WO2015032278A1 - 一种分光瞳激光差动共焦拉曼光谱测试方法及装置 - Google Patents

一种分光瞳激光差动共焦拉曼光谱测试方法及装置 Download PDF

Info

Publication number
WO2015032278A1
WO2015032278A1 PCT/CN2014/084778 CN2014084778W WO2015032278A1 WO 2015032278 A1 WO2015032278 A1 WO 2015032278A1 CN 2014084778 W CN2014084778 W CN 2014084778W WO 2015032278 A1 WO2015032278 A1 WO 2015032278A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detector
raman
focus
condenser
Prior art date
Application number
PCT/CN2014/084778
Other languages
English (en)
French (fr)
Inventor
赵维谦
盛忠
邱丽荣
邵荣君
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Publication of WO2015032278A1 publication Critical patent/WO2015032278A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence

Definitions

  • the present application belongs to the field of microscopic spectral imaging technology, and in particular relates to a spectroscopic laser differential confocal Raman spectroscopy test method and a spectroscopic krypton laser differential confocal Raman spectroscopy test device. Background technique
  • Laser confocal Raman spectroscopy is an important technical tool for measuring and analyzing material structures. It is widely used. For areas such as physics, chemistry, biomedicine, materials science, environmental science, petrochemicals, geology, pharmaceuticals, food, forensic and jewelry testing, samples can be analyzed for damage-free and deep spectral analysis, as well as sample scanning and Low temperature analysis, photoluminescence studies of materials, etc.
  • the principle of the conventional confocal Raman optical detector is shown in FIG. 1.
  • the light source system 1 emits an excitation beam through the polarization beam splitter 31, the quarter wave plate 32 and the focusing objective lens 33, and focuses on the sample 5 to be tested. Raising the Raman scattered light carrying the spectral characteristics of the sample 5 to be tested; moving the sample 5 to be tested by the three-dimensional scanning system 16 to pass the Raman scattered light corresponding to different regions of the sample 5 through the quarter wave plate again 32 is reflected by the polarization beam splitter 31, and the first condensing mirror 8 converges the light reflected by the polarization beam splitter 31, and the Raman scattering of the spectral information of the sample to be tested 5 is measured by the spectrum detector 9 located behind the first pinhole 23. spectrum.
  • the traditional confocal microscopy technique can also excite the Raman spectrum of the sample in the vicinity of the laser excitation focus and can be detected by the optical language detection system after the pinhole. Therefore, the actual detection position of the confocal Raman spectroscopy microscopy technique is often in the defocus position.
  • people have put forward higher requirements for micro-regional optical language detection ability and spatial resolution detection capability.
  • optical detection system when the measurement focus spot is at the focus, its size is the smallest, and the excitation light intensity is the strongest, so that the best space is obtained. Resolution and optimal optical speech detection capabilities must be fine-tuned for the system.
  • confocal microscopy methods In general, there are currently two types of confocal microscopy methods: one is to measure the sample directly using the oblique side of the confocal intensity response, and the other is to focus on the sample using the maximum value of the confocal intensity response. Tracking to achieve measurements.
  • the existing confocal microscopic measurement system has the following disadvantages: When measuring with the confocal intensity response oblique bevel, the absolute displacement measurement cannot be realized, and the measurement accuracy is limited by the nonlinearity of the oblique measurement interval of the confocal intensity response curve, and the intensity of the light source.
  • Raman spectroscopy is used to achieve low confocal localization signal-to-noise ratio, and the blocking effect of pinholes will further reduce the energy of Raman spectroscopy.
  • Increasing the pinhole size and increasing the spectral pass rate will increase the confocal axial positioning curve.
  • the half width and width of the lens reduce the positioning accuracy.
  • the size of the confocal pinhole in the existing confocal Raman system is usually between 150 4 11 and 200 4 11 .
  • the pinhole size used is relatively large and not very good. It plays a fixed focus.
  • Raman spectroscopy requires long-time single-point Raman optical detection and multi-point Raman optical detection.
  • Raman spectral imaging takes a long time.
  • the long-term imaging process of the instrument is greatly affected by the ambient temperature, vibration, air jitter, etc., which may cause the instrument system to drift, resulting in the sample being defocused from the detected position.
  • the existing confocal Raman optical detection technology does not With real-time focus tracking and position correction, it is impossible to ensure that the position of the excitation spot is at the focus of the objective lens during the whole imaging process.
  • the actual excitation spot is much larger than the focal spot of the objective lens, which limits the miniaturization of the detectable area. , limiting the micro-regional optical language detection capability of the confocal Raman optical language instrument.
  • Zhao Weiqian and others from Beijing Institute of Technology have proposed a differential confocal Raman spectroscopy test method with strong micro-domain spectral detection capability, which will focus on the confocal detection beam.
  • the system is divided into two parts, and the point detectors of the two detection systems are placed separately Differential detection is performed before and after the focus, and then bipolar absolute zero tracking measurement is performed.
  • the differential confocal Raman optical language testing technique is disclosed in the patent ZL2008101156011 (inventor: Zhao Weiqian et al.), entitled “Differential Confocal Raman Spectroscopy Test Method", the principle of which is shown in Figure 2.
  • the spectral imaging detection of the fine micro-areas of the sample provides a new means for the measurement and analysis of the three-dimensional scale and spectral characteristics of the sample micro-area.
  • the differential confocal Raman spectroscopy test method uses a two-way physical pinhole structure, which makes the structure of the differential confocal measurement system relatively complicated, and requires strict requirements for the defocus position, which is difficult to install and adjust, and increases the error source:
  • the differential confocal microscopy system is limited by principle, it is often difficult to balance resolving power, working distance, and field of view.
  • the Raman spectral intensity of the sample scattering is 1 (T 3 ⁇ 10" 6 times the intensity of the reflected Rayleigh beam
  • the existing confocal Raman spectroscopy instruments detect the weak Raman spectrum of the sample scattering and the abandonment is stronger than Raman scattered light is 10 3 ⁇ 10 6 Rayleigh beam. Therefore, using the abandoned Rayleigh beam in the existing optical speech detection system for auxiliary detection is a new way to improve the spatial resolution of existing confocal Raman spectroscopy detection technology.
  • One of the objectives of the present application is to overcome the deficiencies of the prior art, and to provide a spectroscopic laser differential confocal Raman spectroscopy test method and apparatus therefor.
  • the high-resolution imaging of the three-dimensional geometric position of the sample is realized by constructing the spectroscopic confocal microscopy imaging system by using the Rayleigh scattered light in the confocal Raman optical detection, and using the "zero crossing point" of the spectroscopic differential confocal microscopic imaging device
  • the focus accurately corresponds to this characteristic to control the optical detector to accurately capture the Raman spectral information excited at the focal point of the objective lens, thereby achieving high-precision detection of the geometric position and spectral information of the sample micro-region, that is, the high space of "integration of the language” Resolve the detection, and at the same time achieve an effective balance of resolution and range.
  • the present application can detect scattering spectra including fluorescence, Brillouin scattered light, Compton scattered light, and the like.
  • the present application can also achieve super-resolution multi-spectral comprehensive testing by introducing a compact focusing technique combining radial polarized light with a pupil filter.
  • the embodiment of the present application discloses a spectroscopic laser differential confocal Raman spectroscopy test method, including:
  • the light source (1) emits an excitation beam;
  • the measuring objective lens (2) focuses the excitation beam; wherein the illumination pupil (3) on the pupil plane of the measuring objective lens (2) deviates from the main axis of the measuring objective lens (2), the excitation is performed After the beam is concentrated, it is obliquely incident on the sample to be tested (5), and the Raman scattered light carrying the spectral characteristics of the sample to be tested (5) is excited, and the Rayleigh light is reflected; the measuring objective (2) on the pupil plane Collecting the pupil (4) collecting the Raman scattered light and the Rayleigh light, and the collected Raman scattered light and the Rayleigh light arrive at the dichroic beam splitter (6);
  • the dichroic beam splitter (6) separates the Raman scattered light and the Rayleigh light transmitted by the collecting aperture (4);
  • the Raman optical detector (7) captures and detects a spectral signal of the Raman scattered light after separation by a dichroic beam splitter (6);
  • the spectroscopic laser differential confocal detector (11) detects the Rayleigh light after separation by the dichroic beam splitter (6);
  • the data processor (18) uses the spectroscopic holmium laser differential confocal detector (11) to detect the spot of the Rayleigh light to calculate position information of the sample to be tested (5), using the spectral information and The position information is subjected to three-dimensional reconstruction processing and optical language information fusion processing on the sample to be tested (5);
  • the processor (22) controls the three-dimensional scanner (16) to drive the sample to be tested (5) for three-dimensional scanning;
  • a displacement sensor (17) returns movement information of the sample to be tested (5) to the processor (22).
  • the data processor (18) calculates the position information of the sample to be tested (5) by using the spot of the Rayleigh light, and uses the optical language information and the position information to measure the sample to be tested (5)
  • the steps of performing the three-dimensional reconstruction processing and the optical information fusion processing include:
  • the three-dimensional scanner (16) drives the sample to be tested (5) to scan along the Z-axis, that is, the direction of the main axis of the measuring objective (2), while simultaneously detecting the light intensity signal of the Rayleigh light in the first detecting area (14)
  • the light intensity signal of the Rayleigh light in the second detection area (15) is subjected to differential subtraction processing a scored laser differential confocal response curve; the differential confocal response curve includes a zero point, and the zero point is used to calculate axial position information of the sample to be tested (5); the zero point is the first a point at which the light intensity signal of the Rayleigh light in the detection area (14) is equal to the light intensity signal of the Rayleigh light in the second detection area (15);
  • the zero point accurately corresponds to the focus of the measuring objective lens (2); the "zero crossing point” is monitored, and the position of the sample to be tested (5) is fine-tuned in real time by the three-dimensional scanner (16) to compensate for the change caused by environmental factors such as temperature and humidity. Focus error; so that the sample to be tested (5) is always at the focus position of the measuring objective, ensuring that the Raman optical detector (7) always detects the spectral information at the focus of the measuring objective (2);
  • the displacement sensor (17) returns the lateral displacement information of the sample to be tested (5) to the processor (22); thereby obtaining three-dimensional position information of the sample to be tested (5);
  • the measured sample (5) is subjected to three-dimensional reconstruction processing and spectral information fusion processing using the position information and the spectral information.
  • the Raman spectroscopy detector (7) comprises a first concentrating mirror (8), an optical detector (9) and a first detector (10); the detecting surface of the spectral detector (9) is located at The focus of the first concentrating mirror (8);
  • the step of capturing and detecting the optical signal of the Raman scattered light after separation by the dichroic beam splitter (6) by the Raman optical detector (7) includes:
  • the first concentrating mirror (8) is configured to focus the Raman scattered light after being separated by the dichroic beam splitter (6);
  • the optical detector (9) extracts a Raman scattering signal from the focused Raman scattered light; the first detector (10) measures the relative intensities of different wavelengths in the Raman scattering signal to obtain Spectral information of the Raman spectrum.
  • the Raman optical detector (7) further includes a first pinhole (23), the first pinhole (23) is disposed at a focus position of the first concentrating mirror (8), the light The detecting surface of the speech detector (9) is located behind the first pinhole (23);
  • the step of capturing and detecting the optical signal of the Raman scattered light after separation by the dichroic beam splitter (6) by the Raman optical detector (7) further includes:
  • the first pinhole (23) filters stray light outside the focus of the first concentrating mirror (8) Except.
  • the spectroscopic laser differential confocal detector (11) comprises a second concentrating mirror (12) and an image collector (13), and a detecting surface of the image collector (13) is located at the second concentrating mirror (12) Focal plane
  • the step of the spectroscopic laser differential confocal detector (11) detecting the Rayleigh light after separation by the dichroic beam splitter (6) comprises:
  • the second condensing mirror (12) focuses the Rayleigh light after separation
  • the image collector (13) collects the focused spot of the Rayleigh light after focusing.
  • the spectroscopic laser differential confocal detector (11) further comprises an image amplifier (28); wherein an object plane of the image amplifier (28) is located at a focus of the second concentrating mirror (12), The detection surface of the image collector (13) is located on the image plane of the image amplifier (28);
  • the step of detecting the spot of the Rayleigh light after the separation by the spectroscopic laser differential confocal detector (11) further includes:
  • the image amplifier (28) amplifies the converged spot of the second concentrating mirror (12).
  • a beam modulator (24) is disposed between the light source (1) and the illumination diaphragm (3); the beam modulator (24) includes a third concentrating mirror (25) located at the third concentrating mirror ( 25) a second pinhole (26) at the focus and a fourth concentrating mirror (27) having a focus at the second pinhole (26); the third concentrating mirror (25), the second pinhole (26) and The fourth concentrating mirror (27) is sequentially placed along an optical path between the light source (1) and the illumination pupil (3);
  • the step of measuring the objective lens (2) to focus the excitation beam includes:
  • the third concentrating mirror (25) focuses the excitation beam
  • the second pinhole (26) filters out stray light outside the focus of the third concentrating mirror (8); the fourth concentrating mirror (27) collimates and expands the filtered excitation beam.
  • the illumination diaphragm (3) and the collection aperture (4) are circular, D-shaped, or any other shape.
  • the dichroic beam splitter (6) forms an adjustable angle with the axis of the collecting aperture (4).
  • the embodiment of the present application further discloses a spectroscopic laser differential confocal Raman spectroscopy testing device, the device comprising: a light source (1), a measuring objective lens (2), a dichroic beam splitter (6), and a Raman light.
  • Language detector (7) spectroscopic laser differential confocal detector (11), data processor (18), three-dimensional scanner (16), displacement sensor (17) and processor (22);
  • the light source (1) is configured to emit an excitation beam
  • An illumination pupil (3) and a collection aperture (4) are disposed on the pupil plane of the measurement objective lens (2); the measurement objective lens (2) focuses the excitation beam, the illumination pupil (3) Deviating from the main axis of the measuring objective lens (2), the excitation beam is obliquely incident on the sample to be tested (5), and the Raman scattered light carrying the spectral characteristics of the sample to be tested (5) is excited and reflected.
  • the collecting pupil (4) collects the Raman scattered light and the Rayleigh light, and the collected Raman scattered light and the Rayleigh light arrive at the dichroic beam splitter (6);
  • the dichroic beam splitter (6) is configured to separate the Raman scattered light and the Rayleigh light transmitted by the collecting aperture (4);
  • the Raman optical detector (7) is configured to capture and detect a spectral signal of the Raman scattered light after separation by a dichroic beam splitter (6);
  • the spectroscopic laser differential confocal detector (11) is configured to detect the Rayleigh light after separation by the dichroic beam splitter (6);
  • the data processor (18) is configured to calculate the position information of the sample to be tested (5) by using the spectroscopic ⁇ laser differential confocal detector (11) to detect the spot of the Rayleigh light, and use the spectrum
  • the information and the position information are subjected to three-dimensional reconstruction processing and spectral information fusion processing on the sample to be tested (5);
  • the processor (22) is configured to control the three-dimensional scanner (16) to drive the sample to be tested (5) to perform three-dimensional scanning;
  • the displacement sensor (17) is configured to return movement information of the sample (5) to be tested to the processor (22).
  • the data processor (18) includes a split focal spot module (19), a differential subtraction module (20), and a data fusion module (21);
  • the split focal spot module (19) is configured to divide the spot of the Rayleigh light Obtaining a first detection area (14) and a second detection area (15), and obtaining corresponding light intensity signals;
  • the 3D scanner (16) is configured to drive the sample to be tested (5) to scan along the Z axis, that is, the direction of the main axis of the measuring objective (2);
  • the differential subtraction module (20) is configured to measure a light intensity signal of the Rayleigh light in the first detection area (14) and a light intensity of the Rayleigh light in the second detection area (15)
  • the signal is subjected to differential subtraction processing to obtain a spectroscopic laser differential confocal response curve, and the position information of the sample to be tested (5) is calculated by using the zero point;
  • the differential confocal response curve includes a zero point;
  • a zero point is a point at which the light intensity signal of the Rayleigh light in the first detection area (14) is equal to the light intensity signal of the Rayleigh light in the second detection area (15);
  • the zero point accurately corresponds to the focus of the measuring objective lens (2); the "zero crossing point” is monitored, and the position of the sample to be tested (5) is fine-tuned in real time by the three-dimensional scanner (16) to compensate for the change caused by environmental factors such as temperature and humidity. Focus error; so that the sample to be tested (5) is always at the focus position of the measuring objective, ensuring that the Raman optical detector (7) always detects the spectral information at the focus of the measuring objective (2);
  • the displacement sensor (17) returns the lateral displacement information of the sample to be tested (5) to the processor (22); thereby obtaining three-dimensional position information of the sample to be tested (5);
  • the data fusion module (21) is configured to perform three-dimensional reconstruction processing and optical language information fusion processing on the sample to be tested (5) by using the position information and the optical language information.
  • the Raman spectroscopy detector (7) comprises a first concentrating mirror (8), a photo detector (9) and a first detector (10);
  • the first concentrating mirror (8) is configured to focus the Raman scattered light after being separated by the dichroic beam splitter (6);
  • a detection surface of the optical speech detector (9) is located at a focus of the first condensing mirror (8), configured to extract a Raman scattering signal from the focused Raman scattered light;
  • the first detector (10) is configured to measure the relative intensities of different wavelengths in the Raman scattering signal to obtain optical information of the Raman spectrum.
  • the Raman spectroscopy detector (7) further comprises a first pinhole (23):
  • the first pinhole (23) is disposed at a focus position of the first condensing mirror (8), the light
  • the detection surface of the spectral detector (9) is located behind the first pinhole (23),
  • the first pinhole (23) is configured to filter out stray light outside the focus of the first concentrating mirror (8).
  • the spectroscopic laser differential confocal detector (11) comprises a second concentrating mirror (12) and an image collector (13);
  • the second concentrating mirror (12) is configured to focus the Rayleigh light after separation; the image collector (13) is configured to collect a focused spot of the Rayleigh light after focusing; wherein, the image collector The detection surface of (13) is located at the focal plane of the second concentrating mirror (12).
  • the spectroscopic laser differential confocal detector (11) further comprises:
  • An image amplifier (28) configured to amplify the spot of the Rayleigh light collected by the image collector (13);
  • the object plane of the image amplifier (28) is located at the focus of the second concentrating mirror (12), and the detecting surface of the image collector (13) is located at the image plane of the image amplifier (28);
  • the second concentrating mirror (12) is configured to focus the Rayleigh light after separation;
  • the image amplifier (28) is configured to amplify a concentrated spot of the second concentrating mirror (12);
  • the image collector (13) is configured to acquire a spot of the Rayleigh light that is amplified by the image amplifier (28).
  • the method further comprises: a beam modulator (24);
  • the beam modulator (24) includes a third concentrating mirror (25), a second pinhole (26) at a focus of the third concentrating mirror (25), and a fourth concentrating mirror at a second pinhole (26).
  • the third condensing mirror (25), the second pinhole (26) and the fourth concentrating mirror (27) are sequentially along the optical path between the light source (1) and the illumination pupil (3) Place
  • the third concentrating mirror (25) is configured to focus the excitation beam; the second pinhole (26) is configured to filter out stray light outside the focus of the third concentrating mirror (8);
  • the fourth concentrating mirror (27) is configured to collimate and expand the filtered excitation beam.
  • the dichroic beam splitter (6) forms an adjustable clip with the axis of the collecting aperture (4) Corner.
  • the illumination aperture (3) and the collection aperture (4) are circular, D-shaped, or any other shape. Beneficial effect
  • This application combines the spectroscopic laser differential confocal microscopy technology with the Raman spectroscopy detection technology, and combines the high-precision objective lens focusing point position tracking and capturing ability of the spectroscopic ⁇ differential confocal microscopy technology to detect the precise corresponding minimum excitation focus.
  • the spectral characteristics of the sample in the spot area greatly improve the spectral detection capability of the existing confocal Raman spectroscopy microscope while greatly simplifying the optical path structure of the system. This is an innovation that distinguishes the existing Raman optical detection technology.
  • the anti-scattering ability is strong, which overcomes the inability of the existing confocal microscopic imaging technology to suppress the interference of the scattered light of the focal plane, and improves the signal-to-noise ratio of the optical speech detection. This is the district Different from the innovation of the existing optical language detection technology.
  • Single light path and single detector split focal spot differential subtraction detection mode can effectively suppress common mode noise generated by light source fluctuation, detector electronic drift, environmental state difference, etc., greatly simplify the detection optical path system, eliminate the two detection
  • the error caused by the asymmetry of the off-axis placement and the inconsistent response characteristics of the detector improves the defocusing characteristics of the confocal Raman microscope.
  • the split-beam laser differential confocal measurement has absolute zero point, which can perform absolute measurement of bipolarity, and the absolute zero point is located at the maximum sensitivity of the characteristic curve and accurately corresponds to the "focus position" of the measurement system, which is very convenient for focus tracking measurement. Geometric measurement absolute measurement can be achieved;
  • the horizontal differential confocal mode with split focal spot is convenient for the system to replace the objective lens with different NA values according to requirements, and the adjustment is convenient;
  • dichroic spectroscopic system enhances the Raman spectrum received by the optical speech detection system, improves the signal-to-noise ratio of the spectral detection, and significantly improves the micro-spectral detection capability of the confocal Raman spectroscopy microscope, and can also reduce the system.
  • the light intensity requirement of the excitation light source it can also be adjusted according to requirements to improve the low wave number detection capability of the system.
  • Figure 1 is a schematic diagram of a confocal Raman spectral imaging method
  • FIG. 2 is a schematic diagram of a differential confocal Raman spectroscopy imaging method
  • FIG. 3 is a schematic diagram of a spectroscopic laser differential confocal Raman spectroscopy test process of the present application
  • FIG. 4 is a schematic diagram of a D-type split pupil laser differential confocal Raman optical tweezers test according to the present application
  • FIG. 5 is a schematic diagram of a spectroscopic laser differential confocal Raman spectroscopy test apparatus according to the present application
  • FIG. 6 is a schematic diagram of a non-vertical exiting spectroscopic laser differential confocal Raman spectroscopy apparatus according to the present application
  • FIG. 7 is a schematic diagram of a spectroscopic laser differential confocal Raman optical spectrum testing device with a confocal optical speech detection system according to the present application;
  • FIG. 8 is a schematic diagram of a spectroscopic laser differential confocal Raman spectroscopy test apparatus with a beam modulation system according to the present application
  • 9 is a schematic diagram of a spectroscopic laser differential confocal Raman spectroscopy test apparatus with a prosthetic focal spot amplification system according to the present application
  • FIG. 10 is a schematic diagram of an embodiment of a spectroscopic laser differential confocal Raman spectroscopy test method and apparatus according to the present application;
  • FIG. 11 is a schematic diagram of a split ⁇ differential confocal response curve and a Raman photo response curve of the spectroscopic laser differential confocal Raman spectroscopy test method according to the present application;
  • FIG. 12 is a flow chart showing the steps of an embodiment of a spectroscopic laser differential confocal Raman spectroscopy test method of the present application.
  • 1-light source system (light source), 2-measurement objective lens, 3-illumination diaphragm, 4-collector diaphragm, 5-test sample, 6-dichroic beam splitting system (dichroic beam splitter), 7- Raman spectroscopy detection system (Raman optical detector), 8-first concentrating mirror, 9-optical detector, 10-first detector, 11-split ⁇ laser differential confocal detection system (split ⁇ laser difference) Moving confocal detector), 12-second concentrating mirror, 13-image acquisition system (image collector), 14-probe area A (first detection area), 15-probe area B (second detection area), 16- 3D scanning system (3D scanner), 17-displacement sensor, 18-data processing unit (data processor), 19-segment focal spot detection module (segmented focal spot module), 20-differential subtraction module, 21-data Fusion module, 22-computer processing system (processor), 23-first pinhole, 24-beam modulation system (beam modulator), 25-third concentrator, 26-
  • a spectroscopic laser differential confocal Raman spectroscopy test method comprising the following steps:
  • an illumination pupil 3 and a collection aperture 4 are placed on the pupil plane of the measurement objective lens 2; the light source system 1 emits an excitation beam, and after the excitation beam passes through the illumination pupil 3 of the measurement objective lens 2, Focusing on the sample 5 to be tested, the Raman scattered light carrying the spectral characteristics of the sample 5 is excited, and the Rayleigh light is reflected; the Raman scattered light and the Rayleigh light are measured by the collecting aperture 4 of the objective lens 2 to reach the dichroic color.
  • Spectroscopic system 6 dichroic beam splitting system 6 performs lossless separation of Raman scattered light and Rayleigh light; Rayleigh light reflected by dichroic beam splitting system 6 enters spectroscopic laser differential confocal detection system 11; split pupil laser differential
  • the confocal detection system 11 utilizes the lateral offset of the detector to produce a phase shift characteristic of the axial response characteristic curve of the spectroscopic confocal microscopy system, thereby realizing the detection of the geometric position of the 5 micro-region of the sample to be tested;
  • the Raman scattered light transmitted by the color splitting system 6 enters the Raman spectrum detecting system 7 for optical speech detection.
  • the sample 5 to be tested can be processed by Raman spectroscopy techniques such as enhanced Raman spectroscopy nanoparticles to increase the intensity of Raman scattered light.
  • the system can perform high spatial resolution micro Area tomographic tomography, which is to achieve high spatial resolution imaging and detection of the spectroscopic holographic differential confocal Raman spectroscopy of the sample to be combined.
  • the circular illumination diaphragm 3 and the collection aperture 4 can be replaced with other shapes (such as a "D" shape to form a D-shaped spectroscopic laser differential confocal Raman spectroscopy test, as shown in Fig. 4).
  • the excitation beam may be a polarized beam such as linearly polarized or circularly polarized light; or may be a structured beam generated by a pupil filtering technique, and the combination of polarized light and pupil filtering techniques can compress and measure the size of the focused spot and improve the lateral resolution of the system. .
  • the computer processing system 22 can be used to control the three-dimensional scanning system 16 to move the sample to be tested 5 so that Rayleigh scattered light of different regions of the Rayleigh light and corresponding sample 5 can pass through the measuring objective 2 and the collecting aperture 4.
  • Embodiment 2
  • a spectroscopic laser differential confocal Raman spectroscopy testing device includes a light source system for generating an excitation beam, a measuring objective lens 2, a dichroic beam splitting system 6, a Raman optical speech detecting system 7, and a spectroscopic light
  • the illumination pupil 3 and the collection aperture 4 are placed on the pupil plane of the measurement objective lens 2.
  • the illumination pupil 3 and the measurement objective lens 2 are sequentially located in the exit direction of the excitation beam of the light source system 1, the illumination pupil 3 is coaxial with the excitation beam; the dichroic beam splitting system 6 is located after the collection pupil 4, and the dichroic beam splitter 6
  • the angle ⁇ with the axis of the collecting aperture 4 is 45 °.
  • the Raman photodetection system 7 is located in the transmission direction of the dichroic beam splitting system 6; the Raman photodetection system 7 includes a first concentrating mirror 8, a photodetector 9, and a first detector 10.
  • the detecting surface of the optical language detector 9 is located at the focus of the first collecting mirror 8, and the first detector 10 is located behind the optical speech detector 9.
  • the split pupil laser differential confocal detection system 11 is located in the direction of reflection of the dichroic beam splitting system 6; the split pupil laser differential confocal detection system 11 includes a second concentrating mirror 12 and an image acquisition system 13, wherein the image acquisition system 13 detects The face is located at the focus of the second concentrating mirror 12.
  • the data processing unit 18 includes a split focal spot detection module 19, a differential subtraction module 20, and a data fusion module 21; wherein the split focal spot detection module 19 and the differential subtraction module 20 are configured to process the spot detected by the image acquisition system 13. Obtaining a spectroscopic laser differential confocal response curve 29, thereby obtaining position information of the sample 5 to be tested; the data fusion module 21 is configured to fuse the position information I(u, vM) and the optical language information I(r) to complete the measurement. The three-dimensional reconstruction of sample 5 and the fusion of optical information I (x, y, z, r).
  • the segmentation focal spot detection module 19 divides and detects the Avery spot collected by the image acquisition system 13, and the obtained signal enters the differential subtraction module 20 for differential subtraction to obtain a spectroscopic laser difference.
  • the moving confocal response curve 29 enters the data fusion module 21.
  • the computer processing system 22 is coupled to the displacement sensor 17, the three-dimensional scanning system 16, and the data fusion module 21.
  • the image acquisition system 13 is connected to the segmentation focal spot detection module 19.
  • the data fusion module 21 is coupled to the first detector 10.
  • the three-dimensional scanning system is controlled by the computer processing system 22 to move the sample to be tested 5 so that the Raman scattered light of the different regions of the Rayleigh light and the corresponding sample 5 is passed through the measuring objective lens 2 and the collecting aperture 4.
  • the angle ⁇ between the dichroic beam splitting means 6 and the axis of the collecting aperture 4 may not be 45 °, thereby forming a non-perpendicular splitting laser differential confocal Raman spectroscopy test apparatus.
  • the first pinhole 23 is placed at the focus position of the first condensing mirror 8, thereby forming a spectroscopic laser differential confocal Raman spectroscopy test apparatus having a confocal spectrum detecting system.
  • a beam modulating system 24 is disposed between the light source system 1 and the illuminating aperture 3; the beam modulating system 24 includes a third concentrating mirror 25 sequentially placed along the optical path, and a second pinhole located at the focus of the third condensing mirror 25. 26.
  • a fourth concentrating mirror 27 having a focus at the second pinhole 26 constitutes a spectroscopic laser differential confocal Raman spectroscopy test device having a beam modulation system.
  • an image enlargement system 28 is added to amplify the Avery spot detected by the image acquisition system 13, thereby improving the spectroscopic laser differential confocal detection device.
  • Acquisition accuracy; second concentrating mirror 12, image magnifying system 28 and image acquisition system 13 are placed in sequence along the optical path, wherein image encroaching system 28 is in focus with second concentrating mirror 12, and image acquisition system 13 is located at the focus of image magnifying system 28.
  • the dichroic beam splitting system 6 is a notch filter Notch filter
  • the spectrum detector 9 is a Raman optical detector
  • the image acquisition system 13 is a CCD (Charge-coupled Device).
  • System 28 is an enlarged objective lens.
  • the spectroscopic laser differential confocal Raman spectroscopy detection method has the following test steps:
  • the illumination pupil 3 and the collection pupil 4 are placed on the pupil plane of the measurement objective lens 2.
  • the light source system 1 composed of a laser emits excitation light that can excite the Raman spectrum of the sample 5 to be tested, and the excitation light is concentrated by the third condensing mirror 25 and enters the second pinhole 26 to become a point source, and then is aligned by the fourth condensing mirror 27. After the beam, a parallel excitation beam is formed. The excitation beam passes through the illumination pupil. 3. After measuring the objective lens 2, it focuses on the sample 5 to be tested, and returns the excited Raman scattered light and Rayleigh light carrying the spectral characteristics of the sample to be tested.
  • the three-dimensional scanning system 16 is controlled by the computer processing system 22 to move the sample 5 to be tested, so that the Rayleigh light of different regions and the sample 5 of the corresponding region 5 are passed through the measuring objective lens 2 and the collecting aperture 4, and the dichroic beam splitting is performed.
  • System 6 performs lossless separation of Rayleigh reflected light and Raman scattered light.
  • the Rayleigh light reflected by the dichroic beam splitting system 6 enters the spectroscopic laser differential confocal detecting system 11 and is concentrated by the second collecting mirror 12 to enter the magnifying objective lens 28.
  • the amplified spot is detected by the image collecting system 13, and the image collecting system 13 detected spot enters the segmented focal spot detection module 19, at Two micro-region detection regions A14 and detection regions B 15 are disposed on the xd axis in the detection focal spot.
  • the two detection regions are symmetric about the yd axis and are offset from the yd axis by vM, and the responses of the two regions are measured as IA. (u, -vM) and IB (u, vM);
  • the differential subtraction module 20 differentially subtracts the obtained signal to obtain a split-beam laser differential confocal response curve 29:
  • I(u,vM) IA(u,-vM)-IB(u,-vM)
  • I(u, vM) is the differential conjugate laser confocal response; u is the axial normalized optical coordinate, and vM is the pinhole axial offset.
  • the "zero-crossing point" of the split-beam laser differential confocal response curve 29 accurately corresponds to the focus focus of the excitation beam, and the height information of the surface of the sample to be tested 5 is obtained by the "zero-crossing point" of the response curve 29, combined with the position of the feedback of the displacement sensor 17. The information reconstructs the three-dimensional topography of the surface of the sample 5 to be tested.
  • the Raman scattered light transmitted through the dichroic beam splitting system 6 enters the Raman optical speech detecting system 7, passes through the first collecting mirror 8 and the first pinhole 23 on its focus, and enters the Raman optical detector 9 and thereafter.
  • the first detector 10 measures a Raman scattering spectral response curve I(r) 30 carrying the spectral information of the sample 5 to be tested, where r is the wavelength of the Raman scattered light excited by the excitation light of the sample 5 to be tested;
  • the detection spot obtained by the spectroscopic laser differential confocal detection system 11 receiving the Rayleigh light is divided to obtain the detection area A14 and the detection area B15.
  • the differential conjugate laser confocal response I(u, vM) is obtained, and then the absolute zero point is used to accurately capture the focus position of the excitation spot, and the system can perform high space. Resolved three-dimensional scale tomography.
  • the system can perform spectral detection.
  • the system can perform high spatial resolution micro-regional tomography, which is to achieve high space-resolution "map integration" detection of the geometric position information of the sample to be tested and optical information.
  • the spectroscopic laser differential confocal Raman spectrum detecting device includes a light source system 1 for generating an excitation beam, a measuring objective lens 2, an illumination pupil 3, a collecting aperture 4, a Notch Filter 6, and a Raman optical detecting system 7 , split ⁇ laser differential confocal detection system 11, three-dimensional scanning system 16, displacement a sensor 17 and a data processing unit 18; wherein an illumination pupil 3 and a collection aperture 4 are placed on the pupil plane of the measurement objective lens 2; the measurement objective lens 2 and the illumination aperture 3 are placed in the beam exit direction of the light source system 1, illumination
  • the aperture 3 is coaxial with the excitation beam, and after the NotchFilter 6 is placed in the collection aperture 4, the Raman optical speech detection system 7 is placed in the transmission direction of the Notch Filter 6, and the data is reflected in the direction of reflection of the spectroscopic laser differential confocal detection system 11
  • the processing unit 18 is configured to fuse and process the data acquired by the Raman optical speech detection system 7, the spectroscopic laser
  • FIG. 12 a flow chart of steps of an embodiment of a holmium laser differential confocal Raman spectroscopy test method of the present application is shown, which may specifically include the following steps:
  • Step 101 the light source 1 emits an excitation beam
  • the light source 1 composed of a laser may emit an excitation beam that can excite the Raman spectrum of the sample to be tested, and the excitation beam may include a polarized beam such as linearly polarized or circularly polarized light, or may be filtered by an aperture.
  • the structural beam generated by the technology is not limited in this embodiment of the present application.
  • polarized beams can be combined with pupil filtering techniques to compress and measure the focus spot size and improve lateral resolution.
  • Step 102 the measuring objective lens 2 focuses the excitation beam
  • the illumination pupil 3 and the collected light may be disposed on the pupil plane of the measuring objective lens 2.
  • the illumination diaphragm 3 and the collection aperture 4 may be circular.
  • the circular illumination diaphragm 3 and the collection aperture 4 may be replaced with other shapes, such as a "D" shape as shown in FIG. 4, or other shapes. This is not limited.
  • the illumination pupil 3 on the pupil plane of the measuring objective lens 2 may be offset from the main axis of the measuring objective lens 2, and the excitation beam is concentrated and then obliquely incident on the sample to be tested 5 to excite the sample to be tested 5 Raman scattered light of spectral characteristics, and reflects Rayleigh light;
  • sample to be tested 5 can be treated by Raman spectroscopy, such as enhanced Raman spectroscopy nanoparticles, to increase the intensity of Raman scattered light.
  • the collecting aperture 4 on the pupil surface of the measuring objective 2 collects the Raman scattered light and the Rayleigh light, and the collected Raman scattered light and the Rayleigh light arrive at the dichroic beam splitter 6;
  • a light beam modulator 24 may be disposed between the light source 1 and the illumination diaphragm 3;
  • the beam modulator 24 may include a third concentrating mirror 25, a second pinhole 26 located at the focus of the third concentrating mirror 25, and a fourth concentrating mirror 27 having a focus at the second pinhole 26;
  • the third concentrating mirror 25, the second pinhole 26 and the fourth concentrating mirror 27 are sequentially placed along the optical path between the light source 1 and the illumination diaphragm 3;
  • step 102 may include the following sub-steps:
  • Sub-step S11 the third concentrating mirror 25 focuses the excitation beam
  • Sub-step S 12 the second pinhole 26 filters out stray light outside the focus of the third concentrating mirror 8;
  • Sub-step S13 the fourth concentrating mirror 27 performs collimation and expansion on the filtered excitation beam.
  • a beam modulator 24 is placed between the light source 1 and the illumination stop 3; the beam modulation system 24 includes a third concentrating mirror 25 placed in sequence along the optical path, and a second pinhole 26 at the focus of the third concentrating mirror 25. And a fourth concentrating mirror 27 having a focus at the second pinhole 26, which in the present application forms a spectroscopic laser differential confocal Raman spectroscopy test device having a beam modulation system.
  • Step 103 the Raman scattering of the transmission of the collection aperture 4 by the dichroic beam splitter 6 Light and the Rayleigh light are separated;
  • the dichroic beam splitter 6 may be a notch filter Notch filter, and the dichroic beam splitter 6 may completely reflect the spectrum of the same wavelength as the excitation beam, and the spectrum different from the wavelength of the excitation light is completely transmitted. That is, the dichroic beam splitter 6 can perform lossless separation of Raman scattered light and Rayleigh light.
  • the dichroic beam splitter 6 can be located after the collecting pupil 4, which can form an adjustable angle with the axis of the collecting aperture 4.
  • the angle ⁇ between the dichroic beam splitter 6 and the axis of the collecting aperture 4 may not be 45°, thereby testing the non-vertical outgoing Raman scattered light and Rayleigh Light.
  • Step 104 the Raman spectroscopy detector 7 captures and detects a spectral signal of the Raman scattered light after being separated by the dichroic beam splitter 6;
  • the Raman optical detector 7 may include a first concentrating mirror 8, an optical detector 9, a first detector 10, and a first pinhole 23;
  • the detecting surface of the optical detector 9 may be located at a focus of the first concentrating mirror 8; the first pinhole 23 is disposed at a focus position of the first concentrating mirror 8, and the spectral detector 9 is located at the After the first pinhole 23, the detecting surface of the optical detector 9 is located behind the first pinhole 23;
  • step 104 may include the following sub-steps:
  • the first concentrating mirror 8 is configured to focus the Raman scattered light after being separated by the dichroic beam splitter 6;
  • Sub-step S22 the first pinhole 23 filters out stray light outside the focus of the first concentrating mirror 8;
  • Sub-step S23 the optical language detector 9 extracts a Raman scattering signal from the focused Raman scattered light
  • Sub-step S24 the first detector 10 measures the relative intensities of different wavelengths in the Raman scattering signal to obtain spectral information of the Raman spectrum.
  • the first pinhole 23 is placed at the focus position of the first condensing mirror 8, thereby
  • a spectroscopic laser differential confocal Raman spectroscopy test device having a confocal optical speech detection system is constructed.
  • the Raman scattered light transmitted through the dichroic beam splitter 6 enters the Raman photodetector 7, passes through the first concentrating mirror 8 and the first pinhole 23 on its focus, and enters the Raman spectroscopy detector 9 and thereafter a detector 10, which measures a Raman scattering spectral response curve I(r) 30 carrying the optical information of the sample 5 to be tested, where r is the wavelength of the Raman scattered light excited by the excitation light of the sample 5 to be tested;
  • the optical language detection can be performed.
  • Step 105 the spectroscopic laser differential confocal detector 11 detects the Rayleigh light after being separated by the dichroic beam splitter 6;
  • the split-beam laser differential confocal detector 11 utilizes the lateral offset of the detector to produce a phase shift characteristic of the axial response characteristic curve of the spectroscopic confocal microscopy system, and to detect the geometric position of the 5 micro-region of the sample to be tested.
  • the spectroscopic laser differential confocal detector 11 may include a second concentrating mirror 12, an image collector 13 and an image amplifier 28;
  • the detection surface of the image collector 13 is located at the focal plane of the second concentrating mirror 12; the object plane of the image amplifier 28 is located at the focus of the second condensing mirror 12, and the detection surface of the image collector 13 is located The image plane of the image amplifier 28.
  • step 105 may include the following sub-steps:
  • Sub-step S31 the second concentrating mirror 12 focuses the Rayleigh light after separation; sub-step S32, the image collector 13 collects the concentrated spot of the Rayleigh light after focusing.
  • an image amplifier 28 can be added to amplify the Avery spot detected by the image collector 13, thereby improving the spectroscopic laser differential confocal detecting device.
  • Accuracy of acquisition; second concentrating mirror 12, image amplifier 28 and image collector 13 are sequentially placed along the optical path, wherein the object plane of the image magnifying system 28 is located at the focal plane of the second concentrating mirror 12, and the detecting surface of the image collector 13 is located at the image magnifier 28 on the image side.
  • the image collector 13 may be a CCD (Charge-coupled Device), and the image amplifier 28 may be an amplification objective lens.
  • Step 106 The data processor 18 calculates the position information of the sample to be tested 5 by using the speckle ⁇ laser differential confocal detector 11 to detect the spot of the Rayleigh light, and adopts the optical language information and the The position information is subjected to three-dimensional reconstruction processing and spectral information fusion processing on the sample 5 to be tested.
  • the step 106 may include the following sub-steps: sub-step S41, performing a segmentation process on the spot of the Rayleigh light, obtaining the first detection area 14 and the second detection area 15, and obtaining corresponding Light intensity signal;
  • Sub-step S42 the three-dimensional scanner 16 drives the sample to be tested 5 to scan along the Z axis, that is, the main axis direction of the measuring objective lens 2;
  • Sub-step S43 performing differential subtraction processing on the light intensity signal of the Rayleigh light in the first detection area 14 and the light intensity signal of the Rayleigh light in the second detection area 15 to obtain a spectroscopic holmium laser a differential confocal response curve;
  • the differential confocal response curve includes a zero point; the zero point is a light intensity signal of the Rayleigh light in the first detection area 14 and a location in the second detection area 15 An equal point of the light intensity signal of Rayleigh light; the zero point corresponds exactly to the focus of the measuring objective lens (2);
  • the zero point accurately corresponds to the focus of the measuring objective lens 2; the "zero crossing point” is monitored, and the position of the sample 5 to be tested is fine-tuned in real time by the three-dimensional scanner 16 to compensate for the defocusing error caused by environmental factors such as temperature and humidity; Sample 5 is always in the focus position of the measuring objective, ensuring that the Raman spectroscopy detector always detects the spectral information at the focus of the measuring objective lens 2;
  • Sub-step S44 calculating the axial position information of the sample to be tested 5 by using the zero point; sub-step S45, the displacement sensor 17 returns the lateral displacement information of the sample 5 to be tested to the processor 22; thereby obtaining the sample to be tested 5 Three-dimensional position information;
  • Sub-step S46 the measured sample 5 is subjected to three-dimensional reconstruction processing and spectral information fusion processing using the position information and the spectral information.
  • the spot obtained by the spectroscopic laser differential confocal detector 11 receiving the Rayleigh light may be divided to obtain the first detection area 14 and the second detection area 15; when the first detection area 14 is When the signals of the two detection areas of the second detection area 15 are subjected to differential subtraction processing, high spatial resolution three-dimensional scale tomography can be performed; Specifically, two micro-regions, that is, a first detection region 14 and a second detection region 15, are disposed on the xd axis in the detection focal spot, and the two detection regions are symmetric about the yd axis and offset by vM with respect to the yd axis, and measured The responses of these two regions are IA(u,-vM) and IB(u,vM) respectively. Then IA(u,-vM) and IB(u,vM) are differentially subtracted to obtain the spectroscopic laser difference.
  • Dynamic confocal response curve 29 Dynamic confocal response curve 29:
  • I(u,vM) IA(u,-vM)-IB(u,-vM)
  • I(u, vM) is the differential conjugate laser confocal response; u is the axial normalized optical coordinate, and vM is the pinhole axial offset.
  • the "zero-crossing point" of the split-beam laser differential confocal response curve 29 accurately corresponds to the focus focus of the excitation beam, and the height information of the surface of the sample to be tested 5 is obtained by the "zero-crossing point" of the response curve 29, combined with the position of the feedback of the displacement sensor 17. The information reconstructs the three-dimensional topography of the surface of the sample 5 to be tested.
  • the Raman scattered light transmitted through the dichroic beam splitter 6 enters the Raman photodetector 7, and uses the "zero crossing point" of the spectroscopic laser differential confocal response curve (29) to accurately measure the focus position of the objective lens.
  • the "zero-crossing point" of the spectroscopic laser differential confocal response curve accurately corresponds to the focus of the measuring objective, and the "zero-crossing" trigger is used to accurately capture the optical information of the focus position of the excitation spot, realizing a high spatial resolution of the optical language. probe.
  • Raman spectroscopy can be performed; when the difference is obtained by the spectroscopic laser differential confocal detector 11 that receives the Rayleigh light
  • high spatial resolution micro-spectral tomography can be performed, that is, the splitting of the 5 "integration of the picture" of the sample to be tested is realized. High spatial resolution imaging and detection of krypton laser differential confocal Raman spectroscopy.
  • Step 107 the processor 22 controls the three-dimensional scanner 16 to drive the sample 5 to be tested for three-dimensional scanning;
  • Step 108 the displacement sensor 17 returns the movement information of the sample 5 to be tested to the processor 22.
  • the three-dimensional scanner 16 is controlled by the processor 22 to drive the sample 5 to be tested, so that Rayleigh light of different regions and corresponding sample 5 of the corresponding region 5 pass through the measuring objective lens 2 and the collecting aperture 4.
  • the apparatus may include: a light source 1, a measuring objective lens 2, and a dichroic color splitting. 6, Raman optical detector 7, spectroscopic laser differential confocal detector 11, data processor 18, three-dimensional scanner 16, displacement sensor 17 and processor 22;
  • the light source 1 is configured to emit an excitation beam
  • An illumination pupil 3 and a collection pupil 4 are disposed on the pupil plane of the measurement objective lens 2; the measurement objective lens 2 focuses the excitation beam, and the illumination pupil 3 deviates from the main axis of the measurement objective lens 2, Converging the excitation beam and obliquely incident on the sample to be tested 5, exciting Raman scattered light carrying the spectral characteristics of the sample 5 to be measured, and reflecting Rayleigh light; the collecting aperture 4 collecting the Raman scattering Light and the Rayleigh light, the collected Raman scattered light and the Rayleigh light arrive at the dichroic beam splitter 6;
  • the dichroic beam splitter 6 is configured to separate the Raman scattered light and the Rayleigh light transmitted by the collecting aperture 4;
  • the Raman photodetector 7 is configured to capture and detect a spectral signal of the Raman scattered light after separation by the dichroic beam splitter 6;
  • the spectroscopic laser differential confocal detector 11 is configured to detect the Rayleigh light after separation by the dichroic beam splitter 6;
  • the data processor 18 is configured to calculate the position information of the sample to be tested 5 by using the spectroscopic ⁇ laser differential confocal detector 11 to detect the spot of the Rayleigh light, and use the spectral information and the position information. Performing a three-dimensional reconstruction process and a spectral information fusion process on the sample to be tested 5; the processor 22 is configured to control the three-dimensional scanner 16 to drive the sample 5 to be scanned for three-dimensional scanning;
  • the displacement sensor 17 is configured to return the movement of the sample 5 to be tested to the processor 22 Information.
  • the dichroic beam splitter 6 can form an adjustable angle with the axis of the collection aperture 4.
  • the data processor 18 may include a split focal spot module 19, a differential subtraction module 20, and a data fusion module 21;
  • the segmentation focal spot module 19 is configured to perform a segmentation process on the spot of the Rayleigh light to obtain a first detection region 14 and a second detection region 15 and obtain corresponding light intensity signals;
  • the three-dimensional scanner 16 is configured to drive the sample to be tested 5 to scan along the Z axis, that is, to measure the main axis of the objective lens 2;
  • the differential subtraction module 20 is configured to differentially subtract the light intensity signal of the Rayleigh light in the first detection area 14 and the light intensity signal of the Rayleigh light in the second detection area 15 Processing, obtaining a spectroscopic laser differential confocal response curve, wherein the differential confocal response curve includes a zero point; using the zero point to calculate position information of the sample 5 to be tested; the zero point is the first detection area a point at which the light intensity signal of the Rayleigh light is equal to the light intensity signal of the Rayleigh light in the second detection region 15; the zero point corresponds exactly to the focus of the measuring objective lens 2;
  • the zero point accurately corresponds to the focus of the measuring objective lens 2; the "zero crossing point” is monitored, and the position of the sample 5 to be tested is fine-tuned in real time by the three-dimensional scanner 16 to compensate for the defocusing error caused by environmental factors such as temperature and humidity; Sample 5 is always in the focus position of the measuring objective lens, ensuring that the Raman spectroscopy detector 7 always detects the optical information at the focus of the measuring objective lens 2;
  • the displacement sensor 17 is configured to return the lateral displacement information of the sample 5 to be tested to the processor 22; thereby obtaining three-dimensional position information of the sample 5 to be tested;
  • the data fusion module 21 is configured to perform three-dimensional reconstruction processing and optical language information fusion processing on the sample to be tested 5 by using the position information and the optical language information.
  • the Raman optical detector 7 may include a first concentrating mirror 8, an optical detector 9 and a first detector 10;
  • the first condensing mirror 8 is configured to focus the Raman scattered light after being separated by the dichroic beam splitter 6;
  • the detecting surface of the optical detector 9 is located at the focus of the first condensing mirror 8 and is configured to be Extracting a Raman scattering signal from the Raman scattered light after focusing;
  • the first detector 10 is configured to measure the relative intensities of different wavelengths in the Raman scattering signal to obtain spectral information of the Raman spectrum.
  • the Raman photodetector 7 may further include a first pinhole 23:
  • the first pinhole 23 is disposed at a focus position of the first concentrating mirror 8, and the detecting surface of the spectrum detector 9 is located behind the first pinhole 23,
  • the first pinhole 23 is configured to filter out stray light outside the focus of the first concentrating mirror 8.
  • the spectroscopic laser differential confocal detector 11 may include a second concentrating mirror 12 and an image collector 13;
  • the second concentrating mirror 12 is configured to focus the Rayleigh light after separation;
  • the image collector 13 is configured to collect the spot of the Rayleigh light after focusing;
  • the detection surface of the image collector 13 is located at the focal plane of the second condensing mirror 12.
  • the spectroscopic laser differential confocal detector 11 may further include:
  • the image amplifier 28 is configured to perform amplification processing on the spot of the Rayleigh light collected by the image collector 13;
  • the object plane of the image amplifier 28 is located at the focus of the second concentrating mirror 12, and the detecting surface of the image collector 13 is located at the image plane of the image amplifier 28.
  • the second concentrating mirror 12 is configured to focus the Rayleigh light after separation; the image amplifier 28 is configured to amplify the concentrated spot of the second concentrating mirror 12;
  • the image collector 13 is configured to acquire a spot of the Rayleigh light amplified by the image amplifier 28.
  • the apparatus may further include: a beam modulator 24; the beam modulator 24 includes a third concentrating mirror 25, a second pinhole 26 at a focus of the third concentrating mirror 25, and a focus a fourth concentrating mirror 27 located at the second pinhole 26; The third concentrating mirror 25, the second pinhole 26 and the fourth concentrating mirror 27 along the light source
  • the third concentrating mirror 25 is configured to focus the excitation beam
  • the second pinhole 26 is configured to filter out stray light outside the focus of the third concentrating mirror 8; the fourth concentrating mirror 27 is configured to collimate and expand the filtered excitation beam.
  • the illumination diaphragm 3 and the collection aperture 4 may be circular, or D-shaped, or of any other shape.
  • the dichroic beam splitter 6 and the collection aperture are arranged in a preferred example of an embodiment of the present application.
  • the axis of 4 forms an adjustable angle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种分光瞳激光差动共焦拉曼光谱测试方法及其装置。将分光瞳激光差动共焦显微技术与激光拉曼光谱探测技术有机结合,采用分割焦斑差动探测来实现三维几何位置的精密成像,其既简化了传统差动共焦显微系统的光路结构,又继承了原有激光差动共焦系统和分光瞳共焦系统的优势,仅通过软件切换处理便可实现分光瞳激光差动共焦显微探测、激光共焦拉曼光谱探测、激光差动共焦拉曼光谱探测的多模式切换与处理。该方法及其装置为纳米级微区三维几何位置与光谱的探测提供新的技术途径,可用于生物医学、工业精密检测等领域,具有广泛的应用前景。

