WO2015037731A1 - ブレーキディスク及びその製造方法 - Google Patents
ブレーキディスク及びその製造方法 Download PDFInfo
- Publication number
- WO2015037731A1 WO2015037731A1 PCT/JP2014/074328 JP2014074328W WO2015037731A1 WO 2015037731 A1 WO2015037731 A1 WO 2015037731A1 JP 2014074328 W JP2014074328 W JP 2014074328W WO 2015037731 A1 WO2015037731 A1 WO 2015037731A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- disc
- welding
- buildup
- brake
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 238000003466 welding Methods 0.000 claims abstract description 126
- 239000000843 powder Substances 0.000 claims abstract description 37
- 239000002245 particle Substances 0.000 claims description 56
- 238000002844 melting Methods 0.000 claims description 40
- 230000008018 melting Effects 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 37
- 239000002184 metal Substances 0.000 claims description 37
- 239000000919 ceramic Substances 0.000 claims description 24
- 239000011159 matrix material Substances 0.000 claims description 23
- 239000003870 refractory metal Substances 0.000 claims description 13
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 239000010937 tungsten Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- 239000011812 mixed powder Substances 0.000 claims description 6
- 239000010955 niobium Substances 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 200
- 239000002923 metal particle Substances 0.000 description 21
- 238000005253 cladding Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000012159 carrier gas Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005552 hardfacing Methods 0.000 description 5
- 238000007750 plasma spraying Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/1462—Nozzles; Features related to nozzles
- B23K26/1464—Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
- B23K26/1476—Features inside the nozzle for feeding the fluid stream through the nozzle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/25—Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/346—Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
- B23K26/348—Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61H—BRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
- B61H5/00—Applications or arrangements of brakes with substantially radial braking surfaces pressed together in axial direction, e.g. disc brakes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D65/12—Discs; Drums for disc brakes
- F16D65/123—Discs; Drums for disc brakes comprising an annular disc secured to a hub member; Discs characterised by means for mounting
- F16D65/124—Discs; Drums for disc brakes comprising an annular disc secured to a hub member; Discs characterised by means for mounting adapted for mounting on the wheel of a railway vehicle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D65/12—Discs; Drums for disc brakes
- F16D65/127—Discs; Drums for disc brakes characterised by properties of the disc surface; Discs lined with friction material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D69/00—Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
- F16D69/02—Composition of linings ; Methods of manufacturing
- F16D69/027—Compositions based on metals or inorganic oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/32—Process control of the atmosphere, e.g. composition or pressure in a building chamber
- B22F10/322—Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/66—Treatment of workpieces or articles after build-up by mechanical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/20—Cooling means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D2065/13—Parts or details of discs or drums
- F16D2065/1304—Structure
- F16D2065/132—Structure layered
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D2065/13—Parts or details of discs or drums
- F16D2065/134—Connection
- F16D2065/138—Connection to wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2200/00—Materials; Production methods therefor
- F16D2200/0004—Materials; Production methods therefor metallic
- F16D2200/0008—Ferro
- F16D2200/0013—Cast iron
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2200/00—Materials; Production methods therefor
- F16D2200/0004—Materials; Production methods therefor metallic
- F16D2200/0026—Non-ferro
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2200/00—Materials; Production methods therefor
- F16D2200/0034—Materials; Production methods therefor non-metallic
- F16D2200/0039—Ceramics
- F16D2200/0043—Ceramic base, e.g. metal oxides or ceramic binder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2250/00—Manufacturing; Assembly
- F16D2250/0038—Surface treatment
- F16D2250/0053—Hardening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2250/00—Manufacturing; Assembly
- F16D2250/0061—Joining
- F16D2250/0076—Welding, brazing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a brake disc and a method of manufacturing the same.
- Priority is claimed on Japanese Patent Application No. 2013-191081, filed on Sep. 13, 2013, the content of which is incorporated herein by reference.
- a brake disc for obtaining a braking force by pressing a brake pad is provided on the wheel or axle of a railway vehicle such as a Shinkansen.
- this brake disc has a problem that a crack or deformation occurs due to the influence of heat generated at the time of braking.
- transformation by brake heat is proposed by coat
- the surface of the disc body is subjected to blasting. That is, as the particles made of an inorganic material are jetted onto the surface of the disc main body at a predetermined pressure, a roughened surface-roughened layer is formed on the surface of the disc main body. Then, after a metal bonding layer is formed on the surface of the roughened layer, a ceramic such as zirconia excellent in heat resistance and toughness is sprayed onto the surface of the metal bonding layer, whereby a heat resistant coating layer is formed. It is formed on the surface of the metal bonding layer.
- the heat-resistant covering layer reduces the transfer of heat generated at the time of braking to the disc body, so that the occurrence of cracking or deformation in the disc body is suppressed.
- the surface treatment technique for improving the heat crack resistance of a brake disk disclosed in this patent document 1 the disk body and the heat resistant covering layer are firmly connected via the roughening treatment layer and the metal bonding layer. There is. Therefore, the bonding strength between the disk body and the heat-resistant cover layer in the surface treatment technology disclosed in Patent Document 1 is improved as compared to the conventional surface treatment technology such as the thermal spraying method or plating method.
- the braking environment high speed rotation, vibration load, high temperature
- Patent Document 2 discloses a method of manufacturing a brake disk that solves the above-described problem of thermal effects.
- the method of manufacturing a brake disk disclosed in Patent Document 2 performs a surface treatment method by welding, and in order to realize the alleviation of the thermal effect represented by a thermal crack, the powder buildup plasma arc welding on the surface of the disk body (PTA welding) is performed.
- PTA welding powder buildup plasma arc welding on the surface of the disk body
- particles of high melting point metal having a melting point higher than that of the disk main body are attached to the surface of the disk main body attached to the rotating body integrally rotating with the axle.
- a brake disk is manufactured by laminating a plurality of layers of a dispersion material dispersed in a matrix material using PTA welding.
- the present invention has been made in view of the above-described circumstances, and it is an object of the present invention to provide a brake disc capable of realizing thinning of the disc main body and preventing deterioration in strength and functionality of the buildup layer and a manufacturing method thereof. With the goal.
- a brake disc according to an aspect of the present invention is a brake disc that brakes rotation of an axle by pressing a brake pad on the surface, and is a disc attached to a rotating body that rotates integrally with the axle A main body; and a cladding layer laminated on a plurality of layers on the surface of the disk main body; the cladding layer is laminated on the surface of the disk main body by powder cladding laser welding.
- the buildup layer is constituted by a laminate of a predetermined matrix laminated over two or more layers on the surface of the disc main body, An inner layer laminated on the disc body and containing no refractory metal particles having a melting point higher than that of the disc body, and an outer layer containing the refractory metal particles formed on the inner layer It may be.
- the refractory metal particles may contain at least one of molybdenum, tungsten, niobium and tantalum.
- the outer layer of the buildup layer further contains ceramic particles; and the content of the ceramic particles in the outer layer is 0% by mass. It may be more than 50% or less.
- a method of manufacturing a brake disk according to an aspect of the present invention is a method of manufacturing a brake disk that brakes the rotation of an axle by pressing a brake pad on the surface, and rotates integrally with the axle
- the method includes a buildup layer forming step of forming a buildup layer by powder buildup laser welding on the surface of a disk body attached to a rotating body.
- the buildup layer forming step irradiates the surface of the disc body with a laser, and supplies the first metal powder to the irradiation spot of the laser.
- a first step of forming the inner layer of the buildup layer on the surface of the disc body by melting the first metal powder; and irradiating the surface of the inner layer with the laser, and at the irradiation location of the laser And a second step of forming an outer layer of the overlaying layer on the surface of the inner layer by supplying the second metal powder and melting the second metal powder.
- the first metal powder is particles of a predetermined matrix
- the second metal powder is a mixed powder of particles of the matrix and refractory metal particles having a melting point higher than the melting point of the disc body. It may be.
- the refractory metal particles may contain at least one of molybdenum, tungsten, niobium and tantalum.
- the second metal powder comprises particles of the matrix, the refractory metal particles, and ceramic particles.
- the content of the ceramic particles in the second metal powder may be more than 0% and 50% or less by mass.
- the cladding layer is laminated on the disk body using powder buildup laser welding (LMD welding) having a smaller thermal effect than conventional PTA welding, it is required in conventional PTA welding Since the preheating is unnecessary and the thermal strain generated at the time of welding is suppressed, the deformation of the disk main body can be suppressed. As a result, according to the above aspect, it is possible to realize thinning of the disc body. Further, in the above aspect, it is possible to prevent the disc main body from melting into the buildup layer by using LMD welding which has a smaller thermal influence than PTA welding. As a result, according to the above aspect, it is possible to prevent the strength and functionality of the buildup layer from being reduced.
- LMD welding powder buildup laser welding
- the inner layer (first layer) stacked on the disc main body is a layer not containing high melting point metal particles, and Adhesion can be enhanced.
- the high melting point metal particles contained in the outer layer (the second and third layers) of the buildup layer remain in the outer layer as metal particles even after welding, high heat resistance can be imparted to the disc body It is possible to prevent the occurrence of cracks in the weld overlay.
- a solution material in which high melting point metal particles having a melting point higher than that of the disk body is dispersed is laminated by LMD welding on the surface of the disk body attached to the rotating body integrally rotating with the axle.
- the buildup layer formed on the disc main body using LMD welding suppresses the quenching to the disc main body due to the frictional heat at the time of braking during traveling, and the surface of the disc main body It is possible to suppress the generation of cracks or deformation in the disk and to impart both heat resistance and heat crack resistance to the brake disc.
- FIG. 1 is a schematic front view showing the appearance of a braking device 10 for Shinkansen provided with a brake disk 13 according to the present embodiment.
- FIG. 2 is a schematic cross-sectional view showing a cross section along line AA in FIG.
- the Shinkansen braking device 10 as shown in FIG. 1, includes a substantially circular wheel 11 (rotary body), an axle 12 inserted in the wheel 11, a brake disc 13 attached to an end face of the wheel 11, and And a brake pad 14 disposed close to the brake disc 13.
- the wheel 11 is provided on the outer edge of a flat plate portion 111 having a constant thickness in the axial direction X of the wheel 11 and the flat plate portion 111 in the radial direction Y of the wheel 11,
- the boss portion is provided at the center of the rim portion 112 where the thickness of X is thicker than the flat portion 111 and the flat portion 111 in the radial direction Y of the wheel 11 and the thickness in the axial direction X is thicker than the flat portion 111 and the rim portion 112
- a shaft insertion hole 114 penetrating the boss 113 in the axial direction X.
- the axle 12 is inserted into the shaft insertion hole 114 of the wheel 11 and fixed to the wheel 11.
- a drive not shown
- the wheel 11 and the axle 12 integrally rotate.
- the brake disc 13 has a role of obtaining a braking force by pressing the brake pad 14.
- the brake disc 13 is a flat member having a substantially annular shape, as shown in FIG.
- the outer diameter of the brake disc 13 is smaller than the inner diameter of the rim portion 112 of the wheel 11.
- the inner diameter of the brake disc 13 is larger than the outer diameter of the boss portion 113 of the wheel 11.
- the thickness of the brake disc 13 is substantially equal to the protruding height of the rim portion 112 with respect to the flat plate portion 111 of the wheel 11.
- a plurality of bolt insertion holes 131 are formed in the brake disk 13 at predetermined intervals along the circumferential direction.
- FIG. 3 is a schematic cross-sectional view showing the vicinity of the surface of the brake disk 13.
- the brake disc 13 includes a disc body 133 and a buildup layer 134 formed on the surface of the disc body 133 by LMD welding (powder buildup laser welding).
- the disk main body 133 is a main body of the brake disk 13 obtained by forming a forged steel, which is a steel material for forging, into an annular shape.
- the material of the disk body 133 is not limited to a forged steel, and may be carbon steel excellent in cost performance, or pearlitic cast iron excellent in thermal conductivity and abrasion resistance.
- the cladding layer 134 includes a first cladding layer 134A fused and bonded to the surface of the disk body 133, and a second cladding layer 134B fused and bonded to the surface of the first cladding layer 134A. And a third cladding layer 134C, which is laminated by melting on the surface of the second cladding layer 134B.
- a third cladding layer 134C which is laminated by melting on the surface of the second cladding layer 134B.
- an inner layer is formed by the first buildup layer 134A
- an outer layer is formed by the second buildup layer 134B and the third buildup layer 134C.
- the surface of the third buildup layer 134 ⁇ / b> C located at the top is the friction surface 135 pressed by the brake pad 14. Note that, as shown in FIG. 3, the weld buildup layers 134A to 134C have a uniform integrated structure with no change in structure due to fusion bonding by welding.
- the first buildup layer 134A is a layer formed of a predetermined matrix 136 as shown in FIG.
- the Vickers hardness of the first hardfacing layer 134A is 220 [Hv] or more and 270 [Hv] or less.
- the thickness of the first buildup layer 134A is 1 to 5 [mm].
- the matrix 136 is, for example, a nickel base alloy.
- the nickel base alloy include Hastelloy (registered trademark) C alloy.
- Hastelloy C alloy contains 15% of chromium (Cr), 16% of molybdenum (Mo), 4% of tungsten (W) and the balance of nickel (Ni) as mass as chemical components. Alloy.
- the matrix 136 is not limited to a nickel base alloy, and a material having a high thermal conductivity such as a copper alloy such as copper and aluminum bronze, a silver and a silver alloy, or aluminum and an aluminum alloy may be used as the matrix 136 .
- the first overlaying layer 134A which is first stacked on the surface of the disk body 133, does not contain high melting point metal particles described later. Thereby, the adhesion between the first buildup layer 134A and the disc main body 133 can be enhanced.
- the second buildup layer 134B and the third buildup layer 134C are layers formed of the matrix 136 and, as shown in FIG. 3, are high melting point metal particles 137 having a melting point higher than that of the disc main body 133. contains.
- the matrix 136 in the second buildup layer 134B and the third buildup layer 134C has a role of uniformly bonding the refractory metal particles 137.
- the Vickers hardness of the second buildup layer 134B and the third buildup layer 134C is 220 [Hv] or more and 270 [Hv] or less.
- the second buildup layer 134B and the third buildup layer 134C only the high melting point metal particles 137 may be dispersed in the matrix 136, but in the present embodiment, the second buildup layer 134B and the The triple cladding layer 134 C contains hard ceramic particles 138 (for example, alumina particles) together with the high melting point metal particles 137.
- the content of the hard ceramic particles 138 in the second buildup layer 134B and the third buildup layer 134C is more than 0% and 50% or less by mass. In the field of overlay welding, it is general not to include ceramic particles in the overlay, since it is necessary to keep the coefficient of friction on the surface of the overlay as low as possible.
- the second ceramic layer 134B and the third ceramic layer 134C contain the hard ceramic particles 138.
- the content of the hard ceramic particles 138 in the second hardfacing layer 134B and the third hardfacing layer 134C is more than 0% and 50% from the viewpoints of average friction coefficient, wear amount, and suppression of intergranular peeling between the ceramic particles 138 and the matrix 136.
- the second built-up layer 134B configured in this way is stacked on the surface of the first built-up layer 134A
- the third built-up layer 134C is stacked on the surface of the second built-up layer 134B to a thickness of about 1 to 5 mm. It is done.
- the third buildup layer 134C basically has the same configuration as the second buildup layer 134B.
- the high melting point metal particles 137 have a role of providing the disk body 133 with high heat resistance.
- the high melting point metal particle 137 is a particle of a metal having a high melting point as compared with the disk body 133, and is made of at least one of molybdenum (Mo), tungsten (W), niobium (Nb), and tantalum (Ta). Including.
- Mo molybdenum
- W tungsten
- Nb niobium
- Ta tantalum
- the content of the high melting point metal particles 137 in the second buildup layer 134B and the third buildup layer 134C is more than 0% and 80% or less by mass.
- particles having an average particle diameter of 75 ⁇ m to 100 ⁇ m account for 70% to 80% of the total number of particles, and particles having an average particle diameter of 10 ⁇ m to 45 ⁇ m account for the remainder. There is.
- the brake disc 13 configured as described above is disposed on the flat plate portion 111 of the wheel 11 with the side on which the notch portion 132 is formed facing the side of the wheel 11 as shown in FIG. It is fixed to the wheel 11 by means of a fixing bolt 16 inserted through 131.
- the outer diameter of the brake disc 13 is smaller than the inner diameter of the rim portion 112.
- the inner diameter of the brake disc 13 is larger than the outer diameter of the boss portion 113. Therefore, as shown in FIG. 2, with the brake disc 13 fixed to the flat plate portion 111 of the wheel 11, a gap 17 with a predetermined width is formed between the brake disc 13 and the boss portion 113.
- the brake pad 14 is provided at a position facing the brake disc 13 in the radial direction Y of the wheel 11, as shown in FIG. Although not shown in detail, the brake pad 14 is provided movably along the axial direction X of the wheel 11. When the brake pad 14 moves toward the brake disc 13, the friction surface 135 of the brake disc 13 (the surface of the third buildup layer 134 C) is pressed by the brake pad 14. As a result, a braking force is generated to stop the axle 12 rotating integrally with the brake disc 13. On the other hand, when the brake pad 14 separates from the brake disc 13, the rotation of the axle 12 is permitted.
- the buildup layer 134 is laminated on the surface of the disc main body 133 by LMD welding. Therefore, at the interface between the disc body 133 and the first overlay layer 134A, the adhesion strength between the disc body 133 and the first overlay layer 134A is improved by the melt bonding. Thereby, it is possible to prevent the buildup layer 134 from peeling off the surface of the disc main body 133 under the braking environment at the time of high speed traveling.
- the Vickers hardness of the hardfacing layer 134 is 220 [Hv] or more and 270 [Hv] or less.
- the Vickers hardness of the buildup layer 134 is less than 350 [Hv] which is a Vickers hardness generally used as a standard of whether or not a crack is generated and developed. As a result, cracking or deformation is less likely to occur in the buildup layer 134 even under a braking environment at high speed traveling.
- the disk body 133 is given high toughness by heat treatment at the time of its manufacture.
- heat heat generated by laser light hitting the disc main body 133
- a hardened layer (not shown) is generated to form the disc.
- the main body 133 cures.
- heat generated by LMD welding is transferred to the disc main body 133 via the first buildup layer 134A, so the amount of heat transferred to the disc main body 133 is reduced. Therefore, the quenched layer generated during the lamination of the first overlay layer 134A is tempered by the heat applied during the lamination of the second overlay layer 134B.
- the toughness of the disc main body 133 is further improved by tempering the hardened layer generated at the time of stacking the first overlaying layer 134A. As described above, the disk main body 133 is unlikely to be cracked or deformed even under a braking environment at high speed traveling.
- the hardened layer formed in the disc body 133 is further tempered by heat generated at the time of braking after the use of the brake disc 13 is started, so that the crack resistance of the disc body 133 is further improved.
- FIG. 4A is a front sectional view of the LMD welding apparatus 20 in the present embodiment.
- FIG. 4B is a front sectional view of a PTA welding device 30 shown as a comparative example.
- the LMD welding apparatus 20 in this embodiment is formed at the welding torch 21 and at the central portion of the welding torch 21 and the center through which the laser light L supplied from the laser oscillator (not shown) passes.
- a hole 22 and a cooling water supply passage 23, a shield gas supply passage 24 and a welding material supply passage 25 concentrically formed around the center hole 22 are provided.
- the cooling water supply path 23 is disposed outside the central hole 22 and is a flow path to which the cooling water RW is supplied.
- the shield gas supply passage 24 and the welding material supply passage 25 are disposed outside the cooling water supply passage 23 so as to be adjacent to each other.
- the shield gas SG is supplied to the shield gas supply path 24.
- the solvent 26 (metal powder) is supplied to the welding material supply passage 25.
- a nozzle 27 is provided at the tip of the shield gas supply path 24, and the shield gas SG is jetted from the nozzle 27 toward the surface of the disk body 133.
- a nozzle 28 is provided at the tip of the welding material supply path 25, and the solvent 26 is jetted from the nozzle 28 toward the surface of the disk body 133.
- a first metal powder which is a particle of the matrix 136 is used as the solvent 26.
- the second metal powder which is a mixed powder of the particles of the matrix 136, the high melting point metal particles 137 and the hard ceramic particles 138 is the Used as The above-described solvent 26 is carried by the carrier gas CG flowing through the welding material supply passage 25.
- an inert gas such as argon gas or helium gas is used as the carrier gas CG.
- the shielding gas SG supplied to the shielding gas supply path 24 prevents the oxidation of the disk body 133 and the overlaying layer 134.
- the laser light L is emitted from the welding torch 21 to the surface of the disk main body 133 and, through the welding material supply passage 25, the molten metal 26 (first metal powder or second metal Powder) is supplied by carrier gas CG to a laser irradiation location (location shown by code P in FIG. 4A).
- the molten material 26 supplied to the laser irradiation point P is melted by the application of large thermal energy by the laser light L.
- the overlaying layer 134 is formed.
- the welding torch 21 is moved at a constant speed along the surface of the disc main body 133 simultaneously with the irradiation of the laser light L and the supply of the solvent 26 so that the overlaying layer 134 having a constant thickness on the surface of the disc main body 133. Can be formed. As described above, by moving the welding torch 21 back and forth a plurality of times, it is possible to laminate the buildup layer 134 having a multi-layer structure on the surface of the disc main body 133.
- the amount of heat input to the disk body 133 is small, and heat is generated by irradiating the disk body 133 with laser light L supplied from a laser oscillator (not shown). In order to obtain the necessary amount of penetration by this heat, it is necessary to appropriately set the laser beam diameter of the laser beam L and the moving speed of the laser beam L.
- the focal diameter of the laser beam L is set to 5.4 [mm]
- setting of MFO Manual Focusing Optics
- the voltage value is set to 0.54 [V]
- the output of the laser light L is set to 2700 [W].
- the flow rate of shield gas SG is set to 15 [L / min]
- the rotation speed of welding torch 21 is set to 10 [rpm]
- the flow rate of carrier gas CG is 4 [L / min] It is set to.
- the welding speed (moving speed of the welding torch 21) is set to 500 [mm / min]
- the pitch width is set to 2.3 [mm].
- the PTA welding apparatus 30 mentioned as the comparative example is connected to the welding torch 31, the tungsten electrode 32 inserted in the center of the welding torch 31, the tungsten electrode 32 and the disc main body 133. And a pilot power source 34 connected to the tungsten electrode 32 and the welding torch 31.
- an electrode hole 311 is formed in the center of the welding torch 31, and the first flow passage 312, the second flow passage 313, and the third flow passage 314 are concentrically centered on the electrode hole 311. It is formed in the shape of a circle.
- a tungsten electrode 32 is inserted into the electrode hole 311, and a pilot gas PG is supplied.
- the cooling water RW is supplied to the first flow passage 312.
- the solvent 35 and the carrier gas CG are supplied to the second flow path 313.
- the shield gas SG is supplied to the third flow path 314.
- the solvent 35 is a mixed powder of matrix particles and high melting point metal particles.
- the plasmatized pilot gas PG plasma gas
- the plasmatized pilot gas PG plasma gas
- the cooling water RW supplied to the first flow passage 312 it is narrowed by a so-called thermal pinch effect.
- the plasma gas is jetted from the tip end hole of the electrode hole 311 toward the disc main body 133 as a plasma arc PA having a high energy density.
- the plasma arc PA When the plasma arc PA reaches the disk body 133, a voltage is applied between the tungsten electrode 32 and the disk body 133 by the main power supply 33, whereby an arc current (not shown) flows in the disk body 133. As a result, a molten pool is formed on the surface of the disk body 133.
- the solvent 35 supplied to the second flow path 313 is pressure-fed by the carrier gas CG, sent into the plasma arc PA, and melted. By pouring the molten metal 35 into the molten pool on the disk main body 133 in the molten state, the overlaying layer 134 ′ is formed.
- FIG. 6 shows LMD welding realized using the LMD welding apparatus 20 shown in FIG. 4A, PTA welding realized using the PTA welding apparatus 30 shown in FIG. 4B, and plasma spraying as another comparative example.
- LMD welding when LMD welding is employed, the cladding thickness and the cladding amount are smaller compared to PTA welding, but the thermal load is lower, so the carbon dissolution amount from the disk main body to the cladding layer is small.
- the adhesion between the disk main body and the overlaying layer is higher than in plasma spraying.
- the yield is high compared to plasma spraying.
- the porosity (welding defect) in plasma spraying is 1 to 3%, the porosity in LMD welding is 0%.
- FIG. 7 is a graph showing the relationship between the distance [mm] from the surface layer of the buildup layer and the Vickers hardness [Hv].
- the horizontal axis in FIG. 7 indicates the distance from the surface layer of the buildup layer to the thickness direction, and the vertical axis in FIG. 7 indicates the Vickers hardness.
- the round plot (o) in FIG. 7 shows the case where the first buildup layer is laminated on the disc body using LMD welding.
- a square plot ( ⁇ ) shows a comparative example in which the first buildup layer is laminated using PTA welding without preheating the disk body.
- the rhombic plot ( ⁇ ) shows a comparative example in which the first buildup layer was laminated using PTA welding after the disk body was preheated to 250 ° C.
- heat affected zone means a range to which the influence of heat during welding from the surface of the disc body to a depth of about 2.8 mm is applied.
- main body raw material portion means the entire thickness direction of the disc main body.
- the Vickers hardness at a depth of 2 mm or more from the surface layer of the buildup layer generally indicates whether or not a crack is generated and developed. Be less than 350 Hv. Therefore, when LMD welding is used to form a weld overlay, cracking or deformation is less likely to occur in the disc body.
- FIG. 8A shows an appearance photograph of the buildup layer 134 formed on the surface of the disc main body 133 by the LMD welding apparatus 20 as viewed from above.
- FIG. 8B shows a cross-sectional microphotograph of the buildup layer 134.
- FIG. 9A shows an appearance photograph of the surface of the buildup layer 134.
- FIG. 9B shows the penetration test result of the buildup layer 134.
- the metallographic structure in the cross section and surface of the overlaying layer 134 is melt-bonded by LMD welding, and thus the structure change is Not a uniform integrated structure.
- FIG. 10 is a flowchart showing the manufacturing process of the brake disk 13 according to the present embodiment.
- the disc main body 133 is manufactured (step S1).
- the ingot having a predetermined composition is forged, rolled or cast to produce the disc main body 133.
- step S2 heat treatment of the disc main body 133 is performed as necessary (step S2).
- the structure of the disk body 133 is adjusted by heat treating the disk body 133 so that the characteristics of the disk body 133 manufactured in step S1 become desired characteristics.
- machining of the disc main body 133 is performed after the above-mentioned step S2. That is, in the case of adopting PTA welding, since the thermal effect on the disc main body 133 is large, the disc main body 133 is predicted so that the overlaying layer 134 after welding will be in an appropriate state. By notching a part of the surface 133, it is necessary to form in advance the groove portion having a predetermined angle in the disk body 133. However, in the present embodiment, unlike the PTA welding, since LMD welding having a small thermal influence on the disk main body 133 is adopted, it is not necessary to carry out the above-described machining of the disk main body 133.
- the first buildup layer 134A is formed on the surface of the disc main body 133 by the LMD welding apparatus 20 (step S3: corresponding to the first step of the buildup layer formation step in the present invention).
- the LMD welding apparatus 20 irradiates the surface of the disk body 133 with the laser light L, and supplies the material 26 (first metal powder) to the irradiation point P of the laser light L to melt the material 26.
- the first buildup layer 134A is formed on the surface of the disc body 133.
- the solvent 26 (first metal powder) in this step S3 is, for example, particles (powder) of a matrix 136 made of a nickel base alloy.
- the second buildup layer 134B is formed on the surface of the first buildup layer 134A by the LMD welding apparatus 20 (step S4: corresponding to the second process of the buildup layer formation process in the present invention).
- the LMD welding apparatus 20 irradiates the surface of the first overlaying layer 134A with the laser beam L, and supplies the solution 26 (the second metal powder) to the irradiation point P of the laser beam L to perform the solution 26. Is melted to form the second buildup layer 134B on the surface of the first buildup layer 134A.
- the solvent 26 (second metal powder) in this step S4 is a mixed powder of particles of a matrix 136 (for example, a nickel base alloy), high melting point metal particles 137 (for example, molybdenum), and hard ceramic particles 138 (for example, alumina). is there.
- the content of the hard ceramic particles 138 in the above-described solvent 26 (second metal powder) is more than 0% and 50% or less by mass.
- the content of the hard ceramic particles 138 in the second buildup layer 134B is also more than 0% and 50% or less by mass%.
- the third buildup layer 134C is formed on the surface of the second buildup layer 134B by the LMD welding apparatus 20 (step S5: corresponding to the second step of the buildup layer formation step in the present invention).
- step S5 the LMD welding apparatus 20 irradiates the surface of the second overlaying layer 134B formed previously with the laser light L, and the same second metal powder as described above is applied to the irradiation point P of the laser light L.
- the third build-up layer 134C is formed on the surface of the second build-up layer 134B by supplying the solvent 26 and melting the same.
- the metallographic structure is uniformed in the entire second buildup layer 134B and the third buildup layer 134C (see FIG. 3). ).
- the ratio of the high melting point metal particles 137 in the solvent 26 (second metal powder) may be increased.
- the heat resistance of the surface of the third buildup layer 134C (that is, the friction surface 135 with which the brake pad 14 directly contacts) can be further improved.
- step S6 machining of the brake disk 13 obtained by forming the buildup layer 134 on the surface of the disk body 133 is performed.
- step S6 the outer shape of the brake disk 13 is trimmed to a desired outer shape by cutting or the like.
- step S7 the finishing process of the brake disc 13 is performed.
- the friction surface 135 is polished so that the friction surface 135 (the surface of the third buildup layer 134C) of the brake disk 13 is a smooth surface.
- the buildup layer 134 is laminated on the disk main body 133 using LMD welding, which has a smaller thermal effect than conventional PTA welding, and this is required for conventional PTA welding. Since the preheating is unnecessary and the thermal strain generated at the time of welding can be suppressed, it is possible to suppress the strain deformation of the disk main body 133. As a result, according to the present embodiment, thinning of the disc main body 133 can be realized. Further, in the present embodiment, it is possible to prevent the disc main body 133 from melting into the buildup layer 134 by using LMD welding which has a smaller thermal influence than PTA welding.
- the buildup layer 134 is laminated on the disk main body 133 using LMD welding, which has a smaller thermal influence than PTA welding, the melting point is compared as particles dispersed in the buildup layer 134 Lower ceramic particles (eg, alumina) can be used.
- the first cladding layer 134A formed first on the surface of the disk main body 133 is a nickel-based alloy layer which does not contain the high melting point metal particles 137
- the cladding layer 134 and the disk main body 133 It can improve adhesion with Further, since the high melting point metal particles 137 contained in the second buildup layer 134B and the third buildup layer 134C have a high melting point, the second buildup layer 134B and the third buildup layer 134C as metal particles even after welding. Remain inside. As a result, high heat resistance can be imparted to the disk body 133, and generation of cracks in the weld overlay 134 can be prevented.
- the molten metal 26 in which the high melting point metal particles 137 having a higher melting point than the disc main body 133 is dispersed. Laminating by LMD welding.
- the hardfacing layer 134 formed on the disc main body 133 using LMD welding suppresses the quenching to the disc main body 133 due to the frictional heat at the time of braking during traveling. The occurrence of cracks or deformation on the surface of the disk body 133 can be suppressed, and both the heat resistance and the heat crack resistance can be imparted to the brake disk 13.
- the present invention is not limited to the above-mentioned embodiment, but may change the embodiment in the range which does not deviate from the gist of the present invention.
- the present invention relates to a brake disc capable of preventing thermal distortion and deformation due to welding in a brake disc having a friction surface against which a brake pad is pressed, and a method of manufacturing the same.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Braking Arrangements (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
本願は、2013年09月13日に、日本に出願された特願2013-191081号に基づき優先権を主張し、その内容をここに援用する。
この特許文献1に開示された、ブレーキディスクの耐熱亀裂性を向上させる表面処理技術では、ディスク本体と耐熱性被覆層とが、粗面化処理層及び金属結合層を介して強固に結合されている。そのため、特許文献1に開示された表面処理技術におけるディスク本体と耐熱性被覆層との結合強度は、従来の溶射法またはめっき法などの表面処理技術に比べて向上しているが、高速走行時のブレーキ環境(高速回転、振動負荷、高温)においては未だ十分ではない。
特許文献2に開示されたブレーキディスクの製造方法は、溶接による表面処理手法を行い、熱亀裂に代表される熱影響の緩和を実現するために、ディスク本体の表面に粉体肉盛プラズマアーク溶接(PTA溶接)を行う。
具体的には、特許文献2に開示されたブレーキディスクの製造方法では、車軸と一体的に回転する回転体に取り付けられるディスク本体の表面に、そのディスク本体より融点の高い高融点金属の粒子がマトリクス材中に分散してなる溶材を、PTA溶接を用いて複数層に渡って積層させることにより、ブレーキディスクを製造している。
また、特許文献2に開示されたPTA溶接では、溶接する対象物が大型あるいは長尺であるほど熱変形が増大するので、ディスク本体を薄肉化することが困難であった。
また、PTA溶接を採用する場合、高温のプラズマによってディスク本体が肉盛層内に溶け出す(溶け込み量10~20%)。その結果、肉盛層の強度及び機能性が低下するという問題、または、不定形状を有するビード、ブローホール、或いはピットなどの溶接不良が生じるという新たな問題が発生する。
また、PTA溶接によりディスク本体の表面に肉盛層を形成するためには、高温のアーク放電を発生させる必要があるので、ランニングコストが増大するという問題もある。
(1)本発明の一態様に係るブレーキディスクは、表面にブレーキパッドが押圧されることにより車軸の回転を制動するブレーキディスクであって、前記車軸と一体的に回転する回転体に取り付けられるディスク本体と;前記ディスク本体の表面に複数層に渡って積層された肉盛層と;を備え、前記肉盛層が、粉体肉盛レーザ溶接により前記ディスク本体の表面に積層されている。
また、上記態様では、PTA溶接よりも熱的影響が小さいLMD溶接を用いることにより、ディスク本体が肉盛層内に溶け出すことも防止できる。その結果、上記態様によれば、肉盛層の強度及び機能性の低下を防止することができる。また、不定形状を有するビード、ブローホール、或いはピットなどの溶接不良が肉盛層に発生することも抑制できるので、肉盛層の強度低下をより防止することが可能となる。
また、上記態様では、従来のPTA溶接より熱的影響が小さいLMD溶接を用いて、ディスク本体上に肉盛層を積層させるので、肉盛層内に分散させる粒子として、比較的融点が低いセラミックス粒子(例えば、アルミナ)を使用することができる。
図1は、本実施形態に係るブレーキディスク13を備えた新幹線用制動装置10の外観を示す概略正面図である。また、図2は、図1におけるA-A線断面を示す概略断面図である。
なお、ディスク本体133上の肉盛層134(134A~134C)の中で、第一肉盛層134Aにより内層が形成され、第二肉盛層134B及び第三肉盛層134Cにより外層が形成される。
そして、最上部に位置する第三肉盛層134Cの表面が、ブレーキパッド14によって押圧される摩擦面135である。なお、図3に示すように、各肉盛層134A~134C間は、溶接による溶融結合のため、組織変化のない均一な一体化組織となる。
マトリクス136は、例えばニッケル基合金である。このニッケル基合金としては、例えばハステロイ(登録商標)C合金が挙げられる。ここで、ハステロイC合金とは、化学成分として、質量%で、クロム(Cr)を15%、モリブデン(Mo)を16%、タングステン(W)を4%、ニッケル(Ni)を残部としてそれぞれ含有する合金である。なお、マトリクス136は、ニッケル基合金に限定されず、銅及びアルミ青銅などの銅合金、銀及び銀合金、または、アルミニウム及びアルミニウム合金などの熱伝導率が高い材料をマトリクス136として用いてもよい。
ディスク本体133の表面に最初に積層された第一肉盛層134Aは、後述の高融点金属粒子を含有していない。これにより、第一肉盛層134Aとディスク本体133との密着性を高めることができる。
肉盛溶接の分野では、肉盛層の表面の摩擦係数を極力低く抑える必要があることから、肉盛層にセラミックス粒子を含有させないのが一般的である。しかしながら、本実施形態では、ブレーキディスク13に要求されるブレーキ力を得るために、第二肉盛層134B及び第三肉盛層134Cに硬質セラミックス粒子138を含有させている。平均摩擦係数、摩耗量、セラミックス粒子138とマトリックス136との粒界剥離抑制の観点から、第二肉盛層134B及び第三肉盛層134Cにおける硬質セラミックス粒子138の含有量は0%超50%以下が好ましい。
このように構成される第二肉盛層134Bは第一肉盛層134Aの表面に、また、第三肉盛層134Cは第二肉盛層134Bの表面にそれぞれ1~5mm程度の厚みに積層されている。なお、第三肉盛層134Cは、基本的には、第二肉盛層134Bと同様の構成である。
第二肉盛層134B及び第三肉盛層134Cにおける高融点金属粒子137の含有量は、質量%で、0%超80%以下である。
また、高融点金属粒子137のうち、平均粒径が75μm以上100μm以下の粒子が全粒子数の70%以上80%以下を占めるとともに、平均粒径が10μm以上45μm以下の粒子が残りを占めている。
従って、図2に示すように、ブレーキディスク13を車輪11の平板部111に固定した状態で、ブレーキディスク13とボス部113との間には所定幅の隙間17が形成されている。
一方、第二肉盛層134Bの積層時には、LMD溶接による熱は第一肉盛層134Aを介してディスク本体133に伝達されるため、ディスク本体133に伝達される熱量が減少する。従って、第一肉盛層134Aの積層時に生成された焼き入れ層が、第二肉盛層134Bの積層時に加わる熱によって焼き戻される。これにより、硬化したディスク本体133に靭性が付与される。
更に、第三肉盛層134Cを積層する際にも、LMD溶接による熱は第二肉盛層134B及び第一肉盛層134Aを介してディスク本体133に伝達されるため、ディスク本体133に伝達される熱量がより減少する。従って、前述と同様に、第一肉盛層134Aの積層時に生成された焼き入れ層が焼き戻されることにより、ディスク本体133の靭性がより向上する。以上により、高速走行時におけるブレーキ環境下においても、ディスク本体133に亀裂または変形が生じ難い。
なお、このディスク本体133に生成された焼き入れ層は、ブレーキディスク13の使用を開始した後に、ブレーキ時に発生する熱によって更に焼き戻されるため、ディスク本体133の耐亀裂性がより向上する。
なお、図4Aは、本実施形態におけるLMD溶接装置20の正断面図である。図4Bは、比較例として示すPTA溶接装置30の正断面図である。
シールドガス供給路24及び溶接材料供給路25は、冷却水供給路23の外側に互いに隣接するように配置されている。シールドガスSGが、シールドガス供給路24に供給されている。溶材26(金属粉末)が、溶接材料供給路25に供給されている。シールドガス供給路24の先端には、ノズル27が設けられており、このノズル27からシールドガスSGがディスク本体133の表面に向けて噴射される。溶接材料供給路25の先端には、ノズル28が設けられおり、このノズル28から溶材26がディスク本体133の表面に向けて噴射される。
詳細は後述するが、第一肉盛層134Aを形成する場合、マトリクス136の粒子である第1金属粉末が溶材26として用いられる。また、第二肉盛層134B及び第三肉盛層134Cを形成する場合、マトリクス136の粒子と、高融点金属粒子137と、硬質セラミックス粒子138との混合粉末である第2金属粉末が溶材26として用いられる。
上記のような溶材26は、溶接材料供給路25を流れるキャリアガスCGにより運搬される。
また、キャリアガスCGとしては、アルゴンガス、ヘリウムガス等の不活性ガスが使用される。また、シールドガス供給路24に供給されたシールドガスSGによって、ディスク本体133及び肉盛層134の酸化が防止される。
レーザ照射箇所Pに供給された溶材26は、レーザ光Lによって大きな熱エネルギーが加えられることで溶融する。溶融した溶材26が凝固することで、肉盛層134が形成される。レーザ光Lの照射及び溶材26の供給と同時に、溶接トーチ21をディスク本体133の表面に沿って一定速度で移動させることにより、ディスク本体133の表面に、一定の厚さを有する肉盛層134を形成することができる。このように、溶接トーチ21を複数回、往復移動させることにより、複数層構造を有する肉盛層134をディスク本体133の表面に積層することが可能である。
図5に示されるように、レーザ照射条件として、レーザ光Lの焦点径が5.4[mm]に設定され、レーザ光Lの焦点距離を調整する機器であるMFO(Manual Focusing Optics)の設定電圧値が0.54[V]に設定され、また、レーザ光Lの出力が2700[W]に設定されている。溶材供給条件として、シールドガスSGの流量が15[L/min]に設定され、溶接トーチ21の回転数が10[rpm]に設定され、また、キャリアガスCGの流量が4[L/min]に設定されている。その他の条件として、溶接速度(溶接トーチ21の移動速度)が500[mm/min]に設定され、ピッチ幅が2.3[mm]に設定されている。
図6に示すように、LMD溶接を採用する場合、PTA溶接と比較して、肉盛厚及び肉盛量が小さいが、熱負荷が低いので、ディスク本体から肉盛層への炭素溶け込み量が小さい。また、LMD溶接を採用する場合、プラズマ溶射と比較して、ディスク本体と肉盛層との密着力が高い。
また、LMD溶接を採用する場合、プラズマ溶射と比較して、歩留りが高い。さらに、プラズマ溶射におけるポロシティ(溶接欠陥)は、1~3%であるが、LMD溶接におけるポロシティは、0%である。
なお、図7における丸形のプロット(○)は、LMD溶接を用いてディスク本体上に第一肉盛層を積層した場合を示している。また、四角形のプロット(□)は、ディスク本体を予熱することなく、PTA溶接を用いて第一肉盛層を積層した比較例を示している。菱形のプロット(◇)は、ディスク本体を250℃に予熱した後、PTA溶接を用いて第一肉盛層を積層した比較例を示している。
また、図7において、「熱影響部」とは、ディスク本体の表面から約2.8[mm]の深さまでの溶接時の熱の影響が及ぶ範囲を意味している。また、「本体原質部」とは、ディスク本体の厚さ方向全体を意味している。
この原因として、PTA溶接を用いて肉盛層を形成する場合、非常に高い熱的影響によりディスク本体に焼き入れ層が生成されることにより、ディスク本体の硬度が高くなることが挙げられる。これに対し、LMD溶接を用いて肉盛層を形成する場合、LMD溶接による熱的影響が少なく、ディスク本体に適度な範囲しか熱的影響が及ばない。従って、LMD溶接を用いて肉盛層を形成する場合、ディスク本体は、高い靱性を維持している。
また、LMD溶接を用いて肉盛層を形成する場合、肉盛層の表層から2[mm]以上の深さにおけるビッカース硬さは、一般的に亀裂が発生及び進展するか否かの目安とされる350[Hv]を下回っている。従って、LMD溶接を用いて肉盛層を形成する場合、ディスク本体では亀裂または変形が生じ難い。
特に図8B及び図9Bに示すように、LMD溶接で製造されたブレーキディスク13では、肉盛層134の断面及び表面における金属組織が、LMD溶接によって溶融結合することに起因して、組織変化のない均一な一体化組織となる。
図10は、本実施形態に係るブレーキディスク13の製造工程を示すフローチャートである。まず、ディスク本体133が作製される(ステップS1)。このステップS1では、所定の組成を有するインゴットが、鍛造、圧延、または鋳造されることにより、ディスク本体133が作製される。
しかしながら、本実施形態では、PTA溶接とは異なり、ディスク本体133に対する熱的影響が小さいLMD溶接を採用するので、上記のようなディスク本体133の機械加工を実施する必要はない。
このステップS3における溶材26(第1金属粉末)は、例えばニッケル基合金からなるマトリクス136の粒子(粉末)である。
このステップS4における溶材26(第2金属粉末)は、マトリクス136(例えばニッケル基合金)の粒子と、高融点金属粒子137(例えばモリブデン)と、硬質セラミックス粒子138(例えばアルミナ)との混合粉末である。
上記の溶材26(第2金属粉末)における硬質セラミックス粒子138の含有量は、質量%で、0%超50%以下である。このような溶材26を用いることにより、第2肉盛層134Bにおける硬質セラミックス粒子138の含有量も、質量%で、0%超50%以下となる。
なお、LMD溶接によって第2肉盛層134Bの表面に第3肉盛層134Cを形成するとき、溶材26(第2金属粉末)における高融点金属粒子137の割合を高くしてもよい。これにより、第3肉盛層134Cの表面(つまりブレーキパッド14が直接接触する摩擦面135)の耐熱性をより向上させることができる。
また、本実施形態では、PTA溶接よりも熱的影響が小さいLMD溶接を用いることにより、ディスク本体133が肉盛層134内に溶け出すことも防止できる。その結果、本実施形態によれば、肉盛層134の強度及び機能性の低下を防止することができる。また、不定形状を有するビード、ブローホール、或いはピットなどの溶接不良が肉盛層134に発生することも抑制できるので、肉盛層134の強度低下をより防止することが可能となる。
また、本実施形態では、PTA溶接よりも熱的影響が小さいLMD溶接を用いて、ディスク本体133上に肉盛層134を積層させるので、肉盛層134内に分散させる粒子として、融点が比較的低いセラミックス粒子(例えば、アルミナ)を使用することができる。
11 車輪
12 車軸
13 ブレーキディスク
14 ブレーキパッド
20 LMD溶接装置
21 溶接トーチ
22 中心孔
23 冷却水供給路
24 シールドガス供給路
25 溶接材料供給路
26 溶材
133 ディスク本体
134 肉盛層
134A 第一肉盛層(内層)
134B 第二肉盛層(外層)
134C 第三肉盛層(外層)
135 摩擦面
136 マトリクス
137 高融点金属粒子
138 硬質セラミックス粒子
L レーザ光
Claims (8)
- 表面にブレーキパッドが押圧されることにより車軸の回転を制動するブレーキディスクであって、
前記車軸と一体的に回転する回転体に取り付けられるディスク本体と;
前記ディスク本体の表面に複数層に渡って積層された肉盛層と;
を備え、
前記肉盛層が、粉体肉盛レーザ溶接により前記ディスク本体の表面に積層されていることを特徴とするブレーキディスク。 - 前記肉盛層が、前記ディスク本体の表面に二層以上に渡って積層された所定のマトリクスからなる積層体により構成され、
前記積層体は、前記ディスク本体上に積層されてかつ前記ディスク本体より融点の高い高融点金属粒子を含有しない内層と、前記内層上に形成された前記高融点金属粒子を含有する外層とからなることを特徴とする請求項1に記載のブレーキディスク。 - 前記高融点金属粒子は、モリブデン、タングステン、ニオブ及びタンタルの少なくとも1種を含むことを特徴とする請求項2に記載のブレーキディスク。
- 前記肉盛層の前記外層は、セラミックス粒子をさらに含有し;
前記外層における前記セラミックス粒子の含有量が、質量%で、0%超50%以下である;
ことを特徴とする請求項2または3に記載のブレーキディスク。 - 表面にブレーキパッドが押圧されることにより車軸の回転を制動するブレーキディスクの製造方法であって、
前記車軸と一体的に回転する回転体に取り付けられるディスク本体の表面に、粉体肉盛レーザ溶接により肉盛層を形成する肉盛層形成工程を含むことを特徴とするブレーキディスクの製造方法。 - 前記肉盛層形成工程は、
前記ディスク本体の表面にレーザを照射すると共に、前記レーザの照射箇所に第1金属粉末を供給して前記第1金属粉末を溶融させることにより、前記ディスク本体の表面に前記肉盛層の内層を形成する第1工程と;
前記内層の表面に前記レーザを照射すると共に、前記レーザの照射箇所に第2金属粉末を供給して前記第2金属粉末を溶融させることにより、前記内層の表面に前記肉盛層の外層を形成する第2工程と;
を有し、
前記第1金属粉末は、所定のマトリクスの粒子であり、
前記第2金属粉末は、前記マトリクスの粒子と、前記ディスク本体の融点よりも高い融点を有する高融点金属粒子との混合粉末である
ことを特徴とする請求項5に記載のブレーキディスクの製造方法。 - 前記高融点金属粒子は、モリブデン、タングステン、ニオブ及びタンタルの少なくとも1種を含むことを特徴とする請求項5または6に記載のブレーキディスクの製造方法。
- 前記第2金属粉末は、前記マトリクスの粒子と、前記高融点金属粒子と、セラミックス粒子との混合粉末であり;
前記第2金属粉末における前記セラミックス粒子の含有量が、質量%で、0%超50%以下である;
ことを特徴とする請求項5~7のいずれか1項に記載のブレーキディスクの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES14843625T ES2767364T3 (es) | 2013-09-13 | 2014-09-12 | Disco de freno y método de fabricación del mismo |
EP14843625.6A EP3034902B1 (en) | 2013-09-13 | 2014-09-12 | Brake disc and method of manufacturing the same |
US14/917,888 US10260585B2 (en) | 2013-09-13 | 2014-09-12 | Brake disc and manufacturing method thereof |
KR1020167006405A KR101671679B1 (ko) | 2013-09-13 | 2014-09-12 | 브레이크 디스크 및 그 제조 방법 |
CN201480049808.7A CN105556155B (zh) | 2013-09-13 | 2014-09-12 | 制动盘及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013191081A JP6245906B2 (ja) | 2013-09-13 | 2013-09-13 | ブレーキディスク及びその製造方法 |
JP2013-191081 | 2013-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015037731A1 true WO2015037731A1 (ja) | 2015-03-19 |
Family
ID=52665826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/074328 WO2015037731A1 (ja) | 2013-09-13 | 2014-09-12 | ブレーキディスク及びその製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10260585B2 (ja) |
EP (1) | EP3034902B1 (ja) |
JP (1) | JP6245906B2 (ja) |
KR (1) | KR101671679B1 (ja) |
CN (1) | CN105556155B (ja) |
ES (1) | ES2767364T3 (ja) |
MY (1) | MY176673A (ja) |
TW (1) | TWI565548B (ja) |
WO (1) | WO2015037731A1 (ja) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6727095B2 (ja) * | 2016-10-17 | 2020-07-22 | 三菱重工業株式会社 | 異種金属接合方法 |
DE102016221219A1 (de) * | 2016-10-27 | 2018-05-03 | Schaeffler Technologies AG & Co. KG | Verfahren und Anlage zum Herstellen eines Reibbelags aus Sintermetall |
DE102017200945B3 (de) * | 2017-01-20 | 2018-05-09 | Ford Global Technologies, Llc | Verfahren zur Herstellung von Hybrid- Leichtbau- Bremsscheiben |
KR101928912B1 (ko) * | 2017-04-13 | 2019-03-14 | 주식회사 한양정밀 | 브레이크 디스크 및 브레이크 디스크의 제조 방법 |
CN108274094B (zh) * | 2018-01-24 | 2020-05-22 | 西南交通大学 | 列车制动盘类构件的gmaw增材制造方法 |
WO2019222508A1 (en) | 2018-05-16 | 2019-11-21 | Tenneco Inc. | Brake pad backing plate |
US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
DE102019212844A1 (de) * | 2018-09-04 | 2020-03-05 | Ford Global Technologies, Llc | Bremsscheibe und Verfahren zum Herstellen einer Bremsscheibe |
WO2020128600A1 (fr) * | 2018-12-21 | 2020-06-25 | Aperam | Disque de frein pour véhicule et son procédé de fabrication, dispositif de freinage le comportant et véhicule équipé d'un tel dispositif |
CN109458414A (zh) * | 2018-12-28 | 2019-03-12 | 上海理工大学 | 一种减振降噪制动盘 |
FR3092509B1 (fr) * | 2019-02-13 | 2022-03-04 | Safran Aircraft Engines | Dispositif d’impression tridimensionnelle |
CN109807329B (zh) * | 2019-03-27 | 2021-04-23 | 东北大学 | 一种大功率激光选区熔化3d打印高铁制动盘的方法 |
CN110205530B (zh) * | 2019-05-13 | 2021-01-08 | 湖南工业大学 | 一种高速重载列车用铝基钛面制动盘及其成型方法 |
DE102019207290A1 (de) * | 2019-05-18 | 2020-11-19 | Robert Bosch Gmbh | Reibbremskörper für eine Reibbremse eines Kraftfahrzeugs, Verfahren zur Herstellung, Reibbremse |
DE102019207292A1 (de) * | 2019-05-18 | 2020-11-19 | Robert Bosch Gmbh | Reibbremskörper für eine Reibbremse eines Kraftfahrzeugs, Reibbremse und Verfahren zum Herstellen eines Reibbremskörpers |
DE102019208411A1 (de) * | 2019-06-08 | 2020-12-10 | Robert Bosch Gmbh | Reibbremskörper für eine Reibbremse eines Kraftfahrzeugs, Reibbremse und Verfahren zur Herstellung eines Reibbremskörpers |
DE102019209420A1 (de) * | 2019-06-27 | 2020-12-31 | Robert Bosch Gmbh | Reibbremskörper für eine Reibbremse, Reibbremse und Verfahren zur Herstellung eines Reibbremskörpers |
DE102019209422A1 (de) * | 2019-06-27 | 2020-12-31 | Robert Bosch Gmbh | Reibbremskörper für eine Radbremse eines Kraftfahrzeugs, Reibbremse und Verfahren zur Herstellung eines Reibbremskörpers |
DE102019209424B3 (de) * | 2019-06-27 | 2020-11-26 | Robert Bosch Gmbh | Reibbremskörper für eine Radbremse eines Kraftfahrzeugs, Reibbremse und Verfahren zur Herstellung eines Reibbremskörpers |
DE102019213464B4 (de) * | 2019-09-05 | 2021-04-01 | Robert Bosch Gmbh | Verfahren zum Herstellen eines Reibbremskörpers für eine Reibbremse eines Kraftfahrzeugs |
DE102019213461B3 (de) | 2019-09-05 | 2020-08-06 | Robert Bosch Gmbh | Reibbremskörper für eine Reibbremse, Reibbremse und Verfahren zur Herstellung eines Reibbremskörpers |
IT201900016835A1 (it) * | 2019-09-20 | 2021-03-20 | Cofren Srl | Coppia di attrito disco/freno per veicoli ferroviari |
KR20220147111A (ko) * | 2020-02-25 | 2022-11-02 | 씨4 레이저 테크놀로지 게엠베하 | 브레이크 디스크 및 그 제조 방법 |
DE102020106823A1 (de) | 2020-03-12 | 2021-09-16 | HPL Technologies GmbH | Vorrichtung und Verfahren zum Herstellung und ggf. Nachbearbeiten von Schichten aufgetragen durch Laserauftragschweißen |
DE102020112100A1 (de) | 2020-05-05 | 2021-11-11 | Fritz Winter Eisengiesserei Gmbh & Co. Kg | Bauteil einer Bremse für ein Fahrzeug und Verfahren zu seiner Herstellung |
DE102020207360A1 (de) * | 2020-06-15 | 2021-12-16 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Herstellen eines Reibbremskörpers |
DE102020207361A1 (de) | 2020-06-15 | 2021-12-16 | Robert Bosch Gesellschaft mit beschränkter Haftung | Reibbremskörper, Reibbremse und Verfahren zum Herstellen eines Reibbremskörpers |
CN114951930A (zh) * | 2021-02-23 | 2022-08-30 | 深圳先进技术研究院 | 一种等离子电弧增材制造装置及方法 |
DE102021104237A1 (de) | 2021-02-23 | 2022-08-25 | Robert Bosch Gesellschaft mit beschränkter Haftung | Reibbremskörper für eine Reibbremse eines Kraftfahrzeugs, Reibbremse und Verfahren zur Herstellung eines Reibbremskörpers |
DE102021207133B3 (de) | 2021-07-07 | 2022-12-22 | Volkswagen Aktiengesellschaft | Bremskörper für ein Kraftfahrzeug sowie Verfahren zur Herstellung eines Bremskörpers |
DE102021208967A1 (de) | 2021-08-16 | 2023-02-16 | HPL Technologies GmbH | Bremsscheibe mit einer Hartstoffschicht |
KR102632776B1 (ko) | 2021-12-29 | 2024-02-05 | (주)에이치엠3디피 | 3d 레이저 프린팅 적용 브레이크 디스크 및 그 브레이크 디스크 세라믹 코팅 방법 |
WO2024102648A1 (en) * | 2022-11-07 | 2024-05-16 | Transportation Ip Holdings, Llc | Brake discs and methods for manufacturing brake discs |
DE102023204087B3 (de) | 2023-05-03 | 2024-08-08 | Volkswagen Aktiengesellschaft | Bremskörper für ein Kraftfahrzeug sowie Verfahren zur Herstellung eines Bremskörpers |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5901818A (en) * | 1995-05-16 | 1999-05-11 | Martino; Gerald | Brake rotors with heat-resistant ceramic coatings |
JP2007162779A (ja) * | 2005-12-12 | 2007-06-28 | Akebono Brake Ind Co Ltd | ブレーキ用ディスクロータ |
JP2009063072A (ja) | 2007-09-06 | 2009-03-26 | Railway Technical Res Inst | ブレーキディスクとその表面改質方法及びブレーキディスクの表面改質装置 |
JP2012176422A (ja) * | 2011-02-25 | 2012-09-13 | Nippon Steel Engineering Co Ltd | レーザー肉盛方法、積層構造および耐食性金属クラッド鋼 |
JP2012233530A (ja) | 2011-04-28 | 2012-11-29 | Railway Technical Research Institute | ブレーキディスク及びその製造方法 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05305479A (ja) * | 1992-04-16 | 1993-11-19 | Sumitomo Metal Ind Ltd | 表面硬化肉盛用粉末と表面硬化肉盛方法 |
FR2717874B1 (fr) * | 1994-03-25 | 1996-04-26 | Gec Alsthom Transport Sa | Disque multimatériaux pour freinage à haute énergie. |
FR2717875B1 (fr) * | 1994-03-25 | 1996-04-26 | Gec Alsthom Transport Sa | Disque multimatériaux pour freinage à haute énergie. |
US5878843A (en) * | 1997-09-24 | 1999-03-09 | Hayes Lemmerz International, Inc. | Laminated brake rotor |
AU780097B2 (en) * | 2000-02-28 | 2005-03-03 | Vaw Aluminium Ag | Surface-alloyed cylindrical, partially cylindrical or hollow cylindrical component |
TW499553B (en) * | 2002-01-30 | 2002-08-21 | Yiu Hwa Technology Co Ltd | Method for making a brake disk |
US6968990B2 (en) * | 2003-01-23 | 2005-11-29 | General Electric Company | Fabrication and utilization of metallic powder prepared without melting |
US20050087406A1 (en) * | 2003-10-22 | 2005-04-28 | Meckel Nathan K. | Brake disks and methods for coating |
US7666522B2 (en) * | 2003-12-03 | 2010-02-23 | IMDS, Inc. | Laser based metal deposition (LBMD) of implant structures |
US7951412B2 (en) * | 2006-06-07 | 2011-05-31 | Medicinelodge Inc. | Laser based metal deposition (LBMD) of antimicrobials to implant surfaces |
US8691329B2 (en) * | 2007-01-31 | 2014-04-08 | General Electric Company | Laser net shape manufacturing using an adaptive toolpath deposition method |
EP2122004B1 (en) * | 2007-02-20 | 2013-01-30 | Tech M3, Inc. | Wear resistant coating for brake disks with unique surface appearance and methods for coating |
US8449943B2 (en) * | 2007-02-20 | 2013-05-28 | Tech M3, Inc. | Composite brake disks and methods for coating |
TWM324140U (en) * | 2007-06-25 | 2007-12-21 | Alex Global Technology Inc | Brake disc |
FR2922795B1 (fr) * | 2007-10-26 | 2015-07-17 | Diffusions Metallurg E D M Et | Procede de rechargement par soudage d'une piece, avec incorporation de particules caramiques dans la soudure. |
DE102009051479A1 (de) * | 2009-10-30 | 2011-05-05 | Mtu Aero Engines Gmbh | Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine |
GB201017958D0 (en) * | 2010-10-23 | 2010-12-08 | Rolls Royce Plc | Method for beam welding on components |
CN102002709B (zh) * | 2010-12-23 | 2012-06-20 | 广州有色金属研究院 | 一种轧机滑板的激光表面熔覆方法 |
US9352419B2 (en) * | 2011-01-13 | 2016-05-31 | Siemens Energy, Inc. | Laser re-melt repair of superalloys using flux |
US9126287B2 (en) * | 2012-03-12 | 2015-09-08 | Siemens Energy, Inc. | Advanced pass progression for build-up welding |
US10900537B2 (en) * | 2012-07-02 | 2021-01-26 | Honeywell International Inc. | Vibration isolator assemblies and methods for the manufacture thereof |
ITPD20120405A1 (it) * | 2012-12-21 | 2014-06-22 | Freni Brembo Spa | Metodo per realizzare un disco freno e disco freno per freni a disco |
JP6347790B2 (ja) * | 2012-12-21 | 2018-06-27 | フレニー ブレンボ ソシエテ ペル アチオニ | ブレーキディスクを作製する方法、ディスクブレーキ用ブレーキディスク、およびディスクブレーキ |
US10197121B2 (en) * | 2013-03-15 | 2019-02-05 | Tech M3, Inc. | Wear resistant braking systems |
FR3008014B1 (fr) * | 2013-07-04 | 2023-06-09 | Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines | Procede de fabrication additve de pieces par fusion ou frittage de particules de poudre(s) au moyen d un faisceau de haute energie avec des poudres adaptees au couple procede/materiau vise |
WO2015058043A1 (en) * | 2013-10-18 | 2015-04-23 | United Technologies Corporation | Multiple piece engine component |
US10935241B2 (en) * | 2014-05-09 | 2021-03-02 | Raytheon Technologies Corporation | Additively manufactured hotspot portion of a turbine engine component having heat resistant properties and method of manufacture |
US10307957B2 (en) * | 2015-03-10 | 2019-06-04 | Siemens Product Lifecycle Management Software Inc. | Apparatus and method for additive manufacturing |
US10131113B2 (en) * | 2015-05-13 | 2018-11-20 | Honeywell International Inc. | Multilayered carbon-carbon composite |
GB201508703D0 (en) * | 2015-05-21 | 2015-07-01 | Rolls Royce Plc | Additive layer repair of a metallic component |
-
2013
- 2013-09-13 JP JP2013191081A patent/JP6245906B2/ja active Active
-
2014
- 2014-09-12 ES ES14843625T patent/ES2767364T3/es active Active
- 2014-09-12 CN CN201480049808.7A patent/CN105556155B/zh active Active
- 2014-09-12 MY MYPI2016700808A patent/MY176673A/en unknown
- 2014-09-12 KR KR1020167006405A patent/KR101671679B1/ko active IP Right Grant
- 2014-09-12 WO PCT/JP2014/074328 patent/WO2015037731A1/ja active Application Filing
- 2014-09-12 US US14/917,888 patent/US10260585B2/en active Active
- 2014-09-12 TW TW103131671A patent/TWI565548B/zh active
- 2014-09-12 EP EP14843625.6A patent/EP3034902B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5901818A (en) * | 1995-05-16 | 1999-05-11 | Martino; Gerald | Brake rotors with heat-resistant ceramic coatings |
JP2007162779A (ja) * | 2005-12-12 | 2007-06-28 | Akebono Brake Ind Co Ltd | ブレーキ用ディスクロータ |
JP2009063072A (ja) | 2007-09-06 | 2009-03-26 | Railway Technical Res Inst | ブレーキディスクとその表面改質方法及びブレーキディスクの表面改質装置 |
JP2012176422A (ja) * | 2011-02-25 | 2012-09-13 | Nippon Steel Engineering Co Ltd | レーザー肉盛方法、積層構造および耐食性金属クラッド鋼 |
JP2012233530A (ja) | 2011-04-28 | 2012-11-29 | Railway Technical Research Institute | ブレーキディスク及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3034902A4 |
Also Published As
Publication number | Publication date |
---|---|
KR101671679B1 (ko) | 2016-11-01 |
JP2015055351A (ja) | 2015-03-23 |
JP6245906B2 (ja) | 2017-12-13 |
CN105556155A (zh) | 2016-05-04 |
US20160223041A1 (en) | 2016-08-04 |
ES2767364T3 (es) | 2020-06-17 |
EP3034902A1 (en) | 2016-06-22 |
MY176673A (en) | 2020-08-19 |
TW201530012A (zh) | 2015-08-01 |
TWI565548B (zh) | 2017-01-11 |
US10260585B2 (en) | 2019-04-16 |
KR20160032273A (ko) | 2016-03-23 |
EP3034902B1 (en) | 2019-11-06 |
CN105556155B (zh) | 2018-01-19 |
EP3034902A4 (en) | 2017-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015037731A1 (ja) | ブレーキディスク及びその製造方法 | |
ES2661397T3 (es) | Rodillo de trabajo fabricado mediante revestimiento por láser y método para ello | |
JP7369307B2 (ja) | 車両用ブレーキの構成要素およびその製造方法 | |
JP4988824B2 (ja) | 滑り軸受、このような滑り軸受の製造方法ならびに使用 | |
WO2008004708A1 (en) | Method for manufacturing cast iron member, cast iron member, and engine for vehicle | |
JP2010201507A (ja) | タングステン−不活性ガス溶接法によって2つの金属部分を結合するための方法ならびに該方法を実施するための装置 | |
TWI754127B (zh) | 工具材料的再生方法及工具材料 | |
JP2018135585A (ja) | 金属部材及びクラッド層の製造方法 | |
WO2021240696A1 (ja) | 連続鋳造用鋳型及び連続鋳造用鋳型の製造方法 | |
JP5723669B2 (ja) | ブレーキディスク及びその製造方法 | |
US20120261459A1 (en) | Laser metalworking using reactive gas | |
JP2005254317A (ja) | 自溶性合金の被覆方法及び装置並びにこれを用いた連続鋳造用鋳型及びその製造方法 | |
CN108570674A (zh) | 一种低熔点合金激光熔覆成形方法 | |
JP2017529455A (ja) | 積層造形されるロータリー切削ユニット用アンビル | |
WO2020152789A1 (ja) | 鋼板、突合せ溶接部材、熱間プレス成形品、鋼管、中空状焼入れ成形品、および鋼板の製造方法 | |
CN113056082B (zh) | 一种具有均匀稳定燃弧特性的电极结构及其制备技术 | |
US20080299306A1 (en) | Multi-layer substrate and method of fabrication | |
JP2012176422A (ja) | レーザー肉盛方法、積層構造および耐食性金属クラッド鋼 | |
JPS5838602A (ja) | 複合超硬合金製熱間圧延ロ−ル | |
JP2021088726A (ja) | 段ロールおよびその製造方法 | |
JP2021088728A (ja) | 段ロールおよびその製造方法 | |
Gnanasekaran et al. | Effect of Defocusing Distance on Microstructural, Hardness, and Tribological Behavior of Ni‐Cr‐Si‐B‐C Powder Deposit on 316LN Austenitic Stainless Steel Substrate Using Laser Hard‐Facing | |
JP2023147419A (ja) | 摺動部材及び摺動部材の製造方法 | |
Dunne et al. | Comparison of GMAW and SAW for NGW of 50 mm Q&T Steel Plate | |
CN113600972A (zh) | 堆焊修复方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480049808.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14843625 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14917888 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167006405 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014843625 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016005273 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112016005273 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160310 |