WO2015029966A1 - ω3不飽和脂肪酸酵素およびエイコサペンタエン酸の製造方法 - Google Patents

ω3不飽和脂肪酸酵素およびエイコサペンタエン酸の製造方法 Download PDF

Info

Publication number
WO2015029966A1
WO2015029966A1 PCT/JP2014/072228 JP2014072228W WO2015029966A1 WO 2015029966 A1 WO2015029966 A1 WO 2015029966A1 JP 2014072228 W JP2014072228 W JP 2014072228W WO 2015029966 A1 WO2015029966 A1 WO 2015029966A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
desaturase
nucleotide sequence
gene
Prior art date
Application number
PCT/JP2014/072228
Other languages
English (en)
French (fr)
Inventor
順 小川
英治 櫻谷
晃規 安藤
昌 清水
昌卓 原田
茂 平本
Original Assignee
国立大学法人京都大学
日清ファルマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 日清ファルマ株式会社 filed Critical 国立大学法人京都大学
Priority to EP14839231.9A priority Critical patent/EP3040415A4/en
Priority to US14/915,178 priority patent/US20160208297A1/en
Priority to CN201480047402.5A priority patent/CN105683368A/zh
Priority to JP2015534212A priority patent/JPWO2015029966A1/ja
Publication of WO2015029966A1 publication Critical patent/WO2015029966A1/ja
Priority to HK16111424.5A priority patent/HK1223126A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • A23D9/013Other fatty acid esters, e.g. phosphatides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/20Feeding-stuffs specially adapted for particular animals for horses
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/40Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/70Feeding-stuffs specially adapted for particular animals for birds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/19Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)

Definitions

  • the present invention relates to a novel polypeptide having ⁇ 3 desaturase activity, a gene encoding the polypeptide, and their use for producing eicosapentaenoic acid.
  • Polyunsaturated fatty acids are fatty acids having two or more unsaturated bonds, and are ⁇ 6 unsaturated fatty acids linoleic acid (LA, 18: 2n-6), ⁇ -linolenic acid (GLA, 18: 3n-6), arachidon Acid (ARA, 20: 4n-6), ⁇ -linolenic acid (ALA, 18: 3n-3), ⁇ 3 unsaturated fatty acid, eicosapentaenoic acid (EPA, 20: 5n-3), docosahexaenoic acid (DHA, 22: 6n-3).
  • LA linoleic acid
  • GLA ⁇ -linolenic acid
  • ARA arachidon Acid
  • ALA ⁇ -linolenic acid
  • ALA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • Polyunsaturated fatty acids are not only involved in the regulation of the fluidity of the membrane as the main component of the biological membrane, but are also important as precursors of the biological functional component.
  • ARA and EPA are precursors such as prostaglandins, thromboxanes, and leukotrienes in higher animals, and DHA is a highly unsaturated fatty acid present in the brain in the largest amount.
  • DHA is a highly unsaturated fatty acid present in the brain in the largest amount.
  • EPA has physiological actions such as platelet aggregation inhibitory action, blood neutral fat lowering action, anti-arteriosclerosis action, blood viscosity lowering action, blood pressure lowering action, anti-inflammatory action, antitumor action, etc., pharmaceuticals, foods, cosmetics It is used in various fields such as feed.
  • active intake of ⁇ 3-unsaturated fatty acids has been recommended, and this is a lipid molecular species whose demand has increased significantly.
  • DHA and EPA are biosynthesized from ALA in some organisms in addition to being taken from food.
  • DHA and EPA are nutritionally essential fatty acids for humans.
  • EPA is mainly contained in fish oil such as cod, herring, mackerel, salmon, sardine and krill, marine psychrotrophic bacteria such as Shewanella livingstonensis, and algae such as Labyrinthulomycetes. ing. Methods for extracting or purifying EPA from these biological resources are known.
  • the most common practice is EPA purification from fish oil.
  • the EPA content in fish oil is low, and EPA derived from fish oil has a problem that fish odor remains or the content of erucic acid causing heart disease increases depending on the extraction or purification method. have.
  • Patent Document 1 discloses a method for obtaining EPA by culturing Mortierella microorganisms that produce EPA.
  • Patent Document 2 discloses a method of producing ARA and EPA using a mutant strain obtained by subjecting Mortierella alpina to a mutation treatment.
  • Patent Document 3 discloses a method for producing highly unsaturated fatty acids such as EPA using a transformant in which a gene of ⁇ 3 desaturated polypeptide isolated from Mortierella alpina is introduced into yeast. .
  • the ⁇ 3 desaturase of Mortierella microorganisms has a low optimum temperature and does not function well under normal temperature conditions (about 20 ° C.) where the bacteria are likely to grow. Therefore, even when Mortierella microorganisms are cultured at normal culture temperatures, EPA cannot be produced efficiently. Furthermore, since the ⁇ 3 desaturase of Mortierella microorganisms acts preferentially on fatty acids having a carbon chain length of 18, EPA having a carbon chain length of 20 is efficiently produced in the conventional method using the Mortierella microorganism. It was difficult to produce.
  • Patent Document 4 discloses ⁇ 3 desaturase isolated from Saproregnia diclina
  • Patent Document 5 discloses ⁇ 17 desaturase isolated from Phytophthora lamorum
  • Patent Document 6 discloses P. afani. A ⁇ 17 desaturase isolated from dermatam has been described.
  • JP-A-63-14697 Japanese Patent Laid-Open No. 11-243981 JP 2006-055104 A JP 2005-515776 Special table 2009-534032 gazette Japanese translation of PCT publication 2010-508019
  • the present invention can efficiently produce ⁇ 3 desaturase having high enzyme activity even at room temperature of 20 ° C. or higher, and oils and fats having the ⁇ 3 desaturase and containing EPA in high concentration. It relates to providing lipid producing cells. Furthermore, this invention relates to providing the industrial production means of EPA high content fats and oils using the said lipid production cell.
  • the inventors have found a novel ⁇ 3 desaturase having high ⁇ 3 desaturation activity even at room temperature, and a gene encoding the same.
  • the present inventors have further found that productivity of EPA and other ⁇ 3-unsaturated fatty acids is improved at room temperature in transformed cells into which the gene encoding the ⁇ 3-desaturase is introduced.
  • the present invention provides a polypeptide comprising an amino acid sequence 80% or more identical to the amino acid sequence shown in SEQ ID NO: 2 and having ⁇ 3 desaturation activity.
  • the present invention also provides a polynucleotide encoding the polypeptide.
  • the present invention also provides a vector comprising the polynucleotide.
  • the present invention also provides a transformed cell into which the polynucleotide is introduced.
  • the present invention provides a method for producing eicosapentaenoic acid-containing lipids, comprising culturing cells that express the polypeptide.
  • this invention provides the production method of eicosapentaenoic acid including refine
  • the ⁇ 3 desaturase of the present invention has a high ⁇ 3 desaturation activity under normal temperature conditions of 20 ° C. or higher where cells can easily grow, and can exhibit a function in biosynthesis of ⁇ 3 unsaturated fatty acids such as EPA. it can. Therefore, if cells expressing the ⁇ 3 desaturase of the present invention are cultured, ⁇ 3 unsaturated fatty acids such as EPA can be efficiently produced in the microorganism.
  • EPA is an important polyunsaturated fatty acid used in various fields such as pharmaceuticals, foods, cosmetics, and feeds, and the present invention that can be applied to the production of EPA on an industrial scale is extremely useful in this field. .
  • the “one or more” used for amino acid sequence or nucleotide deletion, substitution, addition or insertion in an amino acid sequence or nucleotide sequence is, for example, 1 to 20, preferably May be 1 to 10, more preferably 1 to 5, more preferably 1 to 4, still more preferably 1 to 3, and still more preferably 1 to 2.
  • “addition” of amino acids or nucleotides includes addition of one or more amino acids or nucleotides to one and both ends of the sequence.
  • stringent conditions means that nucleotide sequences having high identity, for example, nucleotide sequences having 90% or more, 95% or more, 98% or more, or 99% or more identity are hybridized. , A condition under which nucleotide sequences having lower identity do not hybridize.
  • “stringent conditions” in the present specification are the washing conditions for normal Southern hybridization, 60 ° C., 1 ⁇ SSC, 0.1% SDS, preferably 0.1 ⁇ SSC, Conditions include 0.1% SDS, more preferably 68 ° C., 0.1 ⁇ SSC, salt concentration and temperature corresponding to 0.1% SDS, and more preferably 2 to 3 times of washing conditions. .
  • a “corresponding position” or “corresponding region” with respect to a specific amino acid sequence or nucleotide sequence on a target amino acid sequence or nucleotide sequence is a target amino acid sequence or nucleotide sequence.
  • a reference specific sequence reference sequence by aligning so as to give maximum homology to conserved amino acid residues or nucleotides present in each amino acid sequence or nucleotide sequence Can do.
  • the alignment can be performed using known algorithms, the procedures of which are known to those skilled in the art.
  • the alignment can be performed manually based on the above-mentioned Lippmann-Person method or the like, but the Clustal W multiple alignment program (Thompson, JD et al, 1994, Nucleic Acids Res., 22: 4673-). 4680) with default settings.
  • Clustal W is, for example, the European Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) or the Japan DNA Data Bank (DDBJ [www. ddbj.nig.ac.jp/Welcome-j.html]).
  • ⁇ 6 highly unsaturated fatty acid metabolic pathway refers to linoleic acid (LA, 18: 2n-6), ⁇ -linolenic acid (GLA, 18: 3n-6), dihomo- ⁇ -linolenic acid.
  • DGLA DGLA
  • arachidonic acid ARA
  • ⁇ 6 highly unsaturated fatty acids such as “ ⁇ 3 highly unsaturated fatty acid metabolic pathway” From linolenic acid (ALA, 18: 3n-3) to stearidonic acid (SDA, 18: 4n-3), eicosatetraenoic acid (ETA, 20: 4n-3), eicosapentaenoic acid (EPA, 20: 5n- 3) refers to metabolic pathways that produce ⁇ 3 highly unsaturated fatty acids (see FIG. 1).
  • polyunsaturated fatty acid refers to a long chain fatty acid having a carbon chain length of 18 or more and an unsaturated bond number of 2 or more.
  • “desaturation activity” refers to the activity of introducing a carbon-carbon double bond into a fatty acid chain
  • “unsaturation enzyme” refers to a protein or polypeptide having the desaturation activity.
  • Desaturation activity and desaturase are further classified by the position on the fatty acid where the activity introduces a carbon-carbon double bond.
  • ⁇ 3 desaturation activity refers to the activity of introducing a double bond between the third and fourth carbons from the ⁇ end of a fatty acid
  • “ ⁇ 3 desaturase” refers to the activity. It is an enzyme that produces ⁇ 3 unsaturated fatty acids.
  • ⁇ 3 desaturase is an enzyme that converts LA (18: 2n-6) to ALA (18: 3n-3), GLA (18: 3n-6) to SDA (18: 4n-3).
  • Converting enzymes may include DGLA (20: 3n-6) to ETA (20: 4n-3) converting enzyme and ARA (20: 4n-6) to EPA (20: 5n-3) converting enzyme .
  • “showing enzyme activity at room temperature” means that the optimum temperature of enzyme activity is 20 ° C. or higher, preferably 20 to 40 ° C., or 70 ° C. of activity at the optimum temperature at 20 ° C. % Or more, preferably 80% or more.
  • the term “original” used for the function, property, and trait of a microorganism is used to indicate that the function, property, or trait is present in the wild type of the microorganism.
  • the term “foreign” is used not to indicate that the microorganism originally exists, but to indicate a function, property, or trait introduced from the outside.
  • a gene introduced from the outside into a certain microorganism is a foreign gene.
  • the foreign gene may be a gene derived from the same type of microorganism as the microorganism into which it has been introduced or a gene derived from a different organism.
  • the ⁇ 3 desaturase provided by the present invention is a polypeptide having an amino acid sequence having 80% or more identity with the amino acid sequence shown in SEQ ID NO: 2 and having ⁇ 3 desaturation activity.
  • Examples of the polypeptide include polypeptides having the following amino acid sequences and having ⁇ 3 desaturation activity.
  • the position of amino acid deletion, substitution, insertion and addition in the amino acid sequence is not particularly limited as long as the ⁇ 3 desaturation activity
  • the ⁇ 3 desaturase shown in SEQ ID NO: 2 is derived from Pythium folliculosum or Pythium torrhosum, which is a member of the genus Pythium belonging to the family Ophidia It is an enzyme.
  • the ⁇ 3 desaturase shown in SEQ ID NO: 4 is an enzyme derived from Pythium sulcatum.
  • BLAST analysis it was revealed that the ⁇ 3 desaturase shown in SEQ ID NO: 2 and SEQ ID NO: 4 is a novel polypeptide having an amino acid sequence that is very different from known proteins.
  • the amino acid sequence identity between the ⁇ 3 desaturase shown in SEQ ID NO: 2 and SEQ ID NO: 4 is 90.7%.
  • the protein having the closest amino acid sequence to the ⁇ 3 desaturase shown in SEQ ID NO: 2 and SEQ ID NO: 4 is a ⁇ 17 desaturation derived from Pythium aphanidermatum having a sequence identity of 58.5% It is an enzyme (see Patent Document 6).
  • each amino acid in the amino acid sequence represented by (A) to (F) described above may be substituted with an amino acid belonging to a group of amino acids having similar properties.
  • Examples include proteins.
  • the position and number of substitutions with similar amino acids are not particularly limited as long as the ⁇ 3 desaturation activity is retained in the substituted polypeptide.
  • Examples of amino acids having similar properties include glycine and alanine, valine and leucine and isoleucine, serine and threonine, aspartic acid and glutamic acid, asparagine and glutamine, lysine and arginine, cysteine and methionine, phenylalanine and tyrosine, and the like.
  • the present inventors have identified a gene encoding the ⁇ 3 desaturase of the present invention shown in SEQ ID NO: 2 and SEQ ID NO: 4. All of the identified genes were novel polynucleotides with two introns in their nucleotide sequence. Furthermore, the present inventors obtained cDNA of the gene. These are polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3 and containing no intron sequence.
  • the polynucleotide represented by SEQ ID NO: 1 is derived from Pysium folliculosum or Pysium tolurosum, and encodes the ⁇ 3 desaturase shown in SEQ ID NO: 2.
  • the polynucleotide shown in SEQ ID NO: 3 is derived from Psium sulcatum and encodes the ⁇ 3 desaturase shown in SEQ ID NO: 4.
  • the present invention also provides a polynucleotide encoding the ⁇ 3 desaturase of the present invention (hereinafter also referred to as the ⁇ 3 desaturase gene of the present invention).
  • a polynucleotide encoding the ⁇ 3 desaturase of the present invention hereinafter also referred to as the ⁇ 3 desaturase gene of the present invention.
  • Examples of the ⁇ 3 desaturase gene of the present invention include a polynucleotide comprising the nucleotide sequence shown below, or a complementary strand thereof.
  • nucleotide sequence shown in SEQ ID NO: 1 (A) the nucleotide sequence shown in SEQ ID NO: 1; (B) a nucleotide sequence having 90% or more, preferably 95% or more, more preferably 98% or more, and even more preferably 99% or more identity with the nucleotide sequence shown in SEQ ID NO: 1; (C) a nucleotide sequence subjected to a mutation selected from deletion, substitution, insertion and addition of one or more nucleotides in the nucleotide sequence shown in SEQ ID NO: 1; (D) a nucleotide sequence that hybridizes with the nucleotide sequence shown in SEQ ID NO: 1 under stringent conditions; (E) the nucleotide sequence shown in SEQ ID NO: 3; (F) a nucleotide sequence having 90% or more, preferably 95% or more, more preferably 98% or more, and even more preferably 99% or more identity with the nucleotide sequence shown in SEQ ID
  • the ⁇ 3 desaturase of the present invention can be produced according to a known method, preferably by a chemical synthesis method or a biological synthesis method.
  • a chemical synthesis method there can be mentioned a method in which each amino acid having a protected side chain functional group is sequentially bonded and the peptide chain is extended by a conventional method.
  • a biological synthesis method after expressing the ⁇ 3 desaturase of the present invention from the ⁇ 3 desaturase gene of the present invention, the produced enzyme is isolated, and further purified as necessary. Can be mentioned.
  • the ⁇ 3 desaturase gene of the present invention is prepared.
  • the gene may be produced by a chemical synthesis method according to a known method, or may be isolated from a microorganism such as Pysium folliculosum or Pysium tolurosum described above.
  • a cDNA library is prepared from the total RNA of the microorganism, and the cDNA of the target gene of the present invention is obtained by screening from the cDNA library. It can be isolated.
  • a probe or primer is designed based on the nucleotide sequence of the gene of the present invention, and cDNA that hybridizes with the probe or primer under stringent conditions may be selected.
  • the target cDNA can be selectively synthesized from the total RNA of the microorganism by a sequence-specific reverse transcription reaction.
  • the selected cDNA can be amplified by a known method such as PCR.
  • the ⁇ 3 desaturase gene of the present invention is mutated by a known mutagenesis method such as ultraviolet irradiation or site-directed mutagenesis with respect to the gene isolated or synthesized by the above procedure. It can be manufactured by introducing.
  • the polynucleotide shown in SEQ ID NO: 1 or SEQ ID NO: 3 isolated from Psium folliculosum, Psium tolurosum, or Psium sulcatum is mutated by a known method to obtain a mutated polynucleotide.
  • the ⁇ 3 desaturase gene of the present invention can be obtained by investigating the ⁇ 3 desaturation activity of a polypeptide expressed from the mutant polynucleotide and selecting one encoding a polypeptide having the desired activity. .
  • the ⁇ 3 desaturase gene of the present invention prepared by the above procedure is optimized for codon usage according to the frequency of codon usage in the cells in which the gene is introduced and expressed.
  • Information about codons used by various organisms is available from Codon Usage Database (www.kazusa.or.jp/codon/).
  • Codon Usage Database www.kazusa.or.jp/codon/.
  • the codon usage frequency of Mortierella alpina www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi
  • Is used for the ⁇ 3 desaturase gene represented by SEQ ID NO: 1 and SEQ ID NO: 3.
  • the ⁇ 3 desaturase of the present invention is expressed from the prepared ⁇ 3 desaturase gene of the present invention.
  • the enzyme may be expressed in a cell-free system, but a transformed cell is obtained by introducing the ⁇ 3 desaturase gene of the present invention into a host cell, and the ⁇ 3 desaturase of the present invention is applied to the transformed cell. It may be expressed.
  • the host cell into which the ⁇ 3 desaturase gene of the present invention is introduced is preferably a cell of a microorganism such as a bacterium, fungus or algae, but is not particularly limited.
  • a vector containing the ⁇ 3 desaturase gene of the present invention can be used.
  • the type of vector used for the introduction can be appropriately selected according to the type of host cell, cloning method, gene expression method, and the like.
  • an expression vector is preferably used.
  • the ⁇ 3 desaturase gene of the present invention is incorporated into an appropriate vector, and the resulting vector containing the ⁇ 3 desaturase gene of the present invention is introduced into a host cell.
  • electroporation, particle gun (gene gun) method competent cell method, protoplast method, calcium phosphate coprecipitation method, Agrobacterium tumefaciens-mediated transformation (ATMT) method and its modification method (Appl) Environ.Microbiol., 2009, 75: 5529-5535
  • ATMT Agrobacterium tumefaciens-mediated transformation
  • Appl Environ.Microbiol., 2009, 75: 5529-5535
  • the ⁇ 3 desaturase of the present invention is expressed by the transformed cells.
  • the expressed ⁇ 3 desaturase of the present invention can be isolated by a known protein isolation or purification method, and purified as necessary.
  • the ⁇ 3 desaturase of the present invention has high ⁇ 3 desaturation activity under normal temperature at which cells can easily grow, for example, at a temperature of 20 ° C. or more, and functions in the biosynthesis of ⁇ 3 unsaturated fatty acids such as EPA. can do. Therefore, if cells expressing the ⁇ 3 desaturase of the present invention are cultured at room temperature, the cells easily proliferate, and ⁇ 3 desaturase is expressed by the ⁇ 3 desaturase of the present invention expressed in the grown cells. Since fatty acid biosynthesis is performed, it is possible to efficiently produce ⁇ 3 unsaturated fatty acids such as EPA.
  • the present invention also provides a method for producing an EPA-containing lipid, comprising culturing cells expressing the ⁇ 3 desaturase of the present invention. Moreover, this invention provides the production method of EPA including refine
  • the cell expressing the ⁇ 3 desaturase of the present invention may be a cell that originally expresses the enzyme, or a cell that has been modified to express the enzyme.
  • Examples of the cells that naturally express the ⁇ 3 desaturase of the present invention include Pysium folliculosam, Pysium tolurosum, and Pysium sulcatum.
  • the expression ability of the ⁇ 3 desaturase of the present invention is obtained by introducing the ⁇ 3 desaturase gene of the present invention as described above. Transformed cells.
  • the transformed cells can be any cells derived from plants, bacteria, fungi, algae, etc., but are preferably cells of microorganisms such as bacteria, fungi, algae and the like.
  • the above-mentioned Pysium folliculosam, Pysium tolurosum or Pysium sulcatum can be modified so that the expression of the ⁇ 3 desaturase of the present invention is improved and used in the method for producing the EPA-containing lipid of the present invention. it can.
  • the cell expressing the ⁇ 3 desaturase of the present invention produces EPA by the action of the ⁇ 3 desaturase of the present invention. Therefore, in addition to the ability to express the ⁇ 3 desaturase of the present invention, the cell originally has the ability to produce arachidonic acid (ARA) as a substrate for the enzyme, or produce ARA.
  • ARA arachidonic acid
  • the cell has or has been modified to have the ⁇ 6 polyunsaturated fatty acid metabolic pathway. More preferably, the cell has the ⁇ 6 polyunsaturated fatty acid metabolic pathway and the ⁇ 3 polyunsaturated fatty acid metabolic pathway, or has been modified to have both. As shown in FIG.
  • ARA produced by the ⁇ 6 polyunsaturated fatty acid metabolic pathway is converted to EPA by the action of ⁇ 3 desaturase.
  • ⁇ 6 highly unsaturated fatty acids such as LA, GLA and DGLA are converted into ⁇ 3 highly unsaturated fatty acids such as ALA, SDA and ETA by the action of ⁇ 3 desaturase, and from these ⁇ 3 highly unsaturated fatty acids.
  • the ⁇ 3 highly unsaturated fatty acid metabolic pathway produces EPA.
  • the cell used in the production method of the EPA-containing lipid of the present invention it has the ability to express the ⁇ 3 desaturase of the present invention and has the ⁇ 6 highly unsaturated fatty acid metabolic pathway.
  • Examples include lipid producing microorganisms capable of producing arachidonic acid. More preferably, the lipid-producing microorganism further has a ⁇ 3 highly unsaturated fatty acid metabolic pathway.
  • lipid-producing microorganisms examples include the above-mentioned Pysium folliculosam, Pysium tolurosum and Pysium sulcatum, and lipid producing microorganisms capable of producing arachidonic acid by the ⁇ 6 highly unsaturated fatty acid metabolic pathway, Preferably, those having a ⁇ 3 polyunsaturated fatty acid metabolic pathway and modified to express the ⁇ 3 desaturase of the present invention are also included.
  • the lipid-producing microorganism modified to express the ⁇ 3 desaturase of the present invention is a lipid-producing microorganism having an ⁇ 6 highly unsaturated fatty acid metabolic pathway and the ability to produce arachidonic acid, preferably further It can be obtained by introducing the ⁇ 3 desaturase gene of the present invention into a lipid-producing microorganism having a ⁇ 3 highly unsaturated fatty acid metabolic pathway.
  • the introduction of the ⁇ 3 desaturase gene of the present invention into the lipid-producing microorganism can be carried out according to the procedure described above with respect to the gene introduction into the host cell. The specific procedure will be described below.
  • Examples of lipid-producing microorganisms to which the ⁇ 3 desaturase gene of the present invention is to be introduced include the genus Psium, yeast, the genus Mortierella, the genus Mucor, the genus Umbelopsis, etc.
  • Examples include filamentous fungi, and preferably Mortierella alpina (hereinafter sometimes referred to as M. alpina), Mortierella chlamydospora, Mortierella elongata (Mortierellael).
  • the lipid-producing microorganism into which the gene of the present invention is to be introduced has the ⁇ 6 polyunsaturated fatty acid metabolic pathway and has the ability to produce arachidonic acid, the above-mentioned picium folliculosum, pisium tolurosum, It may be a mutant strain of microorganisms belonging to the genus Pissium, yeast, and Mortierella such as Psium sulcatum. Since the mutant strain does not need to express ⁇ 3 desaturase other than the ⁇ 3 desaturase of the present invention, it may be a deficient strain lacking the ⁇ 3 desaturase originally possessed by the microorganism. Examples of such mutant strains and defective strains include M.
  • Mutants and deficient strains of the above lipid-producing microorganisms can be obtained by conventional methods, for example, ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), N-methyl-N-nitro-N-nitrosoguanidine (J. Gen. Microbiol., 1992, 138: 997-1002), treatment with mutagens such as 5-bromodeoxyuridine (BrdU), cisplatin, mitomycin C, mutagenesis by irradiation, ultraviolet irradiation, high heat treatment, etc., or by RNAi It can be obtained by suppressing gene expression.
  • EMS ethyl methanesulfonate
  • MMS methyl methanesulfonate
  • N-methyl-N-nitro-N-nitrosoguanidine J. Gen. Microbiol., 1992, 138: 997-1002
  • mutagens such as 5-bromodeoxyuridine (BrdU), cis
  • the ⁇ 3 desaturase gene of the present invention may be introduced into the genome of the microorganism, or may be introduced outside the genome in a state of being incorporated into an expression vector.
  • the ⁇ 3 desaturase gene of the present invention is preferably introduced together with a vector containing the gene.
  • a vector used for gene introduction can be appropriately selected by those skilled in the art according to the type of microorganism into which the gene is introduced, the cloning method, the gene expression method, and the like.
  • a pD4 vector Appl. Environ. Microbiol., 2000, 66 (11): 4655-4661
  • a pDZeo vector J.
  • the vector includes a promoter sequence or transcription termination signal sequence for expressing the incorporated gene of the present invention, or a selection marker gene for selecting a transformant into which the target gene has been introduced. It is preferable.
  • the promoter is preferably a high expression promoter.
  • preferred high expression promoters for Mortierella microorganisms include M. Examples include alpina-derived PP3 promoter and SSA2 promoter, and promoters modified by adding substitutions, deletions, additions, etc. to the sequences of these promoters, but are not limited to these as long as the introduced gene can be expressed at high levels.
  • selectable marker genes include drug resistance genes such as kanamycin resistance gene, streptomycin resistance gene, carboxin resistance gene, zeocin resistance gene, hygromycin resistance gene, amino acid requirements such as leucine, histidine, methionine, arginine, tryptophan, lysine, etc.
  • drug resistance genes such as kanamycin resistance gene, streptomycin resistance gene, carboxin resistance gene, zeocin resistance gene, hygromycin resistance gene
  • amino acid requirements such as leucine, histidine, methionine, arginine, tryptophan, lysine, etc.
  • Examples include genes that complement mutations, and genes that complement nucleobase-requiring mutations such as uracil and adenine.
  • preferred selectable marker genes include genes that complement uracil-requiring mutations. For example, M.M. A uracil auxotrophic strain of alpina (Biosci. Biotechnol. Biochem., 2004, 68
  • orotidine-5'-phosphate decarboxylase gene ura3 gene
  • orotidylate pyrophosphorylase gene ura5 gene
  • ura3 gene orotidine-5'-phosphate decarboxylase gene
  • ura5 gene orotidylate pyrophosphorylase gene
  • FIG. 1 An example of a transformed binary vector that can be used for introducing the ⁇ 3 desaturase gene of the present invention into alpina is shown in FIG.
  • a polynucleotide (Pt ⁇ 3mod) encoding the ⁇ 3 desaturase of the present invention is linked downstream of the constitutively high expression promoter PP3 promoter or SSA2 promoter, and a sdhB terminator, trait,
  • the ura5 gene is incorporated as a selectable marker for the transformant.
  • a homologous recombination method may be mentioned. If a vector containing a complementary sequence of the genome to be introduced together with the gene of the present invention is prepared and the vector is introduced into a microorganism, the ⁇ 3 desaturation of the present invention is located at the target position on the genome of the microorganism by homologous recombination. The synthase gene is integrated. The above-described promoter sequence, transcription termination signal sequence, or selectable marker gene may be incorporated into the vector as necessary.
  • the means for introducing the vector into the microorganism may be appropriately selected by those skilled in the art according to the type of the microorganism or vector.
  • introduction into fungi such as Mortierella microorganisms, electroporation method, particle gun (gene gun) method, ATMT method and its modification method (Appl. Environ. Microbiol., 2009, 75: 5529-5535).
  • the ATMT method and its modification method are preferable, but the gene introduction method is not limited to these methods as long as a transformant that stably retains the target trait can be obtained.
  • the cell expressing the ⁇ 3 desaturase used in the method for producing an EPA-containing lipid of the present invention has been modified to activate the ⁇ 6 polyunsaturated fatty acid metabolic pathway. Also good. For example, by introducing a gene encoding ⁇ 12 desaturase into the cell so that the enzyme is highly expressed, the conversion of oleic acid to linoleic acid in the cell is promoted, and ⁇ 6 highly unsaturated.
  • the fatty acid metabolic pathway can be activated. The activation of the pathway increases the amount of ⁇ 6 polyunsaturated fatty acid serving as a substrate for the enzyme of the present invention, and as a result, production of EPA is promoted.
  • cells expressing the ⁇ 3 desaturase of the present invention obtained by the above procedure are inoculated and cultured in a liquid medium or a solid medium.
  • Culture conditions can be optimized by those skilled in the art depending on the cell type. For example, when the cell is a fungus, a spore of a strain, a mycelium, or a preculture solution obtained by culturing in advance can be inoculated into the medium and cultured.
  • Examples of the carbon source of the medium include, but are not limited to, glucose, fructose, xylose, saccharose, maltose, soluble starch, corn starch, glycerol, mannitol, lipid, alkane, alkene and the like.
  • a nitrogen source in addition to natural nitrogen sources such as peptone, yeast extract, malt extract, meat extract, casamino acid, corn steep liquor, soy protein, defatted soybean, cottonseed dregs and wheat bran, organic nitrogen sources such as urea, In addition, inorganic nitrogen sources such as sodium nitrate, ammonium nitrate, and ammonium sulfate are included, but not limited thereto.
  • lipids such as soybean oil, coconut oil and corn oil may be added.
  • the lipid to be added is preferably a fat and oil containing a large amount of linoleic acid such as soybean oil and corn oil, and more preferably soybean oil.
  • inorganic salts such as phosphate, magnesium sulfate, iron sulfate, and copper sulfate, vitamins, and the like can be appropriately added. These medium components are not particularly limited as long as they are concentrations that do not impair the growth of microorganisms to be cultured.
  • the carbon source can be 0.1 to 40% by mass, preferably 1 to 25% by mass
  • the nitrogen source in the medium can be 0.01 to 10% by mass, preferably 0.1 to 10% by mass. . M.M.
  • a Czapek medium, a Czapek-dox medium, a glucose / yeast extract (hereinafter also referred to as “GY”) medium, an SC medium, or the like described later can be used.
  • GY glucose / yeast extract
  • SC medium or the like described later
  • known media for example, WO 98/29558
  • the pH of the medium can be 4-10, preferably 6-9.
  • the culture can be an aeration and agitation culture, a shaking culture or a stationary culture.
  • the cells are preferably cultured at an optimal growth temperature.
  • the cells can be cultured at about 5-60 ° C, preferably about 10-50 ° C, more preferably about 10-40 ° C, even more preferably about 20-40 ° C, still more preferably about 20-30 ° C. .
  • the culture is performed at about 10 to 40 ° C, preferably about 20 to 40 ° C, more preferably about 20 to 30 ° C.
  • the culture period of the cells can be, for example, 2 to 20 days, preferably 2 to 14 days.
  • known literature for example, JP-A-6-153970
  • lipids containing a high content of EPA are produced in the cells.
  • the culture solution is subjected to conventional means such as centrifugation and filtration to separate the cells.
  • the culture solution is centrifuged or filtered to remove the liquid, and the separated cells are washed and then dried by lyophilization, air drying or the like to obtain dried cells.
  • the desired lipid can be extracted from the dried cells by a known method such as organic solvent extraction.
  • organic solvent examples include hexane, ether, ethyl acetate, butyl acetate, chloroform, cyclohexane, benzene, toluene, xylene, and the like, which are highly soluble in highly unsaturated fatty acids and can be separated from water. Or these organic solvents can also be used in combination.
  • the target lipid can be extracted by distilling off the organic solvent from the extract under reduced pressure or the like. Alternatively, lipids can be extracted from wet cells without drying the cells. The obtained lipid may be further purified by appropriately using general methods such as degumming, deoxidation, deodorization, decolorization, column treatment, distillation and the like.
  • EPA In the extracted lipid, various fatty acids that are compositing substances are contained in addition to EPA, which is an object of the method of the present invention. Therefore, EPA with higher purity can be obtained by further purifying the lipid.
  • EPA can be separated directly from lipids, but it is preferable to separate the desired ester derivative of EPA after once converting the fatty acid in the lipid into an ester derivative with a lower alcohol. Since the ester derivative can be separated by using various separation and purification operations depending on the number of carbon atoms, the number of double bonds, the difference in position, etc., an ester derivative of the target fatty acid can be easily obtained.
  • the ester derivative is preferably an ethyl ester derivative.
  • a lower alcohol containing an acid catalyst such as hydrochloric acid, sulfuric acid or BF3, or a base catalyst such as sodium methoxide or potassium hydroxide can be used.
  • the desired ester derivative of EPA can be separated from the obtained ester derivative by column chromatography, low temperature crystallization method, urea addition fractionation method or the like alone or in combination.
  • the separated ester derivative of EPA is hydrolyzed with an alkali, and then extracted with an organic solvent such as ether or ethyl acetate, whereby EPA can be purified.
  • EPA may be purified in the form of a salt.
  • lipid-producing microorganisms expressing the ⁇ 3 desaturase of the present invention are cultured on a large scale in a tank or the like and filtered with a filter press or the like. Then, after the cells are collected and dried, the cells can be crushed with a ball mill or the like, and the lipid can be extracted with an organic solvent.
  • many methods for extracting and using components in microorganisms on an industrial scale and methods for purifying EPA from lipids are known, and these can be appropriately modified and used in the method of the present invention.
  • EPA obtained by the present invention can be used for the production of pharmaceuticals, cosmetics, foods, feeds, etc. for human or non-human animals.
  • the pharmaceutical dosage form include oral preparations such as tablets, capsules, granules, powders, syrups, dry syrups, liquids and suspensions; enteral preparations such as inhalants and suppositories; Injections; topical agents; transdermal, transmucosal, nasal agents; inhalants; patch agents and the like.
  • the form of the cosmetic include any form that cosmetics can usually take such as cream, emulsion, lotion, suspension, gel, powder, pack, sheet, patch, stick, cake and the like.
  • the above pharmaceutical products or cosmetics contain EPA or a salt thereof as an active ingredient.
  • the pharmaceutical or cosmetic is also a pharmaceutically acceptable carrier or a cosmetically acceptable carrier such as an excipient, a disintegrant, a binder, a lubricant, a surfactant, a pH adjuster, a dispersant, It may contain emulsifiers, preservatives, antioxidants, colorants, alcohol, water, water-soluble polymers, fragrances, sweeteners, corrigents, acidulants, and other active ingredients as necessary. For example, it may contain medicinal ingredients, cosmetic ingredients and the like.
  • the said pharmaceutical or cosmetics can be manufactured by mix
  • the content of EPA in the medicine or cosmetic varies depending on the dosage form, but is usually in the range of 0.1 to 99% by mass, preferably 1 to 80% by mass.
  • the above food or drink or feed contains EPA or a salt thereof as an active ingredient.
  • These foods and drinks or feeds are intended to have effects such as platelet aggregation inhibitory action, blood neutral fat lowering action, anti-arteriosclerosis action, blood viscosity lowering action, blood pressure lowering action, anti-inflammatory action, antitumor action, etc. It may be a health food, a functional food / beverage product, a food / beverage product for specific health use, a food / beverage product for a sick person, a livestock, a racehorse, a feed for an appreciation animal, a pet food or the like.
  • the form of the food or drink or feed is not particularly limited, and includes all forms that can contain EPA or a salt thereof.
  • the form of the food or drink may be solid, semi-solid or liquid, or various types such as tablets, chewable tablets, powders, capsules, granules, drinks, gels, syrups, liquid foods for enteral nutrition A form is mentioned.
  • tea drinks such as green tea, oolong tea and tea, coffee drinks, soft drinks, jelly drinks, sports drinks, milk drinks, carbonated drinks, fruit juice drinks, lactic acid bacteria drinks, fermented milk drinks, Powdered beverages, cocoa beverages, alcoholic beverages, purified water beverages, butter, jam, sprinkles, margarine spreads, mayonnaise, shortening, custard cream, dressings, breads, cooked rice, noodles, pasta, miso soup, tofu , Milk, yogurt, soups or sauces, confectionery (eg biscuits and cookies, chocolate, candy, cake, ice cream, chewing gum, tablets). Since the said feed can be utilized with the composition and form substantially the same as food / beverage products, the description regarding the food / beverage products in this specification can be applied similarly about feed.
  • the above-mentioned food or drink or EPA includes EPA or a salt thereof, and other food or drink materials used in the production of food or drink or feed, various nutrients, various vitamins, minerals, amino acids, various oils and fats, various additives (for example, taste ingredients) , Sweeteners, acidulants such as organic acids, surfactants, pH adjusters, stabilizers, antioxidants, dyes, flavors, etc.) and the like, and can be prepared according to conventional methods.
  • the food / beverage products or feed based on this invention can be manufactured by mix
  • the content of EPA or a salt thereof in the above food or drink or feed varies depending on the form of the food, but is usually 0.01 to 80% by mass, preferably 0.1 to 50% by mass, more preferably 1 to 30% by mass. % Range.
  • Culture medium GY medium: 2% (w / v) glucose, 1% yeast extract.
  • Czapek-Dox agar medium 3% sucrose, 0.2% NaNO 3 , 0.1% KH 2 PO 4 , 0.05% KCl, 0.05% MgSO 4 .7H 2 O, 0.001% FeSO 4. 7H 2 O, 2% agar, pH 6.0.
  • LB-Mg agar medium 1% tryptone, 0.5% yeast extract, 85 mM NaCl, 0.5 mM MgSO 4 .7H 2 O, 0.5 mM NaOH, 1.5% agar, pH 7.0.
  • MM Minimal medium (MM): 10 mM K 2 HPO 4 , 10 mM KH 2 PO 4 , 2.5 mM NaCl, 2 mM MgSO 4 .7H 2 O, 0.7 mM CaCl 2 , 9 ⁇ M FeSO 4 .7H 2 O, 4 mM (NH 4 ) 2 SO 4 , 10 mM glucose, pH 7.0.
  • SC medium 5.0 g Yeast Nitrogen Base w / o Amino Acids and Ammonium Sulfate (Difco), 1.7 g (NH 4 ) 2 SO 4 , 20 g glucose, 20 g agar, 20 mg adenine, 30 mg tyrosine, 1.0 mg methionine, 2 0.0 mg arginine, 2.0 mg histidine, 4.0 mg lysine, 4.0 mg tryptophan, 5.0 mg threonine, 6.0 mg isoleucine, 6.0 mg leucine, 6.0 mg L phenylalanine.
  • Example 1 Identification of ⁇ 3 Desaturating Enzyme Picium foliculosum was cultured with shaking in 10 mL of GY medium at 28 ° C. for 5 days, and the cells were collected. The collected cells were put into a 2 mL tube and destroyed using a beads shocker (Yasui Kikai) under the conditions of 1700 rpm, 10 seconds ⁇ 2 times. From the disrupted cells, mRNA was extracted using ISOGEN (Bio-Rad) according to the product protocol.
  • ISOGEN Bio-Rad
  • the extracted mRNA was converted into Prime Script TM II High Fidelity RT-PCR Kit (TaKaRa) and primer [5′-GAAATGGCCGACGTGAACACCTCCTCGC-3 ′ (SEQ ID NO: 7) and 5′-CTATGCGCGCTTGGTGAGCACCTCGC-3] (SEQ ID NO: 8). Then, reverse transcription was performed to prepare a cDNA represented by SEQ ID NO: 1. This cDNA encoded a polypeptide having the amino acid sequence represented by SEQ ID NO: 2.
  • mRNA extracted from Psium sulcatum was reverse transcribed using primers [5'-CTACGTCAAGGGCAACCTCTCGTCC-3 '(SEQ ID NO: 9) and 5'-AAAGCCGAACGACAGCACCATCTTG-3' (SEQ ID NO: 10)], and SEQ ID NO:
  • the cDNA shown in 3 was prepared.
  • the cDNA (SEQ ID NO: 1) prepared above was incorporated into a yeast expression vector pYE22m (Biosci. Biotech. Biochem., 1995, 59: 1221-1228), and this vector was incorporated into the Saccharomyces cerevisiae InvSc1 strain (tryptophan-requiring oily agent).
  • Yeast was introduced by electroporation and transformed.
  • the transformed strain was cultured in YPD medium (polypeptone 20 g, yeast extract 10 g, adenine 0.4 g, agar 20 g and glucose 20 g diluted in 1000 mL of water) at 28 ° C. for 1 day, and the polypeptide was expressed from the integrated cDNA. I let you.
  • Example 2 Production of Vector for Introducing ⁇ 3 Desaturase Gene
  • the nucleotide sequence of SEQ ID NO: 1 The polynucleotide shown in SEQ ID NO: 5 was obtained by codon optimization according to alpina. SpeI and BamHI sites were constructed upstream and downstream of the CDS (nucleotide numbers 1 to 1110) of the polynucleotide shown in SEQ ID NO: 5, and cloned into the SpMA-RQ (ampR) plasmid.
  • the prepared plasmid was treated with SpeI and BamHI restriction enzymes, and the resulting gene fragment was converted into a plasmid pBIG35 containing a constant high expression promoter, His550 promoter or SSA2 promoter (pBIG2RHPH2 provided by Kyoto Prefectural University, Appl. Environ. Microbiol., 2009, 75: 5529-5535) to construct an expression cassette.
  • the expression cassette was further ligated in tandem with a marker gene (ura5) requiring uracil to construct binary vectors for transformation, pBIG- ⁇ 3HisP and pBIG- ⁇ 3SSA2P (FIG. 2).
  • Example 3 Preparation of ⁇ 3 desaturase gene-introduced strain
  • alpina uracil auxotrophic strain
  • Czapek-Dox agar medium containing 0.05 mg / mL uracil the culture is collected, and then filtered through Miracloth (Calbiochem).
  • a spore suspension of alpina was prepared.
  • the M.I. The pBIG- ⁇ 3His vector constructed in Example 2 was introduced into alpina (uracil auxotrophic strain) by the ATMT method (Appl. Environ. Microbiol., 2009, 75: 5529-5535) described below, and ⁇ 3 desaturation was performed. An enzyme-introduced strain was produced.
  • the above binary vector pBIG- ⁇ 3His was introduced into Agrobacterium (Agrobacterium tumefaciens C58C1, provided by Kyoto Prefectural University) by electroporation, and cultured in LB-Mg agar medium at 28 ° C. for 48 hours.
  • Agrobacterium containing the vector was selected by PCR.
  • Agrobacterium having the vector was cultured in minimal medium (MM) for 2 days, centrifuged at 5,800 ⁇ g, and a fresh induction medium (IM) was added to prepare a suspension. The suspension was induction-cultured on a rotary shaker for 8-12 hours at 28 ° C. until the OD 660 was 0.4 to 3.7.
  • the bacterial suspension was mixed with an equal amount of the above M.I. Alpina suspension (10 8 mL ⁇ 1 ) and mixed with a nitrocellulose membrane (70 mm diameter; hardened low-ash grade 50, Whatman) (same composition as IM, except for 10 mM glucose) (Containing 5 mM glucose and 1.5% agar), and cultured at 23 ° C. for 2 to 5 days.
  • the membrane was transferred to an SC medium containing uracil-free, 50 g / mL cefotaxime and 50 g / mL spectinomycin, 0.03% Nile blue A (Sigma), and cultured at 28 ° C. for 5 days.
  • Example 4 Preparation of ⁇ 3 Desaturase Gene-Introduced Strain An ⁇ 3 desaturase-introduced strain was prepared in the same procedure as in Example 3 except that pBIG- ⁇ 3SSA2P was used as a gene introduction vector.
  • Example 5 Production of ⁇ 3 unsaturated fatty acid by ⁇ 3 desaturase gene-introduced strain ⁇ 3 desaturase gene-introduced M. pylori obtained in Examples 3 and 4
  • the alpina strain was aerobically cultured at 300 rpm for 7 days at 28 ° C. in 10 mL of GY medium.
  • the alpina strain was cultured in the same manner. The cells were collected from each culture solution by suction filtration and dried at 120 ° C. for 3 hours.
  • GLC uses Shimadzu GC-2010, GL Sciences capillary column TC70 (0.25 mm ⁇ 60 m), column temperature 180 ° C., vaporization chamber temperature 250 ° C., detector temperature 250 ° C., carrier gas He, makeup It was performed under the conditions of upgas N 2 , H 2 flow rate 40 mL / min, Air flow rate 400 mL / min, split ratio 50, and analysis time 30 min.
  • the amount of each fatty acid extracted was quantified from the peak area value of the GLC chart on the basis of the amount of fatty acid of the internal standard, and the ratio of each fatty acid to the total amount of fatty acids was determined.
  • the ⁇ 3 desaturase gene-introduced strains of Example 3 and Example 4 9.1% and 18.1% EPA accumulation was observed, respectively. On the other hand, no EPA was produced in the control strain (accumulation could not be measured).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Husbandry (AREA)
  • Birds (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Rheumatology (AREA)
  • Obesity (AREA)
  • Urology & Nephrology (AREA)
  • Pain & Pain Management (AREA)
  • Vascular Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 常温下においても高い酵素活性を有するω3不飽和化酵素の提供。配列番号2に示されるアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなり、かつω3不飽和化活性を有するポリペプチド、およびその遺伝子。

Description

ω3不飽和脂肪酸酵素およびエイコサペンタエン酸の製造方法
 本発明は、ω3不飽和化酵素活性を有する新規ポリペプチドおよび当該ポリペプチドをコードする遺伝子、ならびにエイコサペンタエン酸を生成するためのそれらの使用に関する。
 高度不飽和脂肪酸は、不飽和結合を2つ以上持つ脂肪酸であり、ω6不飽和脂肪酸のリノール酸(LA、18:2n-6)、γ-リノレン酸(GLA、18:3n-6)、アラキドン酸(ARA、20:4n-6)、ω3不飽和脂肪酸のα-リノレン酸(ALA、18:3n-3)、エイコサペンタエン酸(EPA、20:5n-3)、ドコサヘキサエン酸(DHA、22:6n-3)などが存在する。高度不飽和脂肪酸は、生体膜の主要構成成分として膜の流動性の調節に関与するほか、生体機能性成分の前駆体としても重要である。ARAやEPAは、高等動物内においてプロスタグランジン、トロンボキサン、ロイコトリエンなどの前駆体であり、DHAは脳内に最も多量に存在する高度不飽和脂肪酸である。EPAは、血小板凝集阻害作用、血中中性脂肪低下作用、抗動脈硬化作用、血液粘度低下作用、血圧降下作用、抗炎症作用、抗腫瘍作用等の生理作用を有し、医薬品、食品、化粧品、飼料等の様々な分野に利用されている。また、近年では、生活習慣病予防の観点から、ω3不飽和脂肪酸の積極的な摂取が推奨され、需要の拡大が著しい脂質分子種である。
 生体のDHAやEPAは、食物から摂取される以外に、一部の生物ではALAから生合成される。一方、ヒトはALAを生合成できないため、DHAやEPAはヒトにとって栄養学的に必須の脂肪酸である。EPAは主にタラ、ニシン、サバ、サケ、イワシ、オキアミ等の魚油、シュワネラ・リビングストネンシス(Shewanella livingstonensis)等の海洋性低温細菌、ラビリンチュラ綱(Labyrinthulomycetes)等の藻類などに多く含まれている。これらの生物資源からEPAを抽出または精製する方法が知られている。最も一般的に行われているのは、魚油からのEPA精製である。しかしながら、魚油中のEPA含量は低い上に、魚油由来のEPAは、抽出または精製の方法によっては、魚臭が残ったり、心疾患の原因とされるエルカ酸の含量が多くなったりするという問題を有している。
 近年、エネルギー問題などに関連して、細胞内に脂質を蓄積する脂質生産微生物が注目されており、種々の脂質を微生物学的に生産する方法が開発されている。例えば、糸状菌の1種であるモルティエレラ(Mortierella)属に属する微生物を利用した高度不飽和脂肪酸の生産方法の研究が進められている。モルティエレラ属微生物は、ω3またはω6高度不飽和脂肪酸代謝経路を有し、EPAを生産することが知られている(非特許文献1)。特許文献1には、EPAを産生するモルティエレラ属微生物を培養してEPAを得る方法が開示されている。特許文献2には、モルティエレラ・アルピナに変異処理を施した変異株を用いてARAやEPAを生産する方法が開示されている。特許文献3には、モルティエレラ・アルピナから単離したω3不飽和化ポリペプチドの遺伝子を酵母に導入した形質転換株を用いて、EPAなどの高度不飽和脂肪酸を生産する方法が開示されている。
 しかし、モルティエレラ属微生物のω3不飽和化酵素は至適温度が低く、菌が増殖しやすい常温条件(20℃程度)下では十分に機能しない。そのため、モルティエレラ属微生物を通常の培養温度で培養しても、EPAを効率よく生産することができない。さらに、モルティエレラ属微生物のω3不飽和化酵素は、炭素鎖長18の脂肪酸に優先的に作用するため、上記モルティエレラ属微生物を利用する従来の方法では、炭素鎖長20のEPAを効率よく生産することは難しかった。
 したがって、炭素鎖長20の脂肪酸(例えばARA)から効率よくEPAを合成することができるω3不飽和化酵素が求められている。特許文献4には、サプロレグニア・ディクリナから単離したω3不飽和化酵素が、特許文献5には、フィトフトラ・ラモルムから単離したΔ17不飽和化酵素が、特許文献6には、ピシウム・アファニデルマタムから単離したΔ17不飽和化酵素が記載されている。
特開昭63-14697号公報 特開平11-243981号公報 特開2006-055104号公報 特表2005-515776号公報 特表2009-534032号公報 特表2010-508019号公報
Appl.Microbiol.Biotecnol.,1989,32:1-4
 本発明は、20℃以上の常温下においても高い酵素活性を有するω3不飽和化酵素、および当該ω3不飽和化酵素を有し、EPAを高濃度で含有する油脂を効率よく生産することのできる脂質生産細胞を提供することに関する。さらに本発明は、当該脂質生産細胞を利用したEPA高含有油脂の工業的生産手段を提供することに関する。
 発明者らは、種々検討の結果、常温下においても高いω3不飽和化活性を有する新規なω3不飽和化酵素、及びそれをコードする遺伝子を見出した。本発明者らはさらに、上記ω3不飽和化酵素をコードする遺伝子を導入した形質転換細胞において、常温下においてEPAやその他のω3不飽和脂肪酸の生産性が向上することを見出した。
 すなわち本発明は、配列番号2に示されるアミノ酸配列と80%以上同一なアミノ酸配列からなり、かつω3不飽和化活性を有するポリペプチドを提供する。
 また本発明は、上記ポリペプチドをコードするポリヌクレオチドを提供する。
 また本発明は、上記ポリヌクレオチドを含むベクターを提供する。
 また本発明は、上記ポリヌクレオチドが導入された形質転換細胞を提供する。
 さらに本発明は、上記ポリペプチドを発現する細胞を培養することを含む、エイコサペンタエン酸含有脂質の生産方法を提供する。
 さらに本発明は、上記方法により生産されたエイコサペンタエン酸含有脂質を精製することを含む、エイコサペンタエン酸の生産方法を提供する。
 本発明のω3不飽和化酵素は、細胞が増殖しやすい20℃以上の常温条件下において高いω3不飽和化活性を有し、EPA等のω3不飽和脂肪酸の生合成に機能を発揮することができる。したがって、本発明のω3不飽和化酵素を発現する細胞を培養すれば、当該微生物内で、EPA等のω3不飽和脂肪酸を効率よく生産することが可能になる。EPAは、医薬品、食品、化粧品、飼料等の様々な分野で使用される重要な高度不飽和脂肪酸であり、EPAの工業規模での生産に適用し得る本発明は、当該分野で極めて有用である。
M. alpina 1S-4における脂肪酸生合成経路。 M. alpina用形質転換バイナリーベクターの例。
 本明細書において、別途定義されない限り、アミノ酸配列またはヌクレオチド配列におけるアミノ酸またはヌクレオチドの欠失、置換、付加または挿入に関して使用される「1個または複数個」とは、例えば、1~20個、好ましくは1~10個、より好ましくは1~5個、さらに好ましくは1~4個、なお好ましくは1~3個、さらになお好ましくは1~2個であり得る。また本明細書において、アミノ酸またはヌクレオチドの「付加」には、配列の一末端および両末端への1または複数個のアミノ酸またはヌクレオチドの付加が含まれる。
 本明細書において、アミノ酸配列やヌクレオチド配列の同一性は、Karlin and AltschulによるアルゴリズムBLAST(Pro.Natl.Acad.Sci.USA,1993,90:5873-5877)、またはFASTA(Methods Enzymol.,1990,183:63-98)を用いて決定することができる。このアルゴリズムBLASTに基づいて、BLASTNやBLASTXとよばれるプログラムが開発されている(J.Mol.Biol.,1990,215:403-410)。BLASTに基づいてBLASTNによってヌクレオチド配列を解析する場合には、パラメータは例えばScore=100、wordlength=12とする。また、BLASTに基づいてBLASTXによってアミノ酸配列を解析する場合には、パラメータは例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である(www.ncbi.nlm.nih.gov参照)。
 本明細書において、「ストリンジェントな条件」とは、同一性が高いヌクレオチド配列同士、例えば90%以上、95%以上、98%以上または99%以上の同一性を有するヌクレオチド配列同士がハイブリダイズし、それより同一性が低いヌクレオチド配列同士がハイブリダイズしない条件をいう。具体的には、本明細書における「ストリンジェントな条件」とは、通常のサザンハイブリダイゼーションの洗浄条件である60℃、1×SSC、0.1%SDS、好ましくは、0.1×SSC、0.1%SDS、さらに好ましくは、68℃、0.1×SSC、0.1%SDSに相当する塩濃度および温度で、1回、より好ましくは2~3回洗浄する条件等が挙げられる。
 本明細書において、目的のアミノ酸配列またはヌクレオチド配列上における、特定のアミノ酸配列またはヌクレオチド配列上の特定の位置または領域に対する「対応する位置」または「対応する領域」は、目的のアミノ酸配列またはヌクレオチド配列と、基準となる特定の配列(参照配列)とを、各アミノ酸配列またはヌクレオチド配列中に存在する保存アミノ酸残基またはヌクレオチドに最大の相同性を与えるように整列(アラインメント)させることにより決定することができる。アラインメントは、公知のアルゴリズムを用いて実行することができ、その手順は当業者に公知である。例えば、アラインメントは、上述のリップマン-パーソン法等に基づいて手作業で行うこともできるが、Clustal Wマルチプルアラインメントプログラム(Thompson,J.D.et al,1994,Nucleic Acids Res.,22:4673-4680)をデフォルト設定で用いることにより行うことができる。Clustal Wは、例えば、欧州バイオインフォマティクス研究所(European Bioinformatics Institute:EBI[www.ebi.ac.uk/index.html])や、国立遺伝学研究所が運営する日本DNAデータバンク(DDBJ[www.ddbj.nig.ac.jp/Welcome-j.html])のウェブサイト上で利用することができる。
 本明細書において、「ω6高度不飽和脂肪酸代謝経路」とは、リノール酸(LA、18:2n-6)から、γ-リノレン酸(GLA、18:3n-6)、ジホモ-γ-リノレン酸(DGLA、20:3n-6)、アラキドン酸(ARA、20:4n-6)などのω6高度不飽和脂肪酸を生産する代謝経路をいい、「ω3高度不飽和脂肪酸代謝経路」とは、α-リノレン酸(ALA、18:3n-3)から、ステアリドン酸(SDA、18:4n-3)、エイコサテトラエン酸(ETA、20:4n-3)、エイコサペンタエン酸(EPA、20:5n-3)などのω3高度不飽和脂肪酸を生産する代謝経路をいう(図1参照)。また本明細書において、「高度不飽和脂肪酸」とは、炭素鎖長が18以上で不飽和結合数が2以上の長鎖脂肪酸をいう。
 本明細書において、「不飽和化活性」とは、脂肪酸鎖に炭素-炭素二重結合を導入する活性をいい、「不飽和化酵素」とは、当該不飽和化活性を有するタンパク質またはポリペプチドをいう。不飽和化活性および不飽和化酵素は、その活性によって炭素-炭素二重結合が導入される脂肪酸上の位置によってさらに分類される。例えば、「ω3不飽和化活性」とは、脂肪酸のω末端から3番目と4番目の炭素の間に二重結合を導入する活性をいい、「ω3不飽和化酵素」とは、当該活性を持ち、ω3不飽和脂肪酸を産生する酵素である。例えば、ω3不飽和化酵素は、LA(18:2n-6)からALA(18:3n-3)への変換酵素、GLA(18:3n-6)からSDA(18:4n-3)への変換酵素、DGLA(20:3n-6)からETA(20:4n-3)への変換酵素、およびARA(20:4n-6)からEPA(20:5n-3)への変換酵素を含み得る。
 本明細書において、「常温下で酵素活性を示す」とは、酵素活性の至適温度が20℃以上、好ましくは20~40℃であるか、または20℃において至適温度での活性の70%以上、好ましくは80%以上の活性を有することをいう。
 本明細書において、微生物の機能や性状、形質に対して使用する用語「本来」とは、当該機能や性状、形質が当該微生物の野生型に存在していることを表すために使用される。対照的に、用語「外来」とは、当該微生物に元から存在するのではなく、外部から導入された機能や性状、形質を表すために使用される。例えば、ある微生物に外部から導入された遺伝子は、外来遺伝子である。外来遺伝子は、それが導入された微生物と同種の微生物由来の遺伝子であっても、異種の生物由来の遺伝子であってもよい。
 本発明により提供されるω3不飽和化酵素は、配列番号2に示されるアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなり、かつω3不飽和化活性を有するポリペプチドである。当該ポリペプチドの例としては、以下のアミノ酸配列からなり、かつω3不飽和化活性を有するポリペプチドが挙げられる。
(A)配列番号2に示されるアミノ酸配列;
(B)配列番号2で示されるアミノ酸配列と90%以上、好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上の同一性を有するアミノ酸配列;
(C)配列番号2に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列;
(D)配列番号4に示されるアミノ酸配列;
(E)配列番号4に示されるアミノ酸配列と90%以上、好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上の同一性を有するアミノ酸配列;
または
(F)配列番号4に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列。
 上記アミノ酸配列におけるアミノ酸の欠失、置換、挿入および付加の位置は、変異後のポリペプチドにω3不飽和化活性が保持される限り、特に限定されない。
 配列番号2に示されるω3不飽和化酵素は、卵菌門フハイカビ科に属するピシウム属(Pythium)の1種であるピシウム・フォリキュロサム(Pythium folliculosum)またはピシウム・トルロサム(Pythium torulosum)に由来する酵素である。また、配列番号4に示されるω3不飽和化酵素は、ピシウム・スルカトゥム(Pythium sulcatum)に由来する酵素である。BLAST解析の結果、配列番号2および配列番号4に示されるω3不飽和化酵素は、公知のタンパク質と極めて異なるアミノ酸配列を有する新規なポリペプチドであることが明らかになった。配列番号2および配列番号4に示されるω3不飽和化酵素の間のアミノ酸配列同一性は、90.7%である。一方、配列番号2および配列番号4に示されるω3不飽和化酵素とアミノ酸配列が最も近いタンパク質は、配列同一性58.5%のピシウム・アファニデルマタム(Pythium aphanidermatum)由来のΔ17不飽和化酵素(特許文献6参照)である。
 さらに、本発明のω3不飽和化酵素としては、上述した(A)~(F)で示されるアミノ酸配列において、各アミノ酸が、性質の類似するアミノ酸の群に属するアミノ酸と置換されていてもよいタンパク質が挙げられる。類似するアミノ酸による置換の位置および数は、置換後のポリペプチドにω3不飽和化活性が保持される限り、特に限定されない。性質の類似するアミノ酸としては、例えば、グリシンとアラニン、バリンとロイシンとイソロイシン、セリンとトレオニン、アスパラギン酸とグルタミン酸、アスパラギンとグルタミン、リシンとアルギニン、システインとメチオニン、フェニルアラニンとチロシン等が挙げられる。
 上記ピシウム・フォリキュロサムおよびピシウム・スルカトゥムにおける遺伝子解析の結果、本発明者らは、配列番号2および配列番号4に示される本発明のω3不飽和化酵素をコードする遺伝子を同定した。同定された遺伝子はいずれも、そのヌクレオチド配列中に2つのイントロンを有する新規なポリヌクレオチドであった。さらに本発明者らは、当該遺伝子のcDNAを得た。これらは、配列番号1または配列番号3で示されるヌクレオチド配列からなり、イントロン配列を含まないポリヌクレオチドである。配列番号1で示されるポリヌクレオチドは、ピシウム・フォリキュロサムまたはピシウム・トルロサムに由来し、配列番号2に示されるω3不飽和化酵素をコードする。配列番号3で示されるポリヌクレオチドは、ピシウム・スルカトゥムに由来し、配列番号4に示されるω3不飽和化酵素をコードする。
 したがって本発明はまた、本発明のω3不飽和化酵素をコードするポリヌクレオチド(以下、本発明のω3不飽和化酵素遺伝子とも称する)を提供する。本発明のω3不飽和化酵素遺伝子の例としては、以下に示されるヌクレオチド配列からなるポリヌクレオチド、またはその相補鎖が挙げられる。
(a)配列番号1に示されるヌクレオチド配列;
(b)配列番号1に示されるヌクレオチド配列と90%以上、好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上の同一性を有するヌクレオチド配列;
(c)配列番号1に示されるヌクレオチド配列において、1個または複数個のヌクレオチドの欠失、置換、挿入および付加から選択される変異を施されたヌクレオチド配列;
(d)配列番号1に示されるヌクレオチド配列とストリンジェントな条件でハイブリダイズするヌクレオチド配列;
(e)配列番号3に示されるヌクレオチド配列;
(f)配列番号3に示されるヌクレオチド配列と90%以上、好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上の同一性を有するヌクレオチド配列;
(g)配列番号3に示されるヌクレオチド配列において、1個または複数個のヌクレオチドの欠失、置換、挿入および付加から選択される変異を施されたヌクレオチド配列;
または、
(h)配列番号3に示されるヌクレオチド配列とストリンジェントな条件でハイブリダイズするヌクレオチド配列。
 上記ヌクレオチド配列におけるヌクレオチドの欠失、置換、挿入および付加の位置は、変異後のポリヌクレオチドにコードされるポリペプチドがω3不飽和化活性を保持する限り、特に限定されない。
 本発明のω3不飽和化酵素は、公知の方法に従って、好ましくは化学合成法または生物学的合成法によって、製造することができる。化学合成法の例としては、常法により、側鎖官能基を保護した各アミノ酸を逐次結合し、ペプチド鎖を伸張する方法を挙げることができる。生物学的合成法の例としては、本発明のω3不飽和化酵素遺伝子から本発明のω3不飽和化酵素を発現させた後、生成した酵素を単離、必要に応じてさらに精製する方法を挙げることができる。
 以下に、本発明のω3不飽和化酵素の生物学的合成法についてさらに詳しく説明する。まず、本発明のω3不飽和化酵素遺伝子を調製する。当該遺伝子は、公知の方法に従い化学合成法によって製造してもよく、または上述したピシウム・フォリキュロサムまたはピシウム・トルロサム等の微生物から単離してもよい。本発明のω3不飽和化酵素遺伝子を微生物から単離する場合、例えば、当該微生物の全RNAからcDNAライブラリーを作製し、当該cDNAライブラリーからのスクリーニングにより目的とする本発明の遺伝子のcDNAを単離することができる。スクリーニングの際には、本発明の遺伝子のヌクレオチド配列に基づいてプローブまたはプライマーを設計し、当該プローブまたはプライマーとストリンジェントな条件でハイブリダイズするcDNAを選択すればよい。あるいは、当該微生物の全RNAから、配列特異的な逆転写反応により、目的のcDNAを選択的に合成することができる。選択されたcDNAは、PCR等の公知の方法により増幅することができる。
 またあるいは、本発明のω3不飽和化酵素遺伝子は、上記の手順で単離または合成された遺伝子に対して、紫外線照射や部位特異的変異導入のような公知の突然変異導入法により突然変異を導入することによって、作製することができる。例えば、ピシウム・フォリキュロサム、ピシウム・トルロサム、またはピシウム・スルカトゥムから単離された配列番号1または配列番号3に示されるポリヌクレオチドに対して公知の方法で突然変異導入し、変異ポリヌクレオチドを得る。当該変異ポリヌクレオチドから発現したポリペプチドのω3不飽和化活性を調べて所望の活性を有するポリペプチドをコードするものを選択することによって、本発明のω3不飽和化酵素遺伝子を取得することができる。
 さらに、上記の手順で調製された本発明のω3不飽和化酵素遺伝子は、当該遺伝子を導入して発現させる細胞におけるコドン使用頻度にあわせて、コドンを至適化されることが好ましい。各種生物が使用するコドンの情報は、Codon Usage Database(www.kazusa.or.jp/codon/)から入手可能である。例えば、配列番号1および配列番号3で示されるω3不飽和化酵素遺伝子をモルティエレラ・アルピナ(Mortierella alpina)のコドン使用頻度(www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=64518)にあわせてコドン至適化した場合、それぞれ、配列番号5および配列番号6で示されるポリヌクレオチドとなる。したがって、本発明のω3不飽和化酵素遺伝子としては、上記(a)~(h)に示されるヌクレオチド配列からなるポリヌクレオチドを基に、各種生物のコドン使用頻度にあわせてコドンを至適化されたポリヌクレオチドが挙げられる。
 次に、調製された本発明のω3不飽和化酵素遺伝子から、本発明のω3不飽和化酵素を発現させる。当該酵素は無細胞系で発現させてもよいが、本発明のω3不飽和化酵素遺伝子を宿主細胞に導入して形質転換細胞を得、当該形質転換細胞に本発明のω3不飽和化酵素を発現させてもよい。
 本発明のω3不飽和化酵素遺伝子を導入する宿主細胞としては、細菌、真菌、藻類などの微生物の細胞が好ましいが、特に限定されない。宿主細胞への遺伝子の導入には、本発明のω3不飽和化酵素遺伝子を含むベクターを用いることができる。導入に使用されるベクターの種類は、宿主細胞の種類や、クローニングの方法、遺伝子発現の方法等に応じて適宜選択することができる。例えば、細胞のゲノム外に存在するベクター上の遺伝子から直接本発明のω3不飽和化酵素を発現させる場合、発現ベクターが好ましく用いられる。適切なベクターに本発明のω3不飽和化酵素遺伝子を組み込み、得られた本発明のω3不飽和化酵素遺伝子を含むベクターを、宿主細胞へ導入する。細胞へのベクターの導入には、エレクトロポレーション法、パーティクルガン(遺伝子銃)法、コンピテント細胞法、プロトプラスト法、リン酸カルシウム共沈法、Agrobacterium tumefaciens-mediated transformation(ATMT)法およびその改変法(Appl.Environ.Microbiol.,2009,75:5529-5535)などの公知の方法を使用することができる。このとき、ベクターに適切なマーカー遺伝子を組み込んでおけば、マーカーの発現を指標に、本発明の遺伝子を含むベクターが導入された形質転換細胞を選別することができる。
 上記形質転換細胞により、本発明のω3不飽和化酵素が発現される。発現された本発明のω3不飽和化酵素は、公知のタンパク質の単離または精製法によって単離、および必要に応じて精製することができる。
 本発明のω3不飽和化酵素は、細胞が増殖しやすい常温、例えば20℃以上の温度条件下において高いω3不飽和化活性を有し、EPA等のω3不飽和脂肪酸の生合成に機能を発揮することができる。したがって、本発明のω3不飽和化酵素を発現する細胞を常温で培養すれば、当該細胞が容易に増殖するとともに、その増殖した細胞内で発現した本発明のω3不飽和化酵素によりω3不飽和脂肪酸の生合成が行われるので、EPA等のω3不飽和脂肪酸を効率よく生産することが可能になる。
 したがって、本発明はまた、本発明のω3不飽和化酵素を発現する細胞を培養することを含む、EPA含有脂質の生産方法を提供する。また本発明は、上記本発明のEPA含有脂質の生産方法により生産されたEPA含有脂質を精製することを含む、EPAの生産方法を提供する。
 上記本発明のω3不飽和化酵素を発現する細胞としては、当該酵素を本来発現する細胞であってもよく、または当該酵素を発現するように改変された細胞であってもよい。本発明のω3不飽和化酵素を本来発現する細胞としては、ピシウム・フォリキュロサム、ピシウム・トルロサムおよびピシウム・スルカトゥムが挙げられる。本発明のω3不飽和化酵素を発現するように改変された細胞としては、上述したような、本発明のω3不飽和化酵素遺伝子の導入により本発明のω3不飽和化酵素の発現能を獲得した形質転換細胞が挙げられる。当該形質転換細胞は、植物、細菌、真菌、藻類などに由来する任意の細胞であり得るが、細菌、真菌、藻類などの微生物の細胞であることが好ましい。あるいは、上記ピシウム・フォリキュロサム、ピシウム・トルロサムまたはピシウム・スルカトゥムを、本発明のω3不飽和化酵素の発現が向上するように改変して、本発明のEPA含有脂質の生産方法に用いることができる。
 本発明のEPA含有脂質の生産方法において、上記本発明のω3不飽和化酵素を発現する細胞は、本発明のω3不飽和化酵素の働きによってEPAを生産する。したがって、当該細胞は、本発明のω3不飽和化酵素の発現能を有することに加えて、当該酵素の基質となるアラキドン酸(ARA)を生産する能力を本来有するか、またはARAを生産することができるように改変されている。好ましくは、当該細胞は、ω6高度不飽和脂肪酸代謝経路を本来有するか、または当該経路を有するように改変されている。より好ましくは、当該細胞は、ω6高度不飽和脂肪酸代謝経路およびω3高度不飽和脂肪酸代謝経路を本来有するか、または当該両経路を有するように改変されている。図1に示すように、ω6高度不飽和脂肪酸代謝経路により生成されたARAは、ω3不飽和化酵素の働きによりEPAへと変換される。あるいは、LA、GLA、DGLA等のω6高度不飽和脂肪酸は、ω3不飽和化酵素の働きによりALA、SDA、ETA等のω3高度不飽和脂肪酸へと変換され、そしてこれらのω3高度不飽和脂肪酸から、ω3高度不飽和脂肪酸代謝経路によりEPAが生成される。
 したがって、本発明のEPA含有脂質の生産方法に使用される細胞の好適な例としては、本発明のω3不飽和化酵素を発現する能力を有し、かつω6高度不飽和脂肪酸代謝経路を有しアラキドン酸を産生することができる脂質生産微生物(oleaginous microorganisms)が挙げられる。より好ましくは、当該脂質生産微生物は、さらにω3高度不飽和脂肪酸代謝経路を有する。そのような脂質生産微生物の例としては、上述したピシウム・フォリキュロサム、ピシウム・トルロサムおよびピシウム・スルカトゥム、ならびにω6高度不飽和脂肪酸代謝経路によりアラキドン酸産生する能力を有する脂質生産微生物であって、好ましくはさらにω3高度不飽和脂肪酸代謝経路を有し、かつ本発明のω3不飽和化酵素を発現するように改変されたものが挙げられる。
 上記本発明のω3不飽和化酵素を発現するように改変された脂質生産微生物は、ω6高度不飽和脂肪酸代謝経路を有しアラキドン酸を産生する能力を有する脂質生産微生物であって、好ましくはさらにω3高度不飽和脂肪酸代謝経路を有する脂質生産微生物に、本発明のω3不飽和化酵素遺伝子を導入することにより得ることができる。当該脂質生産微生物への本発明のω3不飽和化酵素遺伝子の導入は、宿主細胞への遺伝子導入に関して上述した手順に従って行うことができるが、以下により具体的な手順を説明する。
 本発明のω3不飽和化酵素遺伝子を導入されるべき脂質生産微生物の例としては、ピシウム属菌、酵母菌、およびモルティエレラ(Mortierella)属、ムコール(Mucor)属、ウンベロプシス(Umbelopsis)属等の糸状菌などが挙げられ、好ましくは、モルティエレラ・アルピナ(Mortierella alpina、以下の本明細書においてM.alpinaということがある)、モルティエレラ・クラミドスポラ(Mortierella chlamydospora)、モルティエレラ・エロンガタ(Mortierella elongata)、モルティエレラ・エキシグア(Mortierella exigua)、モルティエレラ・フィグロフィラ(Mortierella hygrophila)、モルティエレラ・エピガマ(Mortierella epigama)、モルティエレラ・アクロトナ(Mortierella acrotona)、モルティエレラ・ミヌティシマ(Mortierella minutissima)、モルティエレラ・リギコラ(Mortierella lignicola)、モルティエレラ・クロノシスティス(Mortierella clonocystis)、モルティエレラ・ナナ(Mortierella nana)、モルティエレラ・フミコラ(Mortierella humicola)、モルティエレラ・バイニエリ(Mortierella bainieri)、モルティエレラ・ヒアリン(Mortierella hyaline)、モルティエレラ・グロバルピナ(Mortierella globalpina)、ウンベロプシス・ナナ(Umbelopsis nana)、ウンベロプシス・イサベリナ(Umbelopsis isabellina)等のモルティエレラ属微生物が挙げられ、より好ましくは、モルティエレラ・アルピナ(M.alpina)、モルティエレラ・クロノシスティス、モルティエレラ・ナナ、モルティエレラ・フミコラ、モルティエレラ・バイニエリ、モルティエレラ・ヒアリン、モルティエレラ・グロバルピナなどが挙げられるが、これらに限定されない。
 さらに、上記本発明の遺伝子を導入されるべき脂質生産微生物は、ω6高度不飽和脂肪酸代謝経路を有しアラキドン酸を産生する能力を有する限りにおいて、上述したピシウム・フォリキュロサム、ピシウム・トルロサム、ピシウム・スルカトゥム等のピシウム属、酵母、およびモルティエレラ属の微生物の変異株であってもよい。当該変異株は、本発明のω3不飽和化酵素以外のω3不飽和化酵素を発現する必要はないので、当該微生物が本来有するω3不飽和化酵素を欠く欠損株であってもよい。このような変異株や欠損株の例としては、M.alpina 1S-4(Agric.Biol.Chem.,1987,51(3):785-790)、M.alpina ST1358(Biosci.Biotechnol.Biochem.,2010,74:908-917)などが挙げられる。
 上記脂質生産微生物の変異株や欠損株は、常法、例えば、メタンスルホン酸エチル(EMS)、メタンスルホン酸メチル(MMS)、N-メチル-N-ニトロ-N-ニトロソグアニジン(J.Gen.Microbiol.,1992,138:997-1002)、5-ブロモデオキシウリジン(BrdU)、シスプラチン、マイトマイシンC等の変異原による処理や、放射線照射、紫外線照射、高熱処理等による突然変異誘発、またはRNAiによる遺伝子発現抑制などによって得ることができる。
 本発明のω3不飽和化酵素遺伝子は、上記微生物のゲノム内に導入されてもよく、または発現ベクターに組み込まれた状態でゲノム外に導入されてもよい。いずれの場合も、本発明のω3不飽和化酵素遺伝子は、当該遺伝子を含むベクターとともに導入することが好ましい。遺伝子導入に用いるベクターは、遺伝子が導入される微生物の種類や、クローニングの方法、遺伝子発現の方法等に応じて、当業者が適宜選択することができる。例えば、モルティエレラ属微生物に対するゲノム外への遺伝子導入に用いるベクターとしては、pD4ベクター(Appl.Environ.Microbiol.,2000,66(11):4655-4661)、pDZeoベクター(J.Biosci.Bioeng.,2005,100(6):617-622)、pDura5ベクター(Appl.Microbiol.Biotechnol.,2004,65(4):419-425)、pDXベクター(Curr.Genet.,2009,55(3):349-356)、pBIG3ura5(Appl.Environ.Microbiol.,2009,75:5529-5535)などが挙げられる。
 さらに、上記ベクターには、組み込まれた本発明の遺伝子を発現させるためのプロモーター配列もしくは転写終結シグナル配列、または目的遺伝子が導入された形質転換体を選択するための選択マーカー遺伝子が含まれていることが好ましい。プロモーターとしては高発現プロモーターが好ましい。例えば、モルティエレラ属微生物用の好ましい高発現プロモーターとしては、M.alpina由来のPP3プロモーターおよびSSA2プロモーター、ならびにこれらのプロモーターの配列に置換、欠失、付加等を加えて改変したプロモーターが挙げられるが、導入した遺伝子を高発現させることができれば、これらに限定されない。選択マーカー遺伝子としては、例えば、カナマイシン耐性遺伝子、ストレプトマイシン耐性遺伝子、カルボキシン耐性遺伝子、ゼオシン耐性遺伝子、ハイグロマイシン耐性遺伝子等の薬剤耐性遺伝子、ロイシン、ヒスチジン、メチオニン、アルギニン、トリプトファン、リジン等のアミノ酸要求変異を相補する遺伝子等、ウラシル、アデニン等の核酸塩基要求性変異を相補する遺伝子などを挙げることができる。好ましい選択マーカー遺伝子の例としては、ウラシル要求性変異を相補する遺伝子が挙げられる。例えば、M.alpinaのウラシル要求性変異株(Biosci.Biotechnol.Biochem.,2004,68:277-285)が開発されている。このようなウラシル要求株に対しては、選択マーカー遺伝子としてオロチジン-5’-リン酸デカルボキシラーゼ遺伝子(ura3遺伝子)、またはオロチジル酸ピロホスホリラーゼ遺伝子(ura5遺伝子)を使用することができる。ベクターを構築するための手順や使用する試薬類、例えば制限酵素またはライゲーション酵素等の種類については、特に限定されるものではない。当業者は、通常の知識に従って、または市販品を適宜用いてベクターを構築することができる。
 M.alpinaへの本発明のω3不飽和化酵素遺伝子の導入に使用することができる形質転換バイナリーベクターの例を、図2に示す。当該ベクターにおいては、恒常的高発現プロモーターであるPP3プロモーターまたはSSA2プロモーターの下流に、本発明のω3不飽和化酵素をコードするポリヌクレオチド(Ptω3mod)が連結されており、さらにターミネーターとしてsdhBターミネーター、形質転換体の選択マーカーとしてura5遺伝子が組み込まれている。
 本発明のω3不飽和化酵素遺伝子を微生物のゲノム内に直接導入する方法としては、相同組換え法が挙げられる。本発明の遺伝子とともに導入先とするゲノムの相補配列を含むベクターを準備し、そのベクターを微生物に導入すれば、相同組換えにより当該微生物のゲノム上の標的とする位置に本発明のω3不飽和化酵素遺伝子が組み込まれる。当該ベクターには、必要に応じて、上述したプロモーター配列、転写終結シグナル配列または選択マーカー遺伝子が一緒に組み込まれていてもよい。
 微生物へのベクターの導入手段は、微生物やベクターの種類に応じて当業者が適宜選択すればよい。例えば、モルティエレラ属微生物等の真菌類への導入の場合、エレクトロポレーション法、パーティクルガン(遺伝子銃)法、ATMT法およびその改変法(Appl.Environ.Microbiol.,2009,75:5529-5535)などが挙げられ、ATMT法およびその改変法が好ましいが、目的の形質を安定して保持する形質転換体を得ることができれば、遺伝子導入法はこれらの方法に限定されない。
 さらに、本発明のEPA含有脂質の生産方法に使用される、本発明のω3不飽和化酵素を発現する細胞は、そのω6高度不飽和脂肪酸代謝経路を活性化させるような改変を施されていてもよい。例えば、当該細胞に、Δ12不飽和化酵素をコードする遺伝子を導入して当該酵素を高発現させることによって、当該細胞内でのオレイン酸からリノール酸への変換が促進されて、ω6高度不飽和脂肪酸代謝経路を活性化させることができる。当該経路の活性化は、本発明の酵素の基質となるω6高度不飽和脂肪酸量を増加させるので、結果としてEPAの産生が促進される。
 本発明のEPA含有脂質の生産方法において、以上の手順で得られた本発明のω3不飽和化酵素を発現する細胞は、液体培地または固体培地に接種され、培養される。培養の条件は、細胞の種類に応じて当業者が最適化することができる。例えば、当該細胞が真菌の場合、菌株の胞子、菌糸、または予め培養して得られた前培養液を、上記培地に接種して培養することができる。培地の炭素源としてはグルコース、フルクトース、キシロース、サッカロース、マルトース、可溶性デンプン、コーンスターチ、グリセロール、マンニトール、脂質、アルカン、アルケン等が挙げられるが、これらに限定されない。窒素源としてはペプトン、酵母エキス、麦芽エキス、肉エキス、カザミノ酸、コーンスティープリカー、大豆タンパク、脱脂ダイズ、綿実カス、小麦フスマ等の天然窒素源の他に、尿素等の有機窒素源、並びに、硝酸ナトリウム、硝酸アンモニウム、硫酸アンモニウム等の無機窒素源が挙げられるが、これらに限定されない。さらに、大豆油、ココナッツ油、コーン油等の脂質を添加してもよい。添加する脂質は、大豆油、コーン油等のリノール酸を多く含む油脂が好ましく、大豆油がより好ましい。また、微量栄養源として、リン酸塩、硫酸マグネシウム、硫酸鉄、硫酸銅等の無機塩、またはビタミン等も適宜添加することができる。これらの培地成分は、培養する微生物の生育を害しない濃度であれば特に制限されない。例えば、炭素源は培地中0.1~40質量%、好ましくは1~25質量%、窒素源は0.01~10質量%、好ましくは0.1~10質量%の濃度とすることができる。M.alpinaまたはその変異株を培養する場合、後述のCzapek培地、Czapek-dox培地、グルコース・酵母エキス(以下、「GY」ともいう)培地、SC培地等を使用することができる。あるいは、モルティエレラ属微生物用の培地については、公知の文献(例えば国際公開第98/29558号)を参考にすることもできる。培地のpHは4~10、好ましくは6~9であり得る。培養は、通気撹拌培養、振盪培養または静置培養であり得る。
 上記細胞の増殖を促してEPAの収量を増加させるためには、当該細胞の培養は至適生育温度で行われることが好ましい。例えば、当該細胞は、約5~60℃、好ましくは約10~50℃、より好ましくは約10~40℃、さらに好ましくは約20~40℃、なお好ましくは約20~30℃で培養され得る。例えば、細胞がM.alpinaまたはその変異株の場合、約10~40℃、好ましくは約20~40℃、より好ましくは約20~30℃で培養するのがよい。当該細胞の培養期間は、例えば2~20日間、好ましくは2~14日間であり得る。なお、モルティエレラ属微生物の培養法については、公知の文献(例えば、特開平6-153970号公報)を参考にすることもできる。
 上記手順で本発明のω3不飽和化酵素を発現する細胞を培養することによって、当該細胞内にEPAを高含有する脂質が生産される。培養終了後、培養液を遠心分離、ろ過等の常用の手段にかけ、細胞を分離する。例えば、培養液を遠心分離またはろ過して液体分を除き、分離された細胞を洗浄後、凍結乾燥、風乾等により乾燥させ、乾燥細胞を得る。当該乾燥細胞から、有機溶媒抽出等の公知の手法により、目的とする脂質を抽出することができる。有機溶媒としてはヘキサン、エーテル、酢酸エチル、酢酸ブチル、クロロホルム、シクロヘキサン、ベンゼン、トルエン、キシレン等の、高度不飽和脂肪酸の溶解性が高く、かつ水と分離可能な溶媒が挙げられる。または、これらの有機溶媒を組み合わせて使用することもできる。抽出物から減圧等で有機溶媒を留去することにより、目的の脂質を抽出することができる。あるいは、細胞を乾燥させずに、湿細胞から脂質の抽出を行うこともできる。得られた脂質は、脱ガム、脱酸、脱臭、脱色、カラム処理、蒸留等一般的な方法を適宜用いてさらに精製されてもよい。
 上記抽出した脂質の中には、本発明の方法の目的物であるEPA以外に、共雑物となる各種脂肪酸が含まれている。したがって、上記脂質をさらに精製してより純度の高いEPAを取得することができる。EPAは、脂質から直接分離することもできるが、一旦脂質中の脂肪酸を低級アルコールとのエステル誘導体に変換した後に、目的とするEPAのエステル誘導体を分離することが好ましい。エステル誘導体は、炭素数、二重結合の数、位置の違い等に応じて、各種分離精製操作を用いることによって分離することができるため、容易に目的の脂肪酸のエステル誘導体を得ることができる。しかしながら、EPAと炭素数が同一で二重結合数が一つ異なるアラキドン酸は、EPAとの分離が難しいため、EPAを含有する脂質中にアラキドン酸は少ないことが好ましい。エステル誘導体は、エチルエステル誘導体が好ましい。エステル化には、塩酸、硫酸、BF3等の酸触媒、またはナトリウムメトキシド、水酸化カリウム等の塩基触媒を含む低級アルコールを使用することができる。得られたエステル誘導体から、カラムクロマトグラフィー、低温結晶化法、尿素付加分別法等を単独または組み合わせて、目的とするEPAのエステル誘導体を分離することができる。分離したEPAのエステル誘導体を、アルカリで加水分解した後、エーテル、酢酸エチル等の有機溶媒で抽出することにより、EPAを精製することができる。EPAは塩の形態で精製されてもよい。
 本発明によるEPAを高含有する脂質の生産を工業的な規模で行う場合、例えば、本発明のω3不飽和化酵素を発現する脂質生産微生物をタンク中等で大規模培養し、フィルタープレス等でろ過し、細胞を回収して乾燥後、ボールミル等で細胞を破砕し、有機溶媒で脂質を抽出することができる。また、工業規模で微生物中の成分を抽出して利用する方法や、脂質からEPAを精製する方法は数多く知られており、これらを適宜改変して本発明の方法に利用することもできる。
 本発明で得られたEPAは、ヒトまたは非ヒト動物用の医薬品、化粧料、食品、飼料等の製造に使用することができる。当該医薬品の剤型としては、例えば、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤、ドライシロップ剤、液剤、懸濁剤等の経口剤;吸入剤、坐剤等の経腸製剤;点滴剤;注射剤;外用剤;経皮、経粘膜、経鼻剤;吸入薬;貼布剤等が挙げられる。また当該化粧料の形態としては、クリーム、乳液、ローション、懸濁液、ジェル、パウダー、パック、シート、パッチ、スティック、ケーキ等、化粧品が通常とり得る任意の形態が挙げられる。
 上記医薬品または化粧料は、EPAまたはその塩を有効成分として含有する。上記医薬品または化粧料はまた、医薬として許容される担体または化粧料として許容される担体、例えば、賦形剤、崩壊剤、結合剤、滑沢剤、界面活性剤、pH調整剤、分散剤、乳化剤、防腐剤、酸化防止剤、着色剤、アルコール、水、水溶性高分子、香料、甘味料、矯味剤、酸味料等を含有していてもよく、さらに必要に応じて他の有効成分、例えば薬効成分、化粧成分等を含有していてもよい。上記医薬または化粧料は、EPAまたはその塩に、上記担体や他の有効成分を剤型に応じて配合し、常法に従って調製することにより、製造することができる。上記医薬または化粧料におけるEPAの含有量は、その剤型により異なるが、通常は、0.1~99質量%、好ましくは1~80質量%の範囲である。
 上記飲食品または飼料は、EPAまたはその塩を有効成分として含有する。これらの飲食品または飼料は、血小板凝集阻害作用、血中中性脂肪低下作用、抗動脈硬化作用、血液粘度低下作用、血圧降下作用、抗炎症作用、抗腫瘍作用等の効果を企図して、その旨を表示した健康食品、機能性飲食品、特定保健用飲食品、病者用飲食品、家畜、競走馬、鑑賞動物等のための飼料、ペットフード等であり得る。
 上記飲食品または飼料の形態は特に制限されず、EPAまたはその塩を配合できる全ての形態が含まれる。例えば、当該飲食品の形態としては、固形、半固形または液状であり得、あるいは、錠剤、チュアブル錠、粉剤、カプセル、顆粒、ドリンク、ゲル、シロップ、経管経腸栄養用流動食等の各種形態が挙げられる。具体的な飲食品の形態の例としては、緑茶、ウーロン茶や紅茶等の茶飲料、コーヒー飲料、清涼飲料、ゼリー飲料、スポーツ飲料、乳飲料、炭酸飲料、果汁飲料、乳酸菌飲料、発酵乳飲料、粉末飲料、ココア飲料、アルコール飲料、精製水などの飲料、バター、ジャム、ふりかけ、マーガリンなどのスプレッド類、マヨネーズ、ショートニング、カスタードクリーム、ドレッシング類、パン類、米飯類、麺類、パスタ、味噌汁、豆腐、牛乳、ヨーグルト、スープまたはソース類、菓子(例えばビスケットやクッキー類、チョコレート、キャンディ、ケーキ、アイスクリーム、チューインガム、タブレット)などが挙げられる。上記飼料は、飲食品とほぼ同様の組成や形態で利用できることから、本明細書における飲食品に関する記載は、飼料についても同様に当てはめることが出来る。
 上記飲食品または飼料は、EPAまたはその塩、ならびに飲食品や飼料の製造に用いられる他の飲食品素材、各種栄養素、各種ビタミン、ミネラル、アミノ酸、各種油脂、種々の添加剤(たとえば呈味成分、甘味料、有機酸等の酸味料、界面活性剤、pH調整剤、安定剤、酸化防止剤、色素、フレーバー)等を配合して、常法に従って調製することにより製造することができる。あるいは、通常食されている飲食品または飼料にEPAまたはその塩を配合することにより、本発明に係る飲食品または飼料を製造することができる。上記飲食品または飼料におけるEPAまたはその塩の含有量は、食品の形態により異なるが、通常は、0.01~80質量%、好ましくは0.1~50質量%、より好ましくは1~30質量%の範囲である。
 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。
(培地)
 GY培地:2%(w/v)グルコース、1%酵母エキス。
 Czapek-Dox寒天培地:3%スクロース、0.2%NaNO、0.1%KHPO、0.05%KCl、0.05%MgSO・7HO、0.001%FeSO・7HO、2%寒天、pH6.0。
 LB-Mg寒天培地:1%トリプトン、0.5%酵母エキス、85mM NaCl、0.5mM MgSO・7HO、0.5mM NaOH、1.5%寒天、pH7.0。
 最少培地(MM):10mM KHPO、10mM KHPO、2.5mM NaCl、2mM MgSO・7HO、0.7mM CaCl、9μM FeSO・7HO、4mM (NHSO、10mMグルコース、pH7.0。
 誘導培地(IM):MMに0.5%(w/v)グリセロール、200μMアセトシリンゴン、40mM 2-(N-モルホリノ)エタンスルホン酸(MES)を加えて、pH5.3に調製。
 SC培地:5.0g Yeast Nitrogen Base w/o Amino Acids and Ammonium Sulfate(Difco)、1.7g (NHSO、20gグルコース、20g寒天、20mgアデニン、30mgチロシン、1.0mgメチオニン、2.0mgアルギニン、2.0mgヒスチジン、4.0mgリジン、4.0mgトリプトファン、5.0mgスレオニン、6.0mgイソロイシン、6.0mgロイシン、6.0mg Lフェニルアラニン。
実施例1 ω3不飽和化酵素の同定
 ピシウム・フォリキュロサムをGY培地10mL中にて28℃で5日間振とう培養し、菌体を回収した。集菌した菌体を2mLチューブに入れ、ビーズショッカー(Yasui Kikai)を用いて1700rpm、10秒×2回の条件にて破壊した。破壊した菌体から、ISOGEN(Bio-Rad)を用いて、製品プロトコールに従いmRNAを抽出した。抽出したmRNAを、Prime ScriptTMII High Fidelity RT-PCR Kit(TaKaRa)およびプライマー〔5'-GAAATGGCCGACGTGAACACCTCCTCGC-3'(配列番号7)、および5'-CTATGCGCGCTTGGTGAGCACCTCGC-3'(配列番号8)〕を用いて逆転写し、配列番号1で示されるcDNAを調製した。このcDNAは、配列番号2で示されるアミノ酸配列のポリペプチドをコードしていた。
 同様の手順で、ピシウム・スルカトゥムから抽出したmRNAを、プライマー〔5'-CTACGTCAAGGGCAACCTCTCGTCC-3'(配列番号9)および5'-AAAGCCGAACGACAGCACCATCTTG-3'(配列番号10)〕を用いて逆転写し、配列番号3で示されるcDNAを調製した。このcDNAは、配列番号4で示されるアミノ酸配列のポリペプチドをコードしていた。
 上記で調製したcDNA(配列番号1)を、酵母発現用ベクターpYE22m(Biosci.Biotech.Biochem.,1995,59:1221-1228)に組み込み、このベクターをサッカロマイセス・セレビシエInvSc1株(トリプトファン要求性の油性酵母)にエレクトロポレーション法により導入し、形質転換した。形質転換株をYPD培地(ポリペプトン20g、酵母抽出物10g、アデニン0.4g、寒天20gおよびグルコース20gを1000mLの水に希釈)にて28℃で1日間培養し、組み込んだcDNAからポリペプチドを発現させた。なお、この培養条件では当該油性酵母本来のω3不飽和化酵素は発現しない。次いで、培地に各種ω6不飽和脂肪酸:リノール酸(LA、18:2n-6)、γ-リノレン酸(GLA、18:3n-6)、ジホモ-γ-リノレン酸(DGLA、20:3n-6)、またはアラキドン酸(ARA、20:4n-6)を添加して28℃で2日間培養し、その後ω3不飽和化によって生成する対応するω3不飽和脂肪酸:α-リノレン酸(ALA、18:3n-3)、ステアドリン酸(SDA、18:4n-3)、エイコサテトラエン酸(ETA、20:4n-3)、またはエイコサペンタエン酸(EPA、20:5n-3)の量を測定した。
 その結果、LA、GLA,DGLAおよびARAはいずれも対応するω3不飽和脂肪酸へと変換されたことから、上記cDNA(配列番号1)にコードされるポリペプチド(配列番号2)が常温下でω3不飽和化活性を有する酵素であることが確認された(表1)。
Figure JPOXMLDOC01-appb-T000001
実施例2 ω3不飽和化酵素遺伝子導入用ベクターの作製
 配列番号1のヌクレオチド配列を、M.alpinaにあわせてコドン至適化し、配列番号5で示されるポリヌクレオチドを得た。この配列番号5で示されるポリヌクレオチドのCDS(ヌクレオチド番号1~1110)の上流および下流にSpeIおよびBamHIサイトを構築し、SpMA-RQ(ampR)プラスミドにクローニングした。調製したプラスミドを、SpeIおよびBamHI制限酵素で処理し、得られた遺伝子の断片を、恒常的高発現プロモーターであるHis550プロモーターまたはSSA2プロモーターを含むプラスミドpBIG35(京都府立大学から提供されたpBIG2RHPH2を改変、Appl.Environ.Microbiol.,2009,75:5529-5535に記載)に連結し、発現カセットを構築した。当該発現カセットを、さらに、ウラシル要求性のマーカー遺伝子(ura5)とタンデムに連結させ、形質転換用バイナリーベクター、pBIG-ω3HisPおよびpBIG-ω3SSA2Pを構築した(図2)。
実施例3 ω3不飽和化酵素遺伝子導入株の作製
 M. alpina(ウラシル要求性株)を0.05mg/mLウラシル含有Czapek-Dox寒天培地で培養し、培養物を集菌し、次いでMiracloth(Calbiochem)でろ過することで、M.alpinaの胞子懸濁液を調製した。当該M.alpina(ウラシル要求性株)に、実施例2で構築したpBIG-ω3Hisベクターを以下に説明するATMT法(Appl.Environ.Microbiol.,2009,75:5529-5535)により導入し、ω3不飽和化酵素導入株を作製した。
 アグロバクテリウム(Agrobacterium tumefaciens C58C1、京都府立大学から提供)に、上記バイナリーベクターpBIG-ω3Hisをエレクトロポレーションにて導入し、LB-Mg寒天培地にて28℃で48時間培養した。PCR法で当該ベクターを含むアグロバクテリウムを選別した。当該ベクターを有するアグロバクテリウムを最小培地(MM)で2日間培養し、5,800×gで遠心分離し、新鮮な誘導培地(IM)を加えて懸濁液を調製した。当該懸濁液を、8~12時間、28℃でOD660が0.4から3.7になるまでロータリーシェーカーで誘導培養した。培養後の菌懸濁液100μLを、等量の上記M.alpina懸濁液(10mL-1)と混合し、ニトロセルロース膜(直径70mm;hardened low-ash grade 50、Whatman)を載せた共培養培地(IMと同様の組成、ただし、10mMグルコースの代わりに5mMグルコースおよび1.5%寒天を含む)上に塗布し、23℃で2~5日間培養した。共培養後、当該膜をウラシルフリー、50g/mLセフォタキシムおよび50g/mLスペクチノマイシン、0.03%Nile blue A(Sigma)を含むSC培地に移し、28℃で5日間培養した。可視可能な真菌コロニーからの菌糸を、新鮮なウラシルフリーSC培地に移した。ウラシルフリーSC培地で増殖することができるが、5-フルオロオロチン酸(5-FOA)を含むGY培地では増殖できない菌体を、形質を安定して保持するω3不飽和化酵素遺伝子導入株と判断した。形質を安定して保持する形質転換体を選抜するために当該作業を3回行った。
実施例4 ω3不飽和化酵素遺伝子導入株の作製
 遺伝子導入用ベクターとしてpBIG-ω3SSA2Pを用いた以外は、実施例3と同様の手順でω3不飽和化酵素導入株を作製した。
実施例5 ω3不飽和化酵素遺伝子導入株によるω3不飽和脂肪酸の生産
 実施例3および4で得られたω3不飽和化酵素遺伝子導入M.alpina株を、それぞれ10mLのGY培地にて、28℃で7日間、300rpmで好気的に培養した。対照として、当該ω3不飽和化酵素遺伝子を導入していないM.alpina株を同様に培養した。各培養液から吸引ろ過にて菌体を回収し、120℃で3時間乾燥した。乾燥菌体に、0.5mg/mLの内部標準(M.alpinaが生合成できない炭素数23の飽和脂肪酸)を含むジクロロメタン溶液1mLおよび塩酸メタノール2mLを加え、55℃、2時間の温浴にて脂肪酸をメチルエステル化した。反応液に蒸留水1mLとヘキサン4mLを加えてヘキサン層を抽出し、減圧遠心して脂肪酸メチルエステルを回収した。
 回収したサンプルをクロロホルムに溶解し、ガス液体クロマトグラフィー(GLC)にてサンプル中の脂肪酸組成を測定した。GLCは、島津社製GC-2010を用い、GLサイエンス社製キャピラリーカラムTC70(0.25mm×60m)を用い、カラム温度180℃、気化室温度250℃、検出器温度250℃、キャリアガスHe、メイクアップガスN、H流量40mL/min、Air流量400mL/min、スプリット比50、分析時間30minの条件にて行った。抽出された各脂肪酸の量を、GLCのチャートのピーク面積値から内部標準の脂肪酸量を基準として定量し、総脂肪酸量に対する各脂肪酸の割合を求めた。
 その結果、実施例3および実施例4のω3不飽和化酵素遺伝子導入株では、それぞれ、9.1%および18.1%のEPAの蓄積がみられた。一方、対照株ではEPAは産生されなかった(蓄積を測定できず)。

Claims (8)

  1.  配列番号2に示されるアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなり、かつω3不飽和化活性を有するポリペプチド。
  2.  配列番号2に示されるアミノ酸配列と80%以上の同一性を有するアミノ酸配列が、以下のアミノ酸配列である、請求項1記載のポリペプチド:
    (A)配列番号2に示されるアミノ酸配列;
    (B)配列番号2に示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列;
    (C)配列番号2に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列;
    (D)配列番号4に示されるアミノ酸配列;
    (E)配列番号4に示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列;または、
    (F)配列番号4に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列。
  3.  請求項1又は2記載のポリペプチドをコードするポリヌクレオチド。
  4.  下記に示されるヌクレオチド配列からなる請求項3記載のポリヌクレオチド:
    (a)配列番号1に示されるヌクレオチド配列;
    (b)配列番号1に示されるヌクレオチド配列と90%以上の同一性を有するヌクレオチド配列;
    (c)配列番号1に示されるヌクレオチド配列において、1個または複数個のヌクレオチドの欠失、置換、挿入および付加から選択される変異を施されたヌクレオチド配列;
    (d)配列番号1に示されるヌクレオチド配列とストリンジェントな条件でハイブリダイズするヌクレオチド配列;
    (e)配列番号3に示されるヌクレオチド配列;
    (f)配列番号3に示されるヌクレオチド配列と90%以上の同一性を有するヌクレオチド配列;
    (g)配列番号3に示されるヌクレオチド配列において、1個または複数個のヌクレオチドの欠失、置換、挿入および付加から選択される変異を施されたヌクレオチド配列;
    (h)配列番号3に示されるヌクレオチド配列とストリンジェントな条件でハイブリダイズするヌクレオチド配列;または、
    (i)該(a)~(h)に示されるヌクレオチド配列をコドン至適化したヌクレオチド配列。
  5.  請求項3又は4記載のポリヌクレオチドを含むベクター。
  6.  請求項3又は4記載のポリヌクレオチドが導入された形質転換細胞。
  7.  請求項1又は2記載のポリペプチドを発現する細胞を培養することを含む、エイコサペンタエン酸含有脂質の生産方法。
  8.  請求項7記載の方法により生産されたエイコサペンタエン酸含有脂質を精製することを含む、エイコサペンタエン酸の生産方法。
PCT/JP2014/072228 2013-08-27 2014-08-26 ω3不飽和脂肪酸酵素およびエイコサペンタエン酸の製造方法 WO2015029966A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14839231.9A EP3040415A4 (en) 2013-08-27 2014-08-26 Omega-3 UNSATURATED FATTY ACID ENZYME AND METHOD FOR PRODUCING EICOSAPENTAENOIC ACID
US14/915,178 US20160208297A1 (en) 2013-08-27 2014-08-26 Omega3 unsaturated fatty acid enzyme and method for producing eicosapentaenoic acid
CN201480047402.5A CN105683368A (zh) 2013-08-27 2014-08-26 ω3不饱和脂肪酸酶和二十碳五烯酸的制备方法
JP2015534212A JPWO2015029966A1 (ja) 2013-08-27 2014-08-26 ω3不飽和脂肪酸酵素およびエイコサペンタエン酸の製造方法
HK16111424.5A HK1223126A1 (zh) 2013-08-27 2016-09-30 不飽和脂肪酸酶和二十碳五烯酸的製備方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-175757 2013-08-27
JP2013175757 2013-08-27

Publications (1)

Publication Number Publication Date
WO2015029966A1 true WO2015029966A1 (ja) 2015-03-05

Family

ID=52586523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072228 WO2015029966A1 (ja) 2013-08-27 2014-08-26 ω3不飽和脂肪酸酵素およびエイコサペンタエン酸の製造方法

Country Status (6)

Country Link
US (1) US20160208297A1 (ja)
EP (1) EP3040415A4 (ja)
JP (1) JPWO2015029966A1 (ja)
CN (1) CN105683368A (ja)
HK (1) HK1223126A1 (ja)
WO (1) WO2015029966A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104607A1 (ja) * 2014-12-25 2016-06-30 国立大学法人京都大学 新規ω3不飽和脂肪酸酵素およびエイコサペンタエン酸の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531521B (zh) * 2018-03-07 2021-10-01 中国科学院微生物研究所 一种产不饱和脂肪酸的方法
KR102614551B1 (ko) 2020-12-07 2023-12-15 씨제이제일제당 주식회사 단일 미세조류로부터 단백질 및 오메가-3 지방산을 포함하는 바이오매스를 제조하는 방법 및 이에 의해 제조된 바이오매스
KR102550213B1 (ko) 2020-12-07 2023-06-30 씨제이제일제당 주식회사 신규한 스키조키트리움 속 균주 및 이를 이용한 다중불포화지방산 생산방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314697A (ja) 1986-07-08 1988-01-21 Suntory Ltd エイコサペンタエン酸及びこれを含有する脂質の製造方法
JPH11243981A (ja) 1998-03-04 1999-09-14 Suntory Ltd アラキドン酸及び/又はエイコサペンタエン酸含有油脂の製造方法
JP2005515776A (ja) 2002-01-30 2005-06-02 アボット・ラボラトリーズ デサチュラーゼ遺伝子、前記遺伝子によりコードされる酵素及びその使用
JP2006055104A (ja) 2004-08-20 2006-03-02 Suntory Ltd ω3脂肪酸不飽和化活性を有するポリペプチドおよびそのポリペプチドをコードするポリヌクレオチドならびにそれらの利用
WO2008022963A2 (en) * 2006-08-24 2008-02-28 Basf Plant Science Gmbh Isolation and characterization of a novel pythium omega 3 desaturase with specificity to all omega 6 fatty acids longer than 18 carbon chains
JP2009534032A (ja) 2006-04-20 2009-09-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Δ17デサチュラーゼおよび多価不飽和脂肪酸の製造におけるそれらの使用
JP2010508019A (ja) 2006-10-30 2010-03-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Δ17デサチュラーゼおよび多価不飽和脂肪酸の製造におけるその使用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314697A (ja) 1986-07-08 1988-01-21 Suntory Ltd エイコサペンタエン酸及びこれを含有する脂質の製造方法
JPH11243981A (ja) 1998-03-04 1999-09-14 Suntory Ltd アラキドン酸及び/又はエイコサペンタエン酸含有油脂の製造方法
JP2005515776A (ja) 2002-01-30 2005-06-02 アボット・ラボラトリーズ デサチュラーゼ遺伝子、前記遺伝子によりコードされる酵素及びその使用
JP2006055104A (ja) 2004-08-20 2006-03-02 Suntory Ltd ω3脂肪酸不飽和化活性を有するポリペプチドおよびそのポリペプチドをコードするポリヌクレオチドならびにそれらの利用
JP2009534032A (ja) 2006-04-20 2009-09-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Δ17デサチュラーゼおよび多価不飽和脂肪酸の製造におけるそれらの使用
WO2008022963A2 (en) * 2006-08-24 2008-02-28 Basf Plant Science Gmbh Isolation and characterization of a novel pythium omega 3 desaturase with specificity to all omega 6 fatty acids longer than 18 carbon chains
JP2010508019A (ja) 2006-10-30 2010-03-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Δ17デサチュラーゼおよび多価不飽和脂肪酸の製造におけるその使用

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
AGRIC. BIOL. CHEM., vol. 51, no. 3, 1987, pages 785 - 790
AKINORI ANDO ET AL.: "Gairai DELTA17 Fuhowaka Koso Idenshi Donyu ni yoru Yuryo Biseibutsu Mortierella alpina deno Joon EPA Seisan", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2012 NENDO TAIKAI KOEN YOSHISHU, 5 March 2012 (2012-03-05), pages 4C20A01, XP008182928, Retrieved from the Internet <URL:http://www.jsbba.or.jp/MeetingofJSBBA/2012/ MeetingofJSBBA2012.pdf> [retrieved on 20141118] *
APPL. ENVIRON. MICROBIOL., vol. 66, no. 11, 2000, pages 4655 - 4661
APPL. ENVIRON. MICROBIOL., vol. 75, 2009, pages 5529 - 5535
APPL. MICROBIOL. BIOTECHNOL., vol. 65, no. 4, 2004, pages 419 - 425
APPL. MICROBIOL. BIOTECNOL., vol. 32, 1989, pages 1 - 4
APPL.ENVIRON.MICROBIOL., vol. 75, 2009, pages 5529 - 5535
BIOSCI. BIOTECH. BIOCHEM., vol. 59, 1995, pages 1221 - 1228
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 68, 2004, pages 277 - 285
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 74, 2010, pages 908 - 917
CURR. GENET., vol. 55, no. 3, 2009, pages 349 - 356
DATABASE GENBANK [online] 11 August 2013 (2013-08-11), CHENG, M. L. ET AL.: "Definition: Pythium aphanidermatum fatty acid desaturase mRNA, complete cds, TITLE, FEATURES, ORIGIN", XP055337432, accession no. NCBI Database accession no. KC918835 *
J. BIOSCI. BIOENG., vol. 100, no. 6, 2005, pages 617 - 622
J. GEN. MICROBIOL., vol. 138, 1992, pages 997 - 1002
J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
METHODS ENZYMOL., vol. 183, 1990, pages 63 - 98
PRO. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 5877
RYOHEI NAKATSUJI ET AL.: "Yuryo Biseibutsu Mortierella alpine 1S-4 o Katsuyo shita Pythium Sp. Yurai omega3 Fuhowaka Koso Idenshi Donyu ni yoru Joon EPA Seisan", ABSTRACTS OF THE 66TH ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, 5 August 2014 (2014-08-05), JAPAN, pages 125, 2P-076, XP008182933 *
See also references of EP3040415A4
THOMPSON, J. D. ET AL., NUCLEIC ACIDS RES., vol. 22, 1994, pages 4673 - 4680
WANG, M. ET AL.: "omega3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 97, no. 24, pages 10255 - 10262, XP035328730 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104607A1 (ja) * 2014-12-25 2016-06-30 国立大学法人京都大学 新規ω3不飽和脂肪酸酵素およびエイコサペンタエン酸の製造方法
US10538793B2 (en) 2014-12-25 2020-01-21 Kyoto University ω3 fatty-acid desaturase and method for producing eicosapentaenoic acid

Also Published As

Publication number Publication date
JPWO2015029966A1 (ja) 2017-03-02
HK1223126A1 (zh) 2017-07-21
EP3040415A4 (en) 2017-04-12
US20160208297A1 (en) 2016-07-21
CN105683368A (zh) 2016-06-15
EP3040415A1 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP7100324B2 (ja) オキソ脂肪酸及び希少脂肪酸の製造法
JP6340523B2 (ja) 希少脂肪酸を含む代謝改善剤
JP5346290B2 (ja) 新規な脂肪酸組成を有する脂肪酸組成物
WO2015029966A1 (ja) ω3不飽和脂肪酸酵素およびエイコサペンタエン酸の製造方法
JP5451387B2 (ja) グリセロール−3−リン酸アシル基転移酵素(gpat)ホモログとその利用
WO2016031947A1 (ja) エイコサペンタエン酸を高含有する脂質の生産方法
WO2015005466A1 (ja) エイコサペンタエン酸を高含有する脂質の生産方法
JP6026709B1 (ja) 新規ω3不飽和脂肪酸酵素およびエイコサペンタエン酸の製造方法
JP2014045740A (ja) 外来不飽和化酵素遺伝子導入による脂質生産微生物での高度不飽和脂肪酸の生産
JP5451398B2 (ja) 新規なatp:クエン酸リアーゼ遺伝子
JP5180960B2 (ja) ホスファチジン酸ホスファターゼホモログとその利用
WO2013018709A1 (ja) ホスファチジン酸ホスファターゼ遺伝子
WO2010107070A1 (ja) 新規なアセチルCoAカルボキシラーゼ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534212

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14915178

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014839231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839231

Country of ref document: EP