WO2015024238A1 - 一种波长选择开关 - Google Patents

一种波长选择开关 Download PDF

Info

Publication number
WO2015024238A1
WO2015024238A1 PCT/CN2013/082091 CN2013082091W WO2015024238A1 WO 2015024238 A1 WO2015024238 A1 WO 2015024238A1 CN 2013082091 W CN2013082091 W CN 2013082091W WO 2015024238 A1 WO2015024238 A1 WO 2015024238A1
Authority
WO
WIPO (PCT)
Prior art keywords
input side
light
output side
input
wss
Prior art date
Application number
PCT/CN2013/082091
Other languages
English (en)
French (fr)
Inventor
赵晗
宗良佳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380000929.8A priority Critical patent/CN104620155B/zh
Priority to EP13891663.0A priority patent/EP3037865B1/en
Priority to PCT/CN2013/082091 priority patent/WO2015024238A1/zh
Priority to ES13891663.0T priority patent/ES2663239T3/es
Publication of WO2015024238A1 publication Critical patent/WO2015024238A1/zh
Priority to US15/043,828 priority patent/US9762983B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29371Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion
    • G02B6/29373Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion utilising a bulk dispersive element, e.g. prism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/352Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element having a shaped reflective surface, e.g. a reflective element comprising several reflective surfaces or facets that function together
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0026Construction using free space propagation (e.g. lenses, mirrors)

Definitions

  • the present invention relates to the field of communications and, more particularly, to a wavelength selective switch for use in optical communications. Background technique
  • ROADMs reconfigurable optical add/drop multiplexers
  • Switching, etc. to replace the previous manual site to replace the fiber connection, so as to meet the needs of network dynamic connection.
  • ROADMs which are the core of network cross-connections, need to be continuously developed.
  • the wavelength selective switch is provided with an optical fiber array including four input fibers (11 ⁇ (#1) - 11 IN (#4)) and four output fibers (11 #1) to 11 #4)), Arranged in one direction (Y-axis direction); includes 8 collimators 12, diffraction grating 1, focusing lens 2, and input side mirror (MEMS) array 3' and output side mirror (MEMS) array 3 0 ⁇ , its arrangement is associated with the input and output fibers.
  • the WDN light L IN (#1) to L IN (#4) output from each of the input fibers 11 ⁇ (#1) to 11 ⁇ (#4) is transmitted to the diffraction grating 1 via the collimator 12, according to the wavelength thereof In space, it is divided into wavelengths Chl (#l) to ChN (#1), Chi (#2) to ChN (#2), Chi (#3) to ChN (# 3), Chi (#4) to ChN ( #4), then each wavelength is focused by the focusing lens 2 and transmitted to the input side mirror (MEMS) array 3 IN .
  • MEMS input side mirror
  • Input Side Mirror (MEMS) Array 3 IN has 4xN MEMS mirrors 3 IN (#1 , Chi) to 3 IN (#1, ChN), 3 IN (#2, Chi) to 3 IN (#2, ChN ), 3 IN (#3, Chi) to 3 IN (#3, ChN), 3 IN (#4, Chi) to 3 IN (#4, ChN) , the reflecting surface of these mirrors is located through the focusing lens 2 The focus position of each wavelength and the angle of the reflection surface are determined by the wavelength routing configuration information.
  • the input side mirror (MEMS) array 3 IN is located 45 with respect to the Z axis. The position of the corner.
  • is arranged at an angle of -45° with respect to the x-axis and has 4 MEMS mirrors 3 QUT (#1, Chi) to 3. ⁇ (#1, ChN), 3. ⁇ (#2, Chi) to 3. ⁇ (#2, ChN) , 3 OUT (#3, Chi) to 3. ⁇ (#3, ChN), 3. ⁇ (#4, Chi) to 3.
  • ⁇ (#4, ChN) is used to invert the direction of each wavelength reflected by the input side mirror (MEMS) array 3 IN toward the target output port.
  • Each of the reflected wavelengths passes through the focus lens 2, and is multiplexed by the diffraction grating into WDM light
  • L QUT (#1) to L. UT (#4) is coupled into each of the output fibers 11 via a collimator 12. ⁇ (#1) to 11. ⁇ (#4) output.
  • an embodiment of the present invention provides a wavelength selective switch.
  • An embodiment of the present invention provides a wavelength selective switch WSS, where the WSS includes: N input ports, N is a natural number greater than 1; an input side optical fiber array connected to the N input ports; and the input side optical fiber An input side collimator array coupled to the array; an input side beam deforming and polarization converting component coupled to the input side collimator array; an input side splitting component coupled to the input side beam deforming and polarization converting component; An input side switching engine coupled to the input side splitting assembly; a focus transform lens group including two identical parallel placed aspherical convex lenses coupled to the input side switching engine; coupled to the focus conversion lens group An output side switching engine; an output side combining component coupled to the output side switching engine; an output side beam deforming and polarization converting component coupled to the combining component; and an output side beam deforming and polarization converting component Output side collimator array; output side fiber array connected to the output side collimator array; M output ports, M is a natural number greater than 1.
  • the WSS is essentially realized by a 1 X (N-1 ) WSS component and a l x (M-1 ) WSS component connected by a focus-converting lens group.
  • the two WSS components can be individually commissioned, and the debugging difficulty is low.
  • the input side fiber array and the output side fiber array are in one direction but not The same position is arranged in two rows in parallel.
  • the input fiber and the output fiber are arranged in a row in one direction (Y-axis direction), resulting in a high device height, a large corner angle of the mirror, and difficulty in realizing a large port device.
  • the embodiment of the invention can effectively reduce the height of the device and reduce the corner requirement of the switching engine (the corner angle is small), so that the wss of the large port can be easily realized.
  • the center-to-edge curvature of the surface of the aspherical convex lens is continuously changed for controlling the focusing length of the light of different wavelengths; the spatial position of the focus conversion lens group and the curvature of the surface center to the edge are optimally configured to be from the Light of different wavelengths of the input side switching engine are respectively focused to corresponding positions of the output side switching engine.
  • the center-to-edge curvature of the aspherical convex lens surface in the embodiment of the present invention continuously changes.
  • the input side beam deformation and polarization conversion component comprises a polarization separation component, at least one prism and a half wave plate arranged in sequence, wherein the polarization separation component is used for unpolarization from the collimator array
  • the light is converted into polarized light whose two polarization directions are perpendicular to each other in the direction of parallel polarization
  • the at least one prism is used to enlarge the spot size of the polarized light and the distance between the polarized lights whose two polarization directions are perpendicular to each other in the direction of polarization, half
  • the spatial position of the wave plate is configured such that one of the polarized lights whose two polarization directions are perpendicular to each other in the parallel direction of polarization passes through the half wave plate, and the other beam of polarized light does not pass through the half wave plate.
  • the prism is used to expand the corresponding polarized light, which increases the distance between the two polarized lights, thereby reducing the assembly difficulty of the half
  • the input side splitting component includes a diffraction grating, a dispersion compensation prism, and a focusing convex lens, wherein the diffraction grating is configured to separate light from the input side beam deformation and polarization conversion component according to different wavelengths,
  • the dispersion compensation prism is configured to perform dispersion compensation on the light separated by the diffraction grating, and the focusing convex lens is used for collimating light of different wavelengths from the dispersion compensation prism, and condensing single-wavelength light from the dispersion compensation prism, the diffraction grating
  • the spatial position of the dispersion compensation prism and the converging convex lens is configured to convert the input spectrally equal-distance light into spatially parallel equidistant light, and the equal-distance is in the input side optical fiber
  • the arrays are arranged at equal distances in the direction perpendicular to each other.
  • the output side switching engine is at an angle with the output side fiber array, wherein the ⁇ may be greater than 0 degrees and less than 5 degrees.
  • the output side switching engine makes a slight rotation angle ⁇ along the direction of the fiber array, so that the 0th-order diffracted light will deviate from the fiber plane 2 ⁇ angle, so that the 0th-order diffracted light at the output side exchange engine is substantially not coupled. Going to the output fiber increases the port isolation of the module and reduces crosstalk of the device.
  • the input side switching engine and the output side switching engine are a liquid crystal on silicon (LCOS), and the LCOS includes a plurality of deflection passbands respectively corresponding to light of different frequencies, and the plurality of light respectively with different frequencies There is a gap between the corresponding deflection passbands, and the pixels on the gap are configured as invalid pixels.
  • the invalid pixel is equivalent to a plane mirror for direct reflection, so that light incident on the gap is not substantially coupled into the output fiber, and crosstalk can be effectively suppressed.
  • the aspherical convex lens is a double-glued convex lens.
  • the double-glued lenticular lens can eliminate the chromatic aberration caused by the aspherical convex lens to some extent, and it is easier to control the focusing length of different wavelengths of light, and it is easier to achieve the corresponding focusing of the different wavelengths of the input side switching engine to the output side of the switching engine. position.
  • the ⁇ is equal to the ⁇ 1.
  • the WSS further includes a controller, configured to control a deflection angle of the input side switching engine and the output side switching engine to light.
  • the WSS of the embodiment of the present invention can be regarded as being realized by an lx(Nl) WSS component and an lx(Ml) WSS component through a focus conversion lens group connection, and the material cost is basically independent of the port number, that is, the cost of the NxM WSS does not follow.
  • the number of ports N or M increases, so that the NxM WSS of the present invention has a low cost advantage, especially for the large port NxM WSS, and the cost advantage is obvious.
  • FIG. 1 is a schematic structural view of a WSS in the prior art.
  • FIG. 2 is a top plan view showing the structure of a WSS according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an optical fiber array and a collimator array in a WSS according to an embodiment of the present invention.
  • FIG. 4 is a beam deformation and polarization conversion component of a WSS according to an embodiment of the present invention. Schematic.
  • FIG. 5 is a schematic structural diagram of an input side demultiplexing component in WSS according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another beam deforming and polarization conversion component in the WSS according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another input side demultiplexing component in the WSS according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the structure and spectral control of an input side switching engine or an output side switching engine in WSS according to an embodiment of the present invention. detailed description
  • connection in the embodiment of the present invention refers to the connection on the optical path, and those skilled in the art may understand that the specific optical device may not necessarily have a physical contact relationship of substantial contact, but the optical devices are The spatial locations and their own device characteristics allow them to form a connection on the optical path.
  • an embodiment of the present invention provides a wavelength selective switch WSS, which includes: N input ports, N is a natural number greater than 1, and an input side optical fiber array connected to the N input ports; An input side collimator array connected to the input side fiber array; an input side beam deforming and polarization converting component connected to the input side collimator array; and an input side branch connected to the input side beam deforming and polarization converting component a wave component; an input side switching engine coupled to the input side branching component; a focus conversion lens group including two identical parallel placed aspherical convex lenses coupled to the input side switching engine; and the focus transformation An output side switching engine coupled to the lens group; an output side combining component coupled to the output side switching engine; an output side beam deforming and polarization converting component coupled to the combining component; and a beam distortion and polarization of the output side An output side collimator array connected to the conversion component; an output side fiber array connected to the output side collimator array; M output ports, M Natural number greater than 1.
  • the input port is used for inputting an optical signal; the input side fiber arrays are arranged in a row in a vertical direction for transmitting the optical signal to the input side collimator array; the input side collimator array Arranged in a row in the vertical direction, and the optical signals from the input side fiber array are parallelly transmitted to the input side beam deformation and polarization conversion assembly, that is, for converting the optical signal from the input side fiber array into parallel light and Input to the input side beam deformation and polarization conversion component; the input side beam deformation and polarization conversion component is used to expand the beam size of the input optical signal, and is used to convert the input optical signal into a polarization state of polarization; input side splitting a component for separating different wavelengths of an optical signal from the input side beam deforming and polarization converting component; an input side switching engine and an output side switching engine, which may be a micro-electro mechanical system (M
  • the parameters of the LCOS pixel point adjust the deflection angle from the incident light to focus the corresponding optical signal to the corresponding spatial position; correspondingly, the output side multiplexer component is used to combine the optical signal and output to the output side beam deformation and polarization
  • the conversion component; the output side beam deformation and polarization conversion component reduces the beam of light from the output side multiplexer component and performs polarization conversion; via the output side collimator array, the output side fiber array, to the output port.
  • Figure 3 shows a schematic side view of the fiber array and collimator array sections. It can be seen that in the vertical direction, the input side fiber array, the output side fiber array, the input side collimator array, and the output side collimation The arrays are arranged in a row. The functions of these devices are well known and will not be developed in detail here.
  • FIG. 4 illustrates an exemplary input side beam distortion and polarization conversion assembly in accordance with an embodiment of the present invention including a polarization separation device, a half wave plate, and one or more prisms.
  • a polarization separating device for converting input light into two polarized lights whose polarization directions are perpendicular;
  • a half wave plate for further converting one of the polarized lights into the same polarized light as the polarized light of the other polarized light; , used to enlarge the spot size of the two polarized lights and the distance between the two polarized lights, that is, to enlarge the beam.
  • the number of prisms is exemplary, and can be two, one, and of course more. It should be noted that FIG.
  • Fig. 5 shows an exemplary input side demultiplexing assembly in accordance with an embodiment of the present invention, the assembly including a diffraction grating and a focusing lens.
  • the diffraction grating may be a reflective diffraction grating or a transmission diffraction grating (only a reflective diffraction grating is exemplarily shown).
  • the diffraction grating is used to separate different wavelengths, and the focusing lens is used to collimate light of different wavelengths from the diffraction grating to concentrate single-wavelength light from the diffraction grating.
  • the focusing lens is used to collimate light of different wavelengths from the diffraction grating to concentrate single-wavelength light from the diffraction grating.
  • the input side switching engine and the output side switching engine in the embodiment of the present invention may be a Micro-Electro-Mechanical System (MEMS) or a Liquid Crystal On Silicon (LCS).
  • MEMS Micro-Electro-Mechanical System
  • LCD Liquid Crystal On Silicon
  • the mechanical movement of the micro-mirror can be used to deflect the light beam on the micro-mirror, thereby realizing the deflection of the optical path, thereby realizing the switching of the signal light dimension (or transmission path);
  • LCOS the corresponding incident light is deflected by arranging the phase of the pixel to form a blazed grating.
  • FIG. 2 shows a top view.
  • an important function of WSS is to switch the signal light of the corresponding wavelength in the signal light from each input port between different ports.
  • This process is mainly implemented in three steps.
  • the input side splitting module first separates the wavelength multiplexed light from each port, one is through the input side switching engine and the output side switching engine on the signal light in the vertical direction. The deflection is achieved to achieve the modulation of each wavelength between the ports.
  • the output side multiplexer combines the wavelength multiplexed light from different input ports. Because of the multiple wavelengths of light involved, the signal light of a certain wavelength of a fixed input port is incident on the input side of the switching engine, which is fixed by controlling the micro mirror or the corresponding pixel at the position.
  • the deflection angle is such that the incident light is deflected by a corresponding angle in the vertical direction, and the deflected light is further focused by the focus conversion lens group, and the deflected light is focused on a position corresponding to an output port of the output side exchange engine, and the output side
  • the switching engine deflects the incident light for the second time according to the position corresponding to an output port, and finally outputs the output through the output port through the steps of combining, transforming, and transforming the beam.
  • the focus conversion lens group of Fig. 2 includes two identical aspherical convex lenses placed in parallel.
  • the focus conversion lens group in conjunction with the input side exchange engine and the output side exchange engine, spatially cooperate to focus the spot from the corresponding wavelength on the input side exchange engine to the output side exchange engine.
  • the embodiment of the present invention creatively uses a focus exchange lens group including two aspherical convex lenses, which can converge the spot and the like from the input side exchange engine to the corresponding output side exchange engine.
  • the center-to-edge curvature of the surface of the aspherical convex lens is continuously changed for controlling the focusing length of light of different wavelengths, which is also equivalent to the aspherical convex lens including a plurality of lens regions respectively corresponding to different wavelengths, the plurality of lens regions having Different focal lengths; the spatial position of the focus-changing lens group and the curvature of the surface center-to-edge are optimally configured to focus different wavelengths of light from the input-side switching engine to corresponding positions of the output-side switching engine .
  • the curvature of the center-to-edge of the aspherical convex lens surface continuously changes, and the focusing length of light of different wavelengths can be controlled.
  • the aspherical convex lens corresponds to a set of a plurality of convex lenses, each of which corresponds to a respective wavelength, since the corresponding wavelength is fixed, and the optical path after the spatial position is fixed is also fixed, so that a suitable focal length corresponding to the wavelength is configured,
  • the light of this wavelength of the input side switching engine can certainly be focused to the corresponding position of the output side switching engine.
  • the focus conversion lens group is not limited to only two convex lenses, and may include more devices for adjusting the optical path, such as a convex lens, a concave lens, a cylindrical lens, etc., as long as the spot of the input side exchange engine can be concentrated. Go to the output side switching engine.
  • the aspherical convex lens may be a common aspherical convex lens or a double-glued convex lens.
  • the center-to-edge curvature of the surface of the aspherical convex lens in the embodiment of the present invention is continuously changed, and is used for controlling the focusing length of light of different wavelengths.
  • the input side exchange engine can be Light of different wavelengths is respectively focused to corresponding positions of the output side switching engine, thereby achieving optical path connection from the input side switching engine to the output side switching engine.
  • the structure of the output side combining component and the structure of the input side demultiplexing component are similar because the light is transmitted in the opposite direction, a function of realizing the splitting, and a function of realizing the combining.
  • the structure of the output side beam distortion and polarization conversion assembly is similar to that of the input side beam deformation and polarization conversion components. Meanwhile, the structures of the output side collimator array, the output light array, and the output port are well known and will not be described in detail.
  • the input side beam deformation and polarization conversion component may further include a polarization separation component, at least one prism, and a half wave plate, which are sequentially arranged, wherein the polarization separation component is used to The unpolarized light of the collimator array is converted into two parallel directions of polarization directions To the mutually perpendicular polarized light, the at least two prisms are used to enlarge the spot size of the polarized light and the distance between the two polarized lights whose directions of polarization are perpendicular to each other, and the spatial position of the half wave plate is configured as One of the polarized lights of the two transmission directions whose polarization directions are perpendicular to each other passes through the half-wave plate, and the other of the polarized lights does not pass through the half-wave plate.
  • the polarization separation component is used to The unpolarized light of the collimator array is converted into two parallel directions of polarization directions
  • the at least two prisms are used to enlarge the spot size of
  • the number of prisms in the figure is exemplary and may be more.
  • the corresponding polarized light is expanded by the prism group, and the distance between the two polarized lights is increased. After the distance between the two polarized lights is expanded, the polarization direction of one of the polarized lights is converted by the half-wave plate.
  • the embodiment of the present invention reduces the assembly difficulty of the half-wave plate compared to the prior polarization polarization conversion before polarization beam expansion. The same is true for the output side beam distortion and polarization conversion components.
  • the input side splitting component may also be as shown in FIG. 7.
  • the input side splitting component includes a diffraction grating, a dispersion compensation prism, and a focusing convex lens, wherein the diffraction grating is used to input from the input.
  • the side beam is deformed and the light of the polarization conversion component is separated according to different wavelengths
  • the dispersion compensation prism is used for dispersion compensation of the light separated by the diffraction grating
  • the focus convex lens is used for collecting light from the dispersion compensation prism
  • the spatial position of the diffraction grating, the dispersion compensation prism, and the converging convex lens is configured to convert the input spectrally continuous light into parallel equally spaced lights according to different frequencies of light, the equal spacing being The distances in the direction in which the arrangement direction of the input side fiber arrays are perpendicular are equal. The same is true for the output side multiplexer.
  • the output side switching engine forms an angle with the output side fiber array, wherein the ⁇ may be greater than an angle of less than 5 degrees.
  • the input side exchange engine such as LCOS
  • the 0th order diffracted light is directly reflected in the corresponding plane of the incident fiber, rather than being deflected accordingly according to the control.
  • the 0th-order diffracted light that is directly reflected will enter the wrong output port, causing crosstalk.
  • the output side switching engine makes a slight rotation angle along the direction of the optical fiber array, so the 0-order diffracted light will deviate from the fiber plane 2 ⁇ angle, so that the 0-order diffracted light is substantially not coupled to the wrong output port, and is increased.
  • the module's port isolation reduces crosstalk in the device.
  • the output side switching engine is a liquid crystal on-chip LCOS
  • the LCOS includes a plurality of deflection passbands respectively corresponding to light of different frequencies, and the plurality of deflection passbands respectively corresponding to light of different frequencies
  • the input-side fiber array enters the input-side fiber array
  • the wavelength-multiplexed light that is collimated through the collimator array enters the input-side branching component, and is equally spaced according to the frequency in the direction perpendicular to the fiber array. And transmitted to the input side switching engine.
  • the input side switching engine is LCOS
  • Long channels such as 50 GHz channels
  • Long channels can be used to set pixel-invalid pixels on LCOS at the channel boundary based on wavelength routing configuration information. These pixels do not deflect the wavelength beam at the 50 GHz channel boundary. That is to say, the 50 GHz channel band edge control is implemented by using invalid pixels, so that the pass band shape is changed, and crosstalk can be effectively suppressed (the band edge portion is filtered and filtered, and this part of the signal does not run into the adjacent channel).
  • the same invalid pixel settings can be made.
  • the input side fiber array and the output side fiber array are arranged in two rows in parallel in one direction but at different positions. Since the optical input and output of the embodiment of the present invention are relatively separated, the input side optical fiber array and the output side optical fiber array, and the input port and the output port may not be limited to being arranged in a vertical column, thereby reducing the height of the device. More ports can be integrated.
  • the input port and the output port of the wavelength selective switch can be the same or different, that is, the NxN WSS or the NxM WSS.
  • the WSS provided by the embodiment of the present invention may further include a controller, configured to control a deflection angle of the input side switching engine and/or the output side switching engine to the light.
  • the WSS provided by the present invention is substantially realized by a lx (N-1) WSS component and a 1 X (M-1) WSS component connected by a focus conversion lens group, and the two WSS components can be separately debugged, and the debugging difficulty is low. .
  • the center-to-edge curvature of the surface of the aspherical convex lens in the embodiment of the present invention continuously changes, and the focusing length of the light of different wavelengths can be controlled, and the spatial position of the two aspherical convex lenses and the curvature of the surface center-to-edge curvature can be appropriately configured.
  • Light of different wavelengths of the input side switching engine is respectively focused to corresponding positions of the output side switching engine, thereby realizing optical path connection from the input side switching engine to the output side switching engine.
  • the prism beam is used to expand the corresponding polarization light, which increases the distance between the two polarized lights, thereby reducing the assembly difficulty of the half wave plate.
  • the light emitted from the input side branching component in the embodiment of the present invention and the light incident on the output side combining component are equally spaced, making it easier to adjust the correction.

