WO2015025582A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2015025582A1
WO2015025582A1 PCT/JP2014/064053 JP2014064053W WO2015025582A1 WO 2015025582 A1 WO2015025582 A1 WO 2015025582A1 JP 2014064053 W JP2014064053 W JP 2014064053W WO 2015025582 A1 WO2015025582 A1 WO 2015025582A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power semiconductor
flow path
semiconductor module
conversion device
Prior art date
Application number
PCT/JP2014/064053
Other languages
English (en)
French (fr)
Inventor
拓真 白頭
丹波 昭浩
壮志 松尾
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2015532737A priority Critical patent/JP6117361B2/ja
Publication of WO2015025582A1 publication Critical patent/WO2015025582A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20236Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures by immersion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8484Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

 抜き勾配に起因するバイパス流の発生を抑制する冷却ジャケットを有する電力変換装置を提供する。 冷却ジャケット(Jw)には、パワー半導体素子が内蔵され放熱用フィン(305)が表裏両面に設けられたパワー半導体モジュール(300)が挿通されている。冷却ジャケット(Jw)は、内壁(442)に設けられた抜き勾配が切除され、冷却ジャケット(Jw)の高さ全体に亘り、放熱用フィン(305)に対面する内壁(447)が、放熱用フィン(305)の先端と僅かなギャップを有するように一様に形成されている。このため、空間(SB)が形成されず、冷却効果の殆どないバイパス流の発生を抑制することができる。

Description

電力変換装置
 本発明は、電力変換装置に関し、さらに詳細には、パワー半導体モジュールを冷却する冷却流路を備える電力変換装置に関する。
 パワー半導体素子が内蔵されたパワー半導体モジュールを複数個、冷却流路を備えた装置ケース内に収容した電力変換装置が知られている。このような電力変換装置は、例えば、電気自動車やハイブリッド自動車等の電気車両に搭載される。
 各パワー半導体モジュールは、冷却流路内で、装置ケースの内面から離間されて配置される。また、パワー半導体モジュールは、放熱板を対向して離間して配置される。冷却流路は、装置ケース内の内面と各パワー半導体モジュールの側面との間、および各パワー半導体モジュール間を連通するように形成されている。冷却水等の冷却媒体は、装置ケースの流入口から冷却流路内に流入され、パワー半導体モジュールを冷却して装置ケースの流出口から排出される。
 冷却流路が形成された装置ケースは、一般的に、鋳造または樹脂成形により形成され、冷却流路の流入口と流出口とは、通常、装置ケースの同一側面に設けられている。
 このような電力変換装置において、冷却流路の流路抵抗に起因する冷却媒体の流量の変動を抑えるために、冷却流路の断面積を流入口および流出口側と、冷却流路の最奥部側とで異なるようにした構造がある。この構造では、冷却流路の断面積が異なるので、各パワー半導体モジュールを冷却する冷却媒体の流量を調整することができ、効率的なパワー半導体素子の冷却が可能となることが記載されている(例えば、特許文献1参照)。
特開2012-16073号公報
 特許文献1に記載された電力変換装置では、鋳造または樹脂成形により形成される装置ケースの内面の抜き勾配に起因する冷却効率の損失に対する配慮がなされていない。
 本発明の電力変換装置は、内部にパワー半導体素子を内蔵するモジュールケースの少なくとも一面に放熱用フィンが設けられた第1パワー半導体モジュールと、内部にパワー半導体素子を内蔵するモジュールケースの少なくとも一面に放熱用フィンが設けられた第2パワー半導体モジュールと、第1パワー半導体モジュールを挿入する挿入口を有し、第1パワー半導体モジュールの少なくとも放熱用フィンが設けられたモジュールケースの領域が挿通される第1流路空間と、第2パワー半導体モジュールを挿入する挿入口を有し、第2パワー半導体モジュールの少なくとも放熱用フィンが設けられたモジュールケースの領域が挿通される第2流路空間とが連通して形成され、内部を冷却媒体が流通する冷却流路を備えた流路形成体と、を備え、流路形成体は、鋳造または樹脂成形により形成され、第1流路空間における放熱用フィンに対向する内壁または第2流路空間における放熱用フィンに対向する内壁の少なくとも一方の、流路形成体の底面側から挿入口側にかけて形成された抜き勾配が切除されている。
 本発明によれば、冷却ジャケットの少なくとも1つが、鋳造または樹脂成形における内壁面の抜き勾配が切除されているので、パワー半導体モジュールと流路形成体の内壁面との間に流れる冷却効果が小さい冷却媒体の流れ、所謂、バイパス流が抑制され、この分、冷却効率を向上することができる。
本発明の一実施形態によるパワー半導体モジュールを用いた電力変換装置を搭載したハイブリッド自動車の制御ブロック図である。 本実施形態による電力変換装置の回路構成を示す図である。 本実施形態によるパワー半導体モジュールの斜視図である。 図3に図示されたパワー半導体モジュールの断面図である。 本実施形態によるパワー半導体モジュールの内部斜視図である。 図5に図示されたパワー半導体モジュールの断面図である。 本実施形態によるパワー半導体モジュールの分解図である。 本実施形態によるパワー半導体モジュールの回路図である。 本実施形態による表面側からのベース部材の斜視図である。 図9に図示されたベース部材の底面側からの斜視図である。 抜き勾配を有する冷却ジャケットにパワー半導体モジュールを取り付ける工程を説明するための図である。 図11に続く工程を説明するための図である。 バイパス流の作用を説明するための断面図である。 抜き勾配が切除された冷却ジャケットにパー半導体モジュールが配置された状態の断面図である。 冷却ジャケット内壁の抜き勾配を切除する方法を説明するための図であり、(a)は抜き勾配を有する冷却ジャケットの断面図であり、(b)、(c)は抜き勾配が切除された冷却ジャケットの形成方法を示す断面図である。 抜き勾配切除ジャケットと抜き勾配付き冷却ジャケットの配置の選定方法の一実施の形態を示す図である。 図16に図示された冷却ジャケットの配置に対応する電力変換装置の斜視図である。 本発明の実施形態2に係り、抜き勾配切除ジャケットと抜き勾配付き冷却ジャケットの配置の別の選定方法を示す図である。 図18に図示された冷却ジャケットの配置に対応するベース部材の斜視図である。 本発明の実施形態3に係り、本発明の実施形態2に係り、抜き勾配切除ジャケットと抜き勾配付き冷却ジャケットの配置のさらに別の選定方法を示す図である。 図20に図示された冷却ジャケットの配置に対応するベース部材の斜視図である。 本発明の実施形態4に係り、ベース部材の斜視図である。
--実施形態1--
[ハイブリッド自動車全体回路]
 本発明に係る両面冷却型のパワー半導体モジュールとこれを用いた電力変換装置の一実施形態について、図面を参照しながら以下詳細に説明する。本発明によるパワー半導体モジュールおよび電力変換装置は、ハイブリッド用の自動車や純粋な電気自動車に適用可能である。以下では、代表例として、本発明によるパワー半導体モジュールおよび電力変換装置をハイブリッド自動車に適用した場合の実施形態について説明する。
 以下の実施形態では、自動車に搭載される回転電機駆動システムの車載用電力変換装置、特に、車両駆動用電機システムに用いられ、搭載環境や動作的環境などが大変厳しい車両駆動用インバータ装置での適用例を説明する。車両駆動用インバータ装置は、車両駆動用電動機の駆動を制御する制御装置として車両駆動用電機システムに備えられ、車載電源を構成する車載バッテリ或いは車載発電装置から供給された直流電力を所定の交流電力に変換し、得られた交流電力を車両駆動用電動機に供給して車両駆動用電動機の駆動を制御する。また、車両駆動用電動機は発電機としての機能も有しているので、車両駆動用インバータ装置は、運転モードに応じて車両駆動用電動機の発生する交流電力を直流電力に変換する機能も有している。変換された直流電力は車載バッテリに供給される。
 なお、以下の実施形態の構成は、自動車やトラックなどの車両を駆動するための電力変換装置として最適であるが、これ以外の電力変換装置に対しても適用可能である。例えば、電車、船舶、航空機などにおいて使用される電力変換装置や、工場の設備を駆動する電動機の制御装置として用いられる産業用電力変換装置、あるいは、家庭の太陽光発電システムや家庭の電化製品を駆動する電動機の制御装置に用いられたりする、家庭用電力変換装置に対しても適用可能である。
 図1は、本発明の一実施形態によるパワー半導体モジュールを用いた電力変換装置を搭載したハイブリッド自動車の制御ブロックを示す。ハイブリッド自動車(以下、HEVと記述する)110は2つの車両駆動用システムを備えている。その1つは、内燃機関であるエンジン120を動力源としたエンジン駆動システムである。もう1つは、モータジェネレータ192、194を動力源とする回転電機駆動システムである。回転電機駆動システムは、モータジェネレータ192、194を駆動源として備えている。モータジェネレータ192、194としては、同期機あるいは誘導機が使用される。モータジェネレータ192、194は、制御によりモータとしても、あるいは発電機としても動作する。そのため、この明細書ではこれらをモータジェネレータと記す。これらは代表的な使用例であり、モータジェネレータ192、194をモータのみあるいは発電機のみとして使用してもよい。以下に説明するインバータ回路140、142によりモータジェネレータ192、194が制御され、この制御においてモータとして動作したり発電機として動作したりする。
 本発明は、図1に示すHEVに使用できることは当然であるが、エンジン駆動システムを使用しない純粋な電気自動車にも適用できる。HEVの回転電機駆動システムも純粋な電気自動車の駆動システムも、本発明の関係する部分は、基本的な動作や構成が共通している。そのため、煩雑さを避けるために、以下では代表してHEVの例で説明する。
 車体のフロント部には一対の前輪112が設けられた前輪車軸114が回転可能に軸支されている。本実施の形態では、動力によって駆動される主輪を前輪112とし、連れ回される従輪を後輪とする、いわゆる前輪駆動方式を採用しているが、この逆、すなわち後輪駆動方式を採用しても構わない。
 前輪車軸114には、デファレンシャルギア(以下DEFと記す)116が設けられている。前輪車軸114は、DEF116の出力側に機械的に接続されている。DEF116の入力側には、変速機118の出力軸が機械的に接続されている。DEF116は、変速機118によって変速されたトルクを受け、左右の前輪車軸114に分配する。変速機118の入力側には、モータジェネレータ192の出力側が機械的に接続されている。モータジェネレータ192の入力側には、動力分配機構122を介してエンジン120の出力側あるいはモータジェネレータ194の出力側が機械的に接続されている。なお、モータジェネレータ192、194および動力分配機構122は、変速機118の筐体の内部に収納されている。
 モータジェネレータ192および194は、誘導機でも良いが、本実施の形態ではより効率向上に優れている、回転子に永久磁石を備えた同期機が使用されている。誘導機や同期機の固定子が有する固定子巻線に供給される交流電力がインバータ回路140、142によって制御されることにより、モータジェネレータ192、194のモータあるいは発電機としての動作やその特性が制御される。つまり、インバータ回路140、142は力行用および回生用インバータを構成している。インバータ回路140、142には昇圧コンバータ144を介してバッテリ136が接続されており、バッテリ136とインバータ回路140、142との間において電力の授受が可能である。
 本実施の形態では、HEV110は、モータジェネレータ192およびインバータ回路140からなる第1電動発電ユニットと、モータジェネレータ194およびインバータ回路142からなる第2電動発電ユニットとの2つを備え、運転状態に応じてそれらを使い分けている。すなわち、エンジン120からの動力によって車両を駆動している状況において、車両の駆動トルクをアシストする場合には、第2電動発電ユニットを発電ユニットとしてエンジン120の動力によって作動させて発電させ、その発電によって得られた電力によって第1電動発電ユニットを電動ユニットとして作動させる。また、同様の状況において車両の車速をアシストする場合には、第1電動発電ユニットを発電ユニットとしてエンジン120の動力によって作動させて発電させ、その発電によって得られた電力によって第2電動発電ユニットを電動ユニットとして作動させる。
 また、本実施の形態では、バッテリ136の電力によって第1電動発電ユニットを電動ユニットとして作動させることにより、モータジェネレータ192の動力のみによって車両の駆動ができる。さらに、本実施形態では、第1電動発電ユニットまたは第2電動発電ユニットを、発電ユニットとしてエンジン120の動力あるいは車輪からの動力によって作動させて発電させることにより、バッテリ136の充電ができる。
 バッテリ136は、さらに補機用のモータ195を駆動するための電源としても使用される。補機用のモータ195としては、たとえばエアコンディショナーのコンプレッサを駆動するモータ、あるいは制御用の油圧ポンプを駆動するモータがある。バッテリ136から供給された直流電力は補機用の変換機43で交流の電力に変換され、モータ195に供給される。補機用の変換機43はインバータ回路140、142と同様の機能を持ち、モータ195に供給する交流の位相や周波数、電力を制御する。たとえば、モータ195の回転子の回転に対し進み位相の交流電力を供給することにより、モータ195はトルクを発生する。一方、遅れ位相の交流電力を発生することで、モータ195は発電機として作用し、モータ195は回生制動状態の運転となる。このような補機用の変換機43の制御機能は、インバータ回路140、142の制御機能と同様である。モータ195の容量がモータジェネレータ192、194の容量より小さいので、補機用の変換機43の最大変換電力はインバータ回路140、142より小さいが、補機用の変換機43の回路構成は基本的にインバータ回路140、142の回路構成と同じである。
 図1の実施の形態では、定電圧電源を省略している。各制御回路や各種センサは図示していない定電圧電源からの電力で動作する。この定電圧電源は例えば14ボルト系の電源であり、鉛バッテリなどの14ボルト系、場合によっては24ボルト系のバッテリを備え、正極あるいは負極の一方が車体と接続されており、車体が定電圧電源の電力供給用導体として使用される。
 インバータ回路140、142および補機用の変換機43と昇圧コンバータ144とコンデンサモジュール500とは、電気的に密接な関係にある。さらに発熱に対する対策が必要な点が共通している。また装置の体積をできるだけ小さく作ることが望まれている。これらの点から以下で詳述する電力変換装置200Aは、インバータ回路140、142と、補機用の変換機43と、昇圧コンバータ144と、コンデンサモジュール500とを、電力変換装置200Aの筐体12(図2参照)内に内蔵している。この構成により小型化が可能となる。さらにハーネスの数を低減できる、あるいは放射ノイズなどを低減できるなどの効果がある。この効果は小型化にもつながり、あるいは信頼性の向上にもつながる。また生産性の向上にもつながる。また、昇圧コンバータ144とコンデンサモジュール500とインバータ回路140、142および補機用の変換機43との接続回路が短くなり、あるいは以下に説明する構造が可能となり、インダクタンスを低減でき、その結果としてスパイク電圧を低減できる。さらに以下に説明する構造により、発熱の低減や放熱効率の向上を図ることができる。電力変換装置200Aは、直流コネクタ138を介してバッテリ136と接続されている。
〔電力変換装置の回路構成〕
 図2を用いて、本実施形態による電力変換装置200Aの回路構成について説明する。図1に示したように、電力変換装置200Aは、インバータ回路140、142と、補機用の変換機43と、昇圧コンバータ144と、コンデンサモジュール500とを備えている。補機用の変換機43は、HEV110が備える補機類を駆動するための補機用のモータ195を制御するインバータ装置である。
 インバータ回路140、142は、両面冷却構造を有するパワー半導体モジュール300をそれぞれ複数台、この実施例では3個ずつ備えている。これらのパワー半導体モジュール300を並列接続することにより、3相ブリッジ回路を構成している。電流容量が大きい場合には、更に複数のパワー半導体モジュール300を並列接続してもよい。パワー半導体モジュール300の並列接続を3相インバータ回路の各相に対応して行うことにより、電流容量の増大に対応できる。また、以下で説明の如くパワー半導体モジュール300に内蔵している半導体素子を並列接続してもよい。これにより、複数のパワー半導体モジュール300を並列接続しなくても、パワーの増大に対応できる。
 後述するように、各パワー半導体モジュール300は、パワー半導体素子とその接続配線を、図3、図4に示すモジュールケース304の内部に収納している。本実施の形態では、モジュールケース304は、開口が形成された開口部を有する缶状の放熱金属のベース等を備えている。このモジュールケース304は、対向する一対の放熱ベース307を有している。この実施例では、モジュールケース304の開口部を有する面以外の5つの面のうち、最も広い2つの面に放熱ベース307が形成されている。これらの両放熱ベース307と連続してその間をつなぐように、繋ぎ目の無い同一材質で、残りの各面に外壁が構成されている。直方体形状を成す上記缶状のモジュールケース304の一面には開口が形成されている。この開口からパワー半導体素子がモジュールケース304の内部に挿入されて保持される。
 インバータ回路140、142と、昇圧コンバータ144は、ドライバ回路174によってそれぞれ駆動制御される。ドライバ回路174は制御回路172により制御される。制御回路172は、パワー半導体素子のスイッチングタイミングを制御するためのスイッチング信号を生成する。
 インバータ回路140とインバータ回路142とは基本的な回路構成は同じであり、制御方法や動作も基本的には同じである。そのため、これらを代表してインバータ回路140を例に説明する。インバータ回路140は3相ブリッジ回路を基本構成として備えている。具体的には、U相のパワー半導体モジュール300(符号U1で示す)、V相のパワー半導体モジュール300(符号V1で示す)、W相のパワー半導体モジュール300(符号W1で示す)を有している。なお、インバータ回路142についても同様に、U相、V相、W相の各相のパワー半導体モジュール300をそれぞれ符号U2、V2、W2で示している。各相のパワー半導体モジュール300は、上アーム回路と下アーム回路とが直列に接続された上下アーム直列回路で構成される。各相のパワー半導体モジュール300は、上アーム回路に接続される直流正極端子315Bと、下アーム回路に接続される直流負極端子319Bと、上アーム回路と下アーム回路の接続部に接続される交流端子321とを有している。
 各相のパワー半導体モジュール300において、上アーム回路と下アーム回路の接続部にはそれぞれ交流電力が発生する。各相のパワー半導体モジュール300の交流端子321は、交流出力コネクタ188に接続される。電力変換装置200Aにおいて、インバータ回路140、142の各相のパワー半導体モジュール300で発生した交流電力は、この交流出力コネクタ188を介して、モータジェネレータ192あるいは194の固定子巻線に供給される。
 ここで、インバータ回路140、142がそれぞれ有する各相のパワー半導体モジュール300は基本的に同じ構造を有しており、動作も基本的に同じである。そのため、以下ではこれらを代表して、インバータ回路140のU相のパワー半導体モジュール300、すなわちパワー半導体モジュールU1について説明する。
 パワー半導体モジュールU1において、上アーム回路は、スイッチング用のパワー半導体素子として、上アームIGBT(絶縁ゲート型バイポーラトランジスタ)155と、上アームダイオード156とを備えている。また下アーム回路は、スイッチング用のパワー半導体素子として、下アームIGBT157と、下アームダイオード158とを備えている。上アーム回路に接続された直流正極端子315Bと、下アーム回路に接続された直流負極端子319Bは、コンデンサモジュール500にそれぞれ接続される。
 なお、前述のように、インバータ回路140のV相およびW相の各パワー半導体モジュールV1、W1については、上記のパワー半導体モジュールU1と略同じ回路構成となる。また、インバータ回路142の各相のパワー半導体モジュールU2、V2、W2は、インバータ回路140の場合と同様の構成である。そのため、パワー半導体モジュールU1以外については、図2において上記の各構成要素に対応する符号の図示を省略している。
 上アームIGBT155や下アームIGBT157は、ドライバ回路174から出力された駆動信号を受けてスイッチング動作し、バッテリ136から供給された直流電力を三相交流電力に変換する。変換された電力はモータジェネレータ192の固定子巻線に供給される。なお、補機用の変換機43はインバータ回路142と同様の構成を有しており、ここでは説明を省略する。
 本実施の形態では、スイッチング用のパワー半導体素子として上アームIGBT155、および下アームIGBT157を用いた例を示している。上アームIGBT155や下アームIGBT157は、後で詳しく説明するように、コレクタ電極、エミッタ電極(信号用エミッタ電極端子)、およびゲート電極(ゲート電極端子)をそれぞれ備えている。上アームIGBT155や下アームIGBT157のコレクタ電極とエミッタ電極との間には、上アームダイオード156や下アームダイオード158が図示するように電気的に接続されている。上アームダイオード156と下アームダイオード158は、カソード電極およびアノード電極の2つの電極をそれぞれ備えている。上アームIGBT155や下アームIGBT157のエミッタ電極からコレクタ電極に向かう方向が順方向となるように、カソード電極は上アームIGBT155や下アームIGBT157のコレクタ電極に、アノード電極は上アームIGBT155や下アームIGBT157のエミッタ電極に、それぞれ電気的に接続されている。
 制御回路172は、上アームIGBT155や下アームIGBT157のスイッチングタイミングを制御するためのタイミング信号を生成する。ドライバ回路174は、制御回路172から出力されたタイミング信号に基づいて、上アームIGBT155、下アームIGBT157をスイッチング動作させるための駆動信号を生成する。
 制御回路172は、上アームIGBT155や下アームIGBT157のスイッチングタイミングを演算処理するためのマイクロコンピュータ(以下、「マイコン」と記述する)を備えている。マイコンには、モータジェネレータ192に対して要求される目標トルク値、上下アーム直列回路からモータジェネレータ192の固定子巻線に供給される電流値、モータジェネレータ192の回転子の磁極位置などが、入力情報として入力される。目標トルク値は、上位の制御装置(不図示)から出力された指令信号に基づくものである。電流値は、電流センサ180から出力された検出信号に基づいて検出されたものである。磁極位置は、モータジェネレータ192に設けられた回転磁極センサ(不図示)から出力された検出信号に基づいて検出されたものである。なお、本実施形態では3相の電流値を検出する場合を例に挙げて説明するが、2相分の電流値を検出するようにしても良い。
 制御回路172内のマイコンは、目標トルク値に基づいてモータジェネレータ192のd軸やq軸の電流指令値を演算し、この演算されたd軸やq軸の電流指令値と、検出されたd軸やq軸の電流値との差分に基づいてd軸やq軸の電圧指令値を演算する。さらにマイコンは、この演算されたd軸やq軸の電圧指令値を、検出された磁極位置に基づいてU相、V相、W相の各電圧指令値に変換する。そして、マイコンは、U相、V相、W相の電圧指令値に基づく基本波(正弦波)と搬送波(三角波)との比較に基づいて、パルス状の変調波であるPWM(パルス幅変調)信号を生成し、これを前述のタイミング信号としてドライバ回路174に出力する。
 ドライバ回路174は、下アームを駆動する場合、制御回路172からのタイミング信号すなわちPWM信号を増幅し、これをドライブ信号(ゲート信号)として、対応する下アームIGBT157のゲート電極に出力する。一方、上アームを駆動する場合には、ドライバ回路174は、PWM信号の基準電位のレベルを上アームの基準電位のレベルにシフトしてからPWM信号を増幅し、これをドライブ信号(ゲート信号)として、対応する上アームIGBT155のゲート電極にそれぞれ出力する。これにより、上アームIGBT155、下アームIGBT157は、入力されたドライブ信号(ゲート信号)に基づいてそれぞれスイッチング動作する。
 また、ドライバ回路174や制御回路172は、異常検知(過電流、過電圧、過温度など)を行い、上下アーム直列回路を保護している。このため、ドライバ回路174や制御回路172には各種のセンシング情報が入力されている。たとえば、上アームIGBT155や下アームIGBT157の信号用エミッタ電極端子からドライバ回路174には、エミッタ電極に流れる電流の情報が入力されている。これにより、ドライバ回路174は過電流検知を行い、過電流が検知された場合には対応する上アームIGBT155または下アームIGBT157のスイッチング動作を停止させて、そのIGBTを過電流から保護する。また、上下アーム直列回路から制御回路172には、温度センサ(不図示)からの温度の情報や、直流正極側の電圧情報が入力されている。制御回路172は、それらの情報に基づいて過温度検知および過電圧検知を行い、過温度や過電圧が検知された場合には全ての上アームIGBT155、下アームIGBT157のスイッチング動作を停止させて、上下アーム直列回路を過温度や過電圧から保護する。
 インバータ回路140の各相において、上アームIGBT155や下アームIGBT157の導通および遮断動作は一定の順で切り替わる。この切り替わり時にモータジェネレータ192の固定子巻線に発生する電流は、ダイオード156、158を含む回路を流れる。なお、本実施の形態の電力変換装置200Aでは、インバータ回路140の各相に1つの上下アーム直列回路を設けたが、上述の通り、モータジェネレータ192へ出力する3相交流の各相の出力を発生する回路として、各相に2つの上下アーム直列回路を並列接続するようにした回路構成の電力変換装置であってもよい。
 各パワー半導体モジュール300の直流正極端子315Bおよび直流負極端子319Bは、積層配線板700を介してコンデンサモジュール500にそれぞれ接続されている。積層配線板700は、各パワー半導体モジュール300の配列方向に幅広な導電性板材から成る配線層702、704で絶縁シート(不図示)を挟持して構成された、3層構造の配線板である。積層配線板700の配線層702、704は、コンデンサモジュール500に設けられた積層配線板501が有する配線層507、505にそれぞれ接続されている。配線層507、505も配線層702、704と同様に、各パワー半導体モジュール300の配列方向に幅広な導電性板材から成り、絶縁シートを挟持した3層構造の積層配線板501を構成している。
 コンデンサモジュール500には複数のコンデンサセル514が並列接続されている。コンデンサセル514の正極側が配線層507に接続され、コンデンサセル514の負極側が配線層505に接続されている。コンデンサモジュール500は、上アームIGBT155、下アームIGBT157のスイッチング動作によって生じる直流電圧の変動を抑制するための平滑回路を構成している。
 コンデンサモジュール500の積層配線板501は、電力変換装置200Aの直流コネクタ138に接続された入力積層配線板230に接続されている。入力積層配線板230には、補機用の変換機43も接続されている。入力積層配線板230と積層配線板501との間には、不図示のノイズフィルタが設けられている。
 図2に示す電力変換装置200Aの構成において、コンデンサモジュール500は、直流電源である昇圧コンバータ144を介してバッテリ136から直流電力を受けるために直流コネクタ138に接続される端子(符号省略)と、インバータ回路140あるいはインバータ回路142に接続される端子とを別々に有する。そのため、インバータ回路140あるいはインバータ回路142が発生するノイズがバッテリ136の方に及ぼす悪影響を低減できる。
 また、コンデンサモジュール500と各パワー半導体モジュール300との接続に上述のように積層配線板700を使用しているので、各パワー半導体モジュール300の上下アーム直列回路を流れる電流に対するインダクタンスを低減できる。そのため、上記電流の急変に伴って跳ね上がる電圧を低減できる。
 上記実施形態において、第1電動発電ユニットおよび第2電動発電ユニットの一方をモータ用とし、他方をジェネレータ用または回生用とすることができる。例えば、第1電動発電ユニットをモータ用とし、第2電動発電ユニットをジェネレータ用とする場合には、インバータ回路140を直流電力を交流電力に変換する力行用インバータとし、モータジェネレータ192をモータとする。この場合、モータジェネレータ194を取り除き、インバータ回路142を交流電力を直流電力に変換するジェネレータ用または回生用インバータとし、インバータ回路140のアシストとしたり、バッテリ136の充電用としたりしてもよい。
〔パワー半導体モジュール〕
 インバータ回路140およびインバータ回路142に使用されるパワー半導体モジュール300の詳細構成を説明する。図3は、本実施形態によるパワー半導体モジュールの斜視図であり、図4は、図3に図示されたパワー半導体モジュールの断面図である。図5は、本実施形態によるパワー半導体モジュールの内部斜視図である。
 図6は、図4に示したパワー半導体モジュール300の断面図から、モジュールケース304と絶縁シート333と第一封止樹脂350と第二封止樹脂351とを取り除いた、本実施形態によるパワー半導体モジュール300の内部断面図である。図6は、図5に対応するパワー半導体モジュール300の断面図である。図7は、図6の構造の理解を助けるためのパワー半導体モジュール300の分解図である。図8は、パワー半導体モジュール300の回路図である。
 図5、図7等に示す如く、上下アーム直列回路を構成するパワー半導体素子のうち上アームIGBT155および上アームダイオード156は、直流正極導体板315と第二交流導体板318に両面から挟まれた状態でこれらの導体板に固着される。また、下アームIGBT157および下アームダイオード158は、直流負極導体板319と第一交流導体板316に両面から挟まれた状態でこれらの導体板に固着される。さらに、上アームIGBT155および下アームIGBT157は、補助モールド体600にインサート成形された信号端子324U、324Lとそれぞれ接続される。これらの各パワー半導体素子、各導体板および各信号端子を、各導体板の伝熱面323を露出させて、封止材である第一封止樹脂350で一体的に封止することで、モジュール一次封止体300m(図4等参照)が形成される。このモジュール一次封止体300mに絶縁シート333を熱圧着したものをモジュールケース304の中に挿入して、絶縁シート333と缶型の冷却器であるモジュールケース304の内面とを熱圧着した後、モジュールケース304の内部に残存する空隙に第二封止樹脂351を充填することで、パワー半導体モジュール300が組み立てられる。
 上述のように絶縁シート333を利用して、パワー半導体素子を支持している各導体板とモジュールケース304の内側とを固着する構造とすることにより、生産性が向上する。また、パワー半導体素子が発生する熱を効率良く放熱ベース307に形成されている放熱用フィン305へ伝達できるため、パワー半導体素子の冷却効果が向上する。さらにまた、温度変化などによる熱応力の発生を抑えることができるため、温度変化の激しい車両用のインバータに使用するのに良好である。
 なお、図5、図7では、パワー半導体モジュール300において、上アームIGBT155、上アームダイオード156、下アームIGBT157および下アームダイオード158の各パワー半導体素子が、それぞれ2個ずつ並列に接続された構成例を図示している。しかし、本願発明によるパワー半導体モジュールの構成はこれに限定されるものではない。たとえば、各パワー半導体素子を並列接続せずに1個ずつとしてもよいし、3個以上を並列接続してもよい。以下の実施形態では、これらの構成を全て含むものとして説明する。
 パワー半導体モジュール300には、コンデンサモジュール500と接続するための直流バスバーとして、直流正極配線315Aおよび直流負極配線319Aが設けられており、その先端部に直流正極端子315Bと直流負極端子319Bがそれぞれ形成されている。また、モータジェネレータ192あるいは194に交流電力を供給するための交流バスバーとして交流配線320が設けられており、その先端に交流端子321が形成されている。本実施形態では、直流正極配線315Aと直流正極導体板315、および直流負極配線319Aと直流負極導体板319が、それぞれ一体的に成形されている。また、交流配線320と第一交流導体板316が一体的に整形されており、これと第二交流導体板318が中間電極159(図8参照)を介して接続されている。さらに、ドライバ回路174と接続するための信号端子324Uおよび324Lが設けられている。信号端子324Uの外部信号端子325Uおよび信号端子324Lの外部信号端子325Lのそれぞれは、図6に図示されるようにワイヤボンディング327を介して、上アームIGBT155、下アームIGBT157に接続されている。
 モジュールケース304は、たとえばAl、AlSi、AlSiC、Al-C等のアルミ合金材料から構成されており、つなぎ目の無い一体成形された缶型の形状、すなわち所定の一面に挿入口306を備え、かつ有底の略直方体形状を為している。また、モジュールケース304は、挿入口306以外に開口を設けない構造である。挿入口306は、フランジ304Bにその外周を囲まれている。
 モジュールケース304には、図3に示す如く、他の面よりも広い面積を有する2つの放熱面に放熱ベース307が互いに対向した状態で配置されている。これらの放熱面が有する四辺のうち3つの辺は、放熱面よりも狭い幅で密閉された面を構成しており、残りの一辺の面に挿入口306が形成されている。上記構造は正確な直方体である必要は無く、角の部分が図3に示す如く曲面を成していても良い。このような形状の金属性のモジュールケース304とすることで、モジュールケース304を水や油などの冷却媒体が流れる流路内に挿入しても、冷却媒体に対するシールをフランジ304Bにて確保できる。そのため、冷却媒体がモジュールケース304の内部及び端子部分に侵入するのを、簡易な構成にて防ぐことができる。また、モジュールケース304の外壁には、対向した放熱ベース307に放熱用フィン305が均一に形成されており、その同一面の外周には、厚みが極端に薄くなっている湾曲部304Aが形成されている。湾曲部304Aは、放熱用フィン305を加圧することで簡単に変形する程度まで厚みを極端に薄くしてあるため、モジュール一次封止体300mが挿入された後の生産性が向上する。
 パワー半導体モジュール300は、パワー半導体素子の動作時の発熱が、その両面から導体板で拡散して絶縁シート333に伝わる。そして、モジュールケース304に形成された放熱ベース307と前記放熱ベース307に設けられた放熱用フィン305から冷却媒体に放熱される。そのため、高い冷却性能を実現できる。
 ここで、パワー半導体素子と導体板の配置を、電気回路と関連付けて説明する。この実施の形態では、パワー半導体素子は前述のように、上アームIGBT155、下アームIGBT157、上アームダイオード156および下アームダイオード158である。直流正極導体板315と第一交流導体板316は略同一平面状に配置されている。直流正極導体板315には、上アームIGBT155のコレクタ電極と上アームダイオード156のカソード電極が固着され、第一交流導体板316には、下アームIGBT157のコレクタ電極と下アームダイオード158のカソード電極が固着される。また、第二交流導体板318と直流負極導体板319とは略同一平面状に配置されている。第二交流導体板318には、上アームIGBT155のエミッタ電極と上アームダイオード156のアノード電極が固着され、直流負極導体板319には、下アームIGBT157のエミッタ電極と下アームダイオード158のアノード電極が固着される。これらの各パワー半導体素子は、上記各導体板に設けられた固着領域322にそれぞれ固着される。すなわち、直流正極導体板315、直流負極導体板319、第一交流導体板316および第二交流導体板318は、固着領域322を含む固着面を有している。これらの各導体板において、固着面と反対側には、図5に示すように伝熱面323がそれぞれ設けられている。なお、図5では、表側に配置された直流負極導体板319および第二交流導体板318の伝熱面323のみが示されているが、裏側の直流正極導体板315および第一交流導体板316についても、同様に伝熱面323が設けられている。
 各パワー半導体素子は板状の扁平構造を有しており、その表面または裏面に各電極が形成されている。そのため、図5の様に、直流正極導体板315と第二交流導体板318、および第一交流導体板316と直流負極導体板319は、各IGBT及びダイオードを介して、すなわちこれらのパワー半導体素子を挟むようにして、略平行に対向した積層状の配置となっている。第一交流導体板316と第二交流導体板318とは、中間電極159を介して接続されている。この接続により、上アーム回路と下アーム回路が電気的に接続され、上下アーム直列回路が形成される。上アームIGBT155、下アームIGBT157のゲート電極は、内部信号端子(不図示)にそれぞれ接続されている。
 各パワー半導体素子の電極と対応する各導体板とは、はんだ材や銀シート、微細金属粒子を含んだ低温焼結接合材等の金属接合材料160(図6参照)を用いて、電気的にかつ熱的に接合することで固着される。前述のように、直流正極配線315Aは直流正極導体板315に一体で形成され、その先端に直流正極端子315Bが形成されている。直流負極配線319Aも基本的構造は同じで、直流負極導体板319に一体で形成され、その先端に直流負極端子319Bが形成されている。
 直流正極配線315Aと直流負極配線319Aの間には、樹脂材料で成形された補助モールド体600が介在している。上記直流正極配線315Aと直流負極配線319Aは、対向した状態で略平行に、パワー半導体の位置に対して反対方向に延びる形状を成している。また、信号端子324Uや324Lは、補助モールド体600に一体に成形されて、上記直流正極配線315Aと直流負極配線319Aと同様の方向であるモジュールの外に向かって延びており、その先に外部信号端子325U、325Lがそれぞれ設けられている。
 補助モールド体600に用いる樹脂材料には、絶縁性を有する熱硬化性樹脂か、あるいは熱可塑性樹脂が適している。外部信号端子325Lや325Uは、上記補助モールド体600にインサート成形されている。このような構造により、直流正極配線315Aと直流負極配線319A間の絶縁性と、外部信号端子325L、325Uと各配線板との間の絶縁性とを確保できる。この構造により高密度配線が可能となる。
 さらに、直流正極配線315Aと直流負極配線319Aを略平行に対向するように配置したことで、パワー半導体素子のスイッチング動作時に瞬間的に流れる電流を、上記直流正極配線315Aと上記直流負極配線319Aに互いに逆方向に流れるようにすることができる。この互いに逆方向に流れる電流が作る磁界は、互いに相殺するように作用する。この作用により低インダクタンス化が可能となる。
[流路形成体]
 パワー半導体モジュール300は、電力変換装置200A(図17参照)のベース部材に形成された冷却流路内に配置されて、冷却流路内を流通する冷却媒体により冷却される。 図9は、本実施形態によるベース部材の表面側からの斜視図であり、図10は、図9に図示されたベース部材の底面側からの斜視図である。
 電力変換装置200Aの筐体12(図2参照)の一部を構成するベース部材(流路形成体)400は、アルミニウム等の鋳造により形成される鋳造品または樹脂モールドにより形成される樹脂成形品であり、矩形の周壁401を有する薄型箱形状を有する。
 ベース部材400の上面402側には、コンデンサモジュール500等が収納されるコンデンサ配置用凹部431と、インダクタ800(図2参照)等が収納されるインダクタ配置用凹部432が形成されている。
 ベース部材400には、冷却流路410が形成されている。冷却流路410の一端側には、周壁401の短辺側の一側部401aを貫通して設けられた冷却媒体入口配管421が連結され、冷却流路410の他端側には、周壁401の一側部401aを貫通して設けられた冷却媒体出口配管422が連結されている。
 冷却流路410は、ベース部材400の裏面403側から凹状に形成されている。冷却流路410は、冷却媒体入口配管421側から周壁401の長辺側の一側部401bに沿って直線的に配置された第1冷却ジャケット411、第1冷却ジャケット411の周端部に形成された広い面積の第2冷却ジャケット412、第2冷却ジャケット412に連接する第3冷却ジャケット413、第3冷却ジャケット413に隣接する3つの第4冷却ジャケット414および第4冷却ジャケットと冷却媒体出口配管422との間に形成された3つの第5冷却ジャケット415を有している。ベース部材400の裏面403は、不図示の蓋部材により外部から密封される。蓋部材により密封された状態で、第1冷却ジャケット411と第2冷却ジャケット412は比較的浅い凹部を形成する。また、第3~第5冷却ジャケット413~415は、裏面403から上面402まで貫通する凹部を形成する。
 第3冷却ジャケット413、3つの第4冷却ジャケット414および3つの第5冷却ジャケット415のそれぞれは、第1冷却ジャケット411の長手方向に垂直な方向に延出されており、一端側が隣接する一方(例えば右)側の冷却ジャケットの他端側に接続され、他端側が隣接する他方(例えば左)側の冷却ジャケットの一端側に接続されている。つまり、第3~第5冷却ジャケット413~415は、ジグザグ状に蛇行して連接されている。このため、冷却媒体入口配管421から流入された冷却水などの冷却媒体は、図9および図10に、点線の矢印で示されるように、第1冷却ジャケット411の長手方向に沿って流れ、第2冷却ジャケット412で折り返し、第3~第5冷却ジャケット413~415をジグザグ状に蛇行して流れて、冷却媒体出口配管422から流出する。つまり、第3~第5冷却ジャケット413~415は、上流側から下流側に向かって、第3冷却ジャケット413、第4冷却ジャケット414、第5冷却ジャケット415の順に配置されている。
 ベース部材400の上面402には、第1~第5冷却ジャケット411~415にパワー半導体モジュール300をそれぞれ挿入するモジュール挿入口445が設けられている。各モジュール挿入口445の平面サイズは、パワー半導体モジュール300のモジュールケース304が挿通可能であり、かつ、モジュールケース304のフランジ304Bより小さい。従って、パワー半導体モジュール300は、モジュールケース304の底面側をモジュール挿入口445から挿入して、ベース部材400の上面402上にフランジ304Bを密着した状態で、不図示の締結部材により固定可能となっている。
[抜き勾配付き冷却ジャケット]
 図11および図12は、抜き勾配を有する冷却ジャケット(第1流路空間)にパワー半導体モジュールを取り付ける工程を説明するための図である。
 鋳造または射出成形により形成されたジャケットには、抜き勾配が形成されている。抜き勾配を有する冷却ジャケット(以下、「抜き勾配付き冷却ジャケット」という)Jnは、モジュールケース304に形成された一対の放熱用フィン305のそれぞれに対面する内壁442を有する。各内壁442は、底部441側からモジュール挿入口445側に向かって、当該内壁442と対向する内壁との間の幅が大きくなる方向の傾斜面となっている。 パワー半導体モジュール300は、モジュールケース304のフランジ304Bの根元に環状のシール材461が嵌合された状態で、ベース部材400との間に環状のシール材462を介装して、フランジ304Bがベース部材400の上面402に圧着されるようにベース部材400に固着される。
 図13は、パワー半導体モジュール300と抜き勾配付き冷却ジャケットJnの内壁442との間を流れる冷却媒体を説明するための図である。
 パワー半導体モジュール300と抜き勾配付き冷却ジャケットJnの内壁442との間の空間は、抜き勾配付き冷却ジャケットJnの内壁442が傾斜しているために、図13に点線で示すように、底部441側からモジュール挿入口側に向かって、漸次、幅広くなる。
 放熱用フィン305が形成された領域を流れる冷却媒体は、放熱用フィン305から発生する熱を冷却する効果が大きい。しかし、放熱用フィン305の先端部から抜き勾配付き冷却ジャケットJnの内壁442までの間の空間SBは、所謂、バイパス流が発生する空間であり、パワー半導体モジュール300から発生する熱の冷却効果が小さい。
 すなわち、抜き勾配付き冷却ジャケットJnでは、冷却媒体のバイパス流が発生する空間SBが形成されてしまう。
[抜き勾配切除加工]
 図14は、抜き勾配を切除した冷却ジャケット(第2流路空間)にパワー半導体モジュール300が挿通された状態を示す断面図である。
 抜き勾配を切除した冷却ジャケット(以下、「抜き勾配切除ジャケット」という)Jwは、抜き勾配が切除された一対の内壁447を有している。抜き勾配切除ジャケットJwにおける一対の内壁447間の幅は、底部441側からモジュール挿入口445側にまでの高さ全体に亘り、ほぼ同一とされている。各内壁447は、対面する放熱用フィン305の上面から僅かなギャップを有する位置に設けられている。この状態では、バイパス流が発生する空間SBは殆ど形成されない。
 このため、冷却水の流量を同一と仮定したとき、抜き勾配切除ジャケットJwを用いた場合の冷却効果は、抜き勾配付きジャケットJnを用いた場合に比し、空間SBのバイパス流の流量を抑制する分だけ向上する。従って、冷却媒体を循環させるポンプの駆動効率を上昇し、冷却効率を向上することができる。
 図15は、流路空間内壁の抜き勾配を切除する方法を説明するための図であり、図15(a)は抜き勾配を有する流路空間の断面図であり、図15(b)、図15(c)は抜き勾配が切除された流路空間の形成方法を示す断面図である。
 図15(a)は、ベース部材400に、鋳造又は樹脂成形により形成された抜き勾配付き冷却ジャケットJnの断面図である。上述した如く、抜き勾配付き冷却ジャケットJnは、抜き勾配を有する一対の内壁442を有している。各内壁付442付近には、内壁442の抜き勾配に起因してバイパス流を発生する空間SBが形成されている。
 抜き勾配切除ジャケットJwは、図15(b)に図示されるように、モジュール挿入口445側が、抜き勾配付き冷却ジャケットJnの底部441の幅WBと同一若しくはそれより少し小さくに形成される。すなわち、鋳造または樹脂成形によるベース部材400の作製では、抜き勾配を切除する冷却ジャケットJwaのモジュール挿入口445の幅WTが抜き勾配付き冷却ジャケットJnの底部441の幅WBと同一若しくはそれより少し小さくなるように形成される。
 次に、抜き勾配を切除するジャケットJwaの各内壁447aをドリル等の加工工具TDにより、モジュール挿入口445から底部441の上面まで垂直に加工し、抜き勾配を切除する。抜き勾配を切除するジャケットJwaの一対の内壁447aの間隔が、形成しようとする抜き勾配切除ジャケットJwの各内壁447aと同一となるようにする。このようにして各内壁447aの抜き勾配を切除した後、パワー半導体モジュール300を抜き勾配切除ジャケットJwに挿通する。これにより、図14に図示されるように、抜き勾配切除ジャケットJwにパワー半導体モジュール300が取り付けられた、バイパス流を発生する空間SBが殆どなく、冷却効率が高い冷却装置が形成される。
[冷却ジャケットの配置]
 図16は、抜き勾配切除ジャケットJwと抜き勾配付き冷却ジャケットJnの配置の選定方法の一実施の形態を示す図である。
 図1および図2に図示される電力変換回路200は、昇圧コンバータ144用のパワー半導体モジュール300C、インバータ回路140用のパワー半導体モジュール300A、およびインバータ回路142用のパワー半導体モジュール300Bを備えている。パワー半導体モジュール300A、300B、300Cは、構造および外形サイズが同一である。 パワー半導体モジュール300C、300A、300Bの中では、昇圧コンバータ144用のパワー半導体モジュール300Cが通電量および発熱量が最も大きい。このため、パワー半導体モジュール300Cが取り付けられる第3冷却ジャケット313を抜き勾配切除ジャケットJwとする。
 通電量または通電量および発熱量がパワー半導体モジュール300Cよりも小さいパワー半導体モジュール300A、300Bを取り付ける冷却ジャケットは、共に、第5冷却ジャケット415の如く、抜き勾配付き冷却ジャケットJnとする。あるいは、両者の中、通電量または通電量および発熱量が大きい方が取り付けられる冷却ジャケットのみを、第3冷却ジャケット313と同様に、抜き勾配切除ジャケットJwとする。
 例えば、インバータ回路140が、直流電力を交流電力に変換する力行用インバータを構成するパワー半導体モジュール300Bであり、インバータ回路142が交流電力を直流電力に変換する発電用インバータまたは回生用インバータを構成するパワー半導体モジュール300Aである場合、パワー半導体モジュール300Aが取り付けられる冷却ジャケットを抜き勾配切除ジャケットJwとする。そして、通電量または通電量および発熱量が最も小さいパワー半導体モジュール300Bが取り付けられる冷却ジャケットを抜き勾配付き冷却ジャケットJnとする。
 第3~第5冷却ジャケット413~415のすべてを、抜き勾配切除ジャケットJwとすることにより冷却効率を向上してもよい。しかし、通電量または通電量および発熱量に相違があるパワー半導体モジュール300A~300Cの冷却能力を同様に向上させることは、通電量または通電量および発熱量が小さいパワー半導体モジュールに対しては、過剰に冷却することになり、冷却系の電力の無駄となる。
 冷却ジャケットの抜き勾配の切除には工数がかかるので、通電量または通電量および発熱量が小さいパワー半導体モジュールに対する抜き勾配の切除加工を省くことで、生産コストを低減しつつ、冷却性能を確保した電力変換装置200Aを得ることができる。
 図17は、図16に図示された冷却ジャケットの配置に対応する電力変換装置の斜視図である。
 ベース部材400のコンデンサ配置用凹部431(図9参照)にはコンデンサモジュール500が収納され、インダクタ配置用凹部432(図9参照)にはインダクタ800が収納されている。
 第3冷却ジャケット413には、昇圧コンバータ144を構成するパワー半導体モジュール300Cが挿通されている。第3冷却ジャケット413は、抜き勾配切除ジャケットJwであり、バイパス流を発生する空間SBが殆ど存在しない内壁447(図15参照)を有している。
 ベース部材400の第5冷却ジャケット415には、通電量または通電量および発熱量が最も小さいパワー半導体モジュール300Bが挿通されている。第5冷却ジャケット415は、抜き勾配付き冷却ジャケットJnであり、鋳造または射出成形の抜き勾配を有する内壁442を有している。
 ベース部材400の第4冷却ジャケット414には、通電量または通電量および発熱量がパワー半導体モジュール300Cとパワー半導体モジュール300Aとの中間のパワー半導体モジュール300Bが挿通されている。第4冷却ジャケット414は、抜き勾配付き冷却ジャケットJnであってもよいし、抜き勾配切除ジャケットJwであってもよい。
 上記本発明に係る電力変換装置の一実施の形態によれば、下記の効果を奏する。
(1)鋳造または樹脂成形により形成されたベース部材400における冷却ジャケットJwaの内壁447aの抜き勾配を切除してバイパス流の発生を抑制する抜き勾配切除ジャケットJwとした。抜き勾配切除ジャケットJwは、抜き勾配付きジャケットJnに比し、冷却効率を向上することができる。
(2)発熱量が大きいパワー半導体モジュール300Cを抜き勾配切除ジャケットJwとし発熱量が小さいパワー半導体モジュール300Bを抜き勾配付き冷却ジャケットJnとした。つまり、複数の冷却ジャケット413~415の一部のみを抜き勾配切除ジャケットJwとした。このように、パワー半導体モジュールの特性に対応して適切な冷却能力の冷却ジャケットを適用するようにし、抜き勾配切除工数を最小にしたので、生産性の効率化と共に冷却に要する電力配分の最適化を図ることができる。
 なお、上記一実施の形態では、抜き勾配切除ジャケットJwを、抜き勾配付き冷却ジャケットJnよりも冷却流路410の上流側に配した構造として例示した。しかし、抜き勾配切除ジャケットJwを、抜き勾配付き冷却ジャケットJnよりも冷却流路410の下流側に配する構造としてもよい。但し、冷却流路410の上流側の方が下流側に比して冷却媒体の温度が低く、冷却能力が大きい。このため、パワー半導体モジュール300Cの発熱量がパワー半導体モジュール300A、300Bに比して圧倒的に大きい場合には、抜き勾配切除ジャケットJwを冷却流路410の上流側に配置するのが各冷却ジャケットの冷却能力の均一化を図るうえで有利である。
 上記一実施の形態では、複数の冷却ジャケット413~415の中、冷却ジャケット413(414)を抜き勾配切除ジャケットJwとし、他の冷却ジャケット415(414)を抜き勾配付き冷却ジャケットJnとした構造として例示した。しかし、すべての冷却ジャケット413~415を、抜き勾配切除ジャケットJwとしてもよい。
--実施形態2--
 図31は、本発明の実施形態2に係り、抜き勾配切除ジャケットJwと抜き勾配付き冷却ジャケットJnの配置の別の選択方法を示す図であり、図32は、図31に図示された冷却ジャケットの配置に対応するベース部材の斜視図である。
 パワー半導体モジュール300で発生された熱を冷却する過程において温度が上昇する。冷却流路410を流れる冷却媒体の温度は、上流から下流に行くにしたがって次第に上昇する。このため、冷却媒体の温度は、冷却流路410の下流側の冷却ジャケット115では、冷却流路410の上流側である冷却媒体入口側の冷却ジャケット413よりも高く、この分、冷却ジャケット415の冷却能力は低い。実施形態2では、冷却流路410の下流側の冷却ジャケット415の冷却能力を増大させることにより、各冷却ジャケットの冷却能力を平均化する。
 図19に図示されるように、実施形態2においては、冷却流路410の上流側の冷却ジャケット413が抜き勾配付き冷却ジャケットJnとされ、下流側の冷却ジャケット415が抜き勾配切除ジャケットJwとされている。冷却ジャケット413と冷却ジャケット415との間に配置されている冷却ジャケット414は、抜き勾配切除ジャケットJwあるいは抜き勾配付き冷却ジャケットJnのいずれであってもよい。
 実施形態2においても、実施形態1と同様な効果を奏する。
--実施形態3--
 図20は、本発明の実施形態3に係り、抜き勾配切除ジャケットJwと抜き勾配付き冷却ジャケットJnの配置のさらに別の選択方法を示す図であり、図21は、図20に図示された冷却ジャケットの配置に対応するベース部材の斜視図である。
 パワー半導体モジュール300は、内蔵されるIGBT155およびダイオード158(図3、図4等参照)等のパワー半導体素子のチップサイズを小さくすることにより、低コスト化を図ることができる。チップサイズを小型化すると、材料費および生産性の向上を図ることができ、コストを低減することができる。
 しかし、パワー半導体モジュール300の熱抵抗はパワー半導体素子のチップサイズと反比例する。
 そこで、小型化されたチップが内蔵されたパワー半導体モジュールを取り付ける冷却ジャケットを抜き勾配切除ジャケットJwとし、チップサイズ抑制がされていないチップが内蔵されたパワー半導体モジュールを取り付ける冷却ジャケットを抜き勾配付き冷却ジャケットJnとする。
 抜き勾配切除ジャケットJwとするか否かの判断は、抜き勾配の切除加工費の増加分と、チップサイズ抑制がされていないチップが内蔵されたパワー半導体モジュールの作製費の増加分とを対比して行う。(抜き勾配の切除加工費の増加分)<(チップサイズ抑制がされていないチップが内蔵されたパワー半導体モジュールの作製費とチップサイズを小さくした半導体モジュールの作製費の差)の条件を満たせば、抜き勾配切除ジャケットJwとする。
 図21において、抜き勾配切除ジャケットJwは、冷却流路410が上流側か、下流側に関係なく、冷却ジャケット413~415のいずれに設定してもよい。
 すべてのパワー半導体モジュール300A~300Cに対し、上記条件を満たす場合には、冷却ジャケット413~415のすべてを抜き勾配切除ジャケットJwとすることができる。
 実施形態3においても実施形態1と同様な効果を奏する。
--実施形態4--
 図22は、本発明の実施形態4に係り、ベース部材の斜視図である。
 実施形態4におけるベース部材400Aには、3つの冷却ジャケット416が形成されている。このように、冷却ジャケット416の数が少ない場合には、すべてを抜き勾配切除ジャケットJwとしても、抜き勾配切除に要する加工費の増加分を比較的小さくすることができる。
 すべてが抜き勾配切除ジャケットJwである3つの冷却ジャケット416には、例えば、モータジェネレータ192に3相交流の各相の出力を発生するパワー半導体モジュールU1、V1、W1(図2参照)が取り付けられる。各パワー半導体モジュールU1、V1、W1は、力行用および回生用インバータを構成する。
 実施形態4においては、すべての冷却ジャケット416を、抜き勾配切除ジャケットJwとし、バイパス流を発生する空間SBがない構造とした。このため、冷却ジャケットによる冷却効率を向上することができる。
 なお、上記各実施形態においては、第3~第5冷却ジャケット413~415を、一端側および他端側で隣接する冷却ジャケットの一方側のみと連接され、他方側とは連接されないジグザグ状に蛇行する冷却流路として例示した。しかし、第3~第5冷却ジャケット413~415を、両端側で、隣接する冷却ジャケットの両方側に連接される冷却流路としてもよい。また、冷却ジャケット413~415を、第1冷却ジャケット411の長手方向に垂直な方向に延出された冷却流路として例示した。しかし、第3~第5冷却ジャケット413~415を、第1冷却ジャケット411の長手方向に平行な方向に延出された冷却流路としてもよく、第3~第5冷却ジャケット413~415の向きに制限はない。
 上記実施形態においては、放熱用フィン305が表裏両面に設けられているパワー半導体モジュール300として例示した。しかし、放熱用フィン305が一面のみに設けられているパワー半導体モジュール300に対しても適用することができる。この場合には、放熱用フィン305に対面する側の内壁447aのみ、抜き勾配を切除すればよい。
 ベース部材400の構造、大きさは実施形態に限られるものではなく、適宜、変更することが可能である。
 上記実施形態では、ハイブリッド自動車に適用した電力変換装置200Aとして例示した。しかし、電気自動車等の車両に用いられる電力変換装置、電車、船舶、航空機などにおいて使用される電力変換装置や、工場の設備を駆動する電動機の制御装置として用いられる産業用電力変換装置、あるいは、家庭の太陽光発電システムや家庭の電化製品を駆動する電動機の制御装置に用いられたりする、家庭用電力変換装置に対しても適用可能である。 
 その他、本発明は、本発明の趣旨の範囲内で、種々変形して適用することが可能である。 要は、流路形成体に設けられた複数の流路空間内のそれぞれに、放熱用フィンを有するパワー半導体モジュールを挿通した電力変換装置において、少なくとも1つの流路空間における、放熱用フィンに対面する内壁の抜き勾配を切除したものであればよい。
 140、142   インバータ回路
 144    昇圧コンバータ
 155、157   IGBT(パワー半導体素子)
 156、158   ダイオード(パワー半導体素子)
 192、194   モータジェネレータ
 200   電力変換装置
 300、300A~300C   パワー半導体モジュール
 300m   モジュール一次封止体
 304    モジュールケース
 305    放熱用フィン
 400、400A   ベース部材(流路形成体)
 410    冷却流路
 411~415    冷却ジャケット
 421    冷却媒体入口配管
 422    冷却媒体出口配管
 441    底部
 442    内壁
 445    モジュール挿入口
 447    内壁(抜き勾配切除)
 447a   内壁(抜き勾配切除前)
 Jn      抜き勾配付き冷却ジャケット
 Jw      抜き勾配切除ジャケット
 SB     空間(バイパス流発生部)
 U1、V1、W1   パワー半導体モジュール

Claims (14)

  1.  内部にパワー半導体素子を内蔵するモジュールケースの少なくとも一面に放熱用フィンが設けられた第1パワー半導体モジュールと、
     内部にパワー半導体素子を内蔵するモジュールケースの少なくとも一面に放熱用フィンが設けられた第2パワー半導体モジュールと、
     前記第1パワー半導体モジュールを挿入する挿入口を有し、前記第1パワー半導体モジュールの少なくとも前記放熱用フィンが設けられた前記モジュールケースの領域が挿通される第1流路空間と、前記第2パワー半導体モジュールを挿入する挿入口を有し、前記第2パワー半導体モジュールの少なくとも前記放熱用フィンが設けられた前記モジュールケースの領域が挿通される第2流路空間とが連通して形成され、内部を冷却媒体が流通する冷却流路を備えた流路形成体と、を備え、
     前記流路形成体は、鋳造または樹脂成形により形成され、前記第1流路空間における前記放熱用フィンに対向する内壁または前記第2流路空間における前記放熱用フィンに対向する内壁の少なくとも一方の、前記流路形成体の底面側から前記挿入口側にかけて形成された抜き勾配が切除されている、電力変換装置。
  2.  請求項1に記載の電力変換装置において、
     前記第2パワー半導体モジュールは、前記第1パワー半導体モジュールより通電量が大きく、
     前記第2流路空間の前記内壁は、抜き勾配が切除され、
     前記第1流路空間の前記内壁は、抜き勾配を有している、電力変換装置。
  3.  請求項1に記載の電力変換装置において、
     前記第2パワー半導体モジュールは、前記第1パワー半導体モジュールより発熱量が大きく、
     前記第2流路空間の前記内壁は、抜き勾配が切除され、
     前記第1流路空間の前記内壁は、抜き勾配を有している、電力変換装置。
  4.  請求項2または3に記載の電力変換装置において、
     前記第2パワー半導体モジュールは、前記第1パワー半導体モジュールよりも前記冷却流路の上流側に配置されている、電力変換装置。
  5.  請求項4に記載の電力変換装置において、
     複数の前記第2パワー半導体モジュールを備え、
     前記流路形成体には、前記第2パワー半導体モジュールの各々が挿通される複数の前記第2流路空間が形成され、
     前記第1パワー半導体モジュールは、交流電力を直流電力に変換する発電用インバータまたは回生用インバータを構成し、
     前記第2パワー半導体モジュールは、直流電力を交流電力に変換する力行用インバータを構成する、電力変換装置。
  6.  請求項4に記載の電力変換装置において、
     複数の前記第1パワー半導体モジュールを備え、
     前記流路形成体には、前記各第1パワー半導体モジュールが挿通される複数の前記第1流路空間が形成され、
     前記第1パワー半導体モジュールは、交流電力を直流電力に変換する発電用インバータまたは直流電力を交流電力に変換する力行用インバータを構成し、
     前記第2パワー半導体モジュールは、昇圧コンバータを構成する、電力変換装置。
  7.  請求項6に記載の電力変換装置において、
     前記第1パワー半導体モジュールは、前記発電用インバータおよび前記力行用インバータを構成する、電力変換装置。
  8.  請求項1に記載の電力変換装置において、
     前記第2流路空間の前記内壁は、抜き勾配が切除され、
     前記第1流路空間の前記内壁は、抜き勾配を有しており、
     前記第2流路空間は、前記第1流路空間よりも前記冷却流路の下流側に配置されている、電力変換装置。
  9.  請求項1に記載の電力変換装置において、
     前記第2パワー半導体モジュールに内蔵された前記パワー半導体素子は、前記第1パワー半導体モジュールに内蔵された前記パワー半導体素子より小型であり、
     前記第2流路空間の前記内壁は、抜き勾配が切除され、
     前記第1流路空間の前記内壁は、抜き勾配を有している、電力変換装置。
  10.  請求項1に記載の電力変換装置において、
     前記第1パワー半導体モジュールの前記モジュールケースおよび前記第2パワー半導体モジュールの前記モジュールケースは、形状および外形サイズが同一である、電力変換装置。
  11.  請求項1に記載の電力変換装置において、
     前記第1パワー半導体モジュールの前記モジュールケースおよび前記第2パワー半導体モジュールの前記モジュールケースのそれぞれは、前記一面に対向する他面に放熱用フィンが設けられており、前記第1流路空間または前記第2流路空間における抜き勾配が切除された前記内壁に対向する内壁も、抜き勾配が切除されている、電力変換装置。
  12.  請求項11に記載の電力変換装置において、
     前記第1パワー半導体モジュールおよび前記第2パワー半導体モジュールのそれぞれに内蔵された前記パワー半導体素子は、一対の金属板間に配置され、
     前記金属板の一方は、前記モジュールケースの前記一面に熱伝導可能に配設され、
     前記金属板の他方は、前記モジュールケースの前記他面に熱伝導可能に配設されている、電力変換装置。
  13.  請求項1に記載の電力変換装置において、
     前記第1パワー半導体モジュールと前記第2パワー半導体モジュールとは、発電量または発熱量が異なり、
     前記第1流路空間の前記内壁および前記第2流路空間の前記内壁は、抜き勾配が切除されている、電力変換装置。
  14.  請求項1に記載の電力変換装置において、
     さらに、一面に放熱用フィンが設けられた第3パワー半導体モジュールを備え、
     前記流路形成体には、前記第3パワー半導体モジュールが挿通され、前記第3パワー半導体モジュールの前記放熱用フィンに対向する内壁を有する第3流路空間が形成されており、
     前記第1流路空間、前記第2流路空間および前記第3流路空間のそれぞれの前記内壁は、抜き勾配が切除され、
     前記第1パワー半導体モジュール、前記第2パワー半導体モジュールおよび前記第3パワー半導体モジュールは、モータ制御用インバータを構成する、電力変換装置。
PCT/JP2014/064053 2013-08-23 2014-05-28 電力変換装置 WO2015025582A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532737A JP6117361B2 (ja) 2013-08-23 2014-05-28 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013173330 2013-08-23
JP2013-173330 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015025582A1 true WO2015025582A1 (ja) 2015-02-26

Family

ID=52483367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064053 WO2015025582A1 (ja) 2013-08-23 2014-05-28 電力変換装置

Country Status (2)

Country Link
JP (1) JP6117361B2 (ja)
WO (1) WO2015025582A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233730A (zh) * 2016-12-15 2018-06-29 现代自动车株式会社 双面冷却功率模块的输入端子
US10049963B2 (en) 2016-04-18 2018-08-14 Rolls-Royce Plc Power electronics module
EP3484041A1 (en) * 2017-11-10 2019-05-15 Valeo Siemens eAutomotive Germany GmbH Inverter for an electric machine, electric machine for a vehicle, vehicle, method for operating an inverter and method for determining a set of predefined space vector angles
US10535577B2 (en) 2016-05-20 2020-01-14 Denso Corporation Semiconductor device
CN112311250A (zh) * 2019-07-24 2021-02-02 丰田自动车株式会社 半导体模块构造
JP7002619B1 (ja) * 2020-10-20 2022-01-20 三菱電機株式会社 電力変換装置
US11488895B2 (en) 2020-08-25 2022-11-01 Denso Corporation Semiconductor device and maunfacturing method of semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082086A (ja) * 2018-11-15 2020-06-04 トヨタ自動車株式会社 ケースの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266247A (ja) * 2003-02-12 2004-09-24 Denso Corp 発熱性部品の冷却構造
JP2009214116A (ja) * 2008-03-07 2009-09-24 Toyota Motor Corp 鋳造金型及び鋳造方法
JP2011177004A (ja) * 2010-01-29 2011-09-08 Hitachi Ltd 半導体パワーモジュール及びそれが搭載される電力変換装置並びに半導体パワーモジュール搭載用水路形成体の製造方法
WO2011125781A1 (ja) * 2010-04-01 2011-10-13 日立オートモティブシステムズ株式会社 電力変換装置
JP2012016073A (ja) * 2010-06-29 2012-01-19 Denso Corp 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266247A (ja) * 2003-02-12 2004-09-24 Denso Corp 発熱性部品の冷却構造
JP2009214116A (ja) * 2008-03-07 2009-09-24 Toyota Motor Corp 鋳造金型及び鋳造方法
JP2011177004A (ja) * 2010-01-29 2011-09-08 Hitachi Ltd 半導体パワーモジュール及びそれが搭載される電力変換装置並びに半導体パワーモジュール搭載用水路形成体の製造方法
WO2011125781A1 (ja) * 2010-04-01 2011-10-13 日立オートモティブシステムズ株式会社 電力変換装置
JP2012016073A (ja) * 2010-06-29 2012-01-19 Denso Corp 電力変換装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10049963B2 (en) 2016-04-18 2018-08-14 Rolls-Royce Plc Power electronics module
US10535577B2 (en) 2016-05-20 2020-01-14 Denso Corporation Semiconductor device
CN108233730A (zh) * 2016-12-15 2018-06-29 现代自动车株式会社 双面冷却功率模块的输入端子
CN108233730B (zh) * 2016-12-15 2021-06-11 现代自动车株式会社 双面冷却功率模块的输入端子
EP3484041A1 (en) * 2017-11-10 2019-05-15 Valeo Siemens eAutomotive Germany GmbH Inverter for an electric machine, electric machine for a vehicle, vehicle, method for operating an inverter and method for determining a set of predefined space vector angles
CN112311250A (zh) * 2019-07-24 2021-02-02 丰田自动车株式会社 半导体模块构造
US11488895B2 (en) 2020-08-25 2022-11-01 Denso Corporation Semiconductor device and maunfacturing method of semiconductor device
JP7002619B1 (ja) * 2020-10-20 2022-01-20 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP6117361B2 (ja) 2017-04-19
JPWO2015025582A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6117361B2 (ja) 電力変換装置
JP4452953B2 (ja) 電力変換装置
JP5481148B2 (ja) 半導体装置、およびパワー半導体モジュール、およびパワー半導体モジュールを備えた電力変換装置
US9042101B2 (en) Electric power conversion apparatus
JP5508357B2 (ja) 電力変換装置
JP5492447B2 (ja) パワーモジュール
JP4988665B2 (ja) 半導体装置および半導体装置を用いた電力変換装置
JP4644275B2 (ja) 電力変換装置および電動車両
JP2019071784A (ja) パワー半導体装置及びそれを用いた電力変換装置
US20140085955A1 (en) Power Conversion Apparatus
JP5879238B2 (ja) パワー半導体モジュール
WO2013080747A1 (ja) 機電一体型の電動駆動装置
JP5815063B2 (ja) 電力変換装置
JP6228888B2 (ja) パワー半導体モジュール
JP6039356B2 (ja) 電力変換装置
JP5178455B2 (ja) 電力変換装置
JP2010011671A (ja) 電力変換装置
JP5941944B2 (ja) 電力変換装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532737

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837930

Country of ref document: EP

Kind code of ref document: A1