WO2015033669A1 - 力学量測定装置およびそれを用いた圧力センサ - Google Patents

力学量測定装置およびそれを用いた圧力センサ Download PDF

Info

Publication number
WO2015033669A1
WO2015033669A1 PCT/JP2014/068528 JP2014068528W WO2015033669A1 WO 2015033669 A1 WO2015033669 A1 WO 2015033669A1 JP 2014068528 W JP2014068528 W JP 2014068528W WO 2015033669 A1 WO2015033669 A1 WO 2015033669A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantity measuring
mechanical quantity
measuring device
resistor
impurity diffusion
Prior art date
Application number
PCT/JP2014/068528
Other languages
English (en)
French (fr)
Inventor
健太郎 宮嶋
真之 日尾
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2015535365A priority Critical patent/JP6192728B2/ja
Publication of WO2015033669A1 publication Critical patent/WO2015033669A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • G01L23/18Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms

Definitions

  • the present invention relates to a technique for measuring mechanical quantities such as stress and strain applied to an object to be measured, and in particular, a mechanical quantity measuring apparatus including a strain detection region constituted by an impurity diffusion resistor formed on a semiconductor substrate surface and The present invention relates to a pressure sensor using the same.
  • a metal foil strain gauge in which a metal resistor (metal foil) is disposed on a thin insulator has been well known for a long time.
  • the metal foil strain gauge measures the change in electrical resistance value associated with the deformation of the metal foil following the deformation of the object to be measured, and converts it into a strain amount.
  • the structure is simple and inexpensive, but with high accuracy. Because of this, it has been widely used.
  • Metal foil strain gauges on the other hand, have weak points such as that measurement errors are likely to occur when the temperature of the object to be measured changes, power consumption is high for constant driving, and a certain amount of installation area is required. have.
  • a semiconductor strain sensor having a strain detection region (bridge circuit) composed of an impurity diffusion resistor formed on the surface of a semiconductor substrate has been developed.
  • the semiconductor strain sensor can detect even small strains because the resistance change rate with respect to strain of the impurity diffusion resistor is several tens of times larger than that of the metal resistor of the conventional metal foil strain gauge ( That is, there is an advantage of high sensitivity to strain).
  • the impurity diffusion resistor can be finely patterned, and the entire semiconductor strain sensor can be reduced in size and area can be saved.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-263781 discloses a mechanical quantity measuring device that includes a strain detection unit on the surface of a semiconductor substrate and is attached to an object to be measured to measure strain. At least two or more sets of bridge circuits are formed, and one of the bridge circuits has a direction (longitudinal direction) in which a variation in resistance is measured by passing a current ⁇ 1 0 of the semiconductor single crystal substrate.
  • a mechanical quantity measuring device is disclosed in which an n-type diffusion resistor parallel to the 0> direction is formed and another bridge circuit is formed by combining a p-type diffusion resistor parallel to the ⁇ 1 1 0> direction.
  • Patent Document 1 it is supposed that a strain component in a specific direction generated in an object to be measured can be accurately measured.
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-47608 discloses a mechanical quantity measuring device using a bridge circuit formed on a semiconductor substrate, and the bridge circuit includes four bridge resistors R v1 , R v2 , R h1. , R h2 , each bridge resistor is composed of a plurality of diffused resistors, and the plurality of diffused resistors are arranged in a matrix on the semiconductor substrate, and the bridge resistors R v1 , R v2 are arranged in odd columns of the matrix.
  • the plurality of diffused resistors arranged are selectively connected in series, and the bridge resistors R h1 and R h2 are selectively connected in series with the plurality of diffused resistors arranged in even columns of the matrix.
  • a mechanical quantity measuring device is disclosed. According to Patent Document 2, it is possible to prevent occurrence of offset output of a bridge circuit due to stress generated due to a temperature change of an object to be measured, heat distribution on a semiconductor substrate, or a dose gradient of impurities of diffusion resistance. Has been.
  • the mechanical quantity measurement using a strain sensor is based on the fact that the strain sensor also deforms following the deformation of the object to be measured.
  • the strain sensor and the object to be measured The reliability of bonding with is very important.
  • a measurement unit capable of measuring a mechanical quantity acting on a semiconductor substrate is provided in a central portion of the semiconductor substrate, and the semiconductor substrate is attached to an object to be measured.
  • the mechanical quantity measuring device for indirectly measuring the mechanical quantity that is attached and acts on the object to be measured the outer peripheral part outside the central part of the semiconductor substrate is gathered in at least one place so as to be close to each other.
  • the mechanical quantity measuring device disclosed in Patent Document 3 is capable of detecting by itself the separation between the mechanical quantity measuring device and the object to be measured.
  • a typical combustion technology that aims to save energy is a technology that realizes combustion under conditions that are thinner than the stoichiometric air-fuel ratio, and a typical combustion technology that aims to reduce exhaust gas achieves stable and reliable combustion in the cylinder.
  • fuel pressure has been further increased (for example, 2500 to 3000 atmospheres) in order to promote energy saving and exhaust gas cleaning, resulting in higher pressure resistance against components.
  • High durability and durability (long-term reliability) are strongly demanded.
  • the pressure sensor is a component that forms the basis of precision control, and further high accuracy is strongly demanded in addition to pressure resistance and durability.
  • an object of the present invention is to provide a semiconductor strain sensor (mechanical quantity measuring device) having higher accuracy and long-term reliability than ever before.
  • Another object of the present invention is to provide a pressure sensor having higher accuracy and longer-term reliability than ever before by using the mechanical quantity measuring device.
  • One aspect of the present invention is a mechanical quantity measuring device having a strain detection region constituted by an impurity diffusion resistor formed on a semiconductor substrate surface, wherein the strain detection regions are arranged concentrically with each other.
  • a plurality of Wheatstone bridges, and the innermost Wheatstone bridge among the plurality of Wheatstone bridges is a group of two resistors or a four-fold symmetric shape centered on the concentric axis.
  • the other Wheatstone bridges among the plurality of Wheatstone bridges are composed of four resistor groups having a four-fold symmetry with the concentric axis as the axis, and constitute the Wheatstone bridge.
  • Each of the four bridge resistors consists of the impurity diffusion resistors that are multiples of the number of the resistor groups of the Wheatstone bridge.
  • Each of the resistor groups has at least one impurity diffusion resistor constituting the four bridge resistors, and provides a mechanical quantity measuring device.
  • Another aspect of the present invention is a pressure sensor in which a semiconductor strain sensor is joined on a metal diaphragm, wherein the semiconductor strain sensor is a mechanical quantity measuring device according to the present invention.
  • a pressure sensor is provided.
  • the present invention it is possible to provide a mechanical quantity measuring device having higher accuracy and longer-term reliability than conventional ones. Further, by using the mechanical quantity measuring device, it is possible to provide a pressure sensor having higher accuracy and longer-term reliability than ever before.
  • FIG. It is the figure which represented typically the output voltage-strain diagram of each Wheatstone bridge when the edge part of the mechanical quantity measuring device which concerns on 1st Embodiment peeled from the diaphragm. It is the plane schematic diagram and wiring system diagram which show an example of the innermost Wheatstone bridge in the mechanical quantity measuring device of 2nd Embodiment. It is the plane schematic diagram and wiring system diagram which show an example of the Wheatstone bridge other than the innermost periphery in the mechanical quantity measuring device of 2nd Embodiment.
  • FIG. It is a plane schematic diagram which shows the outline
  • the creep deformation distribution of the solder joint layer when the pseudo pressure sensor using the mechanical quantity measuring device according to the third embodiment is bending deformed, and the output voltage-strain diagram of each Wheatstone bridge are schematically shown.
  • FIG. It is the plane schematic diagram and wiring system diagram which show an example of a Wheatstone bridge other than the innermost periphery in the mechanical quantity measuring device of 4th Embodiment. It is a plane schematic diagram which shows the outline
  • FIG. 1 is a schematic plan view showing an outline of a conventional semiconductor strain sensor used in an experiment.
  • the configuration and function of a conventional semiconductor strain sensor 10 will be briefly described with reference to FIG.
  • the semiconductor strain sensor 10 includes a plurality of impurity diffusion resistors 2 formed on the surface of a silicon single crystal substrate 1, and the plurality of impurity diffusion resistors 2 include four bridge resistors R v1 , R v2 , R h1 , The Wheatstone bridge 3 is connected to each other as R h2 .
  • the Wheatstone bridge 3 is connected to the power supply terminal 4 and the ground terminal 5, and the direction of current flowing through the four bridge resistors R v1 , R v2 , R h1 , R h2 is the ⁇ 1 1 0> direction of the silicon single crystal substrate 1 and It is comprised so that it may become a direction perpendicular
  • the impurity diffusion resistor 2 that is, the four bridge resistors R v1 , R v2 , R h1 , R h2 ) change in resistance, and a potential difference is generated in the bridge voltage output.
  • This potential difference is amplified by an amplifier circuit 6 formed in the silicon single crystal substrate 1 and taken out from the output terminal 7 as an electric signal.
  • the semiconductor strain sensor 10 can output an electrical signal corresponding to the amount of strain applied to the region where the Wheatstone bridge 3 is formed (strain detection region).
  • FIG. 2 is a schematic plan view showing an outline of the pseudo pressure sensor used in the experiment and a schematic cross-sectional view taken along line ab.
  • the pseudo pressure sensor 20 is obtained by joining the semiconductor strain sensor 10 via a solder joint layer 22 at a substantially central position of a metal plate 21 imitating a diaphragm. Since the pressure sensor for an automobile engine is disposed in a high-temperature environment (for example, about 120 to 130 ° C.), the diaphragm and the semiconductor strain sensor are not usually joined with an organic adhesive, but with solder. Done by joining.
  • the metal plate 21 is provided with a terminal block 23 to which the power supply terminal 4, the ground terminal 5, and the output terminal 7 of the semiconductor strain sensor 10 are connected.
  • FIG. 3 is a schematic cross-sectional view showing how the pseudo pressure sensor is deformed, and a graph showing the relationship between the output voltage of the semiconductor strain sensor and time.
  • the experiment was performed in an environment of 130 ° C.
  • the metal plate 21 of the pseudo pressure sensor 20 is distorted. Strain of the metal plate 21, propagates in the semiconductor strain sensor 10 through the solder bonding layer 22, the output voltage of the semiconductor strain sensor 10 is an output voltage V + via a transient state from V 0.
  • the bending stress applied to the metal plate 21 was a stress within the elastic deformation range of the metal plate 21.
  • the same experiment was performed by changing the bending stress (that is, the amount of strain generated) applied to the metal plate 21 and the environmental temperature. As the bending stress was increased or the environmental temperature was increased, the output of the semiconductor strain sensor 10 was increased. It was confirmed that the voltage drop occurred faster and more greatly. On the other hand, no defects were found in the metal plate 21 and the semiconductor strain sensor 10 after any experiment. From these experimental results, it is considered that the zero point offset phenomenon may be caused by creep deformation in the solder joint layer 22.
  • FIG. 4 is a diagram schematically illustrating the stress distribution applied to the solder joint layer and the creep deformation distribution of the solder joint layer when the pseudo pressure sensor is bending deformed.
  • the semiconductor strain sensor 10 and the solder joint layer 22 are sufficiently small with respect to the metal plate 21, when the pseudo pressure sensor 20 is bent and deformed, stress concentration is caused at the end of the solder joint layer 22. Occurs.
  • the environmental temperature of this experiment is 130 ° C., and considering the melting point of the solder, this is a temperature region in which creep deformation can occur for the solder joint layer 22. As a result, it is considered that creep deformation occurs from the end of the solder joint layer 22.
  • solder material or a brazing material having a high melting point it is not preferable to join the semiconductor strain sensor 10 using a bonding material having a melting point high enough to suppress creep deformation, because the possibility that the semiconductor strain sensor 10 itself is thermally deteriorated rapidly increases.
  • the structure of the semiconductor strain sensor capable of correcting the influence has been intensively studied.
  • the present invention has been completed as a result of this research.
  • the mechanical quantity measuring device is a mechanical quantity measuring device including a strain detection region constituted by an impurity diffusion resistor formed on the surface of a semiconductor substrate, and the strain detection regions are mutually connected.
  • the Wheatstone bridge is composed of four resistor groups having a four-fold symmetry, and the other Wheatstone bridges of the plurality of Wheatstone bridges are formed of four resistor groups having a four-fold symmetrical shape about the concentric axis.
  • Each of the four bridge resistors constituting the bridge is an impurity extension that is a multiple of the number of the resistor groups of the Wheatstone bridge.
  • a resistor element, each of the resistor group is characterized by having each at least one said impurity diffusion resistors constituting the four bridge resistors.
  • each of the impurity diffusion resistors has a linear shape
  • the resistor group has a structure in which a plurality of segments are arranged in series, and the segments are lines of the impurity diffusion resistors.
  • the segment is composed of a plurality of impurity diffusion resistors arranged in parallel with each other, and has a rectangular shape as the segment.
  • the adjacent segments in the resistor group are arranged so that the line directions of the impurity diffusion resistors constituting the segments are orthogonal to each other.
  • the distance between the plurality of Wheatstone bridges is not more than the length of one side of the segment.
  • the distance between the adjacent segments in the Wheatstone bridge is not more than the length of one side of the segment.
  • the segment has a dummy resistor which has the same configuration as the impurity diffusion resistor but is not electrically connected.
  • a correction arithmetic circuit for performing a correction calculation of the strain amount based on the output from each of the plurality of Wheatstone bridges is further provided on the semiconductor substrate.
  • the correction calculation is performed based on the distance from the concentricity of each of the plurality of Wheatstone bridges in addition to the output from the plurality of Wheatstone bridges.
  • the semiconductor substrate is a silicon single crystal substrate, and the direction of current flowing through the impurity diffusion resistor is a ⁇ 1 1 0> direction of the silicon single crystal substrate or a direction orthogonal to the ⁇ 1 1 0> direction It is connected to become.
  • the pressure sensor according to the present invention is a pressure sensor in which a semiconductor strain sensor is joined on a metal diaphragm, and the semiconductor strain sensor is the mechanical quantity measuring device according to the present invention described above. It is characterized by being.
  • the present invention can add the following improvements and changes to the pressure sensor according to the present invention described above.
  • the joint is a solder joint.
  • the pressure sensor is a pressure sensor for an automobile engine.
  • FIG. 5 is a schematic plan view showing an outline of the mechanical quantity measuring device according to the first embodiment.
  • details of wiring for example, wiring to each impurity diffusion resistor
  • the mechanical quantity measuring device 30 (semiconductor strain sensor) according to the first embodiment is disposed concentrically on the surface of a semiconductor substrate (for example, a silicon single crystal substrate 1). It has two Wheatstone bridges A and B.
  • the innermost Wheatstone bridge A is composed of two resistor groups RG A1 and RG A2 having a two-fold symmetric shape about the concentric axis.
  • the Wheatstone bridge B other than the innermost circumference is composed of four resistor groups RG B1 , RG B2 , RG B3 , and RG B4 that have a four-fold symmetrical shape about the concentric axis.
  • the Wheatstone bridges A and B are preferably formed sufficiently small (for example, 0.2 mm square) with respect to the size of the silicon single crystal substrate 1 (for example, 4 mm square).
  • Each of the four bridge resistors R v1 , R v2 , R h1 , R h2 constituting the Wheatstone bridge is composed of an impurity diffusion resistor that is a multiple of the number of resistor groups of the Wheatstone bridge.
  • the bridge resistance R v1 is composed of two impurity diffusion resistors r Av11 and r Av12
  • the bridge resistance R v2 is the impurity diffusion resistor r Av21.
  • the bridge resistor R h1 is composed of two impurity diffused resistors r Ah11 and r Ah12
  • the bridge resistor R h2 is composed of two impurity diffused resistors r Ah21 and r Ah22 .
  • the bridge resistance R v1 is composed of four impurity diffusion resistors r Bv11 , r Bv12 , r Bv13 and r Bv14
  • the bridge resistance R v2 is an impurity diffusion resistor.
  • bridge resistance R h1 is composed of four impurity diffusion resistors r Bh11 , r Bh12 , r Bh13 , r Bh14 , and bridge resistance R h2 is impurity diffusion It consists of four resistors, r Bh21 , r Bh22 , r Bh23 , and r Bh24 .
  • each of the resistor groups has at least one impurity diffusion resistor constituting four bridge resistors.
  • the resistor group RG A1 includes impurity diffusion resistors r Av11 , r Ah11 , r Av21 , r Ah21
  • the resistor group RG A2 includes impurity diffusion resistors r Av12 , r Ah12. , R Av22 , r Ah22 .
  • the resistor group RG B1 includes impurity diffusion resistors r Bv11 , r Bh11 , r Bv21 , r Bh21
  • the resistor group RG B2 includes impurity diffusion resistors r Bv12 , r Bh12 , r Bv22.
  • R Bh22 and the resistor group RG B3 is made of impurity diffusion resistors r Bv13 , r Bh13 , r Bv23 , r Bh23
  • the resistor group RG B4 is made of impurity diffusion resistors r Bv14 , r Bh14 , r Bv24 , r Consists of Bh24 .
  • the Wheatstone bridges A and B are arranged concentrically with each other and are composed of resistor groups having rotational symmetry, and each resistor group has all four bridge resistance elements. Yes. From this, each of the Wheatstone bridges A and B is detected within its own strain detection region (more strictly, in the region where the impurity diffusion resistors constituting the Wheatstone bridge are formed) The characteristic is that the signal is highly averaged and an averaged signal in the region can be obtained.
  • Each of Wheatstone bridges A and B is connected to a power terminal 4 and a ground terminal 5.
  • a signal (potential difference in bridge voltage) obtained from the Wheatstone bridge A is amplified by an amplifier circuit 6 formed in the silicon single crystal substrate 1, and a signal obtained from the Wheatstone bridge B is an amplifier formed in the silicon single crystal substrate 1.
  • Amplified by circuit 31 The signal amplified by the amplifier circuit 6 and the signal amplified by the amplifier circuit 31 are input to the correction arithmetic circuit 32 formed in the silicon single crystal substrate 1, and detected by the Wheatstone bridge A in the correction arithmetic circuit 32.
  • Correction calculation is performed to calculate the true strain amount from the difference between the strain amount detected and the strain amount detected by Wheatstone bridge B, and the corrected calculation signal is taken out from the output terminal 7 (for details of the correction calculation, see Will be described later).
  • the corrected calculation signal is taken out from the output terminal 7 (for details of the correction calculation, see Will be described later).
  • FIG. 6 schematically shows the creep deformation distribution of the solder joint layer when the pseudo pressure sensor using the mechanical quantity measuring apparatus according to the first embodiment is bending deformed, and the output voltage-strain diagram of each Wheatstone bridge.
  • the true strain amount generated in the Wheatstone bridges A and B is considered to be essentially the same.
  • creep deformation occurs in the solder joint layer 22, and the amount of creep deformation increases toward the outer peripheral region of the mechanical quantity measuring device 30. That is, as shown in FIG. 6, than the Wheatstone bridge creep deformation amount of strain detection areas A epsilon A, is larger creep deformation amount of the strain detection area of the Wheatstone bridge B ⁇ B ( ⁇ A ⁇ B) .
  • the amount of strain propagated to the Wheatstone bridges A and B decreases more than the true amount of strain (the amount of strain in an ideal state without creep deformation).
  • the output voltages Y A and Y B of the Wheatstone bridges A and B are lower than the ideal output voltage Y i , and a difference occurs between the output voltages Y A and Y B of the Wheatstone bridges A and B. It is conceivable that.
  • the difference between the output voltages Y A and Y B is considered to be proportional to the difference in the amount of creep deformation in the region where the Wheatstone bridges A and B are formed.
  • the output voltage at zero strain is V i0
  • the output voltage at zero strain of Wheatstone bridge A is V A0
  • the output voltage at zero strain of Wheatstone bridge B is V B0
  • the true strain is Assuming X and the strain sensitivity of the Wheatstone bridge as G, Y i , Y A and Y B can be expressed as the following equations (1) to (3), respectively.
  • Y i V i0 + GX Equation (1)
  • Y A V A0 + GX Equation (2)
  • Y B V B0 + GX Equation (3).
  • the creep deformation distribution (relation between creep deformation and position) of the solder joint layer 22 can be approximated by a quadratic function curve.
  • the concentric Wheatstone bridges A and B are arranged in the central region of the silicon single crystal substrate 1, the position of the apex of the quadratic function curve of the creep deformation distribution overlaps the concentricity of the Wheatstone bridges A and B.
  • the concentric Wheatstone bridges A and B are formed sufficiently small with respect to the size of the silicon single crystal substrate 1, and the distance L A between the concentricity and the Wheatstone bridge A, the concentricity and the Wheatstone bridge. It can be said that the distance L B to B and the distance L AB between the Wheatstone bridges A and B are sufficiently small. In a quadratic function curve, the vicinity of the apex or between adjacent two points can generally be approximated by a linear function.
  • the distances L A and L B are defined as the average distance between the regions where the Wheatstone bridges A and B are formed and the centers thereof, and the distance L AB is defined as the difference between L A and L B. .
  • Equation (6) is obtained from equations (1), (2), and (5), and the output voltage Y i in the ideal state can be obtained.
  • the output voltages Y A and Y B are obtained as measured values from the Wheatstone bridges A and B, and the distances L A and L AB are values obtained from the dimensions of the Wheatstone bridges A and B.
  • the mechanical quantity measuring device 30 performs the correction calculation shown in the equation (6) on the signals obtained from the Wheatstone bridges A and B in the correction arithmetic circuit 32, thereby performing soldering. Even if creep deformation occurs in the bonding layer 22, a signal (that is, a true strain amount) in which the influence is corrected can be obtained.
  • the pressure sensor using the mechanical quantity measuring device 30 can correct the effect of creep deformation in the solder joint layer 22, but excessive pressure is applied to the diaphragm or the environmental temperature rises excessively.
  • the solder joint layer 22 may creep rupture, and the end of the mechanical quantity measuring device 30 (end of the silicon single crystal substrate 1) may start to peel from the diaphragm.
  • FIG. 7 is a diagram schematically showing an output voltage-strain diagram of each Wheatstone bridge when the end portion of the mechanical quantity measuring device according to the first embodiment is peeled off from the diaphragm.
  • the output voltage before peeling at the Wheatstone bridge B disposed on the outer peripheral side.
  • the output voltage Y B ′ is significantly lower than Y B.
  • the output voltage V B′0 at zero strain is lower than V B0 and the proportional relationship with the true strain X is broken.
  • the output signal shows a characteristic change earlier, so by comparing the signals obtained from the Wheatstone bridges A and B with the correction arithmetic circuit 32, the dynamics A sign of peeling of the quantity measuring device 30 can be detected. Moreover, a preventive maintenance function can be added by setting to output a predetermined signal when a sign of peeling is detected.
  • FIG. 8 is a schematic plan view and a wiring system diagram showing an example of the innermost Wheatstone bridge in the mechanical quantity measuring device of the second embodiment.
  • details of wiring for example, wiring between impurity diffusion resistors are omitted in order to simplify the drawing.
  • the innermost Wheatstone bridge A ′ in the present embodiment is composed of two resistor groups RG A1 and RG A2 having a two-fold symmetrical shape. It has a structure in which a plurality of segments 33 are arranged in a row.
  • the segment 33 includes a plurality of impurity diffusion resistors having a linear shape.
  • the plurality of impurity diffusion resistors are arranged so that their linear directions are parallel to each other, and the segment 33 has a rectangular shape.
  • Each of the four bridge resistors R v1 , R v2 , R h1 , R h2 constituting the Wheatstone bridge A ′ is composed of an impurity diffusion resistor that is a multiple of the number of resistor groups (here, 2).
  • the bridge resistor R v1 consists of four diffusion resistors r Av11, r Av12, r Av13 , r Av14, bridge resistors R v2 impurity diffused resistor r Av21, r Av22, r Av23 , r consists of four Av24, bridge resistors R h1 consists of four diffusion resistors r Ah11, r Ah12, r Ah13 , r Ah14, bridge resistors R h2 are impurity diffused resistor r Ah21, r Ah22, r Ah23 , R Ah24 .
  • the resistor group RG A1, RG A2 within segment 33 adjacent in the line direction of the impurity diffusion resistors composing them segments 33 are arranged such that the orthogonal relation to each other.
  • a segment 33 in the resistor group within RG A1, an impurity diffusion resistor r Av11, r Av12, r Av21 , linear direction of r Av22 is a silicon single crystal substrate 1 to ⁇ 1 1 0> direction
  • the impurity diffused resistors are arranged so as to be orthogonal to each other, and are connected so that a current flows in that direction.
  • the segment 33 adjacent to the resistor group RG A1 is arranged such that the line direction of the impurity diffusion resistors r Ah11 , r Ah12 , r Ah21 , r Ah22 is the ⁇ 1 1 0> direction of the silicon single crystal substrate 1
  • the impurity diffusion resistors are arranged and connected so that a current flows in that direction.
  • impurity diffusion resistor r Av13, r Av14, r Av23 , linear direction of r Av24 is perpendicular to ⁇ 1 1 0> direction of the silicon single crystal substrate 1
  • the impurity diffusion resistors are connected so that a current flows in that direction.
  • the segment 33 adjacent to the resistor group RG A2 is arranged such that the line direction of the impurity diffusion resistors r Ah13 , r Ah14 , r Ah23 , r Ah24 is the ⁇ 1 1 0> direction of the silicon single crystal substrate 1
  • the impurity diffusion resistors are arranged and connected so that a current flows in that direction.
  • each resistor group has all four bridge resistance elements.
  • the Wheatstone bridge A ′ has a high in-plane detection isotropic property in its own strain detection region (in the region where the impurity diffusion resistor constituting the Wheatstone bridge is formed). The characteristic is that an averaged signal can be obtained.
  • the segment 33 preferably has a dummy resistor 34 which has the same configuration as the impurity diffusion resistor but is not electrically connected.
  • the dummy resistor 34 may be arranged in parallel to the impurity diffusion resistor constituting the segment 33 and sandwiching the bundle of the impurity diffusion resistor (in other words, on the outermost side in the segment). preferable.
  • the formation of the dummy resistor 34 in such a positional relationship contributes to equalization of the dopant concentration of the impurity diffusion resistor constituting the Wheatstone bridge in the process of forming the impurity diffusion resistor.
  • FIG. 9 is a schematic plan view and a wiring system diagram showing an example of a Wheatstone bridge other than the innermost circumference in the mechanical quantity measuring device of the second embodiment.
  • details of wiring for example, wiring between impurity diffusion resistors are omitted to simplify the drawing.
  • the Wheatstone bridge B ′ other than the innermost circumference in the present embodiment is composed of four resistor groups RG B1 , RG B2 , RG B3 , and RG B4 having a four-fold symmetrical shape.
  • Each of the resistor groups has a structure in which a plurality of segments 33 are arranged in series.
  • the segment 33 includes a plurality of impurity diffusion resistors having a linear shape.
  • the plurality of impurity diffusion resistors are arranged so that their linear directions are parallel to each other, and the segment 33 has a rectangular shape.
  • Each of the four bridge resistors R v1 , R v2 , R h1 , R h2 constituting the Wheatstone bridge B ′ is composed of an impurity diffusion resistor that is a multiple of the number of resistor groups (here, 4).
  • the bridge resistance R v1 is composed of 12 impurity diffusion resistors r Bv11 , r Bv12 , r Bv13 , r Bv14 ,..., R Bv19 , r Bv110 , r Bv111 , r Bv112
  • the bridge resistance R v2 includes 12 impurity diffusion resistors r Bv21 , r Bv22 , r Bv23 , r Bv24 ,..., r Bv29 , r Bv210 , r Bv211 , r Bv212
  • the bridge resistor R h1 is the impurity diffusion resistor r Bh11.
  • R Bh12 , r Bh13 , r Bh14 ,..., R Bh19 , r Bh110 , r Bh111 , r Bh112 , and the bridge resistance R h2 is impurity diffusion resistors r Bh21 , r Bh22 , r Bh23 , r Bh24 ,..., R Bh29 , r Bh210 , r Bh211 , r Bh212 are included.
  • the adjacent segments 33 in the resistor groups RG B1 to RG B4 have a relationship in which the line directions of the impurity diffusion resistors constituting the segments 33 are orthogonal to each other. It is arranged.
  • one segment 33 in the resistor group RG B1 is a direction in which the line direction of the impurity diffusion resistors r Bv11 , r Bv12 , r Bv21 , r Bv22 is orthogonal to the ⁇ 1 1 0> direction of the silicon single crystal substrate 1
  • the impurity diffusion resistors are connected so that a current flows in that direction.
  • the segment 33 adjacent to the resistor group RG B1 is arranged such that the line direction of the impurity diffusion resistors r Bh11 , r Bh12 , r Bh21 , r Bh22 is the ⁇ 1 1 0> direction of the silicon single crystal substrate 1
  • the impurity diffusion resistors are arranged and connected so that a current flows in that direction.
  • the segment 33 adjacent thereto is arranged so that the line direction of the impurity diffusion resistors r Bv13 , r Bv14 , r Bv23 , r Bv24 is a direction perpendicular to the ⁇ 1 1 0> direction of the silicon single crystal substrate 1.
  • the impurity diffusion resistors are connected so that a current flows in that direction.
  • each of the resistor groups RG B1 to RG B4 has all four bridge resistance elements. From this, the Wheatstone bridge B ′ has a high in-plane isotropy of detection in its own strain detection region (in the region where the impurity diffusion resistor constituting the Wheatstone bridge is formed). The characteristic is that an averaged signal can be obtained.
  • the segment 33 of the Wheatstone bridge B ' preferably has a dummy resistor 34 having the same configuration as the impurity diffusion resistor, but not electrically connected, like that of the Wheatstone bridge A'.
  • FIG. 10 is a schematic plan view showing the outline of the mechanical quantity measuring device of the second embodiment. Also in FIG. 10, in order to simplify the drawing, details of wiring (for example, wiring to each impurity diffusion resistor) are omitted.
  • the mechanical quantity measuring device 30 ′ is configured such that the Wheatstone bridge A ′ of FIG. 8 and the Wheatstone bridge B ′ of FIG. They are arranged concentrically.
  • Each of the Wheatstone bridges A ′ and B ′ is connected to the power supply terminal 4 and the ground terminal 5.
  • the signal obtained from the Wheatstone bridge A ′ (potential difference in the bridge voltage) is amplified by the amplifier circuit 6 formed in the silicon single crystal substrate 1, and the signal obtained from the Wheatstone bridge B ′ is formed in the silicon single crystal substrate 1. Amplified by the amplifier circuit 31.
  • the signal amplified by the amplifier circuit 6 and the signal amplified by the amplifier circuit 31 are input to the correction arithmetic circuit 32 formed in the silicon single crystal substrate 1, and the correction arithmetic circuit 32 uses the Wheatstone bridge A ′.
  • a correction operation for calculating the true strain amount from the difference between the detected strain amount and the strain amount detected by the Wheatstone bridge B ′ is performed, and the signal subjected to the correction operation is taken out from the output terminal 7.
  • the Wheatstone bridge A ′ and the Wheatstone bridge B ′ are arranged so as to be in contact with each other without gaps (more precisely, the segments constituting the Wheatstone bridge A ′ and the Wheatstone bridge B ′ are configured. And the segment to be touched without any gap). In other words, the strain detection region is formed compactly. Thereby, the influence of creep deformation on the solder joint layer 22 can be suppressed as much as possible, and the accuracy of the correction calculation by the correction calculation circuit 32 is improved. Other functions and effects are the same as those of the mechanical quantity measuring device 30 of the first embodiment.
  • FIG. 11 is a schematic plan view showing the outline of the mechanical quantity measuring device according to the third embodiment. Also in FIG. 11, in order to simplify the drawing, details of wiring (for example, wiring to each impurity diffusion resistor) are omitted.
  • the mechanical quantity measuring device 40 has three Wheatstone bridges A, B, and C arranged concentrically on the surface of the silicon single crystal substrate 1. is doing.
  • a third Wheatstone bridge C is disposed on the outer periphery of the Wheatstone bridge B of the mechanical quantity measuring device 30 of the first embodiment shown in FIG.
  • the Wheatstone bridges A and B have the same configuration as those of the mechanical quantity measuring device 30, and the Wheatstone bridge C has four resistor groups RG C1 and RG C2 having a four-fold symmetrical shape about the concentric axis. , RG C3 , RG C4 .
  • Each of the four bridge resistors R v1 , R v2 , R h1 , R h2 constituting the Wheatstone bridge C is composed of an impurity diffusion resistor that is a multiple of the number of resistor groups (here, 4).
  • the bridge resistor R v1 consists of four diffusion resistors r Cv11, r Cv12, r Cv13 , r Cv14, bridge resistors R v2 impurity diffused resistor r Cv21, r Cv22, r Cv23 , r consists of four Cv24, bridge resistors R h1 consists of four diffusion resistors r Ch11, r Ch12, r Ch13 , r Ch14, bridge resistors R h2 are impurity diffused resistor r Ch21, r Ch22, r Ch23 , R Ch24 .
  • each of the resistor groups constituting the Wheatstone bridge C has at least one impurity diffusion resistor constituting four bridge resistors.
  • the resistor group RG C1 impurity diffused resistor r Cv11, r Ch11, r Cv21 consists r Ch21
  • resistor group RG C2 impurity diffused resistor r Cv12, r Ch12, r Cv22 , r Ch22 consists
  • resistor group RG C3 consists impurity diffusion resistor r Cv13, r Ch13, r Cv23 , r Ch23
  • resistor group RG C4 consists impurity diffused resistor r Cv14, r Ch14, r Cv24 , r Ch24 .
  • Each of Wheatstone bridges A, B, and C is connected to power supply terminal 4 and ground terminal 5.
  • a signal (potential difference in bridge voltage) obtained from the Wheatstone bridge A is amplified by an amplifier circuit 6 formed in the silicon single crystal substrate 1, and a signal obtained from the Wheatstone bridge B is an amplifier formed in the silicon single crystal substrate 1.
  • a signal amplified by the circuit 31 and obtained from the Wheatstone bridge C is amplified by an amplifier circuit 41 formed in the silicon single crystal substrate 1.
  • the signal amplified by the amplifier circuit 6, the signal amplified by the amplifier circuit 31, and the signal amplified by the amplifier circuit 41 are input to the correction calculation circuit 32 formed in the silicon single crystal substrate 1, and the correction calculation is performed.
  • a correction operation for calculating the true strain amount from the difference in strain amount detected in each of the Wheatstone bridges A, B, and C is performed, and the corrected signal is taken out from the output terminal 7.
  • the correction calculation is performed using the strain amount detected in each of the triple Wheatstone bridges A, B, and C. Therefore, the accuracy of the correction calculation is improved compared to the mechanical quantity measuring device 30 (correction) Details of the calculation will be described later). Other functions and effects are the same as those of the mechanical quantity measuring device 30 of the first embodiment.
  • FIG. 12 schematically shows the creep deformation distribution of the solder joint layer when the pseudo pressure sensor using the mechanical quantity measuring device according to the third embodiment is bent and the output voltage-strain diagram of each Wheatstone bridge.
  • the true strain amount generated in the Wheatstone bridges A, B, and C is considered to be essentially the same.
  • creep deformation occurs in the solder joint layer 22 under a high temperature environment, and the amount of creep deformation increases toward the outer peripheral region of the mechanical quantity measuring device 40. That is, as shown in FIG.
  • the amount of strain transmitted to the Wheatstone bridges A, B, and C decreases from the true amount of strain (the amount of strain in an ideal state without creep deformation).
  • the output voltages Y A , Y B , Y C of the Wheatstone bridges A, B, C are lower than the ideal output voltage Y i , and the output voltages Y A , Y of the Wheatstone bridges A, B, C are reduced. B, and a difference between the Y C occurs.
  • the difference between the output voltages Y A , Y B , and Y C is considered to be proportional to the difference in creep deformation amount in the region where the Wheatstone bridges A, B, and C are formed.
  • the output voltage at zero strain in the ideal state is V i0
  • the output voltage at zero strain of Wheatstone bridge A is V A0
  • the output voltage at zero strain of Wheatstone bridge B is Assuming V B0
  • the output voltage of the Wheatstone bridge C at zero strain is V C0
  • the true strain is X
  • the strain sensitivity of the Wheatstone bridge is G, Y i , Y A , Y B 1) to (3)
  • Y C can be represented by the following formula (7).
  • Y i V i0 + GX Equation (1)
  • Y A V A0 + GX Equation (2)
  • Y B V B0 + GX Equation (3)
  • Y C V C0 + GX Equation (7).
  • Y A and Y B and the difference between Y A and Y C can be expressed by the following equations (4) and (8) from equations (2), (3), and (7).
  • Y A -Y B V A0 -V B0 ... Equation (4)
  • Y A ⁇ Y C V A0 ⁇ V C0 (8)
  • the creep deformation distribution (relationship between the creep deformation amount and the position) of the solder joint layer 22 in the region where the Wheatstone bridges A, B, and C are formed is It can be approximated by a linear function substantially.
  • the distance between the concentric Wheatstone bridges A, B, and C and the Wheatstone bridge C is L C
  • the distance between the Wheatstone bridges A and C is L AC
  • the distance L C is defined as the average distance between the region where the Wheatstone bridge C is formed and the center of the Wheatstone bridge C
  • the distance L AC is defined as the difference between L A and L C.
  • the output voltages Y A , Y B and Y C are obtained as measured values from the Wheatstone bridges A, B and C, and the distances L A , L AB and L AC are the Wheatstone bridges. Since the values are obtained from the dimensions of A, B, and C, the output voltage Y i in the ideal state can be obtained from each equation. That is, the mechanical quantity measuring device 40 of the present embodiment can calculate the output voltage Y i from the combination of the Wheatstone bridges A and C in addition to the combination of the Wheatstone bridges A and B.
  • the Wheatstone bridge A the output voltage was calculated from the combination of B Y i and Wheatstone bridge A, by comparing the output voltage Y i calculated from the combination of C, and the like accuracy of existence and the correction value of the creep occurs It can be verified, and more accurate correction calculation is possible.
  • the strain detection region is composed of triple Wheatstone bridges A, B, and C
  • the creep deformation quantity distribution is quadratic. Even when function approximation is performed, correction calculation can be performed with high accuracy.
  • the difference between the output voltage V i0 and the output voltage V A0 can be expressed as the following equations (11) and (12).
  • Creep deformation is obtained by comparing the output voltage Y i calculated from the combination of the Wheatstone bridges A and B with the output voltage Y i calculated from the combination of the Wheatstone bridges A and C using the equations (13) and (14). The accuracy of the correction value and the correction value can be verified, and more accurate correction calculation can be performed.
  • FIG. 13 is a schematic plan view and a wiring system diagram showing an example of a Wheatstone bridge other than the innermost circumference in the mechanical quantity measuring device of the fourth embodiment.
  • details of wiring for example, wiring between impurity diffusion resistors are omitted in order to simplify the drawing.
  • the Wheatstone bridge C ′ other than the innermost circumference in the present embodiment is composed of four resistor groups RG C1 , RG C2 , RG C3 , RG C4 having a four-fold symmetrical shape,
  • Each of the resistor groups has a structure in which a plurality of segments 33 are arranged in series.
  • the segment 33 includes a plurality of impurity diffusion resistors having a linear shape.
  • the plurality of impurity diffusion resistors are arranged so that their linear directions are parallel to each other, and the segment 33 has a rectangular shape.
  • Each of the four bridge resistors R v1 , R v2 , R h1 , R h2 constituting the Wheatstone bridge C ′ is composed of an impurity diffusion resistor that is a multiple of the number of resistor groups (here, 4).
  • the bridge resistance R v1 is composed of 20 impurity diffusion resistors r Cv11 , r Cv12 , r Cv13 , r Cv14 ,..., R Cv117 , r Cv118 , r Cv119 , r Cv120
  • the bridge resistance R v2 is composed of 20 impurity diffusion resistors r Cv21 , r Cv22 , r Cv23 , r Cv24 ,..., r Cv217 , r Cv218 , r Cv219 , r Cv220
  • the bridge resistor R h1 is an impurity diffusion resistor r Ch11.
  • R Ch12 , r Ch13 , r Ch14 ,..., R Ch117 , r Ch118 , r Ch119 , r Ch120 , and the bridge resistance R h2 is an impurity diffusion resistor r Ch21 , r Ch22 , r Ch23 , r .. , RCh217 , rCh218 , rCh219 , rCh220 .
  • the adjacent segments 33 in the resistor groups RG C1 to RG C4 have a relationship in which the line directions of the impurity diffusion resistors constituting the segments 33 are orthogonal to each other. It is arranged.
  • one segment 33 in the resistor group RG C1 is a direction in which the line direction of the impurity diffusion resistors r Cv11 , r Cv12 , r Cv21 , r Cv22 is orthogonal to the ⁇ 1 1 0> direction of the silicon single crystal substrate 1
  • the impurity diffusion resistors are connected so that a current flows in that direction.
  • an impurity diffusion resistor r Ch11, r Ch12, r Ch21 , linear direction of r CH 22 is a silicon single crystal substrate 1 ⁇ 1 1 0> as in a direction
  • the impurity diffusion resistors are arranged and connected so that a current flows in that direction.
  • the segment 33 adjacent thereto is arranged so that the line direction of the impurity diffusion resistors r Cv13 , r Cv14 , r Cv23 , r Cv24 is perpendicular to the ⁇ 1 1 0> direction of the silicon single crystal substrate 1.
  • the impurity diffusion resistors are connected so that a current flows in that direction.
  • each of the resistor groups RG C1 to RG C4 has all four bridge resistance elements.
  • the Wheatstone bridge C ′ has a high in-plane detection isotropic property in its own strain detection region (in the region where the impurity diffusion resistor constituting the Wheatstone bridge is formed). The characteristic is that an averaged signal can be obtained.
  • the segment 33 of the Wheatstone bridge C ′ preferably has a dummy resistor 34 which has the same configuration as the impurity diffusion resistor, but is not electrically connected, like the Wheatstone bridges A ′ and B ′.
  • FIG. 14 is a schematic plan view showing an outline of the mechanical quantity measuring device of the fourth embodiment. Also in FIG. 14, in order to simplify the drawing, details of wiring (for example, wiring to each impurity diffusion resistor) are omitted.
  • the mechanical quantity measuring device 40 ′ includes a Wheatstone bridge A ′ (see FIG. 8) and a Wheatstone bridge B ′ (see FIG. 9) on the surface of the silicon single crystal substrate 1. ) And the Wheatstone bridge C ′ (see FIG. 13) are arranged concentrically with each other. Each of the Wheatstone bridges A ′, B ′, and C ′ is connected to the power supply terminal 4 and the ground terminal 5.
  • the signal obtained from the Wheatstone bridge A ′ (potential difference in the bridge voltage) is amplified by the amplifier circuit 6 formed in the silicon single crystal substrate 1, and the signal obtained from the Wheatstone bridge B ′ is formed in the silicon single crystal substrate 1.
  • the signal amplified by the amplifier circuit 31 and obtained from the Wheatstone bridge C ′ is amplified by the amplifier circuit 41 formed in the silicon single crystal substrate 1.
  • the signal amplified by the amplifier circuit 6, the signal amplified by the amplifier circuit 31, and the signal amplified by the amplifier circuit 41 are input to the correction calculation circuit 32 formed in the silicon single crystal substrate 1, and the correction calculation is performed.
  • the circuit 32 a correction operation for calculating the true strain amount from the difference between the strain amount detected by the Wheatstone bridge A ′, the strain amount detected by the Wheatstone bridge B ′, and the strain amount detected by the Wheatstone bridge C ′ is performed.
  • the signal that has been corrected and calculated is taken out from the output terminal 7.
  • the Wheatstone bridge A', the Wheatstone bridge B ', and the Wheatstone bridge C' are arranged so as to contact each other without any gap.
  • the strain detection region is formed compactly. Thereby, the influence of creep deformation on the solder joint layer 22 can be suppressed as much as possible, and the accuracy of the correction calculation by the correction calculation circuit 32 is improved.
  • Other functions and effects are the same as those of the mechanical quantity measuring device 40 of the third embodiment.
  • FIG. 15 is a schematic plan view illustrating the outline of the mechanical quantity measuring device according to the fifth embodiment. Also in FIG. 15, in order to simplify the drawing, details of wiring (for example, wiring to each impurity diffusion resistor) are omitted.
  • the mechanical quantity measuring device 50 includes a Wheatstone bridge A ′ (see FIG. 8) and a Wheatstone bridge C ′ (see FIG. 13) on the surface of the silicon single crystal substrate 1. Are arranged concentrically with each other. In short, the mechanical quantity measuring device 50 has a strain detection region in which the Wheatstone bridge B 'is removed from the previous mechanical quantity measuring device 40'.
  • Each of the Wheatstone bridges A ′ and C ′ is connected to the power supply terminal 4 and the ground terminal 5.
  • a signal (potential difference in bridge voltage) obtained from the Wheatstone bridge A ′ is amplified by an amplifier circuit 6 formed in the silicon single crystal substrate 1, and a signal obtained from the Wheatstone bridge C ′ is formed in the silicon single crystal substrate 1.
  • Amplified by the amplifier circuit 41 The signal amplified by the amplifier circuit 6 and the signal amplified by the amplifier circuit 41 are input to the correction arithmetic circuit 32 formed in the silicon single crystal substrate 1, and the correction arithmetic circuit 32 uses the Wheatstone bridge A ′.
  • a correction operation for calculating the true strain amount from the difference between the detected strain amount and the strain amount detected by the Wheatstone bridge C ′ is performed, and the signal subjected to the correction operation is taken out from the output terminal 7.
  • each impurity diffusion constituting the Wheatstone bridge is arranged.
  • the wiring of the resistor becomes easy and contributes to the improvement of manufacturing yield (that is, reduction of manufacturing cost).
  • the Wheatstone bridge C ′ of the mechanical quantity measuring device 50 is disposed on the outer peripheral side than the Wheatstone bridge B ′ of the mechanical quantity measuring device 30 ′, the effect of creep deformation of the solder joint layer 22 is accelerated. Can be detected.
  • the distance between the Wheatstone bridges arranged concentrically is preferably equal to or less than the length of one side of the segment 33 constituting the Wheatstone bridge. When the distance between the Wheatstone bridges is longer than the length of one side of the segment, the accuracy of the correction calculation is lowered.
  • Other functions and effects are the same as those of the mechanical quantity measuring device 30 of the first embodiment.
  • FIG. 16 is a schematic plan view illustrating the outline of the mechanical quantity measuring device according to the sixth embodiment. Also in FIG. 16, in order to simplify the drawing, details of wiring (for example, wiring to each impurity diffusion resistor) are omitted.
  • the Wheatstone bridge A ′ (see FIG. 8) and the Wheatstone bridge C ′′ are concentric with each other on the surface of the silicon single crystal substrate 1.
  • the Wheatstone bridge C ′′ of the mechanical quantity measuring device 60 has a structure in which some segments are removed from the Wheatstone bridge C ′ in the previous mechanical quantity measuring device 50. .
  • Each of the Wheatstone bridges A ′ and C ′′ is connected to the power supply terminal 4 and the ground terminal 5.
  • a signal (potential difference in bridge voltage) obtained from the Wheatstone bridge A ′ is formed in the silicon single crystal substrate 1.
  • the signal amplified by the amplifier circuit 6 and obtained from the Wheatstone bridge C ′′ is amplified by the amplifier circuit 41 formed in the silicon single crystal substrate 1.
  • the signal amplified by the amplifier circuit 6 and the signal amplified by the amplifier circuit 41 are input to the correction arithmetic circuit 32 formed in the silicon single crystal substrate 1, and the correction arithmetic circuit 32 uses the Wheatstone bridge A ′.
  • a correction operation for calculating the true strain amount from the difference between the detected strain amount and the strain amount detected by the Wheatstone bridge C ′′ is performed, and the corrected signal is taken out from the output terminal 7.
  • the distance between the segments 33 constituting one Wheatstone bridge is preferably equal to or less than the length of one side of the segment. If the distance between the segments 33 within one Wheatstone bridge is longer than the length of one side of the segment, the in-plane isotropy of strain detection is lowered and the accuracy of the correction calculation is lowered. Other functions and effects are the same as those of the mechanical quantity measuring device 50 of the fifth embodiment.
  • FIG. 17 is a schematic plan view illustrating an outline of the mechanical quantity measuring device according to the seventh embodiment. Also in FIG. 17, in order to simplify the drawing, details of wiring (for example, wiring to each impurity diffusion resistor) are omitted.
  • the Wheatstone bridge D and the Wheatstone bridge E are concentrically arranged on the surface of the silicon single crystal substrate 1.
  • the mechanical quantity measuring device 70 is an example in which the segments 33 are arranged so that the outer shape of the Wheatstone bridge is circular.
  • the innermost Wheatstone bridge D is composed of four resistor groups RG D1 , RG D2 , RG D3 , and RG D4 having a four-fold symmetrical shape.
  • Innermost circumference than the Wheatstone bridge E also has four resistors group to be four times symmetrical RG E1, RG E2, RG E3 , RG E4.
  • Each resistor group has a structure in which a plurality of segments 33 are arranged in series. Since the configuration of each segment 33 is the same as that of the fifth embodiment described above, detailed description is omitted, but each resistor group includes at least one impurity diffusion resistor constituting the four bridge resistors of the Wheatstone bridge. Have one by one.
  • Each of Wheatstone bridges D and E is connected to power supply terminal 4 and ground terminal 5.
  • a signal (potential difference in the bridge voltage) obtained from the Wheatstone bridge D is amplified by an amplifier circuit 71 formed in the silicon single crystal substrate 1, and a signal obtained from the Wheatstone bridge E is an amplifier formed in the silicon single crystal substrate 1.
  • Amplified by circuit 72 The signal amplified by the amplifier circuit 71 and the signal amplified by the amplifier circuit 72 are input to the correction arithmetic circuit 32 formed in the silicon single crystal substrate 1, and detected by the Wheatstone bridge D in the correction arithmetic circuit 32.
  • the correction calculation for calculating the true strain amount is performed from the difference between the strain amount to be detected and the strain amount detected by the Wheatstone bridge E, and the signal subjected to the correction calculation is taken out from the output terminal 7.
  • the mechanical quantity measuring device 70 has an advantage that the in-plane isotropy of strain detection is further improved because the segment 33 is arranged so that the outer shape of the Wheatstone bridge is circular. Other functions and effects are the same as those of the mechanical quantity measuring device 50 of the fifth embodiment.
  • FIG. 18 is a schematic cross-sectional view showing an example of a pressure sensor according to the present invention.
  • the pressure sensor 80 is roughly divided into a sensor unit that receives pressure and converts it into an electrical signal, and a connector unit that transmits the electrical signal to an external device.
  • the sensor part is a metal bottomed cylindrical body with one end opened and the other end closed, a pressure introduction part 81 inserted into the pressure port, a flange 82 that defines the amount of insertion of the pressure introduction part 81, and a pressure introduction
  • the diaphragm 83 is deformed by receiving pressure on the closed end side of the part 81, a strain sensor 84 soldered on the diaphragm 83, and a control mechanism 85 connected to the strain sensor 84 and controlling the strain sensor 84.
  • the control mechanism 85 is equipped with a memory storing various data used for correction calculation, a capacitor 86, and the like.
  • the connector portion includes a connector 87 connected to an external device, a connection terminal 88 that transmits an electrical signal, and a cover 89 that fixes the connector 87 to the sensor portion.
  • the pressure sensor 80 uses the mechanical quantity measuring device according to the present invention as the strain sensor 84, it is possible to ensure higher accuracy and long-term reliability than ever before even when used in a high temperature and high pressure environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

従来以上に高い精度や長期信頼性を有する力学量測定装置およびそれを用いた圧力センサを提供する。 本発明に係る力学量測定装置は、半導体基板表面に形成された不純物拡散抵抗体によって構成されるひずみ検出領域を備えており、前記ひずみ検出領域は互いに同心状に配設された複数のホイートストンブリッジを有し、前記複数のホイートストンブリッジの内の最内周のホイートストンブリッジは前記同心を軸にした2回対称の形状となる2つの抵抗体群または4回対称の形状となる4つの抵抗体群からなり、前記複数のホイートストンブリッジの内の他のホイートストンブリッジは前記同心を軸にした4回対称の形状となる4つの抵抗体群からなり、前記ホイートストンブリッジを構成する4つのブリッジ抵抗のそれぞれは当該ホイートストンブリッジの前記抵抗体群の数の倍数個の前記不純物拡散抵抗体からなり、前記抵抗体群のそれぞれは前記4つのブリッジ抵抗を構成する前記不純物拡散抵抗体を少なくとも1個ずつ有していることを特徴とする。

Description

力学量測定装置およびそれを用いた圧力センサ
 本発明は、測定対象物に掛かる応力やひずみ等の力学量を測定する技術に関し、特に、半導体基板表面に形成された不純物拡散抵抗体によって構成されるひずみ検出領域を備えた力学量測定装置およびそれを用いた圧力センサに関するものである。
 測定対象物の変形(ひずみ)を測定する装置として、薄い絶縁体上に金属抵抗体(金属箔)が配設された金属箔ひずみゲージが、昔からよく知られている。金属箔ひずみゲージは、測定対象物の変形に追従した金属箔の変形に伴う電気抵抗値の変化を測定してひずみ量に換算するものであり、構造が単純で安価である割に高精度であるため、広く利用されてきた。一方、金属箔ひずみゲージは、その構成上、被測定物の温度が変化すると測定誤差が生じ易い点や、常時駆動させるには消費電力が大きい点や、ある程度の設置面積を要する点などの弱点を有している。
 金属箔ひずみゲージのそれらの弱点を克服する装置として、半導体基板表面に形成された不純物拡散抵抗体によって構成されるひずみ検出領域(ブリッジ回路)を備えた半導体ひずみセンサが開発されている。半導体ひずみセンサは、不純物拡散抵抗体のひずみに対する抵抗変化率が従来の金属箔ひずみゲージの金属抵抗体のそれに比して数10倍大きいことから、微小なひずみでも検知することが可能である(すなわち、ひずみに対する感度が高い利点がある)。また、不純物拡散抵抗体の形成にフォトリソグラフィ等のいわゆる半導体プロセスを利用することで、不純物拡散抵抗体の微細パターン化が可能であり、半導体ひずみセンサ全体の小型化(小面積化)と共に省電力化することができる。さらに、不純物拡散抵抗体の微細パターン化により、ホイートストンブリッジ回路を構成する全ての抵抗体を同一の基板上に形成できるため、被測定物の温度変化に対する電気抵抗の変動が相殺されて測定誤差が小さくなる(測定精度が向上する)利点もある。
 例えば、特許文献1(特開2007-263781)には、半導体基板表面にひずみ検出部を備え、被測定物に取り付けて、ひずみを測定する力学量測定装置において、半導体単結晶基板,半導体チップ内に少なくとも二組以上のブリッジ回路を形成し、前記ブリッジ回路のうち、ひとつのブリッジ回路が、電流を流して抵抗値の変動を測定する方向(長手方向)が該半導体単結晶基板の<1 0 0>方向と平行であるn型拡散抵抗を形成し、もう一つのブリッジ回路は<1 1 0>方向と平行であるp型拡散抵抗を組み合わせて形成した力学量測定装置が、開示されている。特許文献1によると、被測定物に生じる特定方向のひずみ成分を精度良く測定することができるとされている。
 また、特許文献2(特開2012-47608)には、半導体基板に形成されたブリッジ回路を用いた力学量測定装置であって、前記ブリッジ回路は4つのブリッジ抵抗Rv1,Rv2,Rh1,Rh2からなり、各ブリッジ抵抗はそれぞれ複数の拡散抵抗からなり、前記複数の拡散抵抗は前記半導体基板上にマトリックス状に配置され、前記ブリッジ抵抗Rv1,Rv2は前記マトリックスの奇数列に配置された前記複数の拡散抵抗が選択的に直列接続されたものであり、前記ブリッジ抵抗Rh1,Rh2は前記マトリックスの偶数列に配置された前記複数の拡散抵抗が選択的に直列接続されたものである力学量測定装置が、開示されている。特許文献2によると、被測定物の温度変化によって発生する応力や、半導体基板上の熱分布や、拡散抵抗の不純物のドーズ量勾配に起因するブリッジ回路のオフセット出力の発生を防ぐことができるとされている。
 一方、ひずみセンサによる力学量測定は、被測定物の変形に追従してひずみセンサも変形することが基本事項であり、長期間にわたって高精度なセンシングを行うためには、ひずみセンサと被測定物との接合の信頼性が非常に重要となる。この観点において、例えば特許文献3(WO 2012/144054)には、半導体基板に作用する力学量を測定可能な測定部が前記半導体基板の中央部に設けられ、前記半導体基板が被測定物に貼り付けられて前記被測定物に作用する力学量を間接的に測定する力学量測定装置において、前記半導体基板の前記中央部の外側の外周部に、互いに近接するように少なくとも一箇所に集まっている集まりを形成する複数の不純物拡散抵抗を有し、前記集まりの1つを形成する複数の前記不純物拡散抵抗は、互いに接続されホイートストンブリッジを形成していることを特徴とする力学量測定装置が、開示されている。特許文献3によると、特許文献3の力学量測定装置は、該力学量測定装置と被測定物との間の剥離を自ら検知することができるとされている。
特開2007-263781号公報 特開2012-47608号公報 国際公開2012/144054号
 自動車エンジンにおける省エネルギー化や排ガスクリーン化を目的として、燃料をより効率的に燃焼させるための種々の技術が検討・採用されているが、近年、省エネルギー化および排ガスクリーン化の要求はますます強まっている。省エネルギー化を目指す燃焼技術の代表格は、理論空燃比よりも薄い条件の燃焼を実現する技術であり、排ガスクリーン化を目指す燃焼技術の代表格は、シリンダ内での安定・確実な燃焼を実現する技術である。
 それらの燃焼技術を効果的に実現するためには、燃料噴射の精密制御が必要不可欠である。そして、燃料噴射の精密制御を実現するにあたり、噴射圧力制御に関わる圧力センサはキーパーツの内の1つである。
 例えば、ディーゼルエンジン用のコモンレールシステムにおいては、省エネルギー化および排ガスクリーン化を進展させるため燃料圧力の更なる高圧化(例えば、2500~3000気圧)が進められており、構成部品に対してより高い耐圧性と耐久性(長期信頼性)とが強く求められている。また、構成部品の内でも圧力センサは、精密制御の根幹をなす部品であり、耐圧性および耐久性に加えて更なる高精度が強く求められている。
 特許文献1~3に記載された半導体ひずみセンサは、前述したような優れた作用効果を有している。しかしながら、圧力センサに対する最新の要求レベル(特に、高精度や長期信頼性)を達成するためには、半導体ひずみセンサ(力学量測定装置)においても更なる改良が必要であることが判ってきた(詳細は後述する)。
 したがって、本発明の目的は、従来以上に高い精度や長期信頼性を有する半導体ひずみセンサ(力学量測定装置)を提供することにある。また、当該力学量測定装置を用いることにより、従来以上に高い精度や長期信頼性を有する圧力センサを提供することにある。
 (I)本発明の一つの態様は、半導体基板表面に形成された不純物拡散抵抗体によって構成されるひずみ検出領域を備えた力学量測定装置であって、前記ひずみ検出領域は互いに同心状に配設された複数のホイートストンブリッジを有し、前記複数のホイートストンブリッジの内の最内周のホイートストンブリッジは前記同心を軸にした2回対称の形状となる2つの抵抗体群または4回対称の形状となる4つの抵抗体群からなり、前記複数のホイートストンブリッジの内の他のホイートストンブリッジは前記同心を軸にした4回対称の形状となる4つの抵抗体群からなり、前記ホイートストンブリッジを構成する4つのブリッジ抵抗のそれぞれは当該ホイートストンブリッジの前記抵抗体群の数の倍数個の前記不純物拡散抵抗体からなり、前記抵抗体群のそれぞれは前記4つのブリッジ抵抗を構成する前記不純物拡散抵抗体を少なくとも1個ずつ有していることを特徴とする力学量測定装置を提供する。
 (II)本発明の他の一つの態様は、金属製のダイアフラム上に半導体ひずみセンサが接合された圧力センサであって、前記半導体ひずみセンサは本発明に係る力学量測定装置であることを特徴とする圧力センサを提供する。
 本発明によれば、従来以上に高い精度や長期信頼性を有する力学量測定装置を提供することができる。また、当該力学量測定装置を用いることにより、従来以上に高い精度や長期信頼性を有する圧力センサを提供することができる。
実験に用いた従来の半導体ひずみセンサの概要を示す平面模式図である。 実験に用いた疑似圧力センサの概要を示す平面模式図とa-b線の断面模式図である。 疑似圧力センサの変形の様子を示す断面模式図、および半導体ひずみセンサの出力電圧と時間との関係を示すグラフである。 疑似圧力センサが曲げ変形している時のはんだ接合層に掛かる応力分布、およびはんだ接合層のクリープ変形量分布を模式的に表した図である。 第1実施形態に係る力学量測定装置の概要を示す平面模式図である。 第1実施形態に係る力学量測定装置を用いた疑似圧力センサが曲げ変形している時のはんだ接合層のクリープ変形量分布、および各ホイートストンブリッジの出力電圧-ひずみ線図を模式的に表した図である。 第1実施形態に係る力学量測定装置の端部がダイアフラムから剥離した場合の各ホイートストンブリッジの出力電圧-ひずみ線図を模式的に表した図である。 第2実施形態の力学量測定装置における最内周のホイートストンブリッジの一例を示す平面模式図および配線系統図である。 第2実施形態の力学量測定装置における最内周以外のホイートストンブリッジの一例を示す平面模式図および配線系統図である。 第2実施形態の力学量測定装置の概要を示す平面模式図である。 第3実施形態に係る力学量測定装置の概要を示す平面模式図である。 第3実施形態に係る力学量測定装置を用いた疑似圧力センサが曲げ変形している時のはんだ接合層のクリープ変形量分布、および各ホイートストンブリッジの出力電圧-ひずみ線図を模式的に表した図である。 第4実施形態の力学量測定装置における最内周以外のホイートストンブリッジの一例を示す平面模式図および配線系統図である。 第4実施形態の力学量測定装置の概要を示す平面模式図である。 第5実施形態の力学量測定装置の概要を示す平面模式図である。 第6実施形態の力学量測定装置の概要を示す平面模式図である。 第7実施形態の力学量測定装置の概要を示す平面模式図である。 本発明に係る圧力センサの一例を示す断面模式図である。
 (オフセット現象の実験と要因解明)
 自動車部品は、各種工業部品の中でも適用温度範囲、耐候性、精度、長期信頼性などに関する要求が特に厳しい分野である。本発明者等は、半導体ひずみセンサを用いた圧力センサにおいて、最新の各種要求を満たすべく研究を行っていたところ、半導体ひずみセンサ自体や圧力センサ自体に特段の障害や破損が生じていないにもかかわらず、計測結果が長い時間を掛けて徐々に変化してゼロ点がオフセットする現象が生じることを見出した。このオフセット現象は、精度や長期信頼性に関わる問題であり、解決すべき課題である。そこで、本発明者等は、当該オフセット現象の要因を解明すべく、自動車エンジン用圧力センサの状況を模した実験を行った。
 図1は、実験に用いた従来の半導体ひずみセンサの概要を示す平面模式図である。図1を用いて従来の半導体ひずみセンサ10の構成と機能とを簡単に説明する。半導体ひずみセンサ10は、シリコン単結晶基板1の表面上に複数の不純物拡散抵抗体2が形成されており、当該複数の不純物拡散抵抗体2は4つのブリッジ抵抗Rv1,Rv2,Rh1,Rh2として互いに接続されてホイートストンブリッジ3を構成している。ホイートストンブリッジ3は、電源端子4とグランド端子5とに接続され、4つのブリッジ抵抗Rv1,Rv2,Rh1,Rh2に流れる電流方向がシリコン単結晶基板1の<1 1 0>方向およびそれに垂直な方向となるにように構成されている。
 半導体ひずみセンサ10に対してシリコン単結晶基板1の<1 1 0>方向および/またはそれに垂直な方向のひずみが掛かると、不純物拡散抵抗体2(すなわち、4つのブリッジ抵抗Rv1,Rv2,Rh1,Rh2)の抵抗値が変化し、ブリッジ電圧の出力に電位差が生じる。この電位差は、シリコン単結晶基板1内に形成されたアンプ回路6で増幅され、電気信号として出力端子7から取り出される。このようにして、半導体ひずみセンサ10は、ホイートストンブリッジ3が形成された領域(ひずみ検出領域)に掛かるひずみ量に応じた電気信号を出力することができる。
 図2は、実験に用いた疑似圧力センサの概要を示す平面模式図とa-b線の断面模式図である。図2に示したように、疑似圧力センサ20は、ダイアフラムを模した金属板21のほぼ中央位置にはんだ接合層22を介して半導体ひずみセンサ10が接合されたものである。自動車エンジン用圧力センサは、高温(例えば、120~130℃程度)の環境下に配設されることから、ダイアフラムと半導体ひずみセンサとの接合は、通常、有機系接着剤による接合ではなく、はんだ接合によって行われる。金属板21には、端子台23が設けられており、半導体ひずみセンサ10の電源端子4とグランド端子5と出力端子7とが接続されている。
 次に、図3を用いて、実験とその結果について説明する。図3は、疑似圧力センサの変形の様子を示す断面模式図、および半導体ひずみセンサの出力電圧と時間との関係を示すグラフである。実験は、130℃の環境下で行った。はじめ、「時間=t1」は、疑似圧力センサ20の金属板21に対して何の応力も掛かっていない(すなわち、ひずみが生じていない)初期状態であり、この時の半導体ひずみセンサ10の出力電圧をV0とする。
 その後、「時間=t2」にかけて疑似圧力センサ20の金属板21に曲げ応力を加えると、金属板21にひずみが生じる。金属板21のひずみは、はんだ接合層22を介して半導体ひずみセンサ10に伝播し、半導体ひずみセンサ10の出力電圧が、V0から過渡状態を経て出力電圧V+となる。なお、金属板21に加える曲げ応力は、金属板21の弾性変形範囲内の応力とした
 その後、「時間=t3」にかけて「時間=t2」と同じ曲げ応力を金属板21に加え続けたところ、半導体ひずみセンサ10の出力電圧が、V+から徐々に低下することが判った。さら
にその後、「時間=t4」にかけて金属板21に加えた曲げ応力を解除すると、金属板21は「時間=t1」の状態に戻り、半導体ひずみセンサ10の出力電圧は過渡状態を経て出力電圧V0’となった。ここにおいて、「時間=t4」の出力電圧V0’は、「時間=t1」の出力電圧V0と異なっており、ゼロ点のオフセット現象が生じていることが確認された。
 金属板21に加える曲げ応力(すなわち、生じるひずみ量)や環境温度を変化させて同様の実験を行ったところ、曲げ応力を大きくしたり環境温度を高くしたりするほど、半導体ひずみセンサ10の出力電圧の低下がより早くより大きく生じることが確認された。一方、いずれの実験後においても、金属板21および半導体ひずみセンサ10には、一切の不具合が見出されなかった。これらの実験結果から、ゼロ点のオフセット現象は、はんだ接合層22におけるクリープ変形に起因する可能性が考えられた。
 はんだ接合層22におけるクリープ変形およびオフセット現象について考察する。図4は、疑似圧力センサが曲げ変形している時のはんだ接合層に掛かる応力分布、およびはんだ接合層のクリープ変形量分布を模式的に表した図である。図4に示したように、半導体ひずみセンサ10およびはんだ接合層22は金属板21に対して十分小さいことから、疑似圧力センサ20を曲げ変形させると、はんだ接合層22の端部には応力集中が生じる。ここで、本実験の環境温度は130℃であり、はんだの融点を考慮すると、はんだ接合層22にとってはクリープ変形が生じ得る温度領域である。その結果、はんだ接合層22の端部からクリープ変形が生じると考えられる。また、クリープ変形によりはんだ接合層22内で応力緩和が生じることから、半導体ひずみセンサ10に伝搬されるひずみ量も低下して出力電圧が低下する。その後、疑似圧力センサ20(金属板21)の曲げ変形を戻すと、応力緩和したはんだ接合層22に反対方向の応力が掛かる。この反対方向の応力が半導体ひずみセンサ10に伝搬されて、ゼロ点のオフセット現象が生じるものと考えられる。
 オフセット現象を抑制するためには、はんだ接合層22のクリープ変形を抑制することが望ましく、そのためには、融点の高いはんだ材またはろう材などを利用することが考えられる。しかしながら、クリープ変形が抑制できるほどの高い融点の接合材料を用いて半導体ひずみセンサ10を接合しようとすると、半導体ひずみセンサ10自体が熱劣化する可能性が急激に高まるため、好ましくない。
 これらのことから、本発明においては、はんだ接合層22がある程度クリープ変形することを前提として、その影響を補正することができる半導体ひずみセンサの構造を鋭意研究した。本発明は、当該研究の結果、完成されたものである。
 前述したように、本発明に係る力学量測定装置は、半導体基板表面に形成された不純物拡散抵抗体によって構成されるひずみ検出領域を備えた力学量測定装置であって、前記ひずみ検出領域は互いに同心状に配設された複数のホイートストンブリッジを有し、前記複数のホイートストンブリッジの内の最内周のホイートストンブリッジは前記同心を軸にした2回対称の形状となる2つの抵抗体群または4回対称の形状となる4つの抵抗体群からなり、前記複数のホイートストンブリッジの内の他のホイートストンブリッジは前記同心を軸にした4回対称の形状となる4つの抵抗体群からなり、前記ホイートストンブリッジを構成する4つのブリッジ抵抗のそれぞれは当該ホイートストンブリッジの前記抵抗体群の数の倍数個の前記不純物拡散抵抗体からなり、前記抵抗体群のそれぞれは前記4つのブリッジ抵抗を構成する前記不純物拡散抵抗体を少なくとも1個ずつ有していることを特徴とする。
 本発明は、上述した本発明に係る力学量測定装置において、以下のような改良や変更を加えることができる。
(i)前記不純物拡散抵抗体のそれぞれは線形状を有し、前記抵抗体群は複数のセグメントが連なるように配列された構造を有しており、前記セグメントは、前記不純物拡散抵抗体の線方向が互いに平行に配列された複数の前記不純物拡散抵抗体から構成され、当該セグメントとして矩形状を有している。
(ii)前記抵抗体群内で隣り合う前記セグメントは、それらセグメントを構成する前記不純物拡散抵抗体の線方向が互いに直交する関係となるように配列されている。
(iii)前記複数のホイートストンブリッジ間の距離は、前記セグメントの一辺の長さ以下である。
(iv)前記ホイートストンブリッジ内で隣り合う前記セグメント間の距離は、前記セグメントの一辺の長さ以下である。
(v)前記セグメントは、前記不純物拡散抵抗体と同じ構成であるが電気的に接続されないダミー抵抗体を有する。
(vi)前記複数のホイートストンブリッジのそれぞれからの出力に基づいてひずみ量の補正計算を行う補正演算回路が、前記半導体基板上に更に設けられている。
(vii)前記補正計算は、前記複数のホイートストンブリッジからの前記出力に加えて、前記複数のホイートストンブリッジそれぞれの前記同心からの距離に基づいて行われる。
(viii)前記半導体基板はシリコン単結晶基板であり、前記不純物拡散抵抗体は自身を流れる電流方向が前記シリコン単結晶基板の<1 1 0>方向または該<1 1 0>方向に直交する方向となるように接続されている。
 また、前述したように、本発明に係る圧力センサは、金属製のダイアフラム上に半導体ひずみセンサが接合された圧力センサであって、前記半導体ひずみセンサは、上記の本発明に係る力学量測定装置であることを特徴とする。
 本発明は、上述した本発明に係る圧力センサにおいて、以下のような改良や変更を加えることができる。
(ix)前記接合は、はんだ接合である。
(x)前記圧力センサは、自動車エンジン用の圧力センサである。
 以下、本発明の実施形態について図面を参照しながら説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。なお、同じ部材・部位には同じ符号を付して、重複する説明を省略する。
 (本発明の第1実施形態)
 ここでは、本発明の第1実施形態に係る力学量測定装置の技術的思想について図5~7を参照しながら説明する。図5は、第1実施形態に係る力学量測定装置の概要を示す平面模式図である。なお、図5においては、図面を単純化するために、配線の詳細(例えば、各不純物拡散抵抗体への配線)を省略してある。
 図5に示したように、第1実施形態に係る力学量測定装置30(半導体ひずみセンサ)は、半導体基板(例えば、シリコン単結晶基板1)の表面上に、互いに同心状に配設された2つのホイートストンブリッジA,Bを有している。最内周のホイートストンブリッジAは、同心を軸にした2回対称の形状となる2つの抵抗体群RGA1,RGA2からなっている。最内周以外のホイートストンブリッジBは、同心を軸にした4回対称の形状となる4つの抵抗体群RGB1,RGB2,RGB3,RGB4からなっている。なお、ホイートストンブリッジA,Bは、シリコン単結晶基板1の大きさ(例えば、4 mm角)に対して十分小さく形成されていること(例えば、0.2 mm角)が好ましい。
 ホイートストンブリッジを構成する4つのブリッジ抵抗Rv1,Rv2,Rh1,Rh2のそれぞれは、当該ホイートストンブリッジの抵抗体群の数の倍数個の不純物拡散抵抗体からなる。具体的には、2つの抵抗体群からなるホイートストンブリッジAおいては、ブリッジ抵抗Rv1は不純物拡散抵抗体rAv11,rAv12の2個からなり、ブリッジ抵抗Rv2は不純物拡散抵抗体rAv21,rAv22の2個からなり、ブリッジ抵抗Rh1は不純物拡散抵抗体rAh11,rAh12の2個からなり、ブリッジ抵抗Rh2は不純物拡散抵抗体rAh21,rAh22の2個からなる。また、4つの抵抗体群からなるホイートストンブリッジBにおいては、ブリッジ抵抗Rv1は不純物拡散抵抗体rBv11,rBv12,rBv13,rBv14の4個からなり、ブリッジ抵抗Rv2は不純物拡散抵抗体rBv21,rBv22,rBv23,rBv24の4個からなり、ブリッジ抵抗Rh1は不純物拡散抵抗体rBh11,rBh12,rBh13,rBh14の4個からなり、ブリッジ抵抗Rh2は不純物拡散抵抗体rBh21,rBh22,rBh23,rBh24の4個からなる。
 さらに、抵抗体群のそれぞれは、4つのブリッジ抵抗を構成する不純物拡散抵抗体を少なくとも1個ずつ有している。具体的には、ホイートストンブリッジAにおいては、抵抗体群RGA1は不純物拡散抵抗体rAv11,rAh11,rAv21,rAh21からなり、抵抗体群RGA2は不純物拡散抵抗体rAv12,rAh12,rAv22,rAh22からなる。また、ホイートストンブリッジBにおいては、抵抗体群RGB1は不純物拡散抵抗体rBv11,rBh11,rBv21,rBh21からなり、抵抗体群RGB2は不純物拡散抵抗体rBv12,rBh12,rBv22,rBh22からなり、抵抗体群RGB3は不純物拡散抵抗体rBv13,rBh13,rBv23,rBh23からなり、抵抗体群RGB4は不純物拡散抵抗体rBv14,rBh14,rBv24,rBh24からなる。
 上述したように、ホイートストンブリッジA,Bは、互いに同心状に配設されており、回転対称性を有する抵抗体群からなり、かつ各抵抗体群は4つのブリッジ抵抗の要素を全て有している。このことから、ホイートストンブリッジA,Bのそれぞれは、自身のひずみ検出領域内において(より厳密には、当該ホイートストンブリッジを構成する不純物拡散抵抗体が形成された領域において)、検出の面内等方性が高く、当該領域内を平均化した信号が得られるという特徴がある。
 ホイートストンブリッジA,Bのそれぞれは、電源端子4とグランド端子5とに接続されている。ホイートストンブリッジAから得られる信号(ブリッジ電圧の電位差)はシリコン単結晶基板1内に形成されたアンプ回路6で増幅され、ホイートストンブリッジBから得られる信号はシリコン単結晶基板1内に形成されたアンプ回路31で増幅される。アンプ回路6で増幅された信号とアンプ回路31で増幅された信号とは、シリコン単結晶基板1内に形成された補正演算回路32に入力され、当該補正演算回路32において、ホイートストンブリッジAで検出されるひずみ量とホイートストンブリッジBで検出されるひずみ量との差異から真のひずみ量を算出する補正演算が行われ、補正演算された信号が出力端子7から取り出される(補正演算の詳細については後述する)。これにより、力学量測定装置30(半導体ひずみセンサ)を接合するはんだ接合層にクリープ変形が生じたとしても、その影響を補正した信号(すなわち、真のひずみ量)を得ることができる。
 次に、補正演算について説明する。図6は、第1実施形態に係る力学量測定装置を用いた疑似圧力センサが曲げ変形している時のはんだ接合層のクリープ変形量分布、および各ホイートストンブリッジの出力電圧-ひずみ線図を模式的に表した図である。
 前述したように、ホイートストンブリッジA,Bは、シリコン単結晶基板1の大きさに対して十分小さく形成されていることから、ホイートストンブリッジA,Bに生じる真のひずみ量は、本来同等と考えられる。しかしながら、高温環境下においては、はんだ接合層22にクリープ変形が生じ、そのクリープ変形量は力学量測定装置30の外周領域ほど大きくなる。すなわち、図6に示したように、ホイートストンブリッジAのひずみ検出領域のクリープ変形量εAよりも、ホイートストンブリッジBのひずみ検出領域のクリープ変形量εBの方が大きい(εA < εB)。
 そして、クリープ変形量が大きいほど応力緩和が生じることから、ホイートストンブリッジA,Bに伝搬されるひずみ量が真のひずみ量(クリープ変形のない理想状態のひずみ量)よりも減少する。その結果、ホイートストンブリッジA,Bそれぞれの出力電圧YA,YBは理想状態の出力電圧Yiよりも低下すると共に、ホイートストンブリッジA,Bの出力電圧YA,YBの間に差異が生じると考えられる。また、出力電圧YA,YBの差分は、ホイートストンブリッジA,Bが形成されている領域のクリープ変形量の差分に比例すると考えられる。
 理想状態でのひずみ量ゼロにおける出力電圧をVi0とし、ホイートストンブリッジAのひずみ量ゼロにおける出力電圧をVA0とし、ホイートストンブリッジBのひずみ量ゼロにおける出力電圧をVB0とし、真のひずみ量をXとし、ホイートストンブリッジのひずみ感度をGとすると、Yi,YA,YBはそれぞれ下記式(1)~(3)のように表すことができる。
Yi = Vi0 + GX    ・・・式(1),
YA = VA0 + GX   ・・・式(2),
YB = VB0 + GX   ・・・式(3)。
 ここで、はんだ接合層22のクリープ変形量分布(クリープ変形量と位置との関係)が二次関数曲線で近似できるとする。同心状のホイートストンブリッジA,Bをシリコン単結晶基板1の中心領域に配設した場合、クリープ変形量分布の二次関数曲線の頂点の位置がホイートストンブリッジA,Bの同心と重なる。
 前述したように、同心状のホイートストンブリッジA,Bは、シリコン単結晶基板1の大きさに対して十分小さく形成されており、当該同心とホイートストンブリッジAとの距離LA、当該同心とホイートストンブリッジBとの距離LB、およびホイートストンブリッジA,B間の距離LABは、それぞれ十分小さいと言える。そして、二次関数曲線においては、頂点近傍や近接する2点間は一般的に一次関数で近似することができる。なお、距離LAおよびLBは、それぞれホイートストンブリッジA,Bが形成されている領域とそれらの中心との平均距離と定義し、距離LABは、LAとLBとの差分と定義する。
 これらのことを勘案すると、YAとYBとの差分は式(2),(3)から下記式(4)のように表すことができる。
YA - YB = VA0 - VB0   ・・・式(4)。
 また、理想状態でのひずみ量ゼロにおける出力電圧Vi0とホイートストンブリッジAのひずみ量ゼロにおける出力電圧VA0との差分は、同心とホイートストンブリッジAとの距離LA、ホイートストンブリッジA,B間の距離LAB、および式(4)から、下記式(5)のように表すことができる。
Vi0 - VA0 = (VA0 - VB0)・LA/LAB = (YA - YB)・LA/LAB  ・・・式(5)。
 式(1),(2),(5)から下記式(6)が得られ、理想状態の出力電圧Yiを求めることができる。なお、出力電圧YA,YBは、ホイートストンブリッジA,Bからの測定値として得られ、距離LA,LABは、ホイートストンブリッジA,Bの寸法から得られる値である。
Yi = YA + (Vi0 - VA0) = YA + (YA - YB)・LA/LAB      ・・・式(6)。
 以上説明したように、本実施形態に係る力学量測定装置30は、ホイートストンブリッジA,Bから得られる信号に対して式(6)に示される補正計算を補正演算回路32において行うことにより、はんだ接合層22にクリープ変形が生じたとしても、その影響を補正した信号(すなわち、真のひずみ量)を得ることができる。
 次に、本実施形態に係る力学量測定装置30の副次的な作用効果について簡単に説明する。力学量測定装置30を用いた圧力センサは、上述したように、はんだ接合層22におけるクリープ変形の影響を補正することができるが、過度の圧力がダイアフラムに掛かったり、環境温度が過剰に上昇したりすると、はんだ接合層22がクリープ破断して、力学量測定装置30の端部(シリコン単結晶基板1の端部)がダイアフラムから剥離し始めることが考えられる。
 図7は、第1実施形態に係る力学量測定装置の端部がダイアフラムから剥離した場合の各ホイートストンブリッジの出力電圧-ひずみ線図を模式的に表した図である。図7に示したように、力学量測定装置30の端部(シリコン単結晶基板1の端部)がダイアフラムから剥離すると、外周側に配設されたホイートストンブリッジBにおいて、剥離する前の出力電圧YBに比べて著しく低下した出力電圧YB’となる。出力電圧YB’では、ひずみ量ゼロにおける出力電圧VB’0がVB0よりも低下すると共に、真のひずみ量Xに対する比例関係が崩れる。
 すなわち、外周側に配設されたホイートストンブリッジBにおいて、その出力信号がより早く特徴的な変化を示すことから、ホイートストンブリッジA,Bから得られる信号を補正演算回路32で比較することにより、力学量測定装置30の剥離の兆候を検知することができる。また、剥離の兆候を検知した場合に所定の信号を出力するように設定することにより、予防保全機能を付加することができる。
 (本発明の第2実施形態)
 ここでは、前述した第1実施形態のより具体的な一例について図8~10を参照しながら説明する。図8は、第2実施形態の力学量測定装置における最内周のホイートストンブリッジの一例を示す平面模式図および配線系統図である。なお、図8の平面模式図においては、図面を単純化するために、配線の詳細(例えば、不純物拡散抵抗体同士の配線)を省略してある。
 図8に示したように、本実施形態における最内周のホイートストンブリッジA’は、2回対称の形状となる2つの抵抗体群RGA1,RGA2からなり、当該抵抗体群のそれぞれは、複数のセグメント33が連なるように配列された構造を有している。セグメント33には、線形状を有する不純物拡散抵抗体が複数含まれている。また、セグメント33は、当該複数の不純物拡散抵抗体が、その線方向が互いに平行になるように配列され、セグメント33として矩形状を有している。
 ホイートストンブリッジA’を構成する4つのブリッジ抵抗Rv1,Rv2,Rh1,Rh2のそれぞれは、抵抗体群の数(ここでは2)の倍数個の不純物拡散抵抗体からなる。具体的には、ブリッジ抵抗Rv1は不純物拡散抵抗体rAv11,rAv12,rAv13,rAv14の4個からなり、ブリッジ抵抗Rv2は不純物拡散抵抗体rAv21,rAv22,rAv23,rAv24の4個からなり、ブリッジ抵抗Rh1は不純物拡散抵抗体rAh11,rAh12,rAh13,rAh14の4個からなり、ブリッジ抵抗Rh2は不純物拡散抵抗体rAh21,rAh22,rAh23,rAh24の4個からなる。
 また、抵抗体群RGA1,RGA2内で隣り合うセグメント33は、それらセグメント33を構成する不純物拡散抵抗体の線方向が互いに直交する関係となるように配列されている。具体的には、抵抗体群RGA1内で1つのセグメント33は、不純物拡散抵抗体rAv11,rAv12,rAv21,rAv22の線方向がシリコン単結晶基板1の<1 1 0>方向に直交する方向となるにように配列され、各不純物拡散抵抗体はその方向に電流が流れるように接続されている。抵抗体群RGA1内でそれに隣接するセグメント33は、不純物拡散抵抗体rAh11,rAh12,rAh21,rAh22の線方向がシリコン単結晶基板1の<1 1 0>方向となるにように配列され、各不純物拡散抵抗体はその方向に電流が流れるように接続されている。
 同様に、抵抗体群RGA2内で1つのセグメント33は、不純物拡散抵抗体rAv13,rAv14,rAv23,rAv24の線方向がシリコン単結晶基板1の<1 1 0>方向に直交する方向となるにように配列され、各不純物拡散抵抗体はその方向に電流が流れるように接続されている。抵抗体群RGA2内でそれに隣接するセグメント33は、不純物拡散抵抗体rAh13,rAh14,rAh23,rAh24の線方向がシリコン単結晶基板1の<1 1 0>方向となるにように配列され、各不純物拡散抵抗体はその方向に電流が流れるように接続されている。
 図8および上記説明から判るように、各抵抗体群は4つのブリッジ抵抗の要素を全て有している。このことから、ホイートストンブリッジA’は、自身のひずみ検出領域内において(当該ホイートストンブリッジを構成する不純物拡散抵抗体が形成された領域において)、検出の面内等方性が高く、当該領域内を平均化した信号が得られるという特徴がある。
 セグメント33は、不純物拡散抵抗体と同じ構成であるが電気的に接続されないダミー抵抗体34を有することが好ましい。また、ダミー抵抗体34は、セグメント33を構成する不純物拡散抵抗体と平行で、かつ当該不純物拡散抵抗体の束を挟むように(言い換えると、セグメント内の一番外側に)配列されることが好ましい。そのような位置関係でのダミー抵抗体34の形成は、不純物拡散抵抗体の形成プロセスにおいて、ホイートストンブリッジを構成する不純物拡散抵抗体のドーパント濃度の均等化に貢献する。
 図9は、第2実施形態の力学量測定装置における最内周以外のホイートストンブリッジの一例を示す平面模式図および配線系統図である。なお、図9の平面模式図においても、図面を単純化するために、配線の詳細(例えば、不純物拡散抵抗体同士の配線)を省略してある。
 図9に示したように、本実施形態における最内周以外のホイートストンブリッジB’は、4回対称の形状となる4つの抵抗体群RGB1,RGB2,RGB3,RGB4からなり、当該抵抗体群のそれぞれは、複数のセグメント33が連なるように配列された構造を有している。前述のホイートストンブリッジA’と同様に、セグメント33には、線形状を有する不純物拡散抵抗体が複数含まれている。また、セグメント33は、当該複数の不純物拡散抵抗体が、その線方向が互いに平行になるように配列され、セグメント33として矩形状を有している。
 ホイートストンブリッジB’を構成する4つのブリッジ抵抗Rv1,Rv2,Rh1,Rh2のそれぞれは、抵抗体群の数(ここでは4)の倍数個の不純物拡散抵抗体からなる。具体的には、ブリッジ抵抗Rv1は不純物拡散抵抗体rBv11,rBv12,rBv13,rBv14,・・・,rBv19,rBv110,rBv111,rBv112の12個からなり、ブリッジ抵抗Rv2は不純物拡散抵抗体rBv21,rBv22,rBv23,rBv24,・・・,rBv29,rBv210,rBv211,rBv212の12個からなり、ブリッジ抵抗Rh1は不純物拡散抵抗体rBh11,rBh12,rBh13,rBh14,・・・,rBh19,rBh110,rBh111,rBh112の12個からなり、ブリッジ抵抗Rh2は不純物拡散抵抗体rBh21,rBh22,rBh23,rBh24,・・・,rBh29,rBh210,rBh211,rBh212の12個からなる。
 また、前述のホイートストンブリッジA’と同様に、抵抗体群RGB1~RGB4内で隣り合うセグメント33は、それらセグメント33を構成する不純物拡散抵抗体の線方向が互いに直交する関係となるように配列されている。例えば、抵抗体群RGB1内で1つのセグメント33は、不純物拡散抵抗体rBv11,rBv12,rBv21,rBv22の線方向がシリコン単結晶基板1の<1 1 0>方向に直交する方向となるにように配列され、各不純物拡散抵抗体はその方向に電流が流れるように接続されている。抵抗体群RGB1内でそれに隣接するセグメント33は、不純物拡散抵抗体rBh11,rBh12,rBh21,rBh22の線方向がシリコン単結晶基板1の<1 1 0>方向となるにように配列され、各不純物拡散抵抗体はその方向に電流が流れるように接続されている。更にそれに隣接するセグメント33は、不純物拡散抵抗体rBv13,rBv14,rBv23,rBv24の線方向がシリコン単結晶基板1の<1 1 0>方向に直交する方向となるにように配列され、各不純物拡散抵抗体はその方向に電流が流れるように接続されている。
 図9および上記説明から判るように、抵抗体群RGB1~RGB4のそれぞれは4つのブリッジ抵抗の要素を全て有している。このことから、ホイートストンブリッジB’は、自身のひずみ検出領域内において(当該ホイートストンブリッジを構成する不純物拡散抵抗体が形成された領域において)、検出の面内等方性が高く、当該領域内を平均化した信号が得られるという特徴がある。
 また、ホイートストンブリッジB’のセグメント33も、ホイートストンブリッジA’のそれと同様に、不純物拡散抵抗体と同じ構成であるが電気的に接続されないダミー抵抗体34を有することが好ましい。
 図10は、第2実施形態の力学量測定装置の概要を示す平面模式図である。なお、図10においても、図面を単純化するために、配線の詳細(例えば、各不純物拡散抵抗体への配線)を省略してある。
 図10に示したように、第2実施形態に係る力学量測定装置30’は、シリコン単結晶基板1の表面上に、図8のホイートストンブリッジA’と図9のホイートストンブリッジB’とが互いに同心状に配設されている。ホイートストンブリッジA’,B’のそれぞれは、電源端子4とグランド端子5とに接続されている。ホイートストンブリッジA’から得られる信号(ブリッジ電圧の電位差)はシリコン単結晶基板1内に形成されたアンプ回路6で増幅され、ホイートストンブリッジB’から得られる信号はシリコン単結晶基板1内に形成されたアンプ回路31で増幅される。アンプ回路6で増幅された信号とアンプ回路31で増幅された信号とは、シリコン単結晶基板1内に形成された補正演算回路32に入力され、当該補正演算回路32において、ホイートストンブリッジA’で検出されるひずみ量とホイートストンブリッジB’で検出されるひずみ量との差異から真のひずみ量を算出する補正演算が行われ、補正演算された信号が出力端子7から取り出される。
 力学量測定装置30’では、ホイートストンブリッジA’とホイートストンブリッジB’とが隙間無く接するように配設されている(より厳密には、ホイートストンブリッジA’を構成するセグメントとホイートストンブリッジB’を構成するセグメントとが隙間無く接するように配設されている)。言い換えると、ひずみ検出領域がコンパクトに形成されている。これにより、はんだ接合層22でのクリープ変形の影響をできる限り抑制できると共に、補正演算回路32による補正演算の精度が向上する。他の作用効果は、第1実施形態の力学量測定装置30と同様である。
 (本発明の第3実施形態)
 ここでは、本発明の第3実施形態に係る力学量測定装置の技術的思想について図11~12を参照しながら説明する。図11は、第3実施形態に係る力学量測定装置の概要を示す平面模式図である。なお、図11においても、図面を単純化するために、配線の詳細(例えば、各不純物拡散抵抗体への配線)を省略してある。
 図11に示したように、第3実施形態に係る力学量測定装置40は、シリコン単結晶基板1の表面上に、互いに同心状に配設された3つのホイートストンブリッジA,B,Cを有している。言い換えると、力学量測定装置40は、図5に示した第1実施形態の力学量測定装置30のホイートストンブリッジBの外周に、3つ目のホイートストンブリッジCが配設されている。ホイートストンブリッジA,Bは、力学量測定装置30のそれらと同じ構成を有しており、ホイートストンブリッジCは、同心を軸にした4回対称の形状となる4つの抵抗体群RGC1,RGC2,RGC3,RGC4からなっている。
 ホイートストンブリッジCを構成する4つのブリッジ抵抗Rv1,Rv2,Rh1,Rh2のそれぞれは、抵抗体群の数(ここでは4)の倍数個の不純物拡散抵抗体からなる。具体的には、ブリッジ抵抗Rv1は不純物拡散抵抗体rCv11,rCv12,rCv13,rCv14の4個からなり、ブリッジ抵抗Rv2は不純物拡散抵抗体rCv21,rCv22,rCv23,rCv24の4個からなり、ブリッジ抵抗Rh1は不純物拡散抵抗体rCh11,rCh12,rCh13,rCh14の4個からなり、ブリッジ抵抗Rh2は不純物拡散抵抗体rCh21,rCh22,rCh23,rCh24の4個からなる。
 さらに、ホイートストンブリッジCを構成する抵抗体群のそれぞれは、4つのブリッジ抵抗を構成する不純物拡散抵抗体を少なくとも1個ずつ有している。具体的には、抵抗体群RGC1は不純物拡散抵抗体rCv11,rCh11,rCv21,rCh21からなり、抵抗体群RGC2は不純物拡散抵抗体rCv12,rCh12,rCv22,rCh22からなり、抵抗体群RGC3は不純物拡散抵抗体rCv13,rCh13,rCv23,rCh23からなり、抵抗体群RGC4は不純物拡散抵抗体rCv14,rCh14,rCv24,rCh24からなる。
 ホイートストンブリッジA,B,Cのそれぞれは、電源端子4とグランド端子5とに接続されている。ホイートストンブリッジAから得られる信号(ブリッジ電圧の電位差)はシリコン単結晶基板1内に形成されたアンプ回路6で増幅され、ホイートストンブリッジBから得られる信号はシリコン単結晶基板1内に形成されたアンプ回路31で増幅され、ホイートストンブリッジCから得られる信号はシリコン単結晶基板1内に形成されたアンプ回路41で増幅される。アンプ回路6で増幅された信号とアンプ回路31で増幅された信号とアンプ回路41で増幅された信号とは、シリコン単結晶基板1内に形成された補正演算回路32に入力され、当該補正演算回路32において、ホイートストンブリッジA,B,Cのそれぞれで検出されるひずみ量の差異から真のひずみ量を算出する補正演算が行われ、補正演算された信号が出力端子7から取り出される。
 力学量測定装置40では、三重のホイートストンブリッジA,B,Cのそれぞれで検出されるひずみ量を用いて補正演算が行われるため、力学量測定装置30よりも補正演算の精度が向上する(補正演算の詳細については後述する)。他の作用効果は、第1実施形態の力学量測定装置30と同様である。
 次に、補正演算について説明する。図12は、第3実施形態に係る力学量測定装置を用いた疑似圧力センサが曲げ変形している時のはんだ接合層のクリープ変形量分布、および各ホイートストンブリッジの出力電圧-ひずみ線図を模式的に表した図である。
 ホイートストンブリッジA,B,Cは、シリコン単結晶基板1の大きさに対して十分小さく形成されていることから、ホイートストンブリッジA,B,Cに生じる真のひずみ量は、本来同等と考えられる。しかしながら、前述したように高温環境下においては、はんだ接合層22にクリープ変形が生じ、そのクリープ変形量は力学量測定装置40の外周領域ほど大きくなる。すなわち、図12に示したように、ホイートストンブリッジAのひずみ検出領域のクリープ変形量εAよりも、ホイートストンブリッジBのひずみ検出領域のクリープ変形量εBの方が大きく、ホイートストンブリッジBのひずみ検出領域のクリープ変形量εBよりも、ホイートストンブリッジCのひずみ検出領域のクリープ変形量εCの方が大きい(εA < εB < εC)。
 そして、クリープ変形量が大きいほど応力緩和が生じることから、ホイートストンブリッジA,B,Cに伝搬されるひずみ量が真のひずみ量(クリープ変形のない理想状態のひずみ量)よりも減少する。その結果、ホイートストンブリッジA,B,Cそれぞれの出力電圧YA,YB,YCは理想状態の出力電圧Yiよりも低下すると共に、ホイートストンブリッジA,B,Cの出力電圧YA,YB,YCの間に差異が生じる。また、出力電圧YA,YB,YCの差分は、ホイートストンブリッジA,B,Cが形成されている領域のクリープ変形量の差分に比例すると考えられる。
 第1実施形態と同様にして、理想状態でのひずみ量ゼロにおける出力電圧をVi0とし、ホイートストンブリッジAのひずみ量ゼロにおける出力電圧をVA0とし、ホイートストンブリッジBのひずみ量ゼロにおける出力電圧をVB0とし、ホイートストンブリッジCのひずみ量ゼロにおける出力電圧をVC0とし、真のひずみ量をXとし、ホイートストンブリッジのひずみ感度をGとすると、Yi,YA,YBは前述した式(1)~(3)のように表され、YCは下記式(7)のように表すことができる。
Yi = Vi0 + GX    ・・・式(1),
YA = VA0 + GX   ・・・式(2),
YB = VB0 + GX   ・・・式(3),
YC = VC0 + GX   ・・・式(7)。
 YAとYBとの差分およびYAとYCとの差分は、式(2),(3),(7)から下記式(4),(8)のように表すことができる。
YA - YB = VA0 - VB0   ・・・式(4),
YA - YC = VA0 - VC0   ・・・式(8)。
 また、第1実施形態と同様に、ホイートストンブリッジA,B,Cが形成されている領域(ひずみ検出領域)のはんだ接合層22のクリープ変形量分布(クリープ変形量と位置との関係)が、実質的に一次関数で近似できるとする。なお、同心状のホイートストンブリッジA,B,Cの当該同心とホイートストンブリッジCとの距離をLCとし、ホイートストンブリッジA,C間の距離をLACとする。距離LCは、ホイートストンブリッジCが形成されている領域とホイートストンブリッジCの中心との平均距離と定義し、距離LACは、LAとLCとの差分と定義する。
 出力電圧Vi0と出力電圧VA0との差分は、前述の式(5)に加えて、同心とホイートストンブリッジAとの距離LA、ホイートストンブリッジA,C間の距離LAC、および式(8)から、下記式(9)のように表すこともできる。
Vi0 - VA0 = (VA0 - VB0)・LA/LAB = (YA - YB)・LA/LAB  ・・・式(5),
Vi0 - VA0 = (VA0 - VC0)・LA/LAC = (YA - YC)・LA/LAC  ・・・式(9)。
 式(1),(2),(5)から前述の式(6)が得られ、式(1),(8),(9)から下記式(10)が得られる。
Yi = YA + (Vi0 - VA0) = YA + (YA - YB)・LA/LAB   ・・・式(6),
Yi = YA + (Vi0 - VC0) = YA + (YA - YC)・LA/LAC   ・・・式(10)。
 式(6),(10)において、出力電圧YA,YB,YCは、ホイートストンブリッジA,B,Cからの測定値として得られ、距離LA,LAB,LACは、ホイートストンブリッジA,B,Cの寸法から得られる値であることから、それぞれの式から理想状態の出力電圧Yiを求めることができる。すなわち、本実施形態の力学量測定装置40は、ホイートストンブリッジA,Bの組み合わせに加えて、ホイートストンブリッジA,Cの組み合わせからも出力電圧Yiを算出することができる。そして、ホイートストンブリッジA,Bの組み合わせから算出した出力電圧YiとホイートストンブリッジA,Cの組み合わせから算出した出力電圧Yiとを比較することにより、クリープ発生の有無や補正値の正確性などを検証することができ、より高精度な補正演算が可能となる。
 本実施形態の力学量測定装置40は、ひずみ検出領域が三重のホイートストンブリッジA,B,Cからなることから、上述したクリープ変形量分布の一次関数近似に加えて、クリープ変形量分布を二次関数近似した場合でも高い精度で補正演算をすることができる。例えば、出力電圧Vi0と出力電圧VA0との差分は、下記式(11),(12)のように表すことができる。
Vi0 - VA0 = (VA0 - VB0)・LA 2/(LB 2 - LA 2)   ・・・式(11),
Vi0 - VA0 = (VA0 - VC0)・LA 2/(LC 2 - LA 2)   ・・・式(12)。
 式(1),(2),(8),(11),(12)から下記式(13),(14)が得られる。
Yi = YA + (Vi0 - VA0) = YA + (YA - YB)・LA 2/(LB 2 - LA 2)・・・式(13),Yi = YA + (Vi0 - VC0) = YA + (YA - YC)・LA 2/(LC 2 - LA 2)・・・式(14)。
 式(13),(14)を用いて、ホイートストンブリッジA,Bの組み合わせから算出した出力電圧YiとホイートストンブリッジA,Cの組み合わせから算出した出力電圧Yiとを比較することにより、クリープ変形の程度や補正値の正確性などを検証することができ、更に高精度な補正演算が可能となる。
 (本発明の第4実施形態)
 ここでは、前述した第3実施形態のより具体的な一例について図13~14を参照しながら説明する。図13は、第4実施形態の力学量測定装置における最内周以外のホイートストンブリッジの一例を示す平面模式図および配線系統図である。なお、図13の平面模式図においては、図面を単純化するために、配線の詳細(例えば、不純物拡散抵抗体同士の配線)を省略してある。
 図13に示したように、本実施形態における最内周以外のホイートストンブリッジC’は、4回対称の形状となる4つの抵抗体群RGC1,RGC2,RGC3,RGC4からなり、当該抵抗体群のそれぞれは、複数のセグメント33が連なるように配列された構造を有している。前述のホイートストンブリッジA’,B’と同様に、セグメント33には、線形状を有する不純物拡散抵抗体が複数含まれている。また、セグメント33は、当該複数の不純物拡散抵抗体が、その線方向が互いに平行になるように配列され、セグメント33として矩形状を有している。
 ホイートストンブリッジC’を構成する4つのブリッジ抵抗Rv1,Rv2,Rh1,Rh2のそれぞれは、抵抗体群の数(ここでは4)の倍数個の不純物拡散抵抗体からなる。具体的には、ブリッジ抵抗Rv1は不純物拡散抵抗体rCv11,rCv12,rCv13,rCv14,・・・,rCv117,rCv118,rCv119,rCv120の20個からなり、ブリッジ抵抗Rv2は不純物拡散抵抗体rCv21,rCv22,rCv23,rCv24,・・・,rCv217,rCv218,rCv219,rCv220の20個からなり、ブリッジ抵抗Rh1は不純物拡散抵抗体rCh11,rCh12,rCh13,rCh14,・・・,rCh117,rCh118,rCh119,rCh120の20個からなり、ブリッジ抵抗Rh2は不純物拡散抵抗体rCh21,rCh22,rCh23,rCh24,・・・,rCh217,rCh218,rCh219,rCh220の20個からなる。
 また、前述のホイートストンブリッジB’と同様に、抵抗体群RGC1~RGC4内で隣り合うセグメント33は、それらセグメント33を構成する不純物拡散抵抗体の線方向が互いに直交する関係となるように配列されている。例えば、抵抗体群RGC1内で1つのセグメント33は、不純物拡散抵抗体rCv11,rCv12,rCv21,rCv22の線方向がシリコン単結晶基板1の<1 1 0>方向に直交する方向となるにように配列され、各不純物拡散抵抗体はその方向に電流が流れるように接続されている。抵抗体群RGC1内でそれに隣接するセグメント33は、不純物拡散抵抗体rCh11,rCh12,rCh21,rCh22の線方向がシリコン単結晶基板1の<1 1 0>方向となるにように配列され、各不純物拡散抵抗体はその方向に電流が流れるように接続されている。更にそれに隣接するセグメント33は、不純物拡散抵抗体rCv13,rCv14,rCv23,rCv24の線方向がシリコン単結晶基板1の<1 1 0>方向に直交する方向となるにように配列され、各不純物拡散抵抗体はその方向に電流が流れるように接続されている。
 図13および上記説明から判るように、抵抗体群RGC1~RGC4のそれぞれは4つのブリッジ抵抗の要素を全て有している。このことから、ホイートストンブリッジC’は、自身のひずみ検出領域内において(当該ホイートストンブリッジを構成する不純物拡散抵抗体が形成された領域において)、検出の面内等方性が高く、当該領域内を平均化した信号が得られるという特徴がある。
 また、ホイートストンブリッジC’のセグメント33も、ホイートストンブリッジA’,B’のそれと同様に、不純物拡散抵抗体と同じ構成であるが電気的に接続されないダミー抵抗体34を有することが好ましい。
 図14は、第4実施形態の力学量測定装置の概要を示す平面模式図である。なお、図14においても、図面を単純化するために、配線の詳細(例えば、各不純物拡散抵抗体への配線)を省略してある。
 図14に示したように、第4実施形態に係る力学量測定装置40’は、シリコン単結晶基板1の表面上に、ホイートストンブリッジA’(図8参照)とホイートストンブリッジB’(図9参照)とホイートストンブリッジC’(図13参照)とが互いに同心状に配設されている。ホイートストンブリッジA’,B’,C’のそれぞれは、電源端子4とグランド端子5とに接続されている。ホイートストンブリッジA’から得られる信号(ブリッジ電圧の電位差)はシリコン単結晶基板1内に形成されたアンプ回路6で増幅され、ホイートストンブリッジB’から得られる信号はシリコン単結晶基板1内に形成されたアンプ回路31で増幅され、ホイートストンブリッジC’から得られる信号はシリコン単結晶基板1内に形成されたアンプ回路41で増幅される。アンプ回路6で増幅された信号とアンプ回路31で増幅された信号とアンプ回路41で増幅された信号とは、シリコン単結晶基板1内に形成された補正演算回路32に入力され、当該補正演算回路32において、ホイートストンブリッジA’で検出されるひずみ量とホイートストンブリッジB’で検出されるひずみ量とホイートストンブリッジC’で検出されるひずみ量との差異から真のひずみ量を算出する補正演算が行われ、補正演算された信号が出力端子7から取り出される。
 力学量測定装置40’では、ホイートストンブリッジA’とホイートストンブリッジB’とホイートストンブリッジC’とが隙間無く接するように配設されている。言い換えると、ひずみ検出領域がコンパクトに形成されている。これにより、はんだ接合層22でのクリープ変形の影響をできる限り抑制できると共に、補正演算回路32による補正演算の精度が向上する。他の作用効果は、第3実施形態の力学量測定装置40と同様である。
 (本発明の第5実施形態)
 ここでは、前述した第2実施形態の変形例について図15を参照しながら説明する。図15は、第5実施形態の力学量測定装置の概要を示す平面模式図である。なお、図15においても、図面を単純化するために、配線の詳細(例えば、各不純物拡散抵抗体への配線)を省略してある。
 図15に示したように、第5実施形態に係る力学量測定装置50は、シリコン単結晶基板1の表面上に、ホイートストンブリッジA’(図8参照)とホイートストンブリッジC’(図13参照)とが互いに同心状に配設されている。端的に言うと、力学量測定装置50は、先の力学量測定装置40’からホイートストンブリッジB’が抜けたひずみ検出領域を有している。
 ホイートストンブリッジA’,C’のそれぞれは、電源端子4とグランド端子5とに接続されている。ホイートストンブリッジA’から得られる信号(ブリッジ電圧の電位差)はシリコン単結晶基板1内に形成されたアンプ回路6で増幅され、ホイートストンブリッジC’から得られる信号はシリコン単結晶基板1内に形成されたアンプ回路41で増幅される。アンプ回路6で増幅された信号とアンプ回路41で増幅された信号とは、シリコン単結晶基板1内に形成された補正演算回路32に入力され、当該補正演算回路32において、ホイートストンブリッジA’で検出されるひずみ量とホイートストンブリッジC’で検出されるひずみ量との差異から真のひずみ量を算出する補正演算が行われ、補正演算された信号が出力端子7から取り出される。
 力学量測定装置50では、最内周のホイートストンブリッジA’と最内周以外のホイートストンブリッジC’との間に隙間を形成して配設されていることから、ホイートストンブリッジを構成する各不純物拡散抵抗体の配線の取り回しが容易になり、製造歩留りの向上(すなわち製造コストの低減)に貢献する。また、力学量測定装置50のホイートストンブリッジC’は、力学量測定装置30’のホイートストンブリッジB’よりも外周側に配設されていることから、はんだ接合層22のクリープ変形の影響をより早く検知することができる。
 同心状に配設されるホイートストンブリッジ間の距離は、当該ホイートストンブリッジを構成するセグメント33の一辺の長さ以下であることが好ましい。ホイートストンブリッジ間の距離がセグメントの一辺の長さより長くなると、補正演算の精度が低下する。他の作用効果は、第1実施形態の力学量測定装置30と同様である。
 (本発明の第6実施形態)
 ここでは、前述した第2実施形態の他の変形例(第5実施形態の変形例)について図16を参照しながら説明する。図16は、第6実施形態の力学量測定装置の概要を示す平面模式図である。なお、図16においても、図面を単純化するために、配線の詳細(例えば、各不純物拡散抵抗体への配線)を省略してある。
 図16に示したように、第6実施形態に係る力学量測定装置60は、シリコン単結晶基板1の表面上に、ホイートストンブリッジA’(図8参照)とホイートストンブリッジC”とが互いに同心状に配設されている。端的に言うと、力学量測定装置60のホイートストンブリッジC”は、先の力学量測定装置50におけるホイートストンブリッジC’から一部のセグメントが抜けた構造を有している。
 ホイートストンブリッジA’,C”のそれぞれは、電源端子4とグランド端子5とに接続されている。ホイートストンブリッジA’から得られる信号(ブリッジ電圧の電位差)はシリコン単結晶基板1内に形成されたアンプ回路6で増幅され、ホイートストンブリッジC”から得られる信号はシリコン単結晶基板1内に形成されたアンプ回路41で増幅される。アンプ回路6で増幅された信号とアンプ回路41で増幅された信号とは、シリコン単結晶基板1内に形成された補正演算回路32に入力され、当該補正演算回路32において、ホイートストンブリッジA’で検出されるひずみ量とホイートストンブリッジC”で検出されるひずみ量との差異から真のひずみ量を算出する補正演算が行われ、補正演算された信号が出力端子7から取り出される。
 力学量測定装置60では、ホイートストンブリッジC”を構成するセグメント33が隙間を形成して配設されていることから、ホイートストンブリッジを構成する各不純物拡散抵抗体の配線の取り回しが更に容易になり、製造歩留りの向上(すなわち製造コストの低減)に貢献する。
 1つのホイートストンブリッジを構成するセグメント33間の距離は、当該セグメントの一辺の長さ以下であることが好ましい。1つのホイートストンブリッジ内でセグメント33間の距離がセグメントの一辺の長さより長くなると、ひずみ検出の面内等方性が低下して補正演算の精度が低下する。他の作用効果は、第5実施形態の力学量測定装置50と同様である。
 (本発明の第7実施形態)
 ここでは、前述した第2実施形態の更に他の変形例(第5実施形態の変形例)について図17を参照しながら説明する。図17は、第7実施形態の力学量測定装置の概要を示す平面模式図である。なお、図17においても、図面を単純化するために、配線の詳細(例えば、各不純物拡散抵抗体への配線)を省略してある。
 図17に示したように、第7実施形態に係る力学量測定装置70は、シリコン単結晶基板1の表面上に、ホイートストンブリッジDとホイートストンブリッジEとが互いに同心状に配設されている。端的に言うと、力学量測定装置70は、ホイートストンブリッジの外形が円形状となるようにセグメント33が配設されている例である。
 最内周のホイートストンブリッジDは、4回対称の形状となる4つの抵抗体群RGD1,RGD2,RGD3,RGD4からなっている。最内周以外のホイートストンブリッジEも、4回対称の形状となる4つの抵抗体群RGE1,RGE2,RGE3,RGE4からなっている。各抵抗体群は、複数のセグメント33が連なるように配列された構造を有している。各セグメント33の構成は前述の第5実施形態と同様のため、詳細な説明は省略するが、抵抗体群のそれぞれは、ホイートストンブリッジの4つのブリッジ抵抗を構成する不純物拡散抵抗体を少なくとも1個ずつ有している。
 ホイートストンブリッジD,Eのそれぞれは、電源端子4とグランド端子5とに接続されている。ホイートストンブリッジDから得られる信号(ブリッジ電圧の電位差)はシリコン単結晶基板1内に形成されたアンプ回路71で増幅され、ホイートストンブリッジEから得られる信号はシリコン単結晶基板1内に形成されたアンプ回路72で増幅される。アンプ回路71で増幅された信号とアンプ回路72で増幅された信号とは、シリコン単結晶基板1内に形成された補正演算回路32に入力され、当該補正演算回路32において、ホイートストンブリッジDで検出されるひずみ量とホイートストンブリッジE検出されるひずみ量との差異から真のひずみ量を算出する補正演算が行われ、補正演算された信号が出力端子7から取り出される。
 力学量測定装置70は、ホイートストンブリッジの外形が円形状となるようにセグメント33が配設されていることから、ひずみ検出の面内等方性が更に向上する利点がある。他の作用効果は、第5実施形態の力学量測定装置50と同様である。
 (本発明の第8実施形態)
 ここでは、本発明に係る圧力センサについて図18を参照しながら説明する。本発明に係る圧力センサは、ひずみセンサとして本発明に係る力学量測定装置を用いていることに特徴がある。図18は、本発明に係る圧力センサの一例を示す断面模式図である。
 図18に示したように、本発明に係る圧力センサ80は、圧力を受けてそれを電気信号に変換するセンサ部と、電気信号を外部機器に伝達するコネクタ部とに大別される。センサ部は、一端が開放され他端が閉塞した金属製の有底筒状体で圧力ポートに挿入される圧力導入部81と、圧力導入部81の挿入量を規定するフランジ82と、圧力導入部81の閉塞端側で圧力を受けて変形するダイアフラム83と、ダイアフラム83上にはんだ接合されたひずみセンサ84と、ひずみセンサ84と接続されひずみセンサ84を制御する制御機構85とからなる。制御機構85には、補正演算に用いる各種データが格納されたメモリやコンデンサ86等が搭載されている。コネクタ部は、外部機器と接続されるコネクタ87と、電気信号を伝達する接続端子88と、コネクタ87をセンサ部に固定するカバー89とからなる。
 圧力センサ80は、ひずみセンサ84として本発明に係る力学量測定装置を用いていることから、高温高圧環境下での使用においても従来以上に高い精度や長期信頼性を確保することができる。
 なお、上述した実施形態は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。
 10…半導体ひずみセンサ、
 1…シリコン単結晶基板、2…不純物拡散抵抗体、3…ホイートストンブリッジ、
 4…電源端子、5…グランド端子、6…アンプ回路、7…出力端子、
 20…疑似圧力センサ、21…金属板、22…はんだ接合層、23…端子台、
 30,30’…力学量測定装置、31…アンプ回路、32…補正演算回路、
 33…セグメント、34…ダミー抵抗体、
 40,40’…力学量測定装置、41…アンプ回路、
 50,60,70…力学量測定装置、71,72…アンプ回路、
 80…圧力センサ、81…圧力導入部、82…フランジ、83…ダイアフラム、
 84…ひずみセンサ、85…制御機構、86…コンデンサ、
 87…コネクタ、88…接続端子、89…カバー。

Claims (12)

  1.  半導体基板表面に形成された不純物拡散抵抗体によって構成されるひずみ検出領域を備えた力学量測定装置であって、
    前記ひずみ検出領域は、互いに同心状に配設された複数のホイートストンブリッジを有し、
    前記複数のホイートストンブリッジの内の最内周のホイートストンブリッジは、前記同心を軸にした2回対称の形状となる2つの抵抗体群または4回対称の形状となる4つの抵抗体群からなり、
    前記複数のホイートストンブリッジの内の他のホイートストンブリッジは、前記同心を軸にした4回対称の形状となる4つの抵抗体群からなり、
    前記ホイートストンブリッジを構成する4つのブリッジ抵抗のそれぞれは、当該ホイートストンブリッジの前記抵抗体群の数の倍数個の前記不純物拡散抵抗体からなり、前記抵抗体群のそれぞれは、前記4つのブリッジ抵抗を構成する前記不純物拡散抵抗体を
    少なくとも1個ずつ有していることを特徴とする力学量測定装置。
  2.  請求項1に記載の力学量測定装置において、
    前記不純物拡散抵抗体のそれぞれは、線形状を有し、
    前記抵抗体群は、複数のセグメントが連なるように配列された構造を有しており、
    前記セグメントは、前記不純物拡散抵抗体の線方向が互いに平行に配列された複数の前記不純物拡散抵抗体から構成され、当該セグメントとして矩形状を有していることを特徴とする力学量測定装置。
  3.  請求項2に記載の力学量測定装置において、
    前記抵抗体群内で隣り合う前記セグメントは、それらセグメントを構成する前記不純物拡散抵抗体の線方向が互いに直交する関係となるように配列されていることを特徴とする力学量測定装置。
  4.  請求項2又は請求項3に記載の力学量測定装置において、
    前記複数のホイートストンブリッジ間の距離は、前記セグメントの一辺の長さ以下であることを特徴とする力学量測定装置。
  5.  請求項2乃至請求項4のいずれかに記載の力学量測定装置において、
    前記ホイートストンブリッジ内で隣り合う前記セグメント間の距離は、前記セグメントの一辺の長さ以下であることを特徴とする力学量測定装置。
  6.  請求項2乃至請求項5のいずれかに記載の力学量測定装置において、
    前記セグメントは、前記不純物拡散抵抗体と同じ構成であるが電気的に接続されないダミー抵抗体を有することを特徴とする力学量測定装置。
  7.  請求項1乃至請求項6のいずれかに記載の力学量測定装置において、
    前記複数のホイートストンブリッジのそれぞれからの出力に基づいてひずみ量の補正計算を行う補正演算回路が、前記半導体基板上に更に設けられていることを特徴とする力学量測定装置。
  8.  請求項7に記載の力学量測定装置において、
    前記補正計算は、前記複数のホイートストンブリッジからの前記出力に加えて、前記複数のホイートストンブリッジそれぞれの前記同心からの距離に基づいて行われることを特徴とする力学量測定装置。
  9.  請求項1乃至請求項8のいずれかに記載の力学量測定装置において、
    前記半導体基板は、シリコン単結晶基板であり、
    前記不純物拡散抵抗体は、自身を流れる電流方向が前記シリコン単結晶基板の<1 1 0>方向または該<1 1 0>方向に直交する方向となるように接続されていることを特徴とする力学量測定装置。
  10.  金属製のダイアフラム上に半導体ひずみセンサが接合された圧力センサであって、
    前記半導体ひずみセンサは、請求項1乃至請求項9のいずれかに記載の力学量測定装置であることを特徴とする圧力センサ。
  11.  請求項10に記載の圧力センサにおいて、
    前記接合は、はんだ接合であることを特徴とする圧力センサ。
  12.  請求項10又は請求項11に記載の圧力センサにおいて、
    前記圧力センサは、自動車エンジン用の圧力センサであることを特徴とする圧力センサ。
PCT/JP2014/068528 2013-09-06 2014-07-11 力学量測定装置およびそれを用いた圧力センサ WO2015033669A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015535365A JP6192728B2 (ja) 2013-09-06 2014-07-11 力学量測定装置およびそれを用いた圧力センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-184533 2013-09-06
JP2013184533 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015033669A1 true WO2015033669A1 (ja) 2015-03-12

Family

ID=52628157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068528 WO2015033669A1 (ja) 2013-09-06 2014-07-11 力学量測定装置およびそれを用いた圧力センサ

Country Status (2)

Country Link
JP (1) JP6192728B2 (ja)
WO (1) WO2015033669A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056671A1 (ja) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 力学量測定装置およびそれを用いた圧力センサ
JP2020523171A (ja) * 2017-04-03 2020-08-06 ザ・ユナイテッド・ステイツ・ガバメント・アズ・リプレゼンティッド・バイ・ザ・デパートメント・オヴ・ヴェテランズ・アフェアズ 電動車椅子の利用者のための高性能な足位置センサー、ならびにそれを使用するシステム及び方法
WO2021253050A1 (en) * 2020-06-12 2021-12-16 Liquid Wire Inc. Multi-axis differential strain sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188103A (ja) * 1984-05-30 1986-05-06 テイ−ア−ルダブリユ− トランスポ−テ−シヨン エレクトロニクス リミテツド ストレインゲ−ジ・ブリツジ装置
JPH10142086A (ja) * 1996-11-07 1998-05-29 Hitachi Ltd 半導体圧力センサとその製造方法及びこれを用いた差圧伝送器
JP2007263781A (ja) * 2006-03-29 2007-10-11 Hitachi Ltd 力学量測定装置
JP2012047608A (ja) * 2010-08-27 2012-03-08 Hitachi Ltd 力学量測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188103A (ja) * 1984-05-30 1986-05-06 テイ−ア−ルダブリユ− トランスポ−テ−シヨン エレクトロニクス リミテツド ストレインゲ−ジ・ブリツジ装置
JPH10142086A (ja) * 1996-11-07 1998-05-29 Hitachi Ltd 半導体圧力センサとその製造方法及びこれを用いた差圧伝送器
JP2007263781A (ja) * 2006-03-29 2007-10-11 Hitachi Ltd 力学量測定装置
JP2012047608A (ja) * 2010-08-27 2012-03-08 Hitachi Ltd 力学量測定装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056671A1 (ja) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 力学量測定装置およびそれを用いた圧力センサ
JPWO2017056671A1 (ja) * 2015-09-30 2018-04-12 日立オートモティブシステムズ株式会社 力学量測定装置およびそれを用いた圧力センサ
CN108027291A (zh) * 2015-09-30 2018-05-11 日立汽车系统株式会社 力学量测量装置和使用它的压力传感器
US10408692B2 (en) 2015-09-30 2019-09-10 Hitachi Automotive Systems, Ltd. Mechanical quantity measurement device and pressure sensor using same
EP3358325A4 (en) * 2015-09-30 2020-11-25 Hitachi Automotive Systems, Ltd. MECHANICAL QUANTITY MEASURING DEVICE AND PRESSURE SENSOR WITH IT
JP2020523171A (ja) * 2017-04-03 2020-08-06 ザ・ユナイテッド・ステイツ・ガバメント・アズ・リプレゼンティッド・バイ・ザ・デパートメント・オヴ・ヴェテランズ・アフェアズ 電動車椅子の利用者のための高性能な足位置センサー、ならびにそれを使用するシステム及び方法
JP7216374B2 (ja) 2017-04-03 2023-02-01 ザ・ユナイテッド・ステイツ・ガバメント・アズ・リプレゼンティッド・バイ・ザ・デパートメント・オヴ・ヴェテランズ・アフェアズ 電動車椅子の利用者のための高性能な足位置センサー、ならびにそれを使用するシステム及び方法
WO2021253050A1 (en) * 2020-06-12 2021-12-16 Liquid Wire Inc. Multi-axis differential strain sensor

Also Published As

Publication number Publication date
JPWO2015033669A1 (ja) 2017-03-02
JP6192728B2 (ja) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6130598B2 (ja) 力学量測定装置およびそれを用いた圧力センサ
JP6371012B2 (ja) 力学量測定装置およびそれを用いた圧力センサ
JP4421511B2 (ja) 半導体圧力センサ
US8770035B2 (en) Semiconductor pressure sensor, pressure sensor apparatus, electronic equipment, and method of manufacturing semiconductor pressure sensor
US20150362391A1 (en) Pressure Sensor, and Mass Flow Meter and Mass Flow Controller Using the Same
EP2924408B1 (en) Pressure sensor
JP2017500545A (ja) 半導体圧力センサ
JP6154488B2 (ja) 圧力測定装置
JP6192728B2 (ja) 力学量測定装置およびそれを用いた圧力センサ
JP5853169B2 (ja) 半導体圧力センサ
CN102359836A (zh) 一种mems压阻式拉压力芯片及传感器的制作方法
CN107430039A (zh) 压力传感器
US10527513B2 (en) Pressure sensor with resin portion and membrane having reduced temperature change distortion
CN102539063B (zh) 一种soi矩形膜结构高压传感器芯片
JP6236523B2 (ja) 力学量測定装置およびそれを用いた圧力センサ
JP2013024822A (ja) 熱式流量計
CN207231625U (zh) 称重传感器
JP6532810B2 (ja) 流量センサ
CN116499616A (zh) 一种具有片上自校准能力的碳化硅压力传感器及校准方法
JP6115507B2 (ja) 圧力センサ
JP2018025394A (ja) 圧力センサ
JP2019196960A (ja) 圧力センサ
JP2009175023A (ja) 半導体圧力センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842845

Country of ref document: EP

Kind code of ref document: A1