WO2015025773A1 - メタ-キシリレンジイソシアネート類の製造方法 - Google Patents

メタ-キシリレンジイソシアネート類の製造方法 Download PDF

Info

Publication number
WO2015025773A1
WO2015025773A1 PCT/JP2014/071245 JP2014071245W WO2015025773A1 WO 2015025773 A1 WO2015025773 A1 WO 2015025773A1 JP 2014071245 W JP2014071245 W JP 2014071245W WO 2015025773 A1 WO2015025773 A1 WO 2015025773A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
general formula
compound
meta
acid
Prior art date
Application number
PCT/JP2014/071245
Other languages
English (en)
French (fr)
Inventor
小島 甲也
英孝 塚田
理 高階
島川 千年
直志 柿沼
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US14/903,268 priority Critical patent/US9670148B2/en
Priority to KR1020157035753A priority patent/KR101761051B1/ko
Priority to JP2014556874A priority patent/JP5739590B1/ja
Priority to EP14838284.9A priority patent/EP3037410B1/en
Priority to CN201480031580.9A priority patent/CN105263903B/zh
Publication of WO2015025773A1 publication Critical patent/WO2015025773A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/06Preparation of derivatives of isocyanic acid from or via ureas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/04Preparation of derivatives of isocyanic acid from or via carbamates or carbamoyl halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • C07C273/1809Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas with formation of the N-C(O)-N moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • C07C273/1854Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas by reactions not involving the formation of the N-C(O)-N- moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/28Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing six-membered aromatic rings, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/20Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups

Definitions

  • the present invention relates to a method for producing meta-xylylene diisocyanates.
  • metaxylylene diisocyanate is known as a raw material of polyurethane used for paints, adhesives, plastic lenses and the like.
  • Such metaxylylene diisocyanates are generally produced from metaxylylenediamines after the metaxylylenediamines are produced from the metaxylenes.
  • metaxylene is ammoxidized using a fluid catalyst made of vanadium to produce isophthalonitrile, and the isophthalonitrile is hydrogenated in the presence of a nickel catalyst or the like. It has been proposed (see, for example, Patent Document 1).
  • the present invention has been made in view of such problems, and the object thereof is meta-xylylene diisocyanate which does not require high temperature and high pressure (special equipment) and is excellent in equipment, safety and economy. It is in providing the manufacturing method of a kind.
  • the method for producing meta-xylylene diisocyanates of the present invention comprises reacting a monohalogenated benzene, formaldehyde, and an amide compound represented by the following general formula (1) in the presence of an acidic liquid to form a bisamide.
  • a reaction step for forming a compound a dehalogenation step for substituting a halogen atom derived from the monohalogenated benzenes with a hydrogen atom from the bisamide compound, and a heat for thermally decomposing the bisamide compound from which the halogen atom has been eliminated.
  • a decomposition step wherein in the reaction step, the acidic liquid contains an inorganic acid, and the equivalent ratio of hydrogen atoms of the inorganic acid to the monohalogenated benzenes exceeds 14, in the acidic liquid
  • the acid concentration of is over 90% by mass and the reaction temperature is over 10 ° C.
  • R 1 represents an alkoxy group or an amino group.
  • R 1 is preferably an n-butoxy group.
  • R 1 is preferably a diisobutylamino group.
  • the inorganic acid is preferably sulfuric acid or phosphoric acid.
  • the monohalogenated benzene is preferably monochlorobenzene.
  • the equivalent ratio of hydrogen atoms of the inorganic acid to the monohalogenated benzenes is 16 or more, the concentration of the inorganic acid in the acidic liquid is 95% by mass or more, and the reaction temperature is 20 It is preferable that the temperature is not lower than ° C.
  • monohalogenated benzenes, formaldehydes, and the amide compound represented by the general formula (1) are mixed in the presence of an acidic liquid under the above conditions.
  • the reaction is carried out at a reaction temperature exceeding 10 ° C.
  • a bisamide compound such as a bisurea compound represented by the following chemical formula (2) and chemical formula (3) can be generated.
  • Such bisamide compounds can be derived into meta-xylylene diisocyanates by a dehalogenation step and a thermal decomposition step.
  • the method for producing meta-xylylene diisocyanates according to the present invention is excellent in equipment, safety and economy, and produces meta-xylylene diisocyanates safely, at low cost and in high yield. Can do. Therefore, the present invention can be suitably used as an industrial method for producing meta-xylylene diisocyanates.
  • the method for producing meta-xylylene diisocyanates of the present invention includes a reaction step, a dehalogenation step, and a thermal decomposition step, and preferably further includes a purification step and a recovery step.
  • reaction step a monohalogenated benzene, formaldehyde, and an amide compound represented by the following general formula (1) are reacted in the presence of an acidic liquid to produce a bisamide compound.
  • Monohalogenated benzenes are aromatic compounds in which one of the hydrogen atoms bonded to the benzene ring is substituted with a halogen atom.
  • monohalogenated benzenes represented by the following general formula (4)
  • monohalogenated benzenes represented by the general formula (5).
  • X represents a halogen atom.
  • R 2 represents a hydrogen atom, an alkyl group, an amino group, a hydroxyl group or an alkoxy group. R 2 may be the same or different from each other.
  • halogen atom represented by X examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • halogen atoms a chlorine atom, a bromine atom and an iodine atom are preferable from the viewpoint of raw material cost, and a chlorine atom is more preferable.
  • examples of the alkyl group represented by R 2 include a linear alkyl group having 1 to 12 carbon atoms (for example, a methyl group, an ethyl group, n- A propyl group, an n-butyl group, a pentyl group, a hexyl group, a heptyl group, an n-octyl group, a nonyl group, a decyl group, a dodecyl group, etc.), a branched alkyl group having 1 to 12 carbon atoms (for example, an isopropyl group, Isobutyl group, t-butyl group, isopentyl group, isooctyl group, 2-ethylhexyl group, 2-propylpentyl group, isodecyl group, etc., cycloalkyl group having 3 to 6 carbon atoms (for example,
  • the amino group represented by R 2 may be any of primary, secondary and tertiary amino groups.
  • the secondary or tertiary amino group include amino groups containing the above alkyl groups.
  • examples of the alkoxy group represented by R 2 include an alkoxy group having 1 to 12 carbon atoms (for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, etc. ) And the like.
  • a hydrogen atom is preferable from the viewpoint of the orientation of monohalogenated benzenes.
  • all R 2 are preferably the same.
  • monohalogenated benzenes represented by general formula (4) and general formula (5) are identical.
  • monochlorobenzene is preferable from the viewpoint of raw material cost and orientation.
  • Such monohalogenated benzenes may be used alone or in combination.
  • Formaldehydes include, for example, formaldehyde and paraformaldehyde, and paraformaldehyde is preferable from the viewpoint of handleability.
  • Paraformaldehyde is a homopolymer obtained by polymerizing only formaldehyde, and is represented by the following general formula (6).
  • General formula (6) HO (CH 2 O) n H (6) (In general formula (6), n represents an integer of 2 or more and 100 or less.) In general formula (6), n is preferably 8 or more and 100 or less.
  • Such formaldehydes may be used alone or in combination.
  • Such formaldehydes are preferably prepared as an aqueous solution from the viewpoint of handleability.
  • the concentration of the formaldehyde is, for example, 70% by mass or more, and preferably 80% by mass or more, for example, 100% by mass or less from the viewpoint of reactivity.
  • the mixing ratio of formaldehydes is, for example, 1.0 mol or more, preferably 1.2 mol or more, for example 10.0 mol or less, from the viewpoint of the yield of the bisamide compound, relative to 1 mol of monohalogenated benzenes, From the viewpoint of cost, it is preferably 4.0 mol or less.
  • the mixing ratio of formaldehydes is, for example, 30 parts by mass or more, preferably 40 parts by mass or more, for example, 90 parts by mass or less, preferably 80 parts by mass or less with respect to 100 parts by mass of monohalogenated benzenes. It is.
  • the amide compound is represented by the following general formula (1).
  • R 1 represents an alkoxy group or an amino group.
  • the amide compound is a carbamic acid ester represented by the following general formula (7).
  • R 3 represents an alkyl group.
  • examples of the alkyl group represented by R 3 include the same alkyl groups as the alkyl group represented by R 2 in the general formula (4). From the viewpoint of stability of the bisamide compound described later.
  • a linear alkyl group having 1 to 12 carbon atoms more preferably a linear alkyl group having 2 to 6 carbon atoms, and particularly preferably an n-butyl group. It is done. That is, in the general formula (1), R 1 is preferably an n-butoxy group.
  • carbamic acid ester represented by the general formula (7) a commercially available product can be used, but one synthesized by a known method can also be used.
  • Examples of the alcohol include linear alcohols having 1 to 12 carbon atoms (for example, methanol, ethanol, propanol, butanol, pentanol, hexanol, etc.), branched alcohols having 1 to 12 carbon atoms (for example, 2-propanol, 2-methylpropyl alcohol, t-butyl alcohol, 3-methyl-1-butanol, etc.), and cycloalcohols having 3 to 6 carbon atoms (eg, cyclopentanol, cyclohexanol, etc.).
  • linear alcohols having 1 to 12 carbon atoms are preferable, and butanol (n-butanol) is more preferable.
  • Such alcohols may be used alone or in combination.
  • a blending ratio of the alcohol for example, 0.5 mol or more with respect to 1 mol of urea, preferably from the viewpoint of the yield of the amide compound, preferably 0.8 mol or more, for example, 1.5 mol or less, from the viewpoint of raw material cost. 1.2 mol or less.
  • the temperature at normal pressure is, for example, 80 ° C. or higher, preferably from the viewpoint of the reaction rate, preferably 100 ° C. or higher, for example, 200 ° C. or lower, preferably from the viewpoint of safety. It is 150 degrees C or less, and time is 1 hour or more, for example, Preferably, it is 2 hours or more, for example, 10 hours or less, Preferably, it is 6 hours or less.
  • R 4 represents a hydrogen atom or an alkyl group. R 4 may be the same or different from each other.
  • examples of the alkyl group represented by R 4 include the same alkyl groups as the alkyl group represented by R 2 in the general formula (4).
  • R 4 is preferably an alkyl group, more preferably a branched alkyl group having 1 to 12 carbon atoms, from the viewpoint of the stability of the bisamide compound described later. Particularly preferred is a branched alkyl group having 2 to 6 carbon atoms, and most preferred is an isobutyl group (2-methylpropyl group). That is, in the general formula (1), R 1 is preferably a diisobutylamino group.
  • urea compound represented by the general formula (8) a commercially available product can be used, but a compound synthesized by a known method can also be used.
  • urea is reacted with an amine.
  • amines include unsubstituted amines and primary amines (eg, monomethylamine, monoethylamine, mono n-butylamine, mono n-hexylamine, monoisobutylamine, mono-t-butylamine, monoisopentylamine). Secondary amines (for example, dimethylamine, diethylamine, dibutylamine, dihexylamine, N, N-diisobutylamine, N, N-diisopentylamine, etc.). Of these amines, secondary amines are preferable, and N, N-diisobutylamine is more preferable. Such amines may be used alone or in combination.
  • primary amines eg, monomethylamine, monoethylamine, mono n-butylamine, mono n-hexylamine, monoisobutylamine, mono-t-butylamine, monoisopentylamine.
  • Secondary amines for example
  • the mixing ratio of the amine is, for example, 0.5 mol or more with respect to 1 mol of urea, preferably from the viewpoint of the yield of the amide compound, preferably 0.8 mol or more, for example, 1.5 mol or less, from the viewpoint of raw material cost. 1.2 mol or less.
  • the temperature is, for example, 80 ° C. or higher, preferably from the viewpoint of the reaction rate, preferably 100 ° C. or higher, for example, 200 ° C. or lower, preferably from the viewpoint of safety. It is 150 degrees C or less, and time is 1 hour or more, for example, Preferably, it is 2 hours or more, for example, 10 hours or less, Preferably, it is 6 hours or less.
  • the acidic liquid is a liquid containing an inorganic acid, and is also used as a reaction solvent in the reaction process.
  • Such an acidic liquid may be composed of only an inorganic acid, or may be an inorganic acid aqueous solution in which an inorganic acid is dissolved in water.
  • the inorganic acid examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and boric acid.
  • a strong acid that is, an acid dissociation constant (pKa (H 2 O )) Is an inorganic acid having 3 or less.
  • Specific examples of the strong acid inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid. From the viewpoint of the yield of the bisamide compound, sulfuric acid and phosphoric acid are preferable.
  • Such inorganic acids may be used alone or in combination.
  • the concentration of the inorganic acid in the acidic liquid is more than 90% by mass, preferably 95% by mass or more, for example, 100% from the viewpoint of the yield of the bisamide compound. Preferably, it is 99 mass% or less from the ease of preparation of inorganic acid aqueous solution.
  • Such acidic liquids may be used alone or in combination.
  • sulfuric acid aqueous solution, phosphoric acid aqueous solution and phosphoric acid (single) are preferable, and sulfuric acid aqueous solution and phosphoric acid (single) are more preferable.
  • the blending ratio of such an acidic liquid is, for example, 300 parts by mass or more with respect to 100 parts by mass of the monohalogenated benzene, and preferably 500 parts by mass or more, for example, 3000 parts by mass from the viewpoint of the yield of the bisamide compound.
  • it is preferably 2000 parts by mass or less.
  • the blending ratio of the inorganic acid is, for example, 3 mol or more, preferably 4 mol or more, more preferably 5 mol or more, for example, 20 mol or less, from the viewpoint of the yield of the bisamide compound, relative to 1 mol of monohalogenated benzenes. From the viewpoint of cost, it is preferably 15 mol or less.
  • the equivalent ratio (molar equivalent ratio) of hydrogen atoms of the inorganic acid exceeds 14, preferably 16 or more, more preferably, from the viewpoint of the yield of the bisamide compound with respect to the monohalogenated benzenes. 18 or more, for example, 80 or less, preferably 70 or less, more preferably 60 or less from the viewpoint of cost.
  • each component monohalogenated benzenes, formaldehydes and amide compounds
  • an acidic liquid for example, after dissolving the formaldehydes and amide compounds in an acidic liquid to prepare an aldehyde / amide solution Mix aldehyde / amide solution and monohalogenated benzenes.
  • the mixing method of the aldehyde / amide solution and the monohalogenated benzenes is not particularly limited, and examples thereof include a method in which the other is added dropwise to either one, and from the viewpoint of the yield of the bisamide compound, preferably an aldehyde -The method of dripping monohalogenated benzenes to an amide solution is mentioned.
  • the temperature is, for example, 0 ° C. or more, preferably 5 ° C. or more, for example, 40 ° C. or less, preferably 30 ° C. or less
  • the time required for dropping is, for example, 15 minutes or more, preferably 30 minutes or more, for example, 5 hours or less, preferably 3 hours or less.
  • the mixed solution of the aldehyde / amide solution and the monohalogenated benzenes is heated to react the monohalogenated benzenes, formaldehydes and amide compounds.
  • the reaction temperature exceeds 10 ° C. from the viewpoint of the yield of the bisamide compound, preferably 20 ° C. or higher, more preferably 40 ° C. or higher, particularly preferably 50 ° C. or higher, and facilities and safety aspects. From, for example, 100 ° C. or lower, preferably 90 ° C. or lower, more preferably 80 ° C. or lower.
  • the reaction temperature is within the above range, it is advantageous because the reaction rate does not decrease and decomposition due to excessive heating hardly occurs.
  • the reaction pressure is not particularly limited and may be any of normal pressure, pressurization, and reduced pressure, and is preferably normal pressure (specifically, 90 kPa to 110 kPa) from the viewpoint of equipment and safety. is there.
  • the reaction time is, for example, 1 hour or more, preferably 5 hours or more, for example, 40 hours or less, preferably 30 hours or less, more preferably less than 20 hours.
  • Such a 2,4-di-substituted product and a 2,6-di-substituted product are both meta-forms when a halogen atom is substituted with a hydrogen atom in the dehalogenation step described later, regardless of the production ratio.
  • the production ratio (on a molar basis) of the 2,4-disubstituted product is, for example, 3 or more, preferably 5 or more, for example, 15 or less, preferably 20 or less with respect to the 2,6-disubstituted product. .
  • the production ratio of 2,4-disubstituted product is calculated from the integrated value of the peak measured by high performance liquid chromatography (HPLC).
  • the biscarbamic acid compound represented by the general formula (10) is, for example, 2-chloro-1,3-xylylenebis (butyl carbamate) when all of R 3 are butyl groups and X is a chlorine atom. (See the following chemical formula (17)).
  • the bisamide compound produced in the reaction step includes a bisurea compound (2,4-disubstituted product) represented by the following general formula (11) and a bisurea compound represented by the following general formula (12) ( 2,6-disubstituted).
  • General formula (11) :
  • the conversion rate of monohalogenated benzenes is, for example, 80 mol% or more, preferably 85 mol% or more, for example, 100 mol% or less.
  • the yield of the bisamide compound is, for example, 25 mol% or more, preferably 30 mol% or more, more preferably 50 mol% or more, for example, 100 mol% or less, preferably 80 mol%, based on monohalogenated benzenes. It is as follows.
  • the conversion rate of monohalogenated benzenes and the yield of bisamide compound are calculated from the integrated values of peaks measured by high performance liquid chromatography (HPLC).
  • a monoamide compound (mono-substituted product) in which one of the hydrogen atoms of the monohalogenated benzenes is substituted with the amide compound may be generated.
  • the yield of the monoamide compound is, for example, 1 mol% or more, for example, 40 mol% or less, preferably 35 mol% or less, and more preferably 30 mol% or less with respect to the monohalogenated benzenes.
  • the production ratio (on a molar basis) of the monoamide compound is, for example, 0.01 or more, for example, 1.0 or less, preferably 0.9 or less, more preferably 0.6 or less, relative to the bisamide compound. is there.
  • the yield of the monoamide compound and the yield of the production ratio of the monoamide compound are calculated from the integrated value of the peak measured by high performance liquid chromatography (HPLC).
  • the reaction product in such a reaction step contains impurities such as components remaining in the reaction (specifically, formaldehydes, amide compounds, inorganic acids, etc.). There is a case. Therefore, the reaction product can be used as it is, but is preferably used after isolation and purification.
  • Examples of the purification method of the reaction product include known purification methods such as distillation, solvent extraction, chromatography, crystallization, and recrystallization. In such a purification method, separation and purification by a single purification method may be repeated as necessary, and separation and purification by two or more purification methods may be combined. Among such purification methods, solvent extraction is preferable from the viewpoint of simplicity.
  • the reaction product is mixed with a mixed solution of water and an organic solvent, and then the aqueous layer is removed. Thereby, at least the bisamide compound is distributed to the organic solvent (organic layer), and for example, hydrophilic impurities such as formaldehydes and inorganic acids are distributed to the aqueous layer.
  • the organic solvent is not particularly limited as long as the bisamide compound is soluble and the formaldehydes and amide compounds are insoluble, and examples thereof include saturated hydrocarbons (hexane, heptane, etc.), aromatic hydrocarbons ( Benzene, toluene, xylene, etc.) and low polar solvents such as halogenated hydrocarbons (dichloromethane, dichloroethane, carbon tetrachloride, etc.).
  • aromatic hydrocarbons are preferable from the viewpoint of affinity with the bisamide compound, and toluene is more preferable.
  • Such organic solvents may be used alone or in combination of two or more.
  • the reaction product contains the above bisamide compound and monoamide compound
  • the bisamide compound and monoamide compound can be separated and purified by, for example, chromatography.
  • dehalogenation process In the dehalogenation step, in the above bisamide compound, a halogen atom derived from monohalogenated benzenes is replaced with a hydrogen atom.
  • a dehalogenation method As a method of substituting a halogen atom of a bisamide compound with a hydrogen atom, that is, a dehalogenation method, a known dehalogenation method from a halogenated benzene can be mentioned. Among such dehalogenation methods, a method of supplying hydrogen to the above bisamide compound in the presence of a catalyst is preferable.
  • the catalyst examples include known hydrogenation catalysts, for example, catalysts containing metals such as Ni, Mo, Fe, Co, Cu, Pt, Pd, and Rh, and preferably a palladium carbon catalyst from an industrial viewpoint. It is done. Such catalysts may be used alone or in combination.
  • the ratio of the catalyst used is, for example, 0.5 parts by mass or more, preferably 1 part by mass or more, for example, 7 parts by mass with respect to 100 parts by mass of the monohalogenated benzenes used in the reaction step. From the viewpoint of cost, it is preferably 8 parts by mass or less.
  • the catalyst is used in an amount of, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more, for example, 5 parts by mass or less, with respect to 100 parts by mass of the bisamide compound. From the viewpoint, it is preferably 3 parts by mass or less.
  • the catalyst and the bisamide compound are charged into a reactor (for example, an autoclave), and then the air in the reactor is replaced with hydrogen. .
  • the metal salt examples include alkali metal carbonates (for example, sodium carbonate and potassium carbonate), alkali metal sulfates (for example, sodium sulfate and potassium sulfate), and alkaline earth metal carbonates (for example, magnesium carbonate and carbonate). Calcium), alkaline earth metal sulfates (eg, magnesium sulfate, calcium sulfate, etc.), and the like.
  • alkali metal carbonate for example, sodium carbonate and potassium carbonate
  • alkali metal sulfates for example, sodium sulfate and potassium sulfate
  • alkaline earth metal carbonates for example, magnesium carbonate and carbonate.
  • the mixing ratio of the metal salt is, for example, 0.1 mol or more with respect to 1 mol of monohalogenated benzenes used in the reaction step. 3 mol or less, preferably 1.5 mol or less from the viewpoint of cost.
  • organic solvent examples include the organic solvents described above, preferably aromatic hydrocarbons, and more preferably toluene. Such organic solvents may be used alone or in combination of two or more.
  • the organic layer obtained in the reaction step can be used as it is without adding an organic solvent in the dehalogenation step.
  • the inside of the reactor is pressurized and the temperature is raised to replace the halogen atom of the bisamide compound with a hydrogen atom.
  • the temperature is, for example, 40 ° C. or higher, preferably from the viewpoint of reactivity, preferably 70 ° C. or higher, for example, 150 ° C. or lower, preferably from the viewpoint of equipment and safety. 110 MPa or less and the pressure is, for example, 0.1 MPa or more, preferably from the viewpoint of reactivity, preferably 0.2 MPa or more, for example, 3.0 MPa or less, preferably from the viewpoint of equipment and safety, 1.0 MPa.
  • the time is, for example, 1 hour or longer, preferably from the viewpoint of reactivity, 2 hours or longer, for example, 20 hours or shorter, preferably 10 hours or shorter.
  • R 3 has the same meaning as R 3 in the general formula (7). That is, the biscarbamic acid compound (2,4-disubstituted product) represented by the general formula (9) and the biscarbamic acid compound (2,6-disubstituted product) represented by the general formula (10) Both are converted to the 1,3-position amide substituted product represented by the general formula (13) by the dehalogenation step.
  • R 4 has the same meaning as R 4 in the general formula (8).
  • the biscarbamic acid compound (2,4-disubstituted product) represented by the general formula (11) and the biscarbamic acid compound (2,6-disubstituted product) represented by the general formula (12) Both are converted into the 1,3-position amide-substituted product represented by the general formula (14) by the dehalogenation step.
  • the yield of the 1,3-position amide substituted product is, for example, 80 mol% or more, preferably 90 mol% or more, for example, 100 mol% or less, preferably 99 mol% or less, with respect to the bisamide compound used in the dehalogenation step. It is.
  • the yield of 1,3-position amide substitution product is calculated from the integrated value of the peak measured by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • the thermal decomposition method is not particularly limited, and examples thereof include known decomposition methods such as a liquid phase method and a gas phase method, and a liquid phase method is preferable from the viewpoint of workability.
  • the reactor is not particularly limited, and examples thereof include known reactors used in thermal decomposition methods.
  • Examples of the distillation tower include a packed tower and a plate tower, and a packed tower is preferable.
  • a high boiling point inert solvent dissolves the 1,3-position amide substituent, is inert to meta-xylylene diisocyanates, and does not react during pyrolysis (ie, is stable)
  • the boiling point is higher than that of the meta-xylylene diisocyanate to be produced.
  • Examples of such a high boiling point inert solvent include aromatic hydrocarbons.
  • aromatic hydrocarbons examples include benzene (boiling point: 80 ° C.), toluene (boiling point: 111 ° C.), o-xylene (boiling point: 144 ° C.), m-xylene (boiling point: 139 ° C.), p-xylene ( Boiling point: 138 ° C), ethylbenzene (boiling point: 136 ° C), isopropylbenzene (boiling point: 152 ° C), butylbenzene (boiling point: 185 ° C), cyclohexylbenzene (boiling point: 237-340 ° C), tetralin (boiling point: 208 ° C) Chlorobenzene (boiling point: 132 ° C), o-dichlorobenzene (boiling point: 180 ° C), 1-methylnaphthalene (b
  • examples of the high boiling point inert solvent further include esters (for example, dioctyl phthalate, didecyl phthalate, didodecyl phthalate, etc.), aliphatic hydrocarbons commonly used as a heat medium, and the like.
  • esters for example, dioctyl phthalate, didecyl phthalate, didodecyl phthalate, etc.
  • aliphatic hydrocarbons commonly used as a heat medium and the like.
  • known process oils and heat medium oils can be used as the high boiling point inert solvent.
  • hydrocarbon process oils and hydrocarbon heat medium oils are preferable.
  • Barrel Process Oil B30 Moatsumura Oil Co., Ltd., boiling point: 380 ° C.
  • Barrel Therm 400 (Matsumura Oil Co., Ltd., Boiling point: 390 ° C.).
  • heat medium oil is preferable from the viewpoint of yield.
  • Such high boiling point inert solvents may be used alone or in combination.
  • the thermal decomposition temperature is, for example, 100 ° C. or higher, preferably from the viewpoint of reaction rate, 150 ° C. or higher, for example, 400 ° C. or lower, preferably from the viewpoint of equipment and safety, preferably 350 ° C. or lower, more preferably 300 ° C. or lower.
  • the pyrolysis pressure is, for example, 1000 Pa or more, preferably 5000 Pa or more, for example, 20000 Pa or less, and preferably 15000 Pa or less from the viewpoint of separation of meta-xylylene diisocyanates.
  • the pyrolysis time is, for example, 2 hours or longer, preferably 4 hours or longer, for example, 40 hours or shorter, preferably 20 hours or shorter.
  • the 1,3-position amide-substituted product is thermally decomposed to produce meta-xylylene diisocyanates. More specifically, when monohalogenated benzenes in which all of R 2 are hydrogen atoms in the general formula (4) are used as monohalogenated benzenes, the meta-xylyl represented by the following chemical formula (15) Range isocyanate is produced. Chemical formula (15):
  • the yield of meta-xylylene diisocyanates is, for example, 60 mol% or more, preferably 70 mol% or more, such as 100 mol% or less, preferably 100 mol% or less, based on the 1,3-amide substituted product used in the thermal decomposition step. 99 mol% or less.
  • the yield of meta-xylylene diisocyanates is calculated from the integrated value of peaks measured by gas chromatography (GC).
  • GC gas chromatography
  • the distillate obtained in the pyrolysis step (hereinafter referred to as the first distillate) is not only meta-xylylene diisocyanate but also impurities such as by-products due to pyrolysis (for example, alcohol, amine, etc.) ) May be contained. Therefore, the first distillate can be used as it is, but is preferably used after being isolated and purified.
  • the first distillate is purified by the same purification method as described above.
  • separation and purification by a single purification method may be repeated as necessary, and separation and purification by two or more purification methods may be combined.
  • distillation is preferable from an industrial viewpoint.
  • the first distillate is charged into a distillation kettle equipped with a distillation column and then distilled under reduced pressure.
  • the distillation kettle is not particularly limited, and examples thereof include known distillation kettles.
  • Examples of the distillation tower include the above-described distillation tower, and preferably a plate tower.
  • the temperature is, for example, 100 ° C. or higher, preferably 120 ° C. or higher, for example, 300 ° C. or lower, preferably 280 ° C. or lower
  • the pressure is, for example, 10 Pa or higher, preferably 50 Pa.
  • it is 1000 Pa or less, preferably 800 Pa or less
  • the time is, for example, 2 hours or more, preferably 3 hours or more, for example, 40 hours or less, preferably 20 hours or less.
  • the first distillate is distilled, and meta-xylylene diisocyanate is obtained as a distillate from the distillation column (hereinafter referred to as the second distillate).
  • the purity of the purified meta-xylylene diisocyanate is, for example, 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, for example, 100% with respect to the total amount of the second distillate. % Or less.
  • the purification yield in the purification step is, for example, 70 mol% or more, preferably 80 mol% or more, for example, 100 mol% or less, preferably 98 mol%, with respect to the meta-xylylene diisocyanate used in the purification step. It is as follows.
  • the purity of the meta-xylylene diisocyanate and the purification yield in the purification step are calculated from the integrated value of the peak measured by gas chromatography (GC).
  • the by-product (alcohol or amine) isolated in each of the thermal decomposition step and the purification step is reacted with urea to produce the amide compound represented by the general formula (1).
  • the temperature is, for example, 80 ° C. or higher, preferably from the viewpoint of reactivity, preferably 100 ° C. or higher, for example, 200 ° C. or lower, preferably from the viewpoint of safety, 150 ° C. or lower
  • the pressure is, for example, 90 Pa or more, preferably from the viewpoint of reactivity, 95 Pa or more, for example, 110 Pa or less, preferably from the viewpoint of safety, preferably 100 Pa or less
  • the time is, for example, 1 hour or more, preferably 2 hours or more, for example , 40 hours or less, preferably 20 hours or less.
  • an amide compound represented by the general formula (1) that is, an amide compound used in the reaction step is generated. Therefore, the amide compound recovered in the recovery step can be used in the reaction step, and further economic improvement can be achieved.
  • Such a method for producing meta-xylylene diisocyanates produces meta-xylylene diisocyanates safely, at low cost and in high yield under simple steps and mild conditions as compared with conventional methods. be able to. Therefore, such a process for producing meta-xylylene diisocyanates is excellent in equipment, safety and economy. As a result, it can be suitably used as an industrial production method for meta-xylylene diisocyanates.
  • meta-xylylene diisocyanates and salts thereof are suitably used as various industrial raw materials, for example, resin raw materials such as polyurethane raw materials.
  • resin raw materials such as polyurethane raw materials.
  • it is suitable for polyurethane paints, adhesives, sealants, and elastomer and polythiourethane lens applications.
  • meta-xylylene diisocyanate obtained by the method for producing meta-xylylene diisocyanate of the present invention is substantially different from the case where it is derived from meta-xylylene diamine by a method using phosgene (phosgene method).
  • the concentration of hydrolyzable chlorine (HC) of meta-xylylene diisocyanate is, for example, 5000 ppm or less, preferably 1000 ppm or less.
  • the concentration of hydrolyzable chlorine (HC) is measured according to the method for obtaining hydrolyzable chlorine described in JIS K 1603-3 (2007).
  • an acid component such as hydrochloric acid
  • a publicly known stabilizer to the meta-xylylene diisocyanate as necessary.
  • additives such as urethanization catalysts, organic catalysts, fillers, ultraviolet absorbers, antioxidants and the like should be added appropriately to such meta-xylylene diisocyanates depending on the purpose and application. You can also.
  • Table 1 shows the formulation, acidic liquid, reaction conditions, addition rate and yield in the reaction step.
  • each component in each step was analyzed by gas chromatography (GC) or high performance liquid chromatography (HPLC). More specifically, a three-check quantity curve was created, and the concentration and content of each component were calculated from the integrated value of the peak obtained by GC or HPLC.
  • GC gas chromatography
  • HPLC high performance liquid chromatography
  • the crude product When the crude product was analyzed by GC, the crude product contained n-butyl carbamate, and the yield of n-butyl carbamate was 96.9 mol% based on urea. This gave a crude product containing 227.2 g of n-butyl carbamate.
  • reaction temperature 60 ° C.
  • reaction time 8 hours
  • reaction product When the reaction product was analyzed by HPLC, the conversion of monochlorobenzene was 92%, and the reaction product contained a biscarbamic acid compound (disubstituted product) and a monocarbamic acid compound (monosubstituted product). It was.
  • the yield of the biscarbamic acid compound (disubstituted product) with respect to monochlorobenzene was 71%, and the yield of the monocarbamic acid compound (monosubstituted product) was 2%. That is, a total of 0.36 mol of biscarbamic acid compounds was formed, and the total mass was 131.5 g.
  • the obtained biscarbamic acid compound includes a biscarbamic acid compound (2,4-disubstituted product) represented by the following chemical formula (16) and a biscarbamic acid compound (2,6- Di-substituted) only.
  • the isomer ratio of the 2,4-di-substituted product to the 2,6-di-substituted product was 10 (2,4-di-substituted product): 1 (2,6-di-substituted product).
  • the conversion rate of monochlorobenzene, the yield of biscarbamic acid compound, the yield of monocarbamic acid compound, and the isomer ratio of 2,4-disubstituted to 2,6-disubstituted are high speed liquids. It was calculated from the integrated value of the peak measured by chromatography (HPLC).
  • the gas phase portion in the autoclave was replaced with nitrogen, then with hydrogen, and pressurized to a hydrogen pressure of 0.5 MPa.
  • the temperature inside the autoclave was raised to 90 ° C. to advance the dehalogenation reaction of the biscarbamic acid compound. After 5 hours, the reaction was completed and cooled.
  • N, N′-meta-xylylenebis (butyl carbamate) as a 1,3-position carbamate substitution product.
  • the yield of N, N'-meta-xylylenebis (butyl carbamate) with respect to the sum of the biscarbamic acid compounds represented by chemical formula (2) and chemical formula (3) was 97 mol%. That is, N, N′-meta-xylylene bis (butyl carbamate) was produced in an amount of 0.34 mol, and its mass was 115.8 g.
  • N, N′-meta-xylylene bis (butyl carbamate) was calculated from the integrated value of the peak measured by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • distillation under reduced pressure was performed in a pressure range of 0.5 to 5 torr (66.7 Pa to 666.7 Pa) and a temperature range of 160 ° C. to 240 ° C. Then, the distillate from the tray column (second distillate) was collected to obtain purified meta-xylylene diisocyanate.
  • the purified meta-xylylene diisocyanate was analyzed by GC, the purity of the meta-xylylene diisocyanate was 99.7% by mass, and the purification yield was based on the meta-xylylene diisocyanate used in the purification step. It was 93 mol%.
  • meta-xylylene diisocyanate 0.26 mol of meta-xylylene diisocyanate was recovered, and its mass was 48.3 g.
  • Example 2 meta-xylylene diisocyanate was prepared in the same manner as in Example 1 except that the amount of 95% by mass sulfuric acid aqueous solution was changed to 464.6 g (sulfuric acid: 4.5 mol).
  • Example 3 Meta-xylylene diisocyanate was prepared in the same manner as in Example 1 except that the amount of 95% by mass sulfuric acid aqueous solution used was changed to 413.0 g (sulfuric acid: 4.0 mol) in the reaction step.
  • the conversion of monochlorobenzene was 92 mol%
  • the yield of biscarbamic acid compound (di-substituted product) was 65 mol%
  • the yield of monocarbamic acid compound (mono-substituted product) was 6 mol%. It was.
  • Example 6 In the reaction step, the amount of the 90 mass% paraformaldehyde aqueous solution used was changed to 41.8 g (formaldehyde: 1.25 mol), and the 95 mass% sulfuric acid aqueous solution 515.8 g (sulfuric acid: 5.0 mol) Meta-xylylene diisocyanate was prepared in the same manner as in Example 1 except that the mass was changed to 1000.0 g of a phosphoric acid aqueous solution (phosphoric acid: 10 mol).
  • the conversion of monochlorobenzene was 90 mol%
  • the yield of biscarbamic acid compound (di-substituted product) was 51 mol%
  • the yield of monocarbamic acid compound (mono-substituted product) was 27 mol%. It was.
  • Example 7 In the reaction step, the amount of the 90 mass% paraformaldehyde aqueous solution used was changed to 41.8 g (formaldehyde: 1.25 mol), and 515.8 g of 95 mass% sulfuric acid aqueous solution (sulfuric acid: 5.0 mol) Meta-xylylene diisocyanate was prepared in the same manner as in Example 1 except that the acid was changed to 980.0 g (phosphoric acid: 10 mol).
  • the conversion of monochlorobenzene was 92 mol%
  • the yield of biscarbamic acid compound (di-substituted product) was 72 mol%
  • the yield of monocarbamic acid compound (mono-substituted product) was 5 mol%. It was.
  • Example 8 In the reaction step, the amount of the 90 mass% paraformaldehyde aqueous solution used was changed to 41.8 g (formaldehyde: 1.25 mol), and the 95 mass% sulfuric acid aqueous solution 515.8 g (sulfuric acid: 5.0 mol) was changed to 98 mass%.
  • Example 9 A 1 L flask equipped with a stirrer, a thermometer, and a gas exhaust pipe was charged with 120.2 g (2.0 mol) of urea and 258.4 g (2.0 mol) of N, N-diisobutylamine. The mixture was heated to 130 ° C. and stirred for 4 hours while keeping this temperature constant. Then, it cooled to 25 degreeC and obtained the crude product.
  • the crude product When the crude product was analyzed by GC, the crude product contained N, N-diisobutylurea, and the yield of N, N-diisobutylurea was 98 mol% with respect to urea. This gave a crude product containing 337.8 g N, N-diisobutylurea.
  • reaction temperature 50 ° C.
  • reaction time 5 hours
  • reaction product When the reaction product was analyzed by HPLC, the conversion of monochlorobenzene was 95 mol%, and the reaction product contained a bisurea compound (disubstituted product) and a monourea compound (monosubstituted product). .
  • the yield of the bisurea compound (disubstituted product) with respect to monochlorobenzene was 62 mol%, and the yield of the monourea compound (monosubstituted product) was 5 mol%. That is, a total of 0.31 mol of bisurea compounds was produced, and the total mass was 149.1 g.
  • the obtained bisurea compound includes a bisurea compound (2,4-disubstituted product) represented by the following chemical formula (2) and a bisurea compound (2,6-disubstituted product) represented by the following chemical formula (3). ) Only. Chemical formula (2):
  • the gas phase portion in the autoclave was replaced with nitrogen, then with hydrogen, and pressurized to a hydrogen pressure of 0.5 MPa. Further, the temperature inside the autoclave was raised to 90 ° C. to advance the dehalogenation reaction of the bisurea compound. After 5 hours, the reaction was completed and cooled.
  • N, N′-meta-xylylenebis N, N-diisobutylurea
  • [M + H] + m / z 447 ([measurement conditions], ionization method: FAB (pos), matrix: m-NBA).
  • N, N′-meta-xylylene bis (N, N-diisobutylurea) The yield of N, N′-meta-xylylene bis (N, N-diisobutylurea) relative to the sum of the bisurea compounds represented by the above chemical formula (2) and the following chemical formula (3) was 95 mol%. That is, 0.29 mol of N, N′-meta-xylylene bis (N, N-diisobutylurea) was produced, and its mass was 129.5 g.
  • N, N′-meta-xylylene bis (N, N-diisobutylurea) was calculated from the integrated value of the peak measured by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • Example 2 The same procedure as in Example 1 was performed except that the concentration of the sulfuric acid aqueous solution was changed to 500.4 g (sulfuric acid: 5.0 mol), the reaction temperature was changed to 10 ° C., and the reaction time was changed to 20 hours. did.
  • the conversion of monochlorobenzene was 26 mol%, and the yield of the monourea compound (mono-substituted product) was 5%. Moreover, the bisurea compound (di-substituted product) was not produced.
  • meta-xylylene diisocyanates can be produced under relatively mild conditions as compared with conventional methods. Therefore, meta-xylylene diisocyanates can be obtained more industrially advantageous from the viewpoints of equipment, safety and economy.
  • meta-xylylene diisocyanates are preferably used in applications such as polyurethane and polythiourethane in order to improve their performance.
  • it is suitable for polyurethane paints, adhesives, sealants, and elastomer and polythiourethane lens applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 メタ-キシリレンジイソシアネート類の製造方法は、モノハロゲン化ベンゼン類と、ホルムアルデヒド類と、下記一般式(1)に示されるアミド化合物とを、酸性液体の存在下において反応させて、ビスアミド化合物を生成する反応工程と、ビスアミド化合物から、モノハロゲン化ベンゼン類に由来するハロゲン原子を水素原子に置換する脱ハロゲン化工程と、ハロゲン原子が脱離されたビスアミド化合物を熱分解する熱分解工程と、を含み、反応工程において、酸性液体が、無機酸を含み、モノハロゲン化ベンゼン類に対する、無機酸の水素原子の当量比が、14を超過し、酸性液体中の酸の濃度が、90質量%を超過し、反応温度が、10℃を超過している。 一般式(1):(一般式(1)中、Rは、アルコキシ基またはアミノ基を示す。)

