WO2015039482A1 - 电致发光装置及其制备方法 - Google Patents

电致发光装置及其制备方法 Download PDF

Info

Publication number
WO2015039482A1
WO2015039482A1 PCT/CN2014/080898 CN2014080898W WO2015039482A1 WO 2015039482 A1 WO2015039482 A1 WO 2015039482A1 CN 2014080898 W CN2014080898 W CN 2014080898W WO 2015039482 A1 WO2015039482 A1 WO 2015039482A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
thin film
film transistor
substrate
electrode
Prior art date
Application number
PCT/CN2014/080898
Other languages
English (en)
French (fr)
Inventor
程鸿飞
张玉欣
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/416,904 priority Critical patent/US9520453B2/en
Publication of WO2015039482A1 publication Critical patent/WO2015039482A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/127Active-matrix OLED [AMOLED] displays comprising two substrates, e.g. display comprising OLED array and TFT driving circuitry on different substrates
    • H10K59/1275Electrical connections of the two substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • Embodiments of the present invention relate to an electroluminescent device and a method of fabricating the same. Background technique
  • OLED Organic Light Emitting Diode
  • OELD Organic Electroluminescence Display
  • an active matrix type OLED display device includes: a color filter substrate 20 and an array substrate 10.
  • the array substrate 10 includes: a substrate 11, an array of thin film transistors 12, a protective layer 13 and a connection electrode 14 disposed on the substrate 11, and the connection electrode 14 is connected to the drain of the thin film transistor 12 through the protective layer via hole.
  • the color filter substrate 20 includes: a second substrate 21, a color filter layer (including a black matrix 221 and a color block 222R/G/B separated by a black matrix 221), a flat layer 23, and a first electrode 24, which are sequentially disposed on the second substrate 21.
  • the array substrate 10 and the color filter substrate 20 are separately formed, and then the sealant 30 is applied to the edge of the array substrate 10 or the color filter substrate 20, and the array substrate 10 and the color filter substrate 20 are paired with each other.
  • the electrodes 26 are in contact with the connection electrodes 14 on the array substrate 10 to achieve electrical connection.
  • connection electrode 14 is usually made thicker (generally 2-3 microns), but This may result in a long process of forming a film at the time of preparation and an etching difficulty when the etched film forms the connection electrode 14.
  • Embodiments of the present invention provide an electroluminescent device and a method of fabricating the same.
  • At least one embodiment of the present invention provides an electroluminescent device, including: an array substrate; the array substrate includes: a substrate, a thin film transistor sequentially disposed on the substrate, covering the a protective layer over the thin film transistor, and a connection electrode disposed on the protective layer; a protective layer under the connection electrode is convex toward a side away from the substrate to form a bump; the protective layer is in a corresponding thin film transistor A drain of the protective layer is disposed at a position of the drain, and the connection electrode is connected to a drain of the thin film transistor through the via of the protective layer.
  • the protective layer via is located on the boss.
  • the protective layer via is located on one side of the boss, and the connection electrode covers the bump and the protective layer via.
  • the connecting electrode has a thickness of 0.3 to 1 micron.
  • the total thickness of the protective layer is 2 to 4 microns, and the height of the step of the boss is 1.5 to 2.5 microns.
  • the connecting electrode is made of one or more of the following materials: copper, molybdenum, tin, aluminum, silver.
  • the protective layer is made of one or more of the following materials:
  • Silicon nitride, silicon oxide, or photosensitive resin Silicon nitride, silicon oxide, or photosensitive resin.
  • the electroluminescent device further includes: a color filter substrate; the color filter substrate includes: a second substrate, a color filter layer sequentially disposed on the second substrate, a flat layer, and a first electrode And an organic light emitting layer and a second electrode; the second electrode is in contact with and electrically connected to the connecting electrode.
  • At least one embodiment of the present invention further provides a method of fabricating an electroluminescent device, comprising: a color film substrate process, an array substrate process, a color filter substrate, and an array substrate pair process, wherein the array substrate process comprises:
  • connection electrode is formed over the protective layer, and the connection electrode is connected to a drain of the thin film transistor through the protective layer via.
  • the method forms the bump at a predetermined position where the connection electrode is subsequently formed by a multi-step exposure process, and the protective layer via is formed at the position corresponding to the drain of the thin film transistor.
  • the method further includes:
  • Coating a photoresist on the protective layer Performing a multi-step exposure, after developing, forming a photoresist pattern on the protective layer, so that a photoresist of a first thickness is retained in the photoresist pattern at a predetermined position where the connection electrode is subsequently formed,
  • the preset position of the protective layer via hole is formed on the drain of the thin film transistor without retaining the photoresist, and the second thickness of the light is retained except for the preset position of the connection electrode and the preset position of the protective layer via hole.
  • Engraving, and the first thickness is greater than the second thickness;
  • the remaining photoresist in the corresponding region of the first thickness is peeled off.
  • the method can include:
  • the photoresist is coated again, and the protective layer via hole is formed by a patterning process for a second time to form a predetermined position of the via hole of the protective layer over the drain of the thin film transistor.
  • the method in one example includes:
  • FIG. 1 is a schematic structural view of an active matrix type OLED display device
  • FIG. 2(a) is a schematic view showing an exemplary structure of an electroluminescence display device according to Embodiment 1 of the present invention
  • FIG. 2(b) is a schematic diagram showing another example structure of an electroluminescence display device according to Embodiment 1 of the present invention.
  • FIG. 4 is a flow chart of forming a protective layer by a multi-step exposure process according to Embodiment 2 of the present invention
  • FIG. 5(a) is a schematic diagram of multi-step exposure in Embodiment 2 of the present invention
  • FIG. 5(b) is a schematic view showing a photoresist pattern formed on a protective layer in Embodiment 2 of the present invention.
  • FIG. 5(c) is a schematic structural view of the array substrate after the first etching in the second embodiment of the present invention
  • FIG. 5(d) is a schematic structural view of the array substrate after the ashing process according to the second embodiment of the present invention
  • FIG. 5(e) is a schematic structural view of the array substrate after the second etching in the second embodiment of the present invention
  • FIG. 5(f) is a schematic structural view of the array substrate after removing the remaining photoresist according to the second embodiment of the present invention
  • (a) is a schematic view showing exposure of a conventional mask in the second embodiment of the present invention
  • FIG. 6(b) is a schematic structural view of the array substrate after the first patterning process in the second embodiment of the present invention
  • FIG. 6(c) is a schematic structural view of the array substrate after the second patterning process in the second embodiment of the present invention.
  • an embodiment of the present invention provides an electroluminescent device.
  • the device includes: an array substrate 10.
  • the array substrate 10 includes a substrate 11, a thin film transistor 12 sequentially disposed on the substrate 11, a protective layer 13 overlying the thin film transistor 12, and a connection electrode 14 disposed over the protective layer 13.
  • the protective layer 13 under the connection electrode 14 is convex toward a side away from the substrate 11.
  • a boss 131 is formed.
  • the protective layer 13 is provided with a protective layer via 132 at a position corresponding to the drain 122 of the thin film transistor 12.
  • the connection electrode 14 is connected to the drain of the thin film transistor 12 through the protective layer via 132.
  • a TFT circuit (drive circuit) is provided on the array substrate 10 for driving and compensating the OELD.
  • the driver circuit includes at least one thin film transistor for driving.
  • the thin film transistor 12 in this embodiment refers to a thin film transistor for driving in a driving circuit.
  • the drain electrode 122 of the thin film transistor 12 is taken out through the connection electrode 14, and the connection electrode 14 and the second electrode 26 of the OELD are brought into contact with the case, thereby realizing electrical connection between the drive circuit and the light-emitting device.
  • the implementation of the driving circuit is not directly related to the present invention, and the implementation of the present invention is not affected. Therefore, the specific implementation manner of the driving circuit is not limited in the embodiment of the present invention, and may be a person skilled in the art. Any implementation that is well known.
  • the protective layer 13 under the connection electrode 14 is designed as a bump, and the connection electrode 14 is raised, so that the thickness of the connection electrode 14 can be further reduced, so that the film formation time in the preparation process of the connection electrode 14 is shortened. The difficulty of etching is reduced and the production efficiency is improved.
  • the connection electrode 14 is raised to ensure the reliability of the electrical connection between the thin film transistor 12 and the second electrode 26, and the film can be prevented from being pressed or rubbed against the film during the process of the process and after the process. Transistor arrays cause damage and improve yield.
  • the protective layer via 132 is located in the bump 131, and the connection electrode 14 is connected to the drain 122 of the thin film transistor 12 through the underlying protective layer via 132.
  • the land 131 overlaps the drain 122 of the thin film transistor 12 in position.
  • the protective layer via 132 is located on one side of the bump 131, and the connecting electrode 14 covers the bump 131 and the protective layer via 132. Connecting electrode 14 through protective layer via
  • the land 131 and the drain 122 of the thin film transistor 12 do not overlap in position.
  • the connecting electrode 14 of this embodiment may be made of one or more of copper, molybdenum, tin, aluminum, and silver.
  • the thickness of the connection electrode 14 is preferably 0.3 to 1 ⁇ m. Compared with the prior art of 2-3 micrometers, the thickness of the connection electrode 14 of the embodiment is greatly reduced, thereby saving the time for depositing the connection electrode 14, simplifying the process in the subsequent etching, reducing the etching difficulty, and improving the production. effectiveness.
  • the protective layer 13 in this embodiment may be made of one or more of the following materials: silicon nitride, silicon oxide, or a photosensitive resin.
  • the protective layer 13 may be a single film layer formed of one of the materials, or may be a composite film layer formed of two or more of them.
  • a silicon nitride film layer may be formed first, and then a silicon oxide film layer is formed on the silicon nitride film layer, and the silicon nitride film layer and the silicon oxide film layer are collectively
  • the protective layer 13 is formed.
  • the protective layer 13 is made of a photosensitive resin material, and the protective layer 13 with the boss 131 described in this embodiment can be formed by exposure and development.
  • the photosensitive resin may be a polyacrylic resin, a polyimide resin, or a polyamide resin.
  • the total thickness d2 of the protective layer 13 is preferably 2 to 4 micrometers.
  • the height dl of the bump 131 is 1.5 to 2.5 micrometers.
  • the electroluminescent device further includes: a color filter substrate 20.
  • the color filter substrate 20 includes: a second substrate 21, a color filter layer sequentially disposed on the second substrate 21, a flat layer 23, a first electrode 24, an organic light-emitting layer 15, and a second electrode 26.
  • the second electrode 26 is in contact with and electrically connected to the connection electrode 14.
  • the thickness of the connecting electrode can be further reduced, so that the film forming time in the preparation process of the connecting electrode is shortened, the etching difficulty is lowered, and the production efficiency is improved.
  • the connection electrode is raised to ensure the reliability of the electrical connection between the thin film transistor and the second electrode, and the damage of the thin film transistor array can be avoided by pressing or rubbing the color film substrate and the array substrate after the process. , improve the yield rate.
  • the electro-display device of this embodiment may be: any product or component having a display function such as an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the embodiment of the invention further provides a method for preparing an electroluminescent device, which comprises: a color film substrate process, an array substrate process, a color film substrate and an array substrate pair process.
  • the array substrate process includes:
  • Step 101 forming a thin film transistor 12 on the substrate 11;
  • Step 102 forming a protective layer 13 on the substrate 11 on which the thin film transistor 12 is formed, and forming a bump 131 at a predetermined position where the connection electrode is subsequently formed by a patterning process, and forming a protective layer at a position corresponding to the drain 122 of the thin film transistor 12.
  • Step 103 A connection electrode 14 is formed on the protective layer 13, and the connection electrode 14 is connected to the drain of the thin film transistor 12 through the protective layer via 132.
  • a TFT circuit for driving and compensating the OELD is formed on the substrate 11, but the specific implementation of the drive circuit is in accordance with the present invention. There is no direct relationship, so this embodiment will not be described again.
  • the thin film transistor 22 is a driving thin film transistor in a driving circuit. The drain of the thin film transistor 22 is taken out through the connection electrode 14. The connection electrode 14 and the second electrode 26 of the OELD are in contact with each other to achieve electrical connection between the drive circuit and the light-emitting device.
  • step 102 the protective layer 13 corresponding to the underside of the second electrode 26 is formed into a shape of a boss, so that the second electric The protective layer 13 under the pole 26 is higher than the protective layer at other positions, thereby functioning to support the connection electrode 14.
  • step 103 a thin connection electrode 14 (reference thickness: 0.3 to 1 micrometer) is formed on the bump 131, and the thin film transistor 22 is connected through the protective layer via 132 to connect the top surface and the second electrode of the post-casing electrode 14. 26 contacts.
  • the protective layer 13 corresponding to the underside of the second electrode 26 is formed into the shape of the boss 131, and a thin connecting electrode 14 is formed on the boss 131 (connecting electrode thickness)
  • the reference value is 0.3 to 1 micrometer), so that the film formation time in the preparation process of the connection electrode is shortened, the etching difficulty is lowered, and the production efficiency is improved.
  • the connection electrode 14 is raised to ensure the reliability of the electrical connection between the thin film transistor 22 and the second electrode 26, and the film can be prevented from being squeezed or rubbed against the film during the process of the process and after the process. Transistor arrays cause damage and improve yield.
  • the bump 131 and the protective layer may be formed at a predetermined position where the connection electrode 14 is subsequently formed by a multi-step exposure process.
  • the hole 132 is such that the protective layer 13 under the second electrode 26 is higher than the protective layer at other positions, thereby functioning to support the connection electrode 14.
  • the multi-step exposure process that is, the multi-tone mask process, refers to exposure using a multi-tone mask (MTM, Multi Tone Mask) after the photoresist is coated on the protective layer. Since the light intensity transmitted through each part of the multi-step mask is different, the corresponding portions of the photoresist are not exposed to much intensity, and after development, a photoresist pattern having different photoresist thicknesses can be obtained.
  • MTM Multi Tone Mask
  • step 102 uses a multi-step exposure process to form the bump 131 and the protective via 132, including the following sub-steps:
  • a protective layer 13 is formed, and a photoresist 40 is coated on the protective layer 13.
  • multi-level exposure is performed using a multi-tone mask 50.
  • a photoresist pattern is formed on the protective layer 13 so that a photoresist of a first thickness hi is retained in the photoresist pattern at a predetermined position where the connection electrode is subsequently formed, at the drain of the thin film transistor 12
  • the preset position of the subsequent protective via hole is not retained, and the photoresist of the second thickness h2 is retained in the region except the preset position of the connection electrode and the preset position of the via of the protective layer, and the first thickness Hi is greater than the second thickness h2.
  • a multi-step masking process is used to reduce the number of patterning processes in the array substrate preparation process, thereby effectively reducing the manufacturing cost and improving the yield.
  • Step 2 includes:
  • Step 1 forming a protective layer 13 on the substrate on which the thin film transistor 12 is formed;
  • Step 2 applying a photoresist 40 on the protective layer 13, and forming a bump 131 on the protective layer 13 at a predetermined position on the protective layer 13 by subsequently forming a connection electrode, as shown in FIG. 6(a), 6(b). ;
  • Step 3 Applying the photoresist 40 again, and forming a protective layer via 132 by a patterning process at a predetermined position on the drain of the thin film transistor to form a protective layer via hole, as shown in FIG. 6(c).
  • the predetermined pattern is transferred to a specific film layer in the semiconductor preparation process, and the film layer is patterned to present the same pattern as the preset pattern, and the patterning process includes but is not limited to the ordinary meaning.
  • the lithography process is not limited to the ordinary meaning.
  • the protective layer 13 may be made of one or more of the following materials: silicon nitride, silicon oxide, or a photosensitive resin.
  • the photoresist may be directly applied for exposure and development, and the etching process is not required after the development.
  • Step 2 includes: Step 1: In the formation On the substrate with the thin film transistor, a photosensitive resin is applied to form the protective layer 13; Step 2, by multi-step exposure development or double exposure development, a bump 131 is formed on the protective layer 13 at a predetermined position where the connection electrode is subsequently formed, and A predetermined position of the protective layer via hole is formed over the drain 122 of the thin film transistor 12 to form a protective layer via 132.
  • the protective layer 13 is directly subjected to multi-step exposure and then developed to form the protective layer 13 provided with the bump 131 and the protective layer via 132 as shown in Fig. 2(a).
  • the double exposure development the specific process can refer to the first example, eliminating all the steps of applying the photoresist, directly performing exposure, development, and no etching process after development.
  • the above steps can form the array substrate shown in Figs. 2(a) and 2(b) except that the mask used in the process of forming the protective layer 13 differs, such as the position and shape of the boss.
  • the protective layer is designed in the shape of a boss, and the connecting electrode is padded, so that the thickness of the connecting electrode can be further reduced, so that the film forming time in the preparation process of the connecting electrode is shortened, the etching difficulty is lowered, and the production efficiency is improved.
  • the connection electrode is raised to ensure the reliability of the connection between the thin film transistor and the second electrode, and the film substrate and the array substrate are mutually squeezed or rubbed to damage the thin film transistor array during and after the process. , improve the yield rate.
  • the electroluminescent device and the method for fabricating the same according to the embodiments of the present invention can further reduce the thickness of the connecting electrode by designing the protective layer under the connecting electrode as a boss shape and padding the connecting electrode (the thickness of the connecting electrode of the present invention) It can be reduced to 0.3 ⁇ 1 ⁇ m), so that the film formation time in the preparation process of the connecting electrode is shortened, the etching difficulty is lowered, and the production efficiency is further improved.
  • the connection electrode is padded to ensure the reliability of the electrical connection between the thin film transistor and the second electrode, and at the same time, the film transistor array and the array substrate are pressed or rubbed against each other during the process of the process and the substrate is damaged. , improve the yield rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种电致发光装置及其制备方法。电致发光装置包括:阵列基板(10);该阵列基板(10)包括:基板(11),依次设置于基板(11)上的薄膜晶体管(12)、覆盖于薄膜晶体管(12)之上的保护层(13)、以及设置在保护层(13)之上的连接电极(14);连接电极(14)下方的保护层(13)向远离基板(11)的一侧凸起,形成凸台(131);保护层(13)在对应薄膜晶体管(12)漏极(122)的位置设置有保护层过孔(132),连接电极(14)通过保护层过孔(132)与薄膜晶体管(12)的漏极(122)连接。该电致发光装置及其制备方法,在保证薄膜晶体管(12)与第二电极(26)电连接可靠性的同时,还可使连接电极(14)制备过程中的成膜时间缩短,刻蚀难度降低,从而提高生产效率。

Description

电致发光装置及其制备方法 技术领域
本发明的实施例涉及一种电致发光装置及其制备方法。 背景技术
有机发光二极管 (Organic Light Emitting Diode, OLED ), 又称有机电 致发光显示 ( Organic Electroluminescence Display, OELD ), 由于同时具备自 发光, 不需背光源、 对比度高、 厚度薄、 视角广、 反应速度快、 使用温度范 围广、 构造及制程简单等优异特性, 近来已普遍应用于移动通信终端、 个人 数字助理(PDA )、 掌上电脑等。
如图 1所示, 一种有源矩阵型 OLED显示装置, 包括: 彩膜基板 20和 阵列基板 10。 阵列基板 10包括: 基板 11 ,依次设置在基板 11上的薄膜晶体 管 12阵列、 保护层 13和连接电极 14, 连接电极 14通过保护层过孔与薄膜 晶体管 12的漏极连接彩膜基板 20包括: 第二基板 21 , 依次设置在第二基板 21 上的彩色滤光层 (包括黑矩阵 221 和由黑矩阵 221 分隔开的色阻块 222R/G/B )、 平坦层 23、 第一电极 24、 有机发光层 ( Organic Electro-Luminescence, 有机 EL ) 25和第二电极 26。 制备时, 先分别形成阵 列基板 10和彩膜基板 20, 然后, 在阵列基板 10或彩膜基板 20的边缘涂敷 封框胶 30, 将阵列基板 10与彩膜基板 20对盒, 使第二电极 26与阵列基板 10上的连接电极 14——对应接触, 实现电连接。
为了使对盒后连接电极 14和第二电极 26充分接触,提升薄膜晶体管 12 和第二电极 26电连接的可靠性,连接电极 14通常制备得比较厚(一般为 2-3 微米),但这会导致制备时形成薄膜的过程耗时长以及刻蚀薄膜形成连接电极 14时出现刻蚀困难。 发明内容
本发明的实施例提供一种电致发光装置及其制备方法。
本发明的至少一个实施例提供一种电致发光装置, 包括: 阵列基板; 所 述阵列基板包括: 基板, 依次设置于所述基板上的薄膜晶体管, 覆盖于所述 薄膜晶体管之上的保护层, 以及设置在所述保护层之上的连接电极; 所述连 接电极下方的保护层向远离基板的一侧凸起, 形成凸台; 所述保护层在对应 薄膜晶体管漏极的位置设置有保护层过孔, 所述连接电极通过所述保护层过 孔与所述薄膜晶体管的漏极连接。
在一个示例中, 所述保护层过孔位于所述凸台上。
在一个示例中, 所述保护层过孔位于所述凸台的一侧, 所述连接电极覆 盖所述凸台及所述保护层过孔。
在一个示例中, 所述连接电极的厚度为 0.3 ~ 1微米。
在一个示例中, 所述保护层的总厚度为 2~4微米, 所述凸台的台阶高度为 1.5 ~ 2.5微米。
在一个示例中, 所述连接电极选用下述材料中一种或几种制成: 铜、 钼、 锡、 铝、 银。
在一个示例中, 所述保护层选用下述材料中一种或几种制成:
氮化硅, 氧化硅, 或者感光树脂。
在一个示例中, 所述电致发光装置还包括: 彩膜基板; 所述彩膜基板包 括: 第二基板, 依次设置于所述第二基板上的彩色滤光层, 平坦层, 第一电 极、 有机发光层和第二电极; 所述第二电极与所述连接电极接触且电连接。
本发明的至少一个实施例还提供一种电致发光装置的制备方法, 包括: 彩膜基板制程, 阵列基板制程, 彩膜基板和阵列基板对盒制程, 其中所述阵 列基板制程包括:
在基板上形成薄膜晶体管;
在形成有薄膜晶体管的基板上形成保护层, 并通过构图工艺在后续形成 连接电极的预设位置形成凸台, 在对应薄膜晶体管漏极的位置形成保护层过 孑 L; 以及
在所述保护层之上形成连接电极, 所述连接电极通过所述保护层过孔与 所述薄膜晶体管的漏极相连。
在一个示例中, 所述方法釆用多阶曝光工艺在后续形成连接电极的预设 位置形成所述凸台, 在对应所述薄膜晶体管漏极的所述位置形成所述保护层 过孔。
在一个示例中, 所述方法还包括:
在所述保护层上涂覆光刻胶; 进行多阶曝光, 经过显影后, 在所述保护层上形成光刻胶图案, 使得所 述光刻胶图案之中, 在后续形成连接电极的预设位置保留第一厚度的光刻胶, 在薄膜晶体管漏极上方后续形成保护层过孔的预设位置不保留光刻胶, 除所 述连接电极的预设位置、 所述保护层过孔的预设位置之外区域保留第二厚度 的光刻胶, 且所述第一厚度大于所述第二厚度;
进行刻蚀, 去除露出的保护层, 形成所述保护层过孔;
进行灰化处理, 去除第二厚度对应区域的光刻胶;
进行刻蚀, 去除第二厚度对应区域露出的所述保护层, 形成所述凸台; 以及
剥离第一厚度对应区域剩余的光刻胶。
在一个示例中, 所述方法可包括:
在所述保护层上涂覆光刻胶, 釆用构图工艺在所述保护层上后续形成所 述连接电极的预设位置形成所述凸台;
再次涂覆光刻胶, 第二次釆用构图工艺在所述薄膜晶体管漏极上方后续 形成所述保护层过孔的预设位置形成所述保护层过孔。
在一个示例中所述方法包括:
在形成有所述薄膜晶体管的所述基板上, 涂敷感光树脂形成所述保护层; 以及
通过多阶曝光显影或者两次曝光显影, 在所述保护层上后续形成所述连 接电极的预设位置形成所述凸台, 并在所述薄膜晶体管漏极上方后续形成所 述保护层过孔的预设位置形成所述保护层过孔。 附图说明
以下将结合附图对本发明的实施例进行更详细的说明, 以使本领域普通 技术人员更加清楚地理解本发明, 其中:
图 1为有源矩阵型 OLED显示装置的结构示意图;
图 2(a)为本发明实施例一提供的电致发光显示装置的一个示例结构的示 意图;
图 2(b)为本发明实施例一提供的电致发光显示装置的另一个示例结构的 示意图;
图 3为本发明实施例二电致发光显示装置的制备方法中阵列基板制程流 程图;
图 4为本发明实施例二提供的多阶曝光工艺形成保护层的流程图; 图 5(a)为本发明实施例二中多阶曝光的示意图;
图 5(b)为本发明实施例二中保护层上形成的光刻胶图案示意图;
图 5(c)为本发明实施例二中第一次刻蚀后阵列基板的结构示意图; 图 5(d)为本发明实施例二中灰化处理后阵列基板的结构示意图;
图 5(e)为本发明实施例二中第二次刻蚀后阵列基板的结构示意图; 图 5 (f) 为本发明实施例二中去除剩余光刻胶后阵列基板的结构示意图; 图 6(a)为本发明实施例二中釆用常规的掩模板曝光的示意图;
图 6(b)为本发明实施例二中第一次构图工艺后阵列基板的结构示意图; 图 6(c)为本发明实施例二中第二次构图工艺后阵列基板的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述。 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
除非另作定义, 本文使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一"、 "第二" 以及类似的词语并不表示任何顺序、 数 量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个"、 "―" 或者 "该" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包含" 等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后 面列举的元件或者物件及其等同,而不排除其他元件或者物件。 "上"、 "下"、 等仅用于表示相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位 置关系也可能相应地改变。
实施例一
本发明实施例提供一种电致发光装置, 如图 2(a)和图 2(b)所示, 该装置包 括: 阵列基板 10。 所述阵列基板 10包括: 基板 11 , 依次设置于基板 11上的薄 膜晶体管 12, 覆盖于薄膜晶体管 12之上的保护层 13 , 以及设置在保护层 13之 上的连接电极 14。 该连接电极 14下方的保护层 13向远离基板 11的一侧凸起, 形成凸台 131。 保护层 13在对应薄膜晶体管 12的漏极 122的位置设置有保护层 过孔 132。 连接电极 14通过保护层过孔 132与薄膜晶体管 12的漏极连接。
阵列基板 10上设置有 TFT电路 (驱动电路), 用以对 OELD实现驱动和补 偿作用。 所述驱动电路的实现方式存在多种, 但驱动电路至少包括一用以驱 动的薄膜晶体管。 本实施例中的薄膜晶体管 12即指驱动电路中用以驱动的薄 膜晶体管。 薄膜晶体管 12的漏极 122通过连接电极 14引出, 对盒时连接电极 14 和 OELD的第二电极 26接触, 从而实现驱动电路和发光器件的电连接。
需要说明的是, 驱动电路的实现方式与本发明并无直接关系, 也不影响 本发明的实施效果, 因此, 本发明实施例对驱动电路的具体实现方式不做限 定, 可以是本领域技术人员所熟知的任意实现方式。
本实施例将连接电极 14下方的保护层 13设计成凸台, 将连接电极 14垫高, 使连接电极 14的厚度可进一步减薄, 从而使连接电极 14制备过程中的成膜时 间缩短, 刻蚀难度降低, 生产效率提高。 同时, 将连接电极 14垫高, 可保证 薄膜晶体管 12与第二电极 26电连接可靠性, 还可避免对盒过程中及对盒后彩 膜基板 20与阵列基板 10相互挤压或摩擦对薄膜晶体管阵列造成损伤, 提高良 品率。
本实施例中第一示例如图 2 ( a )所示, 保护层过孔 132位于凸台 131中, 连接电极 14通过其下的保护层过孔 132与薄膜晶体管 12的漏极 122连接。 此时, 凸台 131与薄膜晶体管 12的漏极 122在位置上有交叠。
本实施例中第二示例如图 2 ( b )所示, 保护层过孔 132位于凸台 131的一 侧, 连接电极 14覆盖凸台 131及保护层过孔 132。 连接电极 14通过保护层过孔
132与薄膜晶体管 12的漏极 122连接。此时,凸台 131与薄膜晶体管 12的漏极 122 在位置上没有交叠。
本实施例所述连接电极 14可选用铜、 钼、 锡、 铝、 银中一种或几种材料 制成。 连接电极 14的厚度优选为 0.3 ~ 1微米。 与现有技术中的 2 ~ 3微米相比, 本实施例连接电极 14的厚度大大减小, 从而节省了沉积连接电极 14的时间, 在后续刻蚀中简化工艺, 降低刻蚀难度, 提高生产效率。
本实施例中所述保护层 13可选用下述材料中一种或几种制成: 氮化硅, 氧化硅, 或者感光树脂。 保护层 13可以是由其中一种材料形成的单一膜层, 也可以是由其中两种或两种以上材料形成的复合膜层。 例如, 可先形成氮化 硅膜层, 再在氮化硅膜层上形成氧化硅膜层, 氮化硅膜层和氧化硅膜层共同 构成保护层 13。 例如, 所述保护层 13釆用感光树脂材料, 经过曝光、 显影可 形成本实施例所述带有凸台 131的保护层 13。 所述感光树脂可为: 聚丙烯酸类 树脂, 或者聚酰亚胺类树脂, 或者聚酰胺类树脂。 例如, 形成的保护层 13的 总厚度 d2优选为 2~4微米, 保护层 13经刻蚀形成凸台 131后, 所述凸台 131的台 阶高度 dl为 1.5 ~ 2.5微米。
例如, 所述电致发光装置还包括: 彩膜基板 20。 所述彩膜基板 20包括: 第二基板 21 , 依次设置于第二基板 21上的彩色滤光层, 平坦层 23 , 第一电极 24、 有机发光层 15和第二电极 26。 第二电极 26与连接电极 14接触且电连接。
本实施例所述电致发光装置, 连接电极的厚度可进一步减薄, 从而使连 接电极制备过程中的成膜时间缩短, 刻蚀难度降低, 生产效率提高。 同时, 将连接电极垫高, 可保证薄膜晶体管与第二电极电连接的可靠性, 还可避免 对盒过程中及对盒后彩膜基板与阵列基板相互挤压或摩擦对薄膜晶体管阵列 造成损伤, 提高良品率。
本实施例所述电致显示装置可以为: 电子纸、 手机、 平板电脑、 电视机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能的产品或部件。
实施例二
本发明实施例还提供一种电致发光装置的制备方法, 该制备方法包括: 彩膜基板制程, 阵列基板制程, 彩膜基板和阵列基板对盒制程。 如图 3所示, 所述阵列基板制程包括:
步骤 101、 在基板 11上形成薄膜晶体管 12;
步骤 102、 在形成有薄膜晶体管 12的基板 11上形成保护层 13 , 并通过构图 工艺在后续形成连接电极的预设位置形成凸台 131 , 在对应薄膜晶体管 12漏极 122的位置形成保护层过孔 132;
步骤 103、 在保护层 13之上形成连接电极 14, 连接电极 14通过保护层过孔 132与薄膜晶体管 12的漏极相连。
结合图 2 ( a )所示,在本实施例步骤 101中,在基板 11上形成用以对 OELD 实现驱动和补偿作用的 TFT电路(驱动电路), 但驱动电路的具体实现方式与 本发明并无直接关系, 因此本实施例对此不再赘述。 薄膜晶体管 22为驱动电 路中的驱动薄膜晶体管。 薄膜晶体管 22的漏极通过连接电极 14引出。 对盒时 连接电极 14和 OELD的第二电极 26接触,从而实现驱动电路和发光器件的电连 接。 步骤 102中将对应第二电极 26下面的保护层 13做成凸台的形状, 使第二电 极 26下面的保护层 13高于其他位置的保护层, 以此起到支撑连接电极 14的作 用。步骤 103中在凸台 131上制备一薄层的连接电极 14 (参考厚度: 0.3~1微米), 通过保护层过孔 132连接薄膜晶体管 22, 对盒后连接电极 14的顶面与第二电极 26接触。
本实施例所述电致发光装置的制备方法, 将对应第二电极 26下面的保护 层 13做成凸台 131的形状, 再在凸台 131上制备一薄层的连接电极 14 (连接电 极厚度参考值为 0.3~1微米),从而使连接电极制备过程中的成膜时间缩短,刻 蚀难度降低, 生产效率提高。 同时, 将连接电极 14垫高, 可保证薄膜晶体管 22与第二电极 26电连接可靠性, 还可避免对盒过程中及对盒后彩膜基板 20与 阵列基板 10相互挤压或摩擦对薄膜晶体管阵列造成损伤, 提高良品率。
在本实施例的第一示例中, 步骤 102中在制备具有凸台 131的保护层 13时, 可釆用多阶曝光工艺在后续形成连接电极 14的预设位置形成凸台 131及保护 层过孔 132, 使第二电极 26下面的保护层 13高于其他位置的保护层, 以此起到 支撑连接电极 14的作用。
所述多阶曝光工艺, 即多阶调掩模工艺, 指在保护层上涂覆光刻胶后, 利用多阶调掩模板 ( MTM, Multi Tone Mask )进行曝光。 由于多阶掩模板各 个部分透过的光强不同, 会导致光刻胶相应的各个部分曝光强度也不多, 再 经过显影, 可以得到光刻胶厚度不同的光刻胶图样。
如图 4并结合图 5 ( a )到图 5 ( f )所示, 步骤 102釆用多阶曝光工艺形成凸 台 131及保护层过孔 132, 包括如下子步骤:
1021、 形成保护层 13 , 并在保护层 13上涂覆光刻胶 40。
1022、 如图 5 ( a )到 5 ( b )所示, 使用多阶调掩模板 50进行多阶曝光。 经过显影后, 在保护层 13上形成光刻胶图案, 使得所述光刻胶图案之中, 在 后续形成连接电极的预设位置保留第一厚度 hi的光刻胶, 在薄膜晶体管 12漏 极上方后续形成保护层过孔的预设位置不保留光刻胶, 除连接电极的预设位 置、 保护层过孔的预设位置之外区域保留第二厚度 h2的光刻胶, 且第一厚度 hi大于第二厚度 h2。
1023、 进行第一次刻蚀, 去除后续形成保护层过孔的预设位置露出的保 护层 13 , 形成保护层过孔 132, 如图 5 ( c )所示。
1024、进行第一次灰化处理,去除第二厚度对应区域的光刻胶,如图 5 ( d ) 所示。 1025、 进行第二次刻蚀, 去除第二厚度对应区域露出的保护层, 形成凸 台 131 , 如图 5 ( e )所示。
1026、 剥离第一厚度对应区域剩余的光刻胶, 如图 5 ( f )所示, 最终形成 带有凸台 131及保护层过孔 132的保护层。 且保护层过孔 132位于薄膜晶体管 22 的漏极 122的上方。
本示例中, 釆用了多阶调掩膜工艺, 可减少阵列基板制备过程中 构图工艺的次数, 从而有效降低制作成本, 提高良品率。
在本实施例的第二示例中, 也可釆用常规的掩模板, 不过需要两次构图 工艺。 步骤 2包括:
步骤一、 在形成有薄膜晶体管 12的基板上形成保护层 13;
步骤二、 在保护层 13上涂覆光刻胶 40, 釆用构图工艺在保护层 13上后续 形成连接电极的预设位置形成凸台 131 , 如图 6 ( a )、 6 ( b )所示;
步骤三、 再次涂覆光刻胶 40, 第二次釆用构图工艺在薄膜晶体管漏极上 方后续形成保护层过孔的预设位置形成保护层过孔 132, 如图 6 ( c )所示。
上述的构图工艺, 在半导体制备工艺中将预设图形转移到某一特定膜层 上, 使该膜层图案化, 呈现与预设图形相同的图样, 所述的构图工艺包括但 不限于普通意义上的光刻过程。
所述保护层 13可选用下述材料中一种或几种制成: 氮化硅, 氧化硅, 或 者感光树脂。 在本实施例的第示例中, 选用感光树脂制成保护层 13时, 无需 涂敷光刻胶, 可直接进行曝光、 显影, 显影后也无需刻蚀工艺, 步骤 2包括: 步骤一、 在形成有薄膜晶体管的基板上, 涂敷感光树脂形成保护层 13; 步骤二、 通过多阶曝光显影或者两次曝光显影, 在保护层 13上后续形成 连接电极的预设位置形成凸台 131 , 并在薄膜晶体管 12的漏极 122上方后续形 成保护层过孔的预设位置形成保护层过孔 132。
步骤二中直接对保护层 13进行多阶曝光、 然后显影, 形成图 2(a)所示设置 有凸台 131和保护层过孔 132的保护层 13。 所述的两次曝光显影, 具体过程可 参照第示例中, 省去所有涂敷光刻胶的步骤, 直接进行曝光、 显影, 显影后 也无需刻蚀工艺。
上述步骤可形成图 2 ( a )和图 2 ( b )所示的阵列基板, 只是在形成保护 层 13过程中使用的掩模板有差别, 如凸台的位置和形状等。
本发明实施例提供的电致发光装置的制备方法, 通过将连接电极下方的 保护层设计成凸台形状, 将连接电极垫高, 使连接电极的厚度可进一步减薄, 从而使连接电极制备过程中的成膜时间缩短, 刻蚀难度降低, 提高了生产效 率。 同时, 将连接电极垫高, 可保证薄膜晶体管与第二电极电连接可靠性, 还可避免对盒过程中及对盒后, 彩膜基板与阵列基板相互挤压或摩擦对薄膜 晶体管阵列造成损伤, 提高良品率。
本发明实施例提供的电致发光装置及其制备方法, 通过将连接电极下方 的保护层设计成凸台形状, 垫高连接电极, 可使得连接电极的厚度进一步减 薄(本发明连接电极的厚度可减至 0.3 ~ 1微米), 从而使连接电极制备过程中 的成膜时间缩短, 刻蚀难度降低, 进而提高生产效率。 同时, 将连接电极垫 高, 还可保证薄膜晶体管与第二电极电连接的可靠性, 同时避免对盒过程中 及对盒后彩膜基板与阵列基板相互挤压或摩擦对薄膜晶体管阵列造成损伤, 提高良品率。
需要注意的是, 本实施例中的技术特征, 在不冲突的情况下可以任意组 合使用。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应该以权利要求的保护范围为准。
本申请要求于 2013年 09月 23日提交的名称为"电致发光装置及其制备 方法" 的中国专利申请 No. 201310436180.3的优先权,其全文以引用方式合 并于本文。

Claims

权利要求书
1、 一种电致发光装置, 包括: 阵列基板; 所述阵列基板包括: 基板, 依 次设置于所述基板上的薄膜晶体管, 覆盖于所述薄膜晶体管之上的保护层, 以及设置在所述保护层之上的连接电极;
其中所述连接电极下方的保护层向远离基板的一侧凸起, 形成凸台; 并 且所述保护层在对应薄膜晶体管的漏极的位置设置有保护层过孔, 所述连接 电极通过所述保护层过孔与所述薄膜晶体管的漏极连接。
2、 根据权利要求 1所述的装置, 其中所述保护层过孔位于所述凸台上。
3、 根据权利要求 1或 2所述的装置, 其中所述保护层过孔位于所述凸台的 一侧, 所述连接电极覆盖所述凸台及所述保护层过孔。
4、根据权利要求 1-3任一项所述的装置,其中所述连接电极的厚度为 0.3 ~ 1微米。
5、 根据权利要求 1-4任一项所述的装置, 其中所述保护层的总厚度为 2~4 微米, 所述凸台的台阶高度为 1.5 ~ 2.5微米。
6、根据权利要求 1-5任一项所述的装置,其中所述连接电极选用下述材料 中的一种或几种制成:
铜、 钼、 锡、 铝、 银。
7、根据权利要求 1-6任一项所述的装置,其中所述保护层选用下述材料中 一种或几种制成:
氮化硅, 氧化硅, 或者感光树脂。
8、 根据权利要求 1-7任一项所述的装置, 还包括: 彩膜基板; 所述彩膜基 板包括: 第二基板, 依次设置于所述第二基板上的彩色滤光层, 平坦层, 第 一电极、 有机发光层和第二电极, 其中所述第二电极与所述连接电极接触且 电连接。
9、一种电致发光装置的制备方法, 包括: 彩膜基板制程, 阵列基板制程, 彩膜基板和阵列基板对盒制程, 其中所述阵列基板制程包括:
在基板上形成薄膜晶体管;
在形成有薄膜晶体管的基板上形成保护层, 并通过构图工艺在后续形成 连接电极的预设位置形成凸台, 在对应薄膜晶体管漏极的位置形成保护层过 孑 L; 以及 在所述保护层之上形成连接电极, 所述连接电极通过所述保护层过孔与 所述薄膜晶体管的漏极相连。
10、 根据权利要求 9所述的制备方法, 其中釆用多阶曝光工艺在后续形成 所述连接电极的所述预设位置形成所述凸台, 在对应所述薄膜晶体管漏极的 所述位置形成所述保护层过孔。
11、 根据权利要求 10所述的制备方法, 还包括:
在所述保护层上涂覆光刻胶;
进行多阶曝光, 经过显影后, 在所述保护层上形成光刻胶图案, 使得在 所述光刻胶图案之中, 在后续形成所述连接电极的预设位置保留第一厚度的 光刻胶, 在所述薄膜晶体管漏极上方后续形成所述保护层过孔的预设位置不 保留光刻胶, 除所述连接电极的预设位置以及所述保护层过孔的预设位置之 外的区域保留第二厚度的光刻胶, 且所述第一厚度大于所述第二厚度;
进行刻蚀, 去除露出的保护层, 形成所述保护层过孔;
进行灰化处理, 去除所述第二厚度对应区域的光刻胶;
进行刻蚀, 去除所述第二厚度对应区域露出的所述保护层, 形成所述凸 台; 以及
剥离所述第一厚度对应区域剩余的光刻胶。
12、 根据权利要求 9所述的制备方法, 所述方法还包括:
在所述保护层上涂覆光刻胶, 釆用构图工艺在所述保护层上后续形成所 述连接电极的预设位置形成所述凸台;
再次涂覆光刻胶, 第二次釆用构图工艺在所述薄膜晶体管漏极上方后续 形成所述保护层过孔的预设位置形成所述保护层过孔。
13、 根据权利要求 9所述的制备方法, 还包括:
在形成有所述薄膜晶体管的所述基板上, 涂敷感光树脂形成所述保护层; 通过多阶曝光显影或者两次曝光显影, 在所述保护层上后续形成所述连 接电极的预设位置形成所述凸台, 并在薄膜晶体管漏极上方后续形成所述保 护层过孔的预设位置形成所述保护层过孔。
PCT/CN2014/080898 2013-09-23 2014-06-26 电致发光装置及其制备方法 WO2015039482A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/416,904 US9520453B2 (en) 2013-09-23 2014-06-26 Electroluminescent device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310436180.3A CN103474453B (zh) 2013-09-23 2013-09-23 电致发光装置及其制备方法
CN201310436180.3 2013-09-23