Abstract

一种波长选择开关,包括N个输入端口,输入侧光纤阵列,输入侧准直器阵列,输入侧光束变形和偏振转换组件,输入侧分波组件,输入侧交换引擎,聚焦变换透镜组,输出侧交换引擎,输出侧合波组件,输出侧光束变形和偏振转换组件,输出侧准直器阵列,输出侧光纤阵列,M个输出端口。聚焦变换透镜组包括两个相同的平行放置的非球面凸透镜,其表面中心到边缘的曲率连续变化,用于控制不同波长光的聚焦长度。聚焦变换透镜组的空间位置和表面中心到边缘的曲率被配置为将来自输入侧交换引擎的不同波长的光分别聚焦至输出侧交换引擎的相对应位置。

Description

种波 选择开关
技术领域
本发明涉及通信领域, 并且更具体地, 涉及光通信中使用的一种波长选 择开关。 背景技术
随着视频和云端业务的迅速增长, 运营商对光网络构建的灵活性、 光网 络的建设和运行维护费用的降低尤为关注。 网络节点需要交叉连接的方向维 度(或者说, 传输路径)越来越多, 运营商可通过使用可重构的光分插复用 器( ROADM, Reconfigurable Optical Add/Drop Multiplexer )远程自动地进行 维度切换等, 来取代之前人工下站点的方式去更换光纤的连接, 从而满足网 络动态连接的需求。 为了适应高速光通信网络高效性、 灵活性的需求, 作为 网络交叉连接核心的 ROADM需要不断的发展。
在目前的 ROADM节点中, 采用离散化器件是一种常用的实现形式。使 用多个 1 X M波长选择开关( Wavelength Selective Switch, WSS )互联来搭 建节点, 以实现不同信号的路由交换选择, 当网络业务量增加时, 需要通过 增加 l x M波长选择开关的个数来增加节点内业务交换的能力。 但是, 这样 需要在现有设备中大量增加模块插槽数目, 以便接入多个 1 x M波长选择开 关, 增加设备的成本, 并且会随着业务量的扩大, 使成本急剧上升。
目前, 1 x M波长选择开关已相对成熟, 但是 Ν χ Μ、 Ν χ Ν波长选择开关 还没有商用产品。 为此, 富士通提出一种 Ν χ Ν WSS的解决方案, 如图 1所 示。该方案中,波长选择开关设有光纤阵列,其中包括 4个输入光纤( 11 ΙΝ (#1) - 11 IN (#4) )和 4个输出光纤 ( 11 #1)至11 #4) ), 沿一个方向 (Y轴方 向)排成一列; 包括 8个准直器 12、 衍射光栅 1、 聚焦透镜 2 , 及输入侧反 射镜 ( MEMS ) 阵列 3„和输出侧反射镜 ( MEMS ) 阵列 30υτ, 其排列与输入输出 光纤相关联。
从各输入光纤 11ΙΝ (#1)至 11ΙΝ (#4)输出的 WDN光 LIN (#1)至 LIN (#4) , 经由 准直器 12被传输至衍射光栅 1 , 根据其波长在空间中被分成波长 Chl (#l) 至 ChN (#1)、 Chi (#2)至 ChN (#2)、 Chi (#3)至 ChN (# 3)、 Chi (#4)至 ChN (#4) , 然后各波长通过聚焦透镜 2聚焦且被传输至输入侧反射镜( MEMS ) 阵列 3IN。 输入侧反射镜 ( MEMS ) 阵列 3IN具有 4xN个 MEMS反射镜 3IN (#1 , Chi)至 3IN (#1, ChN)、 3IN (#2, Chi)至 3IN(#2, ChN)、 3IN (#3, Chi)至 3IN(#3, ChN)、 3IN (#4, Chi)至 3IN(#4, ChN) , 这些反射镜的反射面位于穿过聚焦透镜 2的各 波长的聚焦位置, 反射面的角度由波长路由配置信息决定。 这里, 输入侧反 射镜( MEMS ) 阵列 3IN位于相对于 Z轴方向 45。 角的位置。
输出侧反射镜(MEMS) 阵列 3。υτ排列成相对 Ζ轴方向 -45° 角, 且具有 4χΝ个 MEMS反射镜 3QUT(#1, Chi)至 3。υτ (#1, ChN)、 3。υτ (#2, Chi)至 3。υτ (#2, ChN) , 3 OUT (#3, Chi)至 3。υτ (#3, ChN)、 3。υτ (#4, Chi)至 3。υτ (#4, ChN) , 用于使被输入侧反射镜(MEMS) 阵列 3IN反射的各波长进行方向朝目标输出 端口的反转。
被反射的各波长通过聚焦透镜 2后, 被衍射光栅合波成 WDM光 LQUT(#1) 至 L。UT(#4) , 经由准直器 12被耦合进各输出光纤 11。υτ(#1)至 11。υτ (#4)输出。
该方案中, 为实现 ΝχΝ交叉功能, 输入侧反射镜(MEMS)阵列和输出侧 反射镜(MEMS) 阵列需要同时校准, 调测困难。 发明内容
有鉴于此, 本发明实施例提供一种波长选择开关。
本发明实施例提供了一种波长选择开关 WSS, 所述 WSS包括: N个输 入端口, N为大于 1的自然数;与所述 N个输入端口连接的输入侧光纤阵列; 与所述输入侧光纤阵列连接的输入侧准直器阵列; 与所述输入侧准直器阵列 连接的输入侧光束变形和偏振转换组件; 与所述输入侧光束变形和偏振转换 组件连接的输入侧分波组件; 与所述输入侧分波组件连接的输入侧交换引 擎; 与所述输入侧交换引擎连接的, 包括两个相同的平行放置的非球面凸透 镜的聚焦变换透镜组; 与所述聚焦变换透镜组连接的输出侧交换引擎; 与所 述输出侧交换引擎连接的输出侧合波组件; 与所述合波组件连接的输出侧光 束变形和偏振转换组件; 与所述输出侧光束变形和偏振转换组件连接的输出 侧准直器阵列; 与所述输出侧准直器阵列连接的输出侧光纤阵列; M个输出 端口, M为大于 1的自然数。 该 WSS实质上是由一个 1 X (N-1 ) WSS组 件和一个 l x (M-1 ) WSS组件通过聚焦变换透镜组连接实现, 两个 WSS 组件可以分别调测, 调测难度低。
可选的, 所述输入侧光纤阵列与所述输出侧光纤阵列沿一个方向但在不 同位置平行排成两列。 现有技术中, 输入光纤和输出光纤沿一个方向(Y轴 方向)排成一列, 导致器件高度很高, 反射镜的转角要求很大, 不易实现大 端口器件。 而本发明实施例可以有效减小器件的高度, 同时降低对交换引擎 的转角要求(转角较小), 因而易于实现大端口的 wss。
具体的, 所述非球面凸透镜表面中心到边缘的曲率连续变化, 用于控制 不同波长光的聚焦长度;所述聚焦变换透镜组的空间位置和表面中心到边缘 的曲率被优化配置为将来自所述输入侧交换引擎的不同波长的光分别聚焦 至所述输出侧交换引擎的相对应位置。本发明实施例中的非球面凸透镜表面 中心到边缘的曲率连续发生变化,通过两个非球面凸透镜的空间位置和表面 中心到边缘的曲率的适当地优化配置, 可以将输入侧交换引擎的不同波长的 光分别聚焦至所述输出侧交换引擎的相对应位置,从而实现从输入侧交换引 擎到输出侧交换引擎的光路连接。
可选的, 所述输入侧光束变形和偏振转换组件包括依次排列的偏振分离 组件、 至少一个棱镜和半波片, 其中, 所述偏振分离组件用于将来自所述准 直器阵列的非偏振光转化为两束传输方向平行偏振方向相互垂直的偏振光, 所述至少一个棱镜用于扩大偏振光的光斑大小以及所述两束传输方向平行 偏振方向相互垂直的偏振光之间的距离, 半波片的空间位置被配置为所述两 束传输方向平行偏振方向相互垂直的偏振光中的一束偏振光经过所述半波 片,而另一束偏振光不经过所述半波片。通过棱镜对相应的偏振光进行扩束, 加大了两束偏振光之间的距离, 从而减小了半波片的组装难度。
可选的, 所述输入侧分波组件包括衍射光栅、 色散补偿棱镜和聚焦凸透 镜, 其中, 所述衍射光栅用于将来自所述输入侧光束变形和偏振转换组件的 光按照不同波长分离开, 所述色散补偿棱镜用于对衍射光栅所分离开的光进 行色散补偿, 所述聚焦凸透镜用于准直来自色散补偿棱镜的不同波长光、 汇 聚来自色散补偿棱镜的单波长光, 所述衍射光栅、 所述色散补偿棱镜和汇聚 凸透镜三者的空间位置被配置为,将输入的频谱间隔相等的光转化为在空间 上平行的等间距的光, 所述等间距是在与所述输入侧光纤阵列的排列方向相 垂直的方向上距离相等。 通过所述衍射光栅、 所述色散补偿棱镜和聚焦凸透 镜三者的空间位置的配置,使得从聚焦透镜的出射的频谱间隔相等的光在空 间上是等间距的,这样输入侧交换引擎可以等间距地配置相应的用于偏转的 像素点或者微镜片阵列, 相对于不等间距的光信号更易于调测校正。 可选的, 所述输出侧交换引擎与所述输出侧光纤阵列成一个 Θ夹角, 其 中 Θ可以为大于 0度小于 5度。本发明实施例将输出侧交换引擎在沿光纤阵 列方向做一个微小的转角 θ , 因而 0级衍射光会偏离光纤平面 2 Θ角, 这样 在输出侧交换引擎处的 0级衍射光基本不会耦合到输出光纤中去,增加了模 块的端口隔离度, 降低了器件的串扰。
可选的, 所述输入侧交换引擎和输出侧交换引擎为硅上液晶 LCOS, 所 述 LCOS上包括多个分别与不同频率的光对应的偏转通带,所述多个分别与 不同频率的光对应的偏转通带之间存在间隙,所述间隙上的像素点被配置为 无效像素。 无效像素相当于一个平面反射镜进行直接反射, 这样, 入射到该 间隙的光基本不会耦合到输出光纤中, 可以有效的抑制串扰。
可选的, 所述非球面凸透镜为双胶合凸透镜。 双胶合凸透镜可以一定程 度上消除非球面凸透镜本身所带来的色差, 更易控制不同波长光的聚焦长 度, 更易实现输入侧交换引擎的不同波长的光分别聚焦至所述输出侧交换引 擎的相对应位置。
可选的, 所述 Ν等于所述^1。 可选的, 所述 WSS还包括控制器, 用于 控制所述输入侧交换引擎和所述输出侧交换引擎对光的偏转角度。
本发明实施例的 WSS,可看成是由一个 lx(N-l) WSS组件和一个 lx(M-l) WSS 组件通过聚焦变换透镜组连接实现, 物料成本基本不依赖于端口数, 即 NxM WSS的成本不随端口数 N或 M的增加而增加, 因而本发明的 NxM WSS具有低成本优势, 特别对于大端口 NxM WSS, 成本优势明显。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中一种 WSS的结构示意图。
图 2是本发明实施例提供的 WSS的结构俯视图。
图 3是本发明实施例提供的 WSS中的光纤阵列和准直器阵列的结构示 意图。
图 4是本发明实施例提供的 WSS中的一种光束变形和偏振转换组件的 结构示意图。
图 5是本发明实施例提供的 WSS中的一种输入侧分波组件的结构示意 图。
图 6是本发明实施例提供的 WSS中的另一种光束变形和偏振转换组件 的结构示意图。
图 7是本发明实施例提供的 WSS中的另一种输入侧分波组件的结构示 意图。
图 8是本发明实施例提供的 WSS中的一种输入侧交换引擎或输出侧交 换引擎的结构及光谱控制示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本本发明提供一种新型的波长选择开关, 其能实现更小的模块尺寸、 实 现更大的器件端口数, 同时利于校准和调测。 值得注意的是, 本发明实施例 中的 "连接"是指光路上的连接, 本领域技术人员可以理解, 具体的光器件 可能不一定具有实质的接触性的物理连接关系,但是这些光器件的空间位置 和它们本身的器件特性让它们构成一种光路上的连接关系。
如图 2所示,本发明实施例提供一种波长选择开关 WSS,该 WSS包括: N个输入端口, N为大于 1的自然数; 与所述 N个输入端口连接的输入侧光 纤阵列; 与所述输入侧光纤阵列连接的输入侧准直器阵列; 与所述输入侧准 直器阵列连接的输入侧光束变形和偏振转换组件; 与所述输入侧光束变形和 偏振转换组件连接的输入侧分波组件; 与所述输入侧分波组件连接的输入侧 交换引擎; 与所述输入侧交换引擎连接的, 包括两个相同的平行放置的非球 面凸透镜的聚焦变换透镜组; 与所述聚焦变换透镜组连接的输出侧交换引 擎; 与所述输出侧交换引擎连接的输出侧合波组件; 与所述合波组件连接的 输出侧光束变形和偏振转换组件; 与所述输出侧光束变形和偏振转换组件连 接的输出侧准直器阵列; 与所述输出侧准直器阵列连接的输出侧光纤阵列; M个输出端口, M为大于 1的自然数。 其中, 图 2是本发明实施例中提供的 WSS的示意性俯视图。 具体的, 输入端口用于输入光信号; 输入侧光纤阵列在竖直方向上列成一排, 用于将 所述光信号传送至所述输入侧准直器阵列; 所述输入侧准直器阵列在竖直方 向上列成一排, 并使得来自输入侧光纤阵列的光信号平行地输往输入侧光束 变形和偏振转换组件,也即用于将来自输入侧光纤阵列的光信号变成平行光 并输往输入侧光束变形和偏振转换组件; 输入侧光束变形和偏振转换组件用 于扩大输入的光信号的光束大小, 并用于将输入的光信号变为一个偏振态的 偏振光; 输入侧分波组件, 用于将来自输入侧光束变形和偏振转换组件的光 信号中不同波长分离开; 输入侧交换引擎和输出侧交换引擎, 其可为微电子 机械系统( MEMS , Micro-Electro-Mechanical System )或者硅基液晶( LCOS , Liquid Crystal On Silicon ), 可以根据波长路由配置信息, 配置对应的 MEMS 镜子或者 LCOS像素点的参数以调整来自入射光的偏转角度,将相应的光信 号聚焦到相应的空间位置上; 相对应的, 输出侧合波组件用于合并光信号并 输往输出侧光束变形和偏振转换组件; 输出侧光束变形和偏振转换组件将来 自输出侧合波组件的光的光束变小, 并进行偏振转换; 经由输出侧准直器阵 列、 输出侧光纤阵列到输出端口。
图 3给出了光纤阵列和准直器阵列部分的示意性侧视图, 可以看出, 在 竖直方向上, 输入侧光纤阵列、 输出侧光纤阵列、 输入侧准直器阵列以及输 出侧准直器阵列均排成一列, 这几个器件的功能都是公知的, 在此不详细展 开。
图 4给出了本发明实施例中一个示例性的输入侧光束变形和偏振转换组 件, 该组件中包括一个偏振分离器件、 半波片、 一个或更多的棱镜。 偏振分 离器件, 用于将输入光转化为偏振方向相垂直的两束偏振光; 半波片, 用于 将其中一束偏振光进一步转化为与另一束偏振光偏振态相同的偏振光; 棱 镜, 用于扩大两束偏振光的光斑大小以及两束偏振光之间距离, 也即扩大光 束。 棱镜个数是示例性的, 可以两个, 可以一个, 当然也可以更多。 值得说 明的是, 图 4仅仅为相应器件的俯视图, 与图 3相对应的, 在竖直方向这些 器件能作用于所有的输入侧准直器阵列所输入的光信号。 同理的, 本领域技 术人员可以理解,本发明实施例中的所有器件都能作用于竖直方向上的相应 的所有的光信号, 下面不再赘述。 同时, 本领域技术人员可以理解, 有多种 器件可以实现光束变形和偏振转换的功能, 本发明实施例给出的仅仅是一个 示例。
图 5给出了本发明实施例中一个示例性的输入侧分波组件, 该组件包括 一个衍射光栅和一个聚焦透镜。 衍射光栅可以是反射式衍射光栅, 也可以是 透射式衍射光栅(图中仅示例性给出反射式衍射光栅)。 衍射光栅用于分开 不同波长, 聚焦透镜用于准直来自衍射光栅的不同波长光、 汇聚来自衍射光 栅的单波长光。 同时, 本领域技术人员可以理解, 有多种器件可以实现分波 的功能, 本发明实施例给出的仅仅是一个示例。
本发明实施例中的输入侧交换引擎和输出侧交换引擎可以是微电子机 械系统(MEMS, Micro-Electro-Mechanical System ), 也可以通过石圭基液晶 ( LCOS, Liquid Crystal On Silicon )。 MEMS中, 可以通过微反射镜的机械 运动, 从而使打在微反射镜上的光束进行偏转, 从而实现光路的偏转, 从而 实现信号光的维度(或者说, 传输路径)切换; LCOS中, 可以通过配置像 素点的相位形成闪耀光栅对相应的入射光进行偏转。
图 2给出的是俯视图, 事实上, WSS 的一个重要的功能就是将来自各 输入端口的信号光中相应波长的信号光在不同的端口之间进行维度的切换。 这个过程主要是通过三个步骤实现的, 一个是输入侧分波模块先将来自各个 端口的波长复用光分开, 一个是通过输入侧交换引擎和输出侧交换引擎上对 信号光在竖直方向的偏转, 从而实现各波长在各个端口间的调配, 一个是输 出侧合波模块将来自不同输入端口的波长复用光进行合波。 因为涉及到多个 波长的光, 一个固定的输入端口的某波长的信号光入射到输入侧上交换引擎 上的位置是固定的, 通过控制该位置上的微反射镜或者相应的像素点实现的 偏转角度, 使得入射光在竖直方向偏转相应的角度, 经过偏转后的光再经过 聚焦变换透镜组的聚焦,将偏转光聚焦在输出侧交换引擎的某一输出端口所 对应的位置,输出侧交换引擎根据某一输出端口所对应的位置第二次将入射 光偏转, 最后经过合波、 光束变形偏振转换等步骤, 通过该输出端口输出。
在这个过程中, 一个重要的过程就是将来自输入侧交换引擎的光聚焦至 输出侧交换引擎上。 因为该 WSS适用于多波长传输系统, 仅仅通过普通凸 透镜对输入侧交换引擎出射的光进行聚焦,很难保证将各个波长的光都汇聚 到输出侧交换引擎的特定位置, 同时同一透镜对于不同波长的汇聚程度是不 同的, 则也会导致到达输出侧交换引擎的光斑大小不一, 从而影响 WSS性 h匕。 图 2中的聚焦变换透镜组, 包括两个相同的平行放置的非球面凸透镜。 聚焦变换透镜组, 与输入侧交换引擎、 输出侧交换引擎, 在空间位置上相互 配合,从而将来自输入侧交换引擎上的相应的波长的光斑聚焦至输出侧交换 引擎上。本发明实施例创造性地使用包括两个非球面凸透镜的聚焦交换透镜 组, 可以实现将来自输入侧交换引擎的光斑等大小地汇聚到相应的输出侧交 换引擎上。 所述非球面凸透镜表面中心到边缘的曲率连续变化, 用于控制不 同波长光的聚焦长度, 这也相当于非球面凸透镜包括分别对应于不同波长的 多个透镜区域,所述多个透镜区域具有不同的焦距;所述聚焦变换透镜组的空 间位置和表面中心到边缘的曲率被优化配置为将来自所述输入侧交换引擎 的不同波长的光分别聚焦至所述输出侧交换引擎的相对应位置。 非球面凸透 镜表面中心到边缘的曲率连续发生变化, 可以控制不同波长光的聚焦长度。 非球面凸透镜相当于多个凸透镜的集合, 每个区域对应各自的波长, 因为对 应的波长是固定, 空间位置固定后的光程也是固定的, 故只要配置一个对应 该波长的合适的焦距, 来自输入侧交换引擎的该波长的光就肯定能聚焦至输 出侧交换引擎的相应位置。 可选的, 聚焦变换透镜组不限于仅仅有两个凸透 镜, 可以包括更多的用于调整光路的器件, 如凸透镜、 凹透镜、 柱状镜等, 只要能将输入侧交换引擎的光斑等大小地汇聚到输出侧交换引擎上即可。可 选的, 非球面凸透镜可以是普通的非球面凸透镜, 也可以是双胶合凸透镜。
本发明实施例中的非球面凸透镜表面中心到边缘的曲率连续发生变化, 用于控制不同波长光的聚焦长度,通过两个非球面凸透镜的空间位置的适当 地配置,可以将输入侧交换引擎的不同波长的光分别聚焦至所述输出侧交换 引擎的相对应位置,从而实现从输入侧交换引擎到输出侧交换引擎的光路连 接。
输出侧合波组件的结构和输入侧分波组件的结构是类似的, 因为光的传 输方向相反, 一个实现分波的功能, 一个实现合波的功能。 输出侧光束变形 和偏振转换组件的结构与输入侧光束变形和偏振转换组件的结构也是类似 的。 同时, 输出侧准直器阵列、 输出光线阵列、 输出端口的结构均为公知, 不再详述。