Description

メタ-キシリレンジイソシアネート類の製造方法
 本発明は、メタ-キシリレンジイソシアネート類の製造方法に関する。
 従来より、塗料、接着剤、プラスチックレンズなどに用いられるポリウレタンの原料として、メタキシリレンジイソシアネート類が知られている。このようなメタキシリレンジイソシアネート類は、一般に、メタキシレン類からメタキシリレンジアミン類が製造された後、そのメタキシリレンジアミン類から製造される。
 メタキシリレンジアミン類の製造方法として、例えば、メタキシレンを、バナジウムなどからなる流動触媒を用いてアンモ酸化させ、イソフタロニトリルを製造し、そのイソフタロニトリルをニッケル触媒などの存在下において水素化することが、提案されている(例えば、特許文献1参照。)。
特開2002-105035号公報
 しかし、特許文献1に記載の方法により、メタキシリレンジアミンを製造する場合には、メタキシレンを420℃という非常に高い温度でアンモ酸化して、イソフタロニトリルを製造し、その後、得られたイソフタロニトリルを、12MPaという非常に高い圧力で水素化する必要がある(例えば、特許文献1(実施例1)参照。)。
 すなわち、特許文献1に記載の方法では、各工程を高温および/または高圧条件下において実施する必要がある。そのため、特許文献1に記載の方法により製造されたメタキシリレンジアミンから、メタキシリレンジイソシアネートを製造する場合、設備面および安全面の改良を図るには限度がある。
 本発明は、このような不具合に鑑みなされたもので、その目的とするところは、高温、高圧(特別な装置)を必要とせず、設備面、安全面および経済面に優れるメタ-キシリレンジイソシアネート類の製造方法を提供することにある。
 本発明のメタ-キシリレンジイソシアネート類の製造方法は、モノハロゲン化ベンゼン類と、ホルムアルデヒド類と、下記一般式(1)に示されるアミド化合物とを、酸性液体の存在下において反応させて、ビスアミド化合物を生成する反応工程と、前記ビスアミド化合物から、前記モノハロゲン化ベンゼン類に由来するハロゲン原子を水素原子に置換する脱ハロゲン化工程と、ハロゲン原子が脱離されたビスアミド化合物を熱分解する熱分解工程と、を含み、前記反応工程において、前記酸性液体が、無機酸を含み、前記モノハロゲン化ベンゼン類に対する、前記無機酸の水素原子の当量比が、14を超過し、前記酸性液体中の酸の濃度が、90質量%を超過し、反応温度が、10℃を超過していることを特徴としている。
一般式(1):
Figure JPOXMLDOC01-appb-C000002
    (一般式(1)中、Rは、アルコキシ基またはアミノ基を示す。)
 また、前記アミド化合物において、前記一般式(1)中、Rが、n-ブトキシ基であることが好適である。
 また、前記アミド化合物において、前記一般式(1)中、Rが、ジイソブチルアミノ基であることが好適である。
 また、前記無機酸は、硫酸またはリン酸であることが好適である。
 また、前記モノハロゲン化ベンゼン類が、モノクロロベンゼンであることが好適である。
 また、前記モノハロゲン化ベンゼン類に対する、前記無機酸の水素原子の当量比が、16以上であり、前記酸性液体中の無機酸の濃度が、95質量%以上であり、前記反応温度が、20℃以上であることが好適である。
 本発明のメタ-キシリレンジイソシアネート類の製造方法によれば、モノハロゲン化ベンゼン類と、ホルムアルデヒド類と、上記一般式(1)に示されるアミド化合物とを、上記の条件の酸性液体の存在下において、10℃を超過する反応温度で反応させる。これによって、例えば、下記化学式(2)および化学式(3)で示されるビス尿素化合物などのビスアミド化合物を生成できる。
 化学式(2):
Figure JPOXMLDOC01-appb-C000003
 化学式(3):
Figure JPOXMLDOC01-appb-C000004
 そして、そのようなビスアミド化合物は、脱ハロゲン化工程および熱分解工程により、メタ-キシリレンジイソシアネート類に誘導できる。
 そのため、本発明のメタ-キシリレンジイソシアネート類の製造方法は、設備面、安全面および経済面に優れており、安全に、低コストかつ高収率で、メタ-キシリレンジイソシアネート類を製造することができる。よって、本発明は、メタ-キシリレンジイソシアネート類の工業的な製造方法として、好適に用いることができる。
 本発明のメタ-キシリレンジイソシアネート類の製造方法は、反応工程と、脱ハロゲン化工程と、熱分解工程とを含み、好ましくは、精製工程および回収工程をさらに含んでいる。以下において、それぞれの工程につき詳細に説明する。
[反応工程]
 反応工程では、モノハロゲン化ベンゼン類と、ホルムアルデヒド類と、下記一般式(1)に示されるアミド化合物とを、酸性液体の存在下において反応させて、ビスアミド化合物を生成する。
 モノハロゲン化ベンゼン類は、ベンゼン環に結合する水素原子の1つが、ハロゲン原子に置換された芳香族化合物であって、例えば、下記一般式(4)で示されるモノハロゲン化ベンゼン類や、下記一般式(5)で示されるモノハロゲン化ベンゼン類などが挙げられる。
一般式(4):
Figure JPOXMLDOC01-appb-C000005
(一般式(4)中、Xは、ハロゲン原子を示す。Rは、水素原子、アルキル基、アミノ基、水酸基またはアルコキシ基を示す。Rは、同一または互いに相異なっていてもよい。)
一般式(5):
Figure JPOXMLDOC01-appb-C000006
(一般式(5)中、XおよびRは、上記一般式(4)のXおよびRと同意義を示す。)
 一般式(4)および一般式(5)のそれぞれにおいて、Xで示されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。このようなハロゲン原子のなかでは、原料コストの観点から好ましくは、塩素原子、臭素原子、ヨウ素原子が挙げられ、さらに好ましくは、塩素原子が挙げられる。
 一般式(4)および一般式(5)のそれぞれにおいて、Rで示されるアルキル基としては、例えば、炭素数1~12の直鎖状のアルキル基(例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、n-オクチル基、ノニル基、デシル基、ドデシル基など)、炭素数1~12の分岐状のアルキル基(例えば、イソプロピル基、イソブチル基、t-ブチル基、イソペンチル基、イソオクチル基、2-エチルヘキシル基、2-プロピルペンチル基、イソデシル基など)、炭素数3~6のシクロアルキル基(例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基など)などが挙げられる。
 一般式(4)および一般式(5)のそれぞれにおいて、Rで示されるアミノ基としては、1級、2級および3級のいずれのアミノ基であってもよい。2級または3級のアミノ基としては、例えば、上記のアルキル基などを含有するアミノ基が挙げられる。
 一般式(4)および一般式(5)のそれぞれにおいて、Rで示されるアルコキシ基としては、例えば、炭素数1~12のアルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基など)などが挙げられる。
 また、一般式(4)および一般式(5)のそれぞれにおいて、Rのなかでは、モノハロゲン化ベンゼン類の配向性の観点から好ましくは、水素原子が挙げられる。また、一般式(4)および一般式(5)のそれぞれにおいて、すべてのRは、好ましくは同一である。なお、一般式(4)および一般式(5)のそれぞれにおいて、Rのすべてが、水素原子である場合、一般式(4)および一般式(5)のそれぞれで示されるモノハロゲン化ベンゼン類は、同一である。
 このようなモノハロゲン化ベンゼン類のなかでは、原料コストおよび配向性の観点から好ましくは、モノクロロベンゼンが挙げられる。また、このようなモノハロゲン化ベンゼン類は、単独で使用してもよく、あるいは、併用することもできる。
 ホルムアルデヒド類としては、例えば、ホルムアルデヒド、および、パラホルムアルデヒドなどが挙げられ、取扱性の観点から好ましくは、パラホルムアルデヒドが挙げられる。
 パラホルムアルデヒドは、ホルムアルデヒドのみが重合したホモポリマーであって、下記一般式(6)で示される。
一般式(6):
              HO(CHO)H        (6)
      (一般式(6)中、nは、2以上100以下の整数を示す。)
 一般式(6)において、nは、好ましくは、8以上100以下である。
 このようなホルムアルデヒド類は、単独で使用してもよく、あるいは、併用することもできる。
 このようなホルムアルデヒド類は、取扱性の観点から好ましくは、水溶液として調製される。ホルムアルデヒド類が水溶液である場合、ホルムアルデヒド類の濃度は、例えば、70質量%以上、反応性の観点から好ましくは、80質量%以上、例えば、100質量%以下である。
 また、ホルムアルデヒド類の配合割合は、モノハロゲン化ベンゼン類1molに対して、例えば、1.0mol以上、ビスアミド化合物の収率の観点から好ましくは、1.2mol以上、例えば、10.0mol以下、原料コストの観点から好ましくは、4.0mol以下である。
 また、ホルムアルデヒド類の配合割合は、モノハロゲン化ベンゼン類100質量部に対して、例えば、30質量部以上、好ましくは、40質量部以上、例えば、90質量部以下、好ましくは、80質量部以下である。
 アミド化合物は、下記一般式(1)により示される。
一般式(1):
Figure JPOXMLDOC01-appb-C000007
   (一般式(1)中、Rは、アルコキシ基またはアミノ基を示す。)
 一般式(1)においてRがアルコキシ基である場合、アミド化合物は、下記一般式(7)で示されるカルバミン酸エステルである。
一般式(7):
Figure JPOXMLDOC01-appb-C000008
        (一般式(7)中、Rは、アルキル基を示す。)
 一般式(7)において、Rで示されるアルキル基としては、例えば、一般式(4)においてRで示されるアルキル基と同様のアルキル基が挙げられ、後述するビスアミド化合物の安定性の観点から好ましくは、炭素数1~12の直鎖状のアルキル基が挙げられ、さらに好ましくは、炭素数2~6の直鎖状のアルキル基が挙げられ、とりわけ好ましくは、n-ブチル基が挙げられる。つまり、上記一般式(1)においてRとしては、好ましくは、n-ブトキシ基が挙げられる。
 このような上記一般式(7)で示されるカルバミン酸エステルは、市販品を用いることができるが、公知の方法により合成したものを用いることもできる。
 上記一般式(7)で示されるカルバミン酸エステルを合成するには、例えば、尿素と、アルコールとを反応させる。
 アルコールとしては、例えば、炭素数1~12の直鎖状のアルコール(例えば、メタノール、エタノール、プロパノ―ル、ブタノール、ペンタノール、ヘキサノールなど)、炭素数1~12の分岐状のアルコール(例えば、2-プロパノール、2-メチルプロピルアルコール、t-ブチルアルコール、3-メチル-1-ブタノールなど)、炭素数3~6のシクロアルコール(例えば、シクロペンタノール、シクロヘキサノールなど)などが挙げられる。このようなアルコールのなかでは、好ましくは、炭素数1~12の直鎖状のアルコールが挙げられ、さら好ましくは、ブタノール(n-ブタノール)が挙げられる。このようなアルコールは、単独で使用してもよく、あるいは、併用することもできる。
 また、アルコールの配合割合としては、尿素1molに対して、例えば、0.5mol以上、アミド化合物の収率の観点から好ましくは、0.8mol以上、例えば、1.5mol以下、原料コストの観点から、1.2mol以下である。
 また、尿素とアルコールとの反応条件としては、常圧において、温度が、例えば、80℃以上、反応速度の観点から好ましくは、100℃以上、例えば、200℃以下、安全面の観点から好ましくは150℃以下であり、時間が、例えば、1時間以上、好ましくは、2時間以上、例えば、10時間以下、好ましくは、6時間以下である。
 また、一般式(1)においてRがアミノ基である場合、アミド化合物は、下記一般式(8)で示される尿素化合物である。
一般式(8):
Figure JPOXMLDOC01-appb-C000009
   (一般式(8)中、Rは、水素原子またはアルキル基を示す。Rは、同一または互いに相異なっていてもよい。)
 一般式(8)において、Rで示されるアルキル基としては、例えば、一般式(4)においてRで示されるアルキル基と同様のアルキル基が挙げられる。
 一般式(8)において、Rのなかでは、後述するビスアミド化合物の安定性の観点から好ましくは、アルキル基が挙げられ、さらに好ましくは、炭素数1~12の分岐状のアルキル基が挙げられ、とりわけ好ましくは、炭素数2~6の分岐状のアルキル基が挙げられ、最も好ましくは、イソブチル基(2-メチルプロピル基)が挙げられる。つまり、上記一般式(1)においてRとしては、好ましくは、ジイソブチルアミノ基が挙げられる。
 また、一般式(8)において、すべてのRは、好ましくは同一である。
 このような上記一般式(8)で示される尿素化合物は、市販品を用いることができるが、公知の方法により合成したものを用いることもできる。
 上記一般式(8)で示される尿素化合物を合成するには、例えば、尿素と、アミンとを反応させる。
 アミンとしては、例えば、無置換のアミン、第1級アミン(例えば、モノメチルアミン、モノエチルアミン、モノn-ブチルアミン、モノn-ヘキシルアミン、モノイソブチルアミン、モノt-ブチルアミン、モノイソペンチルアミンなど)、第2級アミン(例えば、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジヘキシルアミン、N,N-ジイソブチルアミン、N,N-ジイソペンチルアミンなど)などが挙げられる。このようなアミンのなかでは、好ましくは、第2級アミンが挙げられ、さら好ましくは、N,N-ジイソブチルアミンが挙げられる。このようなアミンは、単独で使用してもよく、あるいは、併用することもできる。
 また、アミンの配合割合としては、尿素1molに対して、例えば、0.5mol以上、アミド化合物の収率の観点から好ましくは、0.8mol以上、例えば、1.5mol以下、原料コストの観点から、1.2mol以下である。
 また、尿素とアミンとの反応条件としては、常圧において、温度が、例えば、80℃以上、反応速度の観点から好ましくは、100℃以上、例えば、200℃以下、安全面の観点から好ましくは150℃以下であり、時間が、例えば、1時間以上、好ましくは、2時間以上、例えば、10時間以下、好ましくは、6時間以下である。
 酸性液体は、無機酸を含有する液体であって、反応工程において反応溶媒としても用いられる。このような酸性液体は、無機酸のみからなってもよく、また、無機酸が水に溶解された無機酸水溶液であってもよい。
 無機酸としては、例えば、塩酸、硫酸、硝酸、リン酸、ホウ酸などの無機酸が挙げられ、ビスアミド化合物の収率の観点から好ましくは、強酸、すなわち、酸解離定数(pKa(HO))が3以下の無機酸が挙げられる。強酸の無機酸として、具体的には、塩酸、硫酸、硝酸、リン酸などが挙げられ、ビスアミド化合物の収率の観点から好ましくは、硫酸およびリン酸が挙げられる。このような無機酸は、単独で使用してもよく、あるいは、併用することもできる。
 また、酸性液体が無機酸水溶液である場合、酸性液体中の無機酸の濃度は、ビスアミド化合物の収率の観点から、90質量%を超過し、好ましくは、95質量%以上、例えば、100質量%未満、無機酸水溶液の調製の容易さから好ましくは、99質量%以下である。
 このような酸性液体は、単独で使用してもよく、あるいは、併用することもできる。また、このような酸性液体のなかでは、好ましくは、硫酸水溶液、リン酸水溶液およびリン酸(単体)が挙げられ、さらに好ましくは、硫酸水溶液およびリン酸(単体)が挙げられる。
 このような酸性液体の配合割合は、モノハロゲン化ベンゼン類100質量部に対して、例えば、300質量部以上、ビスアミド化合物の収率の観点から好ましくは、500質量部以上、例えば、3000質量部以下、コストの観点から好ましくは、2000質量部以下である。
 また、無機酸の配合割合は、モノハロゲン化ベンゼン類1molに対して、例えば、3mol以上、ビスアミド化合物の収率の観点から好ましくは、4mol以上、さらに好ましくは、5mol以上、例えば、20mol以下、コストの観点から好ましくは、15mol以下である。
 また、無機酸の水素原子の当量比(モル当量比)は、モノハロゲン化ベンゼン類に対して、ビスアミド化合物の収率の観点から、14を超過し、好ましくは、16以上、さらに好ましくは、18以上、例えば、80以下、コストの観点から好ましくは、70以下、さらに好ましくは、60以下である。
 上記した各成分(モノハロゲン化ベンゼン類、ホルムアルデヒド類およびアミド化合物)を酸性液体の存在下において反応させるには、まず、それら各成分を酸性液体に溶解または分散する。
 各成分(モノハロゲン化ベンゼン類、ホルムアルデヒド類およびアミド化合物)を酸性液体に溶解または分散するには、例えば、ホルムアルデヒド類およびアミド化合物を酸性液体に溶解して、アルデヒド・アミド溶解液を調製した後、アルデヒド・アミド溶解液と、モノハロゲン化ベンゼン類とを混合する。
 アルデヒド・アミド溶解液とモノハロゲン化ベンゼン類との混合方法としては、特に限定されず、例えば、いずれか一方に他方を滴下する方法が挙げられ、ビスアミド化合物の収率の観点から好ましくは、アルデヒド・アミド溶解液にモノハロゲン化ベンゼン類を滴下する方法が挙げられる。
 滴下条件としては、温度が、例えば、0℃以上、好ましくは、5℃以上、例えば、40℃以下、好ましくは、30℃以下であり、滴下に要する時間が、例えば、15分以上、好ましくは、30分以上、例えば、5時間以下、好ましくは、3時間以下である。
 次いで、アルデヒド・アミド溶解液とモノハロゲン化ベンゼン類との混合溶液を加熱して、モノハロゲン化ベンゼン類、ホルムアルデヒド類およびアミド化合物を反応させる。
 反応温度としては、ビスアミド化合物の収率の観点から、10℃を超過し、好ましくは、20℃以上、さらに好ましくは、40℃以上、とりわけ好ましくは、50℃以上、設備面および安全面の観点から、例えば、100℃以下、好ましくは、90℃以下、さらに好ましくは、80℃以下である。反応温度が上記の範囲内にあると、反応速度が低下せず、また過度の加熱による分解などが起こりにくいため、有利である。
 また、反応圧力は、特に限定されず、常圧、加圧、減圧のいずれであってもよく、設備面および安全面の観点から好ましくは、常圧(具体的には、90kPa~110kPa)である。
 また、反応時間としては、例えば、1時間以上、好ましくは、5時間以上、例えば、40時間以下、好ましくは、30時間以下、さらに好ましくは、20時間未満である。
 これによって、モノハロゲン化ベンゼン類、ホルムアルデヒド類およびアミド化合物が、酸性液体中で反応して、ビスアミド化合物(ジ置換体)が高選択で生成する。
 ビスアミド化合物が生成される場合(芳香環に2つのアミド化合物が導入される場合)、モノハロゲン化ベンゼン類の水素原子の2つが上記のアミド化合物に置換される。より詳しくは、モノハロゲン化ベンゼン類の配向性によって、モノハロゲン化ベンゼン類の2位および4位の水素原子がアミド化合物に置換されて、2,4-ジ置換体が生成するか、モノハロゲン化ベンゼン類の2位および6位の水素原子がアミド化合物に置換されて、2,6-ジ置換体が生成する(位置選択性に優れる)。
 このような2,4-ジ置換体および2,6-ジ置換体は、生成比に関係なく、後述する脱ハロゲン化工程においてハロゲン原子が水素原子に置換すると、ともにメタ体となる。
 2,4-ジ置換体の生成比(モル基準)は、2,6-ジ置換体に対して、例えば、3以上、好ましくは、5以上、例えば、15以下、好ましくは、20以下である。
 なお、2,4-ジ置換体の生成比は、高速液体クロマトグラフィー(HPLC)により測定されるピークの積分値から算出される。
 より具体的には、モノハロゲン化ベンゼン類として上記一般式(4)においてRのすべてが水素原子であるモノハロゲン化ベンゼン類が使用され、アミド化合物として上記一般式(7)に示されるカルバミン酸エステルが使用される場合、反応工程において生成されるビスアミド化合物は、下記一般式(9)で示されるビスカルバミド酸化合物(2,4-ジ置換体)、および、下記一般式(10)で示されるビスカルバミド酸化合物(2,6-ジ置換体)を含有する。
一般式(9):
Figure JPOXMLDOC01-appb-C000010
(一般式(9)中、Xは、上記一般式(4)のXと同意義を示し、Rは、上記一般式(7)のRと同意義を示す。)
 上記一般式(9)で示されるビスカルバミド酸化合物は、例えば、Rのすべてがブチル基であり、Xが塩素原子である場合、4-クロロ-1,3‐キシリレンビス(カルバミド酸ブチル)である(下記化学式(16)参照)。
一般式(10):
Figure JPOXMLDOC01-appb-C000011
(一般式(10)中、Xは、上記一般式(4)のXと同意義を示し、Rは、上記一般式(7)のRと同意義を示す。)
 上記一般式(10)で示されるビスカルバミド酸化合物は、例えば、Rのすべてがブチル基であり、Xが塩素原子である場合、2-クロロ-1,3‐キシリレンビス(カルバミド酸ブチル)である(下記化学式(17)参照)。
 また、モノハロゲン化ベンゼン類として上記一般式(4)においてRのすべてが水素原子であるモノハロゲン化ベンゼン類が使用され、アミド化合物として上記一般式(8)に示される尿素化合物が使用される場合、反応工程において生成されるビスアミド化合物は、下記一般式(11)で示されるビス尿素化合物(2,4-ジ置換体)、および、下記一般式(12)で示されるビス尿素化合物(2,6-ジ置換体)を含有する。
一般式(11):
Figure JPOXMLDOC01-appb-C000012
(一般式(11)中、Xは、上記一般式(4)のXと同意義を示し、Rは、上記一般式(8)のRと同意義を示す。)
 上記一般式(11)で示されるビス尿素化合物は、例えば、Rのすべてがイソブチル基であり、Xが塩素原子である場合、4-クロロ-1,3‐キシリレンビス(N,N-ジイソブチル尿素)である(下記化学式(2)参照)。
一般式(12):
Figure JPOXMLDOC01-appb-C000013
(一般式(12)中、Xは、上記一般式(4)のXと同意義を示し、Rは、上記一般式(8)のRと同意義を示す。)
 上記一般式(12)で示されるビス尿素化合物は、例えば、Rのすべてがイソブチル基であり、Xが塩素原子である場合、2-クロロ-1,3‐キシリレンビス(N,N-ジイソブチル尿素)である(下記化学式(3)参照)。
 このような反応工程において、モノハロゲン化ベンゼン類の転化率は、例えば、80mol%以上、好ましくは、85mol%以上、例えば、100mol%以下である。
 また、ビスアミド化合物の収率は、モノハロゲン化ベンゼン類に対して、例えば、25mol%以上、好ましくは、30mol%以上、さらに好ましくは、50mol%以上、例えば、100mol%以下、好ましくは、80mol%以下である。
 なお、モノハロゲン化ベンゼン類の転化率およびビスアミド化合物の収率は、高速液体クロマトグラフィー(HPLC)により測定されるピークの積分値から算出される。
 また、反応工程では、上記のビスアミド化合物に加え、モノハロゲン化ベンゼン類の水素原子の1つが上記のアミド化合物に置換されたモノアミド化合物(モノ置換体)が生成する場合がある。
 このような場合、モノアミド化合物の収率は、モノハロゲン化ベンゼン類に対して、例えば、1mol%以上、例えば、40mol%以下、好ましくは、35mol%以下、さらに好ましくは、30mol%以下である。また、モノアミド化合物の生成比(モル基準)は、ビスアミド化合物に対して、例えば、0.01以上、例えば、1.0以下、好ましくは、0.9以下、さらに好ましくは、0.6以下である。
 なお、モノアミド化合物の収率およびモノアミド化合物の生成比の収率は、高速液体クロマトグラフィー(HPLC)により測定されるピークの積分値から算出される。
 また、このような反応工程における反応生成物は、上記のビスアミド化合物およびモノアミド化合物に加え、反応において残存した各成分などの不純物(具体的には、ホルムアルデヒド類、アミド化合物、無機酸など)を含有する場合がある。そのため、反応生成物は、そのまま用いることもできるが、好ましくは、単離精製を経た上で用いられる。
 反応生成物の精製方法としては、公知の精製方法が挙げられ、例えば、蒸留、溶媒抽出、クロマトグラフィー、結晶化、再結晶などが挙げられる。このような精製方法は、必要に応じて、単一の精製方法による分離精製を繰り返してもよく、2以上の精製方法による分離精製を組み合わせてもよい。このような精製方法のなかでは、簡便性の観点から好ましくは、溶媒抽出が挙げられる。
 反応生成物を溶媒抽出により精製するには、例えば、反応生成物を、水と有機溶媒との混合溶液に混合した後、水層を除去する。これによって、少なくともビスアミド化合物が有機溶媒(有機層)に分配され、例えば、ホルムアルデヒド類および無機酸などの親水性の不純物が水層に分配される。
 有機溶媒としては、ビスアミド化合物が可溶、かつ、ホルムアルデヒド類およびアミド化合物が不溶の溶媒であれば、特に限定されず、例えば、飽和炭化水素類(ヘキサン、ヘプタンなど)、芳香族炭化水素類(ベンゼン、トルエン、キシレンなど)、ハロゲン化炭化水素類(ジクロロメタン、ジクロロエタン、四塩化炭素など)などの低極性溶媒などが挙げられる。このような有機溶媒のなかでは、ビスアミド化合物との親和性の観点から好ましくは、芳香族炭化水素類が挙げられ、さらに好ましくは、トルエンが挙げられる。このような有機溶媒は、単独で使用してもよく、あるいは、2種以上併用することもできる。
 また、反応生成物が、上記のビスアミド化合物およびモノアミド化合物を含有する場合、ビスアミド化合物とモノアミド化合物とは、例えば、クロマトグラフィーにより分離精製することができる。
[脱ハロゲン化工程]
 脱ハロゲン化工程では、上記のビスアミド化合物において、モノハロゲン化ベンゼン類に由来するハロゲン原子を水素原子に置換する。
 ビスアミド化合物のハロゲン原子を水素原子に置換する方法、すなわち、脱ハロゲン化方法としては、ハロゲン化ベンゼンからの公知の脱ハロゲン化方法が挙げられる。このような脱ハロゲン化方法のなかでは、好ましくは、触媒の存在下において、上記のビスアミド化合物に水素を供給する方法が挙げられる。
 触媒としては、公知の水素添加触媒が挙げられ、例えば、Ni、Mo、Fe、Co、Cu、Pt、Pd、Rhなどの金属を含有する触媒、工業的観点から好ましくは、パラジウムカーボン触媒が挙げられる。このような触媒は、単独で使用してもよく、あるいは、併用することもできる。
 触媒の使用割合は、反応工程において使用されたモノハロゲン化ベンゼン類100質量部に対して、例えば、0.5質量部以上、反応性の観点から好ましくは、1質量部以上、例えば、7質量部以下、コストの観点から好ましくは、8質量部以下である。
 また、触媒の使用割合は、ビスアミド化合物100質量部に対して、例えば、0.01質量部以上、反応性の観点から好ましくは、0.05質量部以上、例えば、5質量部以下、コストの観点から好ましくは、3質量部以下である。
 そして、触媒の存在下において、上記のビスアミド化合物に水素を供給するには、例えば、触媒およびビスアミド化合物を反応器(例えば、オートクレーブ)内に仕込んだ後、反応器内の空気を水素により置換する。
 また、このような脱ハロゲン化方法では、必要により、金属塩および有機溶媒が添加される。
 金属塩としては、例えば、アルカリ金属炭酸塩(例えば、炭酸ナトリウム、炭酸カリウムなど)、アルカリ金属硫酸塩(例えば、硫酸ナトリウム、硫酸カリウムなど)、アルカリ土類金属炭酸塩(例えば、炭酸マグネシウム、炭酸カルシウムなど)、アルカリ土類金属硫酸塩(例えば、硫酸マグネシウム、硫酸カルシウムなど)などが挙げられる。このような金属塩のなかでは、好ましくは、アルカリ金属炭酸塩が挙げられ、さらに好ましくは、炭酸ナトリウムが挙げられる。また、このような金属塩は、単独で使用してもよく、あるいは、併用することもできる。
 金属塩の配合割合は、反応工程において使用されたモノハロゲン化ベンゼン類1molに対して、例えば、0.1mol以上、脱離するハロゲン原子の捕捉の観点から好ましくは、0.5mol以上、例えば、3mol以下、コストの観点から好ましくは、1.5mol以下である。
 有機溶媒としては、例えば、上記した有機溶媒が挙げられ、好ましくは、芳香族炭化水素類が挙げられ、さらに好ましくは、トルエンが挙げられる。このような有機溶媒は、単独で使用してもよく、あるいは、2種以上併用することもできる。
 また、反応工程において反応生成物が溶媒抽出により精製されている場合、脱ハロゲン化工程において有機溶媒を添加することなく、反応工程において得られた有機層をそのまま用いることができる。
 次いで、反応器内を加圧するとともに温度を昇温させて、上記のビスアミド化合物のハロゲン原子を水素原子に置換する。
 このような脱ハロゲン化における反応条件としては、温度が、例えば、40℃以上、反応性の観点から好ましくは、70℃以上、例えば、150℃以下、設備面および安全面の観点から好ましくは、110℃以下であり、圧力が、例えば、0.1MPa以上、反応性の観点から好ましくは、0.2MPa以上、例えば、3.0MPa以下、設備面および安全面の観点から好ましくは、1.0MPa以下であり、時間が、例えば、1時間以上、反応性の観点から好ましくは、2時間以上、例えば、20時間以下、好ましくは、10時間以下である。
 これによって、1位および3位にアミド化合物が結合した1,3位アミド置換体が生成する。
 より具体的には、モノハロゲン化ベンゼン類として上記一般式(4)においてRのすべてが水素原子であるモノハロゲン化ベンゼン類が使用され、アミド化合物として上記一般式(7)に示されるカルバミン酸エステルが使用される場合、下記一般式(13)で示される1,3位アミド置換体が生成する。
一般式(13):
Figure JPOXMLDOC01-appb-C000014
   (一般式(13)中、Rは、上記一般式(7)のRと同意義を示す。)
 つまり、上記一般式(9)で示されるビスカルバミド酸化合物(2,4-ジ置換体)、および、上記一般式(10)で示されるビスカルバミド酸化合物(2,6-ジ置換体)の両方は、脱ハロゲン化工程によって、上記一般式(13)で示される1,3位アミド置換体に変換される。
 また、モノハロゲン化ベンゼン類として上記一般式(4)においてRのすべてが水素原子であるモノハロゲン化ベンゼン類が使用され、アミド化合物として上記一般式(8)に示される尿素化合物が使用される場合、下記一般式(14)で示される1,3位アミド置換体が生成する。
一般式(14):
Figure JPOXMLDOC01-appb-C000015
   (一般式(14)中、Rは、上記一般式(8)のRと同意義を示す。)
 つまり、上記一般式(11)で示されるビスカルバミド酸化合物(2,4-ジ置換体)、および、上記一般式(12)で示されるビスカルバミド酸化合物(2,6-ジ置換体)の両方は、脱ハロゲン化工程によって、上記一般式(14)で示される1,3位アミド置換体に変換される。
 1,3位アミド置換体の収率は、脱ハロゲン化工程に用いられるビスアミド化合物に対して、例えば、80mol%以上、好ましくは、90mol%以上、例えば、100mol%以下、好ましくは、99mol%以下である。
 なお、1,3位アミド置換体の収率は、高速液体クロマトグラフィー(HPLC)により測定されるピークの積分値から算出される。
[熱分解工程]
 熱分解工程では、上記の1,3位アミド置換体を熱分解して、メタ-キシリレンジイソシアネート類が生成する。
 熱分解方法としては、特に制限されず、例えば、液相法、気相法などの公知の分解法が挙げられ、作業性の観点から好ましくは、液相法が挙げられる。
 液相法により、1,3位アミド置換体を熱分解するには、例えば、蒸留塔を備える反応器に、1,3位アミド置換体および高沸点不活性溶媒を装入した後、1,3位アミド置換体を熱分解する。
 反応器としては、特に制限されず、例えば、熱分解方法に用いられる公知の反応器が挙げられる。蒸留塔としては、例えば、充填塔、棚段塔などが挙げられ、好ましくは、充填塔が挙げられる。
 高沸点不活性溶媒は、1,3位アミド置換体を溶解し、メタ-キシリレンジイソシアネート類に対して不活性であり、かつ、熱分解時に反応しなければ(すなわち、安定であれば)、特に制限されないが、熱分解反応を効率よく実施するには、生成するメタ-キシリレンジイソシアネート類よりも高沸点であることが好ましい。
 このような高沸点不活性溶媒としては、例えば、芳香族系炭化水素類などが挙げられる。
 芳香族炭化水素類としては、例えば、ベンゼン(沸点:80℃)、トルエン(沸点:111℃)、o-キシレン(沸点:144℃)、m-キシレン(沸点:139℃)、p-キシレン(沸点:138℃)、エチルベンゼン(沸点:136℃)、イソプロピルベンゼン(沸点:152℃)、ブチルベンゼン(沸点:185℃)、シクロヘキシルベンゼン(沸点:237~340℃)、テトラリン(沸点:208℃)、クロロベンゼン(沸点:132℃)、o-ジクロロベンゼン(沸点:180℃)、1-メチルナフタレン(沸点:245℃)、2-メチルナフタレン(沸点:241℃)、1-クロロナフタレン(沸点:263℃)、2-クロロナフタレン(沸点:264~266℃)、トリフェニルメタン(沸点:358~359℃(754mmHg))、1-フェニルナフタレン(沸点:324~325℃)、2-フェニルナフタレン(沸点:357~358℃)、ビフェニル(沸点:255℃)などが挙げられる。
 また、高沸点不活性溶媒としては、さらに、エステル類(例えば、フタル酸ジオクチル、フタル酸ジデシル、フタル酸ジドデシルなど)、熱媒体として常用される脂肪族系炭化水素類なども挙げられる。
 さらに、高沸点不活性溶媒としては、公知のプロセスオイルや熱媒用オイルも使用可能である。公知のプロセスオイルや熱媒用オイルのなかでは、好ましくは、炭化水素系プロセスオイルおよび炭化水素系熱媒用オイルが挙げられる。また、公知のプロセスオイルや熱媒用オイルの代表的なもの(市販品)としては、バーレルプロセス油B30(松村石油株式会社製、沸点:380℃)、バーレルサーム400(松村石油株式会社製、沸点:390℃)などが挙げられる。
 このような高沸点不活性溶媒のなかでは、収率の観点から好ましくは、熱媒用オイルが挙げられる。このような高沸点不活性溶媒は、単独で使用してもよく、あるいは、併用することもできる。
 また、熱分解温度としては、例えば、100℃以上、反応速度の観点から好ましくは、150℃以上、例えば、400℃以下、設備面および安全面の観点から好ましくは、350℃以下、さらに好ましくは、300℃以下である。熱分解圧力としては、例えば、1000Pa以上、好ましくは、5000Pa以上、例えば、20000Pa以下、メタ-キシリレンジイソシアネート類の分離の観点から好ましくは、15000Pa以下である。熱分解時間としては、例えば、2時間以上、好ましくは、4時間以上、例えば、40時間以下、好ましくは、20時間以下である。
 これによって、1,3位アミド置換体が熱分解され、メタ-キシリレンジイソシアネート類が生成する。より具体的には、モノハロゲン化ベンゼン類として上記一般式(4)においてRのすべてが水素原子であるモノハロゲン化ベンゼン類が使用される場合、下記化学式(15)で示されるメタ-キシリレンジイソシアネートが生成する。
化学式(15):
Figure JPOXMLDOC01-appb-C000016
 そして、上記の液相法により、メタ-キシリレンジイソシアネート類を生成する場合、蒸留塔から、メタ-キシリレンジイソシアネート類を含有する留出液が得られる。
 メタ-キシリレンジイソシアネート類の収率は、熱分解工程に用いられる1,3位アミド置換体に対して、例えば、60mol%以上、好ましくは、70mol%以上、例えば、100mol%以下、好ましくは、99mol%以下である。なお、メタ-キシリレンジイソシアネート類の収率は、ガスクロマトグラフィー(GC)により測定されるピークの積分値から算出される。
[精製工程]
 また、熱分解工程において得られる留出液(以下、第1留出液とする。)は、メタ-キシリレンジイソシアネート類に加え、熱分解による副生成物などの不純物(例えば、アルコール、アミンなど)を含有する場合がある。そのため、第1留出液は、そのまま用いることもできるが、好ましくは、単離精製を経た上で用いられる。
 そこで、精製工程では、第1留出液を、上記と同様の精製方法により精製する。このような精製方法は、必要に応じて、単一の精製方法による分離精製を繰り返してもよく、2以上の精製方法による分離精製を組み合わせてもよい。このような精製方法のなかでは、工業的観点から好ましくは、蒸留が挙げられる。
 第1留出液を蒸留により精製するには、例えば、蒸留塔を備える蒸留釜に、第1留出液を装入した後、減圧蒸留する。
 蒸留釜としては、特に限定されず、例えば、公知の蒸留釜が挙げられる。蒸留塔としては、上記の蒸留塔が挙げられ、好ましくは、棚段塔が挙げられる。
 また、蒸留条件としては、温度が、例えば、100℃以上、好ましくは、120℃以上、例えば、300℃以下、好ましくは、280℃以下であり、圧力が、例えば、10Pa以上、好ましくは、50Pa以上、例えば、1000Pa以下、好ましくは、800Pa以下であり、時間が、例えば、2時間以上、好ましくは、3時間以上、例えば、40時間以下、好ましくは、20時間以下である。
 これによって、第1留出液が蒸留され、蒸留塔からの留出液(以下、第2留出液とする。)としてメタ-キシリレンジイソシアネート類が得られる。
 精製されたメタ-キシリレンジイソシアネート類の純度は、第2留出液全量に対して、例えば、80質量%以上、好ましくは、90質量%以上、さらに好ましくは、95質量%以上、例えば、100%以下である。また、精製工程における精製収率は、精製工程に用いられたメタ-キシリレンジイソシアネート類に対して、例えば、70mol%以上、好ましくは、80mol%以上、例えば、100mol%以下、好ましくは、98mol%以下である。なお、メタ-キシリレンジイソシアネート類の純度および精製工程における精製収率は、ガスクロマトグラフィー(GC)により測定されるピークの積分値から算出される。
[回収工程]
 しかるに、熱分解工程では、熱分解反応における副生成物として、アルコールまたはアミンが生成する。そして、それら副生成物(アルコールおよびアミン)は、熱分解工程および精製工程のそれぞれにおいて、例えば、蒸留などによって単離される。
 そして、回収工程では、熱分解工程および精製工程のそれぞれにおいて単離された副生成物(アルコールまたはアミン)と、尿素とを反応させて、上記一般式(1)に示されるアミド化合物を生成する。
 反応条件としては、温度が、例えば、80℃以上、反応性の観点から好ましくは、100℃以上、例えば、200℃以下、安全性の観点から好ましくは、150℃以下であり、圧力が、例えば、90Pa以上、反応性の観点から好ましくは、95Pa以上、例えば、110Pa以下、安全性の観点から好ましくは、100Pa以下であり、時間が、例えば、1時間以上、好ましくは、2時間以上、例えば、40時間以下、好ましくは、20時間以下である。
 これによって、上記一般式(1)に示されるアミド化合物、すなわち、反応工程において使用されるアミド化合物が生成する。そのため、回収工程において回収されたアミド化合物を、反応工程において使用することができ、経済面のさらなる向上を図ることができる。
 このようなメタ-キシリレンジイソシアネート類の製造方法は、従来法と比較して、簡易な工程かつマイルドな条件下において、安全に、低コストかつ高収率でメタ-キシリレンジイソシアネート類を製造することができる。そのため、このようなメタ-キシリレンジイソシアネート類の製造方法は、設備面、安全面および経済面に優れている。その結果、メタ-キシリレンジイソシアネート類の工業的な製造方法として、好適に用いることができる。
 また、メタ-キシリレンジイソシアネート類およびその塩は、各種工業原料、例えば、ポリウレタン原料などの樹脂原料として好適に用いられる。特に、ポリウレタンの塗料、接着剤、シーラントおよびエラストマーやポリチオウレタン系のレンズ用途に好適である。
 また、本発明のメタ-キシリレンジイソシアネート類の製造方法により、得られるメタ-キシリレンジイソシアネートは、メタ-キシリレンジアミン類からホスゲンを用いる方法(ホスゲン法)により誘導される場合と異なり、実質的に酸成分や加水分解性塩素(HC)成分を含まない。具体的には、メタ-キシリレンジイソシアネート類の加水分解性塩素(HC)の濃度は、例えば、5000ppm以下、好ましくは、1000ppm以下である。なお、加水分解性塩素(HC)の濃度は、JIS K 1603-3(2007)に記載の加水分解性塩素の求め方に準拠して測定される。
 このように加水分解性塩素(HC)の濃度が上記上限以下であると、メタ-キシリレンジイソシアネート類の不純物が少なく、メタ-キシリレンジイソシアネート類の経時着色を抑制できる。
[安定化剤]
 しかし、加水分解性塩素(HC)の濃度が上記上限以下であると、メタ-キシリレンジイソシアネート類の自己重合などによる白濁が生じる場合がある。
 そのため、メタ-キシリレンジイソシアネート類には、必要に応じて、酸成分(塩酸など)や、公知公用の安定化剤を添加することが好ましい。
 なお、このようなメタ-キシリレンジイソシアネート類には、その目的および用途に応じて、ウレタン化触媒、有機触媒、充填剤、紫外線吸収剤、酸化防止剤など公知の添加剤を適宜、添加することもできる。
 以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明は、何らこれらに限定されるものではない。なお、実施例および比較例に関し、反応工程における、処方、酸性液体、反応条件、添加率および収率を、表1に示す。
 また、実施例中の配合割合などの数値は、上記の実施形態において記載される対応箇所の上限値または下限値に代替することができる。
 さらに、各工程における各成分は、ガスクロマトグラフィー(GC)または高速液体クロマトグラフィー(HPLC)により分析した。より詳しくは、三点検量線を作成して、GCまたはHPLCにより得られるピークの積分値から、各成分の濃度および内容量を算出した。
(実施例1)
[反応工程]
 攪拌器、温度計、ガス排気管を装備した1Lのフラスコに、尿素120.2g(2.0mol)と、n-ブタノール148.2g(2.0mol)とを装入した後、約130℃に加熱し、この温度を一定に保ちつつ、4時間撹拌した。その後、25℃まで冷却して、粗生成物を得た。粗生成物をGCにより分析したところ、粗生成物は、カルバミン酸n-ブチルを含有しており、カルバミン酸n-ブチルの収率は、尿素に対して、96.9mol%であった。これによって、227.2gのカルバミン酸n-ブチルを含有する粗生成物を得た。
 次いで、攪拌器、滴下漏斗、温度計、ガス排気管を装備した1Lの4つ口フラスコに、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を装入した後、さらに、カルバミン酸n-ブチル117.2g(1.0mol)、90質量%パラホルムアルデヒド水溶液33.4g(ホルムアルデヒド:1.0mol)を装入して、それらを95質量%硫酸水溶液に溶解して、アルデヒド・カルバミン酸溶解液(アルデヒド・アミド溶解液)を調製した。
 次いで、フラスコ内を10~20℃の温度範囲に保ちながら、アルデヒド・カルバミン酸溶解液に、モノクロロベンゼン56.3g(0.5mol)を1時間かけて滴下した(滴下速度:8.3×10-3mol/min)。つまり、硫酸の水素原子の当量比(モル比)は、モノハロゲン化ベンゼン類に対して、20である。
 その後、フラスコ内を60℃(反応温度)に昇温し、この温度を一定に保ちつつ、常圧で各成分を反応させた。8時間(反応時間)後、反応を終了し、反応生成物を得た。
 反応生成物をHPLCにより分析したところ、モノクロロベンゼンの転化率は92%であり、反応生成物は、ビスカルバミド酸化合物(ジ置換体)、および、モノカルバミド酸化合物(モノ置換体)を含有していた。
 また、モノクロロベンゼンに対する、ビスカルバミド酸化合物(ジ置換体)の収率は71%、モノカルバミド酸化合物(モノ置換体)の収率は2%であった。つまり、ビスカルバミド酸化合物は、合計して0.36mol生成し、その質量の総和は、131.5gであった。
 また、得られたビスカルバミド酸化合物は、下記化学式(16)で示すビスカルバミド酸化合物(2,4-ジ置換体)、および、下記化学式(17)で示すビスカルバミド酸化合物(2,6-ジ置換体)のみを含んでいた。
化学式(16):
Figure JPOXMLDOC01-appb-C000017
化学式(17):
Figure JPOXMLDOC01-appb-C000018
 2,4-ジ置換体と2,6-ジ置換体との異性体比は、10(2,4-ジ置換体):1(2,6-ジ置換体)であった。
 なお、モノクロロベンゼンの転化率、ビスカルバミド酸化合物の収率、モノカルバミド酸化合物の収率、および、2,4-ジ置換体と2,6-ジ置換体との異性体比は、高速液体クロマトグラフィー(HPLC)により測定されるピークの積分値から算出された。
 また、攪拌器を装備した2Lの底抜きフラスコに、トルエン500gと水500gとを装入した後、上記の反応生成物の全量を15分かけて滴下装入し、撹拌した。
 続いて、水層を抜き出した後、有機層に再度、水500gを加えて、撹拌した。これを4回繰り返して有機層を水洗し、ビスカルバミド酸化合物およびモノカルバミド酸化合物が溶解された有機層(ビスアミド溶液)を得た。つまり、有機層における、ビスカルバミド酸化合物の濃度は、20.8質量%であった。
[脱ハロゲン化工程]
 次いで、攪拌器付き1Lのオートクレーブに、パラジウムカーボン(触媒)1.5gと、炭酸ナトリウム無水物53.0g(0.5mol)とを装入した後、さらに上記の有機層の全量を装入した。
 次いで、オートクレーブ内の気相部を、窒素で置換した後、水素で置換し、水素圧0.5MPaに加圧した。また、オートクレーブ内を90℃に昇温して、ビスカルバミド酸化合物の脱ハロゲン化反応を進行させた。5時間後、反応を終了し冷却した。
 冷却後の反応液を濾過し、触媒と無機塩(塩化ナトリウム)とを濾別して、濾液を得た。次いで、その濾液から溶媒(トルエン)を留去して、1,3位カルバミド酸置換体としてのN,N’-メタ-キシリレンビス(カルバミド酸ブチル)を得た。化学式(2)および化学式(3)で示すビスカルバミド酸化合物の総和に対する、N,N’-メタ-キシリレンビス(カルバミド酸ブチル)の収率は、97mol%であった。つまり、N,N’-メタ-キシリレンビス(カルバミド酸ブチル)は、0.34mol生成し、その質量は、115.8gであった。
 なお、N,N’-メタ-キシリレンビス(カルバミド酸ブチル)の収率は、高速液体クロマトグラフィー(HPLC)により測定されるピークの積分値から算出された。
[熱分解工程]
 充填塔を備える反応器に、高沸点不活性溶媒(商品名:バーレルサーム400、松村石油株式会社製)、および、脱ハロゲン化工程で得られたN,N’-メタ-キシリレンビス(カルバミド酸ブチル)の全量を装入した。次いで、反応器内を、100torr(13.3KPa)以下に減圧するとともに、200℃~300℃の温度範囲に加熱して、N,N’-メタ-キシリレンビス(カルバミド酸ブチル)を熱分解した。
 そして、充填塔からの留出液(第1留出液)を捕集した。その留出液をGCにより分析したところ、メタ-キシリレンジイソシアネートの生成が確認された。また、N,N’-メタ-キシリレンビス(カルバミド酸ブチル)に対する、メタ-キシリレンジイソシアネートの収率は80mol%であった。つまり、メタ-キシリレンジイソシアネートは、0.28mol生成し、その質量は、51.9gであった。
[精製工程]
 蒸留段数10段相当の棚段塔、および、窒素ラインに連結されたキャピラリー管を備える蒸留釜に、熱分解工程において得られた留出液を装入した。そして、0.5~5torr(66.7Pa~666.7Pa)の圧力範囲、かつ、160℃~240℃の温度範囲において、減圧蒸留を実施した。そして、棚段塔からの留出液(第2留出液)を捕集し、精製されたメタ-キシリレンジイソシアネートを得た。精製されたメタ-キシリレンジイソシアネートをGCにより分析したところ、メタ-キシリレンジイソシアネートの純度は、99.7質量%であり、精製収率は、精製工程に用いられたメタ-キシリレンジイソシアネートに対して、93mol%であった。つまり、メタ-キシリレンジイソシアネートは、0.26mol回収され、その質量は、48.3gであった。
(実施例2)
 反応工程において、95質量%硫酸水溶液の使用量を464.6g(硫酸:4.5mol)に変更した点以外は、実施例1と同様にして、メタ-キシリレンジイソシアネートを調製した。
 なお、反応工程において、モノクロロベンゼンの転化率は92mol%であり、ビスカルバミド酸化合物(ジ置換体)の収率は66mol%、モノカルバミド酸化合物(モノ置換体)の収率は6mol%であった。
(実施例3)
 反応工程において、95質量%硫酸水溶液の使用量を413.0g(硫酸:4.0mol)に変更した点以外は、実施例1と同様にして、メタ-キシリレンジイソシアネートを調製した。
 なお、反応工程において、モノクロロベンゼンの転化率は91mol%であり、ビスカルバミド酸化合物(ジ置換体)の収率は39mol%、モノカルバミド酸化合物(モノ置換体)の収率は35mol%であった。
(実施例4)
 反応工程において、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を、98質量%硫酸水溶液の濃度500.4g(硫酸:5.0mol)に変更した点、および、反応温度を70℃に変更した点以外は、実施例1と同様にして、メタ-キシリレンジイソシアネートを調製した。
 なお、反応工程において、モノクロロベンゼンの転化率は93mol%であり、ビスカルバミド酸化合物(ジ置換体)の収率は63mol%、モノカルバミド酸化合物(モノ置換体)の収率は2mol%であった。
(実施例5)
 反応工程において、90質量%パラホルムアルデヒド水溶液の使用量を、41.8g(ホルムアルデヒド:1.25mol)に変更した点、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を、98質量%硫酸水溶液500.4g(硫酸:5.0mol)に変更した点以外は、実施例1と同様にして、メタ-キシリレンジイソシアネートを調製した。
 なお、反応工程において、モノクロロベンゼンの転化率は92mol%であり、ビスカルバミド酸化合物(ジ置換体)の収率は65mol%、モノカルバミド酸化合物(モノ置換体)の収率は6mol%であった。
(実施例6)
 反応工程において、90質量%パラホルムアルデヒド水溶液の使用量を、41.8g(ホルムアルデヒド:1.25mol)に変更した点、および、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を、98質量%リン酸水溶液1000.0g(リン酸:10mol)に変更した点以外は、実施例1と同様にして、メタ-キシリレンジイソシアネートを調製した。
 なお、反応工程において、モノクロロベンゼンの転化率は90mol%であり、ビスカルバミド酸化合物(ジ置換体)の収率は51mol%、モノカルバミド酸化合物(モノ置換体)の収率は27mol%であった。
(実施例7)
 反応工程において、90質量%パラホルムアルデヒド水溶液の使用量を、41.8g(ホルムアルデヒド:1.25mol)に変更した点、および、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を、リン酸980.0g(リン酸:10mol)に変更した点以外は、実施例1と同様にして、メタ-キシリレンジイソシアネートを調製した。
 なお、反応工程において、モノクロロベンゼンの転化率は92mol%であり、ビスカルバミド酸化合物(ジ置換体)の収率は72mol%、モノカルバミド酸化合物(モノ置換体)の収率は5mol%であった。
(実施例8)
 反応工程において、90質量%パラホルムアルデヒド水溶液の使用量を、41.8g(ホルムアルデヒド:1.25mol)に変更した点、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を、98質量%硫酸水溶液500.4g(硫酸:5.0mol)に変更した点、反応温度を20℃に変更した点、および、反応時間を20時間に変更した点以外は、実施例1と同様にして、メタ-キシリレンジイソシアネートを調製した。
 なお、反応工程において、モノクロロベンゼンの転化率は92mol%であり、ビスカルバミド酸化合物(ジ置換体)の収率は44mol%、モノカルバミド酸化合物(モノ置換体)の収率は32mol%であった。
(実施例9)
 攪拌器、温度計、ガス排気管を装備した1Lのフラスコに、尿素120.2g(2.0mol)と、N,N-ジイソブチルアミン258.4g(2.0mol)とを装入した後、約130℃に加熱し、この温度を一定に保ちつつ、4時間撹拌した。その後、25℃まで冷却して、粗生成物を得た。粗生成物をGCにより分析したところ、粗生成物は、N,N-ジイソブチル尿素を含有しており、N,N-ジイソブチル尿素の収率は、尿素に対して、98mol%であった。これによって、337.8gのN,N-ジイソブチル尿素を含有する粗生成物を得た。
 次いで、攪拌器、滴下漏斗、温度計、ガス排気管を装備した1Lの4つ口フラスコに、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を装入した後、さらに、N,N-ジイソブチル尿素172.3g(1.0mol)、90質量%パラホルムアルデヒド水溶液33.4g(ホルムアルデヒド:1.0mol)を装入して、それらを95質量%硫酸水溶液に溶解して、アルデヒド・尿素溶解液(アルデヒド・アミド溶解液)を調製した。
 次いで、フラスコ内を10~20℃の温度範囲に保ちながら、アルデヒド・尿素溶解液に、モノクロロベンゼン56.3g(0.5mol)を1時間かけて滴下した(滴下速度:8.3×10-3mol/min)。つまり、硫酸の水素原子の当量比(モル比)は、モノハロゲン化ベンゼン類に対して、20である。
 その後、フラスコ内を50℃(反応温度)に昇温し、この温度を一定に保ちつつ、常圧で各成分を反応させた。5時間(反応時間)後、反応を終了し、反応生成物を得た。
 反応生成物をHPLCにより分析したところ、モノクロロベンゼンの転化率は95mol%であり、反応生成物は、ビス尿素化合物(ジ置換体)、および、モノ尿素化合物(モノ置換体)を含有していた。
 また、モノクロロベンゼンに対する、ビス尿素化合物(ジ置換体)の収率は62mol%、モノ尿素化合物(モノ置換体)の収率は5mol%であった。つまり、ビス尿素化合物は、合計して0.31mol生成し、その質量の総和は、149.1gであった。
 また、ビス尿素化合物(ジ置換体)の質量分析の結果は、[M+]=m/z 481([測定条件]、イオン化法:FAB(pos)、マトリックス:m-NBA)であった。
 また、得られたビス尿素化合物は、下記化学式(2)で示すビス尿素化合物(2,4-ジ置換体)、および、下記化学式(3)で示すビス尿素化合物(2,6-ジ置換体)のみを含んでいた。
化学式(2):
Figure JPOXMLDOC01-appb-C000019
化学式(3):
Figure JPOXMLDOC01-appb-C000020
 また、攪拌器を装備した2Lの底抜きフラスコに、トルエン500gと水500gとを装入した後、反応生成物の全量を15分かけて滴下装入し、撹拌した。
 続いて、水層を抜き出した後、有機層に再度、水500gを加えて、撹拌した。これを4回繰り返して有機層を水洗し、ビス尿素化合物およびモノ尿素化合物が溶解された有機層(ビス尿素化合物溶液)を得た。つまり、有機層における、ビス尿素化合物の濃度は、20.9質量%であった。
[脱ハロゲン化工程]
 次いで、攪拌器付き1Lのオートクレーブに、パラジウムカーボン(触媒)1.5gと、炭酸ナトリウム無水物53.0g(0.5mol)とを装入した後、さらに上記の有機層の全量を装入した。
 次いで、オートクレーブ内の気相部を、窒素で置換した後、水素で置換し、水素圧0.5MPaに加圧した。また、オートクレーブ内を90℃に昇温して、ビス尿素化合物の脱ハロゲン化反応を進行させた。5時間後、反応を終了し冷却した。
 冷却後の反応液を濾過し、触媒と無機塩(塩化ナトリウム)とを濾別して、濾液を得た。次いで、その濾液から溶媒(トルエン)を留去して、1,3位尿素置換体としてのN,N’-メタ-キシリレンビス(N,N-ジイソブチル尿素)を得た。
 また、N,N’-メタ-キシリレンビス(N,N-ジイソブチル尿素)の質量分析の結果は、[M+H]=m/z 447([測定条件]、イオン化法:FAB(pos)、マトリックス:m-NBA)であった。
 上記化学式(2)および下記化学式(3)で示すビス尿素化合物の総和に対する、N,N’-メタ-キシリレンビス(N,N-ジイソブチル尿素)の収率は、95mol%であった。つまり、N,N’-メタ-キシリレンビス(N,N-ジイソブチル尿素)は、0.29mol生成し、その質量は、129.5gであった。
 なお、N,N’-メタ-キシリレンビス(N,N-ジイソブチル尿素)の収率は、高速液体クロマトグラフィー(HPLC)により測定されるピークの積分値から算出された。
[熱分解工程]
 充填塔を備える反応器に、高沸点不活性溶媒(商品名:バーレルプロセス油B30、松村石油株式会社製)、および、脱ハロゲン化工程で得られたN,N’-メタ-キシリレンビス(N,N-ジイソブチル尿素)の全量を装入した。次いで、反応器内を、100torr(13.3KPa)以下に減圧するとともに、200℃~300℃の温度範囲に加熱して、N,N’-メタ-キシリレンビス(N,N-ジイソブチル尿素)を熱分解した。
 そして、充填塔から留出液(第1留出液)を捕集した。その留出液をGCにより分析したところ、メタ-キシリレンジイソシアネートの生成が確認された。また、N,N’-メタ-キシリレンビス(N,N-ジイソブチル尿素)に対する、メタ-キシリレンジイソシアネートの収率は68mol%であった。つまり、メタ-キシリレンジイソシアネートは、0.20mol生成し、その質量は、37.6gであった。
[精製工程]
 蒸留段数10段相当の棚段塔、および、窒素ラインに連結されたキャピラリー管を備える蒸留釜に、熱分解工程において得られた留出液を装入した。そして、0.5~5torr(66.7Pa~666.7Pa)の圧力範囲、かつ、160℃~240℃の温度範囲において、減圧蒸留を実施した。棚段塔からの留出液(第2留出液)を捕集し、精製されたメタ-キシリレンジイソシアネートを得た。精製されたメタ-キシリレンジイソシアネートをGCにより分析したところ、メタ-キシリレンジイソシアネートの純度は、99.8質量%であり、精製収率は、精製工程に用いられたメタ-キシリレンジイソシアネートに対して、90mol%であった。つまり、メタ-キシリレンジイソシアネートは、0.18mol回収され、その質量は、33.9gであった。
(比較例1)
 反応工程において、硫酸水溶液の使用量を、361.3g(硫酸:3.5mol)に変更した点以外は、実施例1と同様に実施した。
 なお、反応工程において、モノクロロベンゼンの転化率は30mol%であり、モノカルバミド酸化合物(モノ置換体)の収率は6mol%であった。また、ビスカルバミド酸化合物(ジ置換体)は生成しなかった。
(比較例2)
 反応工程において、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を、90質量%硫酸水溶液544.9g(硫酸:5.0mol)に変更した点以外は、実施例1と同様に実施した。
 なお、反応工程において、モノクロロベンゼンの転化率は45mol%であり、ビスカルバミド酸化合物(ジ置換体)の収率は9mol%であり、モノカルバミド酸化合物(モノ置換体)の収率は9mol%であった。
(比較例3)
 反応工程において、90質量%パラホルムアルデヒド水溶液の使用量を、41.8g(ホルムアルデヒド:1.25mol)に変更した点、および、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を、90質量%リン酸水溶液1088.9g(リン酸:10mol)に変更した点以外は、実施例1と同様に実施した。
 なお、反応工程において、モノクロロベンゼンの転化率は27mol%であり、モノカルバミド酸化合物(モノ置換体)の収率は5mol%であった。また、ビスカルバミド酸化合物(ジ置換体)は生成しなかった。
(比較例4)
 反応工程において、90質量%パラホルムアルデヒド水溶液の使用量を、41.8g(ホルムアルデヒド:1.25mol)に変更した点、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を、98質量%硫酸水溶液の濃度500.4g(硫酸:5.0mol)に変更した点、反応温度を10℃に変更した点、および、反応時間を20時間に変更した点以外は、実施例1と同様に実施した。
 なお、反応工程において、モノクロロベンゼンの転化率は87mol%であり、ビスカルバミド酸化合物(ジ置換体)の収率は2mol%であり、モノカルバミド酸化合物(モノ置換体)の収率は70mol%であった。
(比較例5)
 反応工程において、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を、99質量%メタンスルホン酸水溶液970.7g(メタンスルホン酸:10.0mol)に変更した点、および、反応温度を80℃に変更した点以外は、実施例1と同様に実施した。
 なお、反応工程において、モノクロロベンゼンの転化率は2mol%であり、ビスカルバミド酸化合物(ジ置換体)およびモノカルバミド酸化合物(モノ置換体)は生成しなかった。
(比較例6)
 反応工程において、95質量%硫酸水溶液515.8g(硫酸:5.0mol)を、99質量%酢酸水溶液606.6g(酢酸:10.0mol)に変更した点、および、反応温度を100℃に変更した点以外は、実施例1と同様に実施した。
 なお、反応工程において、モノクロロベンゼンの転化率は0%であり、ビスカルバミド酸化合物(ジ置換体)およびモノカルバミド酸化合物(モノ置換体)は生成しなかった。
(比較例7)
 反応工程において、クロロベンゼン56.3g(0.5mol)を、ベンゼン39.1g(0.5mol)に変更した点以外は、実施例1と同様に実施した。
 なお、反応工程において、モノクロロベンゼンの転化率は100mol%であり、ビスカルバミド酸化合物(ジ置換体)の収率は18mol%、モノカルバミド酸化合物(モノ置換体)の収率は1mol%であった。なお、ビスカルバミド酸化合物(ジ置換体)は、HPLCにより分析したところ、1,2位カルバミド酸置換体および1,4位カルバミド酸置換体を、ビスカルバミド酸化合物全量に対して、54mol%含有していた。
(比較例8)
 反応工程において、硫酸水溶液の使用量を、361.3g(硫酸:3.5mol)に変更した点以外は、実施例9と同様に実施した。
 なお、反応工程において、モノクロロベンゼンの転化率は26mol%であり、モノ尿素化合物(モノ置換体)の収率は5%であった。また、ビス尿素化合物(ジ置換体)は生成しなかった。
Figure JPOXMLDOC01-appb-T000021
 なお、表1の略号などを以下に示す。
CB  :モノクロロベンゼン(東京化成株式会社製)
BZ  :ベンゼン(和光純薬工業株式会社製)
PFA :パラホルムアルデヒド(東京化成株式会社製)
BC  :カルバミン酸n-ブチル(東京化成株式会社製)
BIBU:N,N-ジイソブチル尿素
MSA :メタンスルホン酸(和光純薬工業株式会社製)
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれる。
 本発明により、従来法に対して、比較的マイルドな条件下においてメタ-キシリレンジイソシアネート類を製造できる。そのため、設備面、安全面および経済面の観点から、より工業的に有利に、メタ-キシリレンジイソシアネート類を得ることができる。
 このメタ-キシリレンジイソシアネート類は、ポリウレタン、ポリチオウレタンなどの用途において、その高性能化などのために、好適に用いられる。特に、ポリウレタンの塗料、接着剤、シーラントおよびエラストマーやポリチオウレタン系のレンズ用途に好適である。

Claims (6)

  1.  モノハロゲン化ベンゼン類と、ホルムアルデヒド類と、下記一般式(1)に示されるアミド化合物とを、酸性液体の存在下において反応させて、ビスアミド化合物を生成する反応工程と、
     前記ビスアミド化合物から、前記モノハロゲン化ベンゼン類に由来するハロゲン原子を水素原子に置換する脱ハロゲン化工程と、
     ハロゲン原子が脱離されたビスアミド化合物を熱分解する熱分解工程と、を含み、
     前記反応工程において、
      前記酸性液体が、無機酸を含み、
      前記モノハロゲン化ベンゼン類に対する、前記無機酸の水素原子の当量比が、14を超過し、
      前記酸性液体中の酸の濃度が、90質量%を超過し、
      反応温度が、10℃を超過していることを特徴とする、メタ-キシリレンジイソシアネート類の製造方法。
    一般式(1):
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)中、Rは、アルコキシ基またはアミノ基を示す。)
  2.  前記一般式(1)中、Rが、n-ブトキシ基であることを特徴とする、請求項1に記載のメタ-キシリレンジイソシアネート類の製造方法。
  3.  前記一般式(1)中、Rが、ジイソブチルアミノ基であることを特徴とする、請求項1に記載のメタ-キシリレンジイソシアネート類の製造方法。
  4.  前記無機酸は、硫酸またはリン酸であることを特徴とする、請求項1に記載のメタ-キシリレンジイソシアネート類の製造方法。
  5.  前記モノハロゲン化ベンゼン類が、モノクロロベンゼンであることを特徴とする、請求項1に記載のメタ-キシリレンジイソシアネート類の製造方法。
  6.  前記モノハロゲン化ベンゼン類に対する、前記無機酸の水素原子の当量比が、16以上であり、
     前記酸性液体中の無機酸の濃度が、95質量%以上であり、
     前記反応温度が、20℃以上であることを特徴とする、請求項1に記載のメタ-キシリレンジイソシアネート類の製造方法。
PCT/JP2014/071245 2013-08-23 2014-08-11 メタ-キシリレンジイソシアネート類の製造方法 WO2015025773A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/903,268 US9670148B2 (en) 2013-08-23 2014-08-11 Method for producing meta-xylylenediisocyanates
KR1020157035753A KR101761051B1 (ko) 2013-08-23 2014-08-11 메타-크실릴렌디이소시아네이트류의 제조 방법
JP2014556874A JP5739590B1 (ja) 2013-08-23 2014-08-11 メタ−キシリレンジイソシアネート類の製造方法
EP14838284.9A EP3037410B1 (en) 2013-08-23 2014-08-11 Method for producing m-xylylene diisocyanate
CN201480031580.9A CN105263903B (zh) 2013-08-23 2014-08-11 间苯二甲撑二异氰酸酯类的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-173457 2013-08-23
JP2013173457 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015025773A1 true WO2015025773A1 (ja) 2015-02-26

Family

ID=52483549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071245 WO2015025773A1 (ja) 2013-08-23 2014-08-11 メタ-キシリレンジイソシアネート類の製造方法

Country Status (6)

Country Link
US (1) US9670148B2 (ja)
EP (1) EP3037410B1 (ja)
JP (1) JP5739590B1 (ja)
KR (1) KR101761051B1 (ja)
CN (1) CN105263903B (ja)
WO (1) WO2015025773A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450424A1 (de) * 2017-09-04 2019-03-06 Covestro Deutschland AG Verfahren zur herstellung von isocyanaten
KR102263837B1 (ko) * 2020-11-05 2021-06-11 주식회사 미코바이오메드 현장진단용 다중 초고속 핵산 추출 및 증폭이 가능한 통합칩

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565263A (ja) * 1991-07-19 1993-03-19 Mitsubishi Gas Chem Co Inc イソシアネート化合物の製造方法
JPH07258194A (ja) * 1994-03-18 1995-10-09 Mitsubishi Gas Chem Co Inc イソシアネート類の製造方法
JP2002105035A (ja) 2000-09-25 2002-04-10 Mitsubishi Gas Chem Co Inc キシリレンジアミンの製造方法
WO2011125429A1 (ja) * 2010-04-02 2011-10-13 旭硝子株式会社 カルバメート化合物の製造方法、カルバメート化合物、およびこれを用いたイソシアネート化合物の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415745A (en) * 1981-08-04 1983-11-15 Exxon Research & Engineering Co. Process for the preparation of aromatic carbamates and isocyanates
JPH04221356A (ja) 1990-12-20 1992-08-11 Mitsubishi Gas Chem Co Inc キシリレンジイソシアネートの製造方法
HUE029005T2 (en) 2009-12-24 2017-02-28 Mitsui Chemicals Inc A method for treating isocyanate residue and a method for treating carbonate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565263A (ja) * 1991-07-19 1993-03-19 Mitsubishi Gas Chem Co Inc イソシアネート化合物の製造方法
JPH07258194A (ja) * 1994-03-18 1995-10-09 Mitsubishi Gas Chem Co Inc イソシアネート類の製造方法
JP2002105035A (ja) 2000-09-25 2002-04-10 Mitsubishi Gas Chem Co Inc キシリレンジアミンの製造方法
WO2011125429A1 (ja) * 2010-04-02 2011-10-13 旭硝子株式会社 カルバメート化合物の製造方法、カルバメート化合物、およびこれを用いたイソシアネート化合物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"REDUCTIVE BOC-AMINATION OF ALDEHYDES", TETRAHEDRON LETTERS, vol. 42, 2001, pages 5093 - 5094, XP004250186 *
See also references of EP3037410A4
THE JOURNAL OF ORGANIC CHEMISTRY, vol. 78, 2 October 2013 (2013-10-02), pages 10986 - 10995, XP055333698 *

Also Published As

Publication number Publication date
JP5739590B1 (ja) 2015-06-24
JPWO2015025773A1 (ja) 2017-03-02
US20160145201A1 (en) 2016-05-26
CN105263903B (zh) 2018-01-26
EP3037410A1 (en) 2016-06-29
KR101761051B1 (ko) 2017-07-24
KR20160010574A (ko) 2016-01-27
CN105263903A (zh) 2016-01-20
EP3037410A4 (en) 2017-05-03
US9670148B2 (en) 2017-06-06
EP3037410B1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP5448987B2 (ja) トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法
EP1856024B1 (de) Verfahren zur herstellung substituierter biphenyle
JP5640093B2 (ja) ビス(アミノメチル)シクロヘキサン類の製造方法
JP5562429B2 (ja) トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法
KR20180113970A (ko) 아릴 치환된 파라페닐렌디아민계 물질의 제조 방법
CN111302961B (zh) 一种卡宾金属配体催化合成n-芳基/烷基蒽醌及其衍生物的方法
JPS6360733B2 (ja)
JP5739590B1 (ja) メタ−キシリレンジイソシアネート類の製造方法
US6881864B2 (en) Production method of xylylenediamine
EP1931618B1 (en) Process for the production of anilines
JP5196341B2 (ja) ビフェニル誘導体の製造方法
JP5911468B2 (ja) 気相中での非対称第二級tert−ブチルアミンの製造方法
JP5434919B2 (ja) カルバメート化合物の製造方法
JP5739591B1 (ja) メタ−キシリレンジアミン類の製造方法およびビスアミド化合物の製造方法
JP2021116234A (ja) m−キシリレンジアミンの製造方法
JP5766053B2 (ja) ビアリール化合物の製造方法
CN112745225A (zh) 一种1,1,1-三氟异丙胺的制备方法
JP5794570B2 (ja) アリールアミン類の製造方法
JP2011057646A (ja) β,β−ジメチル−ε−カプロラクタムの製造方法
JP2005015400A (ja) トリフルオロメチルシンナミルアルコールとその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031580.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014556874

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838284

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014838284

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157035753

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14903268

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE