RU2617840C2 - Рентгеновский источник - Google Patents

Рентгеновский источник Download PDF

Info

Publication number
RU2617840C2
RU2617840C2 RU2016123968A RU2016123968A RU2617840C2 RU 2617840 C2 RU2617840 C2 RU 2617840C2 RU 2016123968 A RU2016123968 A RU 2016123968A RU 2016123968 A RU2016123968 A RU 2016123968A RU 2617840 C2 RU2617840 C2 RU 2617840C2
Authority
RU
Russia
Prior art keywords
anode
window
channels
ray source
ray
Prior art date
Application number
RU2016123968A
Other languages
English (en)
Other versions
RU2016123968A (ru
Inventor
Николай Алексеевич Дюжев
Максим Александрович Махиборода
Вадим Эвальдович Скворцов
Александр Николаевич Родич
Original Assignee
Общество с ограниченной ответственностью "Микрофотоника"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Микрофотоника" filed Critical Общество с ограниченной ответственностью "Микрофотоника"
Priority to RU2016123968A priority Critical patent/RU2617840C2/ru
Publication of RU2016123968A publication Critical patent/RU2016123968A/ru
Application granted granted Critical
Publication of RU2617840C2 publication Critical patent/RU2617840C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes

Landscapes

  • X-Ray Techniques (AREA)

Abstract

Изобретение относится к рентгеновскому источнику. В заявленном устройстве массивный анод содержит множество сквозных каналов, фокусирующих рентгеновское излучения заданным образом за счет сочетания их направленностей, а также за счет того, что стенки каналов могут содержать материал мишени не по всей длине. Окно источника прилегает к поверхности закрепленного на корпусе анода и не испытывает опасных нагрузок даже при большой площади окна, что снижает требования к материалу окна, которое может быть выполнено достаточно тонким для пропускания рентгеновского излучения. Анод предложенного источника за счет существенной толщины способен отводить к торцам, снабженным средствами теплоотвода, большие потоки тепла. Техническим результатом является увеличение мощности рентгеновского источника. 9 з.п. ф-лы, 3 ил.

Description

Изобретение относится к рентгеновской технике, а именно к рентгеновским источникам, в частности к компактным рентгеновским источникам.
Далее в тексте, если не указано иное, под словом мишень понимается объект, который испускает рентгеновское излучение под действием электронов, имеющих достаточную энергию, под словами материал мишени понимается материал, из которого сделана или может быть сделана мишень, под словом анод имеется в виду анод, совмещающий функции мишени, то есть либо выполненный из проводящего материала, подходящего для генерации требуемого рентгеновского излучения, либо выполненный не из материала мишени, например из материала с высокой теплопроводностью, но имеющий покрытие или иные включения из материала мишени, или выполненный составным из нескольких материалов. Также далее под точкой фокусировки рентгеновского потока подразумевается не точка в строгом математическом смысле, а точка или область, в направлении которой поток существенно интенсивнее, чем других направлениях.
Известны миниатюрные рентгеновские источники, близкие по характеристикам к точечным источникам, у которых катод выполнен кольцевым, а анод, являющийся замедлителем электронов и излучающий рентгеновское излучение, выполнен в виде иглы, конуса или шарика, помещенного вблизи центра кольца (например, патенты RU 2160480, RU 2174726, RU 2522987).
Недостатком их является ограниченность интенсивности рентгеновского потока, вызванная опасностью перегрева анода малых размеров при большом токе ускоренных электронов.
Известны также компактные рентгеновские источники, у которых окно для выхода рентгеновского излучения и анод с мишенью или анод, совмещающий функции мишени, выполнены в виде единого узла, например окно выполнено из того же материала, что и анод или мишень, или окно выполнено из одного материала, а анод - из другого материала или из смеси материалов (например, патенты US 8837680, US 2922904, заявка US 20080170668, …).
Их недостатком является малая площадь окна, связанная с тем, что суммарная толщина окна с анодом ограничена требованиями к степени пропускания ими рентгеновского излучения, а при малой толщине мало избыточное давление, которое может выдержать подобное окно, с одной стороны которого находится вакуумированный объем. Другим их недостатком является использование, как правило, в качестве материала окна с высоким коэффициентом пропускания рентгеновского излучения бериллия, имеющего ряд недостатков: вредность для здоровья и связанные с этим обязательные меры при производстве и утилизации, технологические трудности при соединении, высокая стоимость материала. Кроме того, бериллиевые окна приходится покрывать специальной пленкой для обеспечения герметичности, стойкости к коррозии и защиты от воздействия высоких температур и влажности.
Наиболее близким из аналогов к предлагаемому изобретению в отношение решения увеличения площади окна и исключения использования в качестве материала окна бериллия является рентгеновская трубка по патенту US 7035378, в которой вместо бериллия использован пиролитический графит, а окно имеет сферическую форму, выдерживающую больший перепад давлений, чем плоское окно.
Недостатком данного технического решения является сложность выполнения сферического тонкого окна большой площади из пиролитического графита, а также опасность его разрушения при эксплуатации.
Известны рентгеновские источники со средствами задания формы потока излучения, т.е. с той или иной степенью фокусировки (Мазурицкий М.И. Способы фокусировки и разложения в спектр рентгеновского излучения. Соросовский образовательный журнал. - Т. 7, №10. - 2001. - С. 95-101). В источнике по патенту US 7042982, например, использованы фокусирующие массивы капилляров и зонные пластинки.
Недостатком их является избыточность достигаемого результата для большинства применений, когда не нужны слишком точная фокусировка или фильтрация спектра и т.п., достигаемые за счет ухудшения других характеристик источника, например интенсивности излучения, и приводящая к его удорожанию.
Ближайшим к предлагаемому изобретению аналогом в отношении задания формы рентгеновского потока является рентгеновский источник, в котором генерация рентгеновского излучения происходит в результате взаимодействия электронов с внутренними стенками параллельных друг другу открытых или глухих каналов, выполненных в металлическом аноде (заявка US 20150262783). Узкие каналы в данном изобретении применены для существенного увеличения эффективности использования электронного потока для генерации рентгеновского излучения путем обеспечения повторных соударений отразившихся от поверхности анода электронов со стенками каналов. Описанный анод излучает преимущественно вдоль каналов, так как излучение других направлений экранируется стенками каналов.
Недостатком его является возможность получения потока только одной формы - потока, близкого к параллельному (насколько он близок к параллельному, т.е. насколько вытянута диаграмма направленности потока, зависит от длины каналов). Другим недостатком данного источника является отсутствие сведения для излучения, генерированного вблизи выходного конца канала или в дне глухого канала.
Тонкие просветные аноды и мишени, используемые в компактных рентгеновских источниках, требуют ограничения мощности, подводимой к ним электронным пучком, так как имеют, как и окно, на которое они нанесены, малое поперечное сечение (тонкие, чтобы пропускали рентгеновское излучение), не обеспечивающее отвода большого потока тепла, которое в результате может их разрушить. Теплоотвод в окружающую атмосферу через поверхность окна также мал из-за малой площади окна и низкой теплоотдачи при естественном воздушном охлаждении. Известны рентгеновские источники, содержащие находящиеся в контакте с мишенью дополнительные слои из материала с высокой теплопроводностью (например, US 9008278) или массивные находящиеся с мишенью в тепловом контакте элементы, служащие аккумулятором тепла (патент RU 2479883).
Недостатком этих устройств является то, что они эффективны лишь при импульсном режиме работы источника, а средняя их мощность мала.
В источнике по патенту US 5148462 анод содержит материал мишени и находящийся в тепловом контакте с ним алмазный теплоотвод.
Недостатком такого решения является необходимость использования алмазного слоя, так как слои из других материалов не обеспечивают достаточного теплоотвода при малой толщине, технологические трудности, связанные с обработкой алмаза, а также необходимость дополнительных проводящих слоев.
Задачи, на решение которых направлено предлагаемое изобретение, следующие:
- обеспечение возможности использования окон и анодов больших размеров,
- возможность использования безвредных и технологичных материалов вместо бериллия,
- обеспечение надежной герметизации окон,
- сведение технологии к хорошо освоенным промышленностью приемам,
- обеспечение возможности получения мощных потоков рентгеновского излучения.
Для решения указанных выше задач предлагается рентгеновский источник, который содержит:
- вакуумный корпус;
- анод в виде однородной (из одного материала) или составной (разные части анода выполнены из разных материалов) пластины со сквозными (открытыми с обеих сторон), или глухими (имеющими на одном из концов вместо выхода дно из материала мишени с толщиной, обеспечивающей достаточное пропускание рентгеновского излучения), или и с теми и другими каналами с проводящими стенками, содержащими на всем их протяжении или на части их длины начиная от открытых (входных концов) материал или разные материалы мишени, способные излучать требуемое рентгеновское излучение при облучении электронами достаточной энергии, и выполненными с возможностью подачи на них заданного потенциала, причем каналы (их оси, или образующие, или нормали к какой-либо точке поперечного сечения и т.д.) направлены либо в одну и ту же точку (фокус), расположенную с внешней или с внутренней стороны от мишени (вне или внутри корпуса), либо в несколько разных точек (несколько фокусов), либо во множество точек, образующих требуемый узор, и имеют характерный размер поперечного сечения в пределах от 0,001 до 1,0 от толщины анода;
- стенки каналов, направленных как в одну, так и в разные стороны, могут содержать одинаковые или разные материалы мишени;
- толщина анода выбрана достаточной - с учетом его площади и формы - для сохранения целостности анода при действии на него разности давлений вне и внутри корпуса;
- анод выполнен с возможностью крепления его непосредственно к корпусу рентгеновского источника (а не только, например, к окну);
- окно, которое выполнено или прилегающим к аноду, или в одном узле с ним, или в его составе так, что примыкает к поверхности анода (в т.ч. может составлять одно целое с ним) со стороны внешних (по отношению к корпусу) концов каналов;
- катод или катодный узел с необходимыми средствами формирования электронного потока;
- вспомогательные средства.
Характерным, оценочным, размером поперечного сечения канала является диаметр канала, если он имеет круглое сечение, или величина порядка корня квадратного из площади поперечного сечения канала - при любых формах его поперечного сечения.
Анод в данном изобретении выполняет несколько функций:
- является собственно анодом (положительным электродом);
- является мишенью (источником рентгеновского излучения требуемой длины волны);
- принимает на себя нагрузки на окно от внешнего давления (передает их на корпус, к которому крепится), препятствуя разрушению окна, например, при нормальном атмосферном (внешнем) давлении или при экстремальном (давление при глубоководном погружении, взрывах, исследованиях при высоких давлениях и т.п.);
- обеспечивает преимущественное направление генерируемого в стенках канала излучения вдоль этого канала (поглощением значительной части излучения другой направленности). Расходимость пучка из одного канала определяется отношением характерного размера поперечного сечения канала d к длине канала l и зависит от глубины u канала, до которой на его стенки нанесен материал мишени. Под расходимостью излучения в приближении канала круглого сечения имеется в виду угол при вершине в осевом сечении конуса, который охватывает излучаемый поток. Расходимость излучения, генерируемого у входной части канала круглого сечения, составляет αmin=arctg(2d/l)≈2d/l, а расходимость излучения из частей канала, расположенных в наиболее глубоких точках, где еще имеется материал мишени, возрастает до αmax=arctg[2d/(l-u)]≈2d/(l-u). Таким образом, излучаемый каналом диаметром d, длиной l и глубиной u покрытия стенок материалом мишени поток рентгеновского излучения будет находится внутри конуса с углом при вершине αmax=arctg[2d/(l-u)]≈2d/(l-u). Для оценки: при d=10-5 м, l=10-2 м и u=5⋅10-3 м расходимость составит примерно 4⋅10-3 рад, или порядка 0,2°;
- обеспечивает возможность преимущественной фокусировки рентгеновского излучения в одной точке или в нескольких точках с любой стороны от мишени (для внешнего наблюдателя фокус внутри корпуса источника может рассматриваться как мнимый фокус), а также во множестве точек, создавая заданный - в пределах разрешения данной схемы - рисунок с помощью выбора направлений отдельных каналов (задавать несколько рентгеновских лучей, направленных в разные стороны, задавать рисунки облучения, причем не обязательно симметричные относительно оси окна, и другие конфигурации);
- обеспечивает повышение эффективности преобразования энергии электронного потока в энергию рентгеновского излучения, так как частично компенсирует непроизводительное (без генерации рентгеновского излучения) отражение электронов, рикошеты, от поверхности мишени путем возможности использования каждым из электронов множества попыток генерации благодаря повторному попаданию отразившихся электронов, не потерявших энергии, в стенки узких каналов;
- в глухих каналах внешний выход из канала перекрыт слоем материала мишени, достаточно тонким, чтобы быть прозрачным для рентгеновского излучения, но и достаточно толстым, чтобы обеспечивать поглощение падающего на него потока электронов, это позволяет увеличить рентгеновский поток за счет электронов, отразившихся от стенок каналов при всех рикошетах, но эта часть рентгеновского потока не будет коллимирована и может быть полезной, например, при расположении объекта облучения вблизи окна;
- обеспечивает эффективный теплоотвод как от локальных зон перегрева анода, так и от анода в целом, т.к. лишь часть объема анода занята каналами, а остальная часть имеет достаточно большую для передачи тепла площадь поперечного сечения и может передавать значительные потоки тепла внешним элементам (корпусу, радиаторам или иным узлам), и теплоотвод может быть увеличен в вариантах изобретения или включением в состав анода частей, выполненных из материала с высокой теплопроводностью, например из меди, или увеличением среднего поперечного сечения анода путем или увеличения толщины анода, или изменения количества и/или диаметра каналов, или изменения плотности или порядка расположения каналов. В варианте изобретения корпус рентгеновского источника выполнен с возможностью обеспечения теплового контакта торцевой области анода с внешними средствами теплоотвода.
Анод может быть выполнен:
- в виде сплошного проводящего слоя из материала мишени или из нескольких разных материалов, пригодных для использования в качестве мишеней, в котором выполнены описанные выше каналы;
- в виде формообразующей основы из слоя материала, выбранного с учетом тех или иных задач, в котором выполнены каналы, на поверхности которых нанесен хотя бы один материал мишени в виде или пятен, или сплошного слоя, или каких-либо других геометрических форм. Формообразующая основа может быть выполнена из материала с высокой теплопроводностью. Формообразующая основа может быть сформирована из того же материала, что и окно, или из другого. Например, окно можно изготовить из оксида кремния (оптически прозрачное), а слой с каналами выполнить из кремния (для обеспечения большей теплопроводности) и нанести затем на поверхность каналов материал мишени, например молибден. Аналогично, можно выполнить окно из никеля (устойчиво к атмосферным воздействиям), слой с каналами - из меди (высокая теплопроводность), а на поверхность каналов нанести материал мишени или не наносить ничего, так как медь и сама является широко используемым материалом мишени.
Выбор материала и толщины окна предлагаемого рентгеновского источника может быть сделан практически без учета требований к прочности окна, так как, благодаря тому, что окно в предлагаемом источнике прилегает без зазоров к аноду достаточной прочности, а отверстия каналов малы, оно может быть изготовлено настолько тонким, что поглощением рентгеновского излучения в нем можно будет пренебречь практически при любом материале окна. То же преимущество в выборе толщины окна и его материала сохраняются и в вариантах изобретения, в которых окно выполнено не как отдельная прикладываемая к аноду деталь, а в едином узле с достаточно прочным прилегающим к нему анодом или выполнено в составе анода в виде единой детали с ним, изготовленной из того же или другого материала или из нескольких материалов (например, многослойное пленочное окно).
Окно может быть изготовлено либо из кремния, либо из оксида кремния, либо из нитрида кремния, либо с чередованием слоев из этих материалов в каком-либо сочетании. Такой выбор материалов способен удовлетворять разным возможным требованиям к свойствам окна, а создание таких слоев широко освоено.
Вспомогательными средствами являются узлы и детали, обеспечивающие основной процесс генерации рентгеновского излучения и использования его. Ими могут быть, например:
- блоки управления катодным узлом, который может включать термо- или автокатод, вытягивающие и/или фокусирующие электроды, блоки их питания;
- блоки формирования постоянного или модулированного высокого напряжения;
- система управления источником в целом (выключатели, блокировки, регуляторы интенсивности и модуляции электронного пучка, регуляторы величины высокого напряжения и его формы, индикаторы функционирования и т.п.);
- средства контроля величины и формы рентгеновского потока;
- средства для отвода тепла и другие средства.
Например, в варианте исполнения корпус предлагаемого источника может быть снабжен находящимся в тепловом контакте с торцевой областью анода внешним радиатором.
Цифрами на фиг. 1-3 обозначены:
1 - корпус,
2 - анод,
3 - каналы,
4 - окно выходное для излучения,
5 - фокус,
6 - рентгеновское излучение,
7 - поток электронов,
8 - катод (катодный узел),
9 - формообразующая основа.
10 - материал мишени,
11 - радиатор.
На фиг. 1 схематично (без необходимых, но общеизвестных элементов) изображен вариант предлагаемого рентгеновского источника в разрезе.
На фиг. 2 изображен в разрезе анод с окном в одном из вариантов изобретения:
- с каналами, ориентированными в сторону двух фокусов (5а и 5б),
- со стенками, содержащими материал мишеней только на начальной части их длины,
- с разными материалами мишени (10а и 10б) на стенках разных каналов,
- с теплоотводом в виде радиатора (изображен условно), находящегося в тепловом контакте с торцом анода.
На фиг. 3 изображен в разрезе анодный узел в варианте исполнения с двумя фокусами и с радиатором для теплоотвода, рассчитанный на изготовление по групповой технологии.
Примером конкретного исполнения предлагаемого рентгеновского источника может служить источник для исследования геологических образцов, который схематически изображен на фиг. 3. Он имеет корпус 1 диаметром 25 мм из стекла, анод 2 с формообразующей основой из кремния толщиной 10 мм, в котором в пределах окружности диаметром 20 мм выполнено 100 сквозных отверстий 3 каналов диаметром 0,5 мм, из которых 50 сориентировано в направлении фокуса 5а, находящегося в 100 мм перед анодом и в 50 мм в стороне от его оси, а 50 - в направлении фокуса 56, расположенного в 100 мм вдоль оси. С одной стороны отверстия закрыты окном 4 из оксида кремния толщиной 3 мкм, покрывающего всю наружную поверхность анода. Технология изготовления различных узлов, сочетающих эти два материала, кремний и оксид кремния, хорошо отработана и позволяет обеспечить групповое изготовление подобных узлов. Стенки каналов с их открытой стороны до половины глубины покрыты слоями 10а и 10б толщиной 0,1 мм из разных материалов мишени, молибдена (10а) и меди (10б), длины волн характеристического рентгеновского излучения которых отличаются в среднем (по разным линиям) примерно в 7,5 раз, причем стенки каналов, ориентированных на разные фокусы, покрыты разными материалами. Слой кремния, в котором сформирован анод, продолжается за пределы анода, имеет диаметр 50 мм и выступает за пределы корпуса 1 в виде кольца шириной 10 мм, который выполнен в виде охлаждающего радиатора 11 со 150 сквозными отверстиями диаметром 2 мм для продувки воздуха. Кремний имеет высокую теплопроводность, лишь немного уступающую теплопроводности алюминия, что позволяет эффективно отводить тепло от материала мишени и использовать режимы работы рентгеновского источника с большими токами и напряжениями. На анод подается напряжение 45 кВ, а катодный узел выполнен из массива автокатодов и обеспечивает ток до 5 мА. Центробежный вентилятор мощностью 10 Вт встроен в кожух источника, который (как и катодный узел, и блоки питания, и средства электрической изоляции и т.д.) не показан на чертеже. Возможность облучения исследуемых образцов рентгеновским излучением разной длины волны дает дополнительные возможности для выводов о составе и свойствах образцов.
Предлагаемый рентгеновский источник обеспечивает возможность использования для изготовления окна материалов с низким пропусканием рентгеновского излучения и с характеристиками, требуемыми для повышения надежности устройства и упрощения технологии его изготовления, позволяет изготавливать окна большой площади, позволяет увеличить мощность рентгеновских источников путем эффективного использования электронного потока и улучшенного теплоотвода, повышает удобство пользования источником, а также позволяет задавать в широких пределах форму потока рентгеновского излучения.

Claims (10)

1. Рентгеновский источник, содержащий вакуумный корпус, анод со сквозными открытыми, или глухими, или и теми и другими каналами с проводящими стенками, выполненными с возможностью подачи на них заданного потенциала и содержащими материал, способный излучать рентгеновское излучение при облучении электронами достаточной энергии, катод, окно для рентгеновского излучения и вспомогательные средства, отличающийся тем, что анод выполнен с возможностью непосредственного крепления к корпусу, каналы анода содержат материал или разные материалы мишени на всем их протяжении или на части их длины и выполнены с характерным размером поперечного сечения в пределах от 0,001 до 1,0 от длины каналов, направлены или в одну и ту же точку, далее называемую фокусом, или в несколько точек, фокусов, или во множество точек, задающих требуемый узор, а окно выполнено или прилегающим к аноду, или в одном узле с ним или в его составе так, что примыкает к поверхности анода со стороны закрытых концов глухих каналов или с любой одной стороны, если все каналы открытые.
2. Рентгеновский источник по п. 1, отличающийся тем, что анод выполнен в виде формообразующей основы и одного или нескольких нанесенных на формообразующую основу слоев из одного или нескольких материалов, из которых хотя бы один способен излучать требуемое рентгеновское излучение.
3. Рентгеновский источник по п. 2, отличающийся тем, что формообразующая основа сформирована за одно с окном из того же материала или из другого.
4. Рентгеновский источник по п. 2, отличающийся тем, что формообразующая основа изготовлена из материала с высокой теплопроводностью.
5. Рентгеновский источник по п. 4, отличающийся тем, что формообразующая основа изготовлена из кремния.
6. Рентгеновский источник по п. 1, отличающийся тем, что окно выполнено либо из кремния, либо из оксида кремния, либо из нитрида кремния, либо из чередования слоев из этих материалов в каком-либо сочетании.
7. Рентгеновский источник по п. 1, отличающийся тем, что фокус или один из фокусов расположен с наружной стороны окна на его оси или вне ее.
8. Рентгеновский источник по п. 1, отличающийся тем, что фокус или один из фокусов расположен с внутренней стороны окна на его оси или вне ее.
9. Рентгеновский источник по п. 1, отличающийся тем, что разные каналы направлены в два или более разных фокуса и каналы, направленные в разные фокусы, содержат разные или одинаковые материалы мишени.
10. Рентгеновский источник по п. 1, отличающийся тем, что корпус источника выполнен с возможностью обеспечения теплового контакта торцевой области анода с внешними средствами теплоотвода.
RU2016123968A 2016-06-16 2016-06-16 Рентгеновский источник RU2617840C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016123968A RU2617840C2 (ru) 2016-06-16 2016-06-16 Рентгеновский источник

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016123968A RU2617840C2 (ru) 2016-06-16 2016-06-16 Рентгеновский источник

Publications (2)

Publication Number Publication Date
RU2016123968A RU2016123968A (ru) 2016-10-10
RU2617840C2 true RU2617840C2 (ru) 2017-04-28

Family

ID=57122216

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016123968A RU2617840C2 (ru) 2016-06-16 2016-06-16 Рентгеновский источник

Country Status (1)

Country Link
RU (1) RU2617840C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU182856U1 (ru) * 2018-05-04 2018-09-05 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Рентгеновский источник
RU2697258C1 (ru) * 2018-03-05 2019-08-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Рентгеновский источник и способ генерации рентгеновского излучения
RU2707272C1 (ru) * 2019-06-04 2019-11-26 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) Мощный источник нейтронов, использующий ядерную реакцию синтеза, протекающую при бомбардировке нейтронообразующей газовой мишени ускоренными ионами дейтерия

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030058995A1 (en) * 2001-09-25 2003-03-27 Siemens Aktiengesellschaft Rotating anode X-ray tube with meltable target material
US20040120463A1 (en) * 2002-12-20 2004-06-24 General Electric Company Rotating notched transmission x-ray for multiple focal spots
RU2015103627A (ru) * 2015-02-04 2015-06-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет МИЭТ" Источник рентгеновского излучения
US20150262783A1 (en) * 2014-03-15 2015-09-17 Stellarray, Inc. Forward Flux Channel X-ray Source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030058995A1 (en) * 2001-09-25 2003-03-27 Siemens Aktiengesellschaft Rotating anode X-ray tube with meltable target material
US20040120463A1 (en) * 2002-12-20 2004-06-24 General Electric Company Rotating notched transmission x-ray for multiple focal spots
US20150262783A1 (en) * 2014-03-15 2015-09-17 Stellarray, Inc. Forward Flux Channel X-ray Source
RU2015103627A (ru) * 2015-02-04 2015-06-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет МИЭТ" Источник рентгеновского излучения

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697258C1 (ru) * 2018-03-05 2019-08-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Рентгеновский источник и способ генерации рентгеновского излучения
RU182856U1 (ru) * 2018-05-04 2018-09-05 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Рентгеновский источник
RU2707272C1 (ru) * 2019-06-04 2019-11-26 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) Мощный источник нейтронов, использующий ядерную реакцию синтеза, протекающую при бомбардировке нейтронообразующей газовой мишени ускоренными ионами дейтерия

Also Published As

Publication number Publication date
RU2016123968A (ru) 2016-10-10

Similar Documents

Publication Publication Date Title
US5576549A (en) Electron generating assembly for an x-ray tube having a cathode and having an electrode system for accelerating the electrons emanating from the cathode
JP2747295B2 (ja) 本質的に単色のx線を発生する放射線源
TWI382789B (zh) 製造遠紫外線輻射或軟性x射線之方法及裝置
RU2617840C2 (ru) Рентгеновский источник
JP6496321B2 (ja) X線装置及び該x線装置を有するctデバイス
US9852875B2 (en) X-ray tube
US7412033B2 (en) X-ray radiator with thermionic emission of electrons from a laser-irradiated cathode
US7346147B2 (en) X-ray tube with cylindrical anode
US9818569B2 (en) High dose output, through transmission target X-ray system and methods of use
US20090323898A1 (en) Thermionic emitter designed to control electron beam current profile in two dimensions
EP3664119A1 (en) X-ray device and method of applying x-ray radiation
JP2007538359A (ja) 高線量x線管
US11101096B2 (en) High dose output, through transmission and relective target X-ray system and methods of use
WO2008156361A2 (en) Miniature x-ray source with guiding means for electrons and / or ions
US9508523B2 (en) Forward flux channel X-ray source
US3584219A (en) X-ray generator having an anode formed by a solid block with a conical bore closed by a target toil
US7469040B2 (en) X-ray tube for high dose rates, method of generating high dose rates with X-ray tubes and a method of producing corresponding X-ray devices
CN109698105B (zh) 高剂量输出的透射传输和反射目标x射线系统及使用方法
US6493419B1 (en) Optically driven therapeutic radiation source having a spiral-shaped thermionic cathode
RU2563879C1 (ru) Миниатюрный рентгеновский излучатель
JP2009021032A (ja) X線発生管
CN101720492B (zh) 用于生成x-射线辐射并且具有根据需要调节的大的实焦点和虚焦点的装置
JP2000082430A (ja) X線発生用ターゲット及びこれを用いたx線管
JP2008277266A (ja) ガス放電による高電流切り換え装置
US6359968B1 (en) X-ray tube capable of generating and focusing beam on a target

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180617