WO2015036762A1 - Synthèse de nanoparticules de métal-oxyde-semi-conducteur à partir d'un composé agrégat moléculaire - Google Patents
Synthèse de nanoparticules de métal-oxyde-semi-conducteur à partir d'un composé agrégat moléculaire Download PDFInfo
- Publication number
- WO2015036762A1 WO2015036762A1 PCT/GB2014/052755 GB2014052755W WO2015036762A1 WO 2015036762 A1 WO2015036762 A1 WO 2015036762A1 GB 2014052755 W GB2014052755 W GB 2014052755W WO 2015036762 A1 WO2015036762 A1 WO 2015036762A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molecular cluster
- metal oxide
- recited
- nanoparticle
- nanoparticles
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 147
- 150000001875 compounds Chemical class 0.000 title claims abstract description 90
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 59
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 57
- 238000003786 synthesis reaction Methods 0.000 title description 27
- 230000015572 biosynthetic process Effects 0.000 title description 26
- 239000004065 semiconductor Substances 0.000 title description 9
- 238000000034 method Methods 0.000 claims abstract description 59
- 239000002243 precursor Substances 0.000 claims abstract description 45
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 42
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 31
- 239000001301 oxygen Substances 0.000 claims abstract description 31
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 43
- 239000003795 chemical substances by application Substances 0.000 claims description 28
- 239000002096 quantum dot Substances 0.000 claims description 23
- 230000003213 activating effect Effects 0.000 claims description 10
- 238000011065 in-situ storage Methods 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 4
- 238000010899 nucleation Methods 0.000 abstract description 11
- 230000006911 nucleation Effects 0.000 abstract description 6
- 239000000243 solution Substances 0.000 description 45
- 239000000463 material Substances 0.000 description 38
- 239000002245 particle Substances 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 26
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 22
- -1 cadmium chalcogenide Chemical class 0.000 description 21
- 239000011701 zinc Substances 0.000 description 21
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 18
- 230000000737 periodic effect Effects 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- 239000011162 core material Substances 0.000 description 15
- 239000011669 selenium Substances 0.000 description 15
- 229910052725 zinc Inorganic materials 0.000 description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 10
- 239000011257 shell material Substances 0.000 description 9
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000005424 photoluminescence Methods 0.000 description 5
- 229910052711 selenium Inorganic materials 0.000 description 5
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 5
- DJWUNCQRNNEAKC-UHFFFAOYSA-L zinc acetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O DJWUNCQRNNEAKC-UHFFFAOYSA-L 0.000 description 5
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 229910052793 cadmium Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 4
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 4
- 238000006862 quantum yield reaction Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 229910052714 tellurium Inorganic materials 0.000 description 4
- 238000004627 transmission electron microscopy Methods 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical group C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- 239000002879 Lewis base Substances 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 241001455273 Tetrapoda Species 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 150000007527 lewis bases Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000004668 long chain fatty acids Chemical class 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 150000003003 phosphines Chemical class 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 150000003222 pyridines Chemical class 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 230000000475 sunscreen effect Effects 0.000 description 2
- 239000000516 sunscreening agent Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- 150000003577 thiophenes Chemical class 0.000 description 2
- RXJKFRMDXUJTEX-UHFFFAOYSA-N triethylphosphine Chemical compound CCP(CC)CC RXJKFRMDXUJTEX-UHFFFAOYSA-N 0.000 description 2
- 239000004246 zinc acetate Substances 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- PZZOBYAGIHBRPI-UHFFFAOYSA-N (cinnamylideneamino)urea Chemical compound NC(=O)NN=CC=CC1=CC=CC=C1 PZZOBYAGIHBRPI-UHFFFAOYSA-N 0.000 description 1
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 description 1
- GVZJRBAUSGYWJI-UHFFFAOYSA-N 2,5-bis(3-dodecylthiophen-2-yl)thiophene Chemical compound C1=CSC(C=2SC(=CC=2)C2=C(C=CS2)CCCCCCCCCCCC)=C1CCCCCCCCCCCC GVZJRBAUSGYWJI-UHFFFAOYSA-N 0.000 description 1
- 241000783433 Achillea wilhelmsii Species 0.000 description 1
- 229910003373 AgInS2 Inorganic materials 0.000 description 1
- 229910017115 AlSb Inorganic materials 0.000 description 1
- 229910004813 CaTe Inorganic materials 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910005228 Ga2S3 Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910004262 HgTe Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910013724 M(OH)2 Inorganic materials 0.000 description 1
- 241001508691 Martes zibellina Species 0.000 description 1
- 229910017680 MgTe Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 230000010748 Photoabsorption Effects 0.000 description 1
- 229910005642 SnTe Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910004411 SrTe Inorganic materials 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910007379 Zn3N2 Inorganic materials 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- AKGUXECGGCUDCV-UXBLZVDNSA-N [(e)-benzylideneamino]urea Chemical compound NC(=O)N\N=C\C1=CC=CC=C1 AKGUXECGGCUDCV-UXBLZVDNSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 238000011021 bench scale process Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000005049 combustion synthesis Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XNXVOSBNFZWHBV-UHFFFAOYSA-N hydron;o-methylhydroxylamine;chloride Chemical compound Cl.CON XNXVOSBNFZWHBV-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 1
- 229910021507 mercury(II) hydroxide Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000004704 methoxides Chemical class 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000004621 scanning probe microscopy Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 description 1
- ZGNPLWZYVAFUNZ-UHFFFAOYSA-N tert-butylphosphane Chemical compound CC(C)(C)P ZGNPLWZYVAFUNZ-UHFFFAOYSA-N 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- 238000001149 thermolysis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G11/00—Compounds of cadmium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G13/00—Compounds of mercury
- C01G13/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/54—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02601—Nanoparticles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/26—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/84—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Definitions
- the method relates to the synthesis of metal oxide quantum dots.
