WO2015035719A1 - 显示面板及其制造方法、显示装置 - Google Patents

显示面板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2015035719A1
WO2015035719A1 PCT/CN2013/089019 CN2013089019W WO2015035719A1 WO 2015035719 A1 WO2015035719 A1 WO 2015035719A1 CN 2013089019 W CN2013089019 W CN 2013089019W WO 2015035719 A1 WO2015035719 A1 WO 2015035719A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
display
optical functional
display panel
Prior art date
Application number
PCT/CN2013/089019
Other languages
English (en)
French (fr)
Inventor
杨栋芳
皇甫鲁江
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/381,048 priority Critical patent/US20150325814A1/en
Publication of WO2015035719A1 publication Critical patent/WO2015035719A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60

Definitions

  • Display panel manufacturing method thereof, and display device
  • Embodiments of the present invention relate to a display panel, a method of manufacturing the same, and a display device. Background technique
  • OLED Organic Light Emitting Diode
  • Contrast is one of the parameters for evaluating the display performance. The higher the contrast, the better the layering of the picture restored by the display device, the higher the sharpness of the image and the sharper the image.
  • FIG. 1 A typical structure of a conventional OLED display is as shown in FIG. 1, which includes: a substrate substrate 10 and a first electrode layer 11, an organic light-emitting layer 12, and a second electrode layer 13 which are sequentially disposed on the surface of the substrate.
  • the OLED display supplies current to the organic light-emitting layer 12 through the first electrode layer 11 and the second electrode layer 13, and carriers in the organic light-emitting layer are injected into the organic light-emitting material, and migrate, recombine, and attenuate in the organic light-emitting material to emit light. .
  • the first electrode layer 11 of the OLED display is usually made of a highly reflective metal that is opaque. Therefore, ambient light incident on the OLED display from the display side surface is reflected on the surfaces of the first electrode layer 11 and the substrate substrate 10. When the reflected light 20 of ambient light enters the human eye, it will interfere with the display image received by the human eye, thereby reducing the contrast of the display, affecting the display effect of the display, and reducing the quality of the product. Summary of the invention
  • Embodiments of the present invention provide a display panel, a manufacturing method thereof, and a display device, which can avoid the influence of ambient light on the display performance of the display, improve the contrast of the display device, and improve the display effect and product quality.
  • An embodiment of the present invention provides a display panel, including: a village substrate; An electroluminescent display structure on one side of the board, the electroluminescent display structure comprising a first electrode layer, a second electrode layer, and an organic light emitting layer between the first electrode layer and the second electrode layer
  • the first electrode layer is located on a side close to the substrate of the substrate; an optical functional layer for absorbing light on a side of the electroluminescent display structure; wherein the first electrode layer and the second electrode
  • the layers are all transparent electrode layers.
  • a further aspect of the present invention provides a display device including the display panel as described above.
  • a further aspect of the present invention provides a method of manufacturing a display panel, comprising: forming an optical functional layer for absorbing light on a surface of a substrate; and forming a first surface on the surface of the substrate on which the optical functional layer is formed An electrode layer, an organic light-emitting layer, and a second electrode layer; wherein the first electrode layer and the second electrode layer are both transparent electrode layers.
  • a display panel comprising: sequentially forming a first electrode layer, an organic light emitting layer, and a second electrode layer on a surface of a substrate; and forming a substrate of the second electrode layer
  • the surface forms an optical functional layer for absorbing light; the first electrode layer and the second electrode layer are both transparent electrode layers.
  • the display panel, the manufacturing method thereof and the display device provided by the embodiment of the invention can prevent the ambient light incident on the display device from being reflected by the display device into the human eye, causing interference to the display image received by the human eye, thereby causing display performance.
  • the problem of falling thus effectively improving the contrast of the display, improving the display effect and product quality.
  • FIG. 1 is a schematic structural view of a display panel provided by the prior art
  • FIG. 2 is a schematic structural diagram of a display panel according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of an organic thin film layer according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of two display panels according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of still another display panel according to an embodiment of the present invention.
  • Reference mark 02-electroluminescence display structure; 10-village substrate; 11-first electrode layer; 12-organic light-emitting layer; 121-organic light-emitting material; 122-hole layer; 1221-hole injection layer; Transport layer; 123-electron layer; 1231-electron transport layer; 1232-electron injection layer; 13-second electrode layer; 20-reflected light of ambient light; 21-optical functional layer; 22-optical coupling layer; Floor. detailed description
  • a display panel provided by an embodiment of the present invention includes a substrate substrate 10 and an electroluminescent display structure 02 on a side of the substrate substrate 10, and the electroluminescent display structure 02 includes a first electrode layer 11, The second electrode layer 13 and the organic light-emitting layer 12 between the first electrode layer 11 and the second electrode layer 13 are located on a side close to the substrate substrate 10.
  • the substrate substrate 10 can be made of an opaque material; when the substrate substrate 10 is made of a transparent material, the display panel can have a double-sided display function.
  • the organic light-emitting layer 12 includes an organic light-emitting material 121, a hole layer 122 between the organic light-emitting material 121 and the first electrode layer 11, and an electron layer between the organic light-emitting material 121 and the second electrode layer 13, respectively. 123.
  • the hole layer 122 further includes a hole injection layer 1221 located on the surface of the first electrode layer 11 and a hole transport layer 1222 located on the surface of the hole injection layer 1221; the electron layer includes an electron transport layer 1231 located on the surface of the organic light-emitting material 121 and An electron injection layer 1232 located on the surface of the electron transport layer 1231.
  • the display panel further includes an optical functional layer 21 for absorbing light on the side of the electroluminescent display structure 02.
  • the optical function layer 21 is transparent, which reduces the influence of ambient light on the display image received by the human eye by absorbing ambient light, thereby improving the contrast of the display.
  • the material for fabricating the optical functional layer 21 may be an organic material such as at least one of titanium bronze (CuPc), soccer olefin (C 60 ), TPCBI or soccer olefin (C 7 ), or an inorganic material such as silicon aluminum. At least one of an oxide (SiO-Al) and an alumina (Al 2 O x ⁇ 3 ).
  • the first electrode layer 11 and the second electrode layer 13 are both transparent electrode layers.
  • the embodiment provides a display panel including a village substrate and an electroluminescent display structure on a side of the substrate, the electroluminescent display structure including a transparent first electrode layer and a second electrode layer.
  • An organic light-emitting layer between the first electrode layer and the second electrode layer, the first electrode layer is located on a side close to the substrate of the substrate, and an optical functional layer is disposed on a side of the electroluminescent display structure, the optical functional layer Ambient light can be absorbed.
  • the ambient light incident on the display device can be prevented from being reflected into the human eye by the display device, causing interference to the display image received by the human eye, causing a problem of deterioration of display performance, so that the display panel can improve the contrast of the display and enhance the display. Effect and product quality.
  • electro-optic display structure 02-side having an optical functional layer 21 for absorbing light will be specifically described below.
  • the optical functional layer 21 may be located between the substrate substrate 10 and the first electrode layer 11.
  • the optical function layer 21 can not only absorb the ambient light incident on the OLED display through the display side surface and the side surface, but also prevent the light from being irradiated to the substrate substrate 10 and reflect, so that the reflected light can be prevented from entering the human eye.
  • a problem that interferes with the display image received by the human eye is emitted from the display side of the display device, and the optical functional layer 21 between the substrate substrate 10 and the first electrode layer 11 is located far away.
  • the side of the display side of the display device is displayed so as not to absorb a large amount of light received by the human eye for displaying a picture. Therefore, the contrast of the display can be improved without affecting the light extraction rate of the display device, and the display effect and product quality can be improved.
  • the optical functional layer 21 may be located in the electroluminescent display structure.
  • the display side of 02. the optical function layer 21 can prevent ambient light from entering the display from the display side of the OLED display, and reflect at the substrate substrate 10, so that the reflected light can be prevented from entering the human eye and received by the human eye.
  • the display image creates interference problems, thereby avoiding the influence of ambient light on the contrast of the display, improving display performance and product quality.
  • the optical functional layer 21 is provided simultaneously between the first electrode layer 11 and the substrate substrate 10 and on the surface of the second electrode 13.
  • the two optical functional layers 21 can absorb not only ambient light that is incident into the display from the side of the OLED display, but also ambient light that is incident on the display from the display side of the OLED display.
  • the thickness of the optical function layer 21 located on the surface of the second electrode 13 the visible light having different wavelengths can be performed without affecting the display effect of the display device. There is a choice of absorption. This expands the range of use of the display device.
  • the display device of the embodiment may further include: between the second electrode layer 13 and the optical function layer 21.
  • the light coupling layer 22 is a material layer capable of increasing the refractive index of the light, so that it can be made of a material having a higher refractive index, such as a material having a refractive index greater than 1.8, such as ZnO, ZnSe or Similar materials.
  • the light-coupling layer 22 to the above display device, the light-emitting rate of the OLED display panel can be improved, and the display effect can be prevented from being lowered due to the absorption of a part of the outgoing light of the display panel by the optical functional layer 21.
  • the display device of the embodiment may further include: the first electrode layer 11 and the optical function layer 21 Between the insulation layer 23.
  • the insulating layer can be made of silicon nitride (SiNx) or silicon dioxide (Si0 2 ). In this way, by providing an insulating layer in the above display device, it is possible to prevent the optical functional layer from adversely affecting the first electrode layer after absorbing ambient light, thereby ensuring that the display performance of the display device is not affected.
  • the optical functional layer 21 has an absorption range of 380-780 nm. Light due to visible light The spectral range is 380-780 nm, so the absorption function of the optical functional layer needs to completely cover the visible light portion, so that the optical functional layer can absorb the ambient light, thereby improving the contrast of the display and improving the display effect.
  • the first electrode layer 11 may be an anode, and the second electrode layer 13 may be a cathode; or, the first electrode layer 11 may be a cathode, and the second electrode layer 13 may be an anode.
  • the invention is not limited thereto.
  • the embodiment of the present invention is described by taking the first electrode layer 11 as an anode and the second electrode layer as a cathode.
  • An embodiment of the present invention further provides a display device comprising any of the display panels as described above, which has the same advantageous effects as the display panel provided by the foregoing embodiments of the present invention, since the display panel has been performed in the foregoing embodiment. Detailed description is not repeated here.
  • This embodiment provides a method for manufacturing a display panel. As shown in FIG. 2, the method can be performed as follows.
  • an optical functional layer 21 for absorbing light is formed on the surface of the substrate substrate 10.
  • the first electrode layer 11, the organic light-emitting layer 12, and the second electrode layer 13 are sequentially formed on the surface of the substrate on which the optical function layer 21 is formed.
  • the first electrode layer and the second electrode layer are both transparent electrode layers.
  • the material for fabricating the first electrode layer 11 and the second electrode layer 12 may be a transparent conductive material such as ITO (Indium Tin Oxide).
  • the optical functional layer 21 can absorb not only the ambient light that is incident on the OLED display through the display side surface, but also the light that is irradiated onto the substrate substrate 10 and reflected.
  • the optical function layer 21 reduces the influence of the ambient light on the display screen received by the human eye by absorbing the ambient light, thereby improving the contrast of the display
  • the material for fabricating the optical functional layer may be an organic material, such as CuPc. , C 6 . , TPCBI or C 7 . At least one of them, or an inorganic material such as at least one of SiO-Al, Al 2 O x ⁇ 3 .
  • an optical for absorbing light is formed on the surface of the substrate 10 After the functional layer 21, the manufacturing method may further include: forming an insulating layer 23 on the surface of the optical functional layer 21.
  • the insulating layer prevents the optical functional layer from adversely affecting the first electrode layer after absorbing ambient light, thereby ensuring that the display performance of the display device is not affected.
  • the optical functional layer 21 has an absorption ray range of 380-780 nm. Since the spectrum of visible light is 380-780 nm, the absorption spectrum of the optical functional layer needs to completely cover the visible light portion, so that the optical functional layer can absorb the ambient light, thereby improving the contrast of the display and improving the display effect.
  • the OLED display when the OLED display is displayed, electrons and holes are injected into the organic light-emitting material in the organic light-emitting layer 12 from the two electrodes of the first electrode layer 11 and the second electrode layer 13 respectively under the action of an applied electric field, thereby The organic light-emitting material undergoes migration, recombination, and attenuation to emit light, thereby realizing the display function of the OLED display.
  • the first electrode layer 11 may be an anode
  • the second electrode layer 13 may be a cathode; or, the first electrode layer may be a cathode, and the second electrode layer may be an anode.
  • This embodiment also provides another manufacturing method of the display panel. As shown in Fig. 4a, the method can be performed as follows.
  • a first electrode layer 11, an organic light-emitting layer 12, and a second electrode layer 13 are sequentially formed on the surface of the substrate substrate 10.
  • An optical functional layer 21 for absorbing light is formed on the surface of the substrate on which the second electrode layer 13 is formed.
  • the first electrode layer 11 and the second electrode layer 13 are both transparent electrode layers.
  • the material for fabricating the first electrode layer 11 and the second electrode layer 12 may be a transparent conductive material such as ITO (Indium Tin Oxide). In this way, ambient light can be prevented from entering the display from the display side of the OLED display, thereby avoiding the influence of ambient light on the contrast of the display.
  • ITO Indium Tin Oxide
  • the optical function layer 21 reduces the influence of the ambient light on the display screen received by the human eye by absorbing the ambient light, thereby improving the contrast of the display
  • the material for fabricating the optical functional layer may be an organic material, such as CuPc. , C 6 . , TPCBI or C 7 . At least one of them, or an inorganic material such as at least one of SiO-Al, Al 2 O x ⁇ 3 .
  • the manufacturing method may further include: forming a surface of the substrate on which the second electrode layer 13 is formed for improvement The light-coupling layer 22 of the light-emitting rate of the display panel.
  • the light-emitting layer 22 can improve the light-emitting rate of the OLED display panel, and avoid the display effect from being lowered due to the absorption of a portion of the light emitted from the display panel by the optical functional layer 21.
  • the optical functional layer 21 has an absorption ray range of 380-780 nm. Since the spectral range of visible light is 380-780 nm, the absorption spectrum of the optical functional layer needs to completely cover the visible light portion, so that the optical functional layer can absorb ambient light, thereby improving the contrast of the display and improving the display effect.
  • first electrode layer 11 may be an anode
  • second electrode layer 13 may be a cathode
  • first electrode layer may be a cathode and the second electrode layer may be an anode
  • An embodiment of the present invention provides a method for manufacturing a display panel, which includes a substrate substrate and an electroluminescent display structure on a side of the substrate substrate, the electroluminescent display structure including a transparent first electrode layer and a second An electrode layer and an organic light-emitting layer between the first electrode layer and the second electrode layer, the first electrode layer being located on a side close to the substrate of the substrate, and an optical function layer disposed on a side of the electroluminescent display structure, the optical The function layer can absorb the ambient light, so that the ambient light incident on the display device can be prevented from being reflected by the display device into the human eye, causing interference to the display image received by the human eye, causing a decrease in display performance. Thereby improving the contrast of the display, improving the display effect and product quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板包括:衬底基板(10)、以及位于衬底基板(10)一侧的电致发光显示结构(02),在位于电致发光显示结构(02)的一侧设置用于吸收光线的光学功能层(21),该电致发光显示结构(02)包括透明的第一电极层(11)、第二电极层(13)以及位于第一电极层(11)和第二电极层(13)之间的有机发光层(12),第一电极层(11)位于靠近衬底基板(10)的一侧。该显示面板可以避免环境光对显示性能的影响,提高显示的对比度。一种显示面板的制造方法和包括该显示面板的显示装置。

Description

显示面板及其制造方法、 显示装置 技术领域
本发明的实施例涉及一种显示面板及其制造方法、 显示装置。 背景技术
对于现有的显示装置而言, 有机发光二极管 (Organic Light Emitting Diode, OLED )作为一种电流型发光器件, 因其所具有的自发光、 快速响应、 宽视角和可制作在柔性村底上等特点而越来越多地被应用于高性能显示领域 当中。 并且随着显示技术的不断发展, 人们对 OLED显示器的显示性能的要 求也越来越高。
对比度是评价显示性能优良的参数之一。 对比度越高, 显示装置还原的 画面层次感就越好, 图像的锐利程度就越高, 图像也就越清晰。
现有的 OLED显示器的典型结构如图 1所示, 其包括: 村底基板 10以 及依次位于村底基板表面上的第一电极层 11、 有机发光层 12、 第二电极层 13。 OLED显示器通过第一电极层 11和第二电极层 13向有机发光层 12提供 电流, 有机发光层中的载流子注入有机发光材料, 并在该有机发光材料中进 行迁移、 复合并衰减从而发光。
然而, OLED显示器的第一电极层 11通常是采用不透光的高反射金属 制作而成的。 因此, 由显示侧表面射入 OLED显示器的环境光会在第一电极 层 11以及村底基板 10的表面上发生反射。当环境光的反射光 20进入人眼时 会干扰人眼接收到的显示画面, 从而降低显示器的对比度, 影响显示器的显 示效果, 降低产品质量。 发明内容
本发明的实施例提供一种显示面板及其制造方法、 显示装置, 可以避免 环境光对显示器显示性能的影响, 提高显示器件的对比度, 提升显示效果和 产品质量。
本发明的实施例提供一种显示面板, 包括: 村底基板; 位于所述村底基 板一侧的电致发光显示结构, 所述电致发光显示结构包括第一电极层、 第二 电极层以及位于所述第一电极层和所述第二电极层之间的有机发光层, 所述 第一电极层位于靠近所述村底基板的一侧; 位于所述电致发光显示结构一侧 的用于吸收光线的光学功能层; 其中, 所述第一电极层和所述第二电极层均 为透明电极层。
本发明实施例的另一方面提供一种显示装置,包括如上所述的显示面板。 本发明实施例的又一方面提供一种显示面板的制造方法, 包括: 在村底 基板的表面形成用于吸收光线的光学功能层; 在形成有所述光学功能层的基 板表面依次形成第一电极层、 有机发光层以及第二电极层; 所述第一电极层 和所述第二电极层均为透明电极层。
本发明实施例的又一方面提供另一种显示面板的制造方法, 包括: 在村 底基板的表面依次形成第一电极层、 有机发光层以及第二电极层; 在形成第 二电极层的基板表面形成用于吸收光线的光学功能层; 所述第一电极层和所 述第二电极层均为透明电极层。
本发明实施例提供的一种显示面板及其制造方法、 显示装置, 可以避免 射入显示装置的环境光被该显示装置反射进入人眼, 对人眼接收到的显示画 面产生干扰, 造成显示性能的下降的问题, 从而有效提高显示器的对比度, 提升显示效果和产品质量。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有技术提供的一种显示面板的结构示意图;
图 2为本发明实施例提供的一种显示面板的结构示意图;
图 3为本发明实施例提供的一种有机薄膜层的结构示意图;
图 4为本发明实施例提供的两种显示面板的结构示意图;
图 5为本发明实施例提供的另一种显示面板的结构示意图;
图 6为本发明实施例提供的又一种显示面板的结构示意图。
附图标记: 02-电致发光显示结构; 10-村底基板; 11-第一电极层; 12-有机发光层; 121-有机发光材料; 122-空穴层; 1221-空穴注入层; 1222-空穴传输层; 123- 电子层; 1231-电子传输层; 1232-电子注入层; 13-第二电极层; 20-环境光的 反射光; 21-光学功能层; 22-光耦合层; 23-绝缘层。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明的一个实施例提供的显示面板如图 2所示,包括村底基板 10以及 位于村底基板 10一侧的电致发光显示结构 02, 电致发光显示结构 02包括第 一电极层 11、 第二电极层 13以及位于第一电极层 11和第二电极层 13之间 的有机发光层 12, 第一电极层 11位于靠近村底基板 10的一侧。
需要说明的是,对于单面显示器而言,村底基板 10可以采用不透明的材 料制成; 当村底基板 10采用透明材料制成时,该显示面板可以具有双面显示 功能。
需要说明的是,以图 3为例对该有机发光层 12进行详细说明。该有机发 光层 12分别包括有机发光材料 121、位于该有机发光材料 121和第一电极层 11之间的空穴层 122,以及位于该有机发光材料 121与第二电极层 13之间的 电子层 123。 空穴层 122又包括位于第一电极层 11表面的空穴注入层 1221 和位于该空穴注入层 1221表面的空穴传输层 1222; 电子层包括位于有机发 光材料 121表面的电子传输层 1231和位于该电子传输层 1231表面的电子注 入层 1232。 对于这样一种 OLED显示器件而言, 当第一电极层 11和第二电 极层 12之间形成电场时, 电子和空穴可以分别从空穴注入层 1221和电子注 入层 1232注入有机发光材料 121 , 从而在该有机发光材料 121中进行迁移、 复合并衰减而发光, 从而实现 OLED显示器的显示功能。
当然, 这里仅仅是对 OLED显示器中有机发光层 12的层级结构进行举 例说明, 具有其它层级结构的有机发光层在这里不再——列举, 但都应当属 于本发明的保护范围。
实施例一
该显示面板还包括位于电致发光显示结构 02—侧的用于吸收光线的光 学功能层 21。
需要说明的是,光学功能层 21是透明的,它通过吸收环境光来减小环境 光对人眼接收到的显示画面的影响, 从而提高显示器的对比度。 制作该光学 功能层 21的材料可以是有机材料, 例如: 钛青铜(CuPc )、 足球烯(C60 ) 、 TPCBI 或足球烯(C7。) 中的至少一种, 或者无机材料, 例如硅铝氧化物 ( SiO-Al ) 、 氧化铝(Al2Ox<3 ) 中的至少一种。
这里, 第一电极层 11和第二电极层 13均为透明电极层。
本实施例提供了一种显示面板, 该显示面板包括村底基板以及位于村底 基板一侧的电致发光显示结构,该电致发光显示结构包括透明的第一电极层、 第二电极层以及位于第一电极层和第二电极层之间的有机发光层, 第一电极 层位于靠近村底基板的一侧, 并且在位于电致发光显示结构的一侧设置光学 功能层, 该光学功能层可以对环境光进行吸收。 这样可以避免射入显示装置 的环境光被该显示装置反射进入人眼, 对人眼接收到的显示画面产生干扰, 造成显示性能的下降的问题, 从而该显示面板可提高显示器的对比度, 提升 显示效果和产品质量。
以下对电致发光显示结构 02—侧的具有用于吸收光线的光学功能层 21 的示例进行具体的说明。
例如, 如图 2所示, 光学功能层 21可以位于村底基板 10与第一电极层 11之间。 这样一来, 光学功能层 21不仅可以吸收通过显示侧表面以及侧面 射入 OLED显示器的环境光, 还可以避免光线照射到村底基板 10并发生反 射, 从而可以避免该反射光进入人眼后, 对人眼接收到的显示图像产生干扰 的问题。并且, 由于电致发光显示结构 02发射出的用于显示画面的光线大部 分从显示器件的显示侧发射出, 而位于村底基板 10与第一电极层 11之间的 光学功能层 21位于远离显示器件显示侧的一面,从而不会对人眼接收到的用 于显示画面的光线进行大量的吸收。 因此, 可以在不影响显示器件的出光率 的同时还可以提高显示器的对比度, 提升显示效果和产品质量。
或者再例如, 如图 4a所示, 光学功能层 21可以位于电致发光显示结构 02的显示侧。 这样一来, 该光学功能层 21可以避免环境光从 0LED显示器 的显示侧射入显示器中,并在村底基板 10处发生反射,从而可以避免该反射 光进入人眼后, 对人眼接收到的显示图像产生干扰的问题, 进而避免了环境 光对显示器对比度的影响, 提升显示效果和产品质量。
或者又例如,如图 4b所示,在第一电极层 11与村底基板 10之间以及第 二电极 13的表面同时设置该光学功能层 21。 这样一来, 该两个光学功能层 21不仅可以吸收从 OLED显示器的侧面射入显示器中的环境光,而且还可以 吸收从 OLED显示器的显示侧射入显示器中的环境光。 并且, 由于不同的可 见光具有不同的波长,这样一来,可以通过调节位于第二电极 13表面的光学 功能层 21的厚度,在不影响显示器件显示效果的基础上,对具有不同波长的 可见光进行有选择的吸收。 这扩大了显示器件的使用范围。
以上仅仅是对光学功能层 21位置设置的举例说明,其它对于光学功能层 位置设置的层级结构在这里不再——举例,但都应当纳入本发明的保护范围。
实施例二
进一步地, 当光学功能层 21位于电致发光显示结构 02的显示侧时, 如 图 5所示,本实施例的显示装置还可以包括:位于第二电极层 13与光学功能 层 21之间的, 用于提高所述显示面板出光率的光耦合层 22。 需要说明的是, 该光耦合层 22是能够提高光线折射率的物质层,因此它可以采用具有较高折 射率的材料制成, 如折射率大于 1.8的材料, 该材料例如为 ZnO、 ZnSe或类 似材料。 这样一来, 通过在上述显示器件中增加设置光耦合层 22 可以提高 OLED显示面板的出光率,避免由于光学功能层 21对显示面板的部分出射光 线的吸收而造成显示效果的下降。
实施例三
进一步地, 当光学功能层 21位于村底基板 10与第一电极层 11之间时, 如图 6所示,本实施例的显示装置还可以包括:位于第一电极层 11和光学功 能层 21之间的绝缘层 23。该绝缘层可以采用氮化硅 ( SiNx )或二氧化硅 ( Si02 ) 制成。 这样一来, 可以通过在上述显示器件中增加设置绝缘层来避免光学功 能层在吸收环境光后对第一电极层产生不良影响, 从而确保显示器件的显示 性能不受影响。
优选的, 光学功能层 21的吸收光语范围为 380-780nm。 由于可见光的光 谱范围是 380-780nm,所以光学功能层的吸收光语需要全部覆盖可见光部分, 这样一来, 光学功能层就可以实现对环境光的吸收, 从而提高显示器的对比 度, 提升显示效果。
需要说明的是, OLED显示器进行显示时, 在外加电场的作用下, 电子 和空穴分别从第一电极层 11和第二电极层 13两极注入到有机发光层 12中的 有机发光材料中, 从而在该有机发光材料中进行迁移、 复合并衰减而发光, 从而实现 OLED显示器的显示功能。
这里, 第一电极层 11可以为阳极, 第二电极层 13可以为阴极; 或者, 第一电极层 11可以为阴极, 第二电极层 13可以为阳极。 本发明对此并不做 限制。
具体的,本发明实施例是以第一电极层 11为阳极,第二电极层为阴极为 例进行的说明。
本发明的实施例还提供了一种显示装置, 包括如上所述的任意一种显示 面板, 具有与本发明前述实施例提供的显示面板相同的有益效果, 由于显示 面板在前述实施例中已经进行了详细说明, 此处不再赘述。
实施例四
本实施例提供了一种显示面板的制造方法, 如图 2所示, 该方法可以如 下进行。
S101、 在村底基板 10的表面形成用于吸收光线的光学功能层 21。
S102、 在形成有光学功能层 21的基板表面依次形成第一电极层 11、 有 机发光层 12以及第二电极层 13。
这里, 所述第一电极层和所述第二电极层均为透明电极层。 制作第一电 极层 11和第二电极层 12的材料可以为透明导电材料例如, ITO(氧化铟锡)。
这样一来, 光学功能层 21不仅可以吸收通过显示侧表面射入 OLED显 示器的环境光, 还可以避免光线照射到村底基板 10并发生反射。
需要说明的是,光学功能层 21是通过吸收环境光来减小环境光的对人眼 接收到的显示画面的影响, 从而提高显示器的对比度, 制作光学功能层的材 料可以是有机材料, 例如 CuPc、 C6。、 TPCBI或 C7。中的至少一种, 或者无 机材料, 例如 SiO-Al、 Al2Ox<3中的至少一种。
进一步地,如图 6所示,在村底基板 10的表面形成用于吸收光线的光学 功能层 21之后, 该制造方法还可以包括: 在光学功能层 21的表面形成绝缘 层 23。通过该绝缘层来避免光学功能层在吸收环境光后对第一电极层产生不 良影响, 从而确保显示器件的显示性能不受影响。
优选的, 光学功能层 21的吸收光语范围为 380-780nm。 由于可见光的光 谱范围是 380-780nm,所以光学功能层的吸收光谱需要全部覆盖可见光部分, 这样一来, 光学功能层就可以实现对环境光的吸收, 从而提高显示器的对比 度, 提升显示效果。
需要说明的是, OLED显示器进行显示时, 在外加电场的作用下, 电子 和空穴分别从第一电极层 11和第二电极层 13两极注入有机发光层 12中的有 机发光材料, 从而在该有机发光材料中进行迁移、 复合并衰减而发光, 从而 实现 OLED显示器的显示功能。
这里, 第一电极层 11可以为阳极, 第二电极层 13可以为阴极; 或者, 第一电极层可以为阴极, 第二电极层可以为阳极。
本实施例还提供另一种显示面板的制造方法,如图 4a所示,该方法可以 如下进行。
5201、在村底基板 10的表面依次形成第一电极层 11、有机发光层 12以 及第二电极层 13。
5202、 在形成第二电极层 13 的基板表面形成用于吸收光线的光学功能 层 21。
这里, 所述第一电极层 11和第二电极层 13均为透明电极层。 制作第一 电极层 11和第二电极层 12的材料可以为透明导电材料例如, ITO (氧化铟 锡) 。 这样一来, 可以避免环境光从 OLED显示器的显示侧射入显示器中, 从而可以避免环境光对显示器对比度的影响。
需要说明的是,光学功能层 21是通过吸收环境光来减小环境光的对人眼 接收到的显示画面的影响, 从而提高显示器的对比度, 制作光学功能层的材 料可以是有机材料, 例如 CuPc、 C6。、 TPCBI或 C7。中的至少一种, 或者无 机材料, 例如 SiO-Al、 Al2Ox<3中的至少一种。
进一步地, 如图 5所示, 在形成上述结构的基板表面形成用于吸收光线 的光学功能层 21之前, 所述制造方法还可以包括: 在形成第二电极层 13的 基板表面形成用于提高该显示面板出光率的光耦合层 22。 这样一来, 通过采 用光耦合层 22可以提高 OLED显示面板的出光率, 避免由于光学功能层 21 对显示面板的部分出射光线的吸收而造成显示效果的下降。
优选的, 光学功能层 21的吸收光语范围可以为 380-780nm。 由于可见光 的光谱范围是 380-780nm, 所以光学功能层的吸收光谱需要全部覆盖可见光 部分, 这样一来, 光学功能层就可以实现对环境光的吸收, 从而提高显示器 的对比度, 提升显示效果。
进一步地, 第一电极层 11可以为阳极, 第二电极层 13可以为阴极; 或 者, 第一电极层可以为阴极, 第二电极层可以为阳极。
本发明实施例提供一种显示面板的制造方法, 该显示面板包括村底基板 以及位于村底基板一侧的电致发光显示结构, 该电致发光显示结构包括透明 的第一电极层、 第二电极层以及位于第一电极层和第二电极层之间的有机发 光层, 第一电极层位于靠近村底基板的一侧, 在位于电致发光显示结构一侧 的设置光学功能层, 该光学功能层可以对环境光进行吸收, 这样一来, 可以 避免射入显示装置的环境光被该显示装置反射进入人眼, 对人眼接收到的显 示画面产生干扰, 造成显示性能的下降的问题, 从而提高显示器的对比度, 提升显示效果和产品质量。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种显示面板, 包括:
村底基板;
位于所述村底基板一侧的电致发光显示结构, 所述电致发光显示结构包 括第一电极层、 第二电极层以及位于所述第一电极层和所述第二电极层之间 的有机发光层, 所述第一电极层位于靠近所述村底基板的一侧;
位于所述电致发光显示结构一侧的用于吸收光线的光学功能层; 其中, 所述第一电极层和所述第二电极层均为透明电极层。
2、根据权利要求 1所述的显示面板, 其中, 所述光学功能层位于所述村 底基板与所述第一电极层之间; 或所述光学功能层位于所述电致发光显示结 构的显示侧。
3、根据权利要求 2所述的显示面板, 其中, 所述光学功能层位于所述电 致发光显示结构的显示侧, 且所述显示装置还包括:
位于所述第二电极层与所述光学功能层之间的, 用于提高所述显示面板 出光率的光耦合层。
4、根据权利要求 2所述的显示面板, 其中, 所述光学功能层位于所述村 底基板与所述第一电极层之间, 且所述显示装置还包括:
位于所述第一电极层和所述光学功能层之间的绝缘层。
5、 根据权利要求 1-4任一所述的显示面板, 其中, 所述光学功能层的吸 收光谱范围为 380-780nm。
6、 根据权利要求 1-4任一所述的显示面板, 其中,
所述第一电极层为阳极, 所述第二电极层为阴极; 或,
所述第一电极层为阴极, 所述第二电极层为阳极。
7、 一种显示装置, 包括如权利要求 1-6任一所述的显示面板。
8、 一种显示面板的制造方法, 包括:
在村底基板的表面形成用于吸收光线的光学功能层;
在形成有所述光学功能层的基板表面依次形成第一电极层、 有机发光层 以及第二电极层;
其中, 所述第一电极层和所述第二电极层均为透明电极层。
9、根据权利要求 8所述的制造方法, 其中, 在村底基板的表面形成用于 吸收光线的光学功能层之后, 所述方法还包括:
在所述光学功能层的表面形成绝缘层。
10、 根据权利要求 8或 9所述的制造方法, 其中, 所述光学功能层的吸 收光谱范围为 380-780nm。
11、 根据权利要求 8-10任一所述的制造方法, 其中,
所述第一电极层为阳极, 所述第二电极层为阴极; 或,
所述第一电极层为阴极, 所述第二电极层为阳极。
12、 一种显示面板的制造方法, 包括:
在村底基板的表面依次形成第一电极层、 有机发光层以及第二电极层; 在形成第二电极层的基板表面形成用于吸收光线的光学功能层; 其中, 所述第一电极层和所述第二电极层均为透明电极层。
13、根据权利要求 12所述的制造方法, 其中, 在形成上述结构的基板表 面形成用于吸收光线的光学功能层之前, 所述方法还包括:
在形成所述第二电极层的基板表面形成用于提高所述显示面板出光率的 光耦合层。
14、 根据权利要求 12或 13所述的制造方法, 其中, 所述光学功能层的 吸收光谱范围为 380-780nm。
15、 根据权利要求 12-14任一所述的制造方法, 其中,
所述第一电极层为阳极, 所述第二电极层为阴极; 或,
所述第一电极层为阴极, 所述第二电极层为阳极。
PCT/CN2013/089019 2013-09-11 2013-12-10 显示面板及其制造方法、显示装置 WO2015035719A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/381,048 US20150325814A1 (en) 2013-09-11 2013-12-10 Display panel, manufacture method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013104112158A CN103474450A (zh) 2013-09-11 2013-09-11 一种显示面板及其制造方法、显示装置
CN201310411215.8 2013-09-11

Publications (1)

Publication Number Publication Date
WO2015035719A1 true WO2015035719A1 (zh) 2015-03-19

Family

ID=49799241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089019 WO2015035719A1 (zh) 2013-09-11 2013-12-10 显示面板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US20150325814A1 (zh)
CN (1) CN103474450A (zh)
WO (1) WO2015035719A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206758A (zh) * 2014-06-04 2015-12-30 群创光电股份有限公司 有机发光二极管显示器
TWI549330B (zh) 2014-06-04 2016-09-11 群創光電股份有限公司 有機發光二極體顯示器
CN105206648A (zh) * 2015-09-28 2015-12-30 上海和辉光电有限公司 一种oled器件及其制备方法
CN107068709A (zh) * 2015-11-30 2017-08-18 财团法人工业技术研究院 显示设备
US9680132B1 (en) * 2015-11-30 2017-06-13 Industrial Technology Research Institute Display device and optical film
KR102554620B1 (ko) * 2016-09-21 2023-07-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 유리를 갖는 보호 디스플레이 필름
CN108630724A (zh) * 2017-03-21 2018-10-09 宸鸿光电科技股份有限公司 有机发光二极管显示装置
CN108630726A (zh) * 2017-03-21 2018-10-09 宸鸿光电科技股份有限公司 有机发光二极管显示装置
CN107195797B (zh) 2017-06-28 2019-11-01 京东方科技集团股份有限公司 一种显示基板及显示装置
CN109427845B (zh) * 2017-08-25 2021-02-09 京东方科技集团股份有限公司 显示面板及其制作方法、电致发光器件、显示装置
CN108877516B (zh) * 2018-06-11 2021-11-23 云谷(固安)科技有限公司 柔性显示装置和柔性显示装置的显示控制方法
WO2020053975A1 (ja) * 2018-09-11 2020-03-19 シャープ株式会社 発光デバイス

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1591925A (zh) * 1998-12-08 2005-03-09 剑桥显示技术有限公司 显示装置
CN1866573A (zh) * 2005-05-20 2006-11-22 Lg.菲利浦Lcd株式会社 具有吸光金属纳米颗粒层的显示器件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930010129B1 (ko) * 1990-10-31 1993-10-14 주식회사 금성사 박막 el 표시소자의 제조방법 및 구조
JP2002252086A (ja) * 2001-02-23 2002-09-06 Toppan Printing Co Ltd 高分子el素子
US6545409B2 (en) * 2001-05-10 2003-04-08 Eastman Kodak Company Organic light-emitting diode with high contrast ratio
KR20020025917A (ko) * 2002-02-15 2002-04-04 박병주 유기 전계발광 소자 제조 방법
GB2395358B (en) * 2002-09-17 2006-08-02 Dainippon Printing Co Ltd Method of manufacturing a light emitting display panel and a light emitting display panel
JP2004303481A (ja) * 2003-03-28 2004-10-28 Sanyo Electric Co Ltd 発光素子及び発光表示装置
TWI272038B (en) * 2005-04-25 2007-01-21 Au Optronics Corp Organic electroluminescence display element, displays using the same, and methods for fabricating the same
CN101533850B (zh) * 2008-03-13 2012-07-04 奇美电子股份有限公司 有机发光二极管显示装置及其显示系统
CN101540374A (zh) * 2009-04-22 2009-09-23 南京邮电大学 增加顶发射型有机发光二极管对比度的结构
JP5410848B2 (ja) * 2009-06-11 2014-02-05 ルネサスエレクトロニクス株式会社 表示装置
CN102034935B (zh) * 2010-09-27 2012-07-04 南京邮电大学 高对比度顶发光型有机发光二极管
KR20130118082A (ko) * 2012-04-19 2013-10-29 삼성전기주식회사 터치패널 및 그 제조방법
CN203502704U (zh) * 2013-09-11 2014-03-26 京东方科技集团股份有限公司 一种显示面板及显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1591925A (zh) * 1998-12-08 2005-03-09 剑桥显示技术有限公司 显示装置
CN1866573A (zh) * 2005-05-20 2006-11-22 Lg.菲利浦Lcd株式会社 具有吸光金属纳米颗粒层的显示器件

Also Published As

Publication number Publication date
US20150325814A1 (en) 2015-11-12
CN103474450A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2015035719A1 (zh) 显示面板及其制造方法、显示装置
KR102342596B1 (ko) 표시 장치
KR102416017B1 (ko) 표시 장치
US10180742B2 (en) Display panel, method for fabricating the same, and display apparatus
JP2004022438A (ja) 表示装置
CN110504387A (zh) 一种显示基板及其制作方法和显示装置
TW201801565A (zh) 發光元件、發光裝置及電子機器
WO2016119378A1 (zh) 底发射型有机电致发光显示器件、其制作方法及显示装置
JP2008513931A (ja) 有機el表示装置及びその製造方法
KR20130061206A (ko) 유기 발광 표시 장치 및 그 제조방법
CN109994535A (zh) 一种显示面板及显示装置
JP2007234391A (ja) エレクトロルミネッセンス表示装置及び電子機器
TW201114316A (en) Organic el panel and panel - combined light- emitting device
JP2010287562A (ja) 表示装置
KR20200058154A (ko) 전계 발광 표시 장치
CN109585496A (zh) 有机发光二极管显示设备
WO2016023266A1 (zh) Oled显示器件及应用其的oled显示装置
CN203502704U (zh) 一种显示面板及显示装置
JP2009109883A (ja) 電場発光表示装置
KR102094143B1 (ko) 유기발광다이오드 표시장치의 제조방법
KR101901350B1 (ko) 유기전계발광표시장치
JP5136844B2 (ja) バックライト及び液晶表示装置
KR101608335B1 (ko) 유기발광소자
JP6410171B2 (ja) ディスプレイ
JP2013016417A (ja) 有機発光素子、発光装置、画像形成装置、表示装置および撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14381048

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.05.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13893586

Country of ref document: EP

Kind code of ref document: A1