WO2015037066A1 - プラント事故時運転支援システム及びプラント事故時運転支援方法 - Google Patents

プラント事故時運転支援システム及びプラント事故時運転支援方法 Download PDF

Info

Publication number
WO2015037066A1
WO2015037066A1 PCT/JP2013/074455 JP2013074455W WO2015037066A1 WO 2015037066 A1 WO2015037066 A1 WO 2015037066A1 JP 2013074455 W JP2013074455 W JP 2013074455W WO 2015037066 A1 WO2015037066 A1 WO 2015037066A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
sensor
event
behavior analysis
signal
Prior art date
Application number
PCT/JP2013/074455
Other languages
English (en)
French (fr)
Inventor
有田 節男
昌基 金田
佳彦 石井
亮太 鴨志田
石川 忠明
健一 上遠野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US14/916,535 priority Critical patent/US20160195872A1/en
Priority to JP2015536322A priority patent/JPWO2015037066A1/ja
Priority to GB1603644.4A priority patent/GB2536567A/en
Priority to PCT/JP2013/074455 priority patent/WO2015037066A1/ja
Publication of WO2015037066A1 publication Critical patent/WO2015037066A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0229Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions knowledge based, e.g. expert systems; genetic algorithms

Definitions

  • the present invention relates to a plant accident operation support system and a plant accident operation support method that support plant operation during an accident by identifying a plant state including a sensor during a plant accident.
  • Patent Document 1 shows a plant operation support apparatus that can automatically diagnose the soundness of various instruments including sensors as assistance for an operator when an abnormality or accident occurs. Specifically, first, the device model that quantitatively simulates the static characteristics of the plant component equipment is stored in the characteristic storage unit, the observation signal and the device model are input in the state estimation unit, and the device model is used to obtain the observation signal. Estimate process state. Finally, the soundness of the sensor is evaluated using the result of the state estimation unit in fuzzy inference.
  • Patent Document 1 a plurality of device model equations are provided, an observation signal that is a sensor signal is input to the device model equation, an output signal corresponding to the input / output characteristics of the device model equation is output, and the output signal of the device model equation is output.
  • the observation signal is determined to be normal.
  • equipment including piping, often fails. Since the device model formula reflecting the failure state is not provided, even if the device model equation output signal is calculated from the observation signal (sensor signal) using the device model equation prepared in advance in the device failure state This result does not coincide with the observed signal on the output side of the corresponding device.
  • the observation signal that is an output signal of the sensor is abnormal, that is, the sensor is determined to be abnormal.
  • the sensor is made redundant, if the behavior of the device affects these redundant sensors in common, the behavior of the redundant sensor will be the same, so if a failure occurs in the device.
  • the output signal (observation signal) of the redundant sensor is determined to be abnormal.
  • the present invention has been made in view of the above points, and an object of the present invention is a plant accident operation support system capable of determining the soundness of a sensor without being affected even if a device fails in the event of a plant accident. Is to provide.
  • the present invention relates to an event identification device for identifying a plant state, a plant behavior analysis device for predicting the progress of a process state after the occurrence of an event using at least the event identification result as an initial condition for plant behavior analysis, and an output of the plant behavior analysis device. It comprises a sensor soundness determination device that compares the result of predicting the progress of a certain process state with a sensor signal to determine the soundness of the sensor.
  • an operation support system at the time of a plant accident that can determine the soundness of a sensor without being affected even if a device breaks down at the time of a plant accident.
  • FIG. 1 is a block diagram of a plant accident operation support system according to the first embodiment, which will be described below using a nuclear power plant as a representative.
  • Sensor signal 1a is a process signal such as plant temperature, pressure, water level, and flow rate
  • 1b is a device status signal and an alarm signal.
  • the equipment status signal is a status signal of starting / stopping, opening / closing, etc. of pumps and valves that are equipment of the plant.
  • the sensor signal 1a is captured by the abnormal sensor signal removal device 2, the sensor signal from which the abnormal signal is output is removed, and the normal sensor signal 1aa is captured by the plant behavior analysis device 3 and the event identification device 4.
  • the abnormal sensor signal removal device 2 excludes the signal of the sensor outputting the abnormal value by the majority decision of the output signal.
  • Reference numeral 20 denotes a plant accident operation support system.
  • the event identification device 4 prepares a table in which each accident event is associated with a device signal, and determines that an accident event has occurred when all the conditions of the device signal are satisfied. To do.
  • Each condition in FIG. 2 indicates an alarm.
  • an alarm “Low flow A” is issued, an alarm “Pressure A low” is issued, an alarm “High radioactivity” is issued, and an alarm “High ambient temperature” is issued. If it reports, it will be judged that the accident event "the main steam pipe A rupture” has occurred.
  • An event identification result that is an output signal of the event identification device 4 is output to the plant behavior analysis device 3.
  • the plant behavior analysis device 3 sets an input event identification result as an initial condition for plant behavior analysis, and inputs a sensor signal 1aa, a device state signal, and an alarm signal 1b indicating the plant state at that time, and the event identification device
  • the behavior of the plant after the occurrence event (accident event) is identified in 4 can be analyzed, and the progress of the process state can be predicted.
  • Models for analyzing plant behavior include, for example, as shown in FIG. 3, a core analysis model (nuclear dynamic characteristics model, fuel behavior analysis model, thermal hydraulic model), turbine / condensation system model, feed water system model, safety System model (high pressure core cooling system model, low pressure water injection system model, isolation cooling system model, residual heat removal system model, automatic decompression system model), measurement system model, etc.
  • the safety system model has automatic start conditions for safety system equipment, and when the sensor signal indicating the process state exceeds the automatic start conditions, at least the safety system model is started to analyze the plant behavior. As a result, it is possible to predict the progress of the process state including the operation of the safety system at the time of the accident.
  • an event progress prediction result (process state progress prediction result) 5 is obtained as an output of the plant behavior analysis device 3.
  • the event progress prediction result 5 is output to the comparison device 6 of the sensor soundness determination device 8.
  • the plant behavior analysis device 3 can execute the process state prediction after the above occurrence event (accident event) in a short time by analyzing the plant behavior at a speed higher than the real time.
  • the comparison device 6 of the sensor soundness determination device 8 compares the event progress prediction result (process state progress prediction result) 5 with the sensor signal 1aa indicating the plant state.
  • the soundness determination device 7 determines that the sensor is sound if the comparison results match within the allowable error range, and determines that the sensor is abnormal if it deviates from the allowable error range, and outputs the determination result.
  • FIG. 4 shows an example of pressure sensor abnormality. This is an event in which a certain device operates at time t1 and the flow rate decreases accordingly.
  • a solid line is a sensor signal
  • a broken line is an event progress prediction result (process state progress prediction result).
  • the pressure analysis result is indicated by a broken line. As shown, there is no pressure change.
  • the pressure sensor signal has decreased since time t1. The deviation between the two increases with time, and it is determined that the sensor is abnormal when it deviates from the allowable error range.
  • the flow rate sensor signal and the flow rate analysis result both change in the same way, and the comparison result between them is within the allowable error range, and the flow rate sensor is determined to be normal. . That is, in this example, the result that the pressure sensor is abnormal is output.
  • Fig. 5 shows an example of a pipe break at time t1.
  • the pipe break is identified by the event identification device 4 in the same manner as the main steam pipe A break described above.
  • the pressure analysis result (process state progress prediction result) is time t1 as shown by the broken line. Pressure decreases.
  • the pressure sensor signal has also decreased since time t1, the comparison result of both in the comparison device 6 is within the allowable error range, and the flow sensor is determined to be normal.
  • both the flow rate sensor signal and the flow rate analysis result change in the same manner, and the comparison result between the two is within the allowable error range, and the flow rate sensor is also determined to be normal. That is, in this example, although both the pressure sensor and the flow rate sensor are normal, it is suggested that the flow rate and pressure decrease after time t1. It can be seen that this is due to the occurrence of an event of pipe breakage.
  • the determination result from the sensor soundness determination device 8 is output to the abnormal sensor signal removal device 2, and the sensor signal is excluded by the abnormality sensor signal removal device 2 for the sensor determined to be abnormal, and the sound sensor The signal 1aa is output from the abnormal sensor signal removal device 2. That is, there is an effect that the plant behavior is not performed in a state in which an abnormal sensor signal is included.
  • At least the event identification result is used as an initial condition for the plant behavior analysis, the progress of the process state after the occurrence of the event is predicted, and the soundness of the sensor can be determined by comparing the prediction result with the sensor signal. Therefore, there is an effect that the soundness of the sensor can be determined based on the plant state reflecting the accident occurrence state such as equipment failure.
  • the plant state is identified by logic using at least the device state signal and the alarm signal, there is no ambiguity in event identification, and as a result, the accuracy of sensor health determination is improved.
  • the plant behavior analysis apparatus has a safety system automatic start condition, and when the sensor signal indicating the process state exceeds the automatic start condition, at least the safety system model is started to perform the plant behavior.
  • the process state reflecting the operating state of the safety system that operates at the time of an accident can be predicted, and the accuracy of determination of sensor soundness is further improved.
  • FIG. 6 shows a configuration example of a plant accident operation support system according to the second embodiment.
  • a different part from FIG. 1 is the structure of the event identification apparatus 4a and the sensor soundness determination apparatus 8a, and others are the same.
  • the 10 is a large amount of event database in which change patterns of a plurality of processes (corresponding to sensor signals) are associated with events occurring in the plant.
  • This large-scale event database is created by generating a large number of abnormalities and device operations using a plant simulator in advance.
  • the event identification device 4a receives the sensor signal 1aa, the device status signal, and the alarm signal 1b, the event identification device 4a identifies the occurrence event by obtaining the similarity between these signals and the data in the event database 10. This result is output as an initial condition for plant behavior analysis.
  • DP matching dynamic programming
  • process state progress prediction result both signals
  • the sensor soundness determination device 8a includes a time synchronization setting unit 11, a comparison range setting unit 12, a waveform similarity calculation unit 13, and a soundness determination device 7a.
  • the time synchronization setting unit 11 and the comparison range setting unit 12 are for synchronizing and comparing the event progress prediction result, which is an output signal from the plant behavior analysis device 3, and the time of the sensor signal. There is no guarantee that the plant behavior analysis apparatus 3 will perform the calculation at the same speed as the real time.
  • the event identification result is output, and synchronization is set to the time when the event progress prediction by the plant behavior analysis device 3 is started, and as shown in FIG. As shown in FIG.
  • the comparison range setting unit 12 sets the comparison range of both signals.
  • the similarity is determined by the waveform similarity calculator 13 as to whether or not the two signals match. If the similarity is within the allowable error range, the sensor is healthy, and if it is outside the allowable error range, it is determined that the sensor is abnormal.
  • the plant behavior analysis device 3 performs the calculation at the same speed as the real time, and the time of the sensor signal and the time progress of the event progress prediction result are different.
  • the comparison of the event progress prediction result which is an output signal from the plant behavior analysis apparatus 3, and the sensor signal, the time of both signals is synchronized and compared.
  • At least the event identification result is used as an initial condition for plant behavior analysis, the progress of the process state after the occurrence of the event is predicted, and the prediction result and the time of the sensor signal are synchronized and compared to determine the health of the sensor. Therefore, it is possible to compare the sensor signal with the result of predicting the progress of the process state after the occurrence of the event earlier than the real time, and it is possible to judge the sensor soundness for multiple event identification results .
  • the occurrence event is identified by obtaining the similarity between the sensor signal, the device status signal, the alarm signal and the event database, and at least the event identification result is used as the initial condition of the plant behavior analysis, and the plant changes over time after the occurrence of the event. Therefore, it is possible to identify the event actually occurring from a plurality of event candidates, and synchronize the predicted result with the time of the sensor signal and compare the similarity. In order to evaluate and determine the soundness of the sensor, it is possible to further increase the accuracy of determination of the soundness of the sensor.
  • the plant accident operation support system 20 is installed in the central control room, displays the above results on a screen on the central control panel or large display panel, and provides the state of the plant accident as shared information of the operator. May be.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • the present invention it is possible to determine the soundness of a sensor without being affected by an equipment failure in the event of a plant accident, and its industrial value is extremely high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

 本発明は、プラント事故時において機器が故障してもこれに影響を受けることなくセンサの健全性を判定できるプラント事故時運転支援システム(20)を提供することを目的とする。 プラント事故時運転支援システム(20)は、プラントの状態を同定する事象同定装置(4)、少なくとも事象同定結果をプラント挙動解析の初期条件として事象発生後のプロセス状態の進展を予測するプラント挙動解析装置(3)、該プラント挙動解析装置の出力であるプロセス状態の進展を予測した結果とセンサ信号とを比較してセンサの健全性を判定するセンサ健全性判定装置(8)を備える。

Description

プラント事故時運転支援システム及びプラント事故時運転支援方法
 本発明は、プラント事故時のセンサを含むプラント状態を同定することで事故時のプラントの運転を支援するプラント事故時運転支援システム及びプラント事故時運転支援方法に関する。
 原子力発電プラント、火力発電プラント、化学プラントを始めとする各種のプラントにおいて、異常や事故が発生した場合には、運転員はプラントの状態を迅速に把握して適切な対応操作を取る必要がある。異常や事故が発生した場合の運転員の支援として、〔特許文献1〕には、センサを含む各種計器の健全性を自動的に診断できるプラント運転支援装置が示されている。具体的には、まずプラント構成機器の静特性を定量的に模擬した機器モデルを特性記憶部に記憶し、状態推定部で観測信号と機器モデルを入力して、機器モデルを用いて観測信号からプロセス状態を推定する。最後にファジー推論で状態推定部の結果を利用してセンサの健全性を評価するようにしている。
特開平7-181292号公報
 特許文献1では、複数の機器モデル式を備え、センサ信号である観測信号を機器モデル式に入力し、機器モデル式の入出力特性に対応した出力信号を出力し、機器モデル式の出力信号に対応する観測信号(センサ信号)とこれら複数の機器モデルの出力信号のうちいずれか一つが観測信号と一致すると、観測信号は正常と判定するようになっている。プラント異常時には配管も含め機器が故障することが多い。故障状態を反映した機器モデル式が具備されていないため、機器故障状態において、あらかじめ用意してある機器モデル式を利用して観測信号(センサ信号)から機器モデル式の出力信号を算出しても、この結果は対応する機器の出力側の観測信号と一致することはない。この結果、センサの出力信号である観測信号が異常、つまりセンサを異常と判定してしまう問題がある。仮にセンサが冗長化されていても、機器の振る舞いがこれら冗長化センサに対して共通的に影響を与える場合には、冗長化センサの振る舞いが同じになるために、機器に故障が発生した場合でも前述と同様に冗長化センサの出力信号(観測信号)を異常と判定してしまう問題がある。
 本発明は以上の点に鑑みなされたものであり、その発明の目的は、プラント事故時において機器が故障してもこれに影響を受けることなくセンサの健全性を判定できるプラント事故時運転支援システムを提供することにある。
 本発明は、プラントの状態を同定する事象同定装置、少なくとも事象同定結果をプラント挙動解析の初期条件として事象発生後のプロセス状態の進展を予測するプラント挙動解析装置、該プラント挙動解析装置の出力であるプロセス状態の進展を予測した結果とセンサ信号とを比較してセンサの健全性を判定するセンサ健全性判定装置を備えることを特徴とする。
 本発明によれば、プラント事故時において機器が故障してもこれに影響を受けることなくセンサの健全性を判定できるプラント事故時運転支援システムを提供することが可能である。
本発明の第一の実施形態であるプラント事故時運転支援システムの一構成図である。 事象同定の説明図である。 プラント挙動解析モデルの説明図である。 圧力センサ異常判定を説明するための図である。 配管破断判定を説明するための図である。 本発明の第二の実施形態であるプラント事故時運転支援システムの一構成図である。 センサ信号とプロセス状態予測結果の時間の同期が取れていない状態を示す図である。 センサ信号とプロセス状態予測結果の時間同期を図った図である。 プラント挙動解析装置3、事象同定装置4、4a、センサ健全性判定装置8、8aの出力結果の一例である。
 以下、各実施例について説明する。
 以下に、図面を参照して本実施例を詳細に説明する。図1は第一の実施形態であるプラント事故時運転支援システムの一構成図であるが、原子力プラントを代表として以下説明する。
 センサ信号1aは、プラントの温度、圧力、水位、流量などのプロセス信号であり、1bは機器状態信号、警報信号である。これらの信号は、図示していないが、警報処理システム、制御装置、プロセス計算機によって生成される。なお、機器状態信号はプラントの機器であるポンプ、弁などの起動/停止、開/閉等の状態信号である。センサ信号1aは、異常センサ信号除去装置2に取り込まれ、異常な信号が出力されているセンサ信号は除去され、正常なセンサ信号1aaがプラント挙動解析装置3及び事象同定装置4に取り込まれる。冗長化されているセンサについては、その出力信号の多数決判定により異常値を出力しているセンサの信号が異常センサ信号除去装置2で除外される。20はプラント事故時運転支援システムである。
 事象同定装置4は、例えば図2に示すように、各事故事象と機器信号とを対応づけた表を用意しておき、機器信号の条件がすべて成立する時に事故事象が発生していると判定する。なお、図2における各条件はすべて警報を示している。この例では、警報「流量A低下」が発報し、かつ、警報「圧力A低下」が発報し、かつ、警報「放射能高」が発報し、かつ警報「周囲温度高」 が発報すれば、事故事象「主蒸気管A破断」が発生していると判断する。事象同定装置4の出力信号である事象同定結果はプラント挙動解析装置3に出力される。
 プラント挙動解析装置3は、入力される事象同定結果をプラント挙動解析の初期条件として設定し、その時点のプラント状態を示すセンサ信号1aa、機器状態信号、警報信号1bを入力して、事象同定装置4で発生事象(事故事象)を同定した以降のプラントの挙動を解析し、プロセス状態の進展の予測が可能となる。
 プラント挙動を解析するためのモデルは、例えば、図3に示すように、炉心解析モデル(核動特性モデル、燃料挙動解析モデル、熱水力モデル)、タービン・復水系モデル、給水系モデル、安全系モデル(高圧炉心冷却系モデル、低圧注水系モデル、隔離時冷却系モデル、残留熱除去系モデル、自動減圧系モデル)、計測系モデル等で構成される。特に安全系モデルは、安全系の機器の自動起動条件を具備し、プロセス状態を示すセンサ信号が該自動起動条件を超えた場合に少なくとも安全系の機器モデルを起動してプラント挙動を解析する。この結果、事故時の安全系の動作を含めて、プロセス状態の進展の予測が可能となる。この結果をプラント運転員、プラント管理者に提供することにより、プラント挙動解析装置3の出力として事象進展予測結果(プロセス状態の進展予測結果)5が得られる。事象進展予測結果5はセンサ健全性判定装置8の比較装置6に出力される。
 プラント挙動解析装置3は、実時間より高速でプラント挙動を解析することにより、上記の発生事象(事故事象)以降のプロセス状態の進展予測を短時間で実行することが可能となる。この進展予測結果をプラント運転員、プラント管理者に提供することにより、このままではプラントがどのようになっていくが分かるために、異常状態が進展しないうちに対策案を検討し、対応操作を実施することが可能になり、プラントの安全性向上を図ることが可能になる。
 センサ健全性判定装置8の比較装置6にて、事象進展予測結果(プロセス状態の進展予測結果)5とプラント状態を示すセンサ信号1aaを比較する。健全性判定装置7は比較結果が許容誤差範囲内で一致していれば当該センサは健全と判断し、許容誤差範囲を逸脱している場合には異常と判定し、判定結果を出力する。
 センサ健全性の判定例を、図4及び図5に示す。図4は圧力センサ異常の例である。時刻t1で、ある機器の動作があり、それに伴って流量が低下する事象である。実線はセンサ信号であり、破線が事象進展予測結果(プロセス状態の進展予測結果)である。事象同定装置4により機器動作が同定され、この結果がプラント挙動解析装置3の初期条件として設定されて、その後の事象進展を予測すると、圧力の解析結果(プロセス状態の進展予測結果)は破線で示すようになり、圧力変化がない。これに対して圧力センサ信号は時刻t1以降から低下している。両者の偏差は時間経過と共に大きくなり、許容誤差範囲を逸脱した時点でセンサ異常と判定される。一方、流量については、流量センサ信号と流量の解析結果(プロセス状態の進展予測結果)が共に同様に変化しており、両者の比較結果が許容誤差範囲内となり、流量センサは正常と判定される。つまり、この例では圧力センサ異常という結果が出力されることになる。
 図5は時刻t1で配管破断が発生した例である。配管破断は、前述の主蒸気管A破断と同様に事象同定装置4により同定される。この結果がプラント挙動解析装置3の初期条件として設定されて、プラント挙動解析装置3でその後の事象進展を予測すると、圧力の解析結果(プロセス状態の進展予測結果)は破線で示すように時刻t1から圧力が低下する。圧力センサ信号も時刻t1以降から低下しており、比較装置6での両者の比較結果は許容誤差範囲内となり、流量センサは正常と判定される。流量についても、流量センサ信号と流量の解析結果(プロセス状態の進展予測結果)が共に同様に変化しており、両者の比較結果が許容誤差範囲内となり、流量センサも正常と判定される。つまり、この例では圧力センサ及び流量センサとも正常であるが、流量及び圧力が時刻t1以降低下するということが提示されることになる。これは配管破断という事象発生に起因したということがわかるようになる。
 なお、センサ健全性判定装置8からの判定結果は異常センサ信号除去装置2に出力され、異常と判定されたセンサに対してはそのセンサ信号が異常センサ信号除去装置2で除外され、健全なセンサ信号1aaが異常センサ信号除去装置2から出力されることになる。つまり、異常なセンサ信号が含まれた状態でプラント挙動を実施することはないという効果が得られる。
 本実施例では、少なくとも事象同定結果をプラント挙動解析の初期条件として事象発生後のプロセス状態の進展を予測し、この予測結果とセンサ信号とを比較してセンサの健全性を判定することするできるために、機器故障などの事故発生状態を反映したプラント状態に基づいてセンサの健全性が判定できる効果がある。
 また、本実施例では、少なくとも機器状態信号、警報信号を用いてロジックでプラント状態を同定するために、事象同定に曖昧さが入ることがなく、結果としてセンサ健全性の判定確度が向上する。
 さらに、本実施例では、プラント挙動解析装置が、安全系の自動起動条件を具備し、プロセス状態を示すセンサ信号が該自動起動条件を超えた場合に少なくとも安全系モデルを起動してプラント挙動を解析するために、事故時に動作する安全系の動作状況を反映したプロセス状態を予測でき、センサ健全性の判定確度がより一層向上する。
 第二の実施形態であるプラント事故時運転支援システムの一構成例を図6に示す。図1と異なる部分は事象同定装置4aとセンサ健全性判定装置8aの構成であり、その他は同一である。
 10は複数のプロセス(センサ信号に対応)の変化パターンとプラント内で発生する事象が対応付けられた大量の事象データベースである。この大量の事象データベースは、例えば事前にプラントシミュレータを利用して膨大な異常や機器動作を発生させて作成する。事象同定装置4aはセンサ信号1aa、機器状態信号、警報信号1bを入力すると、これら信号と事象データベース10のデータとの類似度を求めて発生事象を同定する。この結果はプラント挙動解析の初期条件として出力される。このようにあらかじめ膨大な事象データベースを構築することにより、例えば複合事象が発生しても的確に事象を同定することが可能になり、これに基づくプラントの進展予測が可能になる。なお、類似度計算は例えば、DPマッチング(動的計画法)が利用可能であり、複数のプロセス信号について、各々のセンサ信号と解析結果(プロセス状態の進展予測結果)間の距離(両信号のずれ)を計算し、これらの距離計算の合計が最も低かったケースを発生事象として同定する。
 センサ健全性判定装置8aは時刻同期設定部11、比較範囲設定部12、波形類似度計算部13、健全性判定装置7aで構成している。時刻同期設定部11及び比較範囲設定部12は、プラント挙動解析装置3からの出力信号である事象進展予測結果とセンサ信号の時刻を同期させて比較させるようにするためのものである。プラント挙動解析装置3が実時間と同じ速度で演算を実行する保証はない。センサ信号の時間と事象進展予測結果の時間経過が異なる場合、事象同定結果が出力され、プラント挙動解析装置3による事象進展予測を開始した時間に同期を設定し、図7のように時間的に異なっている両信号を図8のように両信号のスタート時刻を合わせ、かつ比較範囲設定部12で両信号の比較範囲を設定する。センサの健全性は両信号が一致しているか否かを波形類似度計算部13で類似度を判定する。類似度が許容誤差範囲以内であればセンサは健全であり、許容誤差範囲を逸脱していればセンサ異常と判定する。
 このように、図1のプラント事故時運転支援システム20において、プラント挙動解析装置3が実時間と同じ速度で演算を実行する保証はなく、センサ信号の時間と事象進展予測結果の時間経過が異なる場合には、上記のように、プラント挙動解析装置3からの出力信号である事象進展予測結果とセンサ信号の比較において、両信号の時刻を同期させて比較することになる。
 本実施例では、少なくとも事象同定結果をプラント挙動解析の初期条件として事象発生後のプロセス状態の進展を予測し、この予測結果とセンサ信号の時刻を同期させて比較してセンサの健全性を判定することができるために、実時間より早い時間で事象発生後のプロセス状態の進展を予測した結果とセンサ信号の比較が可能となり、複数の事象同定結果に対してのセンサ健全性判定が可能なる。
 また、センサ信号、機器状態信号、警報信号と事象データベースとの類似度を求めて発生事象を同定し、少なくともこの事象同定結果をプラント挙動解析の初期条件として事象発生後の時間経過と共に変化するプラントのプロセス状態を予測するため、複数の事象候補から実際に発生している事象を同定することが可能になり、かつ、この予測した結果とセンサ信号の時刻を同期させて比較して類似度を評価してセンサの健全性を判定するために、センサの健全性の判定確度を一層高めることが可能なる。
 さらに、図1及び図6のプラント事故時運転支援システム20は、プラント挙動解析装置3、事象同定装置4、4a、センサ健全性判定装置8、8aの出力結果を表示装置等に表示する。出力画面の例を図9に示す。画面には発生した事故事象、各センサの健全性判定結果、プロセス進展予測結果を表示する。また、プラント事故時運転支援システム20は、中央制御室に設置され、中央制御盤や大型表示盤上の画面に上記結果を表示させて、プラントの事故の状態を運転員の共有情報として提供してもよい。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等により実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
 本発明によれば、プラント事故時において機器が故障してもこれに影響を受けることなくセンサの健全性を判定することが可能であり、その工業的価値は極めて高い。
1a センサ信号
1b 機器状態信号、警報信号
3 プラント挙動解析装置
4、4a 事象同定装置
8、8a センサ健全判定装置 
20 プラント事故時運転支援システム

Claims (6)

  1.  プラントの状態を同定する事象同定装置、少なくとも事象同定結果をプラント挙動解析の初期条件として事象発生後のプロセス状態の進展を予測するプラント挙動解析装置、該プラント挙動解析装置の出力であるプロセス状態の進展を予測した結果とセンサ信号とを比較してセンサの健全性を判定するセンサ健全性判定装置を備えることを特徴とするプラント事故時運転支援システム。
  2.  プラントの状態を同定する事象同定装置、少なくとも事象同定結果をプラント挙動解析の初期条件として事象発生後のプロセス状態の進展を予測するプラント挙動解析装置、該プラント挙動解析装置の出力であるプロセス状態の進展を予測した結果とセンサ信号の時刻を同期させて比較してセンサの健全性を判定するセンサ健全性判定装置を備えることを特徴とするプラント事故時運転支援システム。
  3.  センサ信号、機器状態信号、警報信号と事象データベースのデータとの類似度を求めて発生事象を同定する事象同定装置、少なくとも事象同定結果をプラント挙動解析の初期条件として事象発生後の時間経過と共に変化するプラントのプロセス状態を予測するプラント挙動解析装置、事象発生後のプロセス状態を予測した結果とセンサ信号の時刻を同期させて比較して類似度を評価してセンサの健全性を判定するセンサ健全性判定装置を備えることを特徴とするプラント事故時運転支援システム。
  4.  請求項1又は2に記載の前記事象同定装置は、少なくとも機器状態信号、警報信号を用いてプラント状態を同定することを特徴とするプラント事故時運転支援システム。
  5.  請求項1から3に記載の前記プラント挙動解析装置は、安全系の機器の自動起動条件を具備し、プロセス状態を示すセンサ信号が該自動起動条件を超えた場合に少なくとも安全系の機器モデルを起動してプラント挙動を解析する機能を備えることを特徴とするプラント事故時運転支援システム。
  6.  プラントの状態を同定し、少なくとも事象同定結果をプラント挙動解析の初期条件として事象発生後のプロセス状態の進展を予測し、該プラント挙動解析装置の出力であるプロセス状態の進展を予測することを特徴とするプラント事故時運転支援方法。
PCT/JP2013/074455 2013-09-11 2013-09-11 プラント事故時運転支援システム及びプラント事故時運転支援方法 WO2015037066A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/916,535 US20160195872A1 (en) 2013-09-11 2013-09-11 System for Assisting Operation at the Time of Plant Accident and Method for Assisting Operation at the Time of Plant Accident
JP2015536322A JPWO2015037066A1 (ja) 2013-09-11 2013-09-11 プラント事故時運転支援システム及びプラント事故時運転支援方法
GB1603644.4A GB2536567A (en) 2013-09-11 2013-09-11 System for supporting operation during plant accidents and method for supporting operation during plant accidents
PCT/JP2013/074455 WO2015037066A1 (ja) 2013-09-11 2013-09-11 プラント事故時運転支援システム及びプラント事故時運転支援方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074455 WO2015037066A1 (ja) 2013-09-11 2013-09-11 プラント事故時運転支援システム及びプラント事故時運転支援方法

Publications (1)

Publication Number Publication Date
WO2015037066A1 true WO2015037066A1 (ja) 2015-03-19

Family

ID=52665208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074455 WO2015037066A1 (ja) 2013-09-11 2013-09-11 プラント事故時運転支援システム及びプラント事故時運転支援方法

Country Status (4)

Country Link
US (1) US20160195872A1 (ja)
JP (1) JPWO2015037066A1 (ja)
GB (1) GB2536567A (ja)
WO (1) WO2015037066A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056006A (ja) * 2019-09-26 2021-04-08 株式会社東芝 原子炉計測システム、原子炉計測システムの健全性確認方法
JP2021124360A (ja) * 2020-02-04 2021-08-30 株式会社東芝 原子炉水位測定システムおよび原子炉水位測定方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10222791B2 (en) * 2014-04-04 2019-03-05 Hitachi, Ltd. Operation assistance apparatus at time of accident in plant
JP7294927B2 (ja) * 2019-07-23 2023-06-20 ファナック株式会社 相違点抽出装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206008A (ja) * 1985-03-11 1986-09-12 Mitsubishi Heavy Ind Ltd プラント異常と検出器異常との識別装置
JPH0221307A (ja) * 1988-07-09 1990-01-24 Hitachi Ltd プラント診断装置
JPH06222191A (ja) * 1993-01-28 1994-08-12 Mitsubishi Electric Corp プラント状態予測運転方法
JPH11161327A (ja) * 1997-11-28 1999-06-18 Mitsubishi Chemical Corp プロセスの異常診断方法及び装置
JP2002023845A (ja) * 2000-07-13 2002-01-25 Hitachi Ltd 機器の遠隔診断システム
JP2002099319A (ja) * 2000-09-21 2002-04-05 Toshiba Corp プラント診断装置
JP2003108224A (ja) * 2001-09-28 2003-04-11 Toshiba Corp プラント運転異常検出方法、プログラム及び装置
JP2011059873A (ja) * 2009-09-08 2011-03-24 Mitsubishi Electric Corp 監視装置、監視方法および監視プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288788A (ja) * 1996-04-19 1997-11-04 Toshiba Corp プラント監視警報装置
US6594620B1 (en) * 1998-08-17 2003-07-15 Aspen Technology, Inc. Sensor validation apparatus and method
US6643801B1 (en) * 1999-10-28 2003-11-04 General Electric Company Method and system for estimating time of occurrence of machine-disabling failures
US20140336791A1 (en) * 2013-05-09 2014-11-13 Rockwell Automation Technologies, Inc. Predictive maintenance for industrial products using big data

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206008A (ja) * 1985-03-11 1986-09-12 Mitsubishi Heavy Ind Ltd プラント異常と検出器異常との識別装置
JPH0221307A (ja) * 1988-07-09 1990-01-24 Hitachi Ltd プラント診断装置
JPH06222191A (ja) * 1993-01-28 1994-08-12 Mitsubishi Electric Corp プラント状態予測運転方法
JPH11161327A (ja) * 1997-11-28 1999-06-18 Mitsubishi Chemical Corp プロセスの異常診断方法及び装置
JP2002023845A (ja) * 2000-07-13 2002-01-25 Hitachi Ltd 機器の遠隔診断システム
JP2002099319A (ja) * 2000-09-21 2002-04-05 Toshiba Corp プラント診断装置
JP2003108224A (ja) * 2001-09-28 2003-04-11 Toshiba Corp プラント運転異常検出方法、プログラム及び装置
JP2011059873A (ja) * 2009-09-08 2011-03-24 Mitsubishi Electric Corp 監視装置、監視方法および監視プログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056006A (ja) * 2019-09-26 2021-04-08 株式会社東芝 原子炉計測システム、原子炉計測システムの健全性確認方法
JP7242493B2 (ja) 2019-09-26 2023-03-20 株式会社東芝 原子炉の計測システム
JP2021124360A (ja) * 2020-02-04 2021-08-30 株式会社東芝 原子炉水位測定システムおよび原子炉水位測定方法
JP7237869B2 (ja) 2020-02-04 2023-03-13 株式会社東芝 原子炉水位測定システムおよび原子炉水位測定方法

Also Published As

Publication number Publication date
US20160195872A1 (en) 2016-07-07
GB201603644D0 (en) 2016-04-13
JPWO2015037066A1 (ja) 2017-03-02
GB2536567A (en) 2016-09-21

Similar Documents

Publication Publication Date Title
KR101065767B1 (ko) 성능저하 및 고장원인 조기 진단방법
KR101825809B1 (ko) 플랜트 이상 감지 시스템 및 방법
EP3055747B1 (en) Correlation and annotation of time series data sequences to extracted or existing discrete data
EP3055746B1 (en) Correlation and annotation of time series data sequences to extracted or existing discrete data
JP6781594B2 (ja) プラント監視装置及びプラント監視方法
KR102102346B1 (ko) 함정설비의 상태기반 정비지원 시스템 및 방법
WO2015037066A1 (ja) プラント事故時運転支援システム及びプラント事故時運転支援方法
KR20210010194A (ko) 딥러닝 기반의 화력 발전소 재과열기 튜브의 누설 감지 방법 및 이를 수행하는 장치
Zhang et al. Aero-engine condition monitoring based on support vector machine
KR20110118023A (ko) 성능저하 및 고장원인 조기 진단을 위한 알고리즘 분석모델 제작방법
JP2011107760A (ja) プラント異常検出装置
CN112506718A (zh) 一种故障冗余机制的安全芯片处理器及处理方法
US11665193B2 (en) Method for managing plant, plant design device, and plant management device
JP2018205992A (ja) 機器診断システム
JP6259691B2 (ja) プラント事故時運転支援システム
JP2017091485A (ja) 監視支援装置、監視支援方法、及びプログラム
WO2015151267A1 (ja) プラント事故時運転支援装置
JP4607702B2 (ja) プラント運転支援装置およびプラント運転支援方法
KR20230102431A (ko) 인공지능 기반의 오일가스 플랜트 설비 고장 예측 및 진단시스템
Jharko et al. Some aspects of intelligent human-operators decision support systems for NPP
WO2015040683A1 (ja) センサ健全性判定方法およびセンサ健全性判定装置
RU2777950C1 (ru) Обнаружение нештатных ситуаций для прогнозного технического обслуживания и определения конечных результатов и технологических процессов на основании качества данных
Suzuki et al. An Online Anomaly Detection System Supporting Batch-Process Operator Decision-Making
Ashrafian et al. Using of supervisory control theory in emergency shout down control system of an off-shore gas platform
Munesawa et al. Development of fault diagnosis system using principal component analysis for intelligent operation support system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536322

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201603644

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130911

WWE Wipo information: entry into national phase

Ref document number: 14916535

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893566

Country of ref document: EP

Kind code of ref document: A1

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: GB