WO2015029273A1 - 単相インバータ - Google Patents
単相インバータ Download PDFInfo
- Publication number
- WO2015029273A1 WO2015029273A1 PCT/JP2013/084821 JP2013084821W WO2015029273A1 WO 2015029273 A1 WO2015029273 A1 WO 2015029273A1 JP 2013084821 W JP2013084821 W JP 2013084821W WO 2015029273 A1 WO2015029273 A1 WO 2015029273A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching
- switching element
- state
- resonance
- circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/34—Snubber circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4815—Resonant converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to a single-phase inverter that can be used, for example, as a power source that supplies current to a load such as a plasma load.
- a voltage source inverter and a current source inverter are known as inverters that convert DC power into AC power.
- the voltage source inverter supplies a square wave alternating current as a voltage source to the load by switching between the load and the DC voltage source with a semiconductor switch.
- a circuit configuration of an inverter As a circuit configuration of an inverter, a circuit configuration is known in which an anti-parallel connection of a switching element of a transistor or a thyristor and a feedback diode is configured as an arm of a bridge circuit, and each switching element is orthogonally converted by PWM control.
- FIG. 19 is a circuit diagram for explaining a general circuit configuration of a single-phase inverter circuit.
- the upper arm of the bridge circuit is connected to the positive terminal, and the lower arm is connected to the negative terminal.
- Element of one of the upper and lower arm switching element Q 1 and the feedback diode D 1, and a switching element Q 2 feedback diode D 2 and the connection point of the elements of the other arm (switching element Q 3 and the feedback diode D 3 , and it connects the switching element Q 4 and the connection point of the feedback diode D 4) to load.
- the switching element Q 1, Q 4 are driven based on the base signal (upward in FIG 19 (b)), is driven based on the switching element Q 2 and Q 3 are base signal (lower part of FIG. 19 (b)) .
- the direction of the current flowing through the bridge circuit is switched by setting both base signals in opposite phases, thereby inverting the output voltage (FIG. 19C) and outputting an AC output current (FIG. 19D).
- Q 1 to Q 4 and D 1 to D 4 in FIG. 19D represent devices (switching elements, feedback diodes) through which an output current flows in the bridge circuit.
- the dead time Td in FIG. 19B is provided to prevent a short circuit between the upper and lower arms of the bridge circuit when the base signal is switched.
- Resonant inverters composed of three-phase bridge circuits are known as soft switch inverters that reduce switching losses.
- a resonance type inverter a commutation diode and a resonance capacitor are connected in parallel to a switching element, and a resonance circuit is constituted by the resonance capacitor, a resonance inductor, and a switching element connected to the resonance circuit.
- Zero voltage switching (ZVS) and zero current switching (ZCS) of the switching element are realized by charging / discharging of the resonance capacitor by the resonance current of the resonance circuit and conduction of the commutation diode (for example, Patent Document 1).
- the resonance circuit has a configuration in which a resonance capacitor is connected in parallel to the switching element, there is a problem that the capacitance due to the capacitor increases.
- Patent Document 2 a configuration in which a resonance circuit is formed by an auxiliary circuit including auxiliary switching elements has been proposed.
- Patent Document 3 a diode and a snubber capacitor are connected in parallel to a first main switch and a second main switch connected in series, and a first auxiliary switch and a second auxiliary switch connected in series and a resonance inductor are provided.
- Auxiliary resonance circuit is connected to a DC power source, a voltage signal of a voltage across each of the main switch and the auxiliary switch is input, and before the turn-on signal as a switching signal is given to the first main switch, the first and second It is described that a control for giving a turn-on signal to the auxiliary switch is performed.
- Patent Document 4 discloses an auxiliary circuit including first to fourth auxiliary switches, first to fourth auxiliary diodes, first and second auxiliary capacitors, and a resonant reactor for soft switching.
- a first resonance current path including a first auxiliary capacitor, a first auxiliary switch, a resonance reactor, and a fourth auxiliary switch, wherein the auxiliary switch is turned on / off by an auxiliary switch control circuit; It is described that a second resonance current path consisting of an auxiliary capacitor, a second auxiliary switch, a resonant reactor, and a third auxiliary switch is alternatively formed.
- the conventionally known inverter circuit has a problem that a plurality of elements such as a resonance capacitor or an auxiliary switch or an auxiliary capacitor are required to perform soft switching.
- the present invention aims to solve the above-described conventional problems and to perform soft switching with a simple configuration in an inverter circuit, particularly a single-phase inverter, to prevent switching loss of a switching element.
- a resonance circuit is constituted by a resonance capacitor provided on the power supply side of the bridge circuit constituting the single-phase inverter, a resonance inductor provided on the output side of the bridge circuit, and the bridge circuit, and by a resonance current flowing through the resonance circuit.
- Zero voltage switching (ZVS) and zero current switching (ZCS) are performed when the main switching element constituting the bridge circuit rises, and zero voltage switching is performed when the main switching element constituting the bridge circuit falls due to the zero voltage of the resonance capacitor. I do.
- the single-phase inverter of the present invention includes an auxiliary switching circuit that electrically separates the circuit configuration after the resonance capacitor from the power supply side in order to form a resonance circuit, and in the auxiliary switching element provided in the auxiliary switching circuit, By setting the voltage of the resonant capacitor to the same voltage as that of the power source by charging the resonant current, zero voltage switching is performed with the voltage across the auxiliary switching element as the zero voltage.
- the single-phase inverter of the present invention has a series connection of first and second main switching elements and a series connection of third and fourth main switching elements connected in parallel to a DC power source,
- a bridge circuit formed by connecting a diode in parallel with a DC power source with a reverse bias, a smoothing circuit, an auxiliary switching circuit, a resonance capacitor, and a resonance inductor are provided.
- the smoothing circuit, auxiliary switching circuit, and resonant capacitor are connected in order from the DC power supply side between the DC power supply and the bridge circuit.
- the resonant inductor is connected between a connection point of the first main switching element and the second main switching element of the bridge circuit and a connection point of the third main switching element and the fourth main switching element.
- the auxiliary switching circuit shuts off between the smoothing circuit and the resonance capacitor by the opening operation, and electrically isolates the circuit after the resonance capacitor from the power supply side.
- the circuits after the resonance capacitor are separated from the power supply side, thereby forming a resonance circuit including a resonance capacitor, a resonance inductor, and a bridge circuit.
- (Soft switching of the main switching element) In the switching operation of the main switching element, (A) In the switching operation for switching the main switching element from the OFF state to the ON state, when a resonance current flows through the resonance circuit, the voltage across the main switching element is set to zero voltage, and the switching operation is set to zero voltage switching. When the resonance current flows through a diode connected in parallel to the main switching element, the switching operation of the main switching element is set to zero current switching. (B) In the switching operation for switching the main switching element from the on state to the off state, the resonance capacitor flows in the main switching element in the on state to discharge the resonance capacitor, and the voltage across the main switching element is zero voltage. Thus, the switching operation of the main switching element is set to zero voltage switching.
- Soft switching of the main switching element performs zero voltage switching and zero current switching in the switching operation to switch from the off state to the on state, and performs zero voltage switching in the switching operation to switch from the on state to the off state.
- the smoothing circuit includes a smoothing capacitor connected between the positive side and the negative side of the DC power supply, and the resonance capacitor is connected between the positive side and the negative side of the DC power supply.
- the auxiliary switching circuit may include an auxiliary switching element that opens and closes a connection between the smoothing capacitor and the resonance capacitor, and a diode connected in parallel to the auxiliary switching element.
- the auxiliary switching circuit forms a resonance circuit including a resonance capacitor, a resonance inductor, and a bridge circuit by cutting the connection between the smoothing capacitor and the resonance capacitor.
- auxiliary switching element In the switching operation of the auxiliary switching element, (A) In the switching operation for switching the auxiliary switching element from the on state to the off state, the supply current flows from the DC power source toward the load side, so that the voltage of the resonance capacitor and the voltage of the smoothing capacitor are the same voltage, The voltage across the auxiliary switching element is set to zero voltage, and the switching operation is set to zero voltage switching. (B) In the switching operation for switching the auxiliary switching element from the OFF state to the ON state, charging of the resonance capacitor with the current flowing through the resonance circuit sets the voltage of the resonance capacitor to the same voltage as that of the smoothing capacitor, and the switching operation is switched to zero voltage.
- Soft switching of the auxiliary switching element performs zero voltage switching in the switching operation for switching from the on state to the off state, and performs zero current switching and zero voltage switching in the switching operation for switching from the off state to the on state.
- the resonant inductor that constitutes the resonant circuit is composed of an inductor element connected between the bridge circuit and the load and the load induction.
- the resonant inductor is constituted by an inductor element
- a current path is formed between the middle point of the upper and lower arms of the bridge circuit and the load via the inductor element, and an output current is supplied to the load.
- the resonant circuit for performing the soft switching operation can be configured by a resonant capacitor, a resonant inductor, and a bridge circuit, and the circuit configuration forming the resonant circuit is configured by a smoothing circuit and an auxiliary switching circuit. Therefore, a simple circuit configuration can be obtained.
- the resonant capacitor and the smoothing capacitor can be constituted by one capacitor element, and the auxiliary switching circuit can also be constituted by one switching element, so that the number of elements required for the circuit can be reduced.
- FIG. 6 is a diagram showing signal states of respective parts in operation mode 1 to operation mode 10 for explaining an operation example of the single-phase inverter according to the present invention. It is an operation diagram of mode 1 for explaining an operation example of the single phase inverter of the present invention. It is an operation diagram of mode 1 ⁇ 2 for explaining an operation example of the single phase inverter of the present invention.
- mode 9 It is an operation diagram of mode 9 for explaining an operation example of the single phase inverter of the present invention. It is an operation
- FIG. 1 the schematic structural example of the single phase inverter of this invention is demonstrated using FIG. 1, FIG. 2, and the circuit structural example of the single phase inverter of this invention is demonstrated using FIG. 4 to 16, an example of the operation of the single-phase inverter of the present invention will be described, and an example of the configuration of the plasma power supply device using the single-phase inverter of the present invention will be described with reference to FIGS.
- FIG. 2 shows an example using a resonant inductor.
- a single-phase inverter 1 of the present invention includes a smoothing circuit 2, an auxiliary switching circuit 3, a resonant capacitor 4, a bridge circuit 5, and a resonant inductor 6, and converts a direct current from a direct current power source 10 into an alternating current.
- the AC output is supplied to the load 7.
- the smoothing circuit 2, the auxiliary switching circuit 3, and the resonance capacitor 4 are connected in order from the DC power supply 10 side between the DC power supply 10 and the bridge circuit 5.
- the resonance capacitor 4 and the bridge circuit 5 are connected.
- the resonant inductor 6 constitute a resonant circuit.
- the auxiliary switching circuit 3 opens the circuit between the smoothing circuit 2 and the resonance capacitor 4 by the opening operation, and electrically isolates the bridge circuit 5 and the resonance inductor 6 that are circuit configurations after the resonance capacitor 4 from the power supply side.
- the resonance capacitor 4, the bridge circuit 5, and the resonance inductor 6 are separated from the power supply side to form a resonance circuit.
- the present invention utilizes the fact that the resonance current by this resonance circuit and the capacitor voltage of the resonance capacitor become zero voltage, and the main switching elements (Q U , Q X , Q V , Q Y ) and auxiliary that constitute the bridge circuit 5.
- the switching element (Q A ) is switched by soft switching.
- FIGS. 1B and 1C are diagrams for explaining soft switching of the main switching element of the bridge circuit.
- FIG. 1B is a diagram for explaining soft switching of the main switching elements Q U and Q Y constituting one arm of the bridge circuit 5.
- the resonance capacitor When the main switching elements Q U and Q Y are switched from the off state to the on state, the resonance capacitor is charged or discharged with a resonance current, and the voltage V c2 of the resonance capacitor is in a zero voltage state. Zero voltage switching can be performed by performing a switching operation at the time. Further, the resonant current is the main switching element Q U, diodes are connected in parallel Q Y and reverse bias D U, to flow the D Y, it is possible to perform zero current switching by performing a switching operation at this point.
- Zero voltage switching can be performed by performing a switching operation in a state where the voltage V c2 of the resonance capacitor is zero voltage.
- FIG. 1C is a diagram for explaining soft switching of the main switching elements Q V and Q X constituting the other arm of the bridge circuit 5.
- Soft switching of the main switching elements Q V and Q X performs soft switching in the same manner as the main switching elements Q U and Q Y.
- the resonance capacitor When the main switching elements Q V and Q X are switched from the off state to the on state, the resonance capacitor is charged or discharged with a resonance current, and the voltage V c2 of the resonance capacitor is in a zero voltage state. Zero voltage switching can be performed by performing a switching operation at the time. Further, since the resonance current flows through the diodes D V and D X connected in parallel with the main switching elements Q V and Q X in reverse bias, the zero current switching can be performed by performing the switching operation at this time.
- the resonance capacitor discharges the accumulated charge through the resonance circuit.
- Zero voltage switching can be performed by performing a switching operation in a state where the voltage V c2 of the resonance capacitor is zero voltage.
- Figure 1 (d) is a diagram for explaining the soft switching of the auxiliary switching element Q A of the auxiliary switching circuit 3.
- the switching operation of the auxiliary switching element in the switching operation for switching the auxiliary switching element from the on state to the off state, the supply current flows from the DC power source toward the load side, so that the voltage of the resonant capacitor and the voltage of the smoothing capacitor are the same voltage.
- the potential difference between the voltages across the auxiliary switching element becomes zero voltage.
- the switching operation can be zero voltage switching.
- the resonance capacitor voltage becomes the same voltage as the smoothing capacitor voltage by charging the resonance capacitor with the current flowing through the resonance circuit.
- the switching operation can be zero voltage switching.
- a diode connected in parallel with the auxiliary switching element becomes conductive, and a regenerative current regenerated from the load side toward the DC power source flows through the diode.
- the switching operation of the auxiliary switching element can be set to zero current switching.
- the soft switching of the auxiliary switching element performs zero voltage switching in the switching operation for switching from the on state to the off state, and performs zero current switching and zero voltage switching in the switching operation for switching from the off state to the on state.
- FIG. 2 shows a configuration example of a resonant inductor of a single phase inverter.
- a reactor element 6A is inserted between the output end of the bridge circuit 5 and the load 7, and the resonant inductor 6 is configured by the reactor element 6A.
- a resonance circuit can be configured in the single-phase inverter of the present invention even when the load 7 is a capacitive load.
- FIG. 3 is a circuit diagram showing a circuit configuration example of the single-phase inverter 1 of the present invention.
- Smoothing circuit 2 and the resonant capacitor 4 can be constituted by the capacitor C 1 and capacitor C 2 are connected in parallel between the positive and negative output terminals of each DC power supply 10.
- Auxiliary switching circuit 3 an auxiliary switching element connected between the positive side terminal and between the positive side terminal of the capacitor C 2 or the negative end and the negative end of the capacitor C 2 of the capacitor C 1, the capacitor C 1 Q A and the diode D A connected in parallel to the auxiliary switching element Q A can be used.
- FIG. 3A shows a configuration example in which the auxiliary switching element Q A and the diode D A are provided between the negative side end of the capacitor C 1 and the negative side end of the capacitor C 2 .
- the auxiliary switching element Q A is connected in a direction in which the current I QA flows from the bridge circuit 5 side to the DC power supply 10 side, and the diode D A has the current I DA from the DC power supply 10 side to the bridge circuit 5 side. Connected in the direction of flow.
- FIG. 3B shows a configuration example in which the auxiliary switching element Q A and the diode D A are provided between the positive side end of the capacitor C 1 and the positive side end of the capacitor C 2 .
- the auxiliary switching element Q A is connected in a direction in which the current I QA flows from the DC power supply 10 side toward the bridge circuit 5, and the diode D A flows in the current I DA from the bridge circuit 5 side toward the DC power supply 10 side. Connected in the direction.
- the bridge circuit 5 is configured to connect the first and second main switching elements Q U and Q X in series and the third and fourth main switching elements Q V and Q Y in series with positive and negative voltages of the DC power supply 10.
- the main switching elements Q U , Q X , Q V , and Q Y have diodes D U , D X , D V , and DY with respect to the voltage direction of the DC power supply 10. They are connected in parallel with reverse bias.
- the resonant inductor 6 is constituted by a resonant reactor L.
- the inductor current I L flowing through the resonance reactor L becomes an output current when supplied to the load, becomes a regenerative current when returning from the load to the power supply side, and becomes a resonance current when the resonance circuit is formed.
- soft switching of the zero-voltage switching (ZVS) and or zero current switching (ZCS) uses a resonance current generated by the resonance operation of the resonance capacitor C 2 and the resonance reactor L.
- the energy (L ⁇ I L 2 ) / 2 accumulated in the resonance reactor L when the resonance circuit is formed is the energy (C 2 ⁇ V) accumulated in the resonance capacitor C 2. From the energy relationship of greater than c 2 ) / 2, the following relationship must be satisfied in the resonant operation voltage V c , current I L , resonant capacitor C 2 , and resonant reactor L: (C 2 ⁇ V c 2 ) / 2 ⁇ (L ⁇ I L 2 ) / 2 (1)
- the stray capacitance C of the switching element and the resonant capacitor C 2 are reduced by shortening the distance between the resonance capacitor C 2 and the main switching elements Q U , Q X , Q V , and Q Y of the bridge circuit as much as possible.
- the resonance operation caused by the wiring reactor between and the main switching element can be suppressed, and the generation of the surge voltage when the main switching element is off can be suppressed.
- FIG. 4 is an operation diagram of the switching element for explaining the operation of the single-phase inverter.
- the gate signal G A for driving the auxiliary switching element Q A, and the main switching element Q U, Q V, Q X , the gate signal G U for driving the Q Y respectively, G V, G X, dividing the output state of the G Y 10 phase of operation mode 10 from the operation mode 1 is shown.
- the bridge circuit 5 performs orthogonal transformation according to the on / off states of the main switching elements Q U , Q V , Q X , and Q Y. First a first main switching element Q U of the bridge circuit 5 4 a set of the switching elements of the main switching element Q Y, a second set of main switching elements Q X and the third switching element of the main switching element Q V Are alternately driven to switch the current direction of the output current toward the load, and orthogonal switching is performed by switching the main switching elements.
- the connection point between the first and second main switching elements Q U and Q X is directed to the load 7 and from the load 7 to the third and A current flows in a current direction toward the connection point of the fourth main switching elements Q V and Q Y.
- the single-phase inverter of the present invention uses a resonance current flowing in a resonance circuit including a bridge circuit in order to perform the switching operation of the main switching element by soft switching.
- the resonance current is formed by electrically separating the circuit after the resonance capacitor from the DC power supply 10 side by the auxiliary switching circuit and forming a resonance circuit by the resonance capacitor, the bridge circuit, and the resonance inductor.
- Auxiliary switching circuit outputs a gate signal G A the auxiliary switching element Q A turned on in the operation mode 10,1 and the operation mode 5,6.
- a resonance circuit is formed by this operation mode.
- the time width of each section of the operation modes 1, 2, 4, 5, 6, 7, 9, and 10 for driving the main switching element is variable depending on the drive frequency.
- the auxiliary switching element Q A of the operation mode 2 to 4 and 7 to 9 is off interval, and the main switching element Q U of the upper and lower arms, Q V, Q X, operation is Q Y immobility time (dead time)
- the time width of the sections of modes 3 and 8 is a fixed value set based on the time constant of the voltage change determined by the value of the circuit element.
- FIG. 5 shows signal states of the respective parts in the operation modes 1 to 10.
- the auxiliary switching element Q A the gate signals of the main switching elements Q U , Q V , Q X , and Q Y , the voltage V c2 of the resonant capacitor C 2 , the main switching elements Q U , Q Y , Q V , and Q current flowing through the X I QU, I QY, I QV, I QX, diode D V, the current flowing through the D X I DV, I DX, shows a resonance current I out.
- FIG. 6 shows an operation state in the operation mode 1.
- the auxiliary switching element Q A and the main switching elements Q U and Q Y are in the on state.
- the positive terminal of the DC power supply passes through the main switching element Q U , the resonance reactor L, the main switching element Q Y , and the auxiliary switching element Q A to the negative terminal of the DC power supply.
- a path through which a current flows is formed in the current path, and an output current is supplied to the load.
- FIG. 7 shows an operation state of the operation mode 1 ⁇ 2, transition from the operation mode 1 to the operation mode 2 is performed by switching operation to turn OFF the auxiliary switching element Q A from the ON state.
- the auxiliary switching element resonant capacitor C 2 at the time of turning off the Q A is a smoothing capacitor C 1 and the voltage, the voltage V c2 of the resonant capacitor C 2 no potential difference between the smoothed voltage V c1 of the capacitor C 1, the voltage across the auxiliary switching element is zero. Therefore, in this state, the switching operation of the auxiliary switching element Q A from the ON state to the OFF state, a zero-current switching (ZVS).
- ZVS zero-current switching
- FIG. 8 shows operation mode 2. When the voltage V c2 reaches 0 voltage due to the discharge of the resonant capacitor C 2 , the operation mode 2 is entered.
- the resonance capacitor C 2 , the bridge circuit, and the resonance reactor L are electrically separated from the DC power supply side to form a resonance circuit.
- the current flowing through the main switching element Q Y and the main switching element Q U is shunted to the diode D X and a diode D V.
- FIG. 9 shows an operation mode 3 in which the main switching elements Q U and Q Y are switched from the on state to the off state.
- the voltage V c2 by the discharge of the resonant capacitor C 2 reaches the zero voltage in the operation mode 2, it is shifted from the operation mode 2 to the operation mode 3, switch off state of the main switching element from the on state.
- the resonance capacitor C 2 is the start of the charging from zero voltage, resonance current will flow in the diode D V and the diode D X is inverted.
- FIG. 10 shows an operation mode 4 in which the main switching elements Q V and Q X are switched from the off state to the on state.
- the voltage V c2 of the resonant capacitor C 2 is zero voltage
- the main switching element Q V each of the voltage across V QV of Q X, is V QX is zero voltage. Therefore, at this time, the main switching elements Q V and Q X can be switched from the off state to the on state by zero voltage switching (ZVS).
- the zero-current It can be done by switching (ZCS).
- the resonance capacitor C 2 is charged, the voltage V c2 of the resonant capacitor when it is charged to a voltage that can conduct diode D A, diode D A shifts to the operation mode 4 is conducted. Ignoring the voltage drop of the diode D A, a smoothing capacitor C 1 and the resonant capacitor C 2 becomes the same potential, so that the regenerative current flows to the power supply side from the resonance circuit side.
- FIG. 11 shows the operation mode 5, and shows a state in which switched on the auxiliary switching element Q A from the off state.
- the operation mode 4 and the smoothing capacitor C 1 is the resonance capacitor C 2 in the state where the same potential, switch the auxiliary switching element Q A from the OFF state to the ON state, the voltage across the auxiliary switching element Q A is the zero voltage Therefore, you are possible to perform zero voltage switching (ZVS), also can be done in zero-current switching element (ZCS) for regenerative current is flowing through the diode D a.
- ZVS zero voltage switching
- ZCS zero-current switching element
- operation mode 1 to operation mode 5 are half-cycle operations, and the one-cycle operation is completed together with the next operation mode 6 to operation mode 10 half-cycle operations.
- the operation modes 6 to 10 are the same operations as the operation modes 1 to 5 in which the combination of Q U and Q Y of the main switching element to be operated and the combination of Q V and Q X are interchanged.
- FIG. 12 shows an operation state of the operation mode 6.
- the auxiliary switching element Q A and the main switching element Q V, Q X is an ON state.
- the negative N terminal of the DC power supply passes through the main switching element Q V , the resonance reactor L, the main switching element Q X , and the auxiliary switching element Q A from the positive P terminal of the DC power supply.
- a path through which a current flows is formed in the current path, and an output current is supplied to the load.
- Transition from the operation mode 6 to the operation mode 7 is performed by switching operation to the off state from the on state of the auxiliary switching element Q A.
- resonant capacitor C 2 In the transition to the off state from the on state of the auxiliary switching element Q A, at the time of turning off the auxiliary switching element Q A resonant capacitor C 2 is the same voltage as the smoothing capacitor C 1, the voltage V of the resonant capacitor C 2 c2 and not potential difference between the voltage V c1 of the smoothing capacitor C 1, the voltage across the auxiliary switching element is zero. Therefore, in this state, the switching operation of the auxiliary switching element Q A from the ON state to the OFF state, a zero-current switching (ZVS).
- ZVS zero-current switching
- the resonance capacitor C 2 begins to discharge the voltage V c2.
- FIG. 13 shows the operation mode 7. Voltage V c2 by the discharge of the resonant capacitor C 2 is changed from the operation mode 6 to the operation mode 7 when it reaches zero voltage.
- the resonance capacitor C 2 , the bridge circuit, and the resonance reactor L are electrically separated from the DC power supply side to form a resonance circuit.
- the current flowing through the main switching element Q X and the main switching element Q V shunts the diode D Y and the diode D U.
- FIG. 14 shows an operation mode 8 in which the main switching elements Q V and Q X are switched from the on state to the off state.
- the voltage V c2 by the discharge of the resonant capacitor C 2 reaches the zero voltage in the operation mode 7, it is shifted from the operation mode 7 to the operation mode 8, switch off state of the main switching element from the on state.
- the resonance capacitor C 2 is the start of the charging or zero voltage, resonance current will flow in the diode D U and the diode D Y inverted.
- FIG. 15 shows an operation mode 9 in which the main switching elements Q U and Q Y are switched from the off state to the on state.
- the voltage V c2 of the resonant capacitor C 2 is zero voltage
- the main switching element Q U each of the voltage across V QU of Q Y
- the V QY is zero voltage. Therefore, at this time, the main switching elements Q U and Q Y can be switched from the off state to the on state by zero voltage switching (ZVS).
- the switching of the main switching elements Q U and Q Y from the OFF state to the ON state at this time is zero current. It can be done by switching (ZCS).
- FIG. 16 shows the operation mode 10 shows a state in which switched on the auxiliary switching element Q A from the off state.
- the operating mode 9 and the smoothing capacitor C 1 resonant capacitor C 2 in the state where the same potential, switch the auxiliary switching element Q A from the OFF state to the ON state, the voltage across the auxiliary switching element Q A is the zero voltage Therefore, it is possible to perform zero voltage switching (ZVS), also can be done in zero-current switching element (ZCS) the regenerative current flows through the diode D a.
- ZVS zero voltage switching
- ZCS zero-current switching element
- FIG. 17 shows a configuration example of a dual cathode power supply device using the single-phase inverter of the present invention.
- the dual cathode power supply is a power supply that supplies high-frequency power to the load of the plasma generator, and the plasma generator includes two electrodes, electrode 1 and electrode 2, in a grounded case. According to this dual cathode power supply device, an electrically symmetrical AC voltage can be applied to the two electrodes.
- the dual cathode power supply device converts a DC power voltage input from a rectifying unit that rectifies AC power of an AC power source, a snubber unit that constitutes a protection circuit that suppresses transiently generated high voltage, into a predetermined voltage.
- a current source step-down chopper unit that outputs DC current
- a single-phase inverter that converts the DC output of the current source step-down chopper unit into a multi-phase AC output
- a single-phase transformer that converts the AC output of the single-phase inverter into a predetermined voltage .
- the dual cathode power supply device supplies one output of the single-phase transformer to one electrode 1 via an output cable, and supplies the other output to the other electrode 2 via an output cable.
- FIG. 18 shows a configuration example of a DC power supply device using the single-phase inverter of the present invention.
- the DC power supply is a power supply that supplies high-frequency power to a load of the plasma generator, and the plasma generator includes two electrodes, an electrode A for inputting a DC voltage from the DC power supply and a grounded electrode B. According to this DC power supply device, one electrode B can be grounded and a DC voltage can be applied to the other electrode A.
- the DC power supply device converts the DC power voltage input from the rectifying unit that rectifies AC power of the AC power source, the snubber unit that constitutes a protection circuit that suppresses transient high voltage, Current source step-down chopper unit that outputs current, single-phase inverter that converts DC output of current source step-down chopper unit into multi-phase AC output, single-phase transformer that converts AC output of single-phase inverter into predetermined voltage, single-phase A rectifier is provided for rectifying the AC output of the transformer.
- the DC power supply device supplies the output of the rectifier to the electrode A through the output cable.
- the single-phase inverter of the present invention can be applied to a dual cathode power supply device that outputs alternating current and a direct current power supply device that outputs direct current.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
主スイッチング素子のスイッチング動作において、
(a)主スイッチング素子をオフ状態からオン状態に切り換えるスイッチング動作において、共振回路に共振電流が流れることによって、その主スイッチング素子の両端電圧を零電圧としてスイッチング動作を零電圧スイッチングとし、共振回路の共振電流が主スイッチング素子に並列接続されるダイオードに流れることによってその主スイッチング素子のスイッチング動作を零電流スイッチングとする。
(b)主スイッチング素子をオン状態からオフ状態に切り換えるスイッチング動作において、オン状態にある主スイッチング素子において、共振電流が流れることによって共振コンデンサが放電して、その主スイッチング素子の両端電圧が零電圧となることによって主スイッチング素子のスイッチング動作を零電圧スイッチングとする。
さらに、本願発明の単相インバータにおいて、平滑回路は直流電源の正側と負側との間に接続された平滑コンデンサを備え、共振コンデンサは直流電源の正側と負側との間に接続された共振コンデンサを備え、補助スイッチング回路は平滑コンデンサと共振コンデンサとの間の接続を開閉する補助スイッチング素子およびこの補助スイッチング素子に並列接続されるダイオードを備える構成とすることができる。
(a)補助スイッチング素子をオン状態からオフ状態に切り換えるスイッチング動作において、直流電源から負荷側に向かって供給電流が流れることで共振コンデンサの電圧と平滑コンデンサの電圧とは同電圧であることにより、補助スイッチング素子の両端電圧を零電圧として、スイッチング動作を零電圧スイッチングとする。
(b)補助スイッチング素子をオフ状態からオン状態に切り換えるスイッチング動作において、共振回路を流れる電流による共振コンデンサの充電によって、共振コンデンサの電圧を平滑コンデンサの電圧と同電圧として、スイッチング動作を零電圧スイッチングとし、また、共振コンデンサの充電によって、補助スイッチング素子と並列接続されるダイオードが導通して、負荷側から直流電源に向かって回生電流が当該ダイオードを流れることによって、スイッチング動作を零電流スイッチングとする。
はじめに、本願発明の単相インバータの概略構成例について図1,図2を用いて説明する。なお、図2は共振インダクタによる例を示している。
図3は本願発明の単相インバータ1の一回路構成例を示す回路図である。
平滑回路2および共振コンデンサ4は、それぞれ直流電源10の正負の出力端間に並列接続されるコンデンサC1およびコンデンサC2によって構成することができる。
(C2×Vc 2)/2<(L×IL 2)/2 ・・・(1)
図5は動作モード1~動作モード10における各部の信号状態を示している。図5では、補助スイッチング素子QA、主スイッチング素子QU,QV,QX,QYのゲート信号、共振コンデンサC2の電圧Vc2、主スイッチング素子QU,QY,QV,QXを流れる電流IQU,IQY,IQV,IQX、ダイオードDV,DXを流れる電流IDV,IDX,共振電流Ioutを示している。
(動作モード1)
図6は動作モード1の動作状態を示している。動作モード1において、補助スイッチング素子QAおよび主スイッチング素子QU,QYはオン状態である。この動作モード1では、直流電源の正側のP端子から主スイッチング素子QU、共振リアクトルL、主スイッチング素子QY、および補助スイッチング素子QAとを通って直流電源の負側のN端子に電流路に電流が流れる経路が形成され、負荷に出力電流が供給される。
図7は動作モード1→2の動作状態を示し、動作モード1から動作モード2への移行は、補助スイッチング素子QAをオン状態からオフ状態への切換え動作によって行う。
図8は動作モード2を示している。共振コンデンサC2の放電によって電圧Vc2が0電圧に達した時点で動作モード2に移行する。
図9は動作モード3を示し、主スイッチング素子QU,QYをオン状態からオフ状態に切り換えた状態を示している。動作モード2において共振コンデンサC2の放電によって電圧Vc2が0電圧に達した時点で、動作モード2から動作モード3へ移行しては、主スイッチング素子をオン状態からオフ状態に切り換える。
図10は動作モード4を示し、主スイッチング素子QV,QXをオフ状態からオン状態に切り換えた状態を示している。動作モード3において、共振コンデンサC2の電圧Vc2が0電圧であるため、主スイッチング素子QV,QXのそれぞれの両端電圧VQV,VQXは0電圧である。したがって、この時点で主スイッチング素子QV,QXのオフ状態からオン状態への切り換えは、零電圧スイッチング(ZVS)で行うことができる。
図11は動作モード5を示し、補助スイッチング素子QAをオフ状態からオン状態に切り換えた状態を示している。動作モード4により平滑コンデンサC1と共振コンデンサC2は同電位になった状態において、補助スイッチング素子QAをオフ状態からオン状態に切り換えると、補助スイッチング素子QAの両端電圧は0電圧であるため、零電圧スイッチング(ZVS)で行うことができ、また、ダイオードDAに回生電流が流れているため零電流スイッチング素子(ZCS)で行うことができる。
図12は動作モード6の動作状態を示している。動作モード6において、補助スイッチング素子QAおよび主スイッチング素子QV,QXはオン状態である。この動作モード6では、直流電源の正側のP端子から主スイッチング素子QV、共振リアクトルL、主スイッチング素子QX、および補助スイッチング素子QAとを通って直流電源の負側のN端子の電流路に電流が流れる経路が形成され、負荷に出力電流が供給される。
図13は動作モード7を示している。共振コンデンサC2の放電によって電圧Vc2が0電圧に達した時点で動作モード6から動作モード7に移行する。
図14は動作モード8を示し、主スイッチング素子QV,QXをオン状態からオフ状態に切り換えた状態を示している。動作モード7において共振コンデンサC2の放電によって電圧Vc2が0電圧に達した時点で、動作モード7から動作モード8へ移行しては、主スイッチング素子をオン状態からオフ状態に切り換える。
図15は動作モード9を示し、主スイッチング素子QU,QYをオフ状態からオン状態に切り換えた状態を示している。動作モード8において、共振コンデンサC2の電圧Vc2が0電圧であるため、主スイッチング素子QU,QYのそれぞれの両端電圧VQU,VQYは0電圧である。したがって、この時点で主スイッチング素子QU,QYのオフ状態からオン状態への切り換えは、零電圧スイッチング(ZVS)で行うことができる。
図16は動作モード10を示し、補助スイッチング素子QAをオフ状態からオン状態に切り換えた状態を示している。動作モード9により平滑コンデンサC1と共振コンデンサC2は同電位になった状態において、補助スイッチング素子QAをオフ状態からオン状態に切り換えると、補助スイッチング素子QAの両端電圧は0電圧であるため、零電圧スイッチング(ZVS)で行うことができ、また、ダイオードDAに回生電流が流れているため零電流スイッチング素子(ZCS)で行うことができる。
(デュアルカソード電源装置の構成例)
図17は本願発明の単相インバータを用いたデュアルカソード電源装置の構成例を示している。
直流電源装置はプラズマ発生装置の負荷に高周波電力を供給する電源であり、プラズマ発生装置は、直流電源装置から直流電圧入力する電極Aと、接地された電極Bの二つの電極を備える。この直流電源装置によれば、一方の電極Bを接地し、他方の電極Aに直流電圧を印加することができる。
2 平滑回路
3 補助スイッチング回路
4 共振コンデンサ
5 ブリッジ回路
6 共振インダクタ
6A リアクトル素子
7 負荷
10 直流電源
A,B 電極
C 浮遊容量
C1 平滑コンデンサ
C2 共振コンデンサ
D1,D2,D3,D4 帰還ダイオード
DA ダイオード
DU,DX,DV,DY ダイオード
Ed 直流電圧
GA ゲート信号
GU,GV,GX,GY ゲート信号
IDA 電流
IDV,IDX 電流
IL インダクタ電流
IQA 電流
IQU,IQY,IQV,IQX 電流
Iout 共振電流
L 共振リアクトル
Q1,Q2,Q3,Q4 スイッチング素子
QA 補助スイッチング素子
QU,QV,QX,QY 主スイッチング素子
Claims (2)
- 第1および第2の主スイッチング素子の直列接続と、第3および第4の主スイッチング素子の直列接続とを直流電源に対して並列接続し、各主スイッチング素子は直流電源に対して逆バイアスでダイオードを並列接続してなるブリッジ回路と、
前記直流電源と前記ブリッジ回路との間に直流電源側から順に接続される、平滑回路、補助スイッチング回路、および共振コンデンサと、
前記ブリッジ回路の第1の主スイッチング素子と第2の主スイッチング素子の接続点と、第3の主スイッチング素子と第4の主スイッチング素子の接続点との間に接続される共振インダクタとを備え、
前記補助スイッチング回路の開動作による前記平滑回路と前記共振コンデンサとの間の遮断状態において、前記共振コンデンサと前記共振インダクタは共振回路を形成し、
(a)主スイッチング素子のオフ状態からオン状態へのスイッチング動作において、
前記共振回路の共振電流が当該主スイッチング素子に並列接続されるダイオードに流れることによって当該主スイッチング素子を零電流スイッチングとし、共振回路に共振電流が流れることによって当該主スイッチング素子の両端電圧を零電圧として、当該スイッチング素子のオフ状態からオン状態へのスイッチング動作を零電流スイッチングおよび零電圧スイッチングとし、
(b)主スイッチング素子のオン状態からオフ状態へのスイッチング動作において、
前記共振電流によって前記共振コンデンサが放電して両端電圧が零電圧となることによって当該主スイッチング素子の両端電圧を零電圧として、当該スイッチング素子のオン状態からオフ状態へのスイッチング動作を零電圧スイッチングとし、
主スイッチング素子のスイッチング動作をソフトスイッチングで行うことを特徴とする、単相インバータ。 - 前記平滑回路は、前記直流電源の正側と負側との間に接続された平滑コンデンサを備え、
前記共振コンデンサは、前記直流電源の正側と負側との間に接続された共振コンデンサを備え、
前記補助スイッチング回路は、前記平滑コンデンサと前記共振コンデンサとの間の接続を開閉する補助スイッチング素子および当該補助スイッチング素子に並列接続されるダイオードを備え、
前記補助スイッチング回路は、前記平滑コンデンサと前記共振コンデンサとの接続を切断することにより、前記共振コンデンサと前記共振インダクタとの共振回路を構成し、
(a)補助スイッチング素子のオン状態からオフ状態へのスイッチング素子動作において、
直流電源から負荷に向かって供給電流が流れることによって前記共振コンデンサの電圧と前記平滑コンデンサの電圧とを同電圧として、当該補助スイッチング素子のオン状態からオフ状態へのスイッチング動作を零電圧スイッチングとし、
(b)補助スイッチング素子のオフ状態からオン状態へのスイッチング素子動作において、
前記共振回路を流れる電流による前記共振コンデンサの充電によって前記共振コンデンサの電圧と前記平滑コンデンサの電圧とを同電圧として、当該補助スイッチング素子のオフ状態からオン状態へのスイッチング動作を零電圧スイッチングとし、
前記共振コンデンサの充電によって前記補助スイッチング素子と並列接続されるダイオードを導通させ、負荷側から直流電源に向かい回生電流が当該ダイオードを流れることによって当該補助スイッチング素子を零電流スイッチングとして、当該補助スイッチング素子のオフ状態からオン状態へのスイッチング動作を零電流スイッチングおよび零電圧スイッチングとし、
補助スイッチング素子のスイッチング動作をソフトスイッチングで行うことを特徴とする、請求項1に記載の単相インバータ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/781,166 US9806629B2 (en) | 2013-08-27 | 2013-12-26 | Single-phase inverter |
EP13892232.3A EP2966771B1 (en) | 2013-08-27 | 2013-12-26 | Single-phase inverter |
KR1020157026352A KR101567750B1 (ko) | 2013-08-27 | 2013-12-26 | 단상인버터 |
CN201380075261.3A CN105075100B (zh) | 2013-08-27 | 2013-12-26 | 单相逆变器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-175870 | 2013-08-27 | ||
JP2013175870A JP5679239B1 (ja) | 2013-08-27 | 2013-08-27 | 単相インバータ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015029273A1 true WO2015029273A1 (ja) | 2015-03-05 |
Family
ID=52585876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/084821 WO2015029273A1 (ja) | 2013-08-27 | 2013-12-26 | 単相インバータ |
Country Status (7)
Country | Link |
---|---|
US (1) | US9806629B2 (ja) |
EP (1) | EP2966771B1 (ja) |
JP (1) | JP5679239B1 (ja) |
KR (1) | KR101567750B1 (ja) |
CN (1) | CN105075100B (ja) |
TW (1) | TWI523401B (ja) |
WO (1) | WO2015029273A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2683639C1 (ru) * | 2015-12-16 | 2019-04-01 | Мейденша Корпорейшн | Устройство преобразования мощности с резонансной нагрузкой и способ работы такого устройства с разделением по времени |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10622881B2 (en) * | 2015-07-06 | 2020-04-14 | Tm4 Inc. | Circuits for softening switching phases in voltage converters |
JP6615702B2 (ja) * | 2016-06-27 | 2019-12-04 | 株式会社東芝 | 沿面放電素子駆動用電源回路 |
WO2018012025A1 (ja) * | 2016-07-15 | 2018-01-18 | 三菱電機株式会社 | 共振型インバータ |
EP3301805A1 (de) * | 2016-09-30 | 2018-04-04 | Fronius International GmbH | Verfahren zum betreiben eines wechselrichters und wechselrichter |
US9768678B1 (en) * | 2016-11-16 | 2017-09-19 | Silanna Asia Pte Ltd | Switching regulator synchronous node snubber circuit |
KR101918062B1 (ko) | 2016-11-30 | 2018-11-13 | 엘지전자 주식회사 | 전력 변환 장치 |
US10038393B1 (en) * | 2017-11-02 | 2018-07-31 | National Chung-Shan Institute Of Science & Technology | Single-phase non-isolated inverter |
WO2019167244A1 (ja) * | 2018-03-02 | 2019-09-06 | 三菱電機株式会社 | 電力変換装置および電動機システム |
JP2023038719A (ja) * | 2021-09-07 | 2023-03-17 | 株式会社豊田自動織機 | 電力変換装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10505218A (ja) * | 1994-09-09 | 1998-05-19 | ザ・センター・フォー・イノヴェーティブ・テクノロジー | 改良された零電圧遷移(zvt)3相pwm電圧リンク変換器 |
WO2001084699A1 (fr) | 2000-04-28 | 2001-11-08 | Tdk Corporation | Dispositif de conversion de puissance |
JP2002325464A (ja) | 2001-04-26 | 2002-11-08 | Honda Motor Co Ltd | 共振形インバータ回路 |
JP2004023881A (ja) | 2002-06-14 | 2004-01-22 | Honda Motor Co Ltd | 共振形インバータ |
JP2009219311A (ja) | 2008-03-12 | 2009-09-24 | Sanken Electric Co Ltd | 電力変換装置 |
US20120063184A1 (en) * | 2010-01-22 | 2012-03-15 | The Board Of Trustees Of The University Of Illinois | Zero-Voltage-Switching Scheme for High-Frequency Converter |
WO2013125004A1 (ja) * | 2012-02-23 | 2013-08-29 | 株式会社京三製作所 | 電流形インバータ装置、および電流形インバータ装置の制御方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533986A (en) * | 1983-10-31 | 1985-08-06 | General Electric Company | Compact electrical power supply for signal processing applications |
US5559685A (en) * | 1994-10-12 | 1996-09-24 | Electronic Power Conditioning, Inc. | Voltage clamped parallel resonant converter with controllable duty cycle |
DE19636248C1 (de) * | 1996-08-28 | 1997-12-18 | Daimler Benz Ag | Verfahren zur Schaltentlastung eines IGBT |
US6038142A (en) * | 1998-06-10 | 2000-03-14 | Lucent Technologies, Inc. | Full-bridge isolated Current Fed converter with active clamp |
DE10060766A1 (de) * | 2000-12-07 | 2002-06-13 | Daimlerchrysler Rail Systems | Schaltentlastungsnetzwerk für Leistungshalbleiterschalter |
JP3833133B2 (ja) | 2002-02-19 | 2006-10-11 | 株式会社ダイヘン | アーク加工用電源装置 |
JP4192775B2 (ja) * | 2003-12-05 | 2008-12-10 | 株式会社ダイフク | 無接触給電設備 |
DE102008048841B8 (de) * | 2008-09-25 | 2010-06-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Trennschaltung für Wechselrichter |
KR101031217B1 (ko) * | 2009-10-21 | 2011-04-27 | 주식회사 오리엔트전자 | 고정 시비율로 동작하는 llc 공진 컨버터를 사용한 2단 방식 절연형 양방향 dc/dc 전력변환기 |
CN102263508B (zh) * | 2010-05-28 | 2014-12-17 | 台达电子工业股份有限公司 | 谐振型转换系统以及过电流保护方法 |
CN101951186A (zh) * | 2010-09-27 | 2011-01-19 | 浙江大学 | 附加续流通路的软开关三相并网逆变器 |
JP5762241B2 (ja) * | 2010-12-01 | 2015-08-12 | 株式会社ダイヘン | 電源装置及びアーク加工用電源装置 |
CN202282743U (zh) * | 2011-09-29 | 2012-06-20 | 南京博兰得电子科技有限公司 | 一种谐振变换器控制装置 |
US9473036B2 (en) * | 2014-06-05 | 2016-10-18 | Lite-On Electronics (Guangzhou) Limited | Direct current voltage conversion device |
-
2013
- 2013-08-27 JP JP2013175870A patent/JP5679239B1/ja active Active
- 2013-12-26 KR KR1020157026352A patent/KR101567750B1/ko active IP Right Grant
- 2013-12-26 WO PCT/JP2013/084821 patent/WO2015029273A1/ja active Application Filing
- 2013-12-26 CN CN201380075261.3A patent/CN105075100B/zh active Active
- 2013-12-26 EP EP13892232.3A patent/EP2966771B1/en active Active
- 2013-12-26 US US14/781,166 patent/US9806629B2/en active Active
-
2014
- 2014-02-18 TW TW103105208A patent/TWI523401B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10505218A (ja) * | 1994-09-09 | 1998-05-19 | ザ・センター・フォー・イノヴェーティブ・テクノロジー | 改良された零電圧遷移(zvt)3相pwm電圧リンク変換器 |
WO2001084699A1 (fr) | 2000-04-28 | 2001-11-08 | Tdk Corporation | Dispositif de conversion de puissance |
JP2002325464A (ja) | 2001-04-26 | 2002-11-08 | Honda Motor Co Ltd | 共振形インバータ回路 |
JP2004023881A (ja) | 2002-06-14 | 2004-01-22 | Honda Motor Co Ltd | 共振形インバータ |
JP2009219311A (ja) | 2008-03-12 | 2009-09-24 | Sanken Electric Co Ltd | 電力変換装置 |
US20120063184A1 (en) * | 2010-01-22 | 2012-03-15 | The Board Of Trustees Of The University Of Illinois | Zero-Voltage-Switching Scheme for High-Frequency Converter |
WO2013125004A1 (ja) * | 2012-02-23 | 2013-08-29 | 株式会社京三製作所 | 電流形インバータ装置、および電流形インバータ装置の制御方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2683639C1 (ru) * | 2015-12-16 | 2019-04-01 | Мейденша Корпорейшн | Устройство преобразования мощности с резонансной нагрузкой и способ работы такого устройства с разделением по времени |
RU2683639C9 (ru) * | 2015-12-16 | 2019-06-04 | Мейденша Корпорейшн | Устройство преобразования мощности с резонансной нагрузкой и способ работы такого устройства с разделением по времени |
Also Published As
Publication number | Publication date |
---|---|
EP2966771A1 (en) | 2016-01-13 |
CN105075100A (zh) | 2015-11-18 |
KR101567750B1 (ko) | 2015-11-10 |
US20160308457A1 (en) | 2016-10-20 |
US9806629B2 (en) | 2017-10-31 |
EP2966771B1 (en) | 2018-11-14 |
TWI523401B (zh) | 2016-02-21 |
CN105075100B (zh) | 2016-08-31 |
JP5679239B1 (ja) | 2015-03-04 |
EP2966771A4 (en) | 2017-01-25 |
JP2015046978A (ja) | 2015-03-12 |
KR20150119449A (ko) | 2015-10-23 |
TW201509109A (zh) | 2015-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5679239B1 (ja) | 単相インバータ | |
JP5207568B1 (ja) | 電流形インバータ装置、および電流形インバータ装置の制御方法 | |
JP5065188B2 (ja) | 直列共振型コンバータ | |
US20100259955A1 (en) | Soft switching power converter | |
WO2017049250A1 (en) | Pwm scheme based on space vector modulation for three-phase rectifier converters | |
CN105981280B (zh) | 电力变换装置 | |
Niapour et al. | Extremely sparse parallel AC-link universal power converters | |
US10848071B2 (en) | Highly reliable and compact universal power converter | |
JPWO2011067838A1 (ja) | Pwmインバータ装置 | |
Muhammad et al. | Two-switch ZCS totem-pole bridgeless PFC boost rectifier | |
WO2015072009A1 (ja) | 双方向コンバータ | |
CN107852104A (zh) | 电源系统 | |
US20170250618A1 (en) | Extremely-Sparse Parallel AC-Link Power Converter | |
US9812988B2 (en) | Method for controlling an inverter, and inverter | |
Mary et al. | Design of new bi-directional three phase parallel resonant high frequency AC link converter | |
Narimani et al. | A comparative study of three-level DC-DC converters | |
Zaid et al. | A New Single-Source Switched Capacitor Based Thirteen-level Inverter | |
KR101656021B1 (ko) | 직렬공진형 컨버터 | |
Amirabadi | Extremely sparse parallel AC-link universal power converters | |
JP6088869B2 (ja) | Dc−dcコンバータ | |
JP5765075B2 (ja) | 電力変換装置及び充電装置 | |
Alam et al. | Three Phase DC-DC Converter with Six Inverter for EV Application | |
JPH08322268A (ja) | 三相/単相電圧変換装置 | |
JP5879705B2 (ja) | 電力変換装置 | |
Salam et al. | Analysis and Design of a Bidirectional Cycloconverter-Type High Frequency Link Inverter with Natural Commutated Phase Angle Control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380075261.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13892232 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157026352 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14781166 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013892232 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |