WO2015039509A1 - 一种基于直线轨迹的断层扫描装置以及透视成像装置 - Google Patents
一种基于直线轨迹的断层扫描装置以及透视成像装置 Download PDFInfo
- Publication number
- WO2015039509A1 WO2015039509A1 PCT/CN2014/084171 CN2014084171W WO2015039509A1 WO 2015039509 A1 WO2015039509 A1 WO 2015039509A1 CN 2014084171 W CN2014084171 W CN 2014084171W WO 2015039509 A1 WO2015039509 A1 WO 2015039509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- collimator
- ray
- receiving unit
- track
- radiation
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims description 31
- 238000002591 computed tomography Methods 0.000 title description 3
- 230000005855 radiation Effects 0.000 claims description 130
- 238000003325 tomography Methods 0.000 claims description 73
- 238000012545 processing Methods 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 8
- 238000011058 failure modes and effects analysis Methods 0.000 abstract 1
- 238000004904 shortening Methods 0.000 abstract 1
- 230000009897 systematic effect Effects 0.000 abstract 1
- 238000007689 inspection Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 8
- 230000003993 interaction Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
- A61B6/035—Mechanical aspects of CT
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/29—Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
- G01T1/2914—Measurement of spatial distribution of radiation
- G01T1/2985—In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
- G21K1/025—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/06—Diaphragms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/33—Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
- G01N2223/3301—Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts beam is modified for scan, e.g. moving collimator
Definitions
- the present invention relates to a tomographic apparatus and a fluoroscopic imaging apparatus, and more particularly to a tomographic scanning apparatus and a fluoroscopic imaging apparatus based on a linear trajectory, and belongs to the field of radiation imaging technology. Background technique
- CT Computed Tomography
- a ray generating unit, a ray receiving unit, an imaging computer, and the like When the tomographic apparatus performs radiation imaging, the tomographic scanning apparatus scans the angles of the object to be inspected, the radiation generated by the radiation generating unit illuminates the object to be inspected and generates projection data, and the receiving unit receives the generated projection data and transmits the generated projection data to the imaging computer.
- the imaging computer recognizes the received projection data, and reconstructs the projection data to obtain information of each fault of the object to be inspected, thereby visually and clearly displaying the structure and composition of the object to be inspected.
- the scanning trajectory of the tomographic apparatus has an arc, a spiral, a straight line, a saddle, and the like.
- the linear trajectory tomography apparatus has been increasingly focused on and studied because it does not use a conventional circular trajectory or a spiral trajectory, and uses a linear scanning trajectory.
- the linear trajectory tomography apparatus of the prior art performs linear trajectory scanning on the object to be inspected by the ray beam generated by the ray generating unit, and receives the ray beam by providing a plurality of ray receiving units on the linear trajectory, and the ray receiving unit includes the detector and Radiation protection components, etc.
- the cost of the linear trajectory tomography device is greatly increased, which seriously limits the promotion and application of the linear trajectory tomography device.
- the technical problem to be solved by the present invention is to provide a linear track tomography apparatus which is simple in structure, easy to implement, and low in cost.
- the present invention provides a tomographic scanning apparatus based on a linear trajectory and a fluoroscopic imaging apparatus.
- the present invention provides a tomographic scanning apparatus based on a linear trajectory, comprising: a ray generating unit for sequentially generating a beam of rays in a specific angular range, and a first collimating for constraining the beam of rays , a channel to be inspected for the object to be inspected to pass, and a radiation receiving unit that receives the beam;
- the radiation beam generated by the radiation generating unit is sequentially transmitted through the first collimator and the object to be inspected, and is received by the radiation receiving unit, and the radiation receiving unit transmits the received beam data to an imaging computer for processing.
- the ray generating unit is stationary, and the first collimator and the ray receiving unit move in the same direction.
- the first collimator is provided with at least one first collimating slit for the beam to pass through;
- the first collimating slit is located within the opening angle range, and the boundary of the first collimator exceeds the opening angle range.
- the number of the first collimating slits is n; when n is equal to 1, the maximum stroke of the first collimating slit in one-time motion is s; when n is greater than 1, adjacent The spacing of the seams of the first collimating slit is equal to s/n.
- the number of the radiation receiving units is the same as the number of the first collimating slits, and each of the radiation receiving units corresponds to one of the first collimating slits.
- the radiation receiving unit includes a third collimator having a third collimating slit and a detector for receiving a beam of rays transmitted through the third collimator.
- the ray generating unit includes a ray source that generates a beam of rays and The beam of rays defines a second collimator within the particular opening angle range.
- the method further includes a first track and a second track disposed in parallel on both sides of the motion channel, the first collimator moves along the first track, and the radiation receiving unit is along the first a two-track motion; a ratio of motion speeds of the first collimator and the radiation receiving unit is equal to a ratio of a distance of the radiation source to the first track and a distance to the second track.
- the first track and the second track are linear tracks parallel to the motion channel; or
- the first track and the second track are arcuate tracks centered on the ray generating unit.
- the ray generating unit, the first collimator, and the ray receiving unit are all fixed on the straight rod.
- the radiation receiving unit further includes a radiation protection member for absorbing a beam of rays that is not absorbed by the radiation receiving unit.
- the object to be inspected moves in the motion channel; the first collimator and the radiation receiving unit perform a reciprocating motion.
- the moving speed of the object to be inspected is 0.005-0.1 times the moving speed of the radiation receiving unit.
- a control unit that can control and monitor the motion state of the first collimator and the ray receiving unit is further included.
- the present invention provides a linear trajectory fluoroscopic imaging apparatus comprising: a ray generating unit for sequentially generating a beam of rays in a specific angular range, and a first collimator for constraining the beam of rays a channel to be inspected for the object to be inspected to pass, and a radiation receiving unit that receives the beam;
- the radiation beam generated by the radiation generating unit is sequentially transmitted through the first collimator and the object to be inspected, and is received by the radiation receiving unit, and the radiation receiving unit transmits the received beam data to an imaging computer for processing.
- the ray generating unit is stationary, the first collimator and the ray receiving unit are configured Co-directional movement
- the object to be inspected is stationary in the motion channel; the first collimator and the radiation receiving unit perform only one-way motion.
- the linear trajectory-based tomographic scanning apparatus and the fluoroscopic imaging apparatus provided by the present invention, by providing a first collimator between the ray receiving unit and the object to be inspected, the ray beam sequentially passes through the first collimator and the object to be inspected Received by the ray receiving unit, during the scanning process, the ray generating unit is stationary, and the first collimator and the ray receiving unit perform the same linear motion and the moving direction is parallel to the object to be inspected, through the first collimator and
- the interaction of the radiation receiving units with each other enables scanning of the various angles of the object to be inspected. Therefore, the linear trajectory tomography apparatus of the present invention can perform tomographic scanning using at least one ray receiving unit, thereby simplifying the structure of the linear trajectory tomography apparatus and reducing the implementation cost of the linear trajectory tomography apparatus.
- FIG. 1 is a schematic structural view of a first embodiment of a linear trajectory tomography apparatus according to the present invention
- FIG. 2 is a schematic structural view of a second embodiment of a linear trajectory tomography apparatus according to the present invention
- FIG. 3 is a schematic structural view of a third embodiment of a linear trajectory tomography apparatus according to the present invention.
- FIG. 4 is a schematic structural view of a fourth embodiment of a linear trajectory tomography apparatus according to the present invention
- FIG. 5 is a schematic structural view of a sixth embodiment of the linear trajectory tomography apparatus provided by the present invention.
- FIG. 6 is a schematic structural view of a first collimator and a third collimator according to Embodiment 5 of the present invention
- FIG. 7 is a schematic diagram of a bridge structure of a ray source, a first collimator, and a ray receiving unit according to Embodiment 5 of the present invention.
- the present invention provides a tomographic scanning device based on a linear trajectory, as shown in FIG. 1, comprising: a ray generating unit 2 for sequentially generating a beam 8 in a specific angular range, for constraining the beam a first collimator 1 for the first object, a channel 4 to be inspected for passing the object to be inspected, and a radiation receiving unit 3 for receiving the beam 8; the beam 8 generated by the radiation generating unit 2 sequentially transmits the beam a collimator 1 and an object to be inspected 40 are received by the radiation receiving unit 3, and the radiation receiving unit 3 transmits the received beam data to the imaging computer 5 for processing and display; the radiation generating unit 2 is stationary, The first collimator 1 and the radiation receiving unit 3 perform the same direction movement.
- the present invention will now be described in detail in connection with a plurality of embodiments.
- the linear trajectory tomography apparatus mainly comprises a ray generating unit 2, a first collimator 1, a channel 4 to be inspected, a ray receiving unit 3, an imaging computer 5, and the like;
- the ray generating unit 2 is for generating a beam 8 and the beam 8 is defined within a specific opening angle range. For example, within a 90 degree opening angle range, within a 120 degree opening angle range, and the like.
- a first collimator 1 for further defining the beam 8 , the beam 8 passing through the first collimator 1 forms a beam 8 having a narrow angular range;
- the object channel 4 to be inspected is used for inspection
- the object 40 passes, the ray generating unit 2 and the first collimator 1 are disposed on one side of the object to be inspected 4, and the ray receiving unit 3 is disposed on the other side of the object 4 to be inspected; the beam 8 is sequentially transmitted through the first
- the radiation receiving unit 3 transmits the received beam data to the imaging computer 5, the imaging computer 5 performs image reconstruction on the received beam data. And display.
- One of the main improvements of the present invention is that When the inspection object 40 is subjected to scanning detection, the radiation generating unit 2 is stationary, and the first collimator 1 and the radiation receiving unit 3 are moved in the same direction, and the moving direction is parallel to the object to be inspected 4. Scanning of the respective angles of the object to be inspected 40 is achieved by the interaction of the first collimator 1 and the radiation receiving unit 3 with each other. Therefore, the linear trajectory tomography apparatus of the present embodiment can perform tomographic scanning using at least one ray receiving unit 3, thereby simplifying the structure of the linear trajectory tomography apparatus and reducing the implementation cost of the linear trajectory tomography apparatus.
- Technical support can be provided for the spread of, for example, container linear trajectory tomography. Since the tomographic image of the object 40 to be inspected can be obtained by the linear trajectory tomography apparatus provided by the present invention, the problem of image overlap in the conventional fluoroscopic imaging can be overcome.
- the linear trajectory tomography apparatus Since the structure of the linear trajectory tomography apparatus provided by the present invention is simpler than the structure of the linear trajectory tomography apparatus in the prior art, the handling is lighter and easier, and therefore, the linear trajectory tomography apparatus can also be designed It can be carried in a form that is not fixed in one place and cannot be moved. Since the first collimator 1 in the linear trajectory tomography apparatus provided by the present invention can define the beam 8 within a narrow opening angle range, the influence of scattering on tomographic imaging can be suppressed to some extent. At the same time, since the number of the ray receiving units 3 can be employed in the linear trajectory tomography apparatus provided by the present invention, the signal crosstalk between the illuminating receiving units 3 can be greatly reduced, and the accuracy of the imaging can be improved.
- the system of the present invention can employ a higher-performance radiation receiving unit 3, such as a radiation receiving unit 3 having a small afterglow effect, a sandwich type dual-energy radiation receiving unit 3, or energy-resolving.
- a higher-performance radiation receiving unit 3 such as a radiation receiving unit 3 having a small afterglow effect, a sandwich type dual-energy radiation receiving unit 3, or energy-resolving.
- the radiation receiving unit 3 and the like having a higher rate.
- the linear trajectory tomography apparatus provided in this embodiment is as shown in FIG. 2.
- the linear trajectory tomography apparatus includes a ray generating unit 2, a first collimator 1, a channel 4 to be inspected, a ray receiving unit 3, an imaging computer 5, and the like which are sequentially disposed.
- the radiation generating unit 2 may include a radiation source 22 that generates the radiation beam 8 and a second collimator 21 that limits the radiation beam 8 within a specific angular range.
- Radiation source 22 can be an X-ray machine, an electron accelerator source or an isotope source, and the like.
- a target may be placed at the location of the source 22, and an electron beam emitted by the X-ray machine or an electron beam emitted from the electron accelerator may be bombarded on the target to generate X-ray radiation.
- the second collimator 21 is provided with a second collimating slit 20, and the second collimator 21 is configured to pass a part of the beam 8 generated by the radiation source 22 through the second collimating slit 20, thereby To the collimating action, on the other hand, it is used to absorb and block another portion of the beam 8 that does not pass through the second collimating slit 20, thereby providing radiation protection.
- the first collimator 1 is disposed in the direction in which the beam 8 of the radiation source 22 is emitted, and the first collimator 1 is provided with a first collimating slit 10 for further defining the beam 8.
- the beam 8 is transmitted through the first collimator 1 to form a beam 8 having a narrow angular range; the first collimating slit 10 is located in the opening angle range, and the boundary of the first collimator 1 is beyond the ray generating unit 2
- the specific range of angles defined that is, regardless of the position at which the first collimator 1 is moved, the first collimator 1 is capable of covering a specific angular range defined by the entire ray generating unit 2, so as to absorb and block the opaque
- the beam 8 of the first collimating slit 10 acts as a radiation protection.
- the radiation receiving unit 3 includes: a third collimator 31 having a third collimating slit 30; and a detector 32 for receiving the beam 8 transmitted through the third collimator 31.
- the beam 8 of the straight seam 10 continues to be received by the detector 32 after passing through the third collimating slit 30, and the detector 32 transmits the received beam data to the imaging computer 5.
- the radiation receiving unit 3 in this embodiment further includes a radiation protection member 33 for absorbing the radiation beam 8 that is transmitted through the third collimator 31 and not absorbed by the detector 32, thereby radiating Protective effect.
- the third collimator 31, the detector 32, and the radiation protection member 33 are combined and used in this embodiment.
- the first collimator 1 and the third collimator 31 preferentially use heavy metals such as lead, so that the first collimator 1 and the third collimator 31 can be made relatively thin, thereby further reducing the entire linear trajectory tomography apparatus.
- the first track 19 and the second track 39 are disposed on both sides of the object to be inspected channel 4, and the first track 19, the object to be inspected channel 4, and the second track 39 are parallel to each other (of course, in principle, The first track 19 and the second track 39 may be parallel, may not be parallel to the object channel 4 to be inspected, and the preferred embodiment is clarified here; the first collimator 1 moves on the first track 19, and the third collimator 31 Movement on the second track 39 (since all the components of the radiation receiving unit 3 are combined together, the ray receiving unit 3 is moved on the second track 39).
- the width ratio of the first collimating slit 10 and the third collimating slit 30 may be equal to the ratio of the distance between the radiation source 11 to the first rail 19 and the distance to the second rail 39, so that the third standard can be made.
- the straightener 31 can function as a collimation.
- the ratio of the distance of the above-mentioned radiation source 22 to the first track 19 and the distance from the source 22 to the second track 39 can be changed to the projection of the source 22 on the horizontal plane to the first track 19 on the horizontal plane.
- the radiation source 11 and the second collimator 21 are stationary, and the first collimator 1 moves along the first rail 19, and the radiation receiving unit 3 (including the third collimator 31, detecting The device 32 and the radiation protection member 33) move along the second track 39, and the first collimator 1 and the radiation receiving unit 3 move in the same direction. Also, during the movement, the source 22, the first collimating slit 10, and the third collimating slit 30 are maintained in the same line.
- the first collimating slit 10 and the third collimating slit 30 on the same straight line, it can be realized by controlling the moving speed ratio of the first collimator 1 and the third collimator 31, that is, The ratio of the speeds of movement of a collimator 1 and a third collimator 31 is equal to the ratio of the distance of the source 22 to the first track 19 and the distance to the second track 39.
- the object to be inspected 40 slowly passes through the object channel 4 to be inspected.
- the moving speed of the object to be inspected 40 may be one-fifth to one-tenth of a thousandth of the moving speed of the radiation receiving unit 3, and may be, for example, one-thirtieth, one-thirtieth, one-fiftieth, and the like.
- the first collimator 1 and the third collimator 31 reciprocate back and forth on the respective track first track 19 and second track 39, thereby realizing scanning at various angles of the object 40 to be inspected.
- the detector 32 can collect data in the reciprocating motion, or can collect data only when moving in one direction of the return or the return, and is not particularly limited herein.
- the linear trajectory tomography apparatus in this embodiment may further include a data processing unit, a control unit, an alarm unit, and the like.
- the data processing unit includes an imaging computer that, after receiving the data transmitted by the detector 32, processes the acquired data to reconstruct the image and display it.
- the data processing unit is also used for user interaction and, if necessary, to send control commands to the alarm unit and the like.
- the alarm unit is used to receive an alarm after receiving a control command from the data processing system.
- the control unit is for controlling and monitoring the motion state of the first collimator 1 and the radiation receiving unit 3 on the respective tracks, and the control unit can also be used to control the generation of the radiation beam 8 of the radiation source 22 or to stop generating the radiation beam 8, the control unit It is also used to control or monitor the motion of the examination subject 40.
- the linear trajectory tomography apparatus provided in this embodiment is as shown in FIG.
- the linear trajectory tomography apparatus is substantially similar in structure to the linear trajectory tomography apparatus provided in the first embodiment.
- the difference is mainly that, in this embodiment, the first collimator 1 is provided with two first collimating slits 10; correspondingly, the number of the ray receiving units 3 is also two, and each ray receiving unit 3 corresponds to one The first collimating slit 10.
- the spacing of the two first collimating slits 10 is equal to s /2.
- the first collimator 1 in this embodiment can be modified by the first collimator 1 in the first embodiment. For example, a new first can be added to the first collimator 1 in the first embodiment.
- the straightening seam 10, the position of the opening is on the left side or the right side of the first collimator 1; at the same time, it is still necessary to ensure that the boundary of the first collimator 1 exceeds the opening angle range, that is, no Regarding which position the first collimator 1 is moved, the first collimator 1 is capable of covering a specific angular range defined by the entire ray generating unit 2 so as to absorb and block rays that are not transmitted through the first collimating slit 10.
- the first collimator 1 in this embodiment can also be provided independently, instead of being modified by the first collimator 1 in the first embodiment.
- the radiation source 22 and the second collimator 2 are stationary, and the first collimator 1 is moved along the first rail 19, and the two radiation receiving units 3 (both including the third collimator) 31.
- the detector 32 and the radiation protection member 33 are moved along the second track 39, and the movement directions of the first collimator 1 and the radiation receiving unit 3 are the same; and, during the movement, the radiation source 22, any one of the first standards
- the straight seam 10 and the third collimating slit 30 corresponding to the first collimating slit 10 are maintained on the same straight line, that is, the radiation source 22, the first collimating slit 10 on the left side, and the third radiograph receiving unit 3 on the left side.
- the collimating slits 30 are kept on the same straight line, and the radiation source 22, the first collimating slit 10 on the right side, and the third collimating slit 30 on the right side of the radiation receiving unit 3 are held on the same straight line.
- the first collimating slit 10 and the third collimating slit 30 it can be realized by controlling the moving speed ratio of the first collimator 1 and the third collimator 31, that is,
- the ratio of the moving speeds of the first collimator 1 and the third collimator 31 is equal to the ratio of the distance from the source 22 to the first track 19 and the distance to the second track 39.
- the object to be inspected 40 slowly passes through the object channel 4 to be inspected.
- the moving speed of the object to be inspected 40 may be one-fifth to one-tenth of a thousandth of the moving speed of the radiation receiving unit 3, and may be, for example, one-thirtieth, one-thirtieth, one-fiftieth, etc. .
- the first collimator 1 and the third collimator 31 reciprocate back and forth on the respective tracks to realize scanning at various angles of the object 40 to be inspected; the detector 32 can collect data in the reciprocating motion, or can only Data is collected when moving in one direction or back, and is not specifically limited herein.
- the linear trajectory tomography apparatus provided in this embodiment can perform scanning inspection faster, and the scanning rate is faster. It is twice as large as the linear trajectory tomography apparatus provided in the first embodiment; at the same time, the number of the ray receiving units 3 is reduced compared to the linear trajectory tomography apparatus of the prior art, and the ray receiving unit 3 is generated between There are also few crosstalks.
- the linear trajectory tomography apparatus provided in this embodiment is as shown in FIG.
- the linear trajectory tomography apparatus is substantially similar in structure to the linear trajectory tomography apparatus provided in the first embodiment.
- the difference is mainly that, in this embodiment, the first collimator 1 is provided with three first collimating slits 10; correspondingly, the number of the ray receiving units 3 is also three, and each ray receiving unit 3 corresponds to one A straight seam 10 is provided.
- the spacing of the adjacent two first collimating slits 10 is Equal to s/3.
- the first collimator 1 in this embodiment can be modified from the first collimator 1 in the first embodiment.
- two new first collimating slits 10 may be added to the first collimator 1 in the first embodiment; at the same time, it is still necessary to ensure that the boundary of the first collimator 1 exceeds the opening angle range, that is, regardless of Where the first collimator 1 is moved, the first collimator 1 is capable of covering a specific angular range defined by the entire ray generating unit 2 so as to absorb and block the beam that is not transmitted through the first collimating slit 10. 8, and then play a role in radiation protection.
- the first collimator 1 in this embodiment can also be provided independently, instead of being modified by the first collimator 1 in the first embodiment.
- the radiation source 22 and the second collimator 2 are stationary, and the first collimator 1 moves along the first rail 19, and the three radiation receiving units 3 (both including the third collimator) 31.
- the detector 32 and the radiation protection member 33 are moved along the second track 39, and the movement directions of the first collimator 1 and the radiation receiving unit 3 are the same; and, during the movement, the radiation source 22, any one of the first standards
- the straight seam 10 and the third collimating slit 30 corresponding to the first collimating slit 10 are maintained on the same straight line, that is, the radiation source 22, the first collimating slit 10 on the left side, and the third radiograph receiving unit 3 on the left side.
- the collimating slits 30 are kept on the same line, the radiation source 22, the first first collimating slit 10 in the middle, and the middle radiation receiving unit
- the third collimating slits 30 of 3 are kept on the same straight line, and the radiation source 22, the first collimating slit 10 on the right side, and the third collimating slit 30 on the right side of the radiation receiving unit 3 are held on the same straight line.
- the first collimating slit 10 and the third collimating slit 30 on the same straight line, it can be realized by controlling the moving speed ratio of the first collimator 1 and the third collimator 31, that is, The ratio of the speeds of movement of a collimator 1 and a third collimator 31 is equal to the ratio of the distance of the source 22 to the first track 19 and the distance to the second track 39.
- the object to be inspected 40 slowly passes through the object channel 4 to be inspected.
- the moving speed of the object to be inspected 40 may be one-fifth to one-tenth of the speed of the movement of the radiation receiving unit 3, for example, may be thirty. One, one for a tenth, one for a fifth, and so on.
- the first collimator 1 and the third collimator 31 reciprocate back and forth on the respective tracks to realize scanning at various angles of the object 40 to be inspected; the detector 32 can collect data in the reciprocating motion, or can only Data is collected when moving in one direction or back, and is not specifically limited herein.
- the linear trajectory tomography apparatus provided in this embodiment can perform scanning inspection faster, and the scanning rate is the linear trajectory tomography scan provided in the first embodiment.
- the number of the radiation receiving units 3 is reduced as compared with the linear tracking laser scanning apparatus of the prior art, and crosstalk generated between the radiation receiving units 3 is also small.
- the number of the first collimating slits 10 opened on the first collimator 1 can also be other values.
- the first collimator 1 is provided with n (n is an integer greater than 3) first collimating slits 10 through which the radiation beam 8 passes; the first collimating slit 10 is located in the open angle range, the first collimating The boundary of the device 1 exceeds the opening angle range; the number of the radiation receiving units 3 is the same as the number of the first collimating slits 10, and each of the radiation receiving units 3 corresponds to one first collimating slit 10; for the linear tracking fault in the first embodiment
- the scanning device if the maximum stroke of the first collimating slit 10 - the one-way movement is s, when the first collimator 1 is provided with n first collimating slits 10, the adjacent first collimating slit 10 The spacing of the seams is equal to s/n, etc., and the
- a linear trajectory fluoroscopic imaging device is provided, which is similar to the linear trajectory tomography device provided in the first embodiment, the second embodiment, the third embodiment or the fourth embodiment, but is treated
- the object to be inspected does not move, but remains stationary, and the first collimator 1 and the radiation receiving unit 3 do not reciprocate, but the first collimator 1 and the radiation receiving unit 3 only
- the detector 32 collects data only during this one-way motion, and the linear trajectory tomography device becomes an X-ray based fluoroscopy device.
- the device can achieve fast scanning to avoid image errors caused by the movement of the object being inspected.
- the first track of the linear track on both sides of the channel 4 to be inspected in this embodiment 19 is replaced by a circular arc track, the center of which is at the position of the radiation source, and the first collimator 1 and the radiation receiving unit 3 are respectively on the first track 19 and the second track 39 of the two circular arc tracks. motion.
- the tomographic scanning device has a larger footprint than the interrupting layer scanning device of the first embodiment to the third embodiment, but the first collimating slit 10, the third collimating slit 30, and the radiation source have higher angular consistency, and the sampling data is easy to implement.
- the angular interval is consistent.
- the first collimator 1 and the third collimator 31 are designed as shown in Fig. 6, and the boundary of the first collimating slit 10 is in the radial direction of the circle centered on the ray source 22. During the scanning inspection, the source 22 is maintained in the same line as the first collimating slit 10 and the third collimating slit 30.
- the ratio of the slit widths of the first collimating slit 10 and the third collimating slit 30 is the radius of the first rail 19 and the second rail 39 (corresponding to the distance between the first embodiment to the four-ray source 22 to the first rail 19 and The ratio of the distance to the second track 39).
- the speed of the first collimator 1 on the first track 19 and the radiation receiving order is the ratio of the radius of the track of the first track 19 and the second track 39.
- a preferred implementation is that the radiation source 22, the first collimator 1 and the radiation receiving unit 3 can be bridged together by the straight rod 7, so that as long as the radiation receiving unit 3 motion is controlled, the first The collimator 1 can automatically follow the movement and keep the source 22, the first collimating slit 10 of the first collimator 1 and the third collimating slit 30 of the third collimator 31 on the same straight line. It is not difficult for a person skilled in the art to design a straight rod 7 to bridge the radiation source 22, the first collimator 1 and the radiation receiving unit 3 according to FIG. 7 for the first, second, third and fourth embodiments in order to maintain the radiation source 22 and the first standard.
- the first collimating slit 10 of the straightener 1 and the third collimating slit 30 of the third collimator 31 are on the same straight line, of course, the difference is that the first collimator 1 and the radiation receiving unit 3 are in the straight rod 7
- the length direction is movable to satisfy the linear orbital situation of the first, second, third, and fourth embodiments.
- the embodiment may be extended according to the ideas of the first embodiment to the fourth embodiment, and details are not described herein again.
- the ray source 22 is stationary, and the object to be inspected 40 moves in the object to be inspected 4 (the moving speed may be one-thirtieth, one-thirtieth, and fifth of the moving speed of the ray receiving unit 3) One tenth or the like), the first collimator 1 and the radiation receiving unit 3 reciprocate on the circular arc track (the first track 19 and the second track 39).
- the detector 32 can collect data during the reciprocating motion, or can collect data only when moving in one direction of the return or the return, and is not particularly limited herein.
- the ray source 22 is stationary, the object to be inspected 40 is stationary, the first collimator 1 and the ray receiving unit 3 perform only one-way motion, and the detector 32 collects data only in the unidirectional motion.
- the linear trajectory-based tomographic scanning apparatus and the fluoroscopic imaging apparatus provide a first collimator between the ray receiving unit and the object to be inspected, and the ray beam sequentially passes through the first collimator.
- the object to be inspected is received by the radiation receiving unit, during the scanning process, the radiation generating unit is stationary, and the first collimator and the radiation receiving The unit is linearly moved in the same direction and the direction of motion is parallel to the channel of the object to be inspected, and the scanning of the angles of the objects to be inspected is realized by the motion of the first collimator and the radiation receiving unit. Therefore, the linear trajectory tomography apparatus of the present invention can perform tomographic scanning using at least one ray receiving unit, thereby simplifying the structure of the linear trajectory tomography apparatus and reducing the implementation cost of the linear trajectory tomography apparatus.
- the linear trajectory-based tomographic scanning apparatus and the fluoroscopic imaging apparatus provided by the present invention, by providing a first collimator between the ray receiving unit and the object to be inspected, the ray beam sequentially passes through the first collimator and the object to be inspected Received by the ray receiving unit, during the scanning process, the ray generating unit is stationary, and the first collimator and the ray receiving unit perform the same linear motion and the moving direction is parallel to the object to be inspected, through the first collimator and
- the interaction of the radiation receiving units with each other enables scanning of the various angles of the object to be inspected. Therefore, the linear trajectory tomography apparatus of the present invention can perform tomographic scanning using at least one ray receiving unit, thereby simplifying the structure of the linear trajectory tomography apparatus and reducing the implementation cost of the linear trajectory tomography apparatus.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pulmonology (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
本发明公开了一种高速铁路列车运行控制车载系统故障逻辑建模方法,包括如下步骤:确定列控车载系统结构及各部分之间的功能关系;基于已知的列控车载系统故障结合头脑风暴分析各部分的故障;构建FMEA表格归纳各部分的故障;采用建模工具对故障编辑和仿真。本发明使分析的故障模式更加具有系统性,故障逻辑建模时更容易从全局角度出发,有的放矢和有效降低列控系统安全分析的复杂度,缩短列控系统开发周期。
Description
一种基于直线轨迹的断层扫描装置以及透视成像装置 技术领域
本发明涉及一种断层扫描装置以及透视成像装置,尤其涉及一种 基于直线轨迹的断层扫说描装置以及透视成像装置,属于辐射成像技术 领域。 背景技术
由于 X射线具有极好的穿透性和规律的衰减特性, 基于 X射线 实现的断层扫描(Computed Tomography, 缩写为 CT )装置在安全检 查、 无损检测和医疗等领域有着广泛的应用。 断层扫描装置主要包括 书
射线发生单元、 射线接收单元以及成像计算机等等。 在断层扫描装置 进行辐射成像时,断层扫描装置通过围绕待检查对象各个角度进行扫 描, 射线发生单元产生的射线照射待检查对象并产生投影数据, 接收 单元接收产生的投影数据并传输至成像计算机,成像计算机对接收的 投影数据进行识别, 并重建投影数据得到待检查对象每个断层的信 息, 从而直观清晰地展示待检查对象的结构和组成。 目前, 断层扫描 装置的扫描轨迹有圆弧、 螺旋、 直线、 马鞍等。
现有技术中,直线轨迹断层扫描装置因为不采用传统的圆轨迹或 螺旋等轨迹, 采用的是直线扫描轨迹, 日益得到了越来越广泛的关注 和研究。 现有技术中的直线轨迹断层扫描装置, 通过射线发生单元产 生的射线束对待检查对象进行直线轨迹扫描,通过在直线轨道上设置 大量射线接收单元进行射线束的接收,射线接收单元包括探测器以及 辐射防护部件等。这样,由于需要使用大量的探测器和辐射防护部件, 造成直线轨迹断层扫描装置成本大幅度提升,严重限制了直线轨迹断 层扫描装置的推广和应用。
因此,提供一种低成本的直线轨迹断层扫描装置是亟待解决的问
题。 发明内容
本发明要解决的技术问题是: 提供一种结构简单、 易于实现且成 本较低的直线轨迹断层扫描装置。
为达到上述的发明目的,本发明提供了一种基于直线轨迹的断层 扫描装置以及透视成像装置。
一方面, 本发明提供一种基于直线轨迹的断层扫描装置, 包括: 依序设置的用于在特定张角范围内产生射线束的射线发生单元、用于 约束所述射线束的第一准直器、 供待检查对象通过的待检查对象通 道、 以及接收射线束的射线接收单元;
所述射线发生单元产生的射线束依次透过所述第一准直器和待 检查对象后被所述射线接收单元接收、所述射线接收单元将接收到的 射线束数据传输至成像计算机处理并显示;
所述射线发生单元静止,所述第一准直器和所述射线接收单元做 同向运动。
其中较优地,所述第一准直器上开设有至少一个供所述射线束通 过的第一准直缝;
所述第一准直缝位于所述张角范围内,所述第一准直器的边界超 出所述张角范围。
其中较优地, 所述第一准直缝的数量为 n; 当 n等于 1时, 所述 第一准直缝一次单向运动最大的行程为 s; 当 n大于 1时, 相邻所述 第一准直缝的缝心间距等于 s/n。
其中较优地,所述射线接收单元的数量与所述第一准直缝的数量 相同, 每个射线接收单元对应一个所述第一准直缝。
其中较优地,所述射线接收单元包括开设有第三准直缝的第三准 直器以及接收透过所述第三准直器的射线束的探测器。
其中较优地,所述射线发生单元包括产生射线束的射线源以及将
所述射线束限定在所述特定张角范围内的第二准直器。
其中较优地,还包括平行设置在所述运动通道两侧的第一轨道和 第二轨道, 所述第一准直器沿所述第一轨道上运动, 所述射线接收单 元沿所述第二轨道运动;所述第一准直器和射线接收单元的运动速度 之比等于所述射线源到第一轨道的距离和到第二轨道的距离之比。
其中较优地,所述第一轨道以及第二轨道为与所述运动通道平行 的直线轨道; 或者,
所述第一轨道以及第二轨道为以所述射线发生单元为圆心的弧 形轨道。
其中较优地, 所述射线发生单元、 第一准直器以及射线接收单元 均固定在一直杆上。
其中较优地,所述射线接收单元还包括用于吸收未被射线接收单 元吸收的射线束的辐射防护部件。
其中较优地, 在进行断层扫描时, 所述待检查对象在所述运动通 道中运动; 所述第一准直器和射线接收单元做往复运动。
其中较优地,所述待检查对象的运动速度是射线接收单元运动速 度的 0.005-0.1倍。
其中较优地,还包括可以控制以及监测所述第一准直器和射线接 收单元运动状态的控制单元。
另一方面, 本发明还提供一种直线轨迹透视成像装置包括: 依序设置的用于在特定张角范围内产生射线束的射线发生单元、 用于约束所述射线束的第一准直器、供待检查对象通过的待检查对象 通道、 以及接收射线束的射线接收单元;
所述射线发生单元产生的射线束依次透过所述第一准直器和待 检查对象后被所述射线接收单元接收、所述射线接收单元将接收到的 射线束数据传输至成像计算机处理并显示;
所述射线发生单元静止,所述第一准直器和所述射线接收单元做
同向运动;
在进行扫描时, 所述待检查对象静止在所述运动通道中; 所述第 一准直器和射线接收单元仅做一次单向运动。
本发明提供的基于直线轨迹的断层扫描装置以及透视成像装置, 通过在射线接收单元和待检查对象通道之间设置第一准直器,射线束 依次透过第一准直器和待检查对象后被射线接收单元接收,在扫描的 过程中, 射线发生单元静止, 而第一准直器和射线接收单元器做同向 直线运动且运动方向与待检查对象通道平行,通过第一准直器和射线 接收单元相互配合的运动实现对待检查对象各个角度的扫描。 因此, 本发明中的直线轨迹断层扫描装置可以最少仅使用一个射线接收单 元即可完成断层扫描, 因此精简了直线轨迹断层扫描装置的结构, 降 低了直线轨迹断层扫描装置的实现成本。 附图说明
图 1 是本发明所提供的直线轨迹断层扫描装置的实施例一结构 示意图; 图 2 是本发明所提供的直线轨迹断层扫描装置的实施例二结构 示意图;
图 3 是本发明所提供的直线轨迹断层扫描装置的实施例三结构 示意图;
图 4 是本发明所提供的直线轨迹断层扫描装置的实施例四结构 示意图; 图 5 是本发明所提供的直线轨迹断层扫描装置的实施例六结构 示意图;
图 6是本发明实施例五中第一准直器和第三准直器结构示意图;
图 7是本发明实施例五中射线源、 第一准直器、 射线接收单元桥 接结构示意图。 具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细 描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。
本发明提供一种基于直线轨迹的断层扫描装置, 如图 1所示, 包 括: 依序设置的用于在特定张角范围内产生射线束 8的射线发生单元 2、 用于约束所述射线束 8的第一准直器 1、 供待检查对象 40通过的待 检查对象通道 4、 以及接收射线束 8的射线接收单元 3; 所述射线发生 单元 2产生的射线束 8依次透过所述第一准直器 1和待检查对象 40后被 所述射线接收单元 3接收、所述射线接收单元 3将接收到的射线束数据 传输至成像计算机 5处理并显示; 所述射线发生单元 2静止, 所述第一 准直器 1和所述射线接收单元 3做同向运动。下面结合多个实施例对本 发明展开详细的说明。
实施例一
如图 1所示,本发明所提供的直线轨迹断层扫描装置主要包括依 序设置的射线发生单元 2、 第一准直器 1、 待检查对象通道 4以及射 线接收单元 3、 成像计算机 5等; 射线发生单元 2用于产生射线束 8, 并且所述射线束 8被限定在特定的张角范围内。 例如, 90度张角范 围内, 120度张角范围内等。 第一准直器 1, 用于进一步限定所述射 线束 8,射线束 8透过第一准直器 1后形成张角范围很窄的射线束 8 ; 待检查对象通道 4用于供待检查对象 40通过, 射线发生单元 2以及 第一准直器 1设置在待检查对象通道 4的一侧,射线接收单元 3设置 在待检查对象通道 4的另一侧;射线束 8依次透过第一准直器 1和待 检查对象 40后, 被射线接收单元 3接收, 并且, 射线接收单元 3将 接收到的射线束数据传输给成像计算机 5, 成像计算机 5对接收到的 射线束数据进行图像重建并显示。 本发明的主要改进点之一在于, 在
对待检查对象 40进行扫描检测时, 射线发生单元 2静止, 而第一准 直器 1和射线接收单元 3做同向直线运动,且运动方向与待检查对象 通道 4平行。通过第一准直器 1和射线接收单元 3相互配合的运动实 现对待检查对象 40各个角度的扫描。 因此, 本实施例中的直线轨迹 断层扫描装置可以最少仅使用一个射线接收单元 3 即可完成断层扫 描, 因此精简了直线轨迹断层扫描装置的结构, 降低了直线轨迹断层 扫描装置的实现成本,从而可以为例如集装箱直线轨迹断层扫描的普 及提供技术支持。由于通过本发明所提供的直线轨迹断层扫描装置可 以得到待检查对象 40的断层图像, 可以克服传统透视成像中图像重 叠问题。
由于本发明所提供的直线轨迹断层扫描装置的结构较现有技术 中的直线轨迹断层扫描装置的结构要简单的多,搬运起来更轻便更容 易,因此,该直线轨迹断层扫描装置还可以设计成可搬运使用的形式, 而不是固定在一处无法移动。由于本发明所提供的直线轨迹断层扫描 装置中的第一准直器 1可以将射线束 8限定在很窄的张角范围内,因 此可以在一定程度上抑制散射对断层扫描成像的影响。 同时, 由于本 发明所提供的直线轨迹断层扫描装置中可以采用数量较少的射线接 收单元 3, 从而可以大幅度减少设置避免射线接收单元 3之间的信号 串扰, 提升成像的准确性。 由于节省了大量的射线接收单元 3, 本发 明的系统在必要时可以采用性能更高的射线接收单元 3, 比如余晖效 应小的射线接收单元 3、 三明治型的双能射线接收单元 3或能量分辨 率更高的射线接收单元 3等。
实施例二
本实施例中所提供的直线轨迹断层扫描装置如图 2中所示。本实 施例与实施例一基本相同。该直线轨迹断层扫描装置包括依序设置的 射线发生单元 2、 第一准直器 1、 待检查对象通道 4以及射线接收单 元 3、 成像计算机 5等。
与实施例一的区别在于, 射线发生单元 2可以包括产生射线束 8 的射线源 22以及将射线束 8限定在特定张角范围内的第二准直器 21。 射线源 22可以是 X射线光机、电子加速器射线源或者同位素源等等。 例如对于 X射线光机或者电子加速器射线源, 可以在射线源 22的位 置放置靶材, X射线光机的电子束或电子加速器出射的电子束轰击在 靶材上, 从而产生 X射线辐射。 第二准直器 21上开设有一个第二准 直缝 20, 第二准直器 21—方面用于使射线源 22产生的射线束 8中 的一部分透过第二准直缝 20, 从而起到准直作用, 另一方面, 用于 吸收以及阻挡另一部分未透过第二准直缝 20 的射线束 8, 从而起到 辐射防护作用。
第一准直器 1设置在射线源 22的射线束 8射出方向, 第一准直 器 1设置有开设有一个第一准直缝 10, 第一准直器 1用于进一步限 定所述射线束 8, 射线束 8透过第一准直器 1后形成张角范围很窄的 射线束 8; 第一准直缝 10位于张角范围内, 第一准直器 1 的边界超 出射线发生单元 2限定的特定张角范围,即不论第一准直器 1运动到 哪个位置,第一准直器 1都要能够覆盖整个射线发生单元 2限定的特 定张角范围, 从而可以吸收以及阻挡未透过第一准直缝 10的射线束 8, 进而起到辐射防护作用。
本实施例中, 射线接收单元 3包括: 开设有第三准直缝 30的第 三准直器 31 以及接收透过第三准直器 31的射线束 8的探测器 32, 透过第一准直缝 10的射线束 8在透过待检查对象 40后,继续通过第 三准直缝 30后被探测器 32接收, 探测器 32将接收到的射线束数据 传输给成像计算机 5。 优选的, 本实施例中的射线接收单元 3还包括 辐射防护部件 33, 辐射防护部件 33用于吸收透过第三准直器 31、 未 被探测器 32吸收的射线束 8, 从而起到辐射防护作用。 为了方便射 线接收单元 3运动的控制, 本实施例中将第三准直器 31、 探测器 32 以及辐射防护部件 33组合绑定在一起使用。
第一准直器 1和第三准直器 31优先用铅等重金属, 这样第一准 直器 1和第三准直器 31可以做的相对较薄, 从而进一步较小整个直 线轨迹断层扫描装置的体积, 降低空间占用。
进一步的,本实施例中还在待检查对象通道 4两侧设置了第一轨 道 19以及第二轨道 39, 第一轨道 19、 待检查对象通道 4以及第二轨 道 39相互平行 (当然, 原则上第一轨道 19和第二轨道 39平行即可, 可以不与待检查对象通道 4平行, 这里明确了优选方案); 第一准直 器 1在第一轨道 19上运动,第三准直器 31在第二轨道 39上运动(由 于射线接收单元 3的所有部件组合绑定在一起,因此即射线接收单元 3在第二轨道 39上运动)。
本实施例中,第一准直缝 10和第三准直缝 30的宽度比可以等于 射线源 11到第一轨道 19的距离和到第二轨道 39的距离之比, 从而 可以使第三准直器 31能够起到准直作用。对于锥束三维扫描的情形, 上述射线源 22到第一轨道 19的距离和射线源 22到第二轨道 39的距 离的比值可以改为射线源 22在水平面的投影到第一轨道 19在水平面 上的投影的距离和射线源 22在水平面的投影到第二轨道 39在水平面 上的投影的距离的比值。
在对待检查对象 40进行扫描检测时,射线源 11以及第二准直器 21静止, 而第一准直器 1沿第一轨道 19运动, 射线接收单元 3 (包 括第三准直器 31、 探测器 32 以及辐射防护部件 33 ) 沿第二轨道 39 运动, 第一准直器 1和射线接收单元 3的运动方向相同。 并且, 在运 动过程中, 射线源 22、 第一准直缝 10 以及第三准直缝 30保持在同 一直线上。 为了使射线源 22、 第一准直缝 10 以及第三准直缝 30保 持在同一直线上, 可以通过控制第一准直器 1和第三准直器 31的运 动速度比来实现, 即第一准直器 1和第三准直器 31的运动速度之比 等于射线源 22到第一轨道 19的距离和到第二轨道 39的距离之比。
在扫描检测期间, 待检查对象 40缓缓通过待检查对象通道 4,
例如待检查对象 40的运动速度可以是射线接收单元 3运动速度的千 分之五至十分之一, 例如可以是三十分之一、 四十分之一、 五十分之 一等。 第一准直器 1和第三准直器 31在各自的轨道第一轨道 19、 第 二轨道 39上来回往复运动,从而实现对待检查对象 40各个角度下的 扫描。 探测器 32可以在往返运动中都采集数据, 也可以仅在往或返 的一个方向上运动时采集数据, 在此不做特殊限定。
进一步的,本实施例中的直线轨迹断层扫描装置还可以包括数据 处理单元、 控制单元以及报警单元等等。 数据处理单元包括成像计算 机, 成像计算机在接收到探测器 32发送的数据后, 对获取的数据进 行处理, 从而重建图像并显示。 数据处理单元还用于用户交互以及在 必要时发送控制指令至报警单元等。报警单元用于的接收到数据处理 系统发生的控制指令后进行报警。控制单元用于控制以及监测第一准 直器 1和射线接收单元 3在各自轨道上的运动状态,控制单元还可以 用于控制射线源 22的产生射线束 8或者停止产生射线束 8, 控制单 元还用于控制或监测检查对象 40的运动。
实施例三
本实施例中所提供的直线轨迹断层扫描装置如图 3中所示。该直 线轨迹断层扫描装置与实施例一中所提供的直线轨迹断层扫描装置 在结构上大致相似。 区别之处主要在于, 本实施例中, 第一准直器 1 上开设有两个第一准直缝 10; 相应的, 射线接收单元 3 的数量也是 两个, 每个射线接收单元 3对应一个第一准直缝 10。
对于实施例一中的直线轨迹断层扫描装置, 若第一准直缝 10— 次单向运动的最大行程为 s,则本实施例中, 两个第一准直缝 10的缝 心间距等于 s/2。 本实施例中的第一准直器 1可以由实施例一中的第 一准直器 1改造得到, 例如, 可以在实施例一中第一准直器 1的基础 上增开新的第一准直缝 10, 增开的位置在第一准直器 1 的左侧或者 右侧; 同时, 仍然需要保证第一准直器 1的边界超出张角范围, 即不
论第一准直器 1运动到哪个位置,第一准直器 1都要能够覆盖整个射 线发生单元 2限定的特定张角范围,从而可以吸收以及阻挡未透过第 一准直缝 10的射线束 8, 进而起到辐射防护作用。 当然, 本实施例 中的第一准直器 1也可以独立提供,而不是由实施例一中的第一准直 器 1改造得到。
在对待检查对象 40进行扫描检测时,射线源 22以及第二准直器 2静止, 而第一准直器 1沿第一轨道 19运动, 两个射线接收单元 3 (均包括第三准直器 31、 探测器 32以及辐射防护部件 33 )沿第二轨 道 39运动, 第一准直器 1和射线接收单元 3的运动方向相同; 并且, 在运动过程中, 射线源 22、 任意一个第一准直缝 10以及该第一准直 缝 10对应的第三准直缝 30保持在同一直线上, 即射线源 22、 左侧 的第一准直缝 10、 左侧的射线接收单元 3的第三准直缝 30保持在同 一直线上, 射线源 22、 右侧的第一准直缝 10、 右侧的射线接收单元 3的第三准直缝 30保持在同一直线上。 为了使射线源 22、 第一准直 缝 1 0以及第三准直缝 30保持在同一直线上,可以通过控制第一准直 器 1和第三准直器 31的运动速度比来实现, 即第一准直器 1和第三 准直器 31的运动速度之比等于射线源 22到第一轨道 19的距离和到 第二轨道 39的距离之比。
在扫描检测期间, 待检查对象 40缓缓通过待检查对象通道 4。 例如, 待检查对象 40的运动速度可以是射线接收单元 3运动速度的 千分之五至十分之一, 例如可以是三十分之一、 四十分之一、 五十分 之一等等。 第一准直器 1和第三准直器 31在各自的轨道上来回往复 运动, 从而实现对待检查对象 40各个角度下的扫描; 探测器 32可以 在往返运动中都采集数据,也可以仅在往或返的一个方向上运动时采 集数据, 在此不做特殊限定。
相比于实施例一中所提供的直线轨迹断层扫描装置,本实施例中 所提供的直线轨迹断层扫描装置可以更快的进行扫描检查,扫描速率
为实施例一中所提供的直线轨迹断层扫描装置的两倍; 同时, 相比于 现有技术中的直线轨迹断层扫描装置仍然减少了射线接收单元 3 的 数量, 而且射线接收单元 3之间产生的串扰也很少。
实施例四
本实施例中所提供的直线轨迹断层扫描装置如图 4中所示。该直 线轨迹断层扫描装置与实施例一中所提供的直线轨迹断层扫描装置 在结构上大致相似。 区别之处主要在于, 本实施例中, 第一准直器 1 上开设有三个第一准直缝 10; 相应的, 射线接收单元 3 的数量也是 三个, 每个射线接收单元 3对应一个第一准直缝 10。
对于实施例一中的直线轨迹断层扫描装置, 若第一准直缝 10— 次单向运动的最大行程为 s, 则本实施例中, 相邻两个第一准直缝 10 的缝心间距等于 s/3。 本实施例中的第一准直器 1可以由实施例一中 的第一准直器 1改造得到。 例如, 可以在实施例一中第一准直器 1的 基础上增开两个新的第一准直缝 10; 同时, 仍然需要保证第一准直 器 1的边界超出张角范围, 即不论第一准直器 1运动到哪个位置, 第 一准直器 1都要能够覆盖整个射线发生单元 2限定的特定张角范围, 从而可以吸收以及阻挡未透过第一准直缝 10的射线束 8, 进而起到 辐射防护作用。 当然, 本实施例中的第一准直器 1也可以独立提供, 而不是由实施例一中的第一准直器 1改造得到。
在对待检查对象 40进行扫描检测时,射线源 22以及第二准直器 2静止, 而第一准直器 1沿第一轨道 19运动, 三个射线接收单元 3 (均包括第三准直器 31、 探测器 32以及辐射防护部件 33 )沿第二轨 道 39运动, 第一准直器 1和射线接收单元 3的运动方向相同; 并且, 在运动过程中, 射线源 22、 任意一个第一准直缝 10以及该第一准直 缝 10对应的第三准直缝 30保持在同一直线上, 即射线源 22、 左侧 的第一准直缝 10、 左侧的射线接收单元 3的第三准直缝 30保持在同 一直线上, 射线源 22、 中间的第一准直缝 10、 中间的射线接收单元
3的第三准直缝 30保持在同一直线上, 射线源 22、 右侧的第一准直 缝 10、 右侧的射线接收单元 3的第三准直缝 30保持在同一直线上。 为了使射线源 22、 第一准直缝 10以及第三准直缝 30保持在同一直 线上, 可以通过控制第一准直器 1和第三准直器 31的运动速度比来 实现, 即第一准直器 1和第三准直器 31的运动速度之比等于射线源 22到第一轨道 19的距离和到第二轨道 39的距离之比。
在扫描检测期间, 待检查对象 40缓缓通过待检查对象通道 4, 例如待检查对象 40的运动速度可以是射线接收单元 3运动速度的千 分之五至十分之一, 例如可以是三十分之一、 四十分之一、 五十分之 一等等。 第一准直器 1和第三准直器 31在各自的轨道上来回往复运 动, 从而实现对待检查对象 40各个角度下的扫描; 探测器 32可以在 往返运动中都采集数据,也可以仅在往或返的一个方向上运动时采集 数据, 在此不做特殊限定。
相比于实施例一中所提供的直线轨迹断层扫描装置,本实施例中 所提供的直线轨迹断层扫描装置可以更快的进行扫描检查,扫描速率 为实施例一中所提供的直线轨迹断层扫描装置的三倍; 同时, 相比于 现有技术中的直线轨迹断层扫描装置仍然减少了射线接收单元 3 的 数量, 而且射线接收单元 3之间产生的串扰也很少。
很显然, 本发明所提供的直线轨迹断层扫描装置中, 第一准直器 1 上开设的第一准直缝 10的数量还可以为其他数值。 例如, 第一准 直器 1上开设有 n ( n为大于 3的整数)个供射线束 8通过的第一准 直缝 10; 第一准直缝 10位于张角范围内, 第一准直器 1的边界超出 张角范围; 射线接收单元 3的数量与第一准直缝 10的数量相同, 每 个射线接收单元 3对应一个第一准直缝 10; 对于实施例一中的直线 轨迹断层扫描装置, 若第一准直缝 10—次单向运动的最大行程为 s, 则当第一准直器 1上开设有 n个第一准直缝 10时, 相邻第一准直缝 10的缝心间距等于 s/n等等,该直线轨迹断层扫描装置的扫描速率为
实施例一中所提供的直线轨迹断层扫描装置的 n倍; 在此不再赘述。 实施例五
本实施例中提供了一种直线轨迹透视成像装置,该直线轨迹透视 成像装置同实施例一、 实施例二、 实施例三或者实施例四中所提供的 直线轨迹断层扫描装置类似, 但是在对待检查对象进行扫描检查时, 被检查对象不运动, 而是保持静止, 而且, 第一准直器 1和射线接收 单元 3不做往复运动,而是第一准直器 1和射线接收单元 3仅做一次 单向运动, 探测器 32仅在该次单向运动中采集数据, 直线轨迹断层 扫描装置就变成了基于 X 射线的透视扫描装置。 该装置可以实现快 速扫描, 避免因被检查对象运动而造成的图像误差。
实施例六
同实施例一、 实施例二、 实施例三或者实施例四中所提供的直线 轨迹断层扫描装置类似, 如图 5所示, 本实施例中待检查对象通道 4 两侧的直线轨道第一轨道 19、 第二轨道 39替换为圆弧形轨道, 其圆 心均在射线源的位置,第一准直器 1和射线接收单元 3分别在两圆弧 形轨道第一轨道 19、 第二轨道 39上运动。
该断层扫描装置相对实施例一至实施例三中断层扫描装置的占 地面积大, 但是第一准直缝 10、 第三准直缝 30以及射线源的角度一 致性更高, 而且易实现采样数据角度间隔的一致。
优选地, 第一准直器 1和第三准直器 31设计如图 6所示, 第一 准直缝 10的边界在以射线源 22为圆心的圆半径方向上。在扫描检查 过程中, 射线源 22与第一准直缝 10、 第三准直缝 30保持在同一直 线上。
优选地,第一准直缝 10和第三准直缝 30的缝宽比值是第一轨道 19和第二轨道 39半径 (相当于实施例一至实施四射线源 22到第一 轨道 19的距离和到第二轨道 39的距离 )之比。
优选地, 第一准直器 1在第一轨道 19上运动速度与射线接收单
元 3在第二轨道 39上运动速度之比是其所在第一轨道 19和第二轨道 39半径轨道半径比值。
图 7 中所示, 一种优选的实现方式是, 可以将射线源 22、 第一 准直器 1以及射线接收单元 3利用直杆 7桥接在一起,这样只要控制 射线接收 3单元运动, 第一准直器 1可自动跟随运动, 且保持射线源 22、 第一准直器 1的第一准准直缝 10、 第三准直器 31的第三准直缝 30在同一直线上。 本领域技术人员不难按图 7设计直杆 7桥接射线 源 22、 第一准直器 1和射线接收单元 3用于实施例一、 二、 三、 四, 以便保持射线源 22、 第一准直器 1的第一准直缝 10、 第三准直器 31 的第三准直缝 30在同一直线上, 当然有区别的是, 第一准直器 1和 射线接收单元 3在直杆 7的长度方向是可以活动的, 以便满足实施例 一、 二、 三、 四的直线轨道情形。
对于断层检测装置的其他部分,可以按照实施例一至实施例四的 思路来扩展本实施例, 在此不再赘述。
对直线轨迹断层扫描装置, 射线源 22静止, 待检查对象 40在待 检查对象通道 4内运动(其运动速度可以是射线接收单元 3运动速度 的三十分之一、 四十分之一、 五十分之一等等), 第一准直器 1和射 线接收单元 3在圆弧轨道(第一轨道 19和第二轨道 39 )上做往复运 动。 探测器 32可以在往返运动中都采集数据, 也可以仅在往或返的 一个方向上运动时采集数据, 在此不做特殊限定。
对透视成像装置, 射线源 22静止, 待检查对象 40静止, 第一准 直器 1和射线接收单元 3仅做一次单向运动, 探测器 32仅在该次单 向运动中采集数据。
综上所述,本发明提供的基于直线轨迹的断层扫描装置以及透视 成像装置,通过在射线接收单元和待检查对象通道之间设置第一准直 器, 射线束依次透过第一准直器和待检查对象后被射线接收单元接 收, 在扫描的过程中, 射线发生单元静止, 而第一准直器和射线接收
单元器做同向直线运动且运动方向与待检查对象通道平行,通过第一 准直器和射线接收单元相互配合的运动实现对待检查对象各个角度 的扫描。 因此, 本发明中的直线轨迹断层扫描装置可以最少仅使用一 个射线接收单元即可完成断层扫描,因此精简了直线轨迹断层扫描装 置的结构, 降低了直线轨迹断层扫描装置的实现成本。 工业实用性
本发明提供的基于直线轨迹的断层扫描装置以及透视成像装置, 通过在射线接收单元和待检查对象通道之间设置第一准直器,射线束 依次透过第一准直器和待检查对象后被射线接收单元接收,在扫描的 过程中, 射线发生单元静止, 而第一准直器和射线接收单元器做同向 直线运动且运动方向与待检查对象通道平行,通过第一准直器和射线 接收单元相互配合的运动实现对待检查对象各个角度的扫描。 因此, 本发明中的直线轨迹断层扫描装置可以最少仅使用一个射线接收单 元即可完成断层扫描, 因此精简了直线轨迹断层扫描装置的结构, 降 低了直线轨迹断层扫描装置的实现成本。
Claims
1、 一种基于直线轨迹的断层扫描装置, 其特征在于, 包括: 依 序设置的用于在特定张角范围内产生射线束的射线发生单元、用于约 束所述射线束的第一准直器、 供待检查对象通过的待检查对象通道、 以及接收射线束的射线接收单元;
所述射线发生单元产生的射线束依次透过所述第一准直器和待 检查对象后被所述射线接收单元接收、所述射线接收单元将接收到的 射线束数据传输至成像计算机处理并显示;
所述射线发生单元静止,所述第一准直器和所述射线接收单元做 同向运动。
2、 根据权利要求 1所述的断层扫描装置, 其特征在于, 所述第 一准直器上开设有至少一个供所述射线束通过的第一准直缝;
所述第一准直缝位于所述张角范围内,所述第一准直器的边界超 出所述张角范围。
3、 根据权利要求 2所述的断层扫描装置, 其特征在于, 所述第 一准直缝的数量为 n; 当 n等于 1时, 所述第一准直缝一次单向运动 最大的行程为 s; 当 n大于 1时, 相邻所述第一准直缝的缝心间距等 于 s/n。
4、 根据权利要求 2或 3所述的断层扫描装置, 其特征在于, 所 述射线接收单元的数量与所述第一准直缝的数量相同,每个射线接收 单元对应一个所述第一准直缝。
5、 根据权利要求 4所述的断层扫描装置, 其特征在于, 所述射 线接收单元包括开设有第三准直缝的第三准直器以及接收透过所述
6、 根据权利要求 1所述的断层扫描装置, 其特征在于, 所述射 线发生单元包括产生射线束的射线源以及将所述射线束限定在所述 特定张角范围内的第二准直器。
7、 根据权利要求 1所述的断层扫描装置, 其特征在于, 还包括 平行设置在所述运动通道两侧的第一轨道和第二轨道,所述第一准直 器沿所述第一轨道上运动, 所述射线接收单元沿所述第二轨道运动; 所述第一准直器和射线接收单元的运动速度之比等于所述射线源到 第一轨道的距离和到第二轨道的距离之比。
8、 根据权利要求 7所述的断层扫描装置, 其特征在于, 所述第 一轨道以及第二轨道为与所述运动通道平行的直线轨道; 或者, 所述第一轨道以及第二轨道为以所述射线发生单元为圆心的弧 形轨道。
9、 根据权利要求 1所述的断层扫描装置, 其特征在于, 所述射 线发生单元、 第一准直器以及射线接收单元均固定在一直杆上。
10、 根据权利要求 1-9任意一项所述的断层扫描装置, 其特征在 于,所述射线接收单元还包括用于吸收未被射线接收单元吸收的射线 束的辐射防护部件。
11、 根据权利要求 1-10任意一项所述的断层扫描装置, 其特征 在于, 在进行断层扫描时, 所述待检查对象在所述运动通道中运动; 所述第一准直器和射线接收单元做往复运动。
12、 根据权利要求 11所述的断层扫描装置, 其特征在于, 所述 待检查对象的运动速度是射线接收单元运动速度的 0.005-0.1倍。
13、 根据权利要求 12所述的断层扫描装置, 其特征在于, 还包 括可以控制以及监测所述第一准直器和射线接收单元运动状态的控 制单元。
14、 一种直线轨迹透视成像装置, 其特征在于, 包括: 依序设置的用于在特定张角范围内产生射线束的射线发生单元、 用于约束所述射线束的第一准直器、供待检查对象通过的待检查对象 通道、 以及接收射线束的射线接收单元;
所述射线发生单元产生的射线束依次透过所述第一准直器和待
检查对象后被所述射线接收单元接收、所述射线接收单元将接收到的 射线束数据传输至成像计算机处理并显示;
所述射线发生单元静止,所述第一准直器和所述射线接收单元做 同向运动;
在进行扫描时, 所述待检查对象静止在所述运动通道中; 所述第 一准直器和射线接收单元仅做一次单向运动。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310436220.4A CN104458771B (zh) | 2013-09-23 | 2013-09-23 | 直线轨迹断层扫描装置以及透视成像装置 |
CN201310436220.4 | 2013-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015039509A1 true WO2015039509A1 (zh) | 2015-03-26 |
Family
ID=52688194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/084171 WO2015039509A1 (zh) | 2013-09-23 | 2014-08-12 | 一种基于直线轨迹的断层扫描装置以及透视成像装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9632041B2 (zh) |
JP (1) | JP6078506B2 (zh) |
CN (1) | CN104458771B (zh) |
HK (1) | HK1204059A1 (zh) |
WO (1) | WO2015039509A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106896121B (zh) * | 2015-12-18 | 2019-07-05 | 清华大学 | 检测系统和方法 |
CN105784737B (zh) * | 2016-03-29 | 2021-06-22 | 清华大学 | 集装箱ct检查系统 |
CA3085316A1 (en) * | 2017-12-11 | 2019-06-20 | Dentsply Sirona Inc. | Methods, systems, apparatuses, and computer program products for extending the field of view of a sensor and obtaining a synthetic radiagraph |
KR102081869B1 (ko) * | 2018-01-08 | 2020-02-26 | 연세대학교 원주산학협력단 | 엑스선 영상 생성 장치 및 방법 |
US11009449B2 (en) * | 2018-04-20 | 2021-05-18 | Fei Company | Scanning trajectories for region-of-interest tomograph |
CN109001235B (zh) * | 2018-10-15 | 2024-06-14 | 广东正业科技股份有限公司 | 一种检测装置 |
CN109828310B (zh) * | 2018-12-28 | 2024-05-03 | 同方威视技术股份有限公司 | 安检设备和安检方法 |
CN112274169A (zh) * | 2020-09-18 | 2021-01-29 | 南昌大学 | 基于直线轨迹投影数据的pet成像系统及方法 |
CN114019571A (zh) * | 2021-09-29 | 2022-02-08 | 浙江华视智检科技有限公司 | 安检设备及射线光路校正方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1676102A (zh) * | 2004-03-31 | 2005-10-05 | 通用电气公司 | 固定式计算机断层摄影系统和方法 |
CN101951837A (zh) * | 2008-02-22 | 2011-01-19 | 皇家飞利浦电子股份有限公司 | 用于采用分布式源进行x射线成像的高分辨率准静态设置 |
WO2012174246A2 (en) * | 2011-06-17 | 2012-12-20 | The Board Of Trustees Of The Leland Stanford Junior University | Computed tomography system with dynamic bowtie filter |
CN203455293U (zh) * | 2013-09-23 | 2014-02-26 | 同方威视技术股份有限公司 | 直线轨迹断层扫描装置以及透视成像装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3944833A (en) * | 1968-08-23 | 1976-03-16 | E M I Limited | Apparatus for examining a body by radiation such as X or gamma radiation |
US3790799A (en) * | 1972-06-21 | 1974-02-05 | American Science & Eng Inc | Radiant energy imaging with rocking scanning |
DE2619719A1 (de) * | 1976-05-04 | 1977-11-17 | Siemens Ag | Roentgengeraet zur herstellung von transversal-schichtbildern |
US4096391A (en) * | 1976-10-15 | 1978-06-20 | The Board Of Trustees Of The University Of Alabama | Method and apparatus for reduction of scatter in diagnostic radiology |
US4686695A (en) * | 1979-02-05 | 1987-08-11 | Board Of Trustees Of The Leland Stanford Junior University | Scanned x-ray selective imaging system |
CA1244971A (en) * | 1985-11-14 | 1988-11-15 | Shih-Ping Wang | X-ray radiography method and system |
JP2003024312A (ja) * | 2001-07-17 | 2003-01-28 | Hitachi Medical Corp | X線撮像装置 |
US7092485B2 (en) * | 2003-05-27 | 2006-08-15 | Control Screening, Llc | X-ray inspection system for detecting explosives and other contraband |
CN100526866C (zh) * | 2004-11-26 | 2009-08-12 | 同方威视技术股份有限公司 | 一种具有ct断层扫描功能的集装箱检查系统 |
CN101113961A (zh) * | 2006-07-27 | 2008-01-30 | 上海英迈吉东影图像设备有限公司 | 一种具有x射线背散射和断层扫描的成像系统 |
CN101683271B (zh) * | 2008-09-28 | 2014-03-12 | 清华大学 | X射线ct设备、图像重建方法和x射线成像方法 |
JP5579636B2 (ja) * | 2011-02-07 | 2014-08-27 | 富士フイルム株式会社 | 放射線画像撮影装置および放射線画像撮影方法 |
EP2901367B1 (en) | 2012-09-27 | 2020-04-22 | Halliburton Energy Services, Inc. | Computed tomography (ct) methods analyzing rock property changes resulting from a treatment |
CN104510486B (zh) | 2013-09-30 | 2021-04-20 | Ge医疗系统环球技术有限公司 | 计算机化断层扫描设备及其机架旋转控制装置和方法 |
-
2013
- 2013-09-23 CN CN201310436220.4A patent/CN104458771B/zh active Active
-
2014
- 2014-08-12 WO PCT/CN2014/084171 patent/WO2015039509A1/zh active Application Filing
- 2014-09-19 JP JP2014191124A patent/JP6078506B2/ja active Active
- 2014-09-23 US US14/494,301 patent/US9632041B2/en active Active
-
2015
- 2015-05-15 HK HK15104608.9A patent/HK1204059A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1676102A (zh) * | 2004-03-31 | 2005-10-05 | 通用电气公司 | 固定式计算机断层摄影系统和方法 |
CN101951837A (zh) * | 2008-02-22 | 2011-01-19 | 皇家飞利浦电子股份有限公司 | 用于采用分布式源进行x射线成像的高分辨率准静态设置 |
WO2012174246A2 (en) * | 2011-06-17 | 2012-12-20 | The Board Of Trustees Of The Leland Stanford Junior University | Computed tomography system with dynamic bowtie filter |
CN203455293U (zh) * | 2013-09-23 | 2014-02-26 | 同方威视技术股份有限公司 | 直线轨迹断层扫描装置以及透视成像装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6078506B2 (ja) | 2017-02-08 |
US20150085973A1 (en) | 2015-03-26 |
CN104458771A (zh) | 2015-03-25 |
US9632041B2 (en) | 2017-04-25 |
HK1204059A1 (zh) | 2015-11-06 |
CN104458771B (zh) | 2017-01-18 |
JP2015061601A (ja) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015039509A1 (zh) | 一种基于直线轨迹的断层扫描装置以及透视成像装置 | |
JP4675869B2 (ja) | 結像システム | |
JP2515973B2 (ja) | 投影式ラジオグラフイツクシステムおよび放射線検出器 | |
CA3140591C (en) | System and method for internal inspection of rail components | |
EP2273257A1 (en) | Imaging system using a straight-line trajectory scan and method thereof | |
WO2015064723A1 (ja) | 非破壊検査装置 | |
EP3307167B1 (en) | Tiled detector arrangement for differential phase contrast ct | |
CN103913472A (zh) | Ct成像系统和方法 | |
EP3171781B1 (en) | A system and method for use in mapping a radiation dose applied in an angiography imaging procedure of a patient | |
CN101501530A (zh) | 用于获得图像数据的系统和方法 | |
CN110049727A (zh) | 用于基于光栅的x射线成像的干涉仪光栅支撑物和/或用于其的支撑物托架 | |
US9962135B2 (en) | Trabecular bone analyzer | |
CN103983654B (zh) | 一种基于孔径编码技术的射线散射成像系统 | |
CN106572823A (zh) | 投影数据采集装置 | |
CN103901485A (zh) | 一种人体安检系统 | |
WO2012169426A1 (ja) | 放射線撮影システム | |
WO2014101536A1 (zh) | 人体检查系统 | |
JP2008232765A (ja) | 後方散乱放射線を用いた表面近傍の欠陥検査装置 | |
CN102109474A (zh) | 基于电子对效应检测材料缺陷的方法及系统 | |
JPH06265485A (ja) | 放射線透視装置 | |
US9757088B2 (en) | Detector apparatus for cone beam computed tomography | |
JP5030056B2 (ja) | 非破壊検査方法及び装置 | |
JP2019045404A (ja) | 非破壊分析装置 | |
KR20200106772A (ko) | 동시 계수 기반 즉발감마선 방사화 영상 장치 및 이를 이용한 영상 생성방법 | |
Speidel et al. | Frame-by-frame 3D catheter tracking methods for an inverse geometry cardiac interventional system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14845193 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14845193 Country of ref document: EP Kind code of ref document: A1 |