- the method relates to the synthesis of Group IIB oxide quantum dots using a II- VI cluster compound.
- Metal oxides semiconductors are of increasing technological interest in the electronics industry, for example, for use in field effect transistors (FETs) and transparent conducting oxides (TCOs).
- FETs field effect transistors
- TCOs transparent conducting oxides
- Group IIB oxides find use in laser diodes, as transparent conducting oxides, e.g. in photodiodes, photovoltaic cells, phototransistors, anti-reflective coatings, and in batteries.
- Quantum dots are luminescent nanoparticles of semiconductor material, with diameters typically in the range of 1 to 20 nm. Their photo-absorption and -luminescence can be tuned by manipulating the particle size.
- the unique optical and electronic properties of QDs originate from quantum confinement effects; as the QD diameter decreases the electron and hole wavefunctions become quantum confined, giving rise to discrete energy levels similar to those observed in atoms or molecules, resulting in an increase in the semiconductor band gap with decreasing QD diameter.
- QD materials such as ZnO can become optically transparent, offering advantages for certain applications.
- ZnO QDs may offer the same level of UV absorption as larger ZnO nanoparticles, but without leaving a white residue on the skin.
- the high absorption coefficient of QDs enables strong absorption from a tiny amount of material.
- Omata et al. described the synthesis of 3 - 7 nm ZnO QDs via a combined hydrolysis and successive dehydration condensation reaction between zinc alkoxide and benzylamine.
- the method produced small, monodisperse nanoparticles with tunable absorption and emission (depending on the reaction temperature), it could only be conducted on a milligram scale.
- Single-source precursor (SSP) nanoparticle synthesis involves the thermal decomposition of a precursor containing ions of the species to be incorporated into the nanoparticle.
- SSPs have been used to synthesize metal oxide nanoparticles.
- ZnO metal oxide nanoparticles.
- SSP methods typically produce particles with dimensions beyond the QD regime.
- the majority of prior art methods have not used SSPs to form ZnO in colloidal solutions, so the nanoparticles are often uncapped and thus cannot easily be dispersed in solution for ease of processability.
- nanoparticles were not isolated from solution and were found to grow and aggregate upon the further application of heat.
- 2 - 10 nm ZnO nanoparticles have been formed on the surface of multi-wall carbon nanotubes, from the decomposition of a zinc oximato complex [2-(methoxyimino)propanato]zinc(II), at 150°C, [J. Khanderi, R.C. Hoffmann, A. Gurlo and J.J. Schneider, . Mater. Chem., 2009, 19, 5039].
- a zinc oximato complex [2-(methoxyimino)propanato]zinc(II)
- CdO is an n-type semiconductor, finding use in optoelectronic devices, phosphors, pigments, as a catalyst and in battery electrodes.
- 35 nm pseudo-spherical CdO nanoparticles have been fabricated by a photosynthetic route, involving the incubation of aqueous CdCl 2 solution in the presence of a plant ⁇ Achillea wilhelmsii) extract.
- the first involved a solubility difference method to convert Mg(OH) 2 , in the presence of HgCl 2 and oleic acid, to less soluble Hg(OH) 2 , which decomposed to form 3.0 - 7.4 nm HgO nanoparticles under the reaction conditions.
- the second method involved the thermolysis of Hg(DDTT) 2 in a furnace to yield 2.4 - 4.8 nm particles. Though the former method generated capped nanoparticles, the size distribution was relatively large, which leads to poor uniformity in the optical properties of the particles. In the latter example, the particles were uncapped and would thus be expected to have poor solubility properties.
- the molecular cluster compound may be prefabricated.
- the molecular cluster compound may be generated in situ.
- the cluster compound may contain (i) ions of both the Group IIB metal and oxygen to be incorporated into the growing nanoparticles, (ii) ions of the Group IIB metal or oxygen, but not both, or (iii) neither ions of oxygen nor the Group IIB metal.
- the described method may be used to synthesize ZnO, CdO and HgO nanoparticles, including doped and alloyed species thereof.
- one or more precursors containing a Group IIB metal and oxygen may be added to the colloidal reaction solution.
- the colloidal reaction solution may include a Lewis base coordinating solvent, or a non-coordinating solvent in conjunction with a ligand to act as a capping agent.
- an activating agent may be added to the colloidal reaction solution.
- the colloidal reaction solution is mixed at a first temperature, then heated to a second temperature, or range of temperatures, to initiate nanoparticle growth. The reaction solution is then maintained at elevated temperature to effect nanoparticle growth.
- the resulting nanoparticles feature a metal oxide semiconductor layer disposed upon the molecular cluster compound.
- the nanoparticle shape is not restricted and may be a sphere, rod, disc, tetrapod, star or bullet, with a diameter in the range 1 - 100 nm.
- the nanoparticles are quantum dots (QDs), with diameters in the range 1 - 20 nm, for example, 1 - 10 nm.
- Figure 1 shows the UV-visible absorption and photoluminescence (PL) spectra of ZnO nanoparticles, synthesized in HDA in the presence of a zinc oximato cluster (Example 1).
- Figure 2 shows a transmission electron microscopy (TEM) image of ZnO nanoparticles, synthesized in HDA in the presence of a zinc oximato cluster (Example 1), revealing pseudo- spherical particles with diameters ⁇ 10 nm, consistent with nanoparticles in the QD regime.
- TEM transmission electron microscopy
- Figure 3 shows the UV-visible absorption spectrum of ZnO nanoparticles, synthesized in HDA/TOPO, using zinc(II) acetate and octanol precursors, in the presence of a zinc oximato cluster (Example 2).
- Figure 4 shows the UV-visible absorption spectrum of ZnO nanoparticles, synthesized in HDA/TOPO, using zinc(II) acetate and octanol precursors, in the presence of a zinc oximato cluster (Example 3).
- Figure 5 shows the X-ray diffraction (XRD) pattern of ZnO nanoparticles, synthesized in HDA/TOPO, using zinc(II) acetate and octanol precursors, in the presence of a zinc oximato cluster (Example 3), consistent with zincite phase ZnO. N.B.
- the low angle (2 ⁇ ⁇ 30°) reflections correspond to the capping agent.
- Figure 6 shows the UV- visible absorption spectrum of ZnO nanoparticles, synthesized in HDA/TOPO in the presence of a zinc oximato cluster (Example 4).
- the method described herein relates to the synthesis of Group IIB metal oxide nanoparticles, grown in a colloidal reaction solution in the presence of a II- VI molecular cluster compound, which acts as a seed.
- a molecular cluster should be understood to mean three or more metal atoms and their associated ligands, having a sufficiently well-defined chemical structure, such that all molecules of the cluster compound possess the same relative molecular formula.
- the molecular clusters are identical to one another and can be represented by a molecular formula.
- the molecular cluster seeding method employs a precursor compound containing a first ion and a precursor compound containing a second ion, which react to form nanoparticles in the presence of a population of molecular cluster compounds.
- the molecular cluster compounds provide "seeds" or nucleation sites at which nanoparticle growth is initiated. As the molecular clusters are all identical (i.e., they all have the same molecular formula) the molecular cluster compounds provide a population of identical nucleation sites.
- the consistency of the nucleation sites result in a high degree of monodispersity of the resulting nanoparticles.
- the molecular cluster seeding method obviates the need for a high temperature nucleation step, as required in "hot-injection” techniques.
- the cluster acts as a template for nanoparticle growth.
- a key advantage of the molecular seeding method is that it can easily be scaled to produce commercial volumes of QDs, while maintaining a high degree of monodispersity and purity.
- the molecular seeding method described herein can be used to synthesize nanoparticles in the QD size regime (1 - 20 nm), displaying quantum confinement effects.
- the method described herein facilitates the production of solution proces sable Group IIB oxide nanoparticles suitable for electronic device applications, both relatively cheaply and on a large scale.
- the metal oxide nanoparticles prepared as described herein have a metal oxide crystalline core disposed upon the molecular cluster compound.
- the molecular cluster compound and the resultant nanoparticles have compatible crystallographic phases, to permit the growth of said core nanoparticle material on said molecular cluster.
- the molecular cluster compound is prefabricated, prior to its addition to the reaction solution.
- the molecular cluster compound is generated in situ, prior to the addition of precursors used to effect particle growth.
- the conversion of the precursor(s) to the nanoparticle material can be conducted in any suitable solvent.
- the temperature of the solvent must be sufficiently high to ensure satisfactory dissolution and mixing of the cluster compound (it is desirable, but not necessary that the present compounds are fully dissolved), but not so high as to disrupt the integrity of the cluster compound molecules.
- the temperature of the solution thus formed is raised to a temperature, or range of temperatures, which is/are sufficiently high to initiate nanoparticle growth. As the temperature is increased, further quantities of precursor may be added to the reaction in a dropwise manner, or as a solid or gas. The solution can then be maintained at this temperature or within this temperature range for as long as required to form nanoparticles possessing the desired properties.
- a wide range of appropriate solvents is available.
- the particular solvent used is usually at least partly dependent upon the nature of the reacting species, i.e. nanoparticle precursor(s) and/or cluster compound, and/or the type of nanoparticles that are to be formed.
- Typical solvents include Lewis base-type coordinating solvents, such as a phosphine, e.g. trioctylphosphine (TOP), a phosphine oxide, e.g. trioctylophosphine oxide (TOPO), an amine, e.g. hexadecylamine (HDA), or a thiol, e.g.
- octanethiol or non-coordinating organic solvents, e.g. alkanes and alkenes, polyelectrolytes such as poly(acrylic acid), polyalylamines, or diethylene glycol. If a non-coordinating solvent is used then the reaction will usually proceed in the presence of a further coordinating agent to act as a "capping agent".
- non-coordinating organic solvents e.g. alkanes and alkenes, polyelectrolytes such as poly(acrylic acid), polyalylamines, or diethylene glycol.
- organically-capped colloidal QD cores generally display a low photoluminescence quantum yield (QY), due to exciton recombination via surface defects and dangling bonds.
- QY photoluminescence quantum yield
- Modification of the structural and electronic architecture of the QDs, while maintaining control of the size-tunable band gap, can be achieved via the epitaxial growth of one or more "shell" layers of different band gap semiconductor material(s) on the nanoparticle surface.
- a core/shell architecture is achieved by the growth of a wider band gap material on the core surface, e.g. CdO/ZnO. Shelling serves to eliminate surface defects and dangling bonds to significantly improve the QY and enhance stability by suppressing interactions between charge carriers and the surrounding environment.
- shelling layers as in the core/multishell structure, e.g. CdO/ZnSe/ZnO, a quantum dot-quantum well architecture, e.g. ZnO/CdO/ZnO, or a core/compositionally graded shell structure, e.g. CdO/Cdi_ x Zn x Sei_ y O y .
- QD synthesis may proceed in the presence of an activating agent to lower the decomposition temperature of the molecular cluster.
- Suitable activating agents include, but are not restricted to, alcohols, such as octanol, and amines, such as HDA.
- particle growth can be monitored by taking aliquots from the reaction solution and measuring the UV- visible absorption and/or PL spectra.
- the shape of the nanoparticles may consist of a sphere, rod, disc, tetrapod, star or bullet, but is not restricted to these.
- the nanoparticle shape can be controlled via any means known to one skilled in the art, such as by modifying the reaction ligands and/or processing conditions.
- the method describes the synthesis of Group IIB metal oxide nanoparticles: ZnO, CdO and HgO, including doped species and alloys thereof.
- ZnO nanoparticles can be grown in the presence of a cluster compound containing zinc and oxygen, such as diaquabis[2-(methoximino)propanato]zinc(II), [Zn(OC(0)C(Me)N(OMe)) 2 ]-2H 2 0.
- a cluster compound containing zinc and oxygen such as diaquabis[2-(methoximino)propanato]zinc(II), [Zn(OC(0)C(Me)N(OMe)) 2 ]-2H 2 0.
- CdO nanoparticles can be grown in the presence of a cluster compound containing cadmium and sulphur, such as [Et 3 NH]4[Cd 1 oS4(SPh) 16 ].
- II ⁇ M 1 that the M contained within the molecular cluster is not the same M as contained in the oxide MO.
- CdO nanoparticles can be grown in the presence of a cluster compound containing zinc and oxygen, such as diaquabis[2-(methoximino)propanato]zinc(II), [Zn(OC(0)C(Me)N(OMe)) 2 ] ⁇ 2H 2 0.
- the metal oxide nanoparticles are grown in the presence of a II- VI cluster where II ⁇ M 1 and VI ⁇ O.
- HgO nanoparticles can be grown in the presence of a cluster compound containing cadmium and selenium, such as [Et 3 NH]4[Cd 1 oSe 4 (SPh) 1 6] .
- the metal oxide nanoparticles are grown in the presence of a II- VI cluster, as described in embodiments 1 - 4, where the cluster contains ions of more than one Group IIB metal and/or more than one chalcogen to form doped or alloyed nanoparticles. Examples include, but are not restricted to, Zni_ x Cd x O and ZnOi_ y S y .
- the metal oxide nanoparticles are grown in the presence of a II- VI cluster, as described in embodiments 1 - 4, and in the presence of additional metal ions to form doped metal oxide nanoparticles.
- the dopant metal may be from Group IIB of the periodic table, but may also be from any other group.
- nanoparticle material include, but are not restricted to, ZnO:Al and CdO:In.
- one or more layers of semiconductor material may be grown epitaxially on the surface of the metal oxide nanoparticles to form a shell, to eliminate surface defects and dangling bonds in order to improve the fluorescence QY and enhance stability by suppressing interactions between charge carriers and the surrounding environment.
- the shell material(s) will, in most cases, be of a similar lattice type to the core material, i.e. each shell material will have close lattice match to the core material so that it can be epitaxially grown on to the core, but the shell materials are not necessarily restricted to this compatibility.
- the material(s) used for any shell(s) grown onto the core will, in most cases, have a wider band gap than the core material, but is/are not necessarily restricted to materials of this compatibility.
- Suitable shell materials include, but are not restricted to:
- Nanoparticle material includes, but is not restricted to, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe.
- IIB-VIB (12-16) material consisting of a first element from group 12 of the periodic table and a second element from group 16 of the periodic table, and also including ternary, quaternary and doped materials thereof.
- Nanoparticle material includes, but is not restricted to, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe.
- II- V material consisting of a first element from group 12 of the periodic table and a second element from group 15 of the periodic table, and also including ternary, quaternary and doped materials thereof.
- Nanoparticle material includes, but is not restricted to, Zn 3 N 2 , Zn 3 P 2 , Zn 3 As 2 , Cd 3 N 2 , Cd 3 P 2 , Cd 3 As 2 .
- III-V material consisting of a first element from group 13 of the periodic table and a second element from group 15 of the periodic table, and also including ternary, quaternary and doped materials thereof.
- Nanoparticle material includes, but is not restricted to, BN, BP, A1N, A1P, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb.
- III- IV material consisting of a first element from group 13 of the periodic table and a second element from group 14 of the periodic table, and also including ternary, quaternary and doped materials thereof.
- Nanoparticle material includes, but is not restricted to, B 4 C, A1 4 C 3 ,
- III- VI material consisting of a first element from group 13 of the periodic table and a second element from group 16 of the periodic table, and also including ternary, quaternary and doped materials thereof.
- Nanoparticle material includes, but is not restricted to, AI 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 S 3 , In 2 Se 3 , In 2 Te 3 .
- IV- VI material consisting of a first element from group 14 of the periodic table and a second element from group 16 of the periodic table, and also including ternary, quaternary and doped materials thereof.
- Nanoparticle material includes, but is not restricted to, PbS, PbSe, PbTe, SnS, SnSe, SnTe.
- Nanoparticle material consisting of a first element from the d-block of the periodic table and a second element from group 16 of the periodic table, and also including ternary, quaternary and doped materials thereof.
- Nanoparticle material includes, but is not restricted to, NiS, CrS, CuInS 2 , CuInSe 2 , AgInS 2 .
- the outermost surface of the nanoparticles is capped with a layer of organic ligands, known as a "capping agent".
- the capping agent passivates the nanoparticle surface to eliminate surface defects and dangling bonds, and imparts solubility to thus facilitate solution processing of the nanoparticles.
- Such capping agents are typically Lewis bases, including mono- or multi-dentate ligands of the type phosphines (e.g. TOP, triphenolphosphine, i-butylphosphine), phosphine oxides (e.g. TOPO), alkyl phosphonic acids, alkylamines (e.g.
- HDA high-density polyethylene glycol
- octylamine arylamines
- pyridines e.g. pyridines
- thiols e.g. octanethiol
- a long chain fatty acid e.g. thiophenes
- other agents such as oleic acid and organic polymers that form protective sheaths around the nanoparticles.
- the method described herein is used to fabricate nanoparticles with a homogeneous shape and size distribution.
- the nanoparticle shape may consist of, but is not restricted to, a sphere, rod, disc, tetrapod, star or bullet.
- the nanoparticle morphology can be controlled using any means known to one skilled in the art, such as modification to the reaction conditions or ligand(s).
- the nanoparticle diameter (along its shortest axis) lies in the range 1 - 100 nm, more preferably 1 - 20 nm, most preferably 1 - 10 nm.
- a pre-fabricated cluster compound is mixed with a high boiling solvent.
- appropriate precursors are added to the solvent to form a molecular cluster in situ.
- a capping agent is added to the reaction solution.
- additional metal and oxide precursors are added, either in the form of separate precursors or as a single-source precursor.
- Any suitable molar ratio of the molecular cluster material to the metal and oxide precursor(s) may be employed. Preferably, the molar ratio lies in the range 1:0 (i.e. no metal and oxide precursor(s) to 1: 10,000, more preferably 1:0 to 1: 1,000, and most preferably 1:0 to 1:250.
- an activating agent is added to the reaction solution to lower the decomposition temperature of the cluster.
- the reagents are stirred at a first temperature that is sufficiently low that no particle growth will occur.
- the solution is then heated, at a steady rate, to a second temperature at which particle growth is initiated.
- further quantities of the metal and oxide precursors may be added to sustain particle growth and to inhibit particles from being consumed via Ostwald's ripening.
- the reaction is quenched by cooling the solution.
- the preparative procedure comprises the growth of Group IIB metal oxide nanoparticles in the presence of a II- VI molecular cluster compound.
- a II- VI molecular cluster compound examples include:
- the cluster compound contains the Group IIB metal (M) and oxygen (O) ions to be incorporated into the metal oxide (MO) nanoparticles.
- the cluster compound contains either Group IIB metal (M) or oxygen (O) ions to be incorporated into the metal oxide (MO) nanoparticles, but not both.
- the cluster compound contains neither the Group IIB metal (M) or oxygen (O) ions to be incorporated into the metal oxide (MO) nanoparticles.
- the II- VI cluster contains oxygen.
- suitable cluster compounds include, but are not restricted to: oximato clusters, e.g. [Zn(OC(0)C(Me)N(OMe)) 2 ] ⁇ 2H 2 0.
- the II- VI cluster contains sulfur.
- the II- VI cluster contains selenium.
- the II- VI cluster contains tellurium.
- the Group IIB metal (M) precursor may include, but is not restricted to, an organometallic compound, an inorganic salt, a coordination compound, or an elemental source.
- the metal precursor also acts as a source of oxygen (e.g. when the metal precursor is a fatty acid salt such as a metal stearate), no additional oxygen-containing precursor may be required.
- the metal precursor may be added in conjunction with an oxygen source that may include, but is not restricted to, a peroxide, a base, an inorganic salt, a coordination compound, an alcohol, or elemental oxygen. Specific examples include, but are not restricted to: peroxides, e.g. H 2 0 2 ; bases such as a hydroxide, e.g. NaOH; inorganic salts such as Na 2 0; coordination compounds such as N0 2 ; alcohols such as primary, secondary or tertiary alcohols.
- Dopant Source(s) [0071] Where the nanoparticles comprise a doped of alloyed Group IIB metal oxide-containing material, one or more dopant sources can be provided by any appropriate compound known to one skilled in the art, including one or more molecular cluster compounds. The dopant source(s) may be added to the reaction solution in the solid, liquid and/or gaseous phases.
- Suitable reaction solvents include, but are not restricted to, Lewis base-type coordinating solvents, such as a phosphine (e.g. TOP), a phosphine oxide (e.g. TOPO), or an amine (e.g. HDA), or non-coordinating organic solvents, such as an alkane, an alkene (e.g. 1-octadecene), or heat transfer fluid (e.g. Therminol® 66).
- Lewis base-type coordinating solvents such as a phosphine (e.g. TOP), a phosphine oxide (e.g. TOPO), or an amine (e.g. HDA)
- non-coordinating organic solvents such as an alkane, an alkene (e.g. 1-octadecene), or heat transfer fluid (e.g. Therminol® 66).
- a capping agent When nanoparticle growth is conducted in a non-coordinating solvent, a capping agent must be added to the reaction solution.
- Such capping agents are typically Lewis bases, including mono- or multi-dentate ligands of the type phosphines (e.g. TOP, triphenolphosphine, t- butylphosphine), phosphine oxides (e.g. TOPO), alkyl phosphonic acids, alkylamines (e.g. HDA, octylamine), arylamines, pyridines, thiols (e.g. octanethiol), a long chain fatty acid, and thiophenes, but a wide range of other agents are available, such as oleic acid and organic polymers that form protective sheaths around the nanoparticles.
- phosphines e.g. TOP, triphenolphosphine, t- butylphosphine
- the outermost layer (capping agent) of a QD can consist of a coordinated ligand that processes additional functional groups that can be used as chemical linkage to other inorganic, organic or biological material, whereby the functional group is pointing away from the QD surface and is available to bond/react with other available molecules, such as, but not restricted to, primary and/or secondary amines, alcohols, carboxylic acids, azides, hydroxyl group, etc.
- the outermost layer (capping agent) can also consist of a coordinated ligand that processes a functional group that is polymerisable and can be used to form a polymer around the particle.
- the outermost layer can also consist of organic units that are directly bonded to the outermost inorganic layer and can also possess a functional group, not bonded to the surface of the particle, which can be used to form a polymer around the particle, or for further reactions.
- the QD synthesis is conducted in the presence of an activating agent to lower the decomposition temperature of the molecular cluster compound and thus promote nanoparticle growth at lower temperature.
- an activating agent known to one skilled in the art may be used including, but not restricted to, an alcohol, e.g. octanol, or an amine, e.g. HDA, octylamine, etc.
- the activating agent is HDA.
- a method of forming metal oxide nanoparticles comprising: reacting nanoparticle precursors comprising a metal and oxygen in in the presence of a population of molecular cluster compounds.
- the molecular cluster compounds and the metal oxide nanoparticles may share a crystallographic phase.
- the molecular cluster compounds may be fabricated in situ.
- the molecular cluster compounds may be II- VI molecular cluster compounds.
- Both the molecular cluster compounds and the metal oxide nanoparticle precursors may comprise identical Group IIB metals and oxygen.
- the molecular cluster compounds may not comprise oxygen.
- the molecular cluster compounds may not comprise a Group IIB metal identical to a metal of the nanoparticle precursors.
- the cluster compounds may be oximato clusters.
- the metal oxide nanoparticles may comprise a Group IIB metal.
- the metal oxide nanoparticles may comprise ZnO, CdO or HgO.
- the metal oxide nanoparticles may be doped or alloyed with atoms of the molecular cluster compounds.
- the metal oxide nanoparticles may be grown on the molecular cluster compounds.
- the metal oxide nanoparticle precursors may comprise a Group IIB metal and oxygen.
- the Group IIB metal and oxygen may be added as a single-source precursor.
- the reacting may comprise reacting the nanoparticle precursors in the presence of an activating agent.
- the metal oxide nanoparticles may be quantum dots.
- a second aspect of the present invention provides a nanoparticle comprising a metal oxide crystalline core disposed upon a molecular cluster compound.
- the molecular cluster compound and the metal oxide core may share a crystallographic phase.
- the molecular cluster compound may be II- VI molecular cluster compounds. Both the molecular cluster compound and the metal oxide crystalline core may comprise identical Group IIB metals and oxygen. The molecular cluster compound may not comprise oxygen. The molecular cluster compound may not comprise a Group IIB metal identical to a metal of the metal oxide crystalline core.
- Example 1 Synthesis of ZnO Nanoparticles in Hexadecylamine.
- HDA (10 g, 41 mmol) was degassed under vacuum at 120°C.
- Diaquabis[2-(methoxyimino)propanato]zinc(II) cluster (100 mg, 0.30 mmol) was added, dissolving immediately to form a clear solution.
- the temperature was increased to 150°C and held for 30 minutes.
- the temperature was increased to 200°C and held for 30 minutes, before cooling the solution to room temperature.
- UV a b s ⁇ 355 nm; PLmax 370 nm ( Figure 1).
- Transmission electron microscopy (TEM, Figure 2) imaging reveals pseudo-spherical particles with diameters ⁇ 10 nm, consistent with nanoparticles in the quantum dot regime.
- Example 2 Synthesis of ZnO Nanoparticles in Hexadecylamine and Trioctylphosphine Oxide, using Zinc Acetate and Octanol Precursors.
- HDA 7 g, 29 mmol
- TOPO 3 g, 7.8 mmol
- Diaquabis[2- (methoxyimino)propanato]zinc(II) cluster 100 mg, 0.30 mmol
- the temperature was decreased to 75 °C and the solution was annealed for 2 1 ⁇ 2 hours, before cooling to room temperature overnight.
- Example 3 Concentrated Synthesis of ZnO Nanoparticles in Hexadecylamine and Trioctylphosphine Oxide, using Zinc Acetate and Octanol Precursors.
- HDA 7 g, 29 mmol
- TOPO 3 g, 7.8 mmol
- diaquabis[2-(methoxyimino)propanato]zinc(II) cluster 200 mg, 0.60 mmol
- zinc(II) acetate 200 mg, 1.1 mmol
- Example 4 Synthesis of ZnO Nanoparticles in Hexadecylamine and Trioctylphosphine Oxide.
- HDA 7 g, 29 mmol
- TOPO 3 g, 7.8 mmol
- diaquabis[2- (methoxyimino)propanato]zinc(II) cluster was added and the solution was subsequently heated to 200°C in 20 minutes. The temperature was held for 40 minutes, before cooling the solution to 70°C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Luminescent Compositions (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14767069.9A EP3044287B1 (fr) | 2013-09-13 | 2014-09-11 | Synthèse de nanoparticules de métal-oxyde-semi-conducteur à partir d'un composé agrégat moléculaire |
JP2016542370A JP6313860B2 (ja) | 2013-09-13 | 2014-09-11 | 分子クラスタ化合物からの金属酸化物ナノ粒子の合成 |
CN201480060625.5A CN105705611B (zh) | 2013-09-13 | 2014-09-11 | 自分子簇化合物合成金属氧化物半导体纳米粒子 |
KR1020177029252A KR101883891B1 (ko) | 2013-09-13 | 2014-09-11 | 분자 클러스터 화합물로부터 금속 산화물 반도체 나노 입자의 합성 |
KR1020167009529A KR101788241B1 (ko) | 2013-09-13 | 2014-09-11 | 분자 클러스터 화합물로부터 금속 산화물 반도체 나노 입자의 합성 |
HK16108748.0A HK1220717A1 (zh) | 2013-09-13 | 2016-07-21 | 由分子簇合物合成的金屬氧化物半導體納米粒子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361877787P | 2013-09-13 | 2013-09-13 | |
US61/877,787 | 2013-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015036762A1 true WO2015036762A1 (fr) | 2015-03-19 |
Family
ID=51570761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2014/052755 WO2015036762A1 (fr) | 2013-09-13 | 2014-09-11 | Synthèse de nanoparticules de métal-oxyde-semi-conducteur à partir d'un composé agrégat moléculaire |
Country Status (8)
Country | Link |
---|---|
US (1) | US20150076494A1 (fr) |
EP (1) | EP3044287B1 (fr) |
JP (2) | JP6313860B2 (fr) |
KR (2) | KR101788241B1 (fr) |
CN (2) | CN105705611B (fr) |
HK (1) | HK1220717A1 (fr) |
TW (3) | TWI655156B (fr) |
WO (1) | WO2015036762A1 (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105271361A (zh) * | 2015-10-28 | 2016-01-27 | 中国科学院上海微系统与信息技术研究所 | 一种树枝状氧化锌纳米线阵列的制备方法 |
CN105271362A (zh) * | 2015-10-31 | 2016-01-27 | 合肥师范学院 | 一种具有花瓣效应的ZnO纳米结构的制备方法 |
US9780266B2 (en) | 2015-06-30 | 2017-10-03 | Cree, Inc. | Stabilized quantum dot structure and method of making a stabilized quantum dot structure |
US10347799B2 (en) | 2017-11-10 | 2019-07-09 | Cree, Inc. | Stabilized quantum dot composite and method of making a stabilized quantum dot composite |
WO2020154511A1 (fr) * | 2019-01-23 | 2020-07-30 | University Of Washington | Points quantiques de phosphure d'indium, grappes et procédés associés |
US10851298B2 (en) | 2018-08-30 | 2020-12-01 | Samsung Electronics Co., Ltd. | Electronic device including quantum dots |
US10978657B2 (en) | 2018-08-23 | 2021-04-13 | Samsung Electronics Co., Ltd. | Quantum dot device and quantum dots |
US11499098B2 (en) | 2019-08-29 | 2022-11-15 | Samsung Electronics Co., Ltd. | Quantum dots and device including the same |
US11917841B2 (en) | 2019-12-16 | 2024-02-27 | Samsung Electronics Co., Ltd. | Light-emitting device comprising organic salt bound to quantum dots and production method thereof |
US11925043B2 (en) | 2019-10-18 | 2024-03-05 | Samsung Electronics Co., Ltd. | Quantum dot light-emitting device and electronic device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9738799B2 (en) * | 2014-08-12 | 2017-08-22 | Purdue Research Foundation | Homogeneous precursor formation method and device thereof |
US9340461B1 (en) * | 2014-11-24 | 2016-05-17 | Ut-Battelle, Llc | Method of making controlled morphology metal-oxides |
CN106010524B (zh) * | 2016-05-24 | 2018-12-28 | 浙江大学 | Iii-v族量子点、其制备方法及其应用 |
TWI636120B (zh) * | 2017-08-04 | 2018-09-21 | 奇美實業股份有限公司 | 量子點的製造方法、發光材料、發光元件以及顯示裝置 |
CN111326661B (zh) * | 2018-12-13 | 2022-08-02 | 纳晶科技股份有限公司 | 掺杂氧化锌纳米晶及其制备方法、量子点发光器件及其制备方法 |
KR102718278B1 (ko) | 2019-10-24 | 2024-10-15 | 삼성전자주식회사 | 전계 발광 소자 및 이를 포함하는 표시 장치 |
KR20220003356A (ko) | 2020-07-01 | 2022-01-10 | 삼성전자주식회사 | 발광 소자 및 이를 포함하는 표시 장치 |
KR20220022517A (ko) * | 2020-08-18 | 2022-02-28 | 삼성디스플레이 주식회사 | 반도체 나노입자 및 이를 포함한 전자 장치 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080220593A1 (en) * | 2005-08-12 | 2008-09-11 | Nanoco Technologies Limited | Nanoparticles |
US20110068322A1 (en) * | 2009-09-23 | 2011-03-24 | Nanoco Technologies Limited | Semiconductor Nanoparticle-Based Materials |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1894799A (zh) | 2003-09-05 | 2007-01-10 | 点度量技术有限公司 | 具有纳米级外延过生长的量子点光电器件以及制造方法 |
US7588828B2 (en) * | 2004-04-30 | 2009-09-15 | Nanoco Technologies Limited | Preparation of nanoparticle materials |
GB0409877D0 (en) * | 2004-04-30 | 2004-06-09 | Univ Manchester | Preparation of nanoparticle materials |
TW200716698A (en) * | 2005-10-03 | 2007-05-01 | Kaneka Corp | Transparent polymer nanocomposites containing nanoparticles and method of making same |
GB0522027D0 (en) * | 2005-10-28 | 2005-12-07 | Nanoco Technologies Ltd | Controlled preparation of nanoparticle materials |
GB0714865D0 (en) * | 2007-07-31 | 2007-09-12 | Nanoco Technologies Ltd | Nanoparticles |
KR101813688B1 (ko) * | 2007-09-28 | 2017-12-29 | 나노코 테크놀로지스 리미티드 | 코어 쉘 나노입자들 및 이들의 준비 방법 |
JP5388099B2 (ja) * | 2007-12-28 | 2014-01-15 | 国立大学法人大阪大学 | コアシェル型量子ドット蛍光微粒子 |
US20120251450A1 (en) | 2011-04-04 | 2012-10-04 | Alex Punnoose | Nanoparticles that preferentially associate with and kill diseased cells for diagnostic and therapeutic applications |
-
2014
- 2014-09-11 CN CN201480060625.5A patent/CN105705611B/zh active Active
- 2014-09-11 KR KR1020167009529A patent/KR101788241B1/ko active IP Right Grant
- 2014-09-11 JP JP2016542370A patent/JP6313860B2/ja active Active
- 2014-09-11 WO PCT/GB2014/052755 patent/WO2015036762A1/fr active Application Filing
- 2014-09-11 US US14/483,870 patent/US20150076494A1/en not_active Abandoned
- 2014-09-11 CN CN201810555362.5A patent/CN108751248B/zh active Active
- 2014-09-11 EP EP14767069.9A patent/EP3044287B1/fr active Active
- 2014-09-11 KR KR1020177029252A patent/KR101883891B1/ko active IP Right Grant
- 2014-09-12 TW TW107115310A patent/TWI655156B/zh active
- 2014-09-12 TW TW103131643A patent/TWI557076B/zh active
- 2014-09-12 TW TW105127303A patent/TWI661993B/zh active
-
2016
- 2016-07-21 HK HK16108748.0A patent/HK1220717A1/zh unknown
-
2018
- 2018-03-23 JP JP2018055987A patent/JP6570688B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080220593A1 (en) * | 2005-08-12 | 2008-09-11 | Nanoco Technologies Limited | Nanoparticles |
US20110068322A1 (en) * | 2009-09-23 | 2011-03-24 | Nanoco Technologies Limited | Semiconductor Nanoparticle-Based Materials |
Non-Patent Citations (1)
Title |
---|
FABIEN GRASSET ET AL: "When "Metal Atom Clusters" Meet ZnO Nanocrystals: A ((n-C4H9)4N)2Mo6Br14@ZnO Hybrid", ADVANCED MATERIALS, vol. 20, no. 9, 5 May 2008 (2008-05-05), pages 1710 - 1715, XP055152121, ISSN: 0935-9648, DOI: 10.1002/adma.200701845 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9780266B2 (en) | 2015-06-30 | 2017-10-03 | Cree, Inc. | Stabilized quantum dot structure and method of making a stabilized quantum dot structure |
CN105271361A (zh) * | 2015-10-28 | 2016-01-27 | 中国科学院上海微系统与信息技术研究所 | 一种树枝状氧化锌纳米线阵列的制备方法 |
CN105271362A (zh) * | 2015-10-31 | 2016-01-27 | 合肥师范学院 | 一种具有花瓣效应的ZnO纳米结构的制备方法 |
US10879433B2 (en) | 2017-11-10 | 2020-12-29 | Cree, Inc. | Stabilized quantum dot composite and method of making a stabilized quantum dot composite |
US10347799B2 (en) | 2017-11-10 | 2019-07-09 | Cree, Inc. | Stabilized quantum dot composite and method of making a stabilized quantum dot composite |
US10978657B2 (en) | 2018-08-23 | 2021-04-13 | Samsung Electronics Co., Ltd. | Quantum dot device and quantum dots |
US11569468B2 (en) | 2018-08-23 | 2023-01-31 | Samsung Electronics Co., Ltd. | Quantum dot device and quantum dots |
US12041802B2 (en) | 2018-08-23 | 2024-07-16 | Samsung Electronics Co., Ltd. | Quantum dot device and quantum dots |
US10851298B2 (en) | 2018-08-30 | 2020-12-01 | Samsung Electronics Co., Ltd. | Electronic device including quantum dots |
US11060026B2 (en) | 2018-08-30 | 2021-07-13 | Samsung Electronics Co., Ltd. | Electronic device including quantum dots |
WO2020154511A1 (fr) * | 2019-01-23 | 2020-07-30 | University Of Washington | Points quantiques de phosphure d'indium, grappes et procédés associés |
US11499098B2 (en) | 2019-08-29 | 2022-11-15 | Samsung Electronics Co., Ltd. | Quantum dots and device including the same |
US11981851B2 (en) | 2019-08-29 | 2024-05-14 | Samsung Electronics Co., Ltd. | Quantum dots and device including the same |
US11925043B2 (en) | 2019-10-18 | 2024-03-05 | Samsung Electronics Co., Ltd. | Quantum dot light-emitting device and electronic device |
US11917841B2 (en) | 2019-12-16 | 2024-02-27 | Samsung Electronics Co., Ltd. | Light-emitting device comprising organic salt bound to quantum dots and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105705611A (zh) | 2016-06-22 |
HK1220717A1 (zh) | 2017-05-12 |
CN108751248A (zh) | 2018-11-06 |
KR101883891B1 (ko) | 2018-08-30 |
CN108751248B (zh) | 2021-02-26 |
TW201514101A (zh) | 2015-04-16 |
JP6570688B2 (ja) | 2019-09-04 |
JP2018135266A (ja) | 2018-08-30 |
TWI655156B (zh) | 2019-04-01 |
TW201827344A (zh) | 2018-08-01 |
KR20160055237A (ko) | 2016-05-17 |
KR101788241B1 (ko) | 2017-10-19 |
JP6313860B2 (ja) | 2018-04-18 |
CN105705611B (zh) | 2018-06-29 |
EP3044287B1 (fr) | 2018-09-12 |
TWI661993B (zh) | 2019-06-11 |
TW201641428A (zh) | 2016-12-01 |
KR20170117619A (ko) | 2017-10-23 |
US20150076494A1 (en) | 2015-03-19 |
TWI557076B (zh) | 2016-11-11 |
JP2016539908A (ja) | 2016-12-22 |
EP3044287A1 (fr) | 2016-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3044287B1 (fr) | Synthèse de nanoparticules de métal-oxyde-semi-conducteur à partir d'un composé agrégat moléculaire | |
EP2970763B1 (fr) | Points quantiques créés à l'aide de phosphine | |
JP6114369B2 (ja) | ナノ粒子 | |
KR101342684B1 (ko) | 나노입자의 제조 | |
TWI649266B (zh) | 分層過渡金屬二硫族化物奈米粒子之溶液相合成 | |
JP2018065738A (ja) | ナノ粒子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14767069 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016542370 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014767069 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014767069 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167009529 Country of ref document: KR Kind code of ref document: A |