a plurality of multi-core cables with connectors at both ends, and the gate control device connecting device 6 is used for connecting the gate 103 of the electron-emitting unit 1 and the gate control device 703.
  • the gate control device connecting device 6 is usually a plurality of coaxial cables with connectors at both ends, and the vacuum device 8 serves to maintain a high vacuum inside the vacuum box 3 and is mounted on the side wall of the vacuum box 3.
  • the high-voltage power connection device 4 has a tapered structure, and the large end is sealedly connected to the vacuum box 3,
  • the small end is connected to the anode 2, and is usually made of a vacuum insulating material such as ceramic. After the two ends are metallized, the large end is welded to the wall of the vacuum box 3 to form a sealing structure, and the small end is metallized and welded.
  • the flange, the anode 2 is mounted and fixed to the flange by the anode support 201.
  • the inside of the high-voltage power connection device 4 is an empty tapered pipe, the small end is closed and a high-voltage lead is arranged in the center, and the high-voltage lead is connected to the flange.
  • a high voltage cable plug of a particular shape can be routed from the large end of the high voltage power connection 4 into the tapered conduit to the high voltage lead.
  • the cooling device 10 is a constant temperature cooling system including at least a circulation pump and a refrigeration system, and operates under the control of the refrigeration control device 706.
  • the circulation pump is used to circulate the coolant in the sealed circuit formed by the anode pipe 202, the cooling connection device 9, and the cooling device 10.
  • the refrigeration system is used to control the circulating flow of the coolant and to dissipate heat, which can lower the temperature of the coolant.
  • the cooling control device 706 is used to control the operation of the cooling device 10, including maintaining the coolant flowing out of the cooling device 10 at a constant temperature, maintaining sufficient pressure and flow, detecting the temperature of the coolant, and abnormally flowing or cooling the flow rate, temperature, or temperature. When the device has other faults, the fault signal is fed back to the control device 701 of the upper level in real time.
  • the cooling connection 9 is usually made of a vacuum insulating material such as ceramic or glass.
  • the cooling connection device 9 may be a tapered structure, a general pipe structure, or a spiral pipe structure, and a glass spiral pipe structure is recommended.
  • the cooling connection device 9 has the same tapered structure as the high-voltage power supply connection device 4, and can be made of a ceramic material, metallized at both ends, and the metallized edge of the large end is welded to the vacuum box 3 to form a vacuum.
  • the sealing structure, the metallized edge of the small end is welded to the end of the anode 2, and the inside forms a passage for the coolant to flow.
  • the cooling connecting device 9 is a common pipe, which may be a ceramic or glass material, and one end is tightly connected to the vacuum box 3 to form a vacuum sealing structure, and one end is connected to the anode 2, and a channel through which the coolant flows is formed inside.
  • the cooling connecting device 9 is a general pipe wound into a spiral structure, such as a glass spiral pipe, and one end is tightly connected with the vacuum box 3 to form a vacuum sealing structure, one end is connected to the anode 2, and the inside is cooled.
  • the channel through which the agent flows. Spiral pipes are added in limited space The length of the pipe increases the insulation withstand voltage.
  • the coolant is a flowable high-voltage insulating material such as transformer oil (high-pressure insulating oil) or sulfur hexafluoride gas (SF6), which is recommended as transformer oil.
  • transformer oil high-pressure insulating oil
  • SF6 sulfur hexafluoride gas
  • the power supply and control system 7 includes a control system 701, a high voltage power supply 702, a gate control device 703, a filament power supply 704, a vacuum power supply 705, a cooling control device 706, and the like.
  • the high voltage power source 702 is connected to the anode 2 through a high voltage power connection device 4 on the wall of the vacuum box 3.
  • the gate control device 703 is connected to each of the gate leads 108 via the gate control device connection device 6, and the number of output paths of the gate control device 703 is the same as the number of gate leads 108.
  • Filament power supplies 704 are respectively coupled to respective filament leads 105 by filament power connection means 5, typically having the same number of individual filament leads 105 as the number of electron-emitting units 1 (i.e., as described above, each electron-emitting unit has A set of filament leads, two connected to the ends of the filament, respectively, has a same number of output loops as the filament leads 105.
  • the vacuum power source 705 is connected to the vacuum device 8, and the cooling control device 706 is connected to the cooling device 10.
  • the control system 701 logically controls and comprehensively manages the operating states of the high voltage power supply 702, the gate control device 703, the filament power supply 704, the vacuum power supply 705, and the cooling control 706.
  • the gate control device 703 includes a controller 70301, a negative high voltage module 70302, a positive high voltage module 70303, and a plurality of high voltage switching elements switch1, switch2, switch3, switch4, .
  • Each of the plurality of high voltage switching elements includes at least one control terminal (C), two input terminals (In1 and In2), and an output terminal (Out), and the withstand voltage between the respective terminals is at least greater than the negative high voltage module 70302 and the positive high voltage.
  • the maximum voltage formed by module 70303 i.e., if the negative high voltage output is -500V and the positive high voltage output is +2000V, then the withstand voltage between the terminals is at least greater than 2500V).
  • the controller 70301 has multiple independent outputs, each connected to the control terminal of a high voltage switching element.
  • the negative high voltage module 70302 provides a stable negative high voltage output, typically a few hundred volts negative, ranging from 0V to -10kV, preferably -500V, which is connected to one input of each high voltage switching element, in addition, positive
  • the high voltage module 70303 provides a stable positive high voltage output, typically several kilovolts in length, ranging from 0V to +10kV, preferably +2000V, which is connected to the other input of each high voltage switching element.
  • the output ends of the high-voltage switching elements are respectively connected to the control signal output channels channel1a, channel1b, channel2a, channel2b, channel3a, channel3b, ..., and are combined into a multi-channel control signal for output.
  • the controller 70301 controls the working state of each high voltage switching element,
  • the control signals of the output channels are respectively negative or high voltage.
  • the power supply and control system 7 can adjust the current magnitude of each output loop of the filament power supply 704 under different conditions of use, thereby adjusting the heating temperature of each filament 101 to the cathode 102 for changing the emission of each electron-emitting unit 1.
  • the magnitude of the current ultimately limits the intensity of each X-ray emission.
  • the intensity of the positive high voltage control signal of each output channel of the gate control device 703 can also be adjusted, thereby changing the magnitude of the emission current of each electron emission unit 1, and finally adjusting the intensity of each X-ray emission.
  • the axis may be a straight line or an arc, and the whole is a linear distributed X-ray device or a circular distributed X-ray device.
  • FIG. 1 An effect diagram of an electron-emitting unit and an anode arrangement inside an annular distributed X-ray apparatus is shown in FIG.
  • the anode 2 is arranged on a planar circumference
  • the electron-emitting unit 1 is disposed below the anode 2
  • the two rows of electron-emitting units 1 are circumferentially arranged in the direction of the anode 2 while being arranged on a circular arc surface centered on the center of the anode 2.
  • each electron-emitting unit 1 is directed to the axis of the anode 2.
  • the electron beam stream E is emitted from the surface of the gate electrode 103 of the electron-emitting unit 1, is accelerated by a high-voltage electric field between the anode 2 and the electron-emitting unit 1, bombards the lower edge of the anode 2, and forms a circular arrangement on the anode 2.
  • the array X-ray target, the useful X-ray exit direction is directed to the center of the circumference of the anode 2.
  • the arrangement of the vacuum box 3 of the annular distributed X-ray device and the arrangement of the electron-emitting unit 1 inside thereof and the shape of the anode 2 are also a ring-shaped structure.
  • the circular distributed X-ray device can be a complete ring or a length of a ring, and can be applied to a situation where a circular arrangement of the ray source is required.
  • the array of electron emission units may be two rows or a plurality of rows.
  • each electron-emitting unit has the capability of independently emitting an electron beam stream, and may be a discrete structure in a specific structure, or may be a separate structure. Is the structure of some kind of connected connection.
  • curved surface refers to various forms of curved surfaces, including cylindrical surfaces, torus surfaces, elliptical surfaces, or A curved surface composed of a straight line, such as a regular polygonal cylinder or a curved surface composed of segmented arcs, etc., is recommended as the cylindrical surface and the circular surface as described above.
  • the "axis" refers to the true axis or the form axis of various forms of the curved surface on which the electron-emitting unit is disposed, for example, the axis of the cylindrical surface refers to the cylinder.
  • the central axis, the axis of the torus is the central axis inside the ring
  • the axis of the elliptical surface refers to the paraxial axis near the ellipse
  • the axis of the regular polygonal cylinder refers to the axis formed by the center of the regular polygon.
  • the inner tube cut surface of the anode may be a circular hole, a square hole, a polygonal hole, an internal gear-shaped hole with a heat sink structure, or may be added. Other shapes for the heat sink area.
  • the curved array of the electron emission unit is arranged in a line in the arrangement direction and in the other direction as a straight line, a segment line, and an arc. , a segmented arc, or a combination of a straight line segment and an arc segment.
  • the curved array arrangement of the electron emission units may be evenly spaced in two directions, and may be evenly spaced in each direction, and two directions. If the intervals are inconsistent, the direction may be evenly spaced, the other direction may be uneven, or the interval between the two directions may be uneven.
  • the shape of the vacuum box may be a rectangular parallelepiped as a whole, a cylindrical shape, a circular ring shape, or other Other structures that affect the relative arrangement relationship of the electron-emitting unit and the anode.
  • the curved array distributed X-ray device is connected by a plurality of electron-emitting units 1, an anode 2, a vacuum box 3, a high-voltage power connection device 4, and a filament power supply.
  • the device 5, the gate control device connection device 6, the vacuum device 8, the cooling connection device 9, the cooling device 10, and the power supply and control system 7 are comprised.
  • the plurality of electron-emitting units 1 are arranged in two rows on the cylindrical surface facing the axis in the axial direction, and are mounted on the wall of the vacuum box 3, the anode 2 is arranged on the cylinder axis, and the vacuum box 3 surrounds the anode 2.
  • the anode 2 has a hollow pipe structure enabling the coolant to be Internal flow.
  • the anode 2 is composed of an anode support 201, an anode conduit 202, and an anode target surface 203.
  • the anode tube 202 is a main structure of the anode 2 and has a certain length, for example, 30 to 100 cm (cm) long.
  • the anode support 201 is on the back side of the middle section of the anode conduit 202, and the anode support 201 is coupled to the top end (small end) of the high voltage power connection unit 4 for supporting and fixing the anode 2. Both ends of the anode duct 202 are respectively connected to one ends of the two cooling connecting devices 9, and communicate internally to become a flow passage of the coolant.
  • the coolant is a transformer oil having high-voltage insulation properties.
  • the lower edge of the outer circumference of the anode tube 202 is cut away to form a small oblique plane on which the anode target surface 203 is mounted for receiving electron beam bombardment and generating X-rays, and for making useful X-rays
  • the direction of exit is the same.
  • the anode target surface 203 is made of a tungsten material and has a thickness of 200 ⁇ m (micrometers) and is fixed by electroplating.
  • the electron beam bombards the anode, and the generated X-rays are 360-degree stereoscopic emission, but only a part of a certain direction can be used in use, which is called useful X-rays.
  • the electron-emitting unit 1 is composed of a filament 101, a cathode 102, a grid 103, an insulating support 104, a filament lead 105, and a connection fixture 109, and the gate 103 is composed of a grid 106, a grid 107, and a gate lead 108.
  • the electron-emitting units 1 are arranged in two long rows below the anode target surface 203 along the length direction of the anode 2, for example, the first row is 11a, 12a, 13a, ..., and the second row is 11b, 12b, 13b, ...
  • each electron-emitting unit 1 (the surface of the gate electrode 103) faces the anode 2, that is, the two rows of electron-emitting units 1 are not in one plane but on a cylindrical surface having the anode 2 as an axis.
  • the high voltage power connection device 4 is mounted at one end of the vacuum box 3 near the anode, is connected to the anode 2 inside the vacuum box 3 and externally connected to the high voltage power source 702, and the filament power connection device 5 connects the filament lead 105 of each of the electron emission units 1. Connect to filament power supply 704.
  • the filament power connection device 5 is a plurality of two-core cables with connectors at both ends.
  • the gate control device connection device 6 connects the gate lead 108 of each electron emission unit 1 to the gate control device 703.
  • the gate control device connection device 6 is a plurality of high voltage coaxial cables with connectors at both ends.
  • the vacuum device 8 is mounted on the side wall of the vacuum box 3.
  • Two cooling connecting devices 9 are attached to one end of the vacuum box 3 near the anode, and are respectively connected to both ends of the anode 2 inside the vacuum box 3, and are connected to the cooling device 10 outside the vacuum box 3.
  • the electron emission unit 1, the high voltage power supply connection device 4, the vacuum device 8, the cooling connection device 9, and the vacuum box 3 constitute an integral sealing structure.
  • the power supply and control system 7 includes a plurality of modules, such as a control system 701, a high voltage power supply 702, a gate control device 703, a filament power supply 704, a vacuum power supply 705, and a cooling control device 706, for transmitting multiple electrons through the power cable and the control cable and the system.
  • the device 8, the cooling device 10, and the like are connected.
  • the power source and control system 7 controls the filament power source 704, the gate control unit 703, the high voltage power source 702, and the like.
  • the filament 101 heats the cathode 102 to 1000-2000 ° C
  • the cathode 102 generates a large amount of electrons on the surface
  • the gate control device 703 causes each gate 103 to be at a negative voltage, for example, -500 V, each electron-emitting unit.
  • a negative electric field is formed between the gate 103 and the cathode 102 of 1 , electrons are confined to the surface of the cathode 102, and the high voltage power source 702 places the anode 2 at a very high positive voltage, for example +180 KV, between the electron-emitting unit 1 and the anode 2.
  • a positive accelerating electric field is formed.
  • the control system 701 switches a certain output of the gate control device 703 from a negative voltage to a positive voltage in accordance with an instruction or a setting program, and converts the respective output signals in time series.
  • the output channel channel1a of the gate control device 703 is changed from -500V to +2000V, and in the corresponding electron-emitting unit 11a, the electric field between the gate 103 and the cathode 102 becomes a positive electric field, and the electrons are
  • the surface of the cathode 102 moves toward the gate 103 and passes through the grid 107, enters a forward electric field between the electron-emitting unit 11a and the anode 2, accelerates, becomes high energy, and finally bombards the anode target surface 203 at the position 21a.
  • X-ray emission is generated.
  • the output channel channel1b of the gate control device 703 is changed from -500V to +2000V, the corresponding electron-emitting unit 11b emits electrons, bombards the anode target surface 203, and generates X-ray emission at the position 21b.
  • the output channel channel2a of the gate control device 703 is changed from -500V to +2000V, the corresponding electron-emitting unit 12a emits electrons, bombards the anode target surface 203, and generates X-ray emission at the position 22a, at time 4, the gate
  • the output channel channel2b of the pole control device 703 is changed from -500V to +2000V, the corresponding electron-emitting unit 12b emits electrons, bombards the anode target surface 203, and generates X-ray emission at the position 22b, and so on.
  • control system is controlled by the gate, and the respective electron-emitting units 1 alternately operate to emit electron beams at a certain timing and alternately generate X-rays at different positions of the anode target surface 203 to become a distributed X-ray source.
  • the gas released when the anode target surface 203 is bombarded by the electron beam is evacuated by the vacuum device 8 in real time, and the vacuum chamber 3 maintains a high vacuum, which is advantageous for long-term stable operation.
  • the control system receives the feedback signals of high-voltage power supply, vacuum power supply, cooling control, etc. for interlock control, and can receive external commands through the communication interface and the man-machine interface. Modify and set key parameters, update programs and make automatic control adjustments.
  • the curved-array distributed X-ray apparatus of the present invention to a CT apparatus, it is possible to obtain a CT apparatus having high system stability and reliability and high inspection efficiency.
  • the present invention is directed to an array of distributed X-ray devices comprising curved surfaces (including cylindrical surfaces and toroidal surfaces) for generating X-rays that periodically change the focus position in a sequence in a light source device.
  • the electron-emitting unit of the invention adopts a hot cathode, and has the advantages of large emission current and long life; control of the working state of each electron-emitting unit by gate control or cathode control, convenient and flexible; tubular anode has cooling design and solves anode Overheating problem; the surface array of the electron emission unit is arranged to increase the target density; the surface of the electron emission unit can be arranged in a cylindrical surface or a toroidal surface, and the whole becomes a linear distributed X-ray device or a ring-shaped distributed X-ray device. Flexible application.
  • the curved array distributed X-ray source of the present invention is applied to a CT device, and multiple viewing angles can be generated without moving the light source, so that the slip ring motion can be omitted, which is advantageous for simplifying the structure, improving system stability, reliability, and improving inspection. effectiveness.

Abstract

一种曲面阵列分布式X射线装置,其具有:真空盒(3),四周密封且内部为高真空;多个电子发射单元(1),以在曲面上沿曲面的轴线方向面向轴线排列多排的方式配置在真空盒(3)的壁上;阳极(2),由金属构成并且以布置在轴线上的方式配置在真空盒(3)内,包括阳极管道(202)和阳极靶面(203);电源与控制系统(7),具有与阳极(2)连接的高压电源(702)、与多个电子发射单元(1)的每一个连接的灯丝电源(704)、与多个电子发射单元(1)的每一个连接的栅极控制装置(703)、用于对各电源进行控制的控制系统(701)。

Description

X射线装置以及具有该X射线装置的CT设备 技术领域
本发明涉及产生分布式X射线的装置,特别涉及一种在一个X射线光源设备中通过在一个曲面上布置多个独立的电子发射单元以及在轴线上布置阳极并且通过阴极控制或者栅极控制来产生按照预定顺序变换焦点位置的X射线的曲面阵列分布式X射线装置以及具有该X射线装置的CT设备。
背景技术
一般地,X射线在工业无损检测、安全检查、医学诊断和治疗等领域具有广泛的应用。特别是,利用X射线的高穿透能力制成的X射线透视成像设备在人们日常生活的方方面面发挥着重要作用。这类设备早期的是胶片式的平面透视成像设备,目前的先进技术是数字化、多视角并且高分辨率的立体成像设备,例如CT(computed tomography),可以获得高清晰度的三维立体图形或切片图像,是先进的高端应用。
在现有的CT设备中,X射线源和探测器需要在滑环上运动,为了提高检查速度,通常X射线源和探测器的运动速度非常高,导致设备整体的可靠性和稳定性降低,此外,受运动速度的限制,CT的检查速度也受到了限制。因此,在CT设备中需要一种能够不移动位置就能产生多个视角的X射线源。
为了解决现有CT设备中滑环带来的可靠性、稳定性问题和检查速度问题以及阳极靶点耐热问题,在现有专利文献中提供了一些方法。例如旋转靶X射线源,可以在一定程度上解决阳极靶过热的问题,但是,其结构复杂并且产生X射线的靶点相对于X射线源整体仍然是一个确定的靶点位置。例如,有的技术为了实现固定不动X射线源的多个视角而在一个圆周上紧密排列多个独立的传统X射线源来取代X射线源的运动,虽然这样也能够实现多视角,但是成本高,并且,不同视角的靶点间距大,成像质量(立体分辨率)很差。此外,在专利文献1(US4926452)中提出了一种产生分布式X射线的 光源以及方法,阳极靶具有很大的面积,缓解了靶过热的问题,并且,靶点位置沿圆周变化,可以产生多个视角。虽然专利文献1是对获得加速的高能量电子束进行扫描偏转,存在控制难度大、靶点位置不分立以及重复性差的问题,但仍然是一种能产生分布式光源的有效方法。此外,例如在专利文献2(US20110075802)与专利文献3(WO2011/119629)中提出了一种产生分布式X射线的光源以及方法,阳极靶具有很大的面积,缓解了靶过热的问题,并且,靶点位置分散固定且阵列式排列,可以产生多个视角。此外,采用碳纳米管做为冷阴极,并且对冷阴极进行阵列排布,利用阴极栅极间的电压控制场发射,从而控制每一个阴极按顺序发射电子,在阳极上按相应顺序位置轰击靶点,成为分布式X射线源。但是,存在生产工艺复杂、碳纳米管的发射能力与寿命不高的不足之处。
发明内容
本发明是为了解决上述课题而提出的,其目的在于提供一种无需移动光源就能产生多个视角并且有利于简化结构、提高系统稳定性、可靠性、提高检查效率的曲面阵列分布式X射线装置以及具有该曲面阵列分布式X射线装置的CT设备。
为了实现上述目的,本发明提供一种曲面阵列分布式X射线装置,其特征在于,具备:真空盒,四周密封并且内部为高真空;多个电子发射单元,在所述真空盒的盒壁上以在曲面上沿所述曲面的轴线方向面向所述轴线排列多排的方式配置;阳极,由金属构成并且以布置在所述轴线上的方式配置在所述真空盒内;电源与控制系统,具有与所述阳极连接的高压电源、与所述多个电子发射单元的每一个连接的灯丝电源、与所述多个电子发射单元的每一个连接的栅极控制装置、用于对各电源进行控制的控制系统,所述阳极包括:阳极管道,由金属构成并且具有中空的管状形状;阳极支撑件,配置在所述阳极管道上;阳极靶面,设置在所述阳极管道的外表面并且与所述电子发射单元相面对。
此外,在本发明的曲面阵列分布式X射线装置中,所述阳极靶面是所述阳极管道的外圆被切除一部分而形成的斜平面。
此外,在本发明的曲面阵列分布式X射线装置中,所述阳极靶面是在将所述阳极管道的外圆切除一部分所形成斜平面上形成有重金属钨或者钨合金材料而形成的。
此外,在本发明的曲面阵列分布式X射线装置中,所述电子发射单元具有:灯丝;与所述灯丝连接的阴极;具有开口并且包围所述灯丝和所述阴极的绝缘支撑件;从所述灯丝的两端引出的灯丝引线;栅极,以与所述阴极对置的方式配置在所述阴极的上方,所述栅极的表面面向所述轴线;连接固定件,与所述绝缘支撑件连接,将所述电子发射单元安装在所属真空盒的盒壁上,形成真空密封连接,所述栅极具有:栅极架,由金属制成并且在中间形成有开孔;栅网,由金属制成并且固定在所述栅极架的所述开孔的位置;栅极引线,从所述栅极架引出,所述灯丝引线与所述栅极引线穿过所述绝缘支撑件引出到电子发射单元外部,所述灯丝引线与所述灯丝电源连接,所述栅极引线与所述栅极控制装置连接。
在本发明的曲面阵列分布式X射线装置中,所述连接固定件连接在所述绝缘支撑件的下端外沿,所述电子发射单元的阴极端位于所述真空盒内,所述电子发射单元的引线端位于所述真空盒外。
在本发明的曲面阵列分布式X射线装置中,所述连接固定件连接在所述绝缘支撑件的上端,所述电子发射单元整体位于所述真空盒外。
此外,在本发明的曲面阵列分布式X射线装置中,还具有:冷却装置;冷却连接装置,连接于所述阳极的两端并且在所述真空盒外与所述冷却装置连接,安装在真空盒上靠近阳极一端的侧面;冷却控制装置,包括在所述电源与控制系统内,用于控制所述冷却装置。
此外,在本发明的曲面阵列分布式X射线装置中,还具有:高压电源连接装置,将所述阳极和所述高压电源的电缆连接,安装在所述真空盒的靠近所述阳极的一端的侧壁;灯丝电源连接装置,用于连接所述灯丝和所述灯丝电源;栅极控制装置连接装置,用于将所述电子发射单元的所述栅极和所述栅极控制装置连接;真空电源,包括在所述电源与控制系统内;真空装置,安装在所述真空盒的侧壁上,利用所述真空电源进行工作,维持所述 真空盒内的高真空。
此外,在本发明的曲面阵列分布式X射线装置中,所述多个电子发射单元的曲面阵列排列在一个方向上是曲线而在另一个方向上是直线或者分段直线。
此外,在本发明的曲面阵列分布式X射线装置中,所述多个电子发射单元的曲面阵列排列在一个方向上是曲线而在另一个方向上是圆弧、分段圆弧、或者直线和圆弧的组合。
此外,在本发明的曲面阵列分布式X射线装置中,所述栅极控制装置包括控制器、负高压模块、正高压模块以及多个高压开关元件,所述多个高压开关元件的每一个至少包括一个控制端、两个输入端、一个输出端,各端点之间的耐压至少大于所述负高压模块和所述正高压模块所构成的最大电压,所述负高压模块向所述多个高压开关元件的每一个的一个输入端提供稳定的负高压,所述正高压模块向所述多个高压开关元件的每一个的另一个输入端提供稳定的正高压,所述控制器对所述多个高压开关元件的每一个进行独立控制,所述栅极控制装置还具有多个控制信号输出通道,一个所述高压开关元件的输出端与所述控制信号输出通道中的一个连接。
本发明提供一种CT设备,其特征在于,具备所述的曲面阵列分布式X射线装置。
本发明主要是提供一种曲面阵列分布式X射线装置。一种曲面阵列分布式X射线装置,包括在曲面上布置的多个电子发射单元、阳极、真空盒、高压电源连接装置、灯丝电源连接装置、栅极控制装置连接装置、冷却连接装置、真空装置、冷却装置、电源及控制系统等。其中电子发射单元在曲面(包括圆柱面和圆环面)上沿轴线方向布置至少两排,阳极布置在曲面轴线上,内部具有冷却剂循环流动的管道。高压电源连接装置、电子发射单元、真空装置、冷却连接装置安装在真空盒壁上,与真空盒一起形成整体密封结构。阴极在灯丝的加热作用下产生电子,通常栅极相对阴极具有百伏级的负电压,将电子限制在电子发射单元内。控制系统按照某种设定控制逻辑,让各电子发射单元的栅极获得一个千伏级的正高压脉冲,此电子发射单元的栅 极与阴极之间产生正向电场,电子快速飞向栅极,并透过栅网,进入到电子发射单元与阳极之间的高压加速电场区,受到几十至几百千伏的电场加速,获得能量,最终轰击阳极,产生X射线。由于有多个独立的电子发射单元在曲面上沿轴线方向排列多排,所以电子束流的产生位置是分布的,电子束轰击阳极产生的X射线是沿轴线分布排列的。
本发明主要是提供一种曲面(包括圆柱面和圆环面)阵列分布式X射线装置,在一个光源设备中产生按某种顺序周期变换焦点位置的X射线。本发明中的电子发射单元采用热阴极,具有发射电流大、寿命长的优点;通过栅极控制或者阴极控制来控制各个电子发射单元的工作状态,方便灵活;管状阳极具有冷却设计,解决了阳极过热问题;电子发射单元曲面阵列排布,提高了靶点密度;电子发射单元曲面排列可以圆柱面也可以是圆环面,整体成为直线型分布式X射线装置或环型分布式X射线装置,应用灵活。
将本发明的分布式X射线光源应用于CT设备,无需移动光源就能产生多个视角,因此可以省略滑环运动,有利于简化结构,提高系统稳定性、可靠性,提高检查效率。
附图说明
图1是本发明的曲面阵列分布式X射线装置内部结构的示意图。
图2是本发明的曲面阵列分布式X射线装置内部结构的端面示意图。
图3是本发明的阳极的不同结构的示意图。
图4是本发明的一种电子发射单元的结构示意图。
图5是本发明的另一种电子发射单元的结构示意图。
图6是本发明的一种曲面阵列分布式X射线装置的整体组成的示意图。
图7是本发明中的阳极及不同冷却连接结构的示意图。
图8是本发明中的一种栅极控制装置的结构的示意图。
图9是在本发明的一种环型分布式X射线装置的内部电子发射单元与阳极的布置关系的示意图。
附图标记说明:
1电子发射单元
2阳极
E电子束流
X X射线
1a电子发射单元(第一排)
1b电子发射单元(第二排)
201阳极支撑件
202阳极管道
203阳极靶面
101灯丝
102阴极
103栅极
104绝缘支撑件
105灯丝引线
106栅极架
107栅网
108栅极引线
109连接固定件
3真空盒
4高压电源连接装置
5灯丝电源连接装置
6栅极控制装置连接装置
7电源与控制系统
8真空装置
9冷却连接装置
10冷却装置
701控制系统
702高压电源
703栅极控制装置
704灯丝电源
705真空电源
706冷却控制装置
70301控制器
70302负高压模块
70303正高压模块
Switch高压开关元件
Channel控制信号输出通道。
具体实施方式
以下,参照附图具体地对本发明进行说明。
图1是本发明的曲面阵列分布式X射线装置的内部结构的示意图。
如图1~图8所示,本发明的曲面阵列分布式X射线装置由多个电子发射单元1(至少四个,以后也具体地称为电子发射单元11a、11b、12a、12b、13a、13b、14a、14b、……)、阳极2、真空盒3、高压电源连接装置4、灯丝电源连接装置5、栅极控制装置连接装置6、真空装置8、冷却连接装置9、冷却装置10以及电源与控制系统7组成,其中,电子发射单元1在曲面上沿着轴线方向面向轴线O排列多排,此外,阳极2布置在曲面的轴线O上。电子发射单元1、高压电源连接装置4、真空装置8、冷却连接装置9安装在真空盒3的盒壁上并且与真空盒3构成整体密封结构,阳极2安装在真空盒内。
此外,上述的曲面包括圆柱面和圆环面。图2是本发明的一种曲面阵列分布式X射线装置的内部结构的端面示意图,具体地说,在图2中示出了一种圆柱面阵列分布式X射线装置的内部结构的示意图。电子发射单元1在圆柱面上沿着轴线方向排列多排,并且,电子发射单元1的上表面(电子发射面)面向轴线O。阳极2布置在圆柱的轴线O上。通常,电子发射单元1处于相同的低电位,阳极2处于高电位,在阳极2与电子发射单元1之间构成正电场,电场从各电子发射单元1的表面向阳极2的轴线汇聚,电子束流E从电子发射单元1 向阳极2的轴线运动,轰击阳极2,最终产生X射线。
此外,上述的电子发射单元1在曲面上沿着轴线方向面向轴线排列多排,多排电子发射单元可以是前后排对齐,也可以是推荐的前后排位置错开,使得每一个电子发射单元产生的电子束轰击阳极的位置是不重合的。
此外,阳极2具有中空管道状的结构,能够使冷却剂在其内部流动。在图3中示出了本发明中的一种阳极及其支撑件的结构。阳极2由阳极支撑件201、阳极管道202、阳极靶面203组成。阳极支撑件201安装在阳极管道202上并且与高压电源连接装置4的顶端(小端)连接在一起,用于对阳极2进行支撑以及固定。阳极管道202是阳极2的主体结构,两端分别与两个冷却连接装置9的一端连接,并且内部与冷却连接装置9连通,成为冷却剂的循环流动的通道。阳极管道202通常选用耐高温的金属材料,有多种结构方式,推荐为圆形的管道。此外,在某些情况下,例如阳极热功率较小的情况下,阳极2也可以是非中空管道的柱形结构。此外,阳极靶面203是电子束轰击阳极管道202的位置,在细微结构上有多种设计,例如,如图3(1)所示,阳极管道202的外圆面就是电子束的轰击位置,在此种情况下,阳极管道202整体采用耐高温重金属材料,例如,钨或者钨合金,如图3(2)所示,阳极管道202的外圆被切除一部分而形成一个小的斜平面,该斜平面成为电子束的轰击位置,该斜平面的倾斜方向为有用的X射线的出射方向,这种结构设计有利于有用的X射线的方向一致引出,优选的是,如图3(3)所示,在阳极管道202的外表面专门设计有阳极靶面203,阳极靶面203采用耐高温重金属材料,例如钨或者钨合金,厚度不小于20μm(微米),通过电镀、粘贴、焊接或者其它方式被固定在阳极管道202的外沿加工出的小斜平面上,在此种情况下,阳极管道202可以采用普通金属材料,从而能够降低成本。
在图4中示出了一种电子发射单元1的具体结构,具体地说是阴极102与栅极103一体并且通过栅极103进行控制的模式。此处,电子发射单元1包括灯丝101、阴极102、栅极103、绝缘支撑件104、灯丝引线105以及连接固定件109,此外,栅极103由栅极架106、栅网107和栅极引线108组成。在图4中,灯丝101、阴极102、栅极103等所处的位置定义为电子发射单元的阴极端, 连接固定件109所处的位置定义为电子发射单元的引线端。阴极102与灯丝101连接在一起,灯丝101通常采用钨丝,阴极102通常采用热发射电子能力强的材料,例如氧化钡、钪酸盐、六硼化镧等。绝缘支撑件104包围灯丝101和阴极102,相当于电子发射单元1的壳体,采用绝缘材料,通常为陶瓷。灯丝引线105与栅极引线108穿过绝缘支撑件104而被从电子发射单元1的引线端引出,灯丝引线105及栅极引线108与绝缘支撑件104之间是真空密封的结构。栅极103安装在绝缘支撑件104的上端(即,配置在绝缘支撑件104的开口上)并且与阴极102对置,栅极103与阴极102的中心上下对齐,栅极103包括栅极架106、栅网107、栅极引线108,并且,栅极架106、栅网107、栅极引线108均为金属制成,通常栅极架106为不锈钢材料或者可伐材料,栅网107为钼材料,栅极引线108为不锈钢材料或者可伐材料。
此外,具体地,关于栅极103的结构,其主体是一块金属板(例如,不锈钢材料)即栅极架106,在栅极架106的中间形成有开孔,该开孔的形状可以是方形或圆形等,在该开孔的位置固定有金属丝网(例如,钼材料)即栅网107,并且,从金属板的某个位置引出一根引线(例如,不锈钢材料)即栅极引线108,能够将栅极103连接到一个电位。此外,栅极103位于阴极102的正上方,栅极103的上述开孔的中心与阴极102的中心对准(即,上下在一条垂线上),开孔的形状与阴极102的形状相对应,但是开孔的大小比阴极102的面积小。但是,只要是电子束流能够通过栅极103,栅极103的结构并不限于上述结构。此外,栅极103与阴极102之间通过绝缘支撑件104进行相对位置固定。
此外,具体地,关于连接固定件109的结构,推荐的,其主体是一个圆形刀口法兰,中间形成有开孔,该开孔的形状可以是方形或圆形等,在开孔的位置与绝缘支撑件104的下端外沿密封连接,如焊接连接,刀口法兰的外沿形成有螺钉孔,可以通过螺栓连接将电子发射单元1固定在真空盒3的盒壁上,其刀口与真空盒3的盒壁之间形成真空密封连接(在此情况下,电子发射单元1的阴极端位于真空盒3内,电子发射单元1的引线端位于真空盒3外)。这是一种方便拆卸的灵活结构,当多个电子发射单元1中的某一个发生故障 时,可以灵活更换。需要指出的是,连接固定件109的功能是实现绝缘支撑件104与真空盒3之间的密封连接,可以有多种灵活的方式,如通过金属法兰过渡的焊接,或者玻璃高温熔融密封连接,或者陶瓷金属化后与金属的焊接等方式。
在图5中示出了另一种电子发射单元1的具体结构。电子发射单元1包括灯丝101、阴极102、栅极103、绝缘支撑件104、灯丝引线105、栅极引线108和连接固定件109。阴极102与灯丝101连接在一起,栅极103位于阴极102的正上方,外形与阴极102相同,贴近阴极102的上表面,绝缘支撑件104包围灯丝101和阴极102,从灯丝101两端引出的灯丝引线105与从栅极103引出的栅极引线108穿过绝缘支撑件104而被引出到电子发射单元1的外部,灯丝引线105及栅极引线108与绝缘支撑件104之间是真空密封的结构。在此情况下,连接固定件109连接在绝缘支撑件104的上端,电子发射单元1整体位于真空盒3外。
此外,电子发射单元1可以是一个整体结构,也可以是阴极102与栅极103分离的结构,可以通过阴极102对电子发射单元1的工作状态进行控制,也可以通过栅极103对电子发射单元1的工作状态进行控制。
在图6中示出了一种曲面阵列分布式X射线装置的整体结构。其中,真空盒3是四周密封的空腔壳体,其内部为高真空,电子发射单元1用于按要求产生电子束流,安装在真空盒3的盒壁上,阳极2用于形成高压加速电场和产生X射线,安装在真空盒3的内部,高压电源连接装置4用于连接阳极2和高压电源702的电缆,安装在真空盒3的靠近阳极2的一端的侧面,冷却连接装置9用于连接阳极2的两端,并且,在真空盒3之外连接有冷却装置10,构成冷却剂流通回路,安装在真空盒3的靠近阳极2的一端的侧面,灯丝电源连接装置5用于连接灯丝101和灯丝电源704,灯丝电源连接装置5通常是多根两端带接头的多芯电缆,栅极控制装置连接装置6用于连接电子发射单元1的栅极103和栅极控制装置703,栅极控制装置连接装置6通常是多根两端带接头的同轴电缆,真空装置8用于维持真空盒3内的高真空,安装在真空盒3的侧壁上。
此外,高压电源连接装置4为锥形结构,大端与真空盒3密封连接, 小端与阳极2连接,通常采用例如陶瓷等真空绝缘材料,在其两端被金属化之后,大端与真空盒3的盒壁焊接在一起,形成密封结构,小端被金属化后,焊接法兰,阳极2通过阳极支撑件201安装固定在法兰上。高压电源连接装置4的内部为空的锥面管道,小端封闭并且中心有一根高压引线,高压引线与法兰连通。特定形状的高压电缆插头可以从高压电源连接装置4的大端进入锥面管道,连接到高压引线。
此外,冷却装置10是一个恒温冷却系统,至少包含有循环泵和制冷系统,在制冷控制装置706的控制下进行工作。循环泵用于使冷却剂在阳极管道202、冷却连接装置9、冷却装置10所构成的密封回路中循环流动。制冷系统用于控制冷却剂的循环流动并且排出热量,能够降低冷却剂的温度。冷却控制装置706用于控制冷却装置10的工作,包括使从冷却装置10流出的冷却剂保持一个恒定的温度,保持足够的压力和流量,检测冷却剂的温度,并且在流量、温度异常或者冷却装置发生其它故障时将故障信号实时反馈给上一级的控制装置701。
此外,冷却连接装置9通常采用真空绝缘材料,例如陶瓷或者玻璃。冷却连接装置9通常为两个,每一个冷却连接装置9的一端与真空盒3密封连接,在真空盒3外可通过管道连接到冷却装置10,另一端在真空盒3内分别与阳极2的两端连接。冷却连接装置9可以是锥形结构,也可以是普通管道结构,或者螺旋管道结构,推荐的为玻璃螺旋管道结构。
此外,在图7中示出了冷却连接装置9的不同结构的示意图。如图7(1)所示,冷却连接装置9是与高压电源连接装置4一样的锥形结构,可以采用陶瓷材料,两端进行金属化,大端的金属化边缘与真空盒3焊接,形成真空密封结构,小端的金属化边缘与阳极2的端头焊接,内部形成冷却剂流动的通道。如图7(2)所示,冷却连接装置9是普通管道,可以是陶瓷或者玻璃材料,一端与真空盒3紧密连接形成真空密封结构,一端与阳极2连接,内部形成冷却剂流动的通道。如图7(3)所示,优选的是冷却连接装置9是普通管道绕成螺旋结构,例如玻璃螺旋管,一端与真空盒3紧密连接形成真空密封结构,一端与阳极2连接,内部形成冷却剂流动的通道。螺旋管道是在有限空间内增加 了管道长度,提高了绝缘耐压能力。
此外,冷却剂是可流动的高压绝缘材料,例如变压器油(高压绝缘油)或者六氟化硫气体(SF6),推荐为变压器油。
此外,电源与控制系统7包括控制系统701、高压电源702、栅极控制装置703、灯丝电源704、真空电源705、冷却控制装置706等。高压电源702通过真空盒3的盒壁上的高压电源连接装置4与阳极2相连接。栅极控制装置703通过栅极控制装置连接装置6分别与各个栅极引线108连接,栅极控制装置703的输出路数与栅极引线108的数量相同。灯丝电源704通过灯丝电源连接装置5分别与各个灯丝引线105连接,通常具有与电子发射单元1的数量相同数量组的独立的灯丝引线105(即,如上所述那样,每一个电子发射单元都具有一组灯丝引线,2条,分别连接于灯丝的两端),灯丝电源704具有与灯丝引线105相同数量的输出回路。真空电源705连接真空装置8,冷却控制装置706连接冷却装置10。控制系统701对高压电源702、栅极控制装置703、灯丝电源704、真空电源705、冷却控制706的工作状态进行逻辑控制和综合管理。
此外,如图8所示,栅极控制装置703包括控制器70301、负高压模块70302、正高压模块70303、多个高压开关元件switch1、switch2、switch3、switch4,…。多个高压开关元件的每一个至少包含一个控制端(C)、两个输入端(In1与In2)以及一个输出端(Out),各端点之间的耐压最少要大于负高压模块70302和正高压模块70303所构成的最大电压(即,如果负高压输出-500V并且正高压输出+2000V,那么各端点间的耐压至少要大于2500V)。控制器70301有多路独立输出,每一路连接到一个高压开关元件的控制端。负高压模块70302提供一个稳定的负高压输出,通常为负几百伏,范围可以是0V至-10kV,推荐的为-500V,该负高压连接到各个高压开关元件的一个输入端,此外,正高压模块70303提供一个稳定的正高压输出,通常为正几千伏,范围可以是0V至+10kV,推荐的为+2000V,该正高压连接到各个高压开关元件的另一个输入端。各高压开关元件的输出端分别连接到控制信号输出通道channel1a、channel1b、channel2a、channel2b、channel3a、channel3b、…而汇合成多路控制信号进行输出。控制器70301控制各高压开关元件的工作状态, 使得各输出通道的控制信号分别为负高压或者正高压。
此外,电源与控制系统7能够在不同的使用条件下对灯丝电源704的各输出回路的电流大小进行调节,从而调节各灯丝101给阴极102的加热温度,用来改变各电子发射单元1的发射电流大小,最终调节各次X射线发射的强度。此外,也可以调节栅极控制装置703的各个输出通道的正高压控制信号的强度,从而改变各电子发射单元1的发射电流大小,最终调节各次X射线发射的强度。此外,也可以对各电子发射单元1的工作时序和组合工作模式进行编程灵活控制。
此外,需要特别指出的是,在本发明中的曲面阵列分布式X射线装置中,其轴线可以是直线,也可以是圆弧,整体成为线状分布式X射线装置或者环状分布式X射线装置,以满足不同的应用需求。在图9中示出了一种环状分布式X射线装置内部的电子发射单元和阳极布置的效果图。阳极2布置在一个平面圆周上,电子发射单元1布置在阳极2的下方,两排电子发射单元1按阳极2的方向成圆周排列,同时排列在以阳极2的中心为轴线的圆弧面上,即每个电子发射单元1的栅极103的表面指向阳极2的轴线。电子束流E从电子发射单元1的栅极103的表面发射出来,受到阳极2与电子发射单元1之间的高压电场加速,轰击阳极2的下沿靶面,在阳极2上形成圆形排列的阵列X射线靶点,有用的X射线的出射方向都指向阳极2所在圆周的圆心。环状分布式X射线装置的真空盒3与其内部的电子发射单元1的布置和阳极2的形状对应也是一种环型结构。环状分布式X射线装置可以是一个完整的环,也可以是一段环长,可以应用于需要射线源圆形排列的场合。
此外,需要特别指出的是,在本发明的曲面阵列分布式X射线装置中,电子发射单元的阵列可以是两排也可以是多排。
此外,需要特别指出的是,本发明中对电子发射单元的描述中,“独立”是指每个电子发射单元具有独立发射电子束流的能力,在具体结构上可以是分立的结构,也可以是某种关联连接的结构。
此外,需要特别指出的是,本发明的曲面阵列分布式X射线装置的描述中,“曲面”是指各种形式的曲面,包括圆柱面、圆环面、椭圆面、或 者分段直线构成的曲面,例如正多边形柱面或者分段弧线构成的曲面等,推荐的是如前面所述的圆柱面和圆环面。
此外,需要特别指出的是,本发明中对阳极布置位置的描述中,“轴线”是指电子发射单元所布置的各种形式的曲面的真实轴线或者形式轴线,例如圆柱面的轴线是指圆柱的中心轴线,圆环面的轴线是指圆环内部的中心轴线,椭圆曲面的轴线是指靠近该段椭圆的近轴轴线,正多边形柱面的轴线是指正多边形的中心所构成的轴线。
此外,需要特别指出的是,在本发明的曲面阵列分布式X射线装置中,阳极内部管道切面可以是圆形孔、方形孔、多边形孔、带散热片结构的内齿轮状孔、或者能增加散热面积的其它形状。
此外,需要特别指出的是,在本发明的曲面阵列分布式X射线装置中,电子发射单元的曲面阵列排布在一个排列方向为曲线而在另一个排列方向为直线、分段直线、弧线、分段弧线、或者直线段与弧线段的组合。
此外,需要特别指出的是,在本发明的曲面阵列分布式X射线装置中,电子发射单元的曲面阵列排布可以是两个方向间隔均匀一致的,可以是每个方向间隔均匀,两个方向间隔不一致的,也可以是一个方向间隔均匀,另一个方向间隔不均匀的,还可以是两个方向的间隔都不均匀的。
此外,需要特别指出的是,在本发明的二维分布式X射线装置中,真空盒的外形整体上可以是长方体形,也可以是圆柱体形,也可以是圆环体形,还可以是其它不影响电子发射单元与阳极的相对布置关系的其它结构。
实施例
(系统组成)
如图1~8所示,曲面阵列分布式X射线装置具体地说圆柱面阵列分布式X射线装置由多个电子发射单元1、阳极2、真空盒3、高压电源连接装置4、灯丝电源连接装置5、栅极控制装置连接装置6、真空装置8、冷却连接装置9、冷却装置10、以及电源与控制系统7组成。多个电子发射单元1在圆柱面上沿轴线方向面向轴线排列两排,并且,安装在真空盒3的盒壁上,阳极2布置在圆柱轴线上,真空盒3包围阳极2。阳极2具有中空管道结构,能够使冷却剂在 内部流动。阳极2由阳极支撑件201、阳极管道202、阳极靶面203组成。阳极管道202是阳极2的主体结构,具有一定的长度,例如30~100cm(厘米)长。阳极支撑件201处于阳极管道202中段的背面,阳极支撑件201与高压电源连接装置4的顶端(小端)连接在一起,用于对阳极2进行支撑和固定。阳极管道202的两端分别与两个冷却连接装置9的一端连接,内部连通,成为冷却剂的流动通道。冷却剂为具有高压绝缘性能的变压器油。阳极管道202外圆的下沿被切除一部分而形成一个小的斜平面,在该斜平面上安装有阳极靶面203,用于接受电子束的轰击并产生X射线,并且使有用的X射线的出射方向一致。阳极靶面203为钨材料,厚度200μm(微米),通过电镀的方法固定。此外,电子束轰击阳极,产生的X射线是360度立体发射的,但是,使用中只能使用某个方向的一部分,称为有用的X射线。电子发射单元1由灯丝101、阴极102、栅极103、绝缘支撑件104、灯丝引线105和连接固定件109构成,栅极103由栅极架106、栅网107和栅极引线108组成。电子发射单元1沿阳极2的长度方向在阳极靶面203的下方排列成两长排,例如第一排分别为11a、12a、13a、……,第二排分别为11b、12b、13b,……,每个电子发射单元1的上表面(栅极103的表面)都面对阳极2,即两排电子发射单元1不在一个平面而是处于以阳极2为轴线的圆柱面上。高压电源连接装置4安装在真空盒3的靠近阳极的一端,在真空盒3内部与阳极2相连接并且外部连接于高压电源702,灯丝电源连接装置5将每一个电子发射单元1的灯丝引线105连接到灯丝电源704。灯丝电源连接装置5为多根两端带有连接头的两芯电缆。栅极控制装置连接装置6将各电子发射单元1的栅极引线108连接到栅极控制装置703。栅极控制装置连接装置6为多根两端带有连接头的高压同轴电缆。真空装置8安装在真空盒3的侧壁上。两个冷却连接装置9安装在真空盒3的靠近阳极的一端,在真空盒3内部分别与阳极2的两端相连,在真空盒3外部与冷却装置10相连接。电子发射单元1、高压电源连接装置4、真空装置8、冷却连接装置9与真空盒3构成整体密封结构。电源与控制系统7包括控制系统701、高压电源702、栅极控制装置703、灯丝电源704、真空电源705、冷却控制装置706等多个模块,通过电力电缆和控制电缆与系统的多个电子发射单元1的灯丝101、栅极103以及阳极2、真空 装置8、冷却装置10等部件相连接。
(工作原理)
在本发明的圆柱面阵列分布式X射线装置中,电源与控制系统7对灯丝电源704、栅极控制装置703与高压电源702等进行控制。在灯丝电源704的作用下,灯丝101将阴极102加热到1000~2000℃,阴极102在表面产生大量电子,栅极控制装置703使各个栅极103处于负电压,例如-500V,各个电子发射单元1的栅极103与阴极102之间形成负电场,电子被限制在阴极102的表面,高压电源702使阳极2处于非常高的正高压,例如+180KV,在电子发射单元1与阳极2之间形成正的加速电场。在需要产生X射线时,控制系统701按照指令或者设定程序让栅极控制装置703的某一路输出由负电压切换为正电压,并且按时序变换各路输出信号。例如,在时刻1,栅极控制装置703的输出通道channel1a,由-500V变为+2000V,在对应的电子发射单元11a内,栅极103与阴极102之间的电场变为正电场,电子从阴极102的表面向栅极103运动并且透过栅网107,进入到电子发射单元11a与阳极2之间的正向电场,获得加速,变为高能量,最终轰击阳极靶面203,在21a位置产生X射线发射,在时刻2,栅极控制装置703的输出通道channel1b由-500V变为+2000V,对应的电子发射单元11b发射电子,轰击阳极靶面203,并在21b位置产生X射线发射,在时刻3,栅极控制装置703的输出通道channel2a由-500V变为+2000V,对应的电子发射单元12a发射电子,轰击阳极靶面203,并在22a位置产生X射线发射,在时刻4,栅极控制装置703的输出通道channel2b由-500V变为+2000V,对应的电子发射单元12b发射电子,轰击阳极靶面203,并在22b位置产生X射线发射,依次类推,然后23a位置产生X射线,然后23b位置产生X射线……并循环往复。因此,控制系统通过栅极控制,各个电子发射单元1按某种时序交替工作发射电子束并且在阳极靶面203的不同位置交替产生X射线,成为分布式X射线源。
阳极靶面203受到电子束流轰击时释放的气体被真空装置8实时抽走,真空盒3内维持高真空,有利于长时间稳定运行。阳极靶面203受到电子束流轰击时同时产生大量热量,温度升高,热量很快传导到阳极管道202,并 且被阳极管道202内部循环的冷却剂带走,使阳极靶面203维持在一个不太高的温度。控制系统除了控制各电源按设定程序驱动各个部件协调工作,接收高压电源、真空电源、冷却控制等反馈的信号进行连锁控制外,同时可以通过通讯接口和人机界面接收外部命令,对系统的关键参数进行修改和设定,更新程序和进行自动控制调整。
此外,通过将本发明的曲面阵列分布式X射线装置应用于CT设备,从而能够得到系统稳定性及可靠性好并且检查效率高的CT设备。
(效果)
本发明主要是提供一种曲面(包括圆柱面和圆环面)阵列分布式X射线装置,在一个光源设备中产生按某种顺序周期变换焦点位置的X射线。本发明中的电子发射单元采用热阴极,具有发射电流大、寿命长的优点;通过栅极控制或者阴极控制来控制各个电子发射单元的工作状态,方便灵活;管状阳极具有冷却设计,解决了阳极过热问题;电子发射单元曲面阵列排布,提高了靶点密度;电子发射单元曲面排列可以圆柱面也可以是圆环面,整体成为直线型分布式X射线装置或环型分布式X射线装置,应用灵活。
此外,将本发明的曲面阵列分布式X射线光源应用于CT设备,无需移动光源就能产生多个视角,因此可以省略滑环运动,有利于简化结构,提高系统稳定性、可靠性,提高检查效率。
如上所述,对本申请发明进行了说明,但是并不限于此,应该理解为能够在本发明宗旨的范围内进行各种变更。

Claims (12)

  1. 一种X射线装置,其特征在于,具备:
    真空盒,四周密封并且内部为高真空;
    多个电子发射单元,在所述真空盒的盒壁上以在曲面上沿所述曲面的轴线方向面向所述轴线排列多排的方式配置;
    阳极,由金属构成并且以布置在所述轴线上的方式配置在所述真空盒内。
  2. 如权利要求1所述的X射线装置,其特征在于,所述X射线装置还具有:电源与控制系统,具有与所述阳极连接的高压电源、与所述多个电子发射单元的每一个连接的灯丝电源、与所述多个电子发射单元的每一个连接的栅极控制装置、用于对各电源进行控制的控制系统,
    所述阳极包括:阳极管道,由金属构成并且具有中空的管状形状;阳极支撑件,配置在所述阳极管道上;阳极靶面,设置在所述阳极管道的外表面并且与所述电子发射单元相面对。
  3. 如权利要求2所述的X射线装置,其特征在于,
    所述阳极靶面是所述阳极管道的外圆被切除一部分而形成的斜平面。
  4. 如权利要求2所述的X射线装置,其特征在于,
    所述阳极靶面是在将所述阳极管道的外圆切除一部分所形成斜平面上形成有重金属材料钨或者钨合金而形成的。
  5. 如权利要求2~4的任意一项所述的X射线装置,其特征在于,
    所述电子发射单元具有:灯丝;与所述灯丝连接的阴极;具有开口并且包围所述灯丝和所述阴极的绝缘支撑件;从所述灯丝的两端引出的灯丝引线;栅极,以与所述阴极对置的方式配置在所述阴极的上方;连接固定件,与所述绝缘支撑件连接,将所述电子发射单元安装在所述真空盒的盒壁上,形成真空密封连接,
    所述栅极具有:栅极架,由金属制成并且在中间形成有开孔;栅网,由金属制成并且固定在所述栅极架的所述开孔的位置;栅极引线,从所述栅极架引出,
    所述灯丝引线与所述栅极引线穿过所述绝缘支撑件引出到电子发射单元外部,所述灯丝引线与所述灯丝电源连接,所述栅极引线与所述栅极控制装置连接,所述栅极的表面面向所述轴线。
  6. 如权利要求5所述的X射线装置,其特征在于,
    所述连接固定件连接在所述绝缘支撑件的下端外沿,所述电子发射单元的阴极端位于所述真空盒内,所述电子发射单元的引线端位于所述真空盒外。
  7. 如权利要求5所述的X射线装置,其特征在于,
    所述连接固定件连接在所述绝缘支撑件的上端,所述电子发射单元整体位于所述真空盒外。
  8. 如权利要求2~7的任意一项所述的X射线装置,其特征在于,
    还具有:冷却装置;冷却连接装置,连接于所述阳极并且在所述真空盒外与所述冷却装置连接,安装在真空盒上靠近阳极一端的侧面;冷却控制装置,包括在所述电源与控制系统内,用于控制所述冷却装置。
  9. 如权利要求5~7的任意一项所述的X射线装置,其特征在于,
    还具有:高压电源连接装置,将所述阳极和所述高压电源的电缆连接,安装在所述真空盒的靠近所述阳极的一端的侧壁;灯丝电源连接装置,用于连接所述灯丝和所述灯丝电源;栅极控制装置连接装置,用于将所述电子发射单元的所述栅极和所述栅极控制装置连接;真空电源,包括在所述电源与控制系统内;真空装置,安装在所述真空盒的侧壁上,利用所述真空电源进行工作,维持所述真空盒内的高真空。
  10. 如权利要求1~9的任意一项所述的X射线装置,其特征在于,
    所述轴线为直线或者分段直线。
  11. 如权利要求1~9的任意一项所述的X射线装置,其特征在于,
    所述轴线为圆弧或者分段圆弧。
  12. 一种CT设备,其特征在于,
    具备权利要求1~11的任意一项所述的X射线装置。
PCT/CN2014/086678 2013-09-18 2014-09-17 X射线装置以及具有该x射线装置的ct设备 WO2015039595A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2016114715A RU2652588C2 (ru) 2013-09-18 2014-09-17 Устройство рентгеновского излучения и кт-оборудование, содержащее его
JP2016543301A JP6496321B2 (ja) 2013-09-18 2014-09-17 X線装置及び該x線装置を有するctデバイス
KR1020167008294A KR101813575B1 (ko) 2013-09-18 2014-09-17 X선장치 및 이를 구비한 ct장비

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310427001.X 2013-09-18
CN201310427001.XA CN104470176B (zh) 2013-09-18 2013-09-18 X射线装置以及具有该x射线装置的ct设备

Publications (1)

Publication Number Publication Date
WO2015039595A1 true WO2015039595A1 (zh) 2015-03-26

Family

ID=51582280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086678 WO2015039595A1 (zh) 2013-09-18 2014-09-17 X射线装置以及具有该x射线装置的ct设备

Country Status (8)

Country Link
US (1) US9734979B2 (zh)
EP (1) EP2851929B1 (zh)
JP (1) JP6496321B2 (zh)
KR (1) KR101813575B1 (zh)
CN (1) CN104470176B (zh)
PL (1) PL2851929T3 (zh)
RU (1) RU2652588C2 (zh)
WO (1) WO2015039595A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2531326B (en) * 2014-10-16 2020-08-05 Adaptix Ltd An X-Ray emitter panel and a method of designing such an X-Ray emitter panel
CN109216138A (zh) * 2017-06-30 2019-01-15 同方威视技术股份有限公司 X射线管
CN107481912B (zh) 2017-09-18 2019-06-11 同方威视技术股份有限公司 阳极靶、射线光源、计算机断层扫描设备及成像方法
DE102017008810A1 (de) * 2017-09-20 2019-03-21 Cetteen Gmbh MBFEX-Röhre
CN108811287B (zh) * 2018-06-28 2024-03-29 北京纳米维景科技有限公司 一种面阵多焦点栅控射线源及其ct设备
KR102448410B1 (ko) * 2018-11-28 2022-09-28 주식회사 레메디 추출기를 가지는 소형 엑스레이 튜브
CN115988723A (zh) * 2019-03-06 2023-04-18 北京艾立科技有限公司 X射线组合机头
CN110211856B (zh) * 2019-04-23 2024-05-03 昆山市中医医院 一种x射线球管
CN112243310B (zh) * 2019-07-16 2022-04-22 清华大学 多射线源加速器和检查方法
CN110793981B (zh) * 2019-10-30 2022-03-22 新鸿电子有限公司 分时复用控制装置和系统
CN110957200B (zh) * 2019-12-12 2022-11-08 江苏锡沂高新材料产业技术研究院有限公司 一种反射式x光管
US11404235B2 (en) * 2020-02-05 2022-08-02 John Thomas Canazon X-ray tube with distributed filaments

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101849A (zh) * 2006-07-04 2008-01-09 东元电机股份有限公司 多角度多区域的x光源装置
US20100189223A1 (en) * 2006-02-16 2010-07-29 Steller Micro Devices Digitally addressed flat panel x-ray sources
CN102422364A (zh) * 2009-05-12 2012-04-18 皇家飞利浦电子股份有限公司 具有多个电子发射器的x射线源
CN102870189A (zh) * 2010-03-22 2013-01-09 欣雷系统公司 带有智能电子控制系统的多波束x-射线源和相关方法
CN203178216U (zh) * 2012-12-31 2013-09-04 清华大学 Ct设备
CN203590580U (zh) * 2013-09-18 2014-05-07 清华大学 X射线装置以及具有该x射线装置的ct设备
CN203734907U (zh) * 2013-09-18 2014-07-23 同方威视技术股份有限公司 X射线装置以及具有该x射线装置的ct设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103392A (en) * 1977-02-21 1978-09-08 Shimadzu Corp Tomograph
JPS5546408A (en) * 1978-09-29 1980-04-01 Toshiba Corp X-ray device
US4592079A (en) * 1981-10-21 1986-05-27 Elscint Ltd. Medical imaging device using triggered plasma cathode flash X-ray sources
JPS59196677A (ja) * 1983-04-22 1984-11-08 Toshiba Corp X線撮影装置
US4926452A (en) * 1987-10-30 1990-05-15 Four Pi Systems Corporation Automated laminography system for inspection of electronics
JP3033608B2 (ja) * 1990-04-28 2000-04-17 株式会社島津製作所 回転陰極x線管装置
US5438605A (en) * 1992-01-06 1995-08-01 Picker International, Inc. Ring tube x-ray source with active vacuum pumping
SE9902118D0 (sv) * 1999-06-04 1999-06-04 Radi Medical Systems Miniature X-ray source
CA2410892A1 (en) * 2001-02-28 2002-11-29 Mitsubishi Heavy Industries, Ltd. Multi-radiation source x-ray ct apparatus
JP4008714B2 (ja) * 2002-01-30 2007-11-14 株式会社東芝 X線管
JP2004357724A (ja) * 2003-05-30 2004-12-24 Toshiba Corp X線ct装置、x線発生装置及びx線ct装置のデータ収集方法
EP1747570A1 (de) * 2004-05-19 2007-01-31 Comet Holding AG Röntgenröhre für hohe dosisleistungen
US7274772B2 (en) * 2004-05-27 2007-09-25 Cabot Microelectronics Corporation X-ray source with nonparallel geometry
WO2010024821A1 (en) * 2008-08-29 2010-03-04 Analogic Corporation Multi-cathode x-ray tubes with staggered focal spots, and systems and methods using same
US20110075802A1 (en) 2009-09-29 2011-03-31 Moritz Beckmann Field emission x-ray source with magnetic focal spot screening
DE102011076912B4 (de) * 2011-06-03 2015-08-20 Siemens Aktiengesellschaft Röntgengerät umfassend eine Multi-Fokus-Röntgenröhre
WO2015039603A1 (zh) * 2013-09-18 2015-03-26 清华大学 X射线装置以及具有该x射线装置的ct设备
CN203563254U (zh) 2013-09-18 2014-04-23 同方威视技术股份有限公司 X射线装置及具有该x射线装置的ct设备
CN103908288B (zh) 2014-03-21 2016-03-02 北京工业大学 沿真实牙弓轨迹扫描的数字化牙科曲面断层全景x光机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100189223A1 (en) * 2006-02-16 2010-07-29 Steller Micro Devices Digitally addressed flat panel x-ray sources
CN101101849A (zh) * 2006-07-04 2008-01-09 东元电机股份有限公司 多角度多区域的x光源装置
CN102422364A (zh) * 2009-05-12 2012-04-18 皇家飞利浦电子股份有限公司 具有多个电子发射器的x射线源
CN102870189A (zh) * 2010-03-22 2013-01-09 欣雷系统公司 带有智能电子控制系统的多波束x-射线源和相关方法
CN203178216U (zh) * 2012-12-31 2013-09-04 清华大学 Ct设备
CN203590580U (zh) * 2013-09-18 2014-05-07 清华大学 X射线装置以及具有该x射线装置的ct设备
CN203734907U (zh) * 2013-09-18 2014-07-23 同方威视技术股份有限公司 X射线装置以及具有该x射线装置的ct设备

Also Published As

Publication number Publication date
US9734979B2 (en) 2017-08-15
EP2851929B1 (en) 2017-11-08
JP2016536764A (ja) 2016-11-24
US20150078510A1 (en) 2015-03-19
PL2851929T3 (pl) 2018-06-29
RU2016114715A (ru) 2017-10-20
CN104470176B (zh) 2017-11-14
EP2851929A1 (en) 2015-03-25
KR101813575B1 (ko) 2017-12-29
CN104470176A (zh) 2015-03-25
RU2652588C2 (ru) 2018-04-27
KR20160081895A (ko) 2016-07-08
JP6496321B2 (ja) 2019-04-03

Similar Documents

Publication Publication Date Title
WO2015039595A1 (zh) X射线装置以及具有该x射线装置的ct设备
US9653247B2 (en) X-ray apparatus and a CT device having the same
US9653251B2 (en) X-ray apparatus and a CT device having the same
US9761404B2 (en) X-ray apparatus and a CT device having the same
CN203590580U (zh) X射线装置以及具有该x射线装置的ct设备
CN104465279B (zh) X射线装置以及具有该x射线装置的ct设备
CN203734907U (zh) X射线装置以及具有该x射线装置的ct设备
CN104470171A (zh) X射线装置以及具有该x射线装置的ct设备
CN104470172B (zh) X射线装置以及具有该x射线装置的ct设备
CN104470173B (zh) X射线装置以及具有该x射线装置的ct设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016543301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167008294

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016114715

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14846073

Country of ref document: EP

Kind code of ref document: A1