可选的, 如图 6所示, 所述输入侧光束变形和偏振转换组件还可以包括 依次排列的偏振分离组件、 至少一个棱镜和半波片, 其中, 所述偏振分离组 件用于将来自所述准直器阵列的非偏振光转化为两束传输方向平行偏振方 向相互垂直的偏振光, 所述至少两个棱镜用于扩大偏振光的光斑大小以及所 述两束传输方向平行偏振方向相互垂直的偏振光之间的距离, 半波片的空间 位置被配置为所述两束传输方向平行偏振方向相互垂直的偏振光中的一束 偏振光经过所述半波片, 而另一束偏振光不经过所述半波片。 其中, 图中棱 镜数量为示例性的, 可以是更多个。 通过棱镜组对相应的偏振光进行扩束, 加大了两束偏振光之间的距离, 在两束偏振光距离扩大之后, 再用半波片对 其中一束偏振光进行偏振方向的转换。相比于现有的在偏振光扩束之前就进 行偏振方向转换, 本发明实施例减小了半波片的组装难度。 输出侧光束变形 和偏振转换组件也是如此。
可选的, 输入侧分波组件, 还可以是如图 7所示, 所述输入侧分波组件 包括衍射光栅、 色散补偿棱镜和聚焦凸透镜, 其中, 所述衍射光栅用于将来 自所述输入侧光束变形和偏振转换组件的光按照不同波长分离开, 所述色散 补偿棱镜用于对衍射光栅所分离开的光进行色散补偿,所述聚焦凸透镜用于 汇聚来自色散补偿棱镜的光, 所述衍射光栅、 所述色散补偿棱镜和汇聚凸透 镜三者的空间位置被配置为,将输入的频谱连续的光按照光的不同的频率转 化为平行的等间距的光, 所述等间距是在与所述输入侧光纤阵列的排列方向 垂直的方向上距离相等。 输出侧合波组件也是如此。
可选的, 所述输出侧交换引擎与所述输出侧光纤阵列成一个 Θ角, 其中 Θ可以大于 0度小于 5度的夹角。 由输入光纤经由准直器入射到输入侧交换 引擎(如 LCOS ) 的光被衍射后, 0级衍射光会在入射光纤对应平面内直接 反射, 而不是根据控制被相应的偏转。 被直接反射的 0级衍射光, 会进入错 误的输出端口, 引起串扰。 本发明实施例将输出侧交换引擎在沿光纤阵列方 向做一个微小的转角, 因而 0级衍射光会偏离光纤平面 2Θ角, 这样 0级衍 射光基本不会耦合到错误的输出端口中去, 增加了模块的端口隔离度, 降低 了器件的串扰。
可选的, 所述输出侧交换引擎为硅上液晶 LCOS, 所述 LCOS上包括多 个分别与不同频率的光对应的偏转通带, 所述多个分别与不同频率的光对应 的偏转通带之间存在间隙, 所述间隙上的像素点被配置为无效像素。 如图 8 所示, 从输入端口进入输入侧光纤阵列,经由准直器阵列准直后射出的波分 复用光进入输入侧分波组件,根据其频率在与光纤阵列垂直的方向等间距分 开, 并传输至输入侧交换引擎。 若输入侧交换引擎为 LCOS, 对于不同的波 长通道,如 50GHz通道,根据波长路由配置信息,可以在通道边界设置 LCOS 上的像素点位无效像素, 这些像素不对 50GHz通道边界上波长光束做偏转 处理。 即使用无效像素实现了 50GHz通道带边的控制, 因而改变了通带形 状, 可以有效的抑制串扰(带边部分被滤波滤掉了, 这部分信号不会跑到相 邻的通道里去)。 对于输出侧交换引擎, 可以做同样的无效像素设置。
可选的, 所述输入侧光纤阵列与所述输出侧光纤阵列沿一个方向但在不 同位置平行排成两列。 因为本发明实施例的光输入和输出是相对分离的, 所 以输入侧光纤阵列与输出侧光纤阵列, 以及输入端口和输出端口可以不用局 限于排成竖直一列, 从而可以减少器件的高度, 这样可以集成更多的端口。
可选的, 本领域技术人员可以理解, 该波长选择开关的输入端口和输出 端口可以相同,也可以不同,即可以是 NxN的 WSS,也可以是 NxM的 WSS。
可选的, 本发明实施例提供的 WSS还可以包括控制器, 用于控制所述 输入侧交换引擎和 /或所述输出侧交换引擎对光的偏转角度。
本发明提供的 WSS实质上是由一个 l x ( N-1 ) WSS组件和一个 1 X ( M-1 ) WSS组件通过聚焦变换透镜组连接实现, 两个 WSS组件可以分别 调测, 调测难度低。 本发明实施例中的非球面凸透镜表面中心到边缘的曲率 连续发生变化, 可以控制不同波长光的聚焦长度, 通过两个非球面凸透镜的 空间位置和表面中心到边缘的曲率的适当地配置, 可以将输入侧交换引擎的 不同波长的光分别聚焦至所述输出侧交换引擎的相对应位置,从而实现从输 入侧交换引擎到输出侧交换引擎的光路连接。 另外, 通过棱镜组对相应的偏 振光进行扩束, 加大了两束偏振光之间的距离, 从而减小了半波片的组装难 度。 同时, 从本发明实施例中的输入侧分波组件出射的光和入射输出侧合波 组件的光是等间距的, 更易于调测校正。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1. 一种波长选择开关 WSS, 其特征在于, 所述 WSS包括:
N个输入端口, N为大于 1的自然数;
与所述 N个输入端口连接的输入侧光纤阵列;
与所述输入侧光纤阵列连接的输入侧准直器阵列;
与所述输入侧准直器阵列连接的输入侧光束变形和偏振转换组件; 与所述输入侧光束变形和偏振转换组件连接的输入侧分波组件; 与所述输入侧分波组件连接的输入侧交换引擎;
与所述输入侧交换引擎连接的, 包括两个相同的平行放置的非球面凸透 镜的聚焦变换透镜组, 所述非球面凸透镜表面中心到边缘的曲率连续变化, 用于控制不同波长光的聚焦长度, 所述聚焦变换透镜组的空间位置和非球面 凸透镜表面中心到边缘的曲率被配置为将来自所述输入侧交换引擎的不同 波长的光分别聚焦至所述输出侧交换引擎的相对应位置;
与所述聚焦变换透镜组连接的输出侧交换引擎;
与所述输出侧交换引擎连接的输出侧合波组件;
与所述输出侧合波组件连接的输出侧光束变形和偏振转换组件; 与所述输出侧光束变形和偏振转换组件连接的输出侧准直器阵列; 与所述输出侧准直器阵列连接的输出侧光纤阵列;
M个输出端口, M为大于 1的自然数。
2. 如权利要求 1所述的 WSS, 其特征在于:
所述输入侧光纤阵列与所述输出侧光纤阵列沿一个方向但在不同位置 平行 4#成两列。
3.如权利要求 1或 2所述的 WSS, 其特征在于:
所述输入侧光束变形和偏振转换组件包括依次排列的偏振分离组件、至 少一个棱镜和半波片, 其中, 所述偏振分离组件用于将来自所述准直器阵列 的非偏振光转化为两束传输方向平行、 偏振方向相互垂直的偏振光, 所述至 少一个棱镜用于扩大偏振光的光斑大小以及所述两束传输方向平行偏振方 向相互垂直的偏振光之间的距离,半波片的空间位置被配置为所述两束传输 方向平行偏振方向相互垂直的偏振光中的一束偏振光经过所述半波片, 而另 一束偏振光不经过所述半波片。
4.如权利要求 1至 3任意一项所述的 WSS, 其特征在于: 所述输入侧分波组件包括衍射光栅、色散补偿棱镜和聚焦凸透镜,其中, 所述衍射光栅用于将来自所述输入侧光束变形和偏振转换组件的光按照不 同波长分离开,所述色散补偿棱镜用于对衍射光栅所分离开的光进行色散补 偿, 所述聚焦凸透镜用于准直来自衍射光栅的不同波长光、 汇聚来自衍射光 栅的单波长光, 所述衍射光栅、 所述色散补偿棱镜和汇聚凸透镜三者的空间 位置被配置为,将输入的频率间隔相等的光转化为在空间上平行的等间距的 光, 所述等间距是指在与所述输入侧光纤阵列的排列方向垂直的方向上距离 相等。
5.如权利要求 4所述的 WSS, 其特征在于:
所述输出侧交换引擎与所述输出侧光纤阵列成一个大于 0度小于 5度的 夹角。
6. 如权利要求 1至 5任意一项所述的 WSS, 其特征在于:
所述输出侧交换引擎为硅上液晶 LCOS, 所述 LCOS上包括多个分别与 不同频率的光对应的偏转通带, 所述多个分别与不同频率的光对应的偏转通 带之间存在间隙, 所述间隙上的像素点被配置为无效像素。
7.如权利要求 1至 6任意一项所述的 WSS , 其特征在于:
所述非球面凸透镜为双胶合凸透镜。
8.如权利要求 1至 7任意一项所述的 WSS , 其特征在于:
所述 N等于所述^1。
9. 如权利要求 1至 8任意一项所述的 WSS, 其特征在于:
所述 WSS还包括控制器, 用于控制所述输入侧交换引擎和 /或所述输出 侧交换引擎对光的偏转角度。
PCT/CN2013/082091 2013-08-22 2013-08-22 一种波长选择开关 WO2015024238A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380000929.8A CN104620155B (zh) 2013-08-22 2013-08-22 一种波长选择开关
EP13891663.0A EP3037865B1 (en) 2013-08-22 2013-08-22 Wavelength selective switch
PCT/CN2013/082091 WO2015024238A1 (zh) 2013-08-22 2013-08-22 一种波长选择开关
ES13891663.0T ES2663239T3 (es) 2013-08-22 2013-08-22 Conmutador selectivo de longitud de onda
US15/043,828 US9762983B2 (en) 2013-08-22 2016-02-15 Wavelength selective switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/082091 WO2015024238A1 (zh) 2013-08-22 2013-08-22 一种波长选择开关

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/043,828 Continuation US9762983B2 (en) 2013-08-22 2016-02-15 Wavelength selective switch

Publications (1)

Publication Number Publication Date
WO2015024238A1 true WO2015024238A1 (zh) 2015-02-26

Family

ID=52482973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082091 WO2015024238A1 (zh) 2013-08-22 2013-08-22 一种波长选择开关

Country Status (5)

Country Link
US (1) US9762983B2 (zh)
EP (1) EP3037865B1 (zh)
CN (1) CN104620155B (zh)
ES (1) ES2663239T3 (zh)
WO (1) WO2015024238A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035865A1 (zh) * 2016-08-26 2018-03-01 华为技术有限公司 一种用于波长选择开关wss的信号监控方法及装置
CN109001865A (zh) * 2017-06-06 2018-12-14 朗美通经营有限责任公司 多路传送的波长选择开关
TWI647926B (zh) * 2016-05-05 2019-01-11 中華電信股份有限公司 Intelligent multi-wavelength dynamic optical delay buffer control device
WO2020024840A1 (zh) * 2018-07-31 2020-02-06 华为技术有限公司 一种波长交换装置及系统
WO2024001619A1 (zh) * 2022-06-30 2024-01-04 华为技术有限公司 波长选择开关,光束传输方向的调度方法以及光交换节点

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9488787B2 (en) * 2014-03-31 2016-11-08 Lumentum Operations Llc Cross-connect switch using 1D arrays of beam steering elements
US9883263B2 (en) 2014-03-31 2018-01-30 Lumentum Operations Llc Free-space multicast switch with elliptical beams
US10228517B2 (en) * 2015-03-03 2019-03-12 Nistica, Inc. Optical arrangement for managing diversity and isolation between ports in a wavelength selective switch
US9743024B2 (en) 2015-07-01 2017-08-22 Massachusetts Institute Of Technology Method and apparatus for on-chip per-pixel pseudo-random time coded exposure
DE102016119730A1 (de) 2016-10-17 2018-04-19 Carl Zeiss Microscopy Gmbh Optikgruppe für Detektionslicht für ein Mikroskop, Verfahren zur Mikroskopie und Mikroskop
CN108121036B (zh) * 2016-11-29 2019-11-22 华为技术有限公司 一种波长选择开关和光信号传输系统
CN106772813A (zh) * 2016-12-16 2017-05-31 中央民族大学 基于相位光栅阵列的分辨率可调波长选择开关及控制方法
TW201831936A (zh) * 2017-02-24 2018-09-01 鴻海精密工業股份有限公司 波分複用器
US10367596B1 (en) * 2017-05-23 2019-07-30 Ii-Vi Delaware, Inc. Multiple wavelength selective switch with shared switch
CN111247472B (zh) * 2017-10-30 2022-02-25 华为技术有限公司 一种多级mems光开关单元和光交叉装置
CN110730034B (zh) 2018-07-16 2022-02-25 华为技术有限公司 频偏处理方法、装置、设备及存储介质
CN112152750B (zh) * 2019-06-29 2021-12-31 华为技术有限公司 一种波长选择开关以及相关装置
CN110426789B (zh) * 2019-07-29 2021-01-08 武汉光迅科技股份有限公司 一种波长选择开关
CN112737683B (zh) * 2019-10-14 2023-05-16 华为技术有限公司 功率均衡器及功率均衡器的调节方法
CN114731208A (zh) * 2019-12-31 2022-07-08 华为技术有限公司 波长选择开关
JP6853603B1 (ja) * 2020-09-30 2021-03-31 サンテック株式会社 波長可変フィルタ
CN112596167A (zh) * 2020-12-15 2021-04-02 上海钜成锐讯科技有限公司 一种具有波长漂移检测功能的高隔离度波长选择开关
US20220252793A1 (en) * 2021-02-10 2022-08-11 Ii-Vi Delaware, Inc. Integrated Module Having Multiple Optical Channel Monitors With Shared Liquid Crystal Based Switching Assembly
CN115278409A (zh) * 2021-04-30 2022-11-01 华为技术有限公司 一种光交换装置、光交换方法、光交换节点以及系统
CN113534353A (zh) * 2021-06-23 2021-10-22 桂林光隆集成科技有限公司 波长选择开关及调试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359475A (zh) * 1999-07-02 2002-07-17 布雷兹网络产品公司 有预制被动对准光学部件的光学波分多路复用器/去复用器
CN1370282A (zh) * 1999-06-29 2002-09-18 康宁股份有限公司 波长选择开关
CN1397812A (zh) * 2001-07-12 2003-02-19 Jds尤尼费斯公司 光开关的系统和方法
US20120057869A1 (en) * 2007-02-08 2012-03-08 Paul Colbourne M x N WAVELENGTH SELECTIVE SWITCH (WSS)
US20120236216A1 (en) * 2011-03-16 2012-09-20 Manish Sharma Wavelength Selective Switch

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097859A (en) * 1998-02-12 2000-08-01 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
AU2003254156A1 (en) * 2002-07-23 2004-02-09 Optical Research Associates East-west separable, reconfigurable optical add/drop multiplexer
JP2004271743A (ja) * 2003-03-06 2004-09-30 Jeneshia:Kk 光学装置
US7787720B2 (en) * 2004-09-27 2010-08-31 Optium Australia Pty Limited Wavelength selective reconfigurable optical cross-connect
US8000568B2 (en) * 2006-11-07 2011-08-16 Olympus Corporation Beam steering element and associated methods for mixed manifold fiberoptic switches
WO2010001734A1 (ja) * 2008-07-04 2010-01-07 Nttエレクトロニクス株式会社 波長選択スイッチ
CN201387495Y (zh) * 2009-03-12 2010-01-20 福州高意通讯有限公司 一种多波长选择开关
US8300995B2 (en) * 2010-06-30 2012-10-30 Jds Uniphase Corporation M X N WSS with reduced optics size
US8717484B2 (en) * 2010-08-11 2014-05-06 Inview Technology Corporation TIR prism to separate incident light and modulated light in compressive imaging device
JP5718016B2 (ja) * 2010-10-26 2015-05-13 古河電気工業株式会社 光操作装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1370282A (zh) * 1999-06-29 2002-09-18 康宁股份有限公司 波长选择开关
CN1359475A (zh) * 1999-07-02 2002-07-17 布雷兹网络产品公司 有预制被动对准光学部件的光学波分多路复用器/去复用器
CN1397812A (zh) * 2001-07-12 2003-02-19 Jds尤尼费斯公司 光开关的系统和方法
US20120057869A1 (en) * 2007-02-08 2012-03-08 Paul Colbourne M x N WAVELENGTH SELECTIVE SWITCH (WSS)
US20120236216A1 (en) * 2011-03-16 2012-09-20 Manish Sharma Wavelength Selective Switch

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647926B (zh) * 2016-05-05 2019-01-11 中華電信股份有限公司 Intelligent multi-wavelength dynamic optical delay buffer control device
WO2018035865A1 (zh) * 2016-08-26 2018-03-01 华为技术有限公司 一种用于波长选择开关wss的信号监控方法及装置
CN108700735A (zh) * 2016-08-26 2018-10-23 华为技术有限公司 一种用于波长选择开关wss的信号监控方法及装置
CN108700735B (zh) * 2016-08-26 2020-04-28 华为技术有限公司 一种用于波长选择开关wss的信号监控方法及装置
US10666375B2 (en) 2016-08-26 2020-05-26 Huawei Technologies Co., Ltd. Signal monitoring method and apparatus for wavelength selective switch WSS
CN109001865A (zh) * 2017-06-06 2018-12-14 朗美通经营有限责任公司 多路传送的波长选择开关
CN109001865B (zh) * 2017-06-06 2019-12-10 朗美通经营有限责任公司 多路传送的波长选择开关
WO2020024840A1 (zh) * 2018-07-31 2020-02-06 华为技术有限公司 一种波长交换装置及系统
US11372163B2 (en) 2018-07-31 2022-06-28 Huawei Technologies Co., Ltd. Wavelength switching apparatus and system
WO2024001619A1 (zh) * 2022-06-30 2024-01-04 华为技术有限公司 波长选择开关,光束传输方向的调度方法以及光交换节点

Also Published As

Publication number Publication date
CN104620155B (zh) 2017-03-29
EP3037865B1 (en) 2018-01-31
CN104620155A (zh) 2015-05-13
ES2663239T3 (es) 2018-04-11
EP3037865A1 (en) 2016-06-29
US9762983B2 (en) 2017-09-12
US20160165324A1 (en) 2016-06-09
EP3037865A4 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2015024238A1 (zh) 一种波长选择开关
CN103827714B (zh) 使用角度复用光学器件的波长切换系统
WO2017147770A1 (zh) 波长选择开关装置、通信设备和波长切换方法
JP6609789B2 (ja) 波長選択スイッチアレイ
WO2021134660A1 (zh) 波长选择开关
JP6735293B2 (ja) クロストークを回避するために周波数分離を増大させた波長選択スイッチ
CN107577010B (zh) 一种双波长选择开关
CN113156728B (zh) 一种可调液晶组件以及波长选择开关
JP2006106633A (ja) 光スイッチ装置
CN108169858A (zh) 一种多波长选择开关
JP6533743B2 (ja) 光クロスコネクト装置
WO2020107861A1 (zh) 一种基于LCoS的波长选择开关
WO2017088115A1 (zh) 可重构光分插复用器
CN108897102B (zh) 一种双波长选择开关
JP5192501B2 (ja) 波長選択スイッチ
JP5651904B2 (ja) N×n波長選択スイッチ
WO2017190331A1 (zh) 可重构光分插复用器
CN101504474B (zh) 一种梳形带状滤波器
WO2021000616A1 (zh) 一种波长选择开关以及相关装置
WO2024093330A1 (zh) 光交换装置和光交换方法
KR101832874B1 (ko) 광 교차연결 장치
GB2612718A (en) Optical switch utilising gap optics
GB2612717A (en) Optical switch utilising optical beam steering
WO2023209390A1 (en) Optical switch utilising optical beam steering
CN116466496A (zh) 一种偏振分光及转换器件及波长选择开关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891663

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013891663

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE