RU2697258C1 - Рентгеновский источник и способ генерации рентгеновского излучения - Google Patents

Рентгеновский источник и способ генерации рентгеновского излучения Download PDF

Info

Publication number
RU2697258C1
RU2697258C1 RU2018107831A RU2018107831A RU2697258C1 RU 2697258 C1 RU2697258 C1 RU 2697258C1 RU 2018107831 A RU2018107831 A RU 2018107831A RU 2018107831 A RU2018107831 A RU 2018107831A RU 2697258 C1 RU2697258 C1 RU 2697258C1
Authority
RU
Russia
Prior art keywords
anode
cathode
ray
target
wavelengths
Prior art date
Application number
RU2018107831A
Other languages
English (en)
Inventor
Евгений Эдуардович Гусев
Николай Алексеевич Дюжев
Валерий Юрьевич Киреев
Денис Михайлович Мигунов
Максим Александрович Махиборода
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники"
Priority to RU2018107831A priority Critical patent/RU2697258C1/ru
Application granted granted Critical
Publication of RU2697258C1 publication Critical patent/RU2697258C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes

Landscapes

  • X-Ray Techniques (AREA)

Abstract

Изобретение относится к рентгеновской технике. Технический результат - повышение интенсивности рентгеновского излучения, увеличение продолжительности срока эксплуатации прибора, расширение перечня излучаемых длин волн, обеспечение возможности выбора количества длин волн и формы рентгеновского излучения. Используют матрицу катодов, сфокусированную на локальной части мишени анода, состоящей из n видов материалов, катоды имеют m разных радиусов кривизны острия. Это обеспечивает возможность выборочной подачи напряжения на отдельный катод из матрицы катодов по результатам расчета количества генерируемых длин волн L рентгеновского источника по формуле L=n×m, причем количество генерируемых длин волн L должно быть не менее количества слоев исследуемой структуры. 2 н.п. ф-лы, 5 ил.

Description

Настоящее изобретение относится к рентгеновской технике, а именно к рентгеновским источникам, в частности к компактным рентгеновским источникам.
В настоящее время современная геология, медицинская техника, системы безопасности, а также передовое аналитическое и технологическое оборудование ощущают острую потребность в создании портативных миниатюрных рентгеновских источников с малым энергопотреблением для оперативного анализа структуры различных объектов. Например, электронная и зондовая микроскопия позволяют получать изображение поверхности объектов. Во многом свойства материалов связаны с их внутренней структурой. Для получения сведений часто используют сколы и шлифы, либо послойное травление поверхности ионным пучком. Но эти разрушающие и дорогие методы не дают полной и оперативной информации об объекте, о его внутреннем состоянии. Существует ряд проблем как с подготовкой образцов для проведения исследований, так и с интерпретацией полученных результатов. Актуальны в последнее время стали тонкие многослойные структуры, например, использующиеся в качестве анода рентгеновского источника. Особенностью таких структур является прочность и рентгенопрозрачность. Причем прочность структуры выдерживает перепад давлений в 1 атмосферу, то есть обеспечивает возможность работы в вакууме, что необходимо для процесса экспонирования электронами металлического слоя анода. Для контроля таких тонких (наноразмерных) структур требуется использовать коротковолновые источники. С другой стороны, основание (подложка), на которую наносят тонкие слои, или несколько подложек сращенных вместе, имеет толщину сотни микрон. Следовательно, в процессе исследования потребуется длинноволновый источник. Поэтому разработка источников рентгеновского излучения с перестраиваемой длиной волны является практически значимой задачей.
Известен источник рентгеновского излучения, содержащий автокатод, антикатод, окно, вакуумированный или газонаполненный рабочий объем, средства формирования электронных потоков и систему питания ячеек [1].
К недостаткам устройства можно отнести сложный ремонт конструкции, так как демонтаж антикатода является сложной задачей после герметизации источника для вакуумирования или газонаполнения рабочего объема.
Известна конструкция полевой эмиссионной трубки для облегчения замены катода, включающей в себя катод, анод, затвор, соединительный элемент между катодом и затвором, элемент предотвращающий вращение (смещение) катода [2].
К недостаткам конструкции можно отнести замену только катода. Например, в катодах автоэмиссионного типа сроки эксплуатации катода и анода сопоставимы. Следовательно, в случае выхода из строя анода, придется менять всю трубку целиком, что снижает рентабельность применения рентгеновских источников.
Известна конструкция рентгеновской трубки и способ генерации поляризованного излучения, содержащая катод и анод, установленные в корпусе, причем по меньшей мере часть анода указанной рентгеновской трубки, которая предназначена для осуществления соударений с электронами, испускаемыми из катода, выполнена, в основном, из бериллия для получения, по меньшей мере, частично поляризованного излучения и она приспособлена для осуществления фильтрации генерируемого при этом рентгеновского излучения, с подавлением, по меньшей мере частичным, слабо поляризованной части спектра указанного, по меньшей мере, частично поляризованного рентгеновского излучения [3].
К недостаткам можно отнести токсичность и канцерогенность материала бериллия при формировании анода, а также в процессе эксплуатации устройства. Экспериментальные исследования и клинические наблюдения свидетельствуют, что в основе механизма действия бериллия на организм лежит изменение белкового обмена, ведущее к нарушению деятельности отдельных ферментов и развитию аутоиммунного процесса. Существенную роль в патогенезе заболевания играет и сенсибилизация организма соединениями бериллия. Основным путем проникновения бериллия и его соединений являются органы дыхания; депонируется бериллий в костях, легких, лимфатических узлах, печени, а также в сердечной мышце. Напыление материала анода происходит при непосредственном контакте оператора с анодом. Кроме того, использование одного типа пленки позволяет получить только одну длину волны рентгеновского излучения, что сужает объем информации об объекте.
Известен способ генерации рентгеновского излучения, посредством многократного пропускания электронного пучка через металлическую мишень в виде фольги, причем мишень переводят в плазменное состояние воздействием импульсов тока [4].
Недостатком способа является точность генерации рентгеновского излучения. Для формирования сфокусированного электронного пучка диаметром несколько микрон или менее, желательно использовать материалы, апробированные в нано- и микроэлектронной технологии. Кроме того, количество генерируемых длин волн сужено из-за ограничения использования материала мишени анода в виде фольги. Также, свойства материала в плазменном состоянии не являются стабильными. Температура фольги после электрического взрыва и распада постоянно изменяется, что влияет на интенсивность теплового спектра излучения в течение процесса облучения. Поэтому процесс генерации рентгеновского излучения не является стабильным.
Наиболее близким по технической сути является рентгеновский источник, содержащий вакуумный корпус, анод со сквозными открытыми, или глухими, или и теми и другими каналами с проводящими стенками, выполненными с возможностью подачи на них заданного потенциала и содержащими материал, способный излучать рентгеновское излучение при облучении электронами достаточной энергии, катод, окно для рентгеновского излучения и вспомогательные средства, причем анод выполнен с возможностью непосредственного крепления к корпусу, каналы анода содержат материал или разные материалы мишени на всем их протяжении или на части их длины и выполнены с характерным размером поперечного сечения в пределах от 0,001 до 1,0 от длины каналов, направлены или в одну и ту же точку, называемую фокусом, или в несколько точек, фокусов, или во множество точек, задающих требуемый узор, а окно выполнено или прилегающим к аноду, или в одном узле с ним или в его составе так, что примыкает к поверхности анода со стороны закрытых концов глухих каналов или с любой одной стороны, если все каналы открытые [5].
Способ генерации рентгеновского излучения включает в себя облучение пучком электронов анода, подачу фиксированного напряжения 45 кВ на рентгеновский источник, катодный узел выполнен из массива автокатодов и обеспечивает ток 5 мА.
Недостатком прототипа является сложность изготовления рентгеногенерирующих каналов анода под разным углом. Сквозные отверстия в аноде требуют введения дополнительного элемента в конструкцию для герметизации устройства с целью формирования вакуума.
Кроме того, теряется часть потока электронов с катода, попадающая в зазоры между отверстиями каналов анода, что снижает максимальную величину рентгеновского излучения, в том числе, в точке фокуса.
Также интенсивность одного катода недостаточна для генерации достаточного электронного потока для каждого из каналов в аноде. В случае увеличения напряжения на катоде для достижения необходимой интенсивности, повышается вероятность тепловой деградации катода, следовательно, сокращается срок службы.
Нельзя не отметить, что подача фиксированного напряжения на рентгеновскую трубку ограничивает параметры волн излучения. Авторы изобретения не приводят значение интенсивности рентгеновского излучения, что затрудняет оценку производительности прибора.
Также к недостаткам прототипа можно отнести невозможность получения излучения от конкретного материала мишени анода, так как при каждом экспонировании анода электроны попадают во все каналы одновременно. Следовательно, рентгеновские волны накладываются друг на друга в точке фокуса, что приводит к помехам при детектировании сигнала.
Задачей настоящего изобретения является повышение интенсивности рентгеновского излучения, увеличение продолжительности срока эксплуатации рентгеновского источника, расширение перечня излучаемых длин волн, обеспечение возможности выбора количества длин волн и формы рентгеновского излучения.
Поставленная задача решается тем, что изготавливают рентгеновский источник, включающий в себя вакуумный корпус, анод, состоящий из слоев с n различными материалами мишени для генерации рентгеновского излучения с разной длиной волны, и катод, имеющий имеет точку фокуса рентгеновского излучения, отличающийся тем, что катод выполнен в виде матрицы катодов, сфокусированных на локальной части мишени анода, с m разными радиусами кривизны острия, а металлическая мишень анода расположена в плоскости, параллельной основанию анода.
В предлагаемом изобретении в качестве материала анода используются n различных материалов. Причем, используя комбинацию из двух или более материалов, можно обеспечить требуемые параметры излучения, исключив вредные материалы, например, бериллий. Как известно, по закону Мозли, корень квадратный из частоты v спектральной линии характеристического излучения элемента есть линейная функция его порядкового номера Z. Длина волны λ обратна пропорциональна частоте ν. Следовательно, λ~1/Z2. Таким образом, изменяя порядковый номер исследуемого материала можно варьировать длину волны излучения.
Мишень анода представляет собой набор рентгенопрозрачных и прочных пленок, обеспечивающих минимальное затухание сгенерированного излучения в процессе прохождения рентгеновских лучей через мембрану и возможность работы в вакууме. Известен эффект снижения механической прочности слоев в процессе электронной бомбардировки. Поэтому структура должна выдерживать избыточное давление не менее 1.0 атм. Диаметр мишени выбирается, исходя из требований по фокусировке излучения.
Разные металлические слои (в количестве n) располагаются в локальных областях анода.
Матрица катодов представляет несколько секторов катодов с т различным радиусом кривизны острия, причем каждый сектор направлен на конкретный материал анода. Таким образом, каждый вид материала может быть экспонирован различной формой пучка электронов. Количество секторов совпадает с количеством металлических слоев в локальных областях анода. Топология катодной матрицы сформирована так, что в каждый момент времени напряжение подается на либо отдельный катод из сектора, либо на два и более катодов. Следовательно, катоды не перегреваются, значит, минимизируется влияние эффекта тепловой деградации, и поэтому возрастает срок эксплуатации прибора.
В результате предложенного рентгеновского источника сгенерированное рентгеновское излучение будет различным по интенсивности, длине волны, а также по диаграмме направленности. Как известно, слои материала обладают разной толщиной и рентгенопрозрачностью. Чем меньше длина волны, тем более эффективно можно исследовать тонкие слои материалов. В случаях, когда исследуемая структура представляет собой набор тонких (нанометровых) слоев, расположенных на толстой (микронной) подложке, для повышения точности анализа материала требуется использовать короткие и длинные волны. В противном случае, существует высокая вероятность, что длинные рентгеновские волны «перепрыгнут» тонкие слои, а короткие рентгеновские волны затухнут до границы пленка-подложка. Таким образом, количество излучаемых длин волн должно быть не менее количества слоев материалов.
На фиг. 1 показан вид сверху конструкции анода, где: 1 - первый металлический слой мишени анода, 2 - второй металлический слой мишени анода, 3 - третий металлический слой мишени анода, 4 - n-й металлический слой мишени анода. На фиг. 2 показан один сектор из матрицы катодов, включающий в себя набор катодов с т значениями радиуса кривизны острия.
На фиг. 3 представлена конструкция рентгеновского источника, где: 1 - первый металлический слой мишени анода, 2 - второй металлический слой мишени анода, 3 - третий металлический слой мишени анода, 4 - n-й металлический слой мишени анода, 5 - матрица катодов, 6 - анод, 7 - вакуумный корпус, 8 - точка фокуса рентгеновского излучения.
На фиг. 4 представлен вид экспериментальной структуры анода в торец с толщиной молибдена 682 нм, нанесенного за два процесса осаждения.
На фиг. 5 показана экспериментальная зависимость рентгеновского излучения с применением пленки молибдена толщиной 682 нм при различной величине тока катода.
Рентгеновский источник работает следующим образом. Под действием высокого напряжения электроны с катода инжектируют в анод. В процессе соударения с атомами металлической пленки мишени анода происходит тормозное рентгеновское излучение. Для предотвращения тепловой деградации острия катода переменно подают высокое напряжение на различные катоды из матрицы.
Конкретный пример исполнения. На кремниевое основание толщиной 670 мкм осаждают на лицевую сторону оксид кремния 600 нм, нитрид кремния 130 нм и слой молибдена 682 нм. После этого, осаждают на обратную сторону слой алюминия 500 нм. Проводят фотолитографию с обратной стороны основания. Удаляют последовательно части материалов, незащищенные маской: алюминий, нитрид кремния, оксид кремния и кремний. Затем разделяют структуру на кристаллы. Каждый кристалл представляет собой молибденовый анод в форме круга диаметром 1.0 мм на квадратном кремниевом основании со стороной 6 мм.
Далее изготавливают матрицу катодов. На кремниевое основание толщиной 670 мкм осаждают на лицевую сторону оксид кремния 600 нм, нитрид кремния 130 нм. Затем проводят фотолитографию для формирования катодных цилиндров. После этого, удаляют незащищенные слои нитрида кремния 130 нм, оксида кремния 600 нм и кремния 3 мкм. Следующим шагом выполняют заточку катодов посредством сухого окисления в атмосфере азота. Далее формируют металлизацию, вскрывают острия катодов для последующего формирования пучка электронов.
Затем подается напряжение от 2 до 40 кВ. При напряжении на рентгеновском источнике 20 кВ и величине тока катода 1 мкА регистрируется рентгеновская интенсивность 3.5.
В результате предложенного рентгеновского источника и способа генерации рентгеновского излучения, зависящее от диаметра мембраны анода, материала мишени анода, расположения катода, радиуса кривизны острия катода, количества катодов, одновременно экспонирующих мишень анода. Подбирая необходимые параметры можно повысить интенсивность излучения, увеличить продолжительность срока эксплуатации прибора.
Источники информации:
1. Патент РФ №2586621.
2. Патент США №8942352.
3. Патент РФ №2199112.
4. Патент РФ №2128411.
5. Патент РФ №2617840 - прототип.

Claims (4)

1. Рентгеновский источник, включающий в себя вакуумный корпус, анод, состоящий из слоев с n различными материалами мишени для генерации рентгеновского излучения с разной длиной волны, и катод, имеющий точку фокуса рентгеновского излучения, отличающийся тем, что катод выполнен в виде матрицы катодов с m разными радиусами кривизны острия, причем каждый сектор направлен на конкретный материал мишени анода, количество секторов совпадает с количеством металлических слоев в локальных областях анода, а металлическая мишень анода расположена в плоскости, параллельной основанию анода, разные металлические слои мишени располагаются в локальных областях анода, рентгеновский источник обеспечивает генерацию L различных длин волн, где L=n×m.
2. Способ генерации рентгеновского излучения, включающий подачу напряжения на катод, облучение пучком электронов анода, отличающийся тем, что облучают пучком электронов локальную область анода, перпендикулярную направлению пучка электронов, напряжение на отдельный катод из матрицы катодов подается выборочно - в зависимости от требуемой длины волны рентгеновского излучения по результатам расчета количества генерируемых длин волн L рентгеновского источника по формуле
L=n×m,
причем количество генерируемых длин волн L должно быть не менее количества слоев исследуемой структуры.
RU2018107831A 2018-03-05 2018-03-05 Рентгеновский источник и способ генерации рентгеновского излучения RU2697258C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018107831A RU2697258C1 (ru) 2018-03-05 2018-03-05 Рентгеновский источник и способ генерации рентгеновского излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018107831A RU2697258C1 (ru) 2018-03-05 2018-03-05 Рентгеновский источник и способ генерации рентгеновского излучения

Publications (1)

Publication Number Publication Date
RU2697258C1 true RU2697258C1 (ru) 2019-08-13

Family

ID=67640488

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018107831A RU2697258C1 (ru) 2018-03-05 2018-03-05 Рентгеновский источник и способ генерации рентгеновского излучения

Country Status (1)

Country Link
RU (1) RU2697258C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU194199U1 (ru) * 2019-10-10 2019-12-03 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Рентгеновский источник для литографии

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014101599A1 (zh) * 2012-12-27 2014-07-03 清华大学 一种产生分布式x射线的设备和方法
US20150078532A1 (en) * 2013-09-18 2015-03-19 Tsinghua University X-ray apparatus and a ct device having the same
RU2617840C2 (ru) * 2016-06-16 2017-04-28 Общество с ограниченной ответственностью "Микрофотоника" Рентгеновский источник
US20170162359A1 (en) * 2014-08-25 2017-06-08 Nuctech Company Limited Electron source, x-ray source and device using the x-ray source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014101599A1 (zh) * 2012-12-27 2014-07-03 清华大学 一种产生分布式x射线的设备和方法
US20150078532A1 (en) * 2013-09-18 2015-03-19 Tsinghua University X-ray apparatus and a ct device having the same
US20170162359A1 (en) * 2014-08-25 2017-06-08 Nuctech Company Limited Electron source, x-ray source and device using the x-ray source
RU2617840C2 (ru) * 2016-06-16 2017-04-28 Общество с ограниченной ответственностью "Микрофотоника" Рентгеновский источник

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU194199U1 (ru) * 2019-10-10 2019-12-03 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Рентгеновский источник для литографии

Similar Documents

Publication Publication Date Title
Beamson et al. Performance and application of the scienta ESCA300 spectrometer
US5778039A (en) Method and apparatus for the detection of light elements on the surface of a semiconductor substrate using x-ray fluorescence (XRF)
US10068740B2 (en) Distributed, field emission-based X-ray source for phase contrast imaging
Wong et al. Soft X-ray optimization studies on a dense plasma focus device operated in neon and argon in repetitive mode
Richardson et al. High conversion efficiency mass-limited Sn-based laser plasma source for extreme ultraviolet lithography
Zakaullah et al. Scope of plasma focus with argon as a soft X-ray source
EP2542035B1 (en) X-ray irradiation device and analysis device
RU182856U1 (ru) Рентгеновский источник
JPS59221948A (ja) X線管
Kennedy et al. Extreme-ultraviolet studies with laser-produced plasmas
US20110096428A1 (en) Extreme uv radiation reflecting element comprising a sputter-resistant material
KR20060088272A (ko) X-선 광전자 분광분석장치
Filippov et al. Filippov type plasma focus as intense source of hard X-rays (E/sub x//spl sime/50 keV)
RU2697258C1 (ru) Рентгеновский источник и способ генерации рентгеновского излучения
Shelkovenko et al. A study of the ultraviolet radiation of hybrid X-pinches
US6233306B1 (en) X-ray irradiation apparatus including an x-ray source provided with a capillary optical system
JPH08236292A (ja) レーザプラズマx線発生装置
RU194199U1 (ru) Рентгеновский источник для литографии
Tanaka et al. Performance of BL07A at NewSUBARU with installation of a new multi-layered-mirror monochromator
Sharif et al. X-ray emission scaling law from a plasma focus with different anode tip materials (Cu, Mo, and W)
Kalaiselvi et al. X-ray lithography of SU8 photoresist using fast miniature plasma focus device and its characterization using FTIR spectroscopy
Zakaullah et al. Improved temperature measurement in a plasma focus by means of a cobalt filter
RU2785079C1 (ru) Лазерный ускоритель заряженных частиц для испытаний электронной компонентной базы
US20230145938A1 (en) X-ray source and system and method for generating x-ray radiation
Hussain et al. Study of plasma focus as a hard x-ray source for non-destructive testing

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20200318

Effective date: 20200318

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20200318

Effective date: 20200714