WO2015030136A1 - 水回り部品用樹脂組成物及び流体用配管 - Google Patents

水回り部品用樹脂組成物及び流体用配管 Download PDF

Info

Publication number
WO2015030136A1
WO2015030136A1 PCT/JP2014/072634 JP2014072634W WO2015030136A1 WO 2015030136 A1 WO2015030136 A1 WO 2015030136A1 JP 2014072634 W JP2014072634 W JP 2014072634W WO 2015030136 A1 WO2015030136 A1 WO 2015030136A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polyarylene sulfide
group
resin composition
water
Prior art date
Application number
PCT/JP2014/072634
Other languages
English (en)
French (fr)
Inventor
倫子 西尾
渡辺 創
俊男 檜森
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2015534296A priority Critical patent/JP6237773B2/ja
Priority to KR1020167007665A priority patent/KR20160049536A/ko
Priority to KR1020217042595A priority patent/KR102654004B1/ko
Priority to CN201480048083.XA priority patent/CN105492538B/zh
Publication of WO2015030136A1 publication Critical patent/WO2015030136A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/54Inorganic substances
    • C08L2666/64Sulfur

Definitions

  • the present invention relates to a resin composition for water parts and fluid piping.
  • a resin composition in which a thermoplastic elastomer is blended with a polyarylene sulfide resin is effective for freezing resistance of a molded product, it is kept in contact with a high-temperature fluid such as hot water for a long time in order to improve flexibility.
  • a high-temperature fluid such as hot water
  • the creep resistance of the molded product itself may be greatly reduced, and a gap may be formed at the interface between the pipe and the metal part, which may cause leakage of the high-temperature fluid.
  • materials for water-borne components are required to have flexibility under cold conditions and high rigidity and excellent creep resistance under high temperature conditions.
  • the molding material is also required to be able to be filled evenly and uniformly.
  • the main problem to be solved by the present invention is a resin composition for water-borne parts capable of producing a molded article excellent in cavity balance and having both creep resistance and freezing resistance, and fluids using these The purpose is to provide piping.
  • the present inventors have blended a polyarylene sulfide resin obtained by melt polymerization of a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor, and a thermoplastic elastomer.
  • the present inventors have found that the problem can be solved and have completed the present invention.
  • the present invention is a water component resin composition containing a polyarylene sulfide resin and a thermoplastic elastomer, wherein the polyarylene sulfide resin comprises a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor.
  • the present invention relates to a resin composition for water parts, which can be obtained by a method including reacting in a molten mixture containing a diiodo aromatic compound, elemental sulfur and a polymerization inhibitor.
  • this invention relates to the piping for fluids which consists of the resin composition for water
  • a water component plastic composition capable of producing a molded article excellent in cavity balance and having both creep resistance and freezing resistance, and a fluid pipe using the resin composition. it can.
  • the water component plastic composition it is possible to produce a molded product that can suppress gas generation due to heating and that has excellent mechanical strength.
  • the water component plastic composition according to this embodiment contains a polyarylene sulfide resin and a thermoplastic elastomer.
  • the polyarylene sulfide resin used in the present embodiment is obtained by reacting a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor in a molten mixture containing the diiodo aromatic compound, elemental sulfur and the polymerization inhibitor. It can be obtained by the method of including. According to such a method, a polyarylene sulfide resin can be obtained as a polymer having a relatively high molecular weight as compared with conventional methods such as the Philips method.
  • the diiodo aromatic compound has an aromatic ring and two iodine atoms directly bonded to the aromatic ring.
  • diiodo aromatic compounds include, but are not limited to, diiodobenzene, diiodotoluene, diiodoxylene, diiodonaphthalene, diiodobiphenyl, diiodobenzophenone, diiododiphenyl ether, and diiododiphenyl sulfone.
  • the substitution positions of the two iodine atoms are not particularly limited, but it is preferable that the two substitution positions are located as far as possible in the molecule. Preferred substitution positions are the para position and the 4,4'-position.
  • Aromatic rings of diiodo aromatic compounds include phenyl groups, halogen atoms other than iodine atoms, hydroxy groups, nitro groups, amino groups, alkoxy groups having 1 to 6 carbon atoms, carboxy groups, carboxylates, aryl sulfones and aryl ketones. It may be substituted with at least one substituent selected from However, from the viewpoint of crystallinity and heat resistance of the polyarylene sulfide resin, the ratio of the substituted diiodo aromatic compound to the unsubstituted diiodo aromatic compound is preferably in the range of 0.0001 to 5% by mass. More preferably, it is in the range of 0.001 to 1% by mass.
  • the elemental sulfur means a substance (S 8 , S 6 , S 4 , S 2, etc.) composed only of sulfur atoms, and its form is not limited. More specifically, the present invention may be used elemental sulfur which is commercially available as Tsuboneho medicament may be obtained generically, may be used a mixture containing S 8 and S 6 and the like.
  • the purity of elemental sulfur is not particularly limited.
  • the elemental sulfur may be in the form of particles or powder as long as it is solid at room temperature (23 ° C.).
  • the particle size of elemental sulfur is not particularly limited, but is preferably in the range of 0.001 to 10 mm, more preferably in the range of 0.01 to 5 mm, and still more preferably in the range of 0.01 to 3 mm.
  • the polymerization inhibitor can be used without particular limitation as long as it is a compound that inhibits or stops the polymerization reaction in the polymerization reaction of the polyarylene sulfide resin.
  • the polymerization inhibitor preferably contains a compound capable of introducing at least one group selected from the group consisting of a hydroxy group, an amino group, a carboxyl group and a salt of a carboxyl group at the end of the main chain of the polyarylene sulfide resin. That is, the polymerization inhibitor is preferably a compound having one or more groups selected from the group consisting of a hydroxy group, an amino group, a carboxyl group, and a carboxyl group salt.
  • the polymerization inhibitor may have the functional group, or the functional group may be generated by a polymerization termination reaction or the like.
  • polymerization inhibitor having a hydroxy group or an amino group for example, a compound represented by the following formula (1) or (2) can be used as the polymerization inhibitor.
  • a monovalent group represented by the following formula (1-1) is introduced as a terminal group of the main chain.
  • Y in the formula (1-1) is a hydroxy group, an amino group or the like derived from a polymerization inhibitor.
  • a monovalent group represented by the following formula (2-1) is introduced as a terminal group of the main chain.
  • a hydroxy group derived from the compound represented by the general formula (1) can be introduced into the polyarylene sulfide resin by, for example, bonding to a carbon atom of a carbonyl group in the formula (2) and a sulfur radical.
  • the disulfide bond that is derived from the raw material (single sulfur) in the main chain of the polyarylene sulfide resin is radically cleaved at the melting temperature.
  • the generated sulfur radical and the compound represented by the general formula (1) or the compound represented by the general formula (2) are considered to be introduced into the polyarylene sulfide resin.
  • the existence of these structural units having a specific structure is characteristic of the polyarylene sulfide resin obtained by melt polymerization using the compound represented by the general formula (1) or (2).
  • Examples of the compound represented by the general formula (1) include 2-iodophenol and 2-aminoaniline. Examples of the compound represented by the general formula (2) include 2-iodobenzophenone.
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent group represented by the following general formula (a), (b) or (c), and R 1 or At least one of R 2 is a monovalent group represented by the general formula (a), (b) or (c).
  • Z represents an iodine atom or a mercapto group
  • R 3 represents a monovalent group represented by the following General Formula (a), (b), or (c).
  • R 4 represents a monovalent group represented by General Formula (a), (b), or (c).
  • X in the general formulas (a) to (c) is a hydrogen atom or an alkali metal atom, and is preferably a hydrogen atom from the viewpoint of good reactivity.
  • the alkali metal atom include sodium, lithium, potassium, rubidium, and cesium, and sodium is preferable.
  • R 10 represents an alkyl group having 1 to 6 carbon atoms.
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 12 represents an alkyl group having 1 to 5 carbon atoms.
  • a monovalent group represented by the following formula (6) or (7) is introduced as a terminal group of the main chain.
  • the presence of the terminal structural unit of these specific structures is characteristic of the polyarylene sulfide resin obtained by melt polymerization using the compound represented by the general formula (3), (4) or (5).
  • R 5 represents a monovalent group represented by the general formula (a), (b) or (c)).
  • R 6 represents a monovalent group represented by the general formula (a), (b) or (c)).
  • a compound having no functional group such as a carboxyl group may be used.
  • examples of such compounds include diphenyl disulfide, monoiodobenzene, thiophenol, 2,2′-dibenzothiazolyl disulfide, 2-mercaptobenzothiazole, N-cyclohexyl-2-benzothiazolylsulfenamide, 2 At least one compound selected from-(morpholinothio) benzothiazole and N, N'-dicyclohexyl-1,3-benzothiazole-2-sulfenamide can be used.
  • the polyarylene sulfide resin according to this embodiment is obtained by performing melt polymerization in a melt mixture obtained by heating a mixture containing a diiodo aromatic compound, elemental sulfur, a polymerization inhibitor, and a catalyst as necessary. Generate.
  • the ratio of the diiodo aromatic compound in the molten mixture is preferably in the range of 0.5 to 2 moles, more preferably in the range of 0.8 to 1.2 moles per mole of elemental sulfur.
  • the ratio of the polymerization inhibitor in the mixture is preferably in the range of 0.0001 to 0.1 mol, more preferably in the range of 0.0005 to 0.05 mol, with respect to 1 mol of solid sulfur. .
  • the timing of adding the polymerization inhibitor is not particularly limited, but the temperature of the mixture is preferably 200 ° C. to 320 ° C. by heating the mixture containing the diiodo aromatic compound, elemental sulfur and the catalyst to be added as necessary.
  • the polymerization inhibitor can be added when the temperature is within the range, more preferably within the range of 250 to 320 ° C.
  • the polymerization rate can be adjusted by adding a nitro compound as a catalyst to the molten mixture.
  • a nitro compound as a catalyst
  • various nitrobenzene derivatives can be usually used.
  • the nitrobenzene derivative include 1,3-diiodo-4-nitrobenzene, 1-iodo-4-nitrobenzene, 2,6-diiodo-4-nitrophenol and 2,6-diiodo-4-nitroamine.
  • the amount of the catalyst is usually an amount added as a catalyst, and is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of elemental sulfur, for example.
  • the conditions for melt polymerization are appropriately adjusted so that the polymerization reaction proceeds appropriately.
  • the temperature of the melt polymerization is preferably 175 ° C. or higher, the melting point of the polyarylene sulfide resin to be formed + 100 ° C. or lower, more preferably 180 to 350 ° C.
  • the melt polymerization is carried out with an absolute pressure of preferably 1 [cPa] to 100 [kPa], more preferably 13 [cPa] to 60 [kPa].
  • the conditions for melt polymerization need not be constant.
  • the temperature is preferably in the range of 175 to 270 ° C., more preferably in the range of 180 to 250 ° C., and the absolute pressure is in the range of 6.7 to 100 [kPa], and then continuously or Polymerization is carried out while raising and lowering the temperature stepwise, and in the latter stage of polymerization, the temperature is preferably 270 ° C. or higher, the melting point of the polyarylene sulfide resin to be produced + 100 ° C. or lower, more preferably 300 to 350 ° C.,
  • the polymerization can be carried out at an absolute pressure in the range of 1 [cPa] to 6 [kPa].
  • the melting point of the resin means a value measured in accordance with JIS K 7121 using a differential scanning calorimeter (Perkin Elmer DSC device Pyris Diamond).
  • the melt polymerization is preferably performed in a non-oxidizing atmosphere from the viewpoint of obtaining a high degree of polymerization while preventing oxidative crosslinking reaction.
  • the oxygen concentration in the gas phase is preferably in the range of less than 5% by volume, more preferably in the range of less than 2% by volume, and more preferably the gas phase is substantially free of oxygen.
  • the non-oxidizing atmosphere is preferably an inert gas atmosphere such as nitrogen, helium and argon.
  • the melt polymerization can be performed using, for example, a melt kneader equipped with a heating device, a decompression device, and a stirring device.
  • a melt kneader equipped with a heating device, a decompression device, and a stirring device.
  • the melt kneader include a Banbury mixer, a kneader, a continuous kneader, a single screw extruder, and a twin screw extruder.
  • the molten mixture for melt polymerization does not substantially contain a solvent. More specifically, the amount of the solvent contained in the molten mixture is preferably 10 masses with respect to a total of 100 mass parts of the diiodo aromatic compound, elemental sulfur, the polymerization inhibitor, and, if necessary, the catalyst. Part or less, more preferably 5 parts by weight or less, and even more preferably 1 part by weight or less.
  • the amount of the solvent may be 0 part by mass or more, 0.01 part by mass or more, or 0.1 part by mass or more.
  • the melt mixture (reaction product) after the melt polymerization is cooled to obtain a solid state mixture
  • the mixture is heated under reduced pressure or atmospheric pressure in a non-oxidizing atmosphere to further advance the polymerization reaction. Also good. As a result, not only can the molecular weight be increased, but also the generated iodine molecules are sublimated and removed, so the iodine atom concentration in the polyarylene sulfide resin can be kept low.
  • the solid state mixture can be obtained by cooling to a temperature of preferably 100 to 260 ° C, more preferably 130 to 250 ° C, and even more preferably 150 to 230 ° C. Heating after cooling to the solid state can be performed under the same temperature and pressure conditions as in melt polymerization.
  • the reaction product containing the polyarylene sulfide resin obtained by the melt polymerization step can be directly produced in a melt-kneader to produce a resin composition. It is preferable to prepare a dissolved product by adding a solvent in which the reaction product is dissolved, and to take out the reaction product from the reaction apparatus in the dissolved state because not only the productivity is improved but also the reactivity is improved.
  • the addition of the solvent in which the reaction product is dissolved is preferably performed after the melt polymerization, but it may be performed in the later stage of the reaction of the melt polymerization, or as described above, the molten mixture (reaction product) is cooled to form a solid state.
  • the polymerization reaction may be further advanced by heating the mixture under pressure, reduced pressure, or atmospheric pressure in a non-oxidizing atmosphere.
  • the step of preparing the lysate may be performed in a non-oxidizing atmosphere.
  • the temperature for dissolution by heating may be in the range of the melting point of the solvent in which the reaction product dissolves, preferably in the range of 200 to 350 ° C., more preferably in the range of 210 to 250 ° C. It is preferable to carry out with.
  • the mixing ratio of the solvent used for preparing the dissolved product in which the reaction product dissolves is preferably in the range of 90 to 1000 parts by mass with respect to 100 parts by mass of the reaction product containing polyarylene sulfide resin.
  • the range is preferably 200 to 400 parts by mass.
  • a solvent used as a polymerization reaction solvent in solution polymerization such as a Philips method
  • preferable solvents include N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), N-cyclohexyl-2-pyrrolidone, 2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and ⁇ -caprolactam.
  • Aliphatic cyclic amide compounds such as N-methyl- ⁇ -caprolactam, amide compounds such as hexamethylphosphoric triamide (HMPA), tetramethylurea (TMU), dimethylformamide (DMF), and dimethylacetamide (DMA), polyethylene
  • amide compounds such as hexamethylphosphoric triamide (HMPA), tetramethylurea (TMU), dimethylformamide (DMF), and dimethylacetamide (DMA)
  • polyethylene examples include etherified polyethylene glycol compounds such as glycol dialkyl ether (having a degree of polymerization of 2000 or less and an alkyl group having 1 to 20 carbon atoms), and sulfoxide compounds such as tetramethylene sulfoxide and dimethyl sulfoxide (DMSO). It is done.
  • Examples of other usable solvents include benzophenone, diphenyl ether, diphenyl sulfide, 4,4′-dibromobiphenyl, 1-phenylnaphthalene, 2,5-diphenyl-1,3,4-oxadiazole, 2,5- Diphenyloxazole, triphenylmethanol, N, N-diphenylformamide, benzyl, anthracene, 4-benzoylbiphenyl, dibenzoylmethane, 2-biphenylcarboxylic acid, dibenzothiophene, pentachlorophenol, 1-benzyl-2-pyrrolidione, 9- Fluorenone, 2-benzoylnaphthalene, 1-bromonaphthalene, 1,3-diphenoxybenzene, fluorene, 1-phenyl-2-pyrrolidinone, 1-methoxynaphthalene, 1-ethoxynaphthalene, 1,3-diphenylacetate 1,4-d
  • the melted product taken out from the reaction apparatus is preferably post-treated and then melt-kneaded with the other components to prepare a resin composition because the reactivity becomes better.
  • the method for post-treatment of the lysate is not particularly limited, and examples thereof include the following methods. (1) The solvent is used as it is or after adding an acid or a base, and then the solvent is distilled off under reduced pressure or normal pressure. (Or an organic solvent having an equivalent solubility with respect to a low-molecular polymer), a method of washing once or twice or more with a solvent selected from acetone, methyl ethyl ketone and alcohols, and further neutralizing, washing with water, filtering and drying.
  • Solvents such as water, acetone, methyl ethyl ketone, alcohol, ether, halogenated hydrocarbon, aromatic hydrocarbon and aliphatic hydrocarbon (soluble in the solvent of the solution and at least polyarylene)
  • a solvent which is a poor solvent for sulfide resin) is added as a precipitating agent to precipitate a solid product containing polyarylene sulfide resin and inorganic salt, and the solid product is filtered, washed and dried.
  • the polyarylene sulfide resin may be dried in a vacuum or in an inert gas atmosphere such as air or nitrogen. May be. It is also possible to oxidatively crosslink the polyarylene sulfide resin by performing heat treatment in an oxidizing atmosphere having an oxygen concentration in the range of 5 to 30% by volume or under reduced pressure conditions.
  • Reaction formulas (1) to (5) are, for example, polyphenylene when diphenyl disulfide having a substituent R containing a group represented by general formula (a), (b) or (c) is used as a polymerization inhibitor. It is an example of reaction which sulfide produces
  • Reaction formula (1) is a reaction in which the —SS— bond in the polymerization inhibitor undergoes radical cleavage at the melting temperature.
  • the sulfur radical generated in the reaction formula (1) attacks the adjacent carbon atom of the terminal iodine atom of the growing main chain, and the iodine atom is detached, so that the polymerization is stopped, In this reaction, a substituent R is introduced at the end of the main chain.
  • Reaction formula (3) is a reaction in which a disulfide bond existing in the main chain of the polyarylene sulfide resin derived from the raw material (single sulfur) is radically cleaved at the melting temperature.
  • the reaction formula (4) the polymerization is stopped by recombination of the sulfur radical generated in the reaction formula (3) and the sulfur radical generated in the reaction formula (1), and the substituent R is at the end of the main chain.
  • the detached iodine atom is in a free state (iodine radical), or iodine molecules are generated by recombination of iodine radicals as in reaction formula (5).
  • the reaction product containing polyarylene sulfide resin obtained by melt polymerization contains iodine atoms derived from the raw material. Therefore, the polyarylene sulfide resin is usually used for the preparation of a spinning resin composition in the form of a mixture containing iodine atoms.
  • the concentration of iodine atoms in the mixture is, for example, in the range of 0.01 to 10,000 ppm, preferably in the range of 10 to 5000 ppm with respect to the polyarylene sulfide resin. It is also possible to keep the iodine atom concentration low by utilizing the sublimability of iodine molecules.
  • the range it is possible to set the range to 900 ppm or less, preferably 100 ppm or less, and further 10 ppm or less. It is. Although it is possible to remove iodine atoms below the detection limit, it is not practical in view of productivity.
  • the detection limit is, for example, about 0.01 ppm.
  • the polyarylene sulfide resin of the present embodiment obtained by melt polymerization or the reaction product containing the same contains iodine atoms, so that, for example, a solution weight of a dichloroaromatic compound such as a Philips method in an organic polar solvent is used. It can be clearly distinguished from polyarylene sulfides obtained by legal methods.
  • the polyarylene sulfide resin obtained by melt polymerization is mainly composed of an arylene sulfide unit composed of an aromatic ring derived from a diiodo aromatic compound and a sulfur atom directly bonded thereto. It includes a main chain and a predetermined substituent R bonded to the end of the main chain.
  • the predetermined substituent R is bonded to the aromatic ring at the end of the main chain directly or via a partial structure derived from a polymerization inhibitor.
  • the polyphenylene sulfide resin as the polyarylene sulfide resin according to one embodiment is, for example, the following general formula (10):
  • the repeating unit represented by the formula (10) has the following formula (10a) bonded at the para position:
  • a repeating unit bonded at the para position represented by the formula (10a) is preferable in terms of heat resistance and crystallinity of the resin.
  • the polyphenylene sulfide resin according to one embodiment has the following general formula (11):
  • R 20 and R 21 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group.
  • bonded with the aromatic ring represented by these may be included.
  • the polyphenylene sulfide resin does not substantially contain the repeating unit of the general formula (11) from the viewpoints of crystallinity and heat resistance. More specifically, the ratio of the repeating unit represented by formula (11) is preferably based on the total of the repeating unit represented by formula (10) and the repeating unit represented by formula (11). It is 2 mass% or less, More preferably, it is 0.2 mass% or less.
  • the polyarylene sulfide resin of the present embodiment is mainly composed of the above arylene sulfide units, but usually derived from the elemental sulfur of the raw material, the following formula (20):
  • a structural unit related to a disulfide bond represented by the formula is also included in the main chain.
  • the proportion of the structural unit represented by the formula (20) is preferably 2 with respect to the total of the arylene sulfide unit and the structural site represented by the formula (20).
  • the range is 9% by mass or less, and more preferably 1.2% by mass or less.
  • Mw / Mtop of the polyarylene sulfide resin according to the present embodiment is preferably in the range of 0.80 to 1.70, more preferably in the range of 0.90 to 1.30.
  • Mw represents the weight average molecular weight measured by gel permeation chromatography
  • Mtop represents the average molecular weight (peak molecular weight) at the point where the detection intensity of the chromatogram obtained by the measurement is maximized.
  • Mw / Mtop indicates the distribution of the molecular weight to be measured.
  • the weight average molecular weight of the polyarylene sulfide resin according to this embodiment is not particularly limited as long as the effects of the present invention are not impaired, but the lower limit thereof is 28,000 or more from the viewpoint of excellent mechanical strength. Is more preferable, and the range of 30,000 or more is more preferable.
  • the upper limit is preferably in the range of 100,000 or less, more preferably in the range of 60,000 or less, and further in the range of 55,000 or less from the viewpoint that a better cavity balance can be imparted. Most preferably, it is in the range.
  • a polyarylene sulfide resin in the range of 28,000 to 60,000, more preferably in the range of 30,000 to 55,000.
  • a polyarylene sulfide resin having a weight average molecular weight in the range of more than 60,000 and 100,000 or less may be used together with the polyarylene sulfide resin.
  • the non-Newtonian index of the polyarylene sulfide resin is preferably in the range of 0.95 to 1.75, more preferably in the range of 1.0 to 1.70.
  • the non-Newtonian index means an index satisfying the following relational expression between the shear rate and the shear stress under the condition of a temperature of 300 ° C.
  • the non-Newtonian index can be an index related to the molecular weight to be measured or the molecular structure such as linear, branched, or crosslinked.
  • the polyarylene sulfide resin having the above-mentioned specific ranges of Mw / Mtop and non-Newtonian index includes, for example, a diiodo aromatic compound, elemental sulfur, a polymerization inhibitor, a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor.
  • a method of reacting (solution polymerization) in a molten mixture containing a polyarylene sulfide resin it can be obtained by increasing the molecular weight of the polyarylene sulfide resin to some extent.
  • the melting point of the polyarylene sulfide resin is preferably in the range of 250 to 300 ° C, more preferably in the range of 265 to 300 ° C.
  • the melt viscosity (V6) at 300 ° C. of the polyarylene sulfide resin is preferably in the range of 1 to 2000 [Pa ⁇ s], more preferably in the range of 5 to 1700 [Pa ⁇ s].
  • V6 using a flow tester, an orifice having a temperature of 300 ° C., a load of 1.96 MPa, and a ratio of the orifice length to the orifice diameter (orifice length / orifice diameter) is 10/1. The melt viscosity after holding for 6 minutes.
  • thermoplastic elastomer examples include polyolefin elastomers, fluorine elastomers, and silicone elastomers.
  • the thermoplastic elastomer preferably has a functional group capable of reacting with the group represented by the formula (1).
  • functional groups include epoxy groups, carboxy groups, isocyanate groups, oxazoline groups, and the formula: R (CO) O (CO)-or R (CO) O- (wherein R is from 1 to 8 carbon atoms)
  • R (CO) O (CO)-or R (CO) O- wherein R is from 1 to 8 carbon atoms)
  • the thermoplastic elastomer having such a functional group can be obtained, for example, by copolymerization of an ⁇ -olefin and a vinyl polymerizable compound having the functional group.
  • Examples of the ⁇ -olefin include ⁇ -olefins having 2 to 8 carbon atoms such as ethylene, propylene, and butene-1.
  • Examples of the vinyl polymerizable compound having a functional group include ⁇ , ⁇ -unsaturated carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid esters and alkyl esters thereof, maleic acid, fumaric acid, itaconic acid, and the like.
  • Other examples include ⁇ , ⁇ -unsaturated dicarboxylic acids having 4 to 10 carbon atoms and derivatives thereof (mono- or diesters and acid anhydrides thereof), glycidyl (meth) acrylates, and the like.
  • R represents an alkyl group having 1 to 8 carbon atoms.
  • An ethylene-propylene copolymer and an ethylene-butene copolymer having at least one functional group selected from the group consisting of the groups represented are preferable from the viewpoint of improving toughness and impact resistance.
  • thermoplastic elastomer varies depending on the type and application, it cannot be specified unconditionally. It is in the range of ⁇ 100 parts by mass, more preferably in the range of 5 to 45 parts by mass. When the content of the thermoplastic elastomer is within these ranges, a more excellent effect can be obtained in terms of ensuring the heat resistance and toughness of the molded product.
  • the resin composition for water-borne components according to the present embodiment can contain a crosslinkable resin without departing from the gist of the present invention.
  • the crosslinkable resin has two or more crosslinkable functional groups.
  • the crosslinkable functional group include an epoxy group, a phenolic hydroxyl group, an amino group, an amide group, a carboxy group, an acid anhydride group, and an isocyanate group.
  • the crosslinkable resin include an epoxy resin, a phenol resin, and a urethane resin.
  • an aromatic epoxy resin is preferable.
  • the aromatic epoxy resin may have a halogen group or a hydroxyl group.
  • suitable aromatic epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, phenol novolac type epoxy resins, cresol novolacs.
  • Type epoxy resin bisphenol A novolak type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl Type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, aromatic hydrocarbon Le formaldehyde resin-modified phenol resin type epoxy resins, and biphenyl novolac-type epoxy resin.
  • aromatic epoxy resins can be used alone or in combination of two or more.
  • a novolak type epoxy resin is preferable and a cresol novolak type epoxy resin is more preferable because it is excellent in compatibility with other resin components.
  • the content of the crosslinkable resin is preferably in the range of 1 to 300 parts by mass, more preferably in the range of 3 to 100 parts by mass, and still more preferably in the range of 5 to 30 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. It is. When the content of the crosslinkable resin is in these ranges, the effect of improving the rigidity and heat resistance of the molded product can be obtained particularly remarkably.
  • the water component resin composition can contain a silane compound having a functional group capable of reacting with the group represented by the formula (1).
  • silane compounds include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ -glycidoxypropylmethyl.
  • silane coupling agents such as diethoxysilane and ⁇ -glycidoxypropylmethyldimethoxysilane.
  • the resin composition for water parts can contain a silicone compound.
  • a silicone compound is reactive silicone oil.
  • a compound in which a functional group such as an amino group, a glycidyl group, or a carboxy group is introduced into the side chain or terminal of the dimethyl silicone oil can be used.
  • the content of the silane compound is, for example, preferably in the range of 0.01 to 10 parts by mass, more preferably in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. .
  • the content of the silane compound is within these ranges, an effect of improving the compatibility between the polyarylene sulfide resin and the other components can be obtained.
  • the water component plastic composition may contain other additives such as a mold release agent, a colorant, a heat stabilizer, an ultraviolet stabilizer, a foaming agent, a rust inhibitor, a flame retardant, and a lubricant.
  • the content of the additive is preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin, for example.
  • the water component resin composition is prepared by uniformly mixing the polyarylene sulfide resin and the thermoplastic elastomer obtained by the above method and other materials as necessary with a mixer such as a tumbler or a Henschel mixer. It can be obtained, for example, in the form of a pellet-like compound by a method in which it is supplied to a shaft or twin-screw kneading extruder and melt-kneaded in a temperature range of 250 ° C. to 350 ° C.
  • the water component resin composition can be processed into a desired molded product by a known molding method related to thermoplastic resins such as injection molding, injection compression molding, extrusion molding, etc. Injection molding is particularly suitable because it can be obtained at low cost and with high productivity.
  • the resin composition for water-borne parts according to this embodiment is excellent in hot water resistance, mechanical properties, toughness, impact resistance, excellent durability in acidic and alkaline environments, and mechanical in hot water environments. It has a characteristic that no decrease in strength is observed. Due to this feature, the resin composition of the present invention is a material suitable for use around water such as toilet-related parts, water heater-related parts, pump-related parts and bath-related parts.
  • the opening and closing parts such as valves and stoppers are generally constantly subjected to high stress load, and are greatly damaged by acidic or alkaline cleaning agents and hot water.
  • the composition of the present invention is difficult to use for a long time. In particular, it is useful in the field of this opening / closing component.
  • the fluid piping according to the present embodiment is formed by molding the resin composition for water-borne components.
  • fluid piping include pipes, lining pipes, cap nuts, pipe joints (elbows, headers, cheeses, reducers, joints, couplers, etc.), various valves, flow meters, gaskets (seal, packings), For example, pipes for transporting fluids and various parts attached to the pipes.
  • Polyphenylene sulfide resin (PPS resin) 1-1 Synthesis of PPS-1 to 5 (Synthesis Example 1) Solid sulfur (manufactured by Kanto Chemical Co., Inc., sulfur (powder)) 27.00 g, p-diiodobenzene (manufactured by Tokyo Chemical Industry Co., Ltd., p-diiodobenzene purity 98.0% or more) 300.0 g, 4,4 ′ -2.0 g of dithiobisbenzoic acid (4,4'-dithiobisbenzoic acid, Technical Grade, manufactured by Wako Pure Chemical Industries, Ltd.) was heated to 180 ° C in a nitrogen atmosphere, and these were dissolved and mixed.
  • PPS resin Polyphenylene sulfide resin
  • the temperature is raised to 220 ° C., the pressure is reduced to 26.6 kPa, and the resulting molten mixture is heated by changing the temperature and pressure stepwise so that the system has an absolute pressure of 320 Pa at 320 ° C.
  • melt polymerization was performed for 8 hours.
  • 200 g of NMP was added, and the mixture was heated and stirred at 220 ° C., and the resulting dissolved product was filtered.
  • 320 g of NMP was added to the lysate after filtration, and cake washing filtration was performed. 1 L of ion-exchanged water was added to the obtained cake containing NMP, and the mixture was stirred in an autoclave at 200 ° C. for 10 minutes.
  • the cake was filtered, and 1 L of ion-exchanged water at 70 ° C. was added to the cake after filtration to wash the cake. 1 L of ion-exchanged water was added to the obtained water-containing cake and stirred for 10 minutes. Next, the cake was filtered, and 1 L of ion-exchanged water at 70 ° C. was added to the cake after filtration to wash the cake. After repeating this operation once more, the cake was dried at 120 ° C. for 4 hours to obtain 91 g of PPS resin.
  • the temperature is raised to 220 ° C., the pressure is reduced to 46.7 kPa, and the temperature and pressure are changed stepwise so that the system has an absolute pressure of 320 Pa at 320 ° C., and the resulting molten mixture is heated. Then, melt polymerization was performed for 8 hours.
  • 200 g of NMP was added, and the mixture was heated and stirred at 220 ° C., and the resulting dissolved product was filtered.
  • 320 g of NMP was added to the lysate after filtration, and cake washing filtration was performed. 1 L of ion exchange water was added to the obtained NMP-containing cake, and the mixture was stirred in an autoclave at 200 ° C. for 10 minutes.
  • the cake was filtered, and 1 L of ion-exchanged water at 70 ° C. was added to the cake after filtration to wash the cake. After repeating this operation once more, the cake was dried at 120 ° C. for 4 hours to obtain 91 g of PPS resin.
  • Non-Newtonian index PPS resin was measured with a capillary rheometer at a temperature of 300 ° C. using a die having a diameter of 1 mm and a length of 40 mm for a shear rate of 100 to 1000 (sec ⁇ 1 ). Is a value calculated from the slope of the logarithm plot.
  • Mw and Mw / Mtop (molecular weight distribution) The weight average molecular weight and peak molecular weight of the PPS resin were measured under the following measurement conditions using gel permeation chromatography. Mw / Mtop was calculated from the obtained Mw and Mtop.
  • Six types of monodisperse polystyrene were used for calibration. Apparatus: Ultra-high temperature polymer molecular weight distribution analyzer ("SSC-7000" manufactured by Senshu Kagaku Co., Ltd.) Column: UT-805L (made by Showa Denko KK) Column temperature: 210 ° C Solvent: 1-chloronaphthalene Measurement method: UV detector (360 nm)
  • Polyphenylene sulfide resin composition (PPS compound) 2-1.
  • PPS resin composition 2-1.
  • ELA-1 ethylene / glycidyl methacrylic acid (3% by mass) / methyl acrylate (27% by mass) copolymer (Sumitomo Chemical Co., Ltd., “Bond First 7L”)
  • ELA-2 Copolymer of ethylene / glycidyl methacrylic acid (6% by mass) / methyl acrylate (27% by mass) (manufactured by Sumitomo Chemical Co., Ltd., “Bond First 7M”)
  • Si amino group-containing silicone (manufactured by Shin-Etsu Chemical Co., Ltd., “KF-868”) (Silane compound) ⁇
  • Epoxysilane ⁇ -glycidoxypropyltrimethoxysilane (crosslinkable
  • an L-shaped pipe joint including a cylindrical shape having an inner diameter of 22 mm, an outer diameter of 28 mm, and a thickness of 3 mm having a flange portion was produced by injection molding to obtain a molded product for evaluation.
  • the evaluation molded product is filled with water so as not to contain an air layer, and both ends of the L-shaped joint are closed with a metal jig combined with a hose, and the hose is connected to a pressure pump, Hot water at 80 ° C. was circulated for 100 hours at a pressure of 2 MPa inside the molded product for evaluation, and the appearance of the molded product thereafter was observed.
  • Acid resistance test / Alkali resistance test From the obtained compound, an evaluation molded product molded into a shape of 1.6 mm (thickness) x 12.7 mm (width) x 127 mm (long) was used as a test piece, and a predetermined bending strain was obtained. With the bending stress applied to the test piece, the test piece was immersed in the test solution, and the time until the test piece broke was examined. A cutting notch was provided at the center of the test piece. ⁇ Acid resistance test solution: St.
  • the PPS compound was injection molded under the lowest molding conditions as long as the cavity (C1) closest to the primary sprue was completely filled.
  • the molding conditions were a 75-ton molding machine, a cylinder temperature of 320 ° C, a mold temperature of 140 ° C, and no holding pressure.
  • the degree of filling of the cavity (C10) farthest from the primary sprue in the same runner as the cavity (C1) after molding was compared.
  • the degree of filling (% by mass) was determined from the mass ratio of the molded product of the cavity (C10) to the molded product of the cavity (C1). It can be said that the higher the degree of filling of the cavity (C10), the better the cavity balance.
  • the cavity balance of each composition was determined according to the following criteria. AA: 100 to 90% by mass A: 89-80% by mass B: 79 to 70% by mass C: 69-60 mass% D: 59% or less
  • the resin compositions produced in the examples are excellent in cavity balance, and can form molded articles having both creep resistance and freezing resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

キャビティーバランスに優れ、耐クリープ特性及び耐凍結性を両立した成形品を作製できる水回り部品用樹脂組成物、及び、これらを用いた流動体用配管を提供する。具体的には、ポリアリーレンスルフィド樹脂及び熱可塑性エラストマーを含有する水回り部品用樹脂組成物であって、ポリアリーレンスルフィド樹脂が、ジヨード芳香族化合物、単体硫黄及び重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることのできるものである、水回り部品用樹脂組成物、及び、これらを用いた流動体用配管。

Description

水回り部品用樹脂組成物及び流体用配管
 本発明は、水回り部品用樹脂組成物及び流体用配管に関する。
 熱交換機、給湯装置、生ゴミ処理装置等に用いられる高温流動体移送用の配管は、近年、金属材料に変わりプラスチック化が進められている。配管用プラスチック材料としては優れた耐熱性と機械的強度とを持つポリアリーレンスルフィド樹脂が用いられている。しかしながら、ポリアリーレンスルフィド樹脂は、機械的強度に優れ、剛性に優れるという特徴から、上記各種装置の配管に使用した場合に冬場の内部流体の凍結によって配管が破損、破裂することがある。
 そこで、ポリアリーレンスルフィド樹脂製の配管の耐凍結性を改善するために、例えば、ポリアリーレンスルフィド樹脂に熱可塑性エラストマーを配合することによって、樹脂組成物の柔軟性を高め、内部流体の凍結による破損、破裂等を防止する技術が知られている(特許文献1参照)。
特開2004-300271号公報
 しかしながら、ポリアリーレンスルフィド樹脂に熱可塑性エラストマーを配合した樹脂組成物は、成形品の耐凍結性については効果が認められるものの、柔軟性が向上するために熱水等の高温流体に長時間接触させた場合に、成形品自体の変形が大きくなるという耐クリープ性の低下を招き、配管と接触する金属部品との界面に隙間を生じさせて、高温流体の漏れを引き起こすことがある。そのため、水回り部品用の材料としては、冷温条件下では柔軟性を有しながらも、高温条件下では剛性が高く耐クリープ性に優れたものが求められている。
 一方、複数のキャビティーを有する金型を用いた射出成形により、同時に複数の成形品を成形したときに、一部のキャビティーに成形用材料が十分に充填されないといった成形不良が発生することがある。そのため、成形用材料には、均一にムラなく充填できることも求められている。
 そこで、本発明が解決しようとする主な課題は、キャビティーバランスに優れ、耐クリープ特性及び耐凍結性を両立した成形品を作製できる水回り部品用樹脂組成物、及び、これらを用いた流体用配管を提供することにある。
 本発明者らは種々の検討を行った結果、ジヨード芳香族化合物と単体硫黄と重合禁止剤とを溶融重合させることで得られるポリアリーレンスルフィド樹脂と、熱可塑性エラストマーとを配合することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、ポリアリーレンスルフィド樹脂及び熱可塑性エラストマーを含有する水回り部品用樹脂組成物であって、ポリアリーレンスルフィド樹脂が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、ジヨード芳香族化合物、単体硫黄及び重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることのできるものである、水回り部品用樹脂組成物に関する。
 また、本発明は、前記記載の水回り部品用樹脂組成物からなる流体用配管に関する。
 本発明によれば、キャビティーバランスに優れ、耐クリープ特性及び耐凍結性を両立した成形品を作製できる水回り部品用樹脂組成物、及び、これらを用いた流動体用配管を提供することができる。また、上記水回り部品用樹脂組成物を用いることで、加熱によるガス発生を抑制でき、かつ、機械的強度に優れた成形品を作製することができる。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 本実施形態に係る水回り部品用樹脂組成物は、ポリアリーレンスルフィド樹脂及び熱可塑性エラストマーを含有する。
 本実施形態に用いられるポリアリーレンスルフィド樹脂は、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、ジヨード芳香族化合物、単体硫黄及び重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることができる。このような方法によれば、フィリップス法をはじめとする従来法に比べ、比較的高分子量の重合体としてポリアリーレンスルフィド樹脂を得ることができる。
 ジヨード芳香族化合物は、芳香族環と、芳香族環に直接結合した2個のヨウ素原子とを有する。ジヨード芳香族化合物としては、ジヨードベンゼン、ジヨードトルエン、ジヨードキシレン、ジヨードナフタレン、ジヨードビフェニル、ジヨードベンゾフェノン、ジヨードジフェニルエーテル及びジヨードジフェニルスルフォン等が挙げられるが、これらに限定されない。2つのヨウ素原子の置換位置は特に限定されないが、好ましくは2つの置換位置が分子内で出来る限り遠い位置にあることが望ましい。好ましい置換位置は、パラ位、及び4,4’-位である。
 ジヨード芳香族化合物の芳香族環は、フェニル基、ヨウ素原子以外のハロゲン原子、ヒドロキシ基、ニトロ基、アミノ基、炭素原子数1~6のアルコキシ基、カルボキシ基、カルボキシレート、アリールスルホンおよびアリールケトンから選ばれる少なくとも1種の置換基によって置換されていてもよい。ただし、ポリアリーレンスルフィド樹脂の結晶化度及び耐熱性等の観点から、未置換のジヨード芳香族化合物に対する置換されたジヨード芳香族化合物の割合は、好ましくは0.0001~5質量%の範囲であり、より好ましくは0.001~1質量%の範囲である。
 単体硫黄は、硫黄原子のみによって構成される物質(S、S、S、S等)を意味し、その形態は限定されない。具体的には、局法医薬品として市販されている単体硫黄を用いてもよいし、汎用的に入手することができる、S及びS等を含む混合物を用いてもよい。単体硫黄の純度も特に限定されない。単体硫黄は、室温(23℃)で固体であれば、粒形状又は粉末状であってもよい。単体硫黄の粒径は、特に限定されないが、好ましくは0.001~10mmの範囲であり、より好ましくは0.01~5mmの範囲であり、更に好ましくは0.01~3mmの範囲である。
 重合禁止剤は、ポリアリーレンスルフィド樹脂の重合反応において当該重合反応を禁止又は停止する化合物であれば、特に制限なく用いることができる。重合禁止剤は、ポリアリーレンスルフィド樹脂の主鎖の末端にヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基を導入し得る化合物を含むことが好ましい。すなわち、重合禁止剤としては、ヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基を1又は2以上有す化合物が好ましい。また、重合禁止剤が上記官能基を有していてもよいし、重合の停止反応等によって、上記官能基を生成してもよい。
 ヒドロキシ基又はアミノ基を有する重合禁止剤としては、例えば、下記式(1)又は(2)で表される化合物が重合禁止剤として用いられ得る。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)で表される化合物によれば、下記式(1-1)で表される一価の基が主鎖の末端基として導入される。式(1-1)中のYは、重合禁止剤に由来するヒドロキシ基、アミノ基等である。
Figure JPOXMLDOC01-appb-C000002
 一般式(2)で表される化合物によれば、下記式(2-1)で表される一価の基が主鎖の末端基として導入される。一般式(1)で表される化合物に由来するヒドロキシ基が、例えば、式(2)中のカルボニル基の炭素原子と硫黄ラジカルと結合することによりポリアリーレンスルフィド樹脂中に導入され得る。
Figure JPOXMLDOC01-appb-C000003
 式(1-1)又は(2-1)で表される基は、ポリアリーレンスルフィド樹脂の主鎖中に原料(単体硫黄)に由来して存在するジスルフィド結合が溶融温度下でラジカル開裂して発生した硫黄ラジカルと、一般式(1)で表される化合物又は一般式(2)で表される化合物とが結合することによって、ポリアリーレンスルフィド樹脂中に導入されると考えられる。これら特定構造の構成単位の存在は、一般式(1)又は(2)で表される化合物を用いた溶融重合により得られたポリアリーレンスルフィド樹脂に特徴的である。
 一般式(1)で表される化合物としては、例えば、2-ヨードフェノール、2-アミノアニリンなどが挙げられる。一般式(2)で表される化合物としては、2-ヨードベンゾフェノンが挙げられる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 一般式(3)中、R及びRはそれぞれ独立に、水素原子、又は、下記一般式(a)、(b)若しくは(c)で表される一価の基を表し、R又はRの少なくともいずれか一方は一般式(a)、(b)又は(c)で表される一価の基である。一般式(4)中、Zは、ヨウ素原子又はメルカプト基を表し、Rは、下記一般式(a)、(b)又は(c)で表される一価を表す。一般式(5)中、Rは、一般式(a)、(b)又は(c)で表される一価の基を表す。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 一般式(a)~(c)中のXは、水素原子又はアルカリ金属原子であるが、反応性が良好となる点から水素原子が好ましい。アルカリ金属原子としては、ナトリウム、リチウム、カリウム、ルビジウム、及びセシウムなどが挙げられるが、ナトリウムが好ましい。一般式(b)中、R10は炭素原子数1~6のアルキル基を表す。一般式(c)中、R11は水素原子又は炭素原子数1~3のアルキル基を表し、R12は炭素原子数1~5のアルキル基を表す。
 一般式(3)、(4)又は(5)で表される化合物によれば、下記式(6)又は(7)で表される一価の基が主鎖の末端基として導入される。これら特定構造の末端の構成単位の存在は、一般式(3)、(4)又は(5)で表される化合物を用いた溶融重合により得られたポリアリーレンスルフィド樹脂に特徴的である。
Figure JPOXMLDOC01-appb-C000010

(式中、Rは、一般式(a)、(b)又は(c)で表される一価の基を表す。)
Figure JPOXMLDOC01-appb-C000011
(式中、Rは、一般式(a)、(b)又は(c)で表される一価の基を表す。)
 重合禁止剤として、カルボキシル基等の官能基を有していない化合物等を使用してもよい。このような化合物としては、例えば、ジフェニルジスルフィド、モノヨードベンゼン、チオフェノール、2,2’-ジベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾール、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、2-(モルホリノチオ)ベンゾチアゾール及びN,N’-ジシクロヘキシル-1,3-ベンゾチアゾール-2-スルフェンアミドから選ばれる少なくとも1種の化合物を用いることができる。
 本実施形態に係るポリアリーレンスルフィド樹脂は、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤と、必要に応じて触媒と含む混合物を加熱して得られる溶融混合物中で溶融重合を行うことによって生成する。溶融混合物中のジヨード芳香族化合物の割合は、単体硫黄1モルに対して、好ましくは0.5~2モルの範囲であり、より好ましくは0.8~1.2モルの範囲である。また、混合物中の重合禁止剤の割合は、固体硫黄1モルに対して、好ましくは0.0001~0.1モルの範囲であり、より好ましくは0.0005~0.05モルの範囲である。
 重合禁止剤を添加する時期は、特に制限されないが、ジヨード芳香族化合物、単体硫黄及び必要に応じて添加される触媒を含む混合物を加熱して、混合物の温度が好ましくは200℃~320℃の範囲、より好ましくは250~320℃の範囲となった時点で重合禁止剤を添加することができる。
 溶融混合物にニトロ化合物を触媒として添加して、重合速度を調節することができる。このニトロ化合物としては、通常、各種ニトロベンゼン誘導体を用いることができる。ニトロベンゼン誘導体としては、例えば1,3-ジヨード-4-ニトロベンゼン、1-ヨード-4-ニトロベンゼン、2,6-ジヨード-4-ニトロフェノール及び2,6-ジヨード-4-ニトロアミンが挙げられる。触媒の量は、通常、触媒として添加される量であればよく、例えば単体硫黄100質量部に対して0.01~20質量部の範囲であることが好ましい。
 溶融重合の条件は、重合反応が適切に進行するように、適宜調整される。溶融重合の温度は、好ましくは、175℃以上、生成するポリアリーレンスルフィド樹脂の融点+100℃以下の範囲、より好ましくは180~350℃の範囲である。溶融重合は、絶対圧が好ましくは1[cPa]~100[kPa]の範囲、より好ましくは13[cPa]~60[kPa]の範囲で行われる。溶融重合の条件は、一定である必要は無い。例えば、重合初期は温度を好ましくは175~270℃の範囲、より好ましくは180~250℃の範囲とし、かつ、絶対圧を6.7~100[kPa]の範囲とし、その後、連続的に又は階段状に昇温及び減圧させながら重合を行い、重合後期は、温度を好ましくは270℃以上、生成するポリアリーレンスルフィド樹脂の融点+100℃以下の範囲、より好ましくは300~350℃の範囲とし、かつ、絶対圧を1[cPa]~6[kPa]の範囲として重合を行うことができる。本明細書において、樹脂の融点は、示差走査熱量計(パーキンエルマー製DSC装置 Pyris Diamond)を用いてJIS K 7121に準拠して測定される値を意味する。
 溶融重合は、酸化架橋反応を防ぎつつ、高い重合度を得る観点から、好ましくは、非酸化性雰囲気下で行う。非酸化性雰囲気において、気相の酸素濃度は好ましくは5体積%未満の範囲、より好ましくは2体積%未満の範囲であり、更に好ましくは気相が酸素を実質的に含有しない。非酸化性雰囲気は、好ましくは、窒素、ヘリウム及びアルゴン等の不活性ガス雰囲気である。
 溶融重合は、例えば、加熱装置、減圧装置及び撹拌装置を備える溶融混練機を用いて行うことができる。溶融混錬機としては、例えば、バンバリーミキサー、ニーダー、連続混練機、単軸押出機及び二軸押出機が挙げられる。
 溶融重合のための溶融混合物は、溶媒を実質的に含有しないことが好ましい。より具体的には、溶融混合物に含まれる溶媒の量が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤と、必要に応じて触媒との合計100質量部に対して、好ましくは10質量部以下の範囲、より好ましくは5質量部以下の範囲、さらに好ましくは1質量部以下の範囲である。溶媒の量は、0質量部以上、0.01質量部以上の範囲、又は0.1質量部以上の範囲であってもよい。
 溶融重合後の溶融混合物(反応生成物)を冷却して固体状態の混合物を得た後、減圧下、又は非酸化性雰囲気の大気圧下で、混合物を加熱して重合反応を更に進行させてもよい。これによりさらに分子量を増大させることができるだけでなく、生成したヨウ素分子が昇華されて除去されるため、ポリアリーレンスルフィド樹脂中のヨウ素原子濃度を低く抑えることができる。好ましくは100~260℃の範囲、より好ましくは130~250℃の範囲、更に好ましくは150~230℃の範囲の温度まで冷却することで、固体状態の混合物を得ることができる。固体状態への冷却後の加熱は、溶融重合と同様の温度及び圧力条件下で行うことができる。
 溶融重合工程により得られたポリアリーレンスルフィド樹脂を含む反応生成物は、そのまま直接、溶融混練機に投入する等の方法により樹脂組成物を製造するためのこともできるが、当該反応生成物に当該反応生成物が溶解する溶媒を加えて溶解物を調製し、当該溶解物の状態で反応装置から反応生成物を取り出すことが、生産性に優れるだけでなくさらに反応性も良好となるため好ましい。当該反応生成物が溶解する溶媒の添加は、溶融重合後に行うことが好ましいが、溶融重合の反応後期に行ってもよく、また、上記のとおり溶融混合物(反応生成物)を冷却して固体状態の混合物を得た後、加圧下、減圧下、又は非酸化性雰囲気の大気圧下で、混合物を加熱して重合反応を更に進行させた後であってもよい。当該溶解物を調製する工程は、非酸化性雰囲気下で行ってもよい。また、加熱溶解の温度としては、前記反応生成物が溶解する溶媒の融点以上の範囲であればよく、好ましくは200~350℃の範囲、より好ましくは210~250℃の範囲であり、加圧下で行うことが好ましい。
 前記溶解物を調製するために用いる、前記反応生成物が溶解する溶媒の配合割合は、ポリアリーレンスルフィド樹脂を含む反応生成物100質量部に対して、好ましくは90~1000質量部の範囲、より好ましくは200~400質量部の範囲である。
 反応生成物が溶解する溶媒としては、例えば、フィリップス法等の溶液重合において重合反応溶媒として用いられる溶媒を用いることができる。好ましい溶媒の例としては、N-メチル-2-ピロリドン(以下、NMPと略記)、N-シクロヘキシル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン酸、ε-カプロラクタム、N-メチル-ε-カプロラクタム等の脂肪族環状アミド化合物、ヘキサメチルリン酸トリアミド(HMPA)、テトラメチル尿素(TMU)、ジメチルホルムアミド(DMF)、及びジメチルアセトアミド(DMA)等のアミド化合物、ポリエチレングリコールジアルキルエーテル(重合度は2000以下で、炭素原子数1~20のアルキル基を有するもの)等のエーテル化ポリエチレングリコール化合物、並びに、テトラメチレンスルホキシド、及びジメチルスルホキシド(DMSO)等のスルホキシド化合物が挙げられる。その他の使用可能な溶媒の例として、ベンゾフェノン、ジフェニルエーテル、ジフェニルスルフィド、4,4’-ジブロモビフェニル、1-フェニルナフタレン、2,5-ジフェニル-1,3,4-オキサジアゾール、2,5-ジフェニルオキサゾール、トリフェニルメタノール、N,N-ジフェニルホルムアミド、ベンジル、アントラセン、4-ベンゾイルビフェニル、ジベンゾイルメタン、2-ビフェニルカルボン酸、ジベンゾチオフェン、ペンタクロロフエノール、1-ベンジル-2-ピロリジオン、9-フルオレノン、2-ベンゾイルナフタレン、1-ブロモナフタレン、1,3-ジフェノキシベンゼン、フルオレン、1-フェニル-2-ピロリジノン、1-メトキシナフタレン、1-エトキシナフタレン、1,3-ジフェニルアセトン、1,4-ジベンゾイルプタン、フェナントレン、4-ベンゾイルビフェニル、1,1-ジフェニルアセトン、o,o’-ビフェノール、2,6-ジフェニルフェノール、トリフェニレン、2-フェニルフェノール、チアントレン、3-フェノキシベンジルアルコール、4-フェニルフェノール、9,10-ジクロロアントラセン、トリフェニルメタン、4,4’-ジメトキシベンゾフェノン、9,10-ジフェニルアントラセン、フルオランテン、ジフェニルフタレート、ジフェニルカルボネート、2,6-ジメトキシナフタレン、2,7-ジメトキシナフタレン、4-ブロモジフェニルエーテル、ピレン、9,9’-ビ-フルオレン、4,4’-イソプロピルリデン-ジフェノール、イプシロン-カプロラクタム、N-シクロヘキシル-2-ピロリドン、ジフェニルイソフタレート、ジフェニルーターフタレート及び1-クロロナフタレンからなる群から選ばれる1種以上の溶媒が挙げられる。
 反応装置から取り出された当該溶解物は、後処理を行った後、前記他の成分と溶融混練して樹脂組成物を調製することが、反応性がより良好となるため好ましい。溶解物の後処理の方法としては、特に制限されるものではないが、例えば、以下の方法が挙げられる。
(1)当該溶解物を、そのまま、又は酸若しくは塩基を加えた後、減圧下又は常圧化で溶媒を留去し、次いで溶媒留去後の固形物を水、当該溶解物に用いた溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン及びアルコール類などから選ばれる溶媒で1回又は2回以上洗浄し、更に中和、水洗、濾過及び乾燥する方法。
(2)当該溶解物に水、アセトン、メチルエチルケトン、アルコール、エーテル、ハロゲン化炭化水素、芳香族炭化水素及び脂肪族炭化水素などの溶媒(当該溶解物の溶媒に可溶であり、且つ少なくともポリアリーレンスルフィド樹脂に対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィド樹脂及び無機塩等を含む固体状生成物を沈降させ、固体状生成物を濾別、洗浄及び乾燥する方法。
(3)当該溶解物に、当該溶解物に用いた溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン及びアルコールなどから選ばれる溶媒で1回又は2回以上洗浄し、その後中和、水洗、濾過及び乾燥をする方法。
 なお、上記(1)~(3)に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよいし、空気中又は窒素のような不活性ガス雰囲気中で行なってもよい。酸素濃度が5~30体積%の範囲の酸化性雰囲気中又は減圧条件下で熱処理を行い、ポリアリーレンスルフィド樹脂を酸化架橋させることもできる。
 ポリアリーレンスルフィド樹脂が溶融重合により生成する反応を、以下に例示する。
Figure JPOXMLDOC01-appb-C000012
 反応式(1)~(5)は、例えば一般式(a)、(b)又は(c)で表される基を含む置換基Rを有するジフェニルジスルフィドを重合禁止剤として用いた場合の、ポリフェニレンスルフィドが生成する反応の例である。反応式(1)は、重合禁止剤中の-S-S-結合が、溶融温度下でラジカル開裂する反応である。反応式(2)は、反応式(1)で発生した硫黄ラジカルが成長中の主鎖の末端ヨウ素原子の隣接炭素原子を攻撃し、ヨウ素原子が脱離することで、重合が停止するとともに、主鎖の末端に置換基Rが導入される反応である。反応式(3)は、ポリアリーレンスルフィド樹脂の主鎖中に原料(単体硫黄)に由来して存在するジスルフィド結合が溶融温度下でラジカル開裂する反応である。反応式(4)は、反応式(3)で発生した硫黄ラジカルと、反応式(1)で発生した硫黄ラジカルとの再結合によって、重合が停止するとともに、置換基Rが主鎖の末端に導入される反応である。脱離したヨウ素原子は遊離状態(ヨウ素ラジカル)にあるか、又は、反応式(5)のようにヨウ素ラジカル同士が再結合することで、ヨウ素分子が生成する。
 溶融重合により得られるポリアリーレンスルフィド樹脂を含む反応生成物は、原料に由来するヨウ素原子を含有する。そのため、ポリアリーレンスルフィド樹脂は、通常、ヨウ素原子を含む混合物の状態で、紡糸用樹脂組成物の調製などのために用いられる。該混合物におけるヨウ素原子の濃度は、例えば、ポリアリーレンスルフィド樹脂に対して0.01~10000ppmの範囲であり、好ましくは10~5000ppmの範囲である。ヨウ素分子の昇華性を利用して、ヨウ素原子濃度を低く抑えることも可能であり、その場合には、900ppm以下の範囲、好ましくは100ppm以下の範囲、さらには10ppm以下の範囲とすることも可能である。さらにヨウ素原子を検出限界以下に除去することも可能ではあるものの、生産性を考えると実用的ではない。検出限界は、例えば0.01ppm程度である。溶融重合により得られる本実施形態のポリアリーレンスルフィド樹脂又はこれを含む反応生成物は、ヨウ素原子を含んでいる点で、例えば、フィリップス法等のジクロロ芳香族化合物の有機極性溶媒中での溶液重合法により得られたポリアリーレンスルフィドと明確に区別され得る。
 上記反応式からも理解されるように、溶融重合により得られるポリアリーレンスルフィド樹脂は、ジヨード芳香族化合物に由来する芳香族環及びこれに直接結合した硫黄原子からなるアリーレンスルフィド単位から主として構成される主鎖と、該主鎖の末端に結合した所定の置換基Rとを含む。所定の置換基Rは、主鎖の末端の芳香族環に、直接、又は重合禁止剤に由来する部分構造を介して結合している。
 一実施形態に係るポリアリーレンスルフィド樹脂としてのポリフェニレンスルフィド樹脂は、例えば、下記一般式(10):
Figure JPOXMLDOC01-appb-C000013

で表される繰り返し単位(アリーレンスルフィド単位)を含む主鎖を有する。式(10)で表される繰り返し単位は、パラ位で結合する下記式(10a):

で表される繰り返し単位、及び、メタ位で結合する下記式(10b):
Figure JPOXMLDOC01-appb-C000015

で表される繰り返し単位であることがより好ましい。これらの中でも、式(10a)で表されるパラ位で結合した繰り返し単位が、樹脂の耐熱性及び結晶性の面で好ましい。
 一実施形態に係るポリフェニレンスルフィド樹脂は、下記一般式(11):
Figure JPOXMLDOC01-appb-C000016
(式中、R20及びR21は、それぞれ独立に水素原子、炭素原子数1~4のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、又はエトキシ基を表す。)
で表される、芳香族環に結合した側鎖としての置換基を有する繰り返し単位を含み得る。ただし、結晶化度及び耐熱性の低下の観点から、ポリフェニレンスルフィド樹脂は、一般式(11)の繰り返し単位を実質的に含まないことが好ましい。より具体的には、式(11)で表される繰り返し単位の割合は、式(10)で表される繰り返し単位と式(11)で表される繰り返し単位との合計に対して、好ましくは2質量%以下、より好ましくは0.2質量%以下である。
 本実施形態のポリアリーレンスルフィド樹脂は、上記アリーレンスルフィド単位から主として構成されるが、通常、原料の単体硫黄に由来する、下記式(20):
Figure JPOXMLDOC01-appb-C000017
で表されるジスルフィド結合に係る構成単位も主鎖中に含む。耐熱性、機械的強度の点から、式(20)で表される構成単位の割合は、アリーレンスルフィド単位と、式(20)で表される構成部位との合計に対して、好ましくは2.9質量%以下の範囲、より好ましくは1.2質量%以下の範囲である。
 本実施形態に係るポリアリーレンスルフィド樹脂のMw/Mtopは、好ましくは0.80~1.70の範囲であり、より好ましくは0.90~1.30の範囲である。Mw/Mtopをこのような範囲とすることで、ポリアリーレンスルフィド樹脂の加工性を向上させることができ、良好なキャビティーバランスを付与することができる。本明細書において、Mwはゲル浸透クロマトグラフィーにより測定される重量平均分子量のことを示し、Mtopは同測定により得られるクロマトグラムの検出強度が最大となる点の平均分子量(ピーク分子量)を示す。Mw/Mtopは、測定対象の分子量の分布を示し、通常、この値が1に近いと分子量の分布が狭いことを示し、この値が大きくなるにつれて、分子量の分布が広いことを示す。なお、ゲル浸透クロマトグラフィーの測定条件は、本明細書の実施例と同一の測定条件とする。ただし、Mw、Mw/Mtopの値に実質的な影響を及ぼさない範囲で、測定条件を変更することは可能である。
 本実施形態に係るポリアリーレンスルフィド樹脂の重量平均分子量は、本発明の効果を損なわなければ特に限定されるものではないが、その下限は、機械的強度に優れる点から28,000以上であることが好ましく、さらに30,000以上の範囲であることがより好ましい。一方、上限は、より良好なキャビティーバランスを付与することができる点から100,000以下の範囲であることが好ましく、さらに60,000以下の範囲であることがより好ましく、さらに55,000以下の範囲であることが最も好ましい。さらに、機械的強度に優れつつ、かつ、良好なキャビティーバランスを付与できる観点から、28,000~60,000の範囲のポリアリーレンスルフィド樹脂、より好ましくは30,000~55,000の範囲のポリアリーレンスルフィド樹脂と共に、重量平均分子量が60,000超100,000以下の範囲にあるポリアリーレンスルフィド樹脂を使用してもよい。
 ポリアリーレンスルフィド樹脂の非ニュートニアン指数は、好ましくは0.95~1.75の範囲であり、より好ましくは1.0~1.70の範囲である。非ニュートニアン指数をこのような範囲とすることで、ポリアリーレンスルフィド樹脂の加工性を向上させることができ、良好なキャビティーバランスを付与することができる。本明細書において、非ニュートニアン指数は温度300℃の条件下におけるせん断速度とせん断応力との下記関係式を満たす指数をいう。非ニュートニアン指数は、測定対象の分子量、又は直鎖、分岐、架橋といった分子構造に関する指標となりえ、通常、この値が1に近いと樹脂の分子構造が直鎖状であることを示し、この値が大きくなるにつれて、分岐や架橋構造が多く含まれることを示す。
  D=α×S 
(上記式中、Dはせん断速度を表し、Sはせん断応力を表し、αは定数を表し、nは非ニュートニアン指数を表す。)
 上述の特定範囲のMw/Mtop及び非ニュートニアン指数を有するポリアリーレンスルフィド樹脂は、例えば、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、ジヨード芳香族化合物、単体硫黄及び重合禁止剤を含有する溶融混合物中で反応(溶液重合)させる方法において、かかるポリアリーレンスルフィド樹脂をある程度高分子量化させることにより得ることが可能である。
 ポリアリーレンスルフィド樹脂の融点は、好ましくは250~300℃の範囲、より好ましくは265~300℃の範囲である。ポリアリーレンスルフィド樹脂の300℃における溶融粘度(V6)は、好ましくは1~2000[Pa・s]の範囲、より好ましくは5~1700[Pa・s]の範囲である。ここで、溶融粘度(V6)は、フローテスターを用いて、温度300℃、荷重1.96MPa、オリフィス長とオリフィス径との比(オリフィス長/オリフィス径)が10/1であるオリフィスを使用して6分間保持した後の溶融粘度を意味する。
 本実施形態に用いられる熱可塑性エラストマーとしては、例えば、ポリオレフィン系エラストマー、弗素系エラストマー及びシリコーン系エラストマーが挙げられる。
 熱可塑性エラストマーは、式(1)で表される基と反応し得る官能基を有することが好ましい。これにより、接着性及び耐衝撃性等の点で特に優れた樹脂組成物を得ることができる。係る官能基としては、エポキシ基、カルボキシ基、イソシアネート基、オキサゾリン基、及び、式:R(CO)O(CO)-又はR(CO)O-(式中、Rは炭素原子数1~8のアルキル基を表す。)で表される基が挙げられる。係る官能基を有する熱可塑性エラストマーは、例えば、α-オレフィンと前記官能基を有するビニル重合性化合物との共重合により得ることができる。α-オレフィンは、例えば、エチレン、プロピレン及びブテン-1等の炭素原子数2~8のα-オレフィン類が挙げられる。前記官能基を有するビニル重合性化合物としては、例えば、(メタ)アクリル酸及び(メタ)アクリル酸エステル等のα,β-不飽和カルボン酸及びそのアルキルエステル、マレイン酸、フマル酸、イタコン酸及びその他の炭素原子数4~10のα,β-不飽和ジカルボン酸及びその誘導体(モノ若しくはジエステル、及びその酸無水物等)、並びにグリシジル(メタ)アクリレート等が挙げられる。これらの中でも、エポキシ基、カルボキシ基、及び、式:R(CO)O(CO)-又はR(CO)O-(式中、Rは炭素原子数1~8のアルキル基を表す。)で表される基からなる群から選ばれる少なくとも1種の官能基を有するエチレン-プロピレン共重合体及びエチレン-ブテン共重合体が、靭性及び耐衝撃性の向上の点から好ましい。
 熱可塑性エラストマーの含有量は、その種類、用途により異なるため一概に規定することはできないが、例えば、ポリアリーレンスルフィド樹脂100質量部に対して好ましくは1~300質量部の範囲、より好ましくは3~100質量部の範囲、更に好ましくは5~45質量部の範囲である。熱可塑性エラストマーの含有量がこれらの範囲にあることにより、成形品の耐熱性、靭性の確保の点でより一層優れた効果が得られる。
 本実施形態に係る水回り部品用樹脂組成物は、本発明の趣旨を逸脱しない範囲で、架橋性樹脂を含有することができる。架橋性樹脂は、2以上の架橋性官能基を有する。架橋性官能基としては、エポキシ基、フェノール性水酸基、アミノ基、アミド基、カルボキシ基、酸無水物基、及びイソシアネート基などが挙げられる。架橋性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂及びウレタン樹脂が挙げられる。
 エポキシ樹脂としては、芳香族系エポキシ樹脂が好ましい。芳香族系エポキシ樹脂は、ハロゲン基又は水酸基等を有していてもよい。好適な芳香族系エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、及びビフェニルノボラック型エポキシ樹脂が挙げられる。これらの芳香族系エポキシ樹脂は、単独で又は2種以上を組み合わせて用いることができる。これら芳香族系エポキシ樹脂の中でも特に、他の樹脂成分との相溶性に優れる点から、ノボラック型エポキシ樹脂が好ましく、クレゾールノボラック型エポキシ樹脂がより好ましい。
 架橋性樹脂の含有量は、ポリアリーレンスルフィド樹脂100質量部に対して、好ましくは1~300質量部の範囲、より好ましくは3~100質量部の範囲、更に好ましくは5~30質量部の範囲である。架橋性樹脂の含有量がこれら範囲にあることにより、成形品の剛性及び耐熱性の向上という効果が特に顕著に得られる。
 水回り部品用樹脂組成物は、式(1)で表される基と反応し得る官能基を有するシラン化合物を含有することができる。係るシラン化合物としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4‐エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン及びγ-グリシドキシプロピルメチルジメトキシシラン等のシランカップリング剤が挙げられる。
 水回り部品用樹脂組成物は、シリコーン化合物を含有することができる。係るシリコーン化合物としては、例えば、反応性シリコーンオイルが挙げられる。反応性シリコーンオイルとしては、ジメチルシリコーンオイルの側鎖又は末端に、アミノ基、グリシジル基、カルボキシ基等の官能基を導入した化合物を用いることができる。
 シラン化合物の含有量は、例えば、ポリアリーレンスルフィド樹脂100質量部に対して0.01~10質量部の範囲であることが好ましく、さらに0.1~5質量部の範囲であることがより好ましい。シラン化合物の含有量がこれらの範囲にあることにより、ポリアリーレンスルフィド樹脂と前記他の成分との相溶性向上という効果が得られる。
 水回り部品用樹脂組成物は、離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤及び滑剤等のその他の添加剤を含有してもよい。添加剤の含有量は、例えば、ポリアリーレンスルフィド樹脂100質量部に対して、1~10質量部の範囲であることが好ましい。
 水回り部品用樹脂組成物は、上記方法により得られたポリアリーレンスルフィド樹脂及び熱可塑性エラストマーと、必要に応じてその他の材料をタンブラー又はヘンシェルミキサーのような混合機で均一に混合した後、1軸又は2軸混練押出機に供給して250℃~350℃の温度範囲下で溶融混練する方法により、例えば、ペレット状のコンパウンド等の形態で得ることができる。
 水廻り部品用樹脂組成物は、射出成形、射出圧縮成形、押出成形等の熱可塑性樹脂に関する公知の成形方法によって目的とする成形物への加工が可能であるが、特に高精度な成形品を安価に生産性良く得られる点で、射出成形が特に適している。
 本実施形態に係る水廻り部品用樹脂組成物は、耐熱水性、機械特性、靭性、耐衝撃性に優れ、酸性及びアルカリ性環境中での耐久性にも優れ、更に熱水環境下での機械的強度の低下が認められないという特性を有する。この特長により本発明の樹脂組成物はトイレ関連部品、給湯器関連部品、ポンプ関連部品、風呂関連部品等の水廻り用途に適した材料である。特に弁、栓といった開閉部品は、一般に恒常的に高応力負荷が係り、酸性或いはアルカリ性の洗浄剤及び熱水によるダメージが大きく、その結果長期に亘る使用が困難なため、本発明の組成物は、特にこの開閉部品の分野において有用である。
 本実施形態に係る流体用配管は、上記水回り部品用樹脂組成物を成形してなるものである。これら流体用配管としては、例えばパイプ、ライニング管、袋ナット類、管継ぎ手類(エルボー、ヘッダー、チーズ、レデューサ、ジョイント、カプラー、等)、各種バルブ、流量計、ガスケット(シール、パッキン類)、など流体を搬送する為の配管及び配管に付属する各種の部品が挙げられる。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
1.ポリフェニレンスルフィド樹脂(PPS樹脂)
1-1.PPS-1~5の合成
(合成例1)
 固体硫黄(関東化学株式会社製、硫黄(粉末))27.00g、p-ジヨードベンゼン(東京化成株式会社製、p-ジヨードベンゼン純度98.0%以上)300.0g、4,4’-ジチオビス安息香酸(和光純薬工業株式会社製、4,4’-ジチオビス安息香酸、Technical Grade)2.0gを180℃に窒素雰囲気下で加熱し、これらを溶解及び混合した。次に220℃に昇温し、絶対圧26.6kPaまで減圧し、系内が320℃で絶対圧133Paとなるように、段階的に温度と圧力変化させて、得られた溶融混合物を加熱しながら、8時間、溶融重合を行った。反応終了後、NMP200gを加えて、220℃で加熱撹拌し、得られた溶解物をろ過した。ろ過後の溶解物にNMP320gを加え、ケーキ洗浄ろ過を行った。得られたNMPを含むケーキにイオン交換水1Lを加え、オートクレーブ中で200℃10分間攪拌した。次いでケーキをろ過し、ろ過後のケーキに70℃のイオン交換水1Lを加えケーキ洗浄を行った。得られた含水ケーキにイオン交換水1Lを加えて10分間攪拌した。次いでケーキをろ過し、ろ過後のケーキに70℃のイオン交換水1Lを加えケーキ洗浄を行った。この操作をもう一度繰り返した後、ケーキを120℃で4時間乾燥し、PPS樹脂91gを得た。
(合成例2)
 「4,4’-ジチオビス安息香酸」の替りに「2-ヨードアニリン(東京化成株式会社製)」を用いたこと以外は合成例1と同様にして、PPS樹脂91gを得た。
(合成例3)
 「4,4’-ジチオビス安息香酸」の替りに「ジフェニルジスルフィド(住友精化株式会社、DPDS)」を用いたこと以外は合成例1と同様にしてPPS樹脂91gを得た。
(合成例4)
 p-ジヨードベンゼン(東京化成株式会社製、p-ジヨードベンゼン純度98.0%以上)300.0g、固体硫黄(関東化学株式会社製、硫黄(粉末))29.15g及び4-ヨードビフェニル(東京化成株式会社製)1.48gを180℃に窒素雰囲気下で加熱し、これらを溶解及び混合した。次に220℃に昇温し、絶対圧46.7kPaまで減圧し、系内が320℃で絶対圧133Paとなるように、段階的に温度と圧力変化させて、得られた溶融混合物を加熱しながら、8時間、溶融重合を行った。反応終了後、NMP200gを加えて、220℃で加熱撹拌し、得られた溶解物をろ過した。ろ過後の溶解物にNMP320gを加え、ケーキ洗浄ろ過を行った。得られたNMP含むケーキにイオン交換水1Lを加え、オートクレーブ中で200℃10分間撹拌した。次いで、ケーキをろ過し、ろ過後のケーキに70℃のイオン交換水1Lを加えケーキ洗浄を行った。この操作をもう一度繰り返した後、ケーキを120℃で4時間乾燥し、PPS樹脂91gを得た。
(比較合成例)
 NMP600g及び硫化ナトリウム5水塩336.3g(2.0mol)を仕込み、窒素雰囲気下、200℃まで昇温することにより水-NMP混合物を留去した。ついでこの系にp-ジクロロベンゼン292.53gと2,5-ジクロロアニリン1.62gをNMP230gに溶かした溶液を添加し、220℃で5時間さらに240℃で2時間窒素雰囲気下で反応させた。反応容器を冷却後、内容物を取り出し、一部をサンプリングし、未反応2,5-ジクロロアニリンをガスクロマトグラフで定量した。また残りのスラリは熱水で数回洗浄し、ポリマーケーキを濾別した。このケーキを80℃減圧乾燥し、粉末状のPPS樹脂を得た。赤外吸収スペクトルを測定したところ、3380cm-1付近にアミノ基に由来すると見られる吸収スペクトルが観測された。
1-2.溶融粘度
 PPS樹脂を島津製作所製フローテスター、CFT-500Cを用い、300℃、荷重:1.96×10Pa、L/D=10/1にて、6分間保持した後に溶融粘度を測定した。
1-3.非ニュートニアン指数
 PPS樹脂をキャピラリーレオメーターにて、温度300℃の条件下、直径1mm、長さ40mmのダイスを用いて100~1000(sec-1)の剪断速度に対する剪断応力を測定し、これらの対数プロットした傾きから計算した値である。
1-4.Mw及びMw/Mtop(分子量分布)
 PPS樹脂の重量平均分子量及びピーク分子量を、ゲル浸透クロマトグラフィーを用いて、下記の測定条件により測定した。得られたMw及びMtopからMw/Mtopを算出した。6種類の単分散ポリスチレンを校正に用いた。
 装置:超高温ポリマー分子量分布測定装置(株式会社センシュー科学製「SSC-7000」)
 カラム:UT-805L(昭和電工株式会社製)
 カラム温度:210℃
 溶媒:1-クロロナフタレン
 測定方法:UV検出器(360nm)
 合成したPPS-1~5の特性をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000018
2.ポリフェニレンスルフィド樹脂組成物(PPSコンパウンド)
2-1.原料
 PPS樹脂組成物を調製するため、以下の材料を準備した。
(熱可塑性エラストマー)
・ELA-1:エチレン/グリシジルメタクリル酸(3質量%)/アクリル酸メチル(27質量%)の共重合体(住友化学株式会社製、「ボンドファースト7L」)
・ELA-2:エチレン/グリシジルメタクリル酸(6質量%)/アクリル酸メチル(27質量%)の共重合体(住友化学株式会社製、「ボンドファースト7M」)
(シリコーン化合物)
・Si:アミノ基含有シリコーン(信越化学工業株式会社製、「KF-868」)
(シラン化合物)
・エポキシシラン:γ-グリシドキシプロピルトリメトキシシラン
(架橋性樹脂)
・エポキシ樹脂:クレゾールノボラック型エポキシ樹脂(DIC株式会社製、「エピクロン N-695」、エポキシ当量214g/eq、軟化点94℃)
2-2.コンパウンドの作製
 表2に記載する配合組成で各原料をタンブラーを用いて均一に混合した後、2軸混練押出機(東芝機械株式会社製、「TEM-35B」)を用いて300℃で溶融混練して、ペレット状のコンパウンドを得た。
3.評価
3-1.引張強度及び引張伸び
 得られたコンパウンドから、ASTM4号ダンベル形状に射出成形した評価用成形品を、ASTM D638に従って、株式会社島津製作所製の「オートグラフ AG-5000C」を用いて、引張強さ及び引張破断伸びを測定した。
3-2.耐クリープ性
 得られたコンパウンドから、フランジ部を有する内径22mm、外径28mm、厚み3mmの円筒形状を含むL字型の配管用管継ぎ手を射出成形で作製し、評価用成形品とした。
 評価用成形品中に空気層を含まないよう、水中にて水を充填し、L字状継ぎ手の両端部をホースと結合した金属製治具で塞ぐと共に、該ホースを圧力ポンプに繋ぎ、該評価用成形品内部に80℃の温水を2MPaの圧力で100時間循環させ、その後の成形品外観を観察した。
(評価基準)
A:クリープ変形が殆ど見られず水漏れは生じない。
B:大幅なクリープ変形又はクリープ破壊により水漏れが生じる。
3-3.真円度寸法変化量
 上記3-2.における温水の循環を行った後の評価用成形品の真円度寸法変化量を真円度計にて測定した。
3-4.低温耐破断性(耐充満水凍結試験)
 評価用成形品中に空気層を含まないよう、水中にて水を充填し、L字状継ぎ手の両端部をこれと同一樹脂組成物で構成され、かつ、接合部がねじ切りされた蓋材で、ねじ締め付けによって両端を密閉した後、水から出して、-20℃の冷凍庫に入れ、1時間放置して内部の水を凍らせた。次いで、これを冷蔵庫から取り出し、30℃で1時間放置、この操作を50回繰り返し、管継ぎ手の割れを調べて耐低温破断性の評価を行った。
○:成形品は破断しない。
×:成形品は破断する。
3-5.耐酸性試験/耐アルカリ性試験
 得られたコンパウンドから、1.6mm(厚)×12.7mm(幅)×127mm(長)の形状に成型した評価用成形品を試験片とし、所定の曲げ歪みとなるように試験片に曲げ応力を負荷した状態で、試験片を試験溶液に浸漬し、試験片が破断するまでの時間を調べた。試験片中央部には切削ノッチを設けた。
・耐酸性試験溶液:サンポール原液(商品名、塩酸及び界面活性剤を含有する界面活性剤、大日本除虫菊株式会社製)
・耐アルカリ性試験溶液:ドメスト原液(商品名、次亜塩素酸ナトリウム、水酸化ナトリウム及び界面活性剤を含有するアルカリ性洗剤、ユニリーバ・ジャパン製)
・曲げ歪み:1.2%(ASTM D-790に定める曲げ特性試験方法での曲げ応力を試験片に負荷した状態。)
・評価項目:試験片が破断するまでの時間
・試験結果:試験数n=5の平均値
3-6.キャビティーバランス
 40個分のキャビティーを有するワッシャー金型を用いて、一次スプルーに最も近い位置のキャビティー(C1)が完全に充填される限りで最低の成形条件でPPSコンパウンドを射出成形した。成形条件は75トン成形機、シリンダー温度320℃、金型温度140℃、保圧無しとした。
 成型後の、キャビティー(C1)と同じランナーにある一次スプルーから最も遠いキャビティー(C10)の充填度を比較した。充填度(質量%)は、キャビティー(C1)の成形品に対する、キャビティー(C10)の成形品の質量比から求めた。キャビティー(C10)の充填度が高いほど、キャビティーバランスが優れていると言える。充填度に基づいて、各組成物のキャビティーバランスを以下の基準で判定した。
AA:100~90質量%
A:89~80質量%
B:79~70質量%
C:69~60質量%
D:59%質量以下
3-7.発生ガス量
 ガスクロマトグラフ質量分析装置を用いて、PPS樹脂単体及びPPSコンパウンドについて、所定量のサンプルを325℃で15分間加熱し、そのときの発生ガス量を質量%として定量した。
Figure JPOXMLDOC01-appb-T000019
 表2に示される結果から明らかなように、実施例で作製した樹脂組成物は、キャビティーバランスに優れており、耐クリープ特性及び耐凍結性を両立した成形品を形成できる。

Claims (4)

  1.  ポリアリーレンスルフィド樹脂及び熱可塑性エラストマーを含有する水回り部品用樹脂組成物であって、
     前記ポリアリーレンスルフィド樹脂が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、前記ジヨード芳香族化合物、前記単体硫黄及び前記重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることのできるものである、水回り部品用樹脂組成物。
  2.  前記ポリアリーレンスルフィド樹脂が、前記重合禁止剤に由来するヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基を有する、請求項1に記載の水回り部品用樹脂組成物。
  3.  前記ポリアリーレンスルフィド樹脂が、300℃における0.95~1.75の非ニュートニアン指数、及び、0.80~1.70のMw/Mtopを有し、
     前記Mw及びMtopはそれぞれゲル浸透クロマトグラフィーにより測定される重量平均分子量及びピーク分子量である、請求項1又は2に記載の水回り部品用樹脂組成物。
  4.  請求項1~3のいずれか一項に記載の水回り部品用樹脂組成物からなる流体用配管。
PCT/JP2014/072634 2013-08-30 2014-08-28 水回り部品用樹脂組成物及び流体用配管 WO2015030136A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015534296A JP6237773B2 (ja) 2013-08-30 2014-08-28 水回り部品用樹脂組成物及び流体用配管
KR1020167007665A KR20160049536A (ko) 2013-08-30 2014-08-28 워터 섹션 부품용 수지 조성물 및 유체용 배관
KR1020217042595A KR102654004B1 (ko) 2013-08-30 2014-08-28 워터 섹션 부품용 수지 조성물 및 유체용 배관
CN201480048083.XA CN105492538B (zh) 2013-08-30 2014-08-28 用水部件用树脂组合物及流体用配管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-179606 2013-08-30
JP2013179606 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030136A1 true WO2015030136A1 (ja) 2015-03-05

Family

ID=52586684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072634 WO2015030136A1 (ja) 2013-08-30 2014-08-28 水回り部品用樹脂組成物及び流体用配管

Country Status (4)

Country Link
JP (1) JP6237773B2 (ja)
KR (2) KR102654004B1 (ja)
CN (1) CN105492538B (ja)
WO (1) WO2015030136A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149816A (ja) * 2016-02-23 2017-08-31 帝人株式会社 樹脂組成物
CN108473766A (zh) * 2015-11-23 2018-08-31 Sk化学株式会社 聚亚芳基硫醚树脂组合物和模制物品
JP2018534408A (ja) * 2015-11-23 2018-11-22 エスケー ケミカルズ カンパニー リミテッド ポリアリーレンスルフィド樹脂およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160048129A (ko) * 2013-08-30 2016-05-03 디아이씨 가부시끼가이샤 다층 성형체 및 그것을 사용한 연료용 부품
KR102570299B1 (ko) * 2013-09-26 2023-08-24 디아이씨 가부시끼가이샤 폴리아릴렌설피드 수지 조성물 및 그 성형품, 그리고 표면 실장 전자 부품

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172489A (ja) * 1992-12-08 1994-06-21 Mitsubishi Petrochem Co Ltd 熱可塑性樹脂組成物
JP2006063255A (ja) * 2004-08-30 2006-03-09 Dainippon Ink & Chem Inc ポリアリーレンスルフィド樹脂組成物より成る流体配管部材
JP2008075003A (ja) * 2006-09-22 2008-04-03 Dainippon Ink & Chem Inc ポリアリーレンスルフィド樹脂組成物、及び流体用配管
JP2008247955A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリアリーレンスルフィド樹脂組成物
JP2009256608A (ja) * 2008-03-28 2009-11-05 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物の製造方法およびポリフェニレンスルフィド樹脂組成物
WO2010058748A1 (ja) * 2008-11-21 2010-05-27 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及び流体配管部材
JP2010195962A (ja) * 2009-02-26 2010-09-09 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物からなる流体配管用部材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786713A (en) * 1987-11-06 1988-11-22 Eastman Kodak Company Copoly(arylene sulfidex-disulfide)
US4952671A (en) * 1988-07-15 1990-08-28 Eastman Kodak Company Terminated copoly(arylene sulfide)
JP2004300271A (ja) * 2003-03-31 2004-10-28 Dainippon Ink & Chem Inc 流体配管用部材
KR101750014B1 (ko) * 2010-05-12 2017-06-23 에스케이케미칼 주식회사 가공성이 우수한 폴리아릴렌 설파이드 및 이의 제조 방법
EP2883900B1 (en) * 2012-08-07 2021-07-14 SK Chemicals Co., Ltd. Polyarylene sulfide resin and method for preparing same
CN105051092B (zh) * 2013-03-25 2022-04-26 Dic株式会社 聚芳硫醚树脂的制造方法和聚芳硫醚树脂组合物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172489A (ja) * 1992-12-08 1994-06-21 Mitsubishi Petrochem Co Ltd 熱可塑性樹脂組成物
JP2006063255A (ja) * 2004-08-30 2006-03-09 Dainippon Ink & Chem Inc ポリアリーレンスルフィド樹脂組成物より成る流体配管部材
JP2008075003A (ja) * 2006-09-22 2008-04-03 Dainippon Ink & Chem Inc ポリアリーレンスルフィド樹脂組成物、及び流体用配管
JP2008247955A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリアリーレンスルフィド樹脂組成物
JP2009256608A (ja) * 2008-03-28 2009-11-05 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物の製造方法およびポリフェニレンスルフィド樹脂組成物
WO2010058748A1 (ja) * 2008-11-21 2010-05-27 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及び流体配管部材
JP2010195962A (ja) * 2009-02-26 2010-09-09 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物からなる流体配管用部材

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473766A (zh) * 2015-11-23 2018-08-31 Sk化学株式会社 聚亚芳基硫醚树脂组合物和模制物品
JP2018534408A (ja) * 2015-11-23 2018-11-22 エスケー ケミカルズ カンパニー リミテッド ポリアリーレンスルフィド樹脂およびその製造方法
JP2018536068A (ja) * 2015-11-23 2018-12-06 エスケー ケミカルズ カンパニー リミテッド ポリアリーレンスルフィド系樹脂組成物および成形品
TWI740858B (zh) * 2015-11-23 2021-10-01 南韓商Sk化學公司 聚芳硫醚樹脂組合物及成形物件
JP7100222B2 (ja) 2015-11-23 2022-07-13 エスケー ケミカルズ カンパニー リミテッド ポリアリーレンスルフィド系樹脂組成物および成形品
US11390714B2 (en) 2015-11-23 2022-07-19 Hdc Polyall Co., Ltd. Polyarylene sulfide resin and preparation method thereof
JP2017149816A (ja) * 2016-02-23 2017-08-31 帝人株式会社 樹脂組成物

Also Published As

Publication number Publication date
KR20160049536A (ko) 2016-05-09
KR102654004B1 (ko) 2024-04-04
JPWO2015030136A1 (ja) 2017-03-02
KR20220000985A (ko) 2022-01-04
JP6237773B2 (ja) 2017-11-29
CN105492538A (zh) 2016-04-13
CN105492538B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
JP6237773B2 (ja) 水回り部品用樹脂組成物及び流体用配管
JP6397412B2 (ja) ポリアリーレンスルフィド系樹脂組成物および成形品
CA2731798C (en) Crosslinkers and materials produced using them
US20110287201A1 (en) Polyarylene sulfide resin composition and fluid pipe material
JP6444879B2 (ja) ポリアリーレンスルフィド樹脂組成物及びその成形品、並びに電気自動車部品
JP6655392B2 (ja) ポリアリーレンスルフィド樹脂組成物及びその成形品
JP2010195962A (ja) ポリフェニレンスルフィド樹脂組成物からなる流体配管用部材
WO2015030137A1 (ja) ガスケット用樹脂組成物、その製造方法及び二次電池用ガスケット
JP4961927B2 (ja) ポリアリーレンスルフィド樹脂組成物、及び流体用配管
JP6315289B2 (ja) ポリアリーレンスルフィド繊維及びその製造方法
JP2016164250A (ja) ポリアリーレンスルフィド樹脂及びその製造方法、並びに、ポリ(アリーレンスルホニウム塩)及びその製造方法
WO2019004171A1 (ja) ポリアリーレンスルフィド樹脂の製造方法
JP6614428B2 (ja) 水回り部品用樹脂組成物及び流体用配管
JP2011153242A (ja) ポリフェニレンスルフィド樹脂組成物、その製造方法
JPWO2015033856A1 (ja) ポリアリーレンスルフィドフィルム及びその製造方法
JPWO2015020143A1 (ja) ポリアリーレンスルフィド樹脂組成物及びその成形品
JP6590181B2 (ja) 水回り部品用樹脂組成物及び流体用配管
TWI740858B (zh) 聚芳硫醚樹脂組合物及成形物件
JP6926729B2 (ja) ポリアリーレンスルフィド組成物
JP2016147956A (ja) ポリアリーレンスルフィド樹脂組成物及びその成形品
JPWO2019004170A1 (ja) ポリアリーレンスルフィド樹脂の製造方法
JP7197066B1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法
JP2016525170A (ja) 化学処理物品
JP2018154830A (ja) ポリアリーレンスルフィド樹脂組成物およびその成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048083.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534296

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167007665

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14840175

Country of ref document: EP

Kind code of ref document: A1