Description

一种分光瞳激光差动共焦拉曼光谱测试方法及装置 技术领域
本申请属于显微光谱成像技术领域,尤其涉及一种分光瞳激光差动共焦 拉曼光谱测试方法和一种分光瞳激光差动共焦拉曼光谱测试装置。 背景技术
1990年, G. J. Puppels等学者在观测单细胞和染色体的形态与组成时首 先发明了共焦拉曼光谱显微技术并成功用于实验。激光共焦拉曼光语技术通 过入射激光引起分子(或晶格)产生振动而损失(或获得)部分能量, 使散 射光频率发生变化, 通过对散射光进行分析来探知分子的组分、 结构及相对 含量等, 激光共焦拉曼光语技术亦被称为分子探针技术。 该技术既继承了共 焦显微术的高分辨层析成像特征, 又可以对样品进行光谱分析, 激光共焦拉 曼光谱测试技术作为一种极其重要的材料结构测量与分析的基本技术手段, 广泛应用于物理、 化学、 生物医学、 材料科学、 环境科学、 石油化工、 地质、 药物、 食品、 刑侦和珠宝检定等领域, 可对样品进行无损伤鉴定和深度光谱 分析, 同时, 还可以进行样品扫描和低温分析、 材料的光致发光研究等。
传统共焦拉曼光语探测仪的原理如图 1所示, 光源系统 1发出激发光束 透过偏振分光镜 31、 四分之一波片 32和聚焦物镜 33后, 聚焦在被测样品 5 上, 激发出载有被测样品 5光谱特性的拉曼散射光; 通过三维扫描系统 16 移动被测样品 5 , 使对应被测样品 5不同区域的拉曼散射光再次通过四分之 一波片并 32被偏振分光镜 31反射, 第一聚光镜 8将偏振分光镜 31反射的 光进行会聚,利用位于第一针孔 23后面的光谱探测器 9测得载有被测样品 5 光谱信息的拉曼散射光谱。
传统的共焦显微技术在激光激发焦点附近的区域内,也能激发出样品的 拉曼光谱, 并能被针孔后的光语探测系统探测。 因而共焦拉曼光谱显微技术 的实际探测位置往往处于离焦位置。 随着现代科技的快速发展, 人们对微区 光语探测能力及空间分辨探测能力提出了更高的要求。 在光学探测系统中, 当测量聚焦光斑位于焦点时其尺寸最小, 激发光强最强, 若要获得最佳空间 分辨力和最优的光语探测能力, 必须对系统进行精确定焦。
总体而言, 现有共焦显微测量方法通常有两类: 一类是利用共焦强度响 应的斜边直接对被测样品进行测量, 另一类是利用共焦强度响应的最大值对 样品进行焦点跟踪来实现测量。 但现有共焦显微测量系统存在以下不足: 当 利用共焦强度响应斜边进行测量时, 无法实现绝对位移测量, 且测量精度受 限于共焦强度响应曲线斜边测量区间的非线性、 光源强度波动、 被测表面散 射和反射特性等因素; 当利用焦点跟踪测量时, 由于共焦显微测量系统焦点 对应共焦强度响应灵敏度最差的顶点, 因而制约了此类共焦传感器焦点跟踪 精度的进一步提高, 进而限制了传统共焦拉曼系统的焦点跟踪精度和应用范 围。
同时, 应用拉曼光谱进行共焦定位信噪比较低, 并且由于针孔的遮挡作 用会进一步降低拉曼光谱的能量, 而扩大针孔尺寸提高光谱通过率则会增加 共焦轴向定位曲线的半高宽, 降低其定位精度, 现有共焦拉曼系统中的共焦 针孔尺寸通常在小150 4 11〜小200 4 11 之间, 所用针孔尺寸相对较大, 亦不能 很好的起到定焦作用。上述原因限制了共焦拉曼光谱显微系统探测微区光谱 的能力, 制约了其在更精细微区光谱测试与分析场合中的应用, 因而提高系 统的定焦精度是提高其空间分辨力的关键。
此外, 由于拉曼散射光十分微弱, 为了获得精确、 丰富的测量信息, 拉 曼光谱成像时既需较长时间的单点拉曼光语探测, 又需进行多点拉曼光语探 测, 因此拉曼光谱成像需要较长的时间。 但是, 仪器长时间成像过程中受环 境温度、 振动、 空气抖动等的影响较大, 易使仪器系统产生漂移, 从而导致 样品被探测位置离焦; 由于现有共焦拉曼光语探测技术不具备实时焦点跟踪 和位置矫正能力, 因而在整个成像过程中, 无法保证其激发光斑的位置处在 物镜焦点位置, 实际激发光斑远大于物镜聚焦光焦斑, 其结果制约了可探测 区域的微小化, 限制了共焦拉曼光语仪器的微区光语探测能力。
为克服传统共焦拉曼系统存在的上述不足, 北京理工大学的赵维谦等人 曾提出了一种具有很强微区光谱探测能力的差动共焦拉曼光谱测试方法, 其 将共焦探测光路系统分为两部分, 并将这两个探测系统的点探测器分别置于 焦前和焦后位置进行差动探测, 继而实现双极性绝对零点跟踪测量等。 差动 共焦拉曼光语测试技术在专利 ZL2008101156011 (发明人: 赵维谦等) 中, 以题为 "差动共焦拉曼光谱测试方法" 已公开, 其原理如图 2所示, 该方法 旨在实现样品精细微区的光谱成像检测, 为样品微区三维尺度及光谱特性的 测量与分析提供新手段。 但是, 该差动共焦拉曼光谱测试方法由于采用了双 路物理针孔结构, 造成差动共焦测量系统结构相对复杂, 并且对离焦位置要 求严格, 装调困难, 增加了误差源: 此外, 由于差动共焦显微系统受到原理 限制, 通常难以兼顾分辨能力、 工作距离和视场。
通常样品散射的拉曼光谱强度为反射的瑞利光束强度的 1(T3 ~ 10"6倍, 而现有的共焦拉曼光谱探测仪器均探测样品散射的微弱拉曼光谱而遗弃强 于拉曼散射光 103 ~ 106倍的瑞利光束, 因而, 利用现有光语探测系统中遗弃 的瑞利光束进行辅助探测是改善现有共焦拉曼光谱探测技术空间分辨力的 新途径。 发明内容
本申请的目之一的是为克服现有技术的不足,提出一种分光瞳激光差动 共焦拉曼光谱测试方法及其装置。通过利用共焦拉曼光语探测中遗弃的瑞利 散射光构建分光瞳共焦显微成像系统来实现样品三维几何位置的高分辨成 像, 并利用分光瞳差动共焦显微成像装置的 "过零点" 与其焦点精确对应这 一特性来控制光语探测器精确捕获物镜聚焦点处激发的拉曼光谱信息, 进而 实现对样品微区几何位置与光谱信息的高精度探测即 "图语合一" 的高空间 分辨探测, 并同时达到分辨能力和量程范围的有效兼顾。 本申请可以探测包 括荧光、 布里渊散射光、 康普顿散射光等的散射光谱。 本申请还可以通过引 入了径向偏振光与光瞳滤波器相结合的紧聚焦技术, 实现超分辨多光谱综合 测试。 为解决上述问题,本申请实施例公开了一种分光瞳激光差动共焦拉曼光 语测试方法, 包括:
光源 ( 1 )发射激发光束; 所述测量物镜( 2 )将所述激发光束进行聚焦; 其中, 所述测量物镜( 2 ) 光瞳面上的照明光瞳(3)偏离所述测量物镜(2)的主轴, 将所述激发光束 汇聚后斜入射到被测样品(5)上, 激发出载有被测样品(5)光谱特性的拉 曼散射光, 并反射出瑞利光; 所述测量物镜(2)光瞳面上的收集光瞳(4) 收集所述拉曼散射光和所述瑞利光, 以及, 被收集后的所述拉曼散射光和所 述瑞利光到达二向色分光器(6);
所述二向色分光器(6)对所述收集光瞳(4)传输的所述拉曼散射光和 所述瑞利光进行分离;
所述拉曼光语探测器(7)捕获并探测经二向色分光器(6)分离之后的 所述拉曼散射光的光谱信号;
所述分光瞳激光差动共焦探测器 (11 )探测经二向色分光器 (6)分离 之后的所述的瑞利光;
所述数据处理器( 18)采用所述分光瞳激光差动共焦探测器( 11 )探测 到所述瑞利光的光斑计算所述被测样品 (5) 的位置信息, 采用所述光谱信 息和所述位置信息对所述被测样品 (5)进行三维重构处理及光语信息融合 处理;
处理器 (22)控制所述三维扫描器 (16) 带动所述被测样品 (5)进行 三维扫描;
位移传感器(17) 向所述处理器(22)返回所述被测样品 (5) 的移动 信息。
优选地, 所述数据处理器(18)采用所述瑞利光的光斑计算所述被测样 品( 5 )的位置信息, 采用所述光语信息和所述位置信息对所述被测样品( 5 ) 进行三维重构处理及光语信息融合处理的步骤包括:
对所述瑞利光的光斑进行分割处理, 获得第一探测区域( 14)和第二探 测区域(15), 并得到相应的光强信号;
三维扫描器( 16 )驱动被测样品( 5 )沿 Z轴, 即测量物镜( 2 )的主轴 方向进行扫描, 同时对所述第一探测区域( 14) 中所述瑞利光的光强信号和 所述第二探测区域(15) 中的所述瑞利光的光强信号进行差动相减处理, 获 得分光瞳激光差动共焦响应曲线; 所述差动共焦响应曲线中包括零点, 采 用所述零点计算所述被测样品 (5) 的轴向位置信息; 所述零点为所述第一 探测区域( 14) 中所述瑞利光的光强信号与所述第二探测区域( 15) 中的所 述瑞利光的光强信号相等的点;
所述零点精确对应测量物镜(2)的焦点; 监测 "过零点", 通过三维扫 描器 (16) 实时微调被测样品 (5) 的位置以补偿因温度、 湿度等环境因素 变化而导致的离焦误差; 使得被测样品(5)始终处于测量物镜的焦点位置, 保证拉曼光语探测器 (7)始终探测测量物镜(2) 焦点处的光谱信息;
位移传感器(17) 向所述处理器(22)返回被测样品 (5) 的横向位移 信息; 从而获得被测样品 (5) 的三维位置信息;
采用所述位置信息和所述光谱信息对所述被测样品 (5)进行三维重构 处理及光谱信息融合处理。
优选地, 所述拉曼光谱探测器(7) 包括第一聚光镜(8)、 光语探测器 (9)和第一探测器 (10); 所述光谱探测器 (9) 的探测面位于所述第一聚 光镜(8) 的焦点处;
所述拉曼光语探测器(7)捕获并探测经二向色分光器(6)分离之后的 所述拉曼散射光的光语信号的步骤包括:
所述第一聚光镜(8)配置为对经二向色分光器(6)分离之后的所述拉 曼散射光进行聚焦;
所述光语探测器(9)从聚焦后的所述拉曼散射光中提取拉曼散射信号; 所述第一探测器( 10)测量所述拉曼散射信号中不同波长的相对强度以 获得拉曼光谱的光谱信息。
优选地, 所述拉曼光语探测器(7)还包括第一针孔(23), 所述第一针 孔(23)设置在所述第一聚光镜(8) 的焦点位置, 所述光语探测器(9)的 探测面位于所述第一针孔(23)之后;
所述拉曼光语探测器(7)捕获并探测经二向色分光器(6)分离之后的 所述拉曼散射光的光语信号的步骤还包括:
所述第一针孔(23)对所述第一聚光镜(8) 焦点之外的杂散光进行滤 除。
优选地, 所述分光瞳激光差动共焦探测器(11 ) 包括第二聚光镜(12) 和图像采集器( 13 ), 图像采集器( 13 ) 的探测面位于所述第二聚光镜( 12 ) 的焦面处;
所述分光瞳激光差动共焦探测器 (11 )探测经二向色分光器 (6)分离 之后的所述瑞利光的步骤包括:
所述第二聚光镜(12)对分离之后的所述瑞利光进行聚焦;
所述图像采集器 (13) 采集聚焦后的所述瑞利光的汇聚光斑。
优选地,所述分光瞳激光差动共焦探测器( 11 )还包括图像放大器(28); 其中, 所述图像放大器 (28) 的物面位于所述第二聚光镜(12) 的焦点处, 所述图像采集器(13) 的探测面位于所述图像放大器(28) 的像面;
所述分光瞳激光差动共焦探测器( 11 )探测分离之后的所述瑞利光的光 斑的步骤还包括:
所述图像放大器 (28)对第二聚光镜(12) 的汇聚光斑进行放大处理。 优选地,所述光源( 1 )和所述照明光瞳( 3 )之间设置有光束调制器( 24 ); 所述光束调制器 (24) 包括第三聚光镜(25)、 位于第三聚光镜(25) 焦点处的第二针孔( 26 )以及焦点位于第二针孔( 26 )处的第四聚光镜( 27 ); 所述第三聚光镜(25)、 所述第二针孔(26)和所述第四聚光镜(27) 沿所述光源 (1 )和所述照明光瞳(3)之间的光路依次放置;
所述测量物镜(2)将所述激发光束进行聚焦的步骤包括:
所述第三聚光镜(25)对所述激发光束进行聚焦;
所述第二针孔(26)滤除所述第三聚光镜(8) 的焦点之外的杂散光; 所述第四聚光镜(27)对过滤后的所述激发光束进行准直扩束。
优选地, 所述照明光瞳(3)和所述收集光瞳(4)为圓形的, 也可以为 D形, 或者其他任意形状。
优选地, 所述二向色分光器(6)与所述收集光瞳(4)的轴线形成可调 节夹角。 本申请实施例还公开了一种分光瞳激光差动共焦拉曼光谱测试装置, 所 述装置包括: 光源 (1)、 测量物镜(2)、 二向色分光器(6)、 拉曼光语探测 器(7)、 分光瞳激光差动共焦探测器(11)、 数据处理器(18)、 三维扫描器 ( 16)、 位移传感器 (17)和处理器(22);
其中, 所述光源 (1 ) 配置为发出激发光束;
所述测量物镜(2) 的光瞳面上设置有照明光瞳(3)和收集光瞳(4); 所述测量物镜(2)将所述激发光束进行聚焦, 所述照明光瞳(3)偏离所述 测量物镜(2)的主轴, 将所述激发光束斜入射到被测样品(5)上, 激发出 载有被测样品 (5)光谱特性的拉曼散射光, 并反射出瑞利光; 所述收集光 瞳 (4)收集所述拉曼散射光和所述瑞利光, 被收集后的所述拉曼散射光和 所述瑞利光到达二向色分光器 (6);
所述二向色分光器(6)配置为对所述收集光瞳(4)传输的所述拉曼散 射光和所述瑞利光进行分离;
所述拉曼光语探测器(7)配置为捕获并探测经二向色分光器(6)分离 之后的所述拉曼散射光的光谱信号;
所述分光瞳激光差动共焦探测器( 11 )配置为探测经二向色分光器(6) 分离之后的所述瑞利光;
所述数据处理器( 18 )配置为采用所述分光瞳激光差动共焦探测器( 11 ) 探测到所述瑞利光的光斑计算所述被测样品 (5) 的位置信息, 采用所述光 谱信息和所述位置信息对所述被测样品 (5)进行三维重构处理及光谱信息 融合处理;
所述处理器(22)配置为控制所述三维扫描器( 16)带动所述被测样品 (5)进行三维扫描;
所述位移传感器( 17 )配置为向所述处理器( 22 )返回所述被测样品( 5 ) 的移动信息。
优选地, 所述数据处理器 (18) 包括分割焦斑模块(19)、 差动相减模 块(20)和数据融合模块(21 );
其中, 所述分割焦斑模块(19)配置为对所述瑞利光的光斑进行分割处 理, 获得第一探测区域(14)和第二探测区域(15), 并得到相应的光强信 号;
三维扫描器(16) 配置为驱动被测样品 (5) 沿 Z轴, 即测量物镜 (2) 的主轴方向进行扫描;
所述差动相减模块(20)配置为对所述第一探测区域(14) 中所述瑞利 光的光强信号和所述第二探测区域( 15)中的所述瑞利光的光强信号进行差 动相减处理,获得分光瞳激光差动共焦响应曲线, 采用所述零点计算所述被 测样品 (5) 的位置信息; 所述差动共焦响应曲线中包括零点; 所述零点为 所述第一探测区域( 14)中所述瑞利光的光强信号与所述第二探测区域( 15) 中的所述瑞利光的光强信号相等的点;
所述零点精确对应测量物镜(2)的焦点; 监测 "过零点", 通过三维扫 描器 (16) 实时微调被测样品 (5) 的位置以补偿因温度、 湿度等环境因素 变化而导致的离焦误差; 使得被测样品(5)始终处于测量物镜的焦点位置, 保证拉曼光语探测器 (7)始终探测测量物镜(2) 焦点处的光谱信息;
位移传感器 (17) 向所述处理器(22)返回被测样品 (5) 的横向位移 信息; 从而获得被测样品 (5) 的三维位置信息;
所述数据融合模块(21 )配置为采用所述位置信息和所述光语信息对所 述被测样品 (5)进行三维重构处理及光语信息融合处理。
优选地, 所述拉曼光谱探测器 (7) 包括第一聚光镜(8)、 光语探测器 (9)和第一探测器 (10);
其中, 所述第一聚光镜(8)配置为对经二向色分光器(6)分离之后的 所述拉曼散射光进行聚焦;
所述光语探测器(9)的探测面位于所述第一聚光镜(8)的焦点处, 配 置为从聚焦后的所述拉曼散射光中提取拉曼散射信号;
所述第一探测器(10)配置为测量所述拉曼散射信号中不同波长的相对 强度以获得拉曼光谱的光语信息。
优选地, 所述拉曼光谱探测器(7)还包括第一针孔(23):
所述第一针孔(23)设置在所述第一聚光镜(8) 的焦点位置, 所述光 谱探测器(9) 的探测面位于所述第一针孔(23)之后,
所述第一针孔(23) 配置为对所述第一聚光镜(8) 的焦点之外的杂散 光进行滤除。
优选地, 所述分光瞳激光差动共焦探测器 (11 ) 包括第二聚光镜(12) 和图像采集器(13);
其中,所述第二聚光镜( 12 )配置为对分离之后的所述瑞利光进行聚焦; 所述图像采集器 (13) 配置为采集聚焦后的所述瑞利光的汇聚光斑; 其中, 图像采集器( 13 )的探测面位于所述第二聚光镜( 12)的焦面处。 优选地, 所述分光瞳激光差动共焦探测器(11 )还包括:
图像放大器 (28), 配置为对所述图像采集器(13) 采集的所述瑞利光 的光斑进行放大处理;
其中, 所述图像放大器(28)的物面位于所述第二聚光镜(12)的焦点 处, 所述图像采集器 (13) 的探测面位于所述图像放大器 (28) 的像面; 其中,所述第二聚光镜( 12 )配置为对分离之后的所述瑞利光进行聚焦; 所述的图像放大器(28)配置为对第二聚光镜( 12)的汇聚光斑进行放 大处理;
所述图像采集器( 13 )配置为采集图像放大器(28)放大后的所述瑞利 光的光斑。
优选地, 还包括: 光束调制器(24);
所述光束调制器 (24) 包括第三聚光镜(25)、 位于第三聚光镜(25) 焦点处的第二针孔( 26 )以及焦点位于第二针孔( 26 )处的第四聚光镜( 27 ); 所述第三聚光镜(25)、 所述第二针孔(26)和所述第四聚光镜(27) 沿所述光源 (1 )和所述照明光瞳(3)之间的光路依次放置;
其中, 所述第三聚光镜(25) 配置为对所述激发光束进行聚焦; 所述第二针孔(26) 配置为滤除所述第三聚光镜(8) 的焦点之外的杂 散光;
所述第四聚光镜(27) 配置为对过滤后的所述激发光束进行准直扩束。 优选地, 所述二向色分光器(6)与所述收集光瞳(4)的轴线形成可调节夹 角。
优选地, 所述照明光瞳(3 )和所述收集光瞳(4 )为圓形的, 也可以为 D形, 或者其他任意形状。 有益效果
本申请方法, 对比已有技术具有以下创新点:
1、 本申请将分光瞳激光差动共焦显微技术与拉曼光谱探测技术有机结 合, 融合了分光瞳差动共焦显微技术的高精度物镜聚焦点位置跟踪捕获能 力, 可探测到精确对应最小激发聚焦光斑区域的样品光谱特性, 在大幅提高 现有共焦拉曼光谱显微镜的微区光谱探测能力的同时也大大简化了系统的 光路结构, 这是区别于现有拉曼光语探测技术的创新点之一;
2、 由于采用单光路分割焦斑差动探测实现几何位置的成像, 其既大幅 简化传统差动共焦显微系统的光路结构, 又保留了激光差动共焦系统和原有 分光瞳差动共焦系统的优势,仅通过软件切换处理便可实现分光瞳激光差动 共焦显微探测、 激光共焦拉曼光语探测、 分光瞳激光差动共焦拉曼光谱探测 多模式切换与处理。 这是区别于现有拉曼光语探测技术的创新点之二;
3、 由于采用分割焦斑的方法来获取差动信号, 可通过改变在图像探测 系统探测焦面上所设置的两个微小区域的参数以匹配不同的样品的反射率, 从而可以扩展其应用领域;还可以仅通过计算机系统软件处理即可实现对不 同 NA值的测量物镜的匹配, 而无需重新对系统进行任何硬件装调。 实现了 系统对分辨力和量程的有效兼顾, 有利于实现仪器的通用性。 这是区别于现 有拉曼光谱探测技术的创新点之三;
4、 利用二向色分光装置对瑞利光和拉曼散射光进行无损分离, 瑞利光 进入差动探测系统, 拉曼散射光进入拉曼光谱探测系统, 提高系统光谱探测 灵敏度, 二向色分光装置可以根据需要调整角度, 有利于低波数拉曼光谱的 探测。 这是区别于现有拉曼光语探测技术的创新点之四;
5、 由于采用斜入射的探测光路, 抗散射能力强, 克服了现有共焦显微 成像技术无法抑制焦面散射光干扰的缺, 提高了光语探测的信噪比。 这是区 别于现有光语探测技术的创新点之五。
6、 单光路、 单探测器分割焦斑差动相减探测方式可有效抑制光源光强 波动、 探测器电子漂移、 环境状态差异等产生的共模噪声, 大幅简化探测光 路系统, 消除因两探测器离轴放置不对称、 探测器响应特性不一致等引起的 误差, 改善了共焦拉曼光谱显微镜的离焦特性;
7、 分光瞳激光差动共焦测具有绝对零点, 可进行双极性绝对测量, 且 绝对零点位于特性曲线灵敏度最大处、并与测量系统 "焦点位置"精确对应, 极便于进行焦点跟踪测量, 可实现几何尺度绝对测量;
8、 可实现量程范围与分辨能力的有效兼顾, 通过设置在焦斑上所取两 个微小区域的参数, 以匹配不同反射率的被测样品, 应用范围得到扩展;
9、采用分割焦斑的横向差动共焦方式,便于系统根据需求更换不同 NA 值的物镜, 调节方便;
10、 二向色分光系统的使用增强光语探测系统所接收到的拉曼光谱, 提 高光谱探测的信噪比, 使共焦拉曼光谱显微镜的微区光谱探测能力显著提 高, 也可以降低系统对激发光源的光强要求; 还可以根据需求进行调整, 以 提高系统低波数探测能力。 附图说明
图 1为共焦拉曼光谱成像方法示意图;
图 2为差动共焦拉曼光谱成像方法示意图;
图 3为本申请所述分光瞳激光差动共焦拉曼光谱测试过程示意图; 图 4为本申请 D形分光瞳激光差动共焦拉曼光瞳测试示意图;
图 5为本申请所述分光瞳激光差动共焦拉曼光谱测试装置示意图; 图 6为本申请所述非垂直出射的分光瞳激光差动共焦拉曼光谱测试装置 示意图;
图 7为本申请所述具有共焦光语探测系统的分光瞳激光差动共焦拉曼光 谱测试装置示意图;
图 8为本申请所述具有光束调制系统的分光瞳激光差动共焦拉曼光谱测 试装置示意图; 图 9为本申请所述具有探测焦斑放大系统分光瞳激光差动共焦拉曼光谱 测试装置示意图;
图 10为本申请所述分光瞳激光差动共焦拉曼光谱测试方法与装置实施 例示意图;
图 11 为本申请所述分光瞳激光差动共焦拉曼光谱测试方法的分光瞳差 动共焦响应曲线及拉曼光语响应曲线示意图;
图 12为本申请的一种分光瞳激光差动共焦拉曼光谱测试方法实施例的 步骤流程图。
其中, 1-光源系统(光源)、 2-测量物镜、 3-照明光瞳、 4-收集光瞳、 5- 被测样品、 6-二向色分光系统(二向色分光器)、 7-拉曼光谱探测系统(拉曼 光语探测器)、 8-第一聚光镜、 9-光语探测器、 10-第一探测器、 11-分光瞳激 光差动共焦探测系统(分光瞳激光差动共焦探测器)、 12-第二聚光镜、 13- 图像采集系统(图像采集器)、 14-探测区域 A (第一探测区域)、 15-探测区 域 B (第二探测区域)、 16-三维扫描系统(三维扫描器)、 17-位移传感器、 18-数据处理单元(数据处理器)、 19-分割焦斑探测模块(分割焦斑模块)、 20-差动相减模块、 21-数据融合模块、 22-计算机处理系统(处理器)、 23-第 一针孔、 24-光束调制系统(光束调制器)、 25-第三聚光镜、 26-第二针孔、 27-第四聚光镜、 28-图像放大系统(图像放大器)、 29-分光瞳激光差动共焦 响应曲线、 30-拉曼光谱响应曲线、 31-偏振分光镜、 32-四分之一波片、 33- 聚焦物镜、 34-第一保偏分光镜、 35-第二保偏分光镜、 36-第五聚光镜、 37- 第六聚光镜、 38-第三针孔、 39-第四针孔、 40-第二探测器、 41-第三探测器、 42-差动共焦数据处理单元。 具体实施方式
下面结合附图和实施例对本申请作进一步详细说明。
实施例一
一种分光瞳激光差动共焦拉曼光谱测试方法, 包括以下步骤:
如图 3所示, 首先, 在测量物镜 2的光瞳面上放置照明光瞳 3和收集光 瞳 4; 光源系统 1发出激发光束,激发光束透过测量物镜 2的照明光瞳 3后, 聚焦在被测样品 5上, 激发出载有被测样品 5光谱特性的拉曼散射光, 并反 射出瑞利光;拉曼散射光和瑞利光经测量物镜 2的收集光瞳 4到达二向色分 光系统 6; 二向色分光系统 6对拉曼散射光和瑞利光进行无损分离; 经二向 色分光系统 6反射的瑞利光进入分光瞳激光差动共焦探测系统 11 ;分光瞳激 光差动共焦探测系统 11 利用探测器横向偏移能够使分光瞳共焦显微系统的 轴向响应特性曲线产生相移的特性,实现对被测样品 5微区几何位置的探测; 与此同时, 经二向色分光系统 6透射的拉曼散射光进入拉曼光谱探测系统 7 中进行光语探测。被测样品 5可以通过增强拉曼光谱纳米粒子等拉曼增强技 术进行处理, 以提高拉曼散射光的强度。
当对接收瑞利光的分光瞳激光差动共焦探测系统获得的差动信号和接 收拉曼散射光的拉曼光语探测系统获得的光语信号进行处理时, 系统能够进 行高空间分辨的微区图谱层析成像, 即实现对被测样品 "图谱合一" 的分光 瞳激光差动共焦拉曼光谱高空间分辨成像与探测。
特别的, 可将圓形的照明光瞳 3和收集光瞳 4替换为其他形状(如 "D" 形, 形成 D形分光瞳激光差动共焦拉曼光谱测试, 如图 4所示)。
特别的, 激发光束可以是线偏光、 圓偏光等偏振光束; 还可以是由光瞳 滤波技术生成的结构光束,偏振光与光瞳滤波技术结合可以压缩测量聚焦光 斑尺寸, 提高系统的横向分辨力。
特别的,可以采用计算机处理系统 22控制三维扫描系统 16移动被测样 品 5 , 使不同区域瑞利光及对应该区域被测样品 5的拉曼散射光通过测量物 镜 2和收集光瞳 4。 实施例二
一种分光瞳激光差动共焦拉曼光谱测试装置, 如图 5所示, 包括产生激 发光束的光源系统 1、测量物镜 2、 二向色分光系统 6、拉曼光语探测系统 7、 分光瞳激光差动共焦探测系统 11、 三维扫描系统 16、 位移传感器 17、 数据 处理单元 18和计算机处理系统 22。
其中, 在测量物镜 2的光瞳面上放置照明光瞳 3和收集光瞳 4。 其中, 照明光瞳 3和测量物镜 2依次位于光源系统 1的激发光束出射方向上, 照明 光瞳 3与激发光束同轴; 二向色分光系统 6位于收集光瞳 4之后, 且二向色 分光装置 6与收集光瞳 4的轴线的夹角 β 为 45 ° 。
拉曼光语探测系统 7位于二向色分光系统 6的透射方向上;拉曼光语探 测系统 7包括第一聚光镜 8、 光语探测器 9和第一探测器 10。 其中, 光语探 测器 9的探测面位于第一聚光镜 8的焦点处, 第一探测器 10位于光语探测 器 9之后。
分光瞳激光差动共焦探测系统 11位于二向分光系统 6的反射方向上; 分光瞳激光差动共焦探测系统 11包括第二聚光镜 12和图像采集系统 13 ,其 中, 图像采集系统 13的探测面位于第二聚光镜 12的焦点处。
数据处理单元 18包括分割焦斑探测模块 19、差动相减模块 20和数据融 合模块 21 ; 其中,分割焦斑探测模块 19和差动相减模块 20配置为处理图像 采集系统 13探测到的光斑, 得到分光瞳激光差动共焦响应曲线 29, 由此得 到被测样品 5的位置信息; 数据融合模块 21配置为融合位置信息 I(u,vM)和 光语信息 I(r), 完成被测样品 5的三维重构及光语信息融合 I(x,y,z,r )。 三者 关联关系为: 分割焦斑探测模块 19将图像采集系统 13采集到的艾利斑进行 分割并探测, 得到的信号进入差动相减模块 20进行差动相减后, 得到分光 瞳激光差动共焦响应曲线 29进入数据融合模块 21。
计算机处理系统 22与位移传感器 17、 三维扫描系统 16、 数据融合模块 21相连接。 图像采集系统 13和分割焦斑探测模块 19相连接。数据融合模块 21与第一探测器 10相连接。
通过计算机处理系统 22控制三维扫描系统 16移动被测样品 5 , 使不同 区域瑞利光及对应该区域被测样品 5的拉曼散射光通过测量物镜 2和收集光 瞳 4。
如图 6所示, 二向色分光装置 6与收集光瞳 4的轴线的夹角 β 可以不 为 45 ° , 从而构成非垂直出射的分光瞳激光差动共焦拉曼光谱测试装置。
如图 7所示,在第一聚光镜 8的焦点位置安放第一针孔 23 ,从而构成具 有共焦光谱探测系统的分光瞳激光差动共焦拉曼光谱测试装置。 如图 8所示,在光源系统 1和照明光瞳 3之间安放光束调制系统 24; 光 束调制系统 24 包括沿光路依次放置的第三聚光镜 25、 位于第三聚光镜 25 焦点处的第二针孔 26、 以及焦点位于第二针孔 26处的第四聚光镜 27, 构成 具有光束调制系统的分光瞳激光差动共焦拉曼光谱测试装置。
如图 9所示, 在分光瞳激光差动共焦探测系统 11 中, 增加图像放大系 统 28, 能够放大图像采集系统 13探测到的艾利斑, 从而提高分光瞳激光差 动共焦探测装置的采集精度; 沿光路依次放置第二聚光镜 12、 图像放大系统 28和图像采集系统 13 , 其中, 图像放大系统 28与第二聚光镜 12共焦点, 图像采集系统 13位于图像放大系统 28的焦点处。 实施例三
本实施例中, 二向色分光系统 6为陷波滤波器 Notch filter, 光谱探测器 9为拉曼光语探测器, 图像采集系统 13为 CCD ( Charge-coupled Device, 电 荷耦合原件), 图像放大系统 28为放大物镜。
如图 10所示, 分光瞳激光差动共焦拉曼光谱探测方法, 其测试步骤如 下:
首先, 在测量物镜 2的光瞳面上放置照明光瞳 3和收集光瞳 4。 由激光 器构成的光源系统 1发出可激发出被测样品 5拉曼光谱的激发光, 激发光经 第三聚光镜 25会聚后进入第二针孔 26成为点光源, 再经第四聚光镜 27准 直扩束后, 形成平行的激发光束。 激发光束透过照明光瞳 3、 测量物镜 2后, 聚焦在被测样品 5上,返回激发出的载有被测样品 5光谱特性的拉曼散射光 和瑞利光。
然后, 通过计算机处理系统 22控制三维扫描系统 16移动被测样品 5 , 使不同区域瑞利光及对应该区域被测样品 5的拉曼散射光通过测量物镜 2和 收集光瞳 4, 二向色分光系统 6对瑞利反射光和拉曼散射光进行无损分离。
经二向色分光系统 6反射的瑞利光进入分光瞳激光差动共焦探测系统 11 , 经第二聚光镜 12会聚后进入放大物镜 28, 被放大后的光斑被图像采集 系统 13探测, 图像采集系统 13探测到的光斑进入分割焦斑探测模块 19,在 探测焦斑中的 xd轴上设置两个微小区域探测区域 A14和探测区域 B 15 , 两 个探测区域关于 yd轴对称并相对于 yd轴偏移 vM, 测得这两个区域的响应 分别为 IA(u,-vM)和 IB(u,vM);差动相减模块 20将得到的信号进行差动相减, 得到分光瞳激光差动共焦响应曲线 29:
I(u,vM)=IA(u,-vM)-IB(u,-vM)
其中, I(u,vM)为分光瞳激光差动共焦响应; u为轴向归一化光学坐标, vM为针孔轴向偏移量。 分光瞳激光差动共焦响应曲线 29的 "过零点" 与激 发光束的聚焦焦点精确对应, 通过响应曲线 29的 "过零点"获得被测样品 5 表面的高度信息, 结合位移传感器 17反馈的位置信息重构出被测样品 5的 表面三维形貌。
经二向色分光系统 6透射的拉曼散射光进入拉曼光语探测系统 7, 经第 一聚光镜 8及其焦点上的第一针孔 23后进入拉曼光语探测器 9以及其后的 第一探测器 10 , 测得载有被测样品 5 光谱信息的拉曼散射光谱响应曲线 I(r)30, 其中 r为被测样品 5受激发光所激发出拉曼散射光的波长;
对接收瑞利光的分光瞳激光差动共焦探测系统 11 获得的探测光斑进行 分割处理, 得到探测区域 A14和探测区域 B15。
若对两个探测区域的信号进行差动相减处理,得到分光瞳激光差动共焦 响应 I(u,vM), 再通过其绝对零点, 精确捕获激发光斑的焦点位置, 系统可 以进行高空间分辨的三维尺度层析成像。
若对接收拉曼散射光的拉曼光谱探测系统 7获得的光语响应曲线 I(r)30 进行处理时, 系统可以进行光谱探测。
若对接收瑞利光的分光瞳激光差动共焦探测系统 11 获得的分光瞳激光 差动共焦响应 I(u,vM)和拉曼散射光的拉曼光语探测系统 7获得的光谱信号 I(r)进行处理时, 系统可以进行高空间分辨的微区图谱层析成像, 即实现被 测样品 5几何位置信息和光语信息的高空间分辨的 "图谱合一" 探测效果。
如图 10所示, 分光瞳激光差动共焦拉曼光谱探测装置包括产生激发光 束的光源系统 1、 测量物镜 2、 照明光瞳 3、 收集光瞳 4、 NotchFilter6、 拉曼 光语探测系统 7、 分光瞳激光差动共焦探测系统 11、 三维扫描系统 16、 位移 传感器 17以及数据处理单元 18; 其中, 在测量物镜 2的光瞳面上放置照明 光瞳 3和收集光瞳 4; 测量物镜 2和照明光瞳 3放置在光源系统 1的光束出 射方向上, 照明光瞳 3与激发光束同轴, NotchFilter6放置在收集光瞳 4之 后, 拉曼光语探测系统 7放置在 NotchFilter6的透射方向上, 分光瞳激光差 动共焦探测系统 11在的反射方向上, 数据处理单元 18配置为融合并处理拉 曼光语探测系统 7、 分光瞳激光差动共焦探测系统 11和位移传感器 17采集 到的数据; NotchFilter6与收集光瞳轴线的夹角 β 是可变的, 可选择适当的 角度 β 以满足分光瞳激光差动共焦拉曼光谱测试装置的结构设计; 拉曼光 谱探测系统 7中第一聚光镜 8的焦点处放置第一针孔 23对杂散光进行滤除, 以提高光谱探测信噪比; 光源系统 1通过包括第三聚光镜 25、位于第三聚光 镜 25焦点处的第二针孔 26、 以及焦点位于第二针孔 26处的第三聚光镜 27 构成的光束调制系统 24对光源系统 1发出的激发光束进行调制, 以保证激 发光束的质量; 分光瞳激光差动共焦探测系统 11中第二聚光镜 12焦面上的 像通过放大物镜 28放大后进入图像采集系统 13 , 以便于探测器进行分割焦 斑探测, 提高探测精度。 实施例四
参见图 12,示出了本申请的一种瞳激光差动共焦拉曼光谱测试方法实施 例的步骤流程图, 具体可以包括如下步骤:
步骤 101 , 光源 1发射激发光束;
参见图 3至图 10 , 由激光器构成的光源 1可以发出可激发出被测样品 5拉曼光谱的激发光束, 该激发光束可以包括线偏光、 圓偏光等偏振光束, 也可以包括由光瞳滤波技术生成的结构光束, 本申请实施例对此不加以限 制。
特别地, 偏振光束可以与光瞳滤波技术结合, 用以压缩测量聚焦光斑尺 寸, 提高横向分辨力。
步骤 102, 所述测量物镜 2将所述激发光束进行聚焦;
在具体实现中, 测量物镜 2的光瞳面上可以设置有照明光瞳 3和收集光 瞳 4, 照明光瞳 3和收集光瞳 4可以为圓形。
当然, 本申请的其他实施例中, 也可以将圓形的照明光瞳 3和收集光瞳 4替换为其他形状, 如图 4所示的 "D" 形, 或者其他形状, 本申请实施例 对此不加以限制。
其中, 所述测量物镜 2光瞳面上的照明光瞳 3可以偏离所述测量物镜 2 的主轴, 将所述激发光束汇聚后斜入射到被测样品 5上, 激发出载有被测样 品 5光谱特性的拉曼散射光, 并反射出瑞利光;
需要说明的是,被测样品 5可以通过增强拉曼光谱纳米粒子等拉曼增强 技术进行处理, 以提高拉曼散射光的强度。
所述测量物镜 2光瞳面上的收集光瞳 4收集所述拉曼散射光和所述瑞利 光, 被收集后的所述拉曼散射光和所述瑞利光到达二向色分光器 6;
在本申请的一种优选实施例中, 所述光源 1和所述照明光瞳 3之间可以 设置有光束调制器 24;
所述光束调制器 24可以包括第三聚光镜 25、位于第三聚光镜 25焦点处 的第二针孔 26以及焦点位于第二针孔 26处的第四聚光镜 27;
所述第三聚光镜 25、所述第二针孔 26和所述第四聚光镜 27沿所述光源 1和所述照明光瞳 3之间的光路依次放置;
则在本申请实施例中, 步骤 102可以包括如下子步骤:
子步骤 S11 , 所述第三聚光镜 25对所述激发光束进行聚焦;
子步骤 S 12 , 所述第二针孔 26滤除所述第三聚光镜 8的焦点之外的杂 散光;
子步骤 S13 , 所述第四聚光镜 27对过滤后的所述激发光束进行准直扩 束。
如图 8所示,在光源 1和照明光瞳 3之间安放光束调制器 24; 光束调制 系统 24包括沿光路依次放置的第三聚光镜 25、位于第三聚光镜 25焦点处的 第二针孔 26、 以及焦点位于第二针孔 26处的第四聚光镜 27 , 在本申请实施 例中构成具有光束调制系统的分光瞳激光差动共焦拉曼光谱测试装置。
步骤 103 , 所述二向色分光器 6对所述收集光瞳 4传输的所述拉曼散射 光和所述瑞利光进行分离;
在本申请实施例中, 二向分光器 6可以为陷波滤波器 Notch filter, 二向 色分光器 6可以对和激发光束波长相同的光谱的完全反射, 与激发光波长不 同的光谱是完全透射的, 即二向色分光器 6可以对拉曼散射光和瑞利光进行 无损分离。
二向色分光器 6可以位于收集光瞳 4之后, 所述二向色分光器 6可以与 所述收集光瞳 4的轴线形成可调节夹角。
如图 6所示, 在本申请实施例的一个示例中, 二向色分光器 6与收集光 瞳 4的轴线的夹角 β 可以不为 45 ° , 从而测试非垂直出射的拉曼散射光和 瑞利光。
步骤 104, 所述拉曼光谱探测器 7捕获并探测经二向色分光器 6分离之 后的所述拉曼散射光的光谱信号;
在本申请的一种优选实施例中, 所述拉曼光语探测器 7可以包括第一聚 光镜 8、 光语探测器 9、 第一探测器 10和第一针孔 23;
所述光语探测器 9的探测面可以位于所述第一聚光镜 8的焦点处; 所述第一针孔 23设置在所述第一聚光镜 8的焦点位置, 所述光谱探测 器 9位于所述第一针孔 23之后, 所述光语探测器 9的探测面位于所述第一 针孔 23之后;
则在本申请实施例中, 步骤 104可以包括如下子步骤:
子步骤 S21 , 所述第一聚光镜 8配置为对经二向色分光器 6分离之后的 所述拉曼散射光进行聚焦;
子步骤 S22, 所述第一针孔 23对所述第一聚光镜 8焦点之外的杂散光 进行滤除;
子步骤 S23 , 所述光语探测器 9从聚焦后的所述拉曼散射光中提取拉曼 散射信号;
子步骤 S24, 所述第一探测器 10测量所述拉曼散射信号中不同波长的 相对强度以获得拉曼光谱的光谱信息。
如图 7所示,在第一聚光镜 8的焦点位置安放第一针孔 23 ,从而在本申 请实施例中,构成具有共焦光语探测系统的分光瞳激光差动共焦拉曼光谱测 试装置。
经二向色分光器 6透射的拉曼散射光进入拉曼光语探测器 7, 经第一聚 光镜 8及其焦点上的第一针孔 23后进入拉曼光谱探测器 9以及其后的第一 探测器 10, 测得载有被测样品 5光语信息的拉曼散射光谱响应曲线 I(r)30, 其中 r为被测样品 5受激发光所激发出拉曼散射光的波长;
若对接收拉曼散射光的拉曼光谱探测器 7获得的光谱响应曲线 I(r)30进 行处理时, 可以进行光语探测。
步骤 105 , 所述分光瞳激光差动共焦探测器 11 探测经二向色分光器 6 分离之后的所述瑞利光;
分光瞳激光差动共焦探测器 11 利用探测器横向偏移能够使分光瞳共焦 显微系统的轴向响应特性曲线产生相移的特性, 实现对被测样品 5微区几何 位置的探测。
在本申请的一种优选实施例中, 所述分光瞳激光差动共焦探测器 11 可 以包括第二聚光镜 12、 图像采集器 13和图像放大器 28;
所述图像采集器 13的探测面位于所述第二聚光镜 12的焦面处; 所述图像放大器 28的物面位于所述第二聚光镜 12的焦点处, 所述图像 采集器 13的探测面位于所述图像放大器 28的像面。
则在本申请实施例中, 步骤 105可以包括如下子步骤:
子步骤 S31 , 所述第二聚光镜 12对分离之后的所述瑞利光进行聚焦; 子步骤 S32, 所述图像采集器 13采集聚焦后的所述瑞利光的汇聚光斑。 如图 9所示, 在分光瞳激光差动共焦探测器 11 中, 可以增加图像放大 器 28, 能够放大图像采集器 13探测到的艾利斑, 从而提高分光瞳激光差动 共焦探测装置的采集精度; 沿光路依次放置第二聚光镜 12、 图像放大器 28 和图像采集器 13 ,其中, 图像放大系统 28的物面位于第二聚光镜 12的焦面 处, 图像采集器 13的探测面位于图像放大器 28的像面处。
具体地, 图像采集器 13可以为 CCD ( Charge-coupled Device , 电荷耦合 原件), 图像放大器 28可以为放大物镜 步骤 106, 所述数据处理器 18采用所述分光瞳激光差动共焦探测器 11 探测到所述瑞利光的光斑计算所述被测样品 5的位置信息, 采用所述光语信 息和所述位置信息对所述被测样品 5 进行三维重构处理及光谱信息融合处 理。
在本申请的一种优选实施例中, 步骤 106可以包括如下子步骤: 子步骤 S41 , 对所述瑞利光的光斑进行分割处理, 获得第一探测区域 14 和第二探测区域 15 , 并得到相应的光强信号;
子步骤 S42 , 三维扫描器 16驱动被测样品 5沿 Z轴, 即测量物镜 2的 主轴方向进行扫描;
子步骤 S43 , 对所述第一探测区域 14 中所述瑞利光的光强信号和所述 第二探测区域 15 中的所述瑞利光的光强信号进行差动相减处理, 获得分光 瞳激光差动共焦响应曲线; 所述差动共焦响应曲线中包括零点; 所述零点 为所述第一探测区域 14中所述瑞利光的光强信号与所述第二探测区域 15中 的所述瑞利光的光强信号的相等点; 所述零点与测量物镜(2 ) 的焦点精确 对应;
所述零点精确对应测量物镜 2的焦点; 监测 "过零点", 通过三维扫描 器 16实时微调被测样品 5的位置以补偿因温度、 湿度等环境因素变化而导 致的离焦误差; 使得被测样品 5始终处于测量物镜的焦点位置, 保证拉曼光 谱探测器 Ί始终探测测量物镜 2焦点处的光谱信息;
子步骤 S44, 采用所述零点计算所述被测样品 5的轴向位置信息; 子步骤 S45 , 位移传感器 17向所述处理器 22返回被测样品 5的横向位 移信息; 从而获得被测样品 5的三维位置信息;
子步骤 S46, 采用所述位置信息和所述光谱信息对所述被测样品 5进行 三维重构处理及光谱信息融合处理。
在具体实现中, 可以对接收瑞利光的分光瞳激光差动共焦探测器 11 所 获得的光斑进行分割处理, 得到第一探测区域 14和第二探测区域 15; 当对 第一探测区域 14和第二探测区域 15两个探测区域的信号进行差动相减处理 时, 能够进行高空间分辨的三维尺度层析成像; 具体地, 在探测焦斑中的 xd轴上设置两个微小区域, 即第一探测区域 14和第二探测区域 15 ,两个探测区域关于 yd轴对称并相对于 yd轴偏移 vM, 测得这两个区域的响应分别为 IA(u,-vM)和 IB(u,vM); 再将 IA(u,-vM) 和 IB(u,vM)进行差动相减, 得到分光瞳激光差动共焦响应曲线 29:
I(u,vM)=IA(u,-vM)-IB(u,-vM)
其中, I(u,vM)为分光瞳激光差动共焦响应; u为轴向归一化光学坐标, vM为针孔轴向偏移量。 分光瞳激光差动共焦响应曲线 29的 "过零点" 与激 发光束的聚焦焦点精确对应, 通过响应曲线 29的 "过零点"获得被测样品 5 表面的高度信息, 结合位移传感器 17反馈的位置信息重构出被测样品 5的 表面三维形貌。
与此同时,经二向色分光器 6透射的拉曼散射光进入拉曼光语探测器 7, 利用分光瞳激光差动共焦响应曲线(29 )的 "过零点" 与测量物镜焦点位置 精确对应特性, 将分光瞳激光差动共焦响应曲线的 "过零点" 精确对应测量 物镜的焦点,通过 "过零点"触发来精确捕获激发光斑焦点位置的光语信息, 实现高空间分辨的光语探测。
当对接收拉曼散射光的拉曼光语探测器 7获得的光语信息进行处理时, 能够进行拉曼光谱探测; 当对接收瑞利光的分光瞳激光差动共焦探测器 11 获得的差动信号和接收拉曼散射光的拉曼光谱探测系统获得的光谱信息进 行处理时, 能够进行高空间分辨的微区图谱层析成像, 即实现对被测样品 5 "图语合一" 的分光瞳激光差动共焦拉曼光谱高空间分辨成像与探测。
步骤 107, 处理器 22控制所述三维扫描器 16带动所述被测样品 5进行 三维扫描;
步骤 108, 位移传感器 17向所述处理器 22返回所述被测样品 5的移动 信息。
通过处理器 22控制三维扫描器 16带动被测样品 5 , 使不同区域瑞利光 及对应该区域被测样品 5的拉曼散射光通过测量物镜 2和收集光瞳 4。
对于方法实施例, 为了简单描述, 故将其都表述为一系列的动作组合, 但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限 制, 因为依据本申请实施例, 某些步骤可以采用其他顺序或者同时进行。 其 次, 本领域技术人员也应该知悉, 说明书中所描述的实施例均属于优选实施 例, 所涉及的动作并不一定是本申请实施例所必须的。 实施例五
参见图 3-图 10, 示出了本申请的一种分光瞳激光差动共焦拉曼光谱测 试装置实施例的结构框图, 所述装置可以包括: 光源 1、 测量物镜 2、 二向 色分光器 6、 拉曼光语探测器 7、 分光瞳激光差动共焦探测器 11、 数据处理 器 18、 三维扫描器 16、 位移传感器 17和处理器 22;
其中, 所述光源 1配置为发出激发光束;
所述测量物镜 2的光瞳面上设置有照明光瞳 3和收集光瞳 4; 所述测量 物镜 2将所述激发光束进行聚焦, 所述照明光瞳 3偏离所述测量物镜 2的主 轴, 将所述激发光束汇聚后斜入射到被测样品 5上, 激发出载有被测样品 5 光谱特性的拉曼散射光, 并反射出瑞利光; 所述收集光瞳 4收集所述拉曼散 射光和所述瑞利光,被收集后的所述拉曼散射光和所述瑞利光到达二向色分 光器 6;
所述二向色分光器 6配置为对所述收集光瞳 4传输的所述拉曼散射光和 所述瑞利光进行分离;
所述拉曼光语探测器 7配置为捕获并探测经二向色分光器 6分离之后的 所述拉曼散射光的光谱信号;
所述分光瞳激光差动共焦探测器 11配置为探测经二向色分光器 6分离 之后的所述瑞利光;
所述数据处理器 18配置为采用所述分光瞳激光差动共焦探测器 11探测 到所述瑞利光的光斑计算所述被测样品 5的位置信息, 采用所述光谱信息和 所述位置信息对所述被测样品 5进行三维重构处理及光谱信息融合处理; 所述处理器 22配置为控制所述三维扫描器 16带动所述被测样品 5进行 三维扫描;
所述位移传感器 17配置为向所述处理器 22返回所述被测样品 5的移动 信息。
在具体实现中, 所述二向色分光器 6可以与所述收集光瞳 4的轴线形成 可调节夹角。
在本申请的一种优选实施例中, 所述数据处理器 18可以包括分割焦斑 模块 19、 差动相减模块 20和数据融合模块 21 ;
其中, 所述分割焦斑模块 19配置为对所述瑞利光的光斑进行分割处理, 获得第一探测区域 14和第二探测区域 15 , 并得到相应的光强信号;
三维扫描器 16配置为驱动被测样品 5沿 Z轴, 即测量物镜 2的主轴方 向进行扫描;
所述差动相减模块 20配置为对所述第一探测区域 14中所述瑞利光的光 强信号和所述第二探测区域 15 中的所述瑞利光的光强信号进行差动相减处 理, 获得分光瞳激光差动共焦响应曲线, 所述差动共焦响应曲线中包括零 点; 采用所述零点计算所述被测样品 5的位置信息; 所述零点为所述第一探 测区域 14中所述瑞利光的光强信号与所述第二探测区域 15中的所述瑞利光 的光强信号相等的点; 所述零点与测量物镜 2的焦点精确对应;
所述零点精确对应测量物镜 2的焦点; 监测 "过零点", 通过三维扫描 器 16实时微调被测样品 5的位置以补偿因温度、 湿度等环境因素变化而导 致的离焦误差;使得被测样品 5始终处于测量物镜的焦点位置,保证拉曼光谱 探测器 7始终探测测量物镜 2焦点处的光语信息;
位移传感器 17配置为向所述处理器 22返回被测样品 5的横向位移信息; 从而获得被测样品 5的三维位置信息;
所述数据融合模块 21 配置为采用所述位置信息和所述光语信息对所述 被测样品 5进行三维重构处理及光语信息融合处理。
在本申请的一种优选实施例中, 所述拉曼光语探测器 7可以包括第一聚 光镜 8、 光语探测器 9和第一探测器 10;
其中, 所述第一聚光镜 8配置为对经二向色分光器 6分离之后的所述拉 曼散射光进行聚焦;
所述光语探测器 9的探测面位于所述第一聚光镜 8的焦点处, 配置为从 聚焦后的所述拉曼散射光中提取拉曼散射信号;
所述第一探测器 10配置为测量所述拉曼散射信号中不同波长的相对强 度以获得拉曼光谱的光谱信息。
在本申请的一种优选实施例中, 所述拉曼光语探测器 7还可以包括第一 针孔 23:
所述第一针孔 23设置在所述第一聚光镜 8的焦点位置, 所述光谱探测 器 9的探测面位于所述第一针孔 23之后,
所述第一针孔 23配置为对所述第一聚光镜 8的焦点之外的杂散光进行 滤除。
在本申请的一种优选实施例中, 所述分光瞳激光差动共焦探测器 11 可 以包括第二聚光镜 12和图像采集器 13;
其中, 所述第二聚光镜 12配置为对分离之后的所述瑞利光进行聚焦; 所述图像采集器 13配置为采集聚焦后的所述瑞利光的光斑;
其中, 图像采集器 13的探测面位于所述第二聚光镜 12的焦面处。
在本申请的一种优选实施例中, 所述分光瞳激光差动共焦探测器 11还 可以包括:
图像放大器 28, 配置为对所述图像采集器 13采集的所述瑞利光的光斑 进行放大处理;
其中, 所述图像放大器 28的物面位于所述第二聚光镜 12的焦点处, 所 述图像采集器 13的探测面位于所述图像放大器 28的像面;
其中, 所述第二聚光镜 12配置为对分离之后的所述瑞利光进行聚焦; 所述的图像放大器 28 配置为对第二聚光镜 12 的汇聚光斑进行放大处 理;
所述图像采集器 13配置为采集图像放大器 28放大后的所述瑞利光的光 斑。
在本申请的一种优选实施例中, 所述装置还可以包括: 光束调制器 24; 所述光束调制器 24包括第三聚光镜 25、位于第三聚光镜 25焦点处的第 二针孔 26以及焦点位于第二针孔 26处的第四聚光镜 27; 所述第三聚光镜 25、所述第二针孔 26和所述第四聚光镜 27沿所述光源
1和所述照明光瞳 3之间的光路依次放置;
其中, 所述第三聚光镜 25配置为对所述激发光束进行聚焦;
所述第二针孔 26配置为滤除所述第三聚光镜 8的焦点之外的杂散光; 所述第四聚光镜 27配置为对过滤后的所述激发光束进行准直扩束。 在本申请实施例的一种优选示例, 所述照明光瞳 3和所述收集光瞳 4可 以为圓形的, 或者为 D形, 或者为其他任意形状。
在本申请实施例的一种优选示例, 所述二向色分光器 6与所述收集光瞳
4的轴线形成可调节夹角。
对于装置实施例而言, 由于其与方法实施例基本相似, 所以描述的比较 简单, 相关之处参见方法实施例的部分说明即可。 以上结合附图对本申请的具体实施方式作了说明,但这些说明不能被理 解为限制了本申请的范围, 本申请的保护范围由随附的权利要求书限定, 任 何在本申请权利要求基础上进行的改动都是本申请的保护范围。

Claims

权 利 要 求 书
1、 一种分光瞳激光差动共焦拉曼光谱测试方法, 其特征在于, 包括: 光源 ( 1 )发射激发光束;
所述测量物镜( 2 )将所述激发光束进行聚焦; 其中, 所述测量物镜( 2 ) 光瞳面上的照明光瞳(3)偏离所述测量物镜(2)的主轴, 将所述激发光束 汇聚后斜入射到被测样品(5)上, 激发出载有被测样品(5)光谱特性的拉 曼散射光, 并反射出瑞利光; 所述测量物镜(2)光瞳面上的收集光瞳(4) 收集所述拉曼散射光和所述瑞利光, 以及, 被收集后的所述拉曼散射光和所 述瑞利光到达二向色分光器(6);
所述二向色分光器(6)对所述收集光瞳(4)传输的所述拉曼散射光和 所述瑞利光进行分离;
所述拉曼光语探测器(7)捕获并探测经二向色分光器(6)分离之后的 所述拉曼散射光的光谱信号;
所述分光瞳激光差动共焦探测器 (11 )探测经二向色分光器 (6)分离 之后的所述的瑞利光;
所述数据处理器( 18)采用所述分光瞳激光差动共焦探测器( 11 )探测 到所述瑞利光的光斑计算所述被测样品 (5) 的位置信息, 采用所述光谱信 息和所述位置信息对所述被测样品 (5)进行三维重构处理及光谱信息融合 处理;
处理器 (22)控制所述三维扫描器 (16) 带动所述被测样品 (5)进行 三维扫描;
位移传感器(17) 向所述处理器(22)返回所述被测样品 (5) 的移动 信息。
2、 如权利要求 1 所述的方法, 其特征在于, 所述数据处理器(18)采 用所述瑞利光的光斑计算所述被测样品 (5) 的位置信息, 采用所述光谱信 息和所述位置信息对所述被测样品 (5)进行三维重构处理及光谱信息融合 处理的步骤包括:
对所述瑞利光的光斑进行分割处理, 获得第一探测区域( 14)和第二探 测区域(15), 并得到相应的光强信号; 三维扫描器( 16 )驱动被测样品( 5 )沿 Z轴, 即测量物镜( 2 )的主轴 方向进行扫描, 同时对所述第一探测区域( 14) 中所述瑞利光的光强信号和 所述第二探测区域(15) 中的所述瑞利光的光强信号进行差动相减处理, 获 得分光瞳激光差动共焦响应曲线; 所述差动共焦响应曲线中包括零点, 采 用所述零点计算所述被测样品 (5) 的轴向位置信息; 所述零点为所述第一 探测区域( 14) 中所述瑞利光的光强信号与所述第二探测区域( 15) 中的所 述瑞利光的光强信号相等的点;
所述零点精确对应测量物镜(2)的焦点; 监测 "过零点", 通过三维扫 描器 (16) 实时微调被测样品 (5) 的位置以补偿因温度、 湿度等环境因素 变化而导致的离焦误差; 使得被测样品(5)始终处于测量物镜的焦点位置, 保证拉曼光语探测器 (7)始终探测测量物镜(2) 焦点处的光谱信息;
位移传感器(17) 向所述处理器(22)返回被测样品 (5) 的横向位移 信息; 从而获得被测样品 (5) 的三维位置信息;
采用所述位置信息和所述光语信息对所述被测样品 (5)进行三维重构 处理及光谱信息融合处理。
3、 如权利要求 1所述的方法, 其特征在于, 所述拉曼光谱探测器(7) 包括第一聚光镜(8)、 光语探测器(9)和第一探测器(10); 所述光语探测 器 (9) 的探测面位于所述第一聚光镜(8) 的焦点处;
所述拉曼光语探测器(7)捕获并探测经二向色分光器(6)分离之后的 所述拉曼散射光的光语信号的步骤包括:
所述第一聚光镜(8)配置为对经二向色分光器(6)分离之后的所述拉 曼散射光进行聚焦;
所述光语探测器(9)从聚焦后的所述拉曼散射光中提取拉曼散射信号; 所述第一探测器( 10)测量所述拉曼散射信号中不同波长的相对强度以 获得拉曼光谱的光谱信息。
4、 如权利要求 3所述的方法, 其特征在于, 所述拉曼光谱探测器(7) 还包括第一针孔( 23 ), 所述第一针孔( 23 )设置在所述第一聚光镜( 8 )的 焦点位置, 所述光语探测器(9) 的探测面位于所述第一针孔(23)之后; 所述拉曼光语探测器(7)捕获并探测经二向色分光器(6)分离之后的 所述拉曼散射光的光语信号的步骤还包括:
所述第一针孔(23)对所述第一聚光镜(8) 焦点之外的杂散光进行滤 除。
5、 如权利要求 1 所述的方法, 其特征在于, 所述分光瞳激光差动共焦 探测器 ( 11 ) 包括第二聚光镜 ( 12 )和图像采集器 ( 13 ), 图像采集器 ( 13 ) 的探测面位于所述第二聚光镜(12) 的焦面处;
所述分光瞳激光差动共焦探测器 (11 )探测经二向色分光器 (6)分离 之后的所述瑞利光的步骤包括:
所述第二聚光镜(12)对分离之后的所述瑞利光进行聚焦;
所述图像采集器 (13) 采集聚焦后的所述瑞利光的汇聚光斑。
6、 如权利要求 5所述的方法, 其特征在于, 所述分光瞳激光差动共焦 探测器 (11 )还包括图像放大器 (28); 其中, 所述图像放大器(28) 的物 面位于所述第二聚光镜(12)的焦点处, 所述图像采集器(13)的探测面位 于所述图像放大器(28) 的像面;
所述分光瞳激光差动共焦探测器( 11 )探测分离之后的所述瑞利光的光 斑的步骤还包括:
所述图像放大器 (28)对第二聚光镜(12) 的汇聚光斑进行放大处理。
7、 如权利要求 1所述的方法, 其特征在于, 所述光源(1 )和所述照明 光瞳(3)之间设置有光束调制器(24);
所述光束调制器 (24) 包括第三聚光镜(25)、 位于第三聚光镜(25) 焦点处的第二针孔( 26 )以及焦点位于第二针孔( 26 )处的第四聚光镜( 27 ); 所述第三聚光镜(25)、 所述第二针孔(26)和所述第四聚光镜(27) 沿所述光源 (1 )和所述照明光瞳(3)之间的光路依次放置;
所述测量物镜(2)将所述激发光束进行聚焦的步骤包括:
所述第三聚光镜(25)对所述激发光束进行聚焦;
所述第二针孔(26)滤除所述第三聚光镜(8) 的焦点之外的杂散光; 所述第四聚光镜(27)对过滤后的所述激发光束进行准直扩束。
8、 如权利要求 1所述的方法, 其特征在于, 所述照明光瞳(3)和所述 收集光瞳 (4)为圓形的, 或者为 D形, 或者为其他任意形状。
9、 如权利要求 1所述的方法, 其特征在于, 所述二向色分光器(6)与 所述收集光瞳(4) 的轴线形成可调节夹角。
10、 一种分光瞳激光差动共焦拉曼光谱测试装置, 其特征在于: 所述装 置包括: 光源(1)、测量物镜(2)、二向色分光器(6)、拉曼光语探测器(7)、 分光瞳激光差动共焦探测器 (11)、 数据处理器 (18)、 三维扫描器 (16)、 位移传感器 (17)和处理器(22);
其中, 所述光源 (1 ) 配置为发出激发光束;
所述测量物镜(2) 的光瞳面上设置有照明光瞳(3)和收集光瞳(4); 所述测量物镜(2)将所述激发光束进行聚焦, 所述照明光瞳(3)偏离所述 测量物镜(2) 的主轴, 将所述激发光束汇聚后斜入射到被测样品 (5)上, 激发出载有被测样品 (5) 光谱特性的拉曼散射光, 并反射出瑞利光; 所述 收集光瞳 (4) 收集所述拉曼散射光和所述瑞利光, 被收集后的所述拉曼散 射光和所述瑞利光到达二向色分光器(6);
所述二向色分光器(6)配置为对所述收集光瞳(4)传输的所述拉曼散 射光和所述瑞利光进行分离;
所述拉曼光谱探测器(7)配置为捕获并探测经二向色分光器(6)分离 之后的所述拉曼散射光的光谱信号;
所述分光瞳激光差动共焦探测器( 11 )配置为探测经二向色分光器(6) 分离之后的所述瑞利光;
所述数据处理器( 18 )配置为采用所述分光瞳激光差动共焦探测器( 11 ) 探测到所述瑞利光的光斑计算所述被测样品 (5) 的位置信息, 采用所述光 谱信息和所述位置信息对所述被测样品 (5)进行三维重构处理及光谱信息 融合处理;
所述处理器(22)配置为控制所述三维扫描器( 16)带动所述被测样品 (5)进行三维扫描; 所述位移传感器( 17 )配置为向所述处理器( 22 )返回所述被测样品( 5 ) 的移动信息。
11、 如权利要求 10所述的装置, 其特征在于, 所述数据处理器(18) 包括分割焦斑模块(19)、 差动相减模块(20)和数据融合模块(21 );
其中, 所述分割焦斑模块( 19)配置为对所述瑞利光的光斑进行分割处 理, 获得第一探测区域(14)和第二探测区域(15), 并得到相应的光强信 号;
三维扫描器(16) 配置为驱动被测样品 (5) 沿 Z轴, 即测量物镜 (2) 的主轴方向进行扫描;
所述差动相减模块(20)配置为对所述第一探测区域(14) 中所述瑞利 光的光强信号和所述第二探测区域( 15)中的所述瑞利光的光强信号进行差 动相减处理,获得分光瞳激光差动共焦响应曲线, 所述差动共焦响应曲线中 包括零点; 采用所述零点计算所述被测样品 (5) 的轴向位置信息; 所述零 点为所述第一探测区域( 14)中所述瑞利光的光强信号与所述第二探测区域 ( 15) 中的所述瑞利光的光强信号相等的点;
所述零点精确对应测量物镜(2)的焦点; 监测 "过零点", 通过三维扫 描器 (16) 实时微调被测样品 (5) 的位置以补偿因温度、 湿度等环境因素 变化而导致的离焦误差;使得被测样品 (5)始终处于测量物镜的焦点位置, 保证拉曼光语探测器 (7)始终探测测量物镜(2) 焦点处的光谱信息;
位移传感器(17) 配置为向所述处理器 (22)返回被测样品 (5) 的横 向位移信息; 从而获得被测样品 (5) 的三维位置信息;
所述数据融合模块(21 )配置为采用所述位置信息和所述光语信息对所 述被测样品 (5)进行三维重构处理及光语信息融合处理。
12、如权利要求 10所述的装置, 其特征在于, 所述拉曼光语探测器(7) 包括第一聚光镜(8)、 光语探测器(9)和第一探测器(10);
其中, 所述第一聚光镜(8)配置为对经二向色分光器(6)分离之后的 所述拉曼散射光进行聚焦;
所述光语探测器(9)的探测面位于所述第一聚光镜(8)的焦点处, 配 置为从聚焦后的所述拉曼散射光中提取拉曼散射信号;
所述第一探测器(10)配置为测量所述拉曼散射信号中不同波长的相对 强度以获得拉曼光谱的光语信息。
13、如权利要求 12所述的装置, 其特征在于, 所述拉曼光语探测器(7) 还包括第一针孔(23 ):
所述第一针孔(23)设置在所述第一聚光镜(8) 的焦点位置, 所述光 谱探测器(9) 的探测面位于所述第一针孔(23)之后,
所述第一针孔(23) 配置为对所述第一聚光镜(8) 的焦点之外的杂散 光进行滤除。
14、 如权利要求 10所述的装置, 其特征在于, 所述分光瞳激光差动共 焦探测器( 11 ) 包括第二聚光镜( 12 )和图像采集器( 13 );
其中,所述第二聚光镜( 12 )配置为对分离之后的所述瑞利光进行聚焦; 所述图像采集器 (13) 配置为采集聚焦后的所述瑞利光的汇聚光斑; 其中, 图像采集器( 13 )的探测面位于所述第二聚光镜( 12)的焦面处。
15、 如权利要求 14所述的装置, 其特征在于, 所述分光瞳激光差动共 焦探测器( 11 )还包括:
图像放大器(28), 配置为对所述图像采集器(13) 采集的所述瑞利光 的光斑进行放大处理;
其中, 所述图像放大器(28)的物面位于所述第二聚光镜(12)的焦点 处, 所述图像采集器 (13) 的探测面位于所述图像放大器 (28) 的像面; 其中,所述第二聚光镜( 12 )配置为对分离之后的所述瑞利光进行聚焦; 所述的图像放大器(28)配置为对第二聚光镜( 12)的汇聚光斑进行放 大处理;
所述图像采集器( 13 )配置为采集图像放大器(28)放大后的所述瑞利 光的光斑。
16、如权利要求 10所述的装置,其特征在于,还包括:光束调制器(24); 所述光束调制器 (24) 包括第三聚光镜(25)、 位于第三聚光镜(25) 焦点处的第二针孔( 26 )以及焦点位于第二针孔( 26 )处的第四聚光镜( 27 ); 所述第三聚光镜(25)、 所述第二针孔(26)和所述第四聚光镜(27) 沿所述光源 (1 )和所述照明光瞳(3)之间的光路依次放置;
其中, 所述第三聚光镜(25) 配置为对所述激发光束进行聚焦; 所述第二针孔(26) 配置为滤除所述第三聚光镜(8) 的焦点之外的杂 散光;
所述第四聚光镜(27) 配置为对过滤后的所述激发光束进行准直扩束。
17、 如权利要求 10所述的装置, 其特征在于, 所述照明光瞳(3)和所 述收集光瞳(4)为圓形的, 或者为 D形, 或者为其他任意形状。
18、 如权利要求 10所述的装置, 其特征在于, 所述二向色分光器(6) 与所述收集光瞳(4) 的轴线形成可调节夹角。
PCT/CN2014/084778 2013-09-06 2014-08-20 一种分光瞳激光差动共焦拉曼光谱测试方法及装置 WO2015032278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310404299 2013-09-06
CN201310404299.2 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015032278A1 true WO2015032278A1 (zh) 2015-03-12

Family

ID=51144495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084778 WO2015032278A1 (zh) 2013-09-06 2014-08-20 一种分光瞳激光差动共焦拉曼光谱测试方法及装置

Country Status (2)

Country Link
CN (2) CN103969239B (zh)
WO (1) WO2015032278A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698069A (zh) * 2015-03-17 2015-06-10 北京理工大学 高空间分辨激光双轴差动共焦质谱显微成像方法与装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969239B (zh) * 2013-09-06 2016-04-13 北京理工大学 一种分光瞳激光差动共焦拉曼光谱测试方法及装置
CN104677831A (zh) * 2015-03-03 2015-06-03 北京理工大学 分光瞳差动共焦-光声显微成像装置与方法
CN104677830A (zh) * 2015-03-03 2015-06-03 北京理工大学 分光瞳共焦-光声显微成像装置与方法
CN104697967B (zh) * 2015-03-17 2017-07-11 北京理工大学 高空间分辨激光双轴共焦光谱‑质谱显微成像方法与装置
CN104698068B (zh) * 2015-03-17 2017-05-17 北京理工大学 高空间分辨激光双轴差动共焦光谱‑质谱显微成像方法与装置
CN104931481B (zh) * 2015-06-23 2017-08-25 北京理工大学 激光双轴差动共焦诱导击穿‑拉曼光谱成像探测方法与装置
CN105067570A (zh) * 2015-07-17 2015-11-18 北京理工大学 双轴激光差动共焦libs、拉曼光谱-质谱成像方法与装置
CN109844503B (zh) * 2016-10-10 2022-01-14 马克斯-普朗克科学促进学会 用于高空间分辨率地确定样品中的分离的、以激励光可激励以发射发光的分子的位置的方法
CN107192702B (zh) * 2017-05-23 2020-02-04 北京理工大学 分光瞳激光共焦cars显微光谱测试方法及装置
CN107167455A (zh) * 2017-05-23 2017-09-15 北京理工大学 分光瞳激光差动共焦cars显微光谱测试方法及装置
CN108064340B (zh) * 2017-10-31 2020-06-16 深圳达闼科技控股有限公司 焦点偏离的判断方法、装置、存储介质及电子设备
CN108844930B (zh) * 2018-05-14 2020-10-30 杨佳苗 分光瞳共焦分立荧光光谱及荧光寿命探测方法与装置
CN108844929B (zh) * 2018-05-14 2020-10-30 杨佳苗 分光瞳差动共焦分立荧光光谱及荧光寿命探测方法与装置
CN108765484B (zh) * 2018-05-18 2021-03-05 北京航空航天大学 基于两台高速摄像机的活体昆虫运动采集及数据重构方法
CN109186477B (zh) * 2018-11-13 2020-05-12 北京理工大学 后置分光瞳激光差动共焦透镜中心厚度测量方法与装置
CN109520973A (zh) * 2018-11-13 2019-03-26 北京理工大学 后置分光瞳激光差动共焦显微检测方法及装置
CN109211874A (zh) * 2018-11-13 2019-01-15 北京理工大学 后置分光瞳激光共焦拉曼光谱测试方法及装置
CN109253989B (zh) * 2018-11-13 2020-07-10 北京理工大学 一种激光差动共焦层析定焦方法与装置
CN109187430B (zh) * 2018-11-13 2020-06-16 北京理工大学 后置分光瞳激光差动共焦透镜折射率测量方法与装置
CN109540474B (zh) * 2018-11-13 2020-06-05 北京理工大学 后置分光瞳激光差动共焦焦距测量方法与装置
CN109187727A (zh) * 2018-11-13 2019-01-11 北京理工大学 分光瞳差动共焦Raman-LIBS-质谱探测的飞秒激光加工监测方法
US10699875B2 (en) * 2018-11-13 2020-06-30 Fei Company Confocal imaging technique in a charged particle microscope
CN109187438A (zh) * 2018-11-13 2019-01-11 北京理工大学 后置分光瞳激光共焦布里渊-拉曼光谱测试方法及装置
CN109187723A (zh) * 2018-11-13 2019-01-11 北京理工大学 后置分光瞳差动共焦拉曼光谱-质谱显微成像方法与装置
CN109186479B (zh) * 2018-11-13 2020-05-12 北京理工大学 后置分光瞳激光差动共焦镜组轴向间隙测量方法与装置
CN109211875A (zh) * 2018-11-13 2019-01-15 北京理工大学 后置分光瞳激光差动共焦布里渊-Raman光谱测试方法及装置
WO2020198402A1 (en) * 2019-03-25 2020-10-01 Mks Technology (D/B/A Snowy Range Instruments) Multi-dispersive spectrometer
CN110332904B (zh) * 2019-07-18 2021-06-25 天津大学 基于平面光栅分光的线型显微干涉光谱测量系统与方法
CN113008849B (zh) * 2021-02-07 2022-08-02 电子科技大学 紫外-近红外宽波段微区光致发光光谱测试装置
CN114858060B (zh) * 2022-03-22 2023-07-14 合肥工业大学 基于同轴激光三角法与显微成像的位移传感器及应用
CN114719774B (zh) * 2022-04-01 2023-04-07 浙江大学 一种基于超结构色散共焦的复杂曲面形貌测量方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090064A (ja) * 1996-09-12 1998-04-10 Fujitsu Ltd 顕微ラマン装置
CN101526477A (zh) * 2009-04-21 2009-09-09 北京理工大学 激光差动共焦图谱显微层析成像装置
CN102636118A (zh) * 2012-04-13 2012-08-15 北京理工大学 一种激光三差动共焦theta成像检测方法
CN103091299A (zh) * 2013-01-21 2013-05-08 北京理工大学 激光差动共焦图谱显微成像方法与装置
CN103105231A (zh) * 2013-01-21 2013-05-15 北京理工大学 一种高空间分辨共焦拉曼光谱探测方法与装置
CN103439254A (zh) * 2013-09-06 2013-12-11 北京理工大学 一种分光瞳激光共焦拉曼光谱测试方法与装置
CN103884704A (zh) * 2014-03-10 2014-06-25 北京理工大学 分光瞳激光共焦布里渊-拉曼光谱测量方法及装置
CN103884703A (zh) * 2014-03-10 2014-06-25 北京理工大学 分光瞳激光差动共焦布里渊-拉曼光谱测量方法及装置
CN103969239A (zh) * 2013-09-06 2014-08-06 北京理工大学 一种分光瞳激光差动共焦拉曼光谱测试方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081549A1 (en) * 2003-03-11 2004-09-23 Koninklijke Philips Electronics N.V. Spectroscopic analysis apparatus and method with excitation system and focus monitoring system
JP2007135989A (ja) * 2005-11-21 2007-06-07 Olympus Corp 分光内視鏡
JP2009282103A (ja) * 2008-05-20 2009-12-03 Yokogawa Electric Corp 共焦点スキャナ顕微鏡
CN101290293B (zh) * 2008-06-25 2010-07-28 北京理工大学 差动共焦拉曼光谱测试方法
CN101458071B (zh) * 2009-01-09 2010-11-10 北京理工大学 超分辨双轴差动共焦测量方法与装置
CN101793495B (zh) * 2010-03-11 2012-04-18 北京理工大学 分割焦斑探测的超分辨双轴差动共焦测量方法与装置
CN102297856B (zh) * 2010-06-25 2015-09-30 清华大学 用于自动校准拉曼光谱检测系统的方法及拉曼光谱检测系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090064A (ja) * 1996-09-12 1998-04-10 Fujitsu Ltd 顕微ラマン装置
CN101526477A (zh) * 2009-04-21 2009-09-09 北京理工大学 激光差动共焦图谱显微层析成像装置
CN102636118A (zh) * 2012-04-13 2012-08-15 北京理工大学 一种激光三差动共焦theta成像检测方法
CN103091299A (zh) * 2013-01-21 2013-05-08 北京理工大学 激光差动共焦图谱显微成像方法与装置
CN103105231A (zh) * 2013-01-21 2013-05-15 北京理工大学 一种高空间分辨共焦拉曼光谱探测方法与装置
CN103439254A (zh) * 2013-09-06 2013-12-11 北京理工大学 一种分光瞳激光共焦拉曼光谱测试方法与装置
CN103969239A (zh) * 2013-09-06 2014-08-06 北京理工大学 一种分光瞳激光差动共焦拉曼光谱测试方法及装置
CN103884704A (zh) * 2014-03-10 2014-06-25 北京理工大学 分光瞳激光共焦布里渊-拉曼光谱测量方法及装置
CN103884703A (zh) * 2014-03-10 2014-06-25 北京理工大学 分光瞳激光差动共焦布里渊-拉曼光谱测量方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698069A (zh) * 2015-03-17 2015-06-10 北京理工大学 高空间分辨激光双轴差动共焦质谱显微成像方法与装置

Also Published As

Publication number Publication date
CN103969239B (zh) 2016-04-13
CN103926197A (zh) 2014-07-16
CN103926197B (zh) 2016-02-03
CN103969239A (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2015032278A1 (zh) 一种分光瞳激光差动共焦拉曼光谱测试方法及装置
WO2015135415A1 (zh) 分光瞳激光差动共焦布里渊-拉曼光谱测量方法及装置
CN103439254B (zh) 一种分光瞳激光共焦拉曼光谱测试方法与装置
CN103091299B (zh) 激光差动共焦图谱显微成像方法与装置
CN103411957B (zh) 高空间分辨双轴共焦图谱显微成像方法与装置
CN101290293B (zh) 差动共焦拉曼光谱测试方法
CN107192702B (zh) 分光瞳激光共焦cars显微光谱测试方法及装置
CN104698068B (zh) 高空间分辨激光双轴差动共焦光谱‑质谱显微成像方法与装置
CN103884704A (zh) 分光瞳激光共焦布里渊-拉曼光谱测量方法及装置
CN102589428B (zh) 基于非对称入射的样品轴向位置跟踪校正的方法和装置
CN105021577A (zh) 激光共焦诱导击穿-拉曼光谱成像探测方法与装置
CN109187438A (zh) 后置分光瞳激光共焦布里渊-拉曼光谱测试方法及装置
CN107167457A (zh) 透射式共焦cars显微光谱测试方法及装置
CN104931481A (zh) 激光双轴差动共焦诱导击穿-拉曼光谱成像探测方法与装置
CN108226131A (zh) 一种空间周视激光差动共焦拉曼光谱成像探测方法及装置
CN105067570A (zh) 双轴激光差动共焦libs、拉曼光谱-质谱成像方法与装置
CN109187491A (zh) 后置分光瞳差动共焦拉曼、libs光谱显微成像方法与装置
CN209264563U (zh) 一种折射率显微测量系统
CN106770154B (zh) 空间自调焦激光差动共焦拉曼光谱探测方法与装置
US9891422B2 (en) Digital confocal optical profile microscopy
CN104990908B (zh) 激光双轴共焦诱导击穿‑拉曼光谱成像探测方法及装置
CN109142273B (zh) 一种折射率显微测量系统
CN109211874A (zh) 后置分光瞳激光共焦拉曼光谱测试方法及装置
CN109187501A (zh) 后置分光瞳激光差动共焦libs光谱显微成像方法与装置
CN109187502A (zh) 后置分光瞳激光共焦libs光谱显微成像方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842232

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/09/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14842232

Country of ref document: EP

Kind code of ref document: A1