Publications (1)

Publication Number Publication Date
WO2015039482A1 true WO2015039482A1 (zh) 2015-03-26

Family

ID=49799244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080898 WO2015039482A1 (zh) 2013-09-23 2014-06-26 电致发光装置及其制备方法

Country Status (3)

Country Link
US (1) US9520453B2 (zh)
CN (1) CN103474453B (zh)
WO (1) WO2015039482A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474453B (zh) 2013-09-23 2016-09-21 京东方科技集团股份有限公司 电致发光装置及其制备方法
CN103715228B (zh) 2013-12-26 2016-04-13 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN104766933B (zh) 2015-04-30 2016-11-16 京东方科技集团股份有限公司 一种隔离柱及其制作方法、显示面板及显示装置
JP6677386B2 (ja) * 2016-02-16 2020-04-08 天馬微電子有限公司 表示装置および表示装置の製造方法
CN205900543U (zh) * 2016-05-18 2017-01-18 武汉华星光电技术有限公司 一种oled显示面板
CN106298858B (zh) * 2016-09-22 2019-05-14 上海天马微电子有限公司 显示面板、显示装置及显示面板的制造方法
US11342396B2 (en) * 2018-02-09 2022-05-24 Boe Technology Group Co., Ltd. Organic light emitting diode display panel, organic light emitting diode counter substrate, and fabricating method thereof
CN109686764A (zh) * 2018-12-19 2019-04-26 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法
CN111341933B (zh) * 2020-03-03 2023-04-07 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1638575A (zh) * 2003-12-15 2005-07-13 Lg.菲利浦Lcd株式会社 双面板型有机电致发光器件及其制造方法
CN103474453A (zh) * 2013-09-23 2013-12-25 京东方科技集团股份有限公司 电致发光装置及其制备方法
CN203456466U (zh) * 2013-09-23 2014-02-26 京东方科技集团股份有限公司 电致发光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW521303B (en) * 2000-02-28 2003-02-21 Semiconductor Energy Lab Electronic device
KR100630475B1 (ko) * 2001-09-06 2006-10-02 샤프 가부시키가이샤 표시장치, 그의 제조방법 및 그의 구동방법
SG114589A1 (en) * 2001-12-12 2005-09-28 Semiconductor Energy Lab Film formation apparatus and film formation method and cleaning method
KR100435054B1 (ko) * 2002-05-03 2004-06-07 엘지.필립스 엘시디 주식회사 유기전계 발광소자와 그 제조방법
KR20060104531A (ko) * 2005-03-30 2006-10-09 삼성에스디아이 주식회사 발광표시장치의 제조방법
JP2008098148A (ja) * 2006-09-14 2008-04-24 Canon Inc 有機発光装置
WO2010032820A1 (ja) * 2008-09-22 2010-03-25 アルプス電気株式会社 Memsセンサ
KR101570347B1 (ko) * 2008-11-25 2015-11-20 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
KR20130025717A (ko) * 2011-09-02 2013-03-12 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1638575A (zh) * 2003-12-15 2005-07-13 Lg.菲利浦Lcd株式会社 双面板型有机电致发光器件及其制造方法
CN103474453A (zh) * 2013-09-23 2013-12-25 京东方科技集团股份有限公司 电致发光装置及其制备方法
CN203456466U (zh) * 2013-09-23 2014-02-26 京东方科技集团股份有限公司 电致发光装置

Also Published As

Publication number Publication date
CN103474453A (zh) 2013-12-25
US9520453B2 (en) 2016-12-13
US20150325632A1 (en) 2015-11-12
CN103474453B (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2015039482A1 (zh) 电致发光装置及其制备方法
US10673001B2 (en) Flexible display substrate, method for fabricating the same and display device
JP2020521181A (ja) マイクロ発光ダイオードディスプレイパネル及びその製造方法
WO2016179876A1 (zh) 窄边框柔性显示装置及其制作方法
US9012271B2 (en) Thin film transistor array substrate and method of manufacturing the same
US9935290B2 (en) Fabrication method of electroluminescence display device with protective layer
JP6521534B2 (ja) 薄膜トランジスタとその作製方法、アレイ基板及び表示装置
CN111146215B (zh) 一种阵列基板、其制作方法及显示装置
WO2015055054A1 (zh) 阵列基板及其制作方法和显示装置
WO2013102372A1 (zh) 阵列基板及其制造方法和显示装置
WO2017193710A1 (zh) 阵列基板及其制作方法、显示面板、显示装置
TW202016616A (zh) 顯示面板及其製造方法
WO2015039493A1 (zh) 电致发光装置及其制备方法
US11217723B2 (en) Flexible display substrate and method for manufacturing the same, and flexible display device
JP5174322B2 (ja) アクティブマトリクス表示装置の製造方法
TW200525649A (en) Method of fabricating display panel
WO2013189144A1 (zh) 阵列基板及其制造方法、以及显示装置
CN110797303B (zh) 一种基板及其制备方法、显示装置
TW201411829A (zh) 有機電致發光顯示器及其製造方法
CN113826232A (zh) 显示面板及其制作方法、显示装置
US20220293704A1 (en) Display substrate and manufacturing method therefor, and display device
US11742467B2 (en) Backplane, preparation method with dual damascene steps
CN203456466U (zh) 电致发光装置
CN106449654B (zh) 一种基板及其制备方法、显示装置
CN110890481B (zh) 一种显示基板及其制备方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14416904

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.06.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14845114

Country of ref document: EP

Kind code of ref document: A1