WO2015035694A1 - 变压吸附装置 - Google Patents

变压吸附装置 Download PDF

Info

Publication number
WO2015035694A1
WO2015035694A1 PCT/CN2013/086595 CN2013086595W WO2015035694A1 WO 2015035694 A1 WO2015035694 A1 WO 2015035694A1 CN 2013086595 W CN2013086595 W CN 2013086595W WO 2015035694 A1 WO2015035694 A1 WO 2015035694A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
contact end
chamber
outer casing
contact
Prior art date
Application number
PCT/CN2013/086595
Other languages
English (en)
French (fr)
Inventor
周小山
孙明
雷激
Original Assignee
Zhou Xiaoshan
Sun Ming
Lei Ji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhou Xiaoshan, Sun Ming, Lei Ji filed Critical Zhou Xiaoshan
Priority to AU2013400510A priority Critical patent/AU2013400510B2/en
Priority to EP13893669.5A priority patent/EP3045217B1/en
Priority to NZ718875A priority patent/NZ718875A/en
Priority to SG11201602768PA priority patent/SG11201602768PA/en
Priority to US15/028,478 priority patent/US9731242B2/en
Publication of WO2015035694A1 publication Critical patent/WO2015035694A1/zh
Priority to PH12016500646A priority patent/PH12016500646A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40003Methods relating to valve switching

Definitions

  • the present invention relates to a pressure swing adsorption device which is mainly used in the technical field of gas medium separation.
  • PSA pressure swing adsorption
  • the working principle is as follows: The gas mixture is separated by the difference of "adsorption" performance of different gas molecules by the adsorbent molecular sieve, and the adsorption capacity is different according to the different adsorption capacities of the molecular sieve at different pressures, and the pressure is lowered to desorb the molecular sieve.
  • the adsorption of gas this process is called regeneration.
  • a pressure swing adsorption device usually uses two or more columns in parallel, so that pressure adsorption and decompression regeneration can be alternately performed to obtain continuous product gas.
  • This device has the following defects: Separate design, large parts, large volume, loose structure, large tube loss, low unit power output rate, complex control circuit, difficult control, poor reliability, cost high. Summary of the invention
  • the technical problem to be solved by the invention is to provide a simple and compact structure, no complicated gas pipeline, simple control, and the corresponding solenoid valve in the conventional device and its complexity.
  • the pressure swing adsorption device of the control circuit is to provide a simple and compact structure, no complicated gas pipeline, simple control, and the corresponding solenoid valve in the conventional device and its complexity.
  • a pressure swing adsorption device comprising: an outer casing, an inner surface of the outer casing is a curved surface, the outer casing is provided with at least one air inlet, at least one air outlet, at least An air outlet for discharging the separated gas;
  • a rotor the rotor being disposed in the outer casing, the rotor being provided with at least two contact ends that are always in sliding contact with the inner surface of the outer casing, the outer surface of the rotor being adjacent to the inner surface of the outer casing Forming a separate cavity, that is, an air cavity, each air cavity being separated by the contact end;
  • the adsorption chamber is disposed inside the rotor, is a part of the rotor, rotates together with the rotor, and the adsorption chamber is filled with a molecular sieve, and the adsorption chamber is arranged to communicate with the air chamber corresponding to each air chamber.
  • the individual chambers sequentially pass through the air inlet, the air outlet, and the exhaust port in each working cycle as the rotor rotates.
  • the center of the rotor does not coincide with the center of the casing, and the center of the rotor rotates around the center of the casing during rotation.
  • the pressure swing adsorption device further includes a central shaft having an external gear that is rotated by a motor at a center of the outer casing, an inner gear is disposed at a center of the rotor, and an outer gear of the central shaft is The internal gears of the rotor mesh with each other, and the number of teeth of the external gear is smaller than the number of teeth of the internal gear.
  • a pressure relief valve is disposed at the air outlet.
  • the rotor is provided clockwise with three contact ends that are always in sliding contact with the inner surface of the outer casing: a first contact end, a second contact end, and a third At the contact end, three air chambers are formed between the outer surface of the rotor and the inner surface of the outer casing, and the interior of the rotor is provided with an adsorption chamber corresponding to three air chambers: a first adsorption chamber, a second adsorption chamber, and a third An adsorption chamber, wherein the first adsorption chamber is located between the first contact end and the second contact end, the second adsorption chamber is located between the second contact end and the third contact end, and the third adsorption chamber is located at the third contact end and the first Between the contact ends, the outer casing is provided with one air outlet, one air inlet and one air outlet.
  • the first contact end of the rotor is located at the clockwise side of the air inlet, and the third contact The end is located at the counterclockwise side of the exhaust port, the intake port and the exhaust port are located between the first contact end and the third contact end of the initial position, and the intake port is located clockwise at the exhaust port, and the air outlet is facing Second contact end.
  • R is the creation radius
  • e is the distance between the center of the rotor and the center of the casing
  • a e [0. , 360. ] t is time.
  • the rotor is provided with four housings clockwise a contact end at which the inner surface is always in sliding contact: a first contact end, a second contact end, a third contact end, and a fourth contact end, and four air cavities are formed between the outer surface of the rotor and the inner surface of the outer casing,
  • the interior of the rotor corresponds to four air chambers respectively provided with adsorption chambers: a first adsorption chamber, a second adsorption chamber, a third adsorption chamber, and a fourth adsorption chamber, wherein the first adsorption chamber is located at the first contact end and the second contact end Between the second contact end and the third contact end, the third adsorption chamber is located between the third contact end and the fourth contact end, and the fourth adsorption chamber is located at the fourth contact end and the first contact Between the ends, the outer casing is provided with one air outlet, one air inlet and the first air outlet and the second air outlet.
  • the first contact end of the rotor is located on the clockwise side of the air inlet
  • the fourth contact end is located at a counterclockwise side of the second exhaust port
  • the intake port and the second exhaust port are located between the first contact end and the fourth contact end of the initial position
  • the air inlet is located at the second end
  • the exhaust port is clockwise
  • the first exhaust port is located at the third connection.
  • the air outlet is located between the second contact end and the third contact end, adjacent to the third contact end.
  • the curved trajectory of the inner surface of the outer casing is obtained by the following equation:
  • the invention has the adsorption chamber disposed inside the rotor, and the structure is more compact, and no complicated gas pipeline is needed.
  • the opening and closing of the gas pipeline is determined by the angle of rotation of the rotor, and the control of the same is simple.
  • the corresponding solenoid valve and its complicated control circuit can also be reduced in the traditional device, and the gas is separated at the same time as the gas is separated, and the integrated function is completely realized.
  • the whole device has reasonable layout, simple and compact structure, high gas output rate, reliable operation and low cost. It is a better new pressure swing adsorption device.
  • Figure 1-6 is a schematic structural view of the pressure swing adsorption device of the invention of the first embodiment
  • Figure 2-1 to Figure 2-8 are schematic structural views of the pressure swing adsorption device of the invention of the second embodiment
  • Figure 3 is a conventional pressure swing adsorption Schematic diagram of the structure of the device.
  • a pressure swing adsorption device includes: a casing 1, a rotor 2, an adsorption chamber 32, an adsorption chamber 34, and an adsorption chamber 36, wherein
  • the inner surface 10 of the outer casing 1 is a curved surface whose arcuate trajectory is obtained by the following equation:
  • the outer casing is provided with an air inlet 12, an exhaust port 14 and an air outlet 16 for the air outlet 16
  • the gas to be separated is discharged.
  • the rotor 2 is disposed inside the casing 1 and rotatable, and the rotor 2 is provided with three and the inner surface 10 of the casing is always slid. At the contact end of the contact, the rotor 2 and the inner surface 10 of the outer casing form a separate cavity, that is, an air cavity, between the adjacent contact ends, and the air cavity sequentially passes through the air inlet 12, the air outlet 16, and the exhaust port 14 as the rotor 2 rotates.
  • the adsorption chamber 32, the adsorption chamber 34, and the adsorption chamber 36 are disposed inside the rotor 2, become a part of the rotor, and can rotate together with the rotor.
  • Each adsorption chamber is provided with a sieve hole communicating with the air chamber, and each adsorption chamber is filled with a molecular sieve.
  • the outer casing 1 is provided with one air outlet 16, one air inlet 12 and one air outlet 14, and the air inlet 12 and the air outlet 14 are disposed on the left side of the outer casing 1.
  • the air outlet 16 is provided on the right side of the outer casing 1.
  • a pressure relief valve 160 is provided at the air outlet 16 .
  • the rotor 2 is provided with three contact ends, which are respectively referred to as a contact end 21, a contact end 23, and a contact end 25, and three adsorption chambers are separated by three contact ends, which are respectively referred to as an adsorption chamber 32, an adsorption chamber 34, and an adsorption chamber 36. .
  • the center of the rotor 2 does not coincide with the center of the outer casing 1, and the center of the rotor 2 rotates around the center of the outer casing 1 during the rotation. More specifically, the center of the outer casing 1 is provided
  • the external gear 100 is disposed, and the internal gear 200 is disposed at the center of the rotor 2.
  • the external gear 100 and the internal gear 200 mesh with each other, and the number of teeth of the external gear 100 is smaller than the number of teeth of the internal gear 200.
  • the present invention a pressure swing adsorption device, the working process is:
  • FIG. 1-1 is an initial stage, the contact end 21 of the rotor 2 is located at the clockwise side of the air inlet 12, and the contact end 25 is located at the counterclockwise side of the exhaust port 14, that is, the adsorption chamber 36,
  • the air chamber A formed by the contact end 21, the contact end 25 and the inner surface 10 of the outer casing is in a new stage of the intake process and the exhaust process of the previous stage, and the inner gear 200 and the outer gear 100 rotate to drive the rotor 2 to rotate clockwise.
  • the contact end 25 moves clockwise past the exhaust port 14, the air chamber A begins to fully enter the intake state. During this process, the volume of the air chamber A gradually increases.
  • Figure 1-2 shows the maximum volume of the air chamber A.
  • the volume of the air chamber A reaches a maximum, the contact end 25 passes over the air inlet 12, and the contact end 21 slides. To the right, the air chamber A is completely closed and the intake process has been completed. As the rotor 2 continues to rotate clockwise, the volume of the air chamber A will gradually decrease.
  • Figures 1-3 show the compression process and prepare for the air outlet phase.
  • the contact end 21 slides to the air outlet 16 and as the rotor 2 continues to rotate clockwise, the volume of the air chamber A decreases further.
  • the gas pressure in the gas chamber A gradually increases, and when the pressure is higher than the adsorption pressure of the molecular sieve, the molecular sieve begins to adsorb the corresponding gas.
  • the pressure relief valve 160 is opened, and the gas in the gas chamber A that is not adsorbed by the adsorption chamber 36 starts to pass through the gas outlet 16 Output.
  • Figure 1-4 shows the minimum volume of the air chamber A volume, as the rotor 2 continues Rotating clockwise, the volume of the air chamber A gradually decreases. At this stage, the volume of the air chamber A is minimized, and the air is continuously discharged from the air outlet 16.
  • Figure 1-5 shows the preparation of the exhaust phase.
  • the contact end 25 slowly approaches the air outlet 16, and the volume of the air chamber A gradually increases, and the gas in the air chamber A The pressure gradually decreases, and when the gas pressure in the air chamber A is lower than the threshold of the pressure relief valve 160, the pressure relief valve 160 begins to close.
  • the gas pressure in the gas chamber A continues to decrease.
  • the molecular sieve desorption pressure the molecular sieve begins to desorb the gas.
  • the adsorbed gas in the adsorption chamber 36 starts to enter the air chamber A, and the contact end 21 slides to the counterclockwise side of the exhaust port 14, and the air chamber A enters the stage of preparing the exhaust gas.
  • Figures 1-6 show the exhaust phase.
  • the contact end 21 passes over the exhaust port 14, and the contact end 25 slides over the air outlet 16, which is filled with gas desorbed by the adsorption chamber 36. A all enter the exhaust phase.
  • a pressure swing adsorption device includes: a casing 10, a rotor 20, an adsorption chamber 320, an adsorption chamber 340, and an adsorption chamber 360.
  • the adsorption chamber 380 wherein the inner surface 100 of the outer casing 10 is a curved surface, and the curved trajectory thereof is obtained by the following equation:
  • the outer casing is provided with an air inlet 120, a second exhaust port 140 and a first exhaust port 160, and an air outlet 180 for discharging the separated gas; the contour of the rotor 20 is obtained by the following equation:
  • the rotor 20 is provided with four contact ends that are in sliding contact with the inner surface 100 of the housing, and the rotor 20 and the inner surface 100 of the housing are between adjacent contact ends.
  • a separate cavity, that is, an air cavity is formed, and the air cavity rotates with the rotor 20 through the intake port 120, the air outlet 180, the first exhaust port 160, and the second exhaust port 140.
  • the adsorption chamber 320, the adsorption chamber 340, the adsorption chamber 360, and the adsorption chamber 380 are disposed inside the rotor 20, become part of the rotor 20, and can rotate with the rotor 20, and each adsorption chamber is provided with a sieve hole communicating with the air chamber, and each The inside of the adsorption chamber is filled with molecular sieves.
  • the outer casing 10 is provided with an air outlet 180, an air inlet 120 and a second exhaust port 140 and a first exhaust port 160, and the air inlet 120 and the second exhaust port 140 are disposed in the outer casing.
  • the air outlet 180 and the first exhaust port 160 are disposed on the right side of the outer casing 10.
  • a pressure relief valve 180 is provided at the air outlet 180.
  • the rotor 20 is provided with four contact ends, which are respectively referred to as a contact end 210, a contact end 230, a contact end 250, and a contact end 270, and four adsorption chambers are separated by four contact ends, respectively It is referred to as an adsorption chamber 320, an adsorption chamber 340, an adsorption chamber 360, and an adsorption chamber 380.
  • the center of the rotor 20 does not coincide with the center of the outer casing 10, and the center of the rotor 20 rotates around the center of the outer casing during rotation. More specifically, an outer gear 1000 is disposed at the center of the outer casing 10, and an inner gear 2000 is disposed at the center of the rotor 20. The outer gear 1000 and the inner gear 2000 mesh with each other, and the number of teeth of the outer gear 1000 is smaller than the number of teeth of the inner gear 2000.
  • the pressure swing adsorption device of the invention has the following working processes:
  • FIG. 2-1 is an initial stage, the contact end 210 of the rotor 20 is located at the clockwise side of the air inlet 120, and the contact end 270 is located at the counterclockwise side of the second exhaust port 140, that is, the adsorption chamber.
  • the contact end 210, the contact end 270 and the air chamber B formed by the inner surface 100 of the outer casing are in a new stage of the intake process and the exhaust process of the previous stage, the inner gear 2000 and the outer gear 1000 rotate to drive the rotor 20 clockwise. Rotation, during this process, the volume of the air chamber B gradually increases.
  • Figure 2-2 shows the continuous intake and preparation of the air outlet.
  • the contact end 270 moves clockwise across the second exhaust port 140, and the air chamber B enters the intake air.
  • its volume gradually increases, and the contact end 210 slides to the right side near the air outlet 180.
  • the volume of the air chamber B will gradually decrease.
  • Figure 2-3 shows the compression process and begins the air-out phase.
  • the air chamber B continues to compress the volume.
  • the air chamber B decreases.
  • the gas pressure gradually increases.
  • the pressure in the air chamber B is higher than the threshold value of the pressure relief valve 180, the pressure relief valve 180 is opened, and the gas that is not adsorbed by the adsorption chamber 380 in the air chamber B starts to be output through the air outlet 180.
  • Figure 2-4 shows the minimum volume of the air chamber B.
  • the volume of the air chamber B continues to decrease, maintaining a continuous outflow, at which point the volume of the air chamber B is minimized.
  • the pressure relief valve 180 begins to close.
  • Figure 2-5 shows the preparation of the exhaust phase.
  • the contact end 270 slowly approaches the air outlet 180, and the volume of the air chamber B gradually increases, and the gas in the air chamber B increases. The pressure gradually decreases.
  • the molecular sieve desorption pressure the molecular sieve begins to desorb the gas.
  • the gas adsorbed in the adsorption chamber 380 starts to enter the air chamber B, and the contact end 210 slides to the right side of the first exhaust port 160, and the air chamber B enters the stage of preparing the first exhaust.
  • Figures 2-6 are the first exhaust phase. As the rotor 20 continues to rotate clockwise, the contact end 210 begins to slip past the first exhaust port 160, which is filled with the adsorption chamber 380. The desorbed gas enters the first exhaust phase of the gas chamber B.
  • FIG. 2-7 is a double exhaust stage, the contact end 270 does not completely slide through the first exhaust port 160, the contact end 210 slides over the second exhaust port 140, and the adsorption chamber 380 continues to be released and adsorbed.
  • the gas is not exhausted for the first time, and the second exhaust has started. At this time, the first exhaust port 160 and the second exhaust port 140 are simultaneously exhausted.
  • Figures 2-8 show the entire exhaust phase, the contact end 270 completely slides over the first exhaust port 160, and the contact end 210 also passes over the second exhaust port 140, at which time there is still a cavity B in the air chamber B. Part of the gas released from the adsorption chamber 380 is independently evacuated by the second exhaust port 140. Gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

一种变压吸附装置包括:外壳(1),外壳(1)的内表面(10)为弧面,外壳(1)设置有至少一个进气口(12)、至少一个排气口(14)、至少一个用于排出被分离气体的出气口(16);转子(2),转子(2)设置在外壳(1)内,转子(2)上设置有至少两个与外壳(1)内表面(10)始终保持滑动接触的接触端(21,23,25),转子(2)外表面与外壳(1)内表面(10)在相邻接触端(21,23,25)之间形成单独腔体即气腔,各气腔由接触端(21,23,25)进行分隔;吸附室(32,34,36),吸附室(32,34,36)设置在转子(2)内部,为转子(2)的一部分,与转子(2)一起旋转,吸附室(32,34,36)内部装填分子筛,且吸附室(32,34,36)设置筛孔同气腔连通。

Description

变压吸附装置
技术领域
本发明涉及一种变压吸附装置,主要应用于气体介质分离的技术 领域之中。
背景技术
变压吸附法(简称 PSA)作为一种气体分离技术问世后, 就受到 各国工业界的关注, 竞相开发和研究, 发展迅速。 其工作原理是: 利 用吸附剂分子筛对不同气体分子 "吸附"性能的差异而将气体混合物 分开,吸附平衡后根据分子筛在不同压力下对吸附气体吸附量不同的 特性,降低压力使分子筛解除对吸附气体的吸附,这一过程称为再生。 目前, 变压吸附装置通常使用两塔或多塔并联, 这样可以交替进行加 压吸附和解压再生, 从而获得连续的产品气。
目前, 市场上大多数的变压吸附装置, 如图 3所示, 主要都是通 过传统的压缩机 Γ对气体进行压缩后经过管道 2'进入到吸附塔 (罐: )3' 中利用分子筛进行气体的分离。 管道 2'上设置有阀门 4' 。
这种装置存在以下几点缺陷: 分离式设计、 零部件多、 体积大、 结构松散、 管耗阀损大、 单位功率出气率低, 需要复杂的控制电路, 同歩控制困难, 可靠性差, 成本高。 发明内容
本发明要解决的技术问题是提供一种结构简单紧凑,不需要复杂 的气体管路, 同歩控制简单, 省去传统装置中相应的电磁阀及其复杂 的控制电路的变压吸附装置。
本发明是通过以下技术方案来实现的:一种变压吸附装置,包括: 外壳, 所述外壳的内表面为弧面, 所述外壳设置有至少一个进气 口、 至少一个排气口、 至少一个用于排出被分离气体的出气口;
转子, 所述转子设置在所述外壳内, 所述转子设置有至少两个与 所述外壳内表面始终保持滑动接触的接触端,所述转子外表面与所述 外壳内表面在相邻接触端之间形成单独腔体即气腔,各气腔由所述接 触端进行分隔;
吸附室, 所述吸附室设置在所述转子内部, 为转子的一部分, 与 转子一起旋转, 所述吸附室内部装填分子筛, 且所述吸附室对应各气 腔设置筛孔同气腔连通。
进一歩具体的,所述单独腔体在每一个工作循环随所述转子旋转 依次经过进气口、 出气口、 排气口。
进一歩的, 所述转子的中心与所述外壳中心不重合, 所述转子在 旋转过程中其中心绕外壳的中心转动。
作为优化的方案,所述变压吸附装置还包括位于外壳中心处的由 电机驱动旋转的具有外齿轮的中心轴, 所述转子中心处设置有内齿 轮, 所述中心轴的外齿轮与所述转子的内齿轮相互啮合, 所述外齿轮 的齿数小于所述内齿轮的齿数。
作为进一歩优化的方案, 所述出气口处设置有泄压阀。
作为第一种优化的实施方式,所述转子顺时针设置有三个与外壳 内表面始终保持滑动接触的接触端: 第一接触端、第二接触端、第三 接触端, 所述转子外表面与所述外壳内表面之间形成三个气腔, 所述 转子的内部对应三个气腔分别设置有吸附室: 第一吸附室、第二吸附 室、第三吸附室,其中第一吸附室位于第一接触端和第二接触端之间, 第二吸附室位于第二接触端和第三接触端之间,第三吸附室位于第三 接触端和第一接触端之间, 所述外壳设置有 1个出气口, 1个进气口 和 1个排气口, 初始位置时, 转子的第一接触端位于进气口的顺时针 侧处, 第三接触端位于排气口的逆时针侧处, 进气口和排气口位于初 始位置的第一接触端和第三接触端之间,且进气口位于排气口顺时针 位置, 出气口正对第二接触端。
上述实施方式中, 所述外壳的内表面的弧形轨迹由下列方程得 到:
x=R*cos a +e*cos3 α;
y=R*sin a +e*sin3 α;
转子的轮廓线由下列方程得到:
ν= 30+ t* 60
d= - 3* e* sin( 3 * v) / R
u= 2* v- asin( d)
x= 2* e* cos( u) * cos( 3 * v) + R* cos( 2* v)
y= 2* e* sin( u) * cos( 3* v) + R* sin( 2* v)
上述公式中, R为创成半径, e为转子的中心与外壳中心的距离, a e [0。 , 360。 ], t为时间。
作为第二种优化的实施方式,所述转子顺时针设置有四个与外壳 内表面始终保持滑动接触的接触端: 第一接触端、第二接触端、第三 接触端、第四接触端, 所述转子外表面与所述外壳内表面之间形成四 个气腔, 所述转子的内部对应四个气腔分别设置有吸附室: 第一吸附 室、 第二吸附室、 第三吸附室、 第四吸附室, 其中第一吸附室位于第 一接触端和第二接触端之间,第二吸附室位于第二接触端和第三接触 端之间, 第三吸附室位于第三接触端和第四接触端之间、第四吸附室 位于第四接触端和第一接触端之间, 所述外壳设置有 1个出气口, 1 个进气口和第一排气口、第二排气口, 初始位置时, 转子的第一接触 端位于进气口的顺时针侧处,第四接触端位于第二排气口的逆时针侧 处,进气口和第二排气口位于初始位置的第一接触端和第四接触端之 间, 且进气口位于第二排气口顺时针位置, 第一排气口位于第三接触 端和第四接触端之间, 出气口位于第二接触端和第三接触端之间, 紧 邻第三接触端。
第二种优化的实施方式中,所述外壳内表面的弧形轨迹由下列方 程得到:
X = e * cos(«) + R * cos(a 14) Y = e * η{α) + R * sin(a 14) 转子的轮廓线由下列方程得到:
Figure imgf000005_0001
_„ / nN 5 sin(a I 2) - K sin(3a / 10)
5 cos(a I 2) + K cos(3a /10) 上述公式中, a e [0° , 360 ° ], e为偏心距, R为创成半径, K=R/e。 本发明的有益效果:
本发明在结构上与传统的相比将吸附室设置于转子的内部,结构 更加紧凑, 不再需要复杂的气体管路, 气体管路的通断由转子转动的 角度而决定, 同歩控制简单, 传统装置中相应的电磁阀及其复杂的控 制电路也可以减免, 在气体压缩的同时也同歩进行了气体的分离, 完 整实现了一体化的功能。整套装置布局合理, 结构简单紧凑, 出气率 高, 运行可靠, 成本低, 是一种较佳的新型变压吸附装置。
附图说明
图 至图 1-6为实施案例 1发明变压吸附装置的结构示意图; 图 2-1至图 2-8为实施案例 2发明变压吸附装置的结构示意图; 图 3是现有的变压吸附装置结构原理示意图。
具体实施方式
下面根据附图和实施例对本发明作进一歩详细说明。
实施案例 1 :
图 至图 1-6为本发明变压吸附装置的结构示意图,参照图 1-1, 变压吸附装置, 包括: 外壳 1、 转子 2、 吸附室 32、 吸附室 34、 吸附 室 36, 其中, 外壳 1的内表面 10为弧面, 其弧形轨迹由下列方程得 到:
x=R*cos a +e*cos3 α;
y=R*sin a +e*sin3 α;
a e [0。 , 360。 ] e=1.5 R=10
外壳设置有进气口 12、 排气口 14以及出气口 16, 出气口 16用 于排出被分离气体。 转子 2的轮廓线由下列方程得到: e=1.5 R=10
v= 30+ 1* 60
d= - 3* e* sin( 3 * v) / R
u= 2* v- asin( d)
x= 2* e* cos( u) * cos( 3 * v) + R* cos( 2* v)
y= 2* e* sin( u) * cos( 3* v) + R* sin( 2* v) 转子 2设置在外壳 1内并可旋转,转子 2设置有三个与外壳内表 面 10始终保持滑动接触的接触端,转子 2与外壳内表面 10在相邻接 触端之间形成单独腔体即气腔, 气腔随转子 2 旋转依次经过进气口 12、 出气口 16、 排气口 14。
吸附室 32、 吸附室 34、 吸附室 36设置在转子 2内部, 成为转子 一部分, 并可与转子一起旋转, 每个吸附室设置筛孔同气腔连通, 每 个吸附室内部分别装填有分子筛。
具体地, 在本实施案例中, 外壳 1设置有 1个出气口 16, 1个进 气口 12和 1个排气口 14, 进气口 12及排气口 14设置在外壳 1的左 侧,出气口 16设置在外壳 1的右侧。出气口 16处设置有泄压阀 160。
转子 2设置有 3个接触端, 分别记为接触端 21、 接触端 23、 接 触端 25, 通过 3个接触端分隔有 3个吸附室, 分别记为吸附室 32、 吸附室 34和吸附室 36。
在本实施案例中, 转子 2的中心与外壳 1中心不重合, 转子 2在 旋转过程中其中心绕外壳 1的中心转动。更具体地, 外壳 1中心处设 置有外齿轮 100, 转子 2中心处设置有内齿轮 200, 外齿轮 100与内 齿轮 200相互啮合, 外齿轮 100的齿数小于内齿轮 200的齿数。
本发明, 变压吸附装置, 其工作过程为:
参照图 1-1, 图 1-1为初始阶段, 转子 2的接触端 21位于进气口 12的顺时针侧处, 接触端 25位于排气口 14的逆时针侧处, 即吸附 室 36、 接触端 21、 接触端 25与外壳内表面 10所构成的气腔 A处于 新阶段的进气过程与上一阶段的排气过程中, 内齿轮 200 和外齿轮 100旋转带动转子 2顺时针旋转, 随着接触端 25顺时针移动越过排 气口 14后, 气腔 A开始全部进入进气状态。 在此过程中, 气腔 A的 容积逐渐增大。
参照图 1-2, 图 1-2为气腔 A容积最大阶段, 随着转子 2的顺时 针旋转, 此时气腔 A的容积达到最大, 接触端 25越过进气口 12, 接 触端 21滑动至右侧, 气腔 A完全封闭, 已完成进气过程。 随着转子 2继续顺时针旋转, 气腔 A的容积将逐渐减小。
参照图 1-3, 图 1-3为压缩过程并准备出气阶段, 接触端 21滑动 至出气口 16, 随着转子 2的继续顺时针旋转, 气腔 A的容积进一歩 减小, 气腔 A继续压缩容积, 气腔 A内的气体压力逐渐增大, 当压 力高于分子筛的吸附压力后, 分子筛开始吸附对应气体。经过一段时 间后当对应气体全部吸附完成且气腔 A 内气体压力高于泄压阀 160 的阈值时, 泄压阀 160打开, 气腔 A内未被吸附室 36吸附的气体开 始通过出气口 16输出。
参照图 1-4, 图 1-4为气腔 A容积最小阶段, 随着转子 2的继续 顺时针旋转, 气腔 A的容积逐渐减小, 此阶段气腔 A的容积达到最 小, 保持持续由出气口 16出气。
参照图 1-5, 图 1-5为准备排气阶段, 随着转子 2的继续顺时针 旋转, 接触端 25慢慢靠近出气口 16, 气腔 A的体积逐渐增大, 气腔 A内气体压力逐渐降低, 当气腔 A内气体压力低于泄压阀 160的阈 值时, 泄压阀 160开始闭合。 随着转子的转动, 气腔 A内气体压力 继续降低, 当气腔 A 内气体压力低于分子筛解吸附压力后分子筛开 始解吸附气体。 此时, 吸附室 36内已吸附的气体开始进入气腔 A, 接触端 21滑动至排气口 14的逆时针侧处, 气腔 A进入准备排气的 阶段。
参照图 1-6, 图 1-6为排气阶段, 接触端 21越过排气口 14, 接 触端 25滑过出气口 16,气腔 A充满了由吸附室 36解吸附出的气体, 气腔 A全部进入排气阶段。
继续参照图 1-1, 此时完成了一个气腔及相应吸附室的工作循环 过程。
实施案例 2:
图 2-1至图 2-8为本发明变压吸附装置的结构示意图,参照图 2-1, 变压吸附装置, 包括: 外壳 10、 转子 20、 吸附室 320、 吸附室 340、 吸附室 360、 吸附室 380, 其中, 外壳 10的内表面 100为弧面, 其弧 形轨迹由下列方程得到:
X = e * cos(«) + R * cos(a 14)
Y = e * η{α) + R * sin(a 14) α ≡[0 ° , 360。 ], e为偏心距, e=12, R为创成半径, R=96。 外壳设置有进气口 120、 第二排气口 140与第一排气口 160以及 出气口 180, 出气口 180用于排出被分离气体; 转子 20的轮廓线由 下列方程得到:
¾ =e*co^+e*cos^-^3> *cos^4-^3)
Figure imgf000010_0001
_„ / nN 5 sin(a I 2) - K sin(3a / 10)
5 cos(a I 2) + K cos(3a /10) a ≡[0 ° , 360。 ], e为偏心距, e=12, R为创成半径, R=96 ,
K=R/e0 转子 20设置在外壳 10内并可旋转,转子 20设置有 4个与外壳 内表面 100始终保持滑动接触的接触端, 转子 20与外壳内表面 100 在相邻接触端之间形成单独腔体即气腔, 气腔随转子 20旋转依次经 过进气口 120、 出气口 180、 第一排气口 160与第二排气口 140。 吸附室 320、 吸附室 340、 吸附室 360、 吸附室 380设置在转子 20内部, 成为转子 20—部分, 并可与转子 20—起旋转, 每个吸附 室设置有筛孔同气腔连通, 每个吸附室内部分别装填有分子筛。
具体地, 在本实施案例中, 外壳 10设置有出气口 180, 进气口 120和第二排气口 140与第一排气口 160, 进气口 120和第二排气口 140设置在外壳 10的左侧, 出气口 180与第一排气口 160设置在外 壳 10的右侧。 出气口 180处设置有泄压阀 180。 转子 20设置有 4个接触端, 分别记为接触端 210、 接触端 230、 接触端 250、 接触端 270, 通过 4个接触端分隔有 4个吸附室, 分别 记为吸附室 320、 吸附室 340、 吸附室 360、 吸附室 380。
在本实案例中, 转子 20的中心与外壳 10中心不重合, 转子 20 在旋转过程中其中心绕外壳的中心转动。 更具体地, 外壳 10中心处 设置有外齿轮 1000,转子 20中心处设置有内齿轮 2000,外齿轮 1000 与内齿轮 2000相互啮合, 外齿轮 1000的齿数小于内齿轮 2000的齿 数。
本发明变压吸附装置, 其工作过程为:
参照图 2-1, 图 2-1为初始阶段, 转子 20的接触端 210位于进气 口 120的顺时针侧处,接触端 270位于第二排气口 140的逆时针侧处, 即吸附室 380、 接触端 210、 接触端 270与外壳内表面 100所构成的 气腔 B处于新阶段的进气过程与上一阶段的排气过程中,内齿轮 2000 和外齿轮 1000旋转带动转子 20顺时针旋转, 在此过程中, 气腔 B 的容积逐渐增大。
参照图 2-2, 图 2-2为持续进气并准备出气阶段, 随着转子 20的 顺时针旋转, 接触端 270顺时针移动越过第二排气口 140后, 气腔 B 全部进入进气状态, 其容积逐渐增大, 接触端 210滑动至右侧靠近出 气口 180。 再随着转子 20继续顺时针旋转, 气腔 B的容积将逐渐减 小。
参照图 2-3, 图 2-3为压缩过程并开始出气阶段, 随着转子 20的 顺时针旋转, 气腔 B继续压缩容积, 随着气腔 B的容积逐渐减小, 气腔 B 内的气体压力逐渐增大, 当压力高于分子筛的吸附压力后, 分子筛开始吸附对应气体。经过一段时间后当对应气体全部吸附完成 且气腔 B内气体压力高于泄压阀 180的阈值时, 泄压阀 180打开, 气腔 B内未被吸附室 380吸附的气体开始通过出气口 180输出。
参照图 2-4, 图 2-4为气腔 B容积最小阶段, 随着转子 20的继续 顺时针旋转, 气腔 B的容积继续减小, 保持持续出气, 此阶段气腔 B 容积到达最小。 当气腔 B 内气体压力低于泄压阀 180的阈值时, 泄 压阀 180开始闭合。
参照图 2-5, 图 2-5为准备排气阶段, 随着转子 20的继续顺时针 旋转, 接触端 270慢慢靠近出气口 180, 气腔 B的体积逐渐增大, 气 腔 B 内气体压力逐渐降低, 当气体压力小于分子筛解吸附压力后, 分子筛开始解吸附气体。此时, 吸附室 380内吸附的气体开始进入气 腔 B,接触端 210滑动至第一排气口 160的右侧处,气腔 B进入准备 第一次排气的阶段。
参照图 2-6, 图 2-6为第一次排气阶段, 随着转子 20的继续顺时 针旋转, 接触端 210开始滑过第一排气口 160, 气腔 B充满了由吸附 室 380解吸附出的气体, 气腔 B进入第一次排气阶段。
参照图 2-7, 图 2-7为双排气阶段, 接触端 270并未完全滑过第 一排气口 160, 接触端 210滑过第二排气口 140, 吸附室 380继续释 放被吸附的气体, 第一次排气尚未结束, 第二次排气已开始, 此时第 一排气口 160与第二排气口 140同时排气。
参照图 2-8, 图 2-8为全部排气阶段, 接触端 270完全滑过第一 排气口 160, 接触端 210也越过了第二排气口 140, 此时气腔 B内仍 有部分从吸附室 380内释放的气体,由第二排气口 140独立排空剩余 气体。
继续参照图 2-1, 此时完成了一个气腔及相应吸附室的工作循环 过程。
上述实施案例只为说明本发明的技术构思及特点,其目的在于让 熟悉此领域技术的人士能够了解本发明内容并加以实施,并不能以此 限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修 饰, 都应涵盖在本发明的保护范围内。

Claims

权 利 要 求 书
1. 一种变压吸附装置, 其特征在于, 包括:
外壳, 所述外壳的内表面为弧面, 所述外壳设置有至少一个进气 口、 至少一个排气口、 至少一个用于排出被分离气体的出气口; 转子, 所述转子设置在所述外壳内, 所述转子设置有至少两个与 所述外壳内表面始终保持滑动接触的接触端,所述转子外表面与所述 外壳内表面在相邻接触端之间形成单独腔体即气腔,各气腔由所述接 触端进行分隔;
吸附室, 所述吸附室设置在所述转子内部, 为转子的一部分, 与 转子一起旋转, 所述吸附室内部装填分子筛, 且所述吸附室对应各气 腔设置筛孔同气腔连通。
2. 根据权利要求 1 所述的变压吸附装置, 其特征在于, 所述单 独腔体在每一个工作循环随所述转子旋转依次经过进气口、 出气口、 排气口。
3. 根据权利要求 1 所述的变压吸附装置, 其特征在于, 所述转 子的中心与所述外壳中心不重合,所述转子在旋转过程中其中心绕外 壳的中心转动。
4. 根据权利要求 3 所述的变压吸附装置, 其特征在于, 所述变 压吸附装置还包括位于外壳中心处的由电机驱动旋转的具有外齿轮 的中心轴, 所述转子中心处设置有内齿轮, 所述中心轴的外齿轮与所 述转子的内齿轮相互啮合, 所述外齿轮的齿数小于所述内齿轮的齿 数。
5. 根据权利要求 1 所述的变压吸附装置, 其特征在于, 所述出 权 利 要 求 书
气口处设置有泄压阀。
6、 根据权利要求 4所述的变压吸附装置, 其特征在于: 所述转 子顺时针设置有三个与外壳内表面始终保持滑动接触的接触端:第一 接触端、第二接触端、 第三接触端, 所述转子外表面与所述外壳内表 面之间形成三个气腔,所述转子的内部对应三个气腔分别设置有吸附 室: 第一吸附室、 第二吸附室、 第三吸附室, 其中第一吸附室位于第 一接触端和第二接触端之间,第二吸附室位于第二接触端和第三接触 端之间, 第三吸附室位于第三接触端和第一接触端之间, 所述外壳设 置有 1个出气口, 1个进气口和 1个排气口, 初始位置时, 转子的第 一接触端位于进气口的顺时针侧处,第三接触端位于排气口的逆时针 侧处, 进气口和排气口位于初始位置的第一接触端和第三接触端之 间, 且进气口位于排气口顺时针位置, 出气口正对第二接触端。
7、 根据权利要求 6所述的变压吸附装置, 其特征在于: 所述外 壳的内表面的弧形轨迹由下列方程得到:
x=R*cos a +e*cos3 α;
y=R*sin a +e*sin3 α;
转子的轮廓线由下列方程得到:
ν= 30+ t* 60
d= - 3* e* sin( 3 * v) / R
u= 2* v- asin( d)
x= 2* e* cos( u) * cos( 3 * v) + R* cos( 2* v)
y= 2* e* sin( u) * cos( 3* v) + R* sin( 2* v) 权 利 要 求 书
上述公式中, R为创成半径, e为转子的中心与外壳中心的距离, a e [0。 , 360。 ], t为时间。
8、 根据权利要求 4所述的变压吸附装置, 其特征在于: 所述转 子顺时针设置有四个与外壳内表面始终保持滑动接触的接触端:第一 接触端、 第二接触端、 第三接触端、 第四接触端, 所述转子外表面与 所述外壳内表面之间形成四个气腔,所述转子的内部对应四个气腔分 别设置有吸附室: 第一吸附室、 第二吸附室、 第三吸附室、 第四吸附 室, 其中第一吸附室位于第一接触端和第二接触端之间, 第二吸附室 位于第二接触端和第三接触端之间,第三吸附室位于第三接触端和第 四接触端之间、第四吸附室位于第四接触端和第一接触端之间, 所述 外壳设置有 1个出气口, 1个进气口和第一排气口、 第二排气口, 初 始位置时, 转子的第一接触端位于进气口的顺时针侧处, 第四接触端 位于第二排气口的逆时针侧处,进气口和第二排气口位于初始位置的 第一接触端和第四接触端之间, 且进气口位于第二排气口顺时针位 置, 第一排气口位于第三接触端和第四接触端之间, 出气口位于第二 接触端和第三接触端之间, 紧邻第三接触端。
9、 根据权利要求 7所述的变压吸附装置, 其特征在于: 所述外 壳内表面的弧形轨迹由下列方程得到:
X = e * cos(«) + R * cos(a 14)
Y = e * η{α) + R * sin(a 14)
转子的轮廓线由下列方程得到:
¾
Figure imgf000016_0001
权 利 要 求 书
Figure imgf000017_0001
上述公式中, a e [0° , 360° ], e为偏心距, R为创成半径,
K=R/eD
PCT/CN2013/086595 2013-09-10 2013-11-06 变压吸附装置 WO2015035694A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2013400510A AU2013400510B2 (en) 2013-09-10 2013-11-06 Pressure swing adsorption apparatus
EP13893669.5A EP3045217B1 (en) 2013-09-10 2013-11-06 Pressure swing adsorption apparatus
NZ718875A NZ718875A (en) 2013-09-10 2013-11-06 Pressure swing adsorption apparatus
SG11201602768PA SG11201602768PA (en) 2013-09-10 2013-11-06 Pressure swing adsorption apparatus
US15/028,478 US9731242B2 (en) 2013-09-10 2013-11-06 Pressure swing adsorption device
PH12016500646A PH12016500646A1 (en) 2013-09-10 2016-04-08 Pressure swing adsorption device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310413453.2 2013-09-10
CN201310413453.2A CN103432863B (zh) 2013-09-10 2013-09-10 变压吸附装置

Publications (1)

Publication Number Publication Date
WO2015035694A1 true WO2015035694A1 (zh) 2015-03-19

Family

ID=49686634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086595 WO2015035694A1 (zh) 2013-09-10 2013-11-06 变压吸附装置

Country Status (9)

Country Link
US (1) US9731242B2 (zh)
EP (1) EP3045217B1 (zh)
CN (1) CN103432863B (zh)
AU (1) AU2013400510B2 (zh)
NZ (1) NZ718875A (zh)
PH (1) PH12016500646A1 (zh)
SG (1) SG11201602768PA (zh)
TW (1) TW201515689A (zh)
WO (1) WO2015035694A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2628393C1 (ru) * 2016-03-02 2017-08-16 Общество с ограниченной ответственностью "ТамбовСорбТех" Роторно-пластинчатая адсорбционная установка

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116440654B (zh) * 2023-03-13 2023-11-21 河北红光燃料有限责任公司 一种燃煤烟气脱硫脱硝脱碳设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1437503A (zh) * 1998-12-16 2003-08-20 探索空气技术公司 用分裂气流离心涡轮机进行气体分离
CN1845779A (zh) * 2003-09-09 2006-10-11 帝人制药株式会社 氧气浓缩设备和旋转阀
JP2007237004A (ja) * 2006-02-09 2007-09-20 Terumo Corp ガス濃縮装置およびその制御方法
CN100551490C (zh) * 1997-12-01 2009-10-21 奎斯脱气体技术股份有限公司 组件式加压摆动吸附装置
CN102755810A (zh) * 2012-08-02 2012-10-31 南京圣火水泥新技术工程有限公司 转子式变压吸附气体分离装置
CN203507775U (zh) * 2013-09-10 2014-04-02 周小山 变压吸附装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128113A (zh) * 1973-04-17 1974-12-07
DE3001525A1 (de) * 1980-01-17 1981-07-23 Adolf Dipl.-Ing. 3060 Stadthagen Margraf Vorrichtung zum stoffaustausch in einer wirbelschichtkammer
US5169414A (en) * 1990-07-03 1992-12-08 Flakt, Inc. Rotary adsorption assembly
US6517610B1 (en) * 2001-11-13 2003-02-11 The United States Of America As Represented By The Secretary Of The Navy Microelectromechanical gas concentrator
US20080226480A1 (en) * 2007-03-15 2008-09-18 Ion Metrics, Inc. Multi-Stage Trochoidal Vacuum Pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100551490C (zh) * 1997-12-01 2009-10-21 奎斯脱气体技术股份有限公司 组件式加压摆动吸附装置
CN1437503A (zh) * 1998-12-16 2003-08-20 探索空气技术公司 用分裂气流离心涡轮机进行气体分离
CN1845779A (zh) * 2003-09-09 2006-10-11 帝人制药株式会社 氧气浓缩设备和旋转阀
JP2007237004A (ja) * 2006-02-09 2007-09-20 Terumo Corp ガス濃縮装置およびその制御方法
CN102755810A (zh) * 2012-08-02 2012-10-31 南京圣火水泥新技术工程有限公司 转子式变压吸附气体分离装置
CN203507775U (zh) * 2013-09-10 2014-04-02 周小山 变压吸附装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2628393C1 (ru) * 2016-03-02 2017-08-16 Общество с ограниченной ответственностью "ТамбовСорбТех" Роторно-пластинчатая адсорбционная установка

Also Published As

Publication number Publication date
EP3045217A1 (en) 2016-07-20
US9731242B2 (en) 2017-08-15
AU2013400510B2 (en) 2017-04-27
EP3045217B1 (en) 2020-01-01
SG11201602768PA (en) 2016-05-30
PH12016500646B1 (en) 2016-05-30
EP3045217A4 (en) 2017-05-03
US20160279559A1 (en) 2016-09-29
PH12016500646A1 (en) 2016-05-30
NZ718875A (en) 2016-11-25
CN103432863B (zh) 2015-03-11
CN103432863A (zh) 2013-12-11
TW201515689A (zh) 2015-05-01
AU2013400510A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
JP4750453B2 (ja) スクロール圧縮機の階段型容量可変装置
WO2018126758A1 (zh) 一种旋转压缩机、制冷系统及调温设备
WO2015035694A1 (zh) 变压吸附装置
WO2009062365A1 (fr) Dispositif d'aspiration pour compresseur rotatif à capacité contrôlée
CN108862204B (zh) 氧气制备装置
CN203507775U (zh) 变压吸附装置
WO2009103217A1 (zh) 多级隔膜泵
KR100575709B1 (ko) 스크롤 압축기
TW200521328A (en) Vortex compressor
CN103541899A (zh) 螺旋压缩机
JP2591023B2 (ja) 真空ポンプ装置
JP2012117477A (ja) スクリュー圧縮機
JPH0396683A (ja) スクリュー式エキスパンダ/コンプレッサの複数のスロットを備えた吸込口
KR100575694B1 (ko) 스크롤 압축기의 용량 가변 장치
JP6685649B2 (ja) スクロール圧縮機
JP2007023848A (ja) 二段スクリュー圧縮機
RU2628393C1 (ru) Роторно-пластинчатая адсорбционная установка
CN104100527A (zh) 转子压缩机
JPH05200225A (ja) 圧力スイング式ガス分離装置
TWI471487B (zh) Screw Rotor Type Liquid Ring Compressor
JP2014109251A (ja) 真空ポンプ装置およびその運転方法
CN203925700U (zh) 一种用于大排气量汽车的双进气管消音器
TWI535481B (zh) 膜分離裝置
KR20050031797A (ko) 용량가변 회전압축기
JPS61197722A (ja) ロータリエンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013893669

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013893669

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12016500646

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 15028478

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013400510

Country of ref document: AU

Date of ref document: 20131106

Kind code of ref document: A