WO2017088115A1 - 可重构光分插复用器 - Google Patents

可重构光分插复用器 Download PDF

Info

Publication number
WO2017088115A1
WO2017088115A1 PCT/CN2015/095491 CN2015095491W WO2017088115A1 WO 2017088115 A1 WO2017088115 A1 WO 2017088115A1 CN 2015095491 W CN2015095491 W CN 2015095491W WO 2017088115 A1 WO2017088115 A1 WO 2017088115A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
sub
input
switch
switch array
Prior art date
Application number
PCT/CN2015/095491
Other languages
English (en)
French (fr)
Inventor
闫云飞
冯志勇
赵晗
宗良佳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580084340.XA priority Critical patent/CN108352921B/zh
Priority to PCT/CN2015/095491 priority patent/WO2017088115A1/zh
Priority to ES15909027T priority patent/ES2923645T3/es
Priority to EP15909027.3A priority patent/EP3364575B1/en
Publication of WO2017088115A1 publication Critical patent/WO2017088115A1/zh
Priority to US15/988,760 priority patent/US10620376B2/en
Priority to US16/836,488 priority patent/US11067752B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29382Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM including at least adding or dropping a signal, i.e. passing the majority of signals
    • G02B6/29383Adding and dropping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3518Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element being an intrinsic part of a MEMS device, i.e. fabricated together with the MEMS device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission

Definitions

  • the present invention relates to the field of optical communications, and more particularly to a reconfigurable optical add/drop multiplexer in the field of optical communications.
  • optical network nodes such as metro network backbone nodes
  • WDM Widelength Division Multiplex
  • the optical network node also has upper and lower wave lines connected to the convergence layer.
  • the upper wave line is used to exchange the beam that is concentrated from the lower layer to the node to the target dimension.
  • the lower-wave line is used to exchange beams of other dimensions that need to communicate with the node to the node.
  • the current network traffic is increasing, and the throughput of optical network nodes is increasing.
  • An optical network node processes local uplink/downstream services while processing more dimensional beam switching.
  • ROADM Reconfigurable Optical Add/Drop Multiplexer
  • an N*M ROADM that includes M input ports, N output ports, and a two-stage switch array, wherein M input ports are used to input WDM beams, and the first stage switch array includes M*K ( M rows, K columns) switch units for optically processing the sub-beams of the WDM beam, and transmitting the processed sub-beams to the switching unit of the second-stage switch array, the second-stage switch array comprising N two-dimensional Arranged switching units for outputting sub-beams processed through the first stage switch array to N output ports.
  • the N*M ROADM can implement more output ports, but limited by the configuration structure and optical path design, the N*M ROADM can only implement the down-wave function, and if needed, simultaneously
  • the function of switching between upper and lower waves and dimensions requires N*M RODAM to be combined with other optical components, so that the optical network has high integration, high crossover capability and low cost in terms of size, volume and cost.
  • ROADM that enables both high integration and improved cross-talk capabilities of optical network nodes.
  • Embodiments of the present invention provide a reconfigurable optical add/drop multiplexer to implement local uplink and inter-dimension switching functions in a single optical system, and improve integration of the reconfigurable optical add/drop multiplexer.
  • an embodiment of the present invention provides a reconfigurable optical add/drop multiplexer, including: an input component, including M+P input ports, wherein M input ports are used for dimension input, and P input ports are used.
  • the output component includes N output ports, and the N output ports are used for dimension output, wherein N is an integer greater than or equal to 1;
  • the first switch array Including at least P switch units, each of the P input ports corresponding to at least one of at least P switch units, the at least P switch units for receiving P inputs from the P input ports a beam of light and routing the P input beams; a beam splitter for receiving M input beams from the M input ports, and dividing each of the M input beams into at least N shares to obtain at least M *N beams; a wavelength dispersion system for receiving the P input beams from the first switch array and displacing the P input beams to obtain sub-beams of the P input beams,
  • the reconfigurable optical add/drop multiplexer further includes: a third switch array, including at least Q switch units, the at least Q inputs Each of the output ports corresponds to at least one of the Q switch units; the input component further includes Q output ports, the Q output ports are for lower waves, and Q is an integer greater than one; At least N parts are N+1 parts, the at least M*N beams are M*(N+1) beams; the second switch array further comprises J rows of switching units, J is an integer greater than or equal to 1 and less than or equal to M
  • the redirection system is further configured to receive, from the wavelength dispersion system, a sub-beam of the M*(N+1) beams other than the M*N beams, and the M beams The sub-beams are redirected to the J-row switch unit in the second switch array, and the sub-beams of the M beams are routed by the J-row switch unit to the at least Q switch units of the
  • J M
  • the J row switch unit in the second switch array and the M input ports are Correspondingly, each of the J rows of switching units in the second switch array is configured to route the sub-beams obtained by the input beam of the input port corresponding to each row of switch units through the wavelength dispersion system.
  • the N rows of switch units in the second switch array and the N One of the output ports, one of the switch cells in each of the N rows of switch cells in the second switch array is used to select one of the plurality of sub-beams transmitted to each of the switch cells a sub-beam and routing the target sub-beam to an output port corresponding to each row of switch units.
  • the redirection system includes a first sub redirection system, the first a sub-redirecting system for changing a beam propagation characteristic of a sub-beam of the P input beams and a sub-beam of the at least M*N beams in a plane direction of the sub-wavelength expansion, so that the sub-beams of the P input beams and the at least M * the sub-beams of the same wavelength in the sub-beams of the N beams are routed to the same position of the second switch array in the sub-wavelength development plane direction; the redirection system further includes a second sub-redirect system, the second sub-weight The orientation system is configured to change beam propagation characteristics of the sub-beams of the P input beams and the sub-beams of the M*N beams in a direction of a port switching plane, so that the sub-beams of the P input beams
  • the redirection system includes a third sub redirection system, the third sub redirection system a beam propagation characteristic of the sub-beams for changing the remaining M beams in the direction of the switching plane of the port, such that the sub-beams of the beams input from the same input port of the remaining M beams are exchanged at the port
  • the planar direction is routed to the same location of the second switch array.
  • the beam splitter is silicon One of a liquid crystal LCOS, a spatial beam splitter or a planar waveguide beam splitter.
  • the first switch array is one or more of a microelectromechanical system MEMS, LCOS or planar waveguide switch array.
  • the K is the M+P The maximum number of sub-wavelengths of the wavelength division multiplexed signal input to the input port.
  • the wavelength dispersion system includes at least a raster.
  • the redirection system includes at least a lens.
  • the add/drop multiplexer further includes: an input collimator array, including M+P collimators, respectively corresponding to the M+P input ports, for converting the light beams input by the M+P input ports into a standard Straight beam.
  • the output collimator array includes N collimators corresponding to the N output ports for converting the light beams to be outputted at the N output ports into collimated beams.
  • each beam of the M input beams received by the M input ports is split into at least N parts using a beam splitter, N of the at least N beams are used for inter-dimension exchange, and by arranging components in the reconfigurable optical add-drop multiplexer, the first switch array, the wavelength dispersion system, the redirection system, and the second
  • the arrangement of the switch array enables the function of the upper wave, so that the arrangement of the beam splitter, the wavelength dispersion system, and the second switch array can realize the function of inter-dimension exchange.
  • the two-stage switch array can be used to implement local uplink and inter-dimension exchange functions in a single optical system, thereby improving reconfigurable optical add-drop multiplexing. Integration of the device.
  • FIG. 1 is a schematic block diagram of a reconfigurable optical add/drop multiplexer in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a beam splitter in accordance with still another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a beam splitter in accordance with yet another embodiment of the present invention.
  • FIG. 4A is a schematic diagram of a sub-wavelength expansion plane direction of a reconfigurable optical add/drop multiplexer according to still another embodiment of the present invention.
  • 4B is a schematic diagram of a port switching plane direction of the reconfigurable optical add/drop multiplexer of FIG. 4A.
  • 4C is a schematic diagram of optical paths exchanged between dimensions of the reconfigurable optical add/drop multiplexer of FIG. 4A.
  • 4D is a schematic diagram of the optical path of the upper wave of the reconfigurable optical add/drop multiplexer of FIG. 4A.
  • 4E is a schematic diagram of the optical path of the lower wave of the reconfigurable optical add/drop multiplexer of FIG. 4A.
  • 5A is a schematic diagram of a sub-wavelength expansion plane direction of a reconfigurable optical add/drop multiplexer according to still another embodiment of the present invention.
  • 5B is a schematic diagram of a port switching plane direction of the reconfigurable optical add/drop multiplexer of FIG. 5A.
  • the technical solution of the present invention can be applied to various communication systems capable of transmitting data by using a light beam (or signal light), for example, Global System of Mobile Communication (GSM), code division multiple access (CDMA) ,Code Division Multiple Access) System, Wideband Code Division Multiple Access (WCDMA), General Packet Radio Service (GPRS), Long Term Evolution (LTE), and the like.
  • GSM Global System of Mobile Communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • a reconfigurable optical add/drop multiplexer can be used in an optical network node to implement reconstruction of an optical network service.
  • the optical network node service may include functions such as inter-dimension exchange, uplink, and down-wave.
  • the optical network node service can be implemented by remotely configuring a Reconfigurable Optical Add/Drop Multiplexer (ROADM) through the network management system.
  • ROADM Reconfigurable Optical Add/Drop Multiplexer
  • ROADM Frequency Division Multiplex
  • N N*M ROADM
  • M input ports are used for input wavelength division multiplexing (WDM, Wavelength Division Multiplex) beams.
  • WDM wavelength division multiplexing
  • K K sub-beams of different wavelengths by a grating.
  • the first stage switch array comprises M*K switch units for exchanging the sub-beams passing through the grating onto different switching units of the second stage switch array (ie "split"), the second stage switch array comprising N switches a unit for changing the beam propagation characteristics of each sub-beam such that each sub-beam is recombined (ie, “combined"), and the wavelengths from the second-stage optical switch array are different by the grating and the corresponding output ports are the same
  • the sub-beams synthesize WDM signals and output to N output ports.
  • ROADM as the core of network cross-connection needs to be continuously developed.
  • ROADM has more input ports (including input ports for dimension input and input ports for uplink) and Output port (including output port for dimension output and output port for down wave). Since the number of sub-beams included in the WDM beam (specifically, the number of wavelengths of the included sub-beams) K is large and relatively fixed, the number of input ports of the first N*M ROADM mainly depends on M, and the number of output ports Mainly depends on N, but due to the limitation of the configuration space and the crossover capability of a single switch unit (for example, the range of rotation), M and N cannot be made very large, so the number of output/input ports is limited and cannot meet the current growing Network requirements and user requirements.
  • a second N*M ROADM including M input ports, N output ports, and a two-stage switch array
  • M input ports are used to input WDM beams
  • the first stage switch array includes M *K (M rows, K columns) switch units for optical path processing of the sub-beams of the WDM beam
  • the processed sub-beams are transmitted to the switching unit of the second-stage switch array
  • the second-stage switch array includes N A two-dimensionally arranged switching unit for outputting sub-beams processed through the first-stage switch array to N output ports.
  • the second N*M ROADM can implement more output ports than the first N*M, but limited by the configuration structure and optical path design, the second N*M ROADM can only implement the first N*M RODAM
  • the function of "split" can also be understood as that only the down-wave function can be realized. If it is necessary to simultaneously implement the function of switching between up-and-down waves and dimensions, N*M RODAM needs to be combined with other optical devices, so that Both volume and cost cannot meet the requirements of high integration, high crossover capability and low cost of optical networks.
  • N*M ROADM which is equivalent to the mirror structure of the second N*M ROADM.
  • it includes M input ports, N output ports, and a two-stage switch array.
  • the first-stage switch array includes M two-dimensionally arranged switch units for transmitting the light beams received from the M input ports to the switch unit of the second-stage switch array, and the second-stage switch array includes the N*K lines. For recombining the beams and transmitting the combined beams to the N output ports.
  • the third N*M ROADM can implement more input ports than the first N*M ROADM, but is limited by the configuration structure and the optical path design, and the third N* M ROADM can only implement the "combination" function of N*M RODAM, or it can be understood that only the upstream function can be realized.
  • the second N*M RODAM and the second N*M RODAM may be cascaded, wherein the second N*M RODAM includes N input ports for inputting the dimension WDM beam, and further includes N*N+ M output ports, wherein N*N ports are used to output WDM beams, and M output ports are used to output down-wave signals.
  • the third N*M RODAM may include N*N+M input ports, wherein the N*N input ports are used to receive the WDM beam of the second N*M RODAM output, wherein the M input ports are used to receive the uplink signal.
  • the beams input in each dimension are divided into N+M parts, where N parts of WDM signals are used for different dimensional outputs, and M parts are used for lower waves.
  • the local up-and-down wave and the exchange between dimensions can be realized by two modules.
  • two optical modules are used, and the four-level optical switch array realizes functions of network crossover.
  • RODAM that is more integrated, more functional, smaller, and less expensive.
  • FIG. 1 shows a schematic structure of a reconfigurable optical add/drop multiplexer according to an embodiment of the present invention.
  • the reconfigurable optical add/drop multiplexer includes:
  • the input component includes M+P input ports, wherein M input ports are used for dimension input, and P input ports are used for upper waves, wherein M and P are integers greater than or equal to 1;
  • An output component including N output ports, the N output ports are used for dimension output, wherein N is an integer greater than or equal to 1;
  • a first switch array comprising at least P switch units, each of the P input ports corresponding to at least one of at least P switch units, the at least P switch units being used for the P inputs
  • the port receives P input beams and routes the P input beams;
  • a beam splitter for receiving M input beams from the M input ports, and dividing each of the M input beams into at least N parts to obtain at least M*N beams;
  • a wavelength dispersion system for receiving the P input beams from the first switch array and displacing the P input beams to obtain sub-beams of the P input beams, and for receiving the at least the beam splitter from the beam splitter M*N beams, and displacing the at least M*N beams to obtain sub-beams of the at least M*N beams;
  • the second switch array includes N rows of switch units, wherein each row of switch units includes K switch units, the K switch units are corresponding to K wavelengths, and the K switch units are respectively used to route sub-beams of respective wavelengths Where K is an integer greater than one;
  • a redirecting system for receiving sub-beams of the P input beams from the wavelength dispersion system and redirecting the sub-beams of the P input beams to the N-row switching unit of the second switch array, and by the N a row switching unit routing the sub-beams of the P input beams to the N output ports, wherein the first switch array, the second switch array, the wavelength dispersion system, and the redirection system are arranged such that the P inputs The sub-beams of the beam can be routed to the N output ports;
  • the redirection system is further configured to receive, from the wavelength dispersion system, a sub-beam of M*N beams of the at least M*N beams, and redirect the sub-beams of the M*N beams to the second The N rows of switching units in the switch array, and the sub-beams of the M*N beams are routed to the N output ports by the N rows of switching units, wherein the beam splitter, the second switch array, the wavelength
  • the arrangement of the dispersion system and the reorientation system enables the sub-beams of the M*N beams to be routed to the N output ports.
  • each beam of the M input beams received by the M input ports is split into at least N parts using a beam splitter, N of the at least N beams are used for inter-dimension exchange, and by arranging components in the reconfigurable optical add-drop multiplexer, the first switch array, the wavelength dispersion system, the redirection system, and the second switch.
  • the arrangement of the array enables the function of the upper wave, so that the arrangement of the beam splitter, the wavelength dispersion system, and the second switch array can realize the function of inter-dimension exchange.
  • a two-stage switch array is realized in a single optical system.
  • the local uplink wave and the function of exchanging between dimensions can improve the integration of the reconfigurable optical add/drop multiplexer.
  • the reconfigurable optical add/drop multiplexer in the embodiment of the present invention may further include: a third switch array, including at least Q switch units, each of the at least Q output ports The output port corresponds to at least one switching unit of at least Q switching units;
  • the input component further includes Q output ports, the Q output ports are used for the lower wave, and Q is an integer greater than 1.
  • the at least N parts are N+1 parts, and the at least M*N beams are M*(N+1) beams;
  • the second switch array further includes a J row switch unit, and J is an integer greater than or equal to 1 and less than or equal to M;
  • the redirection system is further configured to receive, from the wavelength dispersion system, a sub-beam of the M* (N+1) beams other than the M*N beams, and the M beams
  • the sub-beam is redirected to the J-row switch unit in the second switch array, and the sub-beams of the M beams are routed by the J-row switch unit to the at least Q switch units of the third switch array, and then
  • the at least Q switching units respectively output the light beams received from the J row switching units to the corresponding Q output ports, wherein the second switch array, the third switch array, the wavelength dispersion system, and the redirection system
  • the arrangement enables the sub-beams of the M beams to be routed to the Q output ports.
  • each of the M input beams received by the M input ports is divided into N+1 copies, and N of the light beams are used between the dimensions.
  • Exchanging, using the remaining 1 beam for the local down wave, and by arranging the components in the reconfigurable optical add/drop multiplexer, such that the first switch array, the wavelength dispersion system, the redirection system, and the second switch array The arrangement enables the function of the upper wave such that the arrangement of the beam splitter, the wavelength dispersion system, the second switch array and the third switch array enables simultaneous local wave down and inter-dimension switching functions.
  • a three-stage switch array can be used in a single optical system to implement local uplink, local down-wave, and inter-dimension exchange functions, thereby improving reconfigurable light.
  • the degree of integration of the add/drop multiplexer is provided.
  • the input ports may be arranged in one dimension or in two dimensions.
  • M input ports are used to acquire beams of M dimensions.
  • the beams of the M dimensions may be Wavelength Division Multiplex (WDM) light.
  • a bundle of WDM beams may comprise a plurality of (at least two) sub-beams, the center wavelength of each sub-beam (or, in each sub-beam) Heart rate points are different from each other.
  • the beams of the M dimensions may be beams of light from different foreign communication nodes (eg, the last hop communication node in the communication link).
  • the P input ports are used to acquire a local wave of the upper wave, and the up beam may be a single wavelength beam or WDM light.
  • the upstream beam may be a light beam sent to a foreign communication node or a light beam sent to a local communication node, which is not particularly limited in the present invention.
  • the foregoing dimension may refer to the number of categories whose source is under the preset rule (or the number of optical fibers to which the reconfigurable optical add/drop multiplexer is connected), and the preset rule may be divided by a region, for example, It is divided into city level, province level or country level; it can also be divided into entities.
  • one communication node is one dimension, or a group of communication nodes is one dimension.
  • the input component may further include an input fiber array and an input collimator array.
  • the input fiber array may comprise M+P input fibers arranged in one or two dimensions, wherein M input fibers are used to acquire beams from various dimensions, and the remaining P fibers are used to acquire beams of the upper waves.
  • the input collimator array may include one-dimensionally arranged or two-dimensionally arranged M+P collimators corresponding to the M+P input ports, respectively, for converting the light beams input by the M+P input ports into Collimate the beam.
  • the M+P collimators are in one-to-one correspondence with the M+P input fibers, and a collimator is used for collimating the light beam output from the corresponding input fiber, and can also be understood as a beam inputting the input fiber. Converted into parallel light while expanding the beam waist value for subsequent optical path processing.
  • the wavelength dispersion system may use a diffraction mode to decompose the light beam into sub-beams having different wavelengths (or center frequency points) in a sub-wavelength switching plane (or a plan view plane), thereby Each of the sub-beams output by the wavelength dispersion system is radially dispersed in the plane of the sub-wavelength development plane.
  • the wavelength dispersion system may be further configured to combine the sub-beams of the sub-beams emitted by the second switch array with the same output port into a WDM beam, and may transmit through the redirection system. To the corresponding output port.
  • the wavelength dispersion system is at least one grating.
  • the wavelength dispersion system can be an arrayed waveguide grating, a reflective grating, a transmissive grating, a dispersive prism, or a planar waveguide grating.
  • a plurality of grating combinations may be employed, or the optical path may be adjusted to pass the light beam through the same grating multiple times.
  • the beam splitter is configured to divide each of the M input beams received by the M input ports into at least N parts, or it may be understood that the each beam is broadcasted to at least N parts. It can be understood that each of the light beams is copied into at least N, and each of the at least N light beams includes the same number of sub-beams as the original input light beam before the splitting, Finally, at least N sets (each set comprising M beams) of light beams, or at least M*N beams, are obtained. Wherein, the N sets of beams (or M*N beams) in the at least N groups can be used for inter-dimension exchange.
  • the at least N groups may be N groups, and the N groups may be used for inter-dimension exchange, and the local downlink function cannot be implemented at this time.
  • at least N groups may be N+1 groups, wherein N groups may be used for inter-dimension exchange, and the remaining 1 group of beams (or M*1 beams) may be used for local down-waves.
  • the beam splitter may be one of an LCOS, a spatial beam splitter or a planar waveguide beam splitter.
  • Figures 2 and 3 show schematic views of two beam splitters of an embodiment of the invention, respectively.
  • the beam splitter can employ a combination of a spatial optical beam splitter and a multi-angle micromirror as shown in FIG.
  • the beam splitter may also employ a combination of a waveguide beam splitter and a multi-angle micromirror as shown in FIG.
  • other devices having a splitting function are used, and embodiments of the present invention are not limited thereto.
  • the beam splitter copies at least N copies of each beam input by the dimension, and transmits N copies of the copied beam to the subsequent optical path for inter-dimension exchange, so the embodiment of the present invention
  • the reconfigurable optical add/drop multiplexer has a broadcast function.
  • the first switch array may include at least P switch units arranged in one-dimensional or two-dimensional arrangement.
  • Each of the P input ports for the upper wave corresponds to at least one of the at least P switch units.
  • the at least P switching units are P switching units, the at least P switching units are in one-to-one correspondence with P input ports for uplink.
  • the at least P switching units are configured to route the P upper wave beams so that the P upper wave beams can be transmitted to the N rows of switching units of the second switch array after being processed by the redirecting system.
  • the specific manner of routing the first switch array is not limited in the embodiment of the present invention.
  • the beam propagation characteristics of the P beams may be changed according to the target dimension output ports of the P upper wave beams (for example, the beam is emitted). Angle), which is transmitted to the N-row switch unit of the second switch array according to a specific optical path.
  • the redirection system may perform a redirection process on the sub-beams of the P input beams to redirect the sub-beams to the N-row switching units of the second switch array.
  • the P input beams may be light beams for upper waves, and the N rows of switching units may respectively correspond to N output ports for dimensional output, and the sub beams of the P input beams respectively correspond to one of the N output ports.
  • the redirecting system can route each sub-beam to a switching unit corresponding to the target output port in the second switch array by changing the beam propagation path of each sub-beam.
  • the redirection system can be further configured to perform redirection processing on the sub-beams of at least M*N beams received from the wavelength dispersion system, wherein M*N beams of the at least M*N beams can be used
  • the sub-beams are exchanged between the dimensions, that is, the sub-beams of the M*N beams can be used for inter-dimensional output.
  • the redirecting system can be configured to redirect the sub-beams of the M*N beams to the N rows of switching units in the second switch array,
  • the N rows of switch units can respectively correspond to N output ports for dimension output, that is, the N rows of switch units in the second switch array are in one-to-one correspondence with the N output ports, and the second switch
  • Each of the N rows of switching units in the array is configured to select a target sub-beam from a plurality of sub-beams transmitted to each of the switching units and route the target sub-beam to The output port corresponding to each row of switch units.
  • the M*N beam is N groups of beams, and each group of beams may include M beams, wherein the sub-beams of each group of beams are routed to a corresponding row of switching units in the N rows of switching units.
  • each of the N rows of switching units can receive M sub-beams of light beams from the input ports of the respective dimensions. Then, the N-line switching unit can route the sub-beams of the M*N beams to the corresponding N ports for the dimension output.
  • the at least M*N beams may be M*(N+1) beams, and the remaining M beams of the M*(N+1) beams may be used for local lower waves.
  • the redirecting system is configured to redirect the sub-beams of the M beams to the remaining J-row switching units of the second switch array other than the N rows of switching units.
  • J is an integer greater than or equal to 1 and less than or equal to M.
  • J M
  • the J row switch unit and M inputs for dimension input The ports correspond one-to-one, so that the J-row switch unit also has a one-to-one correspondence with the M beams from the M dimensions.
  • Each of the J rows of switching cells in the second switch array is configured to route sub-beams obtained by the input beam of the input port corresponding to each row of switch cells through the wavelength dispersion system.
  • the J-row switching unit may route the sub-beams of the M dimensions to at least Q switching units of the third switch array. It should be understood that the specific rule that the J-row switch unit routes the sub-beams of the M-dimensions may be performed according to the upper layer configuration or the remote configuration, or may be performed according to other rules, which is not limited by the embodiment of the present invention.
  • the redirecting system includes at least one lens.
  • the redirection system can include a lens, a concave mirror, or a cylindrical lens.
  • the configuration positions of the devices of the reconfigurable optical add/drop multiplexer are different, or the transmission of the light beam in the reconfigurable optical add/drop multiplexer The paths are different.
  • the redirection system may include a first sub-redirect system for changing sub-beams of the P input beams and the M*(N+1)
  • the beam propagation characteristics of the sub-beams of the beam in the planar direction of the sub-wavelength are such that the sub-beams of the P input beams and the sub-beams of the same wavelength in the sub-beams of the M*(N+1) beams are at the sub-wavelength development plane
  • the direction is routed to the same location of the second switch array (or the same column of switch units of the second switch array).
  • the first sub-redirect system may be one or more convex or concave mirrors.
  • the redirection system may further include a second sub-redirect system for changing a sub-beam of the P input beams and a sub-beam of the M*N beams in a port switching plane (or in the side view plane) the beam propagation characteristics such that the sub-beams of the P input beams and the sub-beams of the M*N beams corresponding to the same output port are routed on the port switching plane To the same position of the second switch array (or the same row of switch units of the second switch array).
  • the second sub-redirect system may be one or more convex or concave mirrors.
  • the redirection system may further include a third sub-redirect system, where the third sub-redirect system may be configured to change a beam propagation characteristic of the sub-beams of the remaining M beams in a direction of the switching plane of the port. a sub-beam of the light beam input from the same input port in the sub-beams of the remaining M beams is routed on the port switching plane to the same position of the second switch array (or the same row switch of the second switch array) unit).
  • the second sub-redirect system and the third sub-redirect system can be implemented with the same or the same set of lenses.
  • the first sub-redirect system is used to change the propagation characteristics of the beam in the sub-wavelength plane direction
  • the second sub-redirect system and the third sub-redirection system are used to change the propagation characteristics of the beam on the port switching plane.
  • the first, second, and third sub-redirecting systems may be implemented by the same lens or the same group of lenses, which is not specifically limited in the embodiment of the present invention.
  • the second switch array may include N rows of switch units, wherein each row of the switch arrays may include K switch units, and the K switch units are respectively configured to process K wavelengths.
  • the sub-beam, K may be the maximum number of sub-wavelengths of the wavelength division multiplexed signal input by the M+P input ports.
  • each of the row of switch cells of the N rows of switch cells in the second switch array is configured to determine a target beamlet from the plurality of subbeams transmitted to each of the switch cells, And routing the target sub-beam to the output port corresponding to each row of switch units.
  • the N rows of switching units in the second switch array may be in one-to-one correspondence with the N output ports for dimension output.
  • the N rows of switching units can be used to process beams exchanged between dimensions, and the N rows of switching cells in the second array of switches can also be used to process beams of local upper waves.
  • the N-line switching unit is used to receive beams of local up-waves from P input ports in addition to sub-beams of M*N beams from M dimensions.
  • each of the N rows of switching units can receive sub-beams of beams from M dimensions and sub-beams of beams from the upper wave port.
  • Each of the N rows of switching units may determine a target sub-beam from the plurality of sub-beams, and the combination of the plurality of target sub-beams determined by the plurality of switching units in each row of the switching unit is the switching unit of each row The output beam of the corresponding dimension output port.
  • the arrangement of the redirecting system and the wavelength dispersion system causes the plurality of target sub-beams to eventually converge into a bundle of WDM light for output from the corresponding output port.
  • the second switch array may further include J rows of switch units, and each row of switch units may also include K switch units.
  • each row of the J-row switch units in the second switch array is used to route sub-beams of the dimensional beam input from each input port, and at this time, has a wavelength blocking characteristic, That is, the sub-beams of the same wavelength cannot be simultaneously output from any of the lower-wave output ports when the down-wave is used.
  • the smaller the J the more severe the wavelength blocking characteristic.
  • each row of the J row switch units in the second switch array is used for a sub-beam of an input beam of an input port corresponding to the row of switch units, each of the row of switch units of the J-row switch unit for transmitting a first sub-beam to each of the switch units Routed to an output port corresponding to the first sub-beam; specifically, the remaining J-row switch units in the second switch array may be in one-to-one correspondence with M input ports for dimension input, the J-row switch unit Can be used to process the beam of the local lower wave.
  • the J rows of switching units are configured to receive the remaining M of the above M*(N+1) beams.
  • each row of the switch units of the J-row switch unit is for receiving a sub-beam of the input beam of the dimension input port corresponding to the row switch unit.
  • Each of the J-row switch units routes the received first sub-beam such that the first sub-beam is transmitted to the lower-wave output port corresponding to the first sub-beam through the optical dispersion system and the redirection system. Thereby, the scheduling process of the sub-beams input from each dimension to the local lower wave is completed.
  • the J rows and N rows of switching units of the second switch array respectively correspond to M dimension input ports and N dimension output ports, and P uplink ports and Q lower waves.
  • the number of ports is irrelevant. Therefore, the number of the upper wave port and the lower wave port in the embodiment of the present invention is not limited by the size of the second switch array, so that the number of the upper wave port and the lower wave port in the embodiment of the present invention can be more Large scale.
  • the third switch array may include at least Q switch units arranged in one dimension or two dimensions, and each of the Q output ports corresponds to at least Q of at least Q switch units One switch unit.
  • each of the Q switch units are in one-to-one correspondence with Q output ports for lower waves.
  • the at least Q switching units are used to process the beam of the local lower wave.
  • each of the at least Q switching units can receive one or more sub-beams routed by the M-row switching units of the second switch array. The sub-beams can come from different dimensions.
  • Each of the at least Q switching units may be configured to select a target sub-beam from the received one or more sub-beams, and use the target sub-beam as an output beam of a lower-wave output port corresponding to the switching unit And routing the target sub-beam to the corresponding output port.
  • each of the at least Q switching units may be set to have M beam angle deflection states, and each beam angle deflection state corresponds to one of J row switching units of the second switch array, At least Q switching units may determine a sub-beam that selects a beam of a particular dimension based on a state in which the beam angle is deflected.
  • a switch array (eg, a first switch array, The second switch array or the third switch array) can be one or more of a microelectromechanical system MEMS, LCOS or planar waveguide switch array.
  • the switch array can be realized by a Micro-Electro-Mechanical System (MEMS) technology, and the MEMS technology is to have a geometric size or an operation size only in the order of micrometers, submicrometers or even nanometers.
  • MEMS and control circuits are highly integrated into a very small space on a silicon-based or non-silicon-based material to form a mechatronic device or system.
  • a switch array implemented by MEMS technology mechanically moves a micromirror by electrostatic force or other control force, thereby deflecting a beam hitting the micromirror into either direction.
  • the controller can control the micromechanical structure by controlling the command to drive the light modulator (microlens) to rotate, thereby realizing the deflection of the optical path, thereby realizing the beam dimension (or , transmission path) switching.
  • the switch array can be realized by a liquid crystal on-silicon (LCOS) technology.
  • LCOS liquid crystal on-silicon
  • the LCOS technology utilizes the principle of a liquid crystal grating to adjust the light reflection angle of different wavelengths to achieve the purpose of separating light.
  • LCOS technology is highly reliable due to the absence of moving parts.
  • LCOS technology uses liquid crystal cell refractive index change control to achieve reflection angle variation, which can be easily extended and upgraded.
  • Different channels correspond to different regions of the spatial light modulator (liquid crystal) array, and the direction of the light is adjusted by adjusting the phase of the spot to achieve the purpose of switching different ports and adjusting the attenuation.
  • the switch array can be realized by a liquid crystal (LC) technology.
  • the incident light beam passes through the birefringent crystal and is divided into two polarization states, wherein After passing through the half-wave plate, the polarization of the two channels is the same, and then on the switch array (liquid crystal module), by adjusting the voltage of the birefringent crystal to change the arrangement of the liquid crystal (changing the angle of the molecules inside the crystal), thereby The refractive index of the crystal changes, and the light source outputs light at different angles.
  • Light passes through each layer of liquid crystal and has two directions to choose from. After passing through multiple layers of liquid crystal layers, multiple light paths can be selected.
  • the switch array can be implemented by digital light processing (DLP) technology, and the internal structure of the switch array realized by the DLP technology is similar to the internal structure of the light modulator implemented by the MEMS technology. Switching of light energy is achieved by deflection of the microlens. The difference is that the DLP mirror rotation angle has only a few states limiting the number of output ports.
  • DLP digital light processing
  • the output component may include N dimension outputs for dimension output.
  • the output component may also include Q lower wave output ports for the lower wave output.
  • the N dimension output ports are used to transmit N dimensions of the beam, which may be required to be sent to a foreign communication node (eg, a next hop communication node in the communication link).
  • the Q lower wave output ports are used to output a local lower beam.
  • the "lower wave” refers to a downstream beam that needs to be transmitted to a local node in an optical network node, and the downstream beam may be a sub-beam in a beam from a foreign communication node, that is, a sub-beam from a beam of each dimension. .
  • the output component may further include an output fiber array and an output collimator array.
  • the output fiber array may comprise one-dimensionally arranged or two-dimensionally arranged N+Q output fibers, wherein the N output fibers are used to transmit output beams of various dimensions, and the remaining Q output fibers are used to transmit the respective downstream beams. .
  • the output collimator array may include N collimators arranged in one or two dimensions, corresponding to the N output ports, respectively, for converting the light beams to be outputted at the N output ports into collimated beams.
  • the N+Q collimators are in one-to-one correspondence with the N output fibers, and a collimator is used for collimating the beam output from the corresponding output fiber, and can also be understood as converting the output beam of the output fiber into Collimate the beam to facilitate outputting the beam to the output port.
  • the output collimator array may further include Q collimators arranged in one-dimensional or two-dimensional arrangement, corresponding to the Q ports for the lower waves, respectively, and the light beams to be output at the Q output ports are prepared. Converted to a collimated beam.
  • 4A-4E illustrate one embodiment of a reconfigurable optical add/drop multiplexer in accordance with an embodiment of the present invention.
  • 4A shows a schematic diagram of the reconfigurable optical add/drop multiplexer in the plane of the wavelength expansion plane (top view), and FIG. 4B shows the direction of the reconfigurable optical add/drop multiplexer in the port switching plane (side view) ) on the schematic.
  • 4C shows a schematic diagram of optical paths exchanged between dimensions of a reconfigurable optical add/drop multiplexer in accordance with an embodiment of the present invention.
  • 4D shows an optical path diagram of a wave on a reconfigurable optical add/drop multiplexer in accordance with an embodiment of the present invention.
  • 4E is a schematic diagram showing the optical path of a wave under the reconfigurable optical add/drop multiplexer according to an embodiment of the present invention.
  • the first switch array and the third switch array can be utilized.
  • the second switch array described above can be implemented using MEMS2.
  • the above wavelength dispersion system may include a grating one and a grating two.
  • the above redirection system may include a lens three and a lens four. Lens one and lens two are used for beam expansion.
  • the input and output terminals respectively include an input and output fiber array and an input and output collimating array. As shown in FIG. 4A, the input terminal includes 3*5 input ports, including 3 dimensional input ports and 12 upper wave input ports, and the output end includes 3*5 output ports, including 3 dimensional output ports and 12 Lower wave input port.
  • the MEMS 1 can route the upper wave input beam such that the beams of the same output port are emitted at the same angle.
  • the beam splitter replicates 4 input beams from each dimension to obtain 3*4 beams.
  • 3*3 beams are routed to the 3-row switch unit (corresponding to the N-row switch unit in the second switch array) in the MEMS 2 for inter-dimension exchange and down-wave,
  • the three-row switch unit for inter-dimension exchange and down-wave is in one-to-one correspondence with three dimension output ports.
  • the remaining 3*1 parts are routed to the 3-row switch unit for the upper wave in MEMS2 (corresponding to the J-row switch unit in the second switch array described above), which is used for the upper wave.
  • the 3-row switch unit has a one-to-one correspondence with the three dimensional input ports.
  • the beam splitter can also process the exit angles of the 3*4 beams so that the beams of the 3*4 beams that are the same output port are emitted at the same angle in the direction of the port switching plane.
  • the grating one and the grating two may be arranged to disperse each of the 3*4 dimensional input beam and the 12 upper wave input beams into a plurality of sub-wavelengths having different center wavelengths.
  • Lens 1 and 2 can be used to spot expand the input beam.
  • Lens 3 (corresponding to the second sub-redirect system and the third sub-redirect system described above) can be used to optically transform the dimensional input beam and the upper beam so that the beam exits from the MEMS 1 at the same angle on the port switching plane.
  • the same position incident on the MEMS 2 can also be understood as being transmitted to the same row of switching units of the MEMS 2.
  • the lens four (corresponding to the first sub-redirect system described above) can be used to perform optical path transformation on the dimensional input beam and the upper wave beam, so that the sub-wavelengths of the same wavelength in the dimension input beam and the upper wave beam are transmitted on the sub-wavelength expansion plane to
  • the same position of MEMS2 can also be understood as being transmitted to the same column of switching units in MEMS2.
  • the arrangement of MEMS1, MEMS2, lens 3, and lens 4 enables any sub-beam of the 12 up-wave input beams to be routed to any of the three dimensional output ports.
  • the arrangement of beam splitter, MEMS2, lens three, and lens four enables any of the three dimensional input ports and the input beams of the twelve upstream ports to be routed to any of the three dimensional output ports.
  • each component in the reconfigurable optical add/drop multiplexer is not specifically limited in the embodiment of the present invention, so that the corresponding function can be implemented.
  • MEMS 2 can be located at the focal plane of lens three and lens four.
  • the MEMS 2 includes three rows of switching units for inter-dimension switching and upper waves (corresponding to the above-described N-row switching units). For convenience of description, it can be called inter-dimension scheduling and uplink switching units.
  • the MEMS 2 further includes three rows of switching units for lower waves (corresponding to the above-described J-row switching unit), which may be referred to as a lower-wave switching unit for convenience of presentation.
  • the 3-line inter-dimension scheduling and up-wave switching unit is configured to receive the sub-beams of the 3*3 sub-beams from the respective dimensions and the sub-beams of the 12 beams from the respective upper wave ports.
  • the 3-row inter-dimension scheduling and the inter-dimension scheduling in each row of the upper-wave switching unit and the inter-division scheduling in the upper-wave switching unit and the upper-wave switching unit process the sub-beams of the wavelength corresponding thereto.
  • the three-row inter-division scheduling and each switching unit in the upper wave switching unit can receive the sub-beams of the input beam of three dimensions, and the inter-differential scheduling and the upper-wave switching unit can also receive the sub-beams of the upper-wave beam. .
  • the inter-dimension scheduling and up-going switching unit selects a target sub-beam from the sub-beams of the input beam of the three dimensions or the sub-beams of the upper beam, and routes the target sub-beam to be dispatched to the dimension And the output port corresponding to the upper wave switch unit.
  • the 3-row down-wave switch unit is configured to receive the remaining 3*1 beams from each dimension, and each row of the lower-wave switch unit corresponds to one dimension, and each of the 3-row down-wave switch units is under each row.
  • Each of the wave switching units is configured to transmit the received sub-beams to the 12 switching units of the MEMS 1 according to the target lower wave port of the received sub-beams (corresponding to the above-mentioned third switch) At least Q switching units of the array).
  • the 12 switching units in the MEMS 1 are in one-to-one correspondence with the 12 lower wave output ports.
  • the 12 switching units can route the sub-beams of the beams from the various dimensions routed by the 3-line down-wave switching unit of MEMS2.
  • MEMS1 further includes three switching units for dimension output, and the three switching units are in one-to-one correspondence with three-line inter-dimensional scheduling and upper-wave switching units in MEMS2, and are respectively arranged to be scheduled with the three-line dimension.
  • the specific deflection angle corresponding to the upper wave switch unit only the corresponding inter-dimension scheduling and the sub-beams transmitted by the upper wave switching unit are allowed to pass, thereby completing the dimension output.
  • 5A and 5B illustrate another embodiment of a reconfigurable optical add/drop multiplexer in accordance with an embodiment of the present invention.
  • 5A is a schematic diagram showing a reconfigurable optical add/drop multiplexer in a wavelength expansion plane direction (top view)
  • FIG. 5B is a view showing a reconfigurable optical add/drop multiplexer in a port switching plane direction (side view) ) on the schematic.
  • the first switch array and the third switch array can be implemented by LCOS1, and the beam splitter can also be implemented by LCOS1.
  • the second switch array can be implemented with LCOS2. Since LCOS can only process beams of a single polarization state, polarization beam splitters and half-wave plates are added to the reconfigurable optical add/drop multiplexer to convert mutually orthogonal polarized light into a single polarization state. The beam of light is convenient for subsequent optical path processing.
  • the above wavelength dispersion system can be implemented by a grating one and a grating two.
  • the above redirection system may include a lens three and a lens four. Lens one and lens two are used for spotting.
  • the input and output terminals respectively include an input and output fiber array and an input and output collimating array.
  • the specific working principle and process of the reconfigurable optical add/drop multiplexer of the example of the present invention may refer to the corresponding process in the foregoing method embodiments, and details are not described herein again.
  • each beam of the M input beams received by the M input ports is divided into N+1 copies by using a beam splitter by providing a beam splitter in the reconfigurable optical add/drop multiplexer.
  • N of the beams are used for inter-dimension exchange, the remaining 1 beam is used for local down-wave, and the first switch array, wavelength dispersion system is made by arranging the components in the reconfigurable optical add-drop multiplexer
  • the arrangement of the redirection system and the second switch array can realize the function of the upper wave, so that the arrangement of the beam splitter, the wavelength dispersion system, the second switch array and the third switch array can simultaneously realize the local lower wave and the function of exchanging between dimensions .
  • a three-stage switch array can be used in a single optical system to implement local uplink, local down-wave, and inter-dimension exchange functions, thereby improving reconfigurable light.
  • the degree of integration of the add/drop multiplexer is provided.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例提供了一种可重构光分插复用器,包括:输入组件、输出组件、分束器、第一开关阵列、波长色散系统,重定向系统以及第二开关阵列。输入组件包括M+P个输入端口;输出组件包括N个输出端口;分束器用于从M个输入端口接收M个输入光束,并将M个输入光束中的每个光束分成至少N份,得到至少M*N个光束;第一开关阵列包括至少P个开关单元,第二开关阵列包括N行开关单元。第一开关阵列、分束器、波长色散系统、重定向系统以及第二开关阵列的布置使得P个上波光束和至少M*N个光束中的M*N个光束中的子光束能够路由至N个输出端口。该可重构光分插复用器可以提高集成度。

Description

可重构光分插复用器 技术领域
本发明涉及光通信领域,尤其涉及光通信领域中的可重构光分插复用器。
背景技术
随着信息技术的发展,光通信网络的复杂性不断增大,对于多个环网相切处的光网络节点(例如城域网骨干节点),有大量来自不同维度(方向/线路)的波分复用(WDM,Wavelength Division Multiplex)光束需要在光网络节点交换去往不同的维度(即维度间交换)。同时光网络节点还有与汇聚层相连的上波及下波线路。上波线路用于将从下层汇聚到本节点的光束交换到目标维度。下波线路用于将其他维度的需要与本节点通信的光束在交换到本节点。当前网络流量不断增大,光网络节点的吞吐量越来越多,一个光网络节点在处理更多维度的光束切换的同时,还要处理本地上/下波业务。
现有技术中,运营商可通过在光网络节点使用可重构光分插复用器(ROADM,Reconfigurable Optical Add/Drop Multiplexer)进行维度交换、上波或下波业务等。目前,存在多种结构的ROADM,以实现光网络节点之间的交叉和连接。例如,已知一种N*M ROADM,其包括M个输入端口、N个输出端口以及两级开关阵列,其中,M个输入端口用于输入WDM光束,第一级开关阵列包括M*K(M行,K列)个开关单元,用于对WDM光束的子光束进行光路处理,使处理过的子光束传输到第二级开关阵列的开关单元上,第二级开关阵列包括N个二维排列的开关单元,用于将经过第一级开关阵列处理的子光束输出到N个输出端口。由于第二级开关阵列呈二维排列,该N*M ROADM可以实现更多的输出端口,但是受限于配置结构和光路设计,该N*M ROADM只能实现下波功能,如果需要同时实现上下波和维度间交换的功能,需要N*M RODAM与其他光学器件进行组合,从而在规模、体积和成本方面都不能满足光网络高集成度、高交叉能力以及低成本的要求。
亟需一种ROADM,既能实现高集成化,又能提高光网络节点的交叉能力。
发明内容
本发明实施例提供了一种可重构光分插复用器,以在单一光学系统中实现本地上波以及维度间交换的功能,并提高可重构光分插复用器的集成度。
第一方面,本发明实施例提供了一种可重构光分插复用器,包括:输入组件,包括M+P个输入端口,其中M个输入端口用于维度输入,P个输入端口用于上波,其中,M、P为大于等于1的整数;输出组件,包括N个输出端口,该N个输出端口用于维度输出,其中,N为大于等于1的整数;第一开关阵列,包括至少P个开关单元,该P个输入端口中的每个输入端口对应该至少P个开关单元中至少一个开关单元,该至少P个开关单元,用于从该P个输入端口接收P个输入光束,并对该P个输入光束进行路由;分束器,用于从该M个输入端口接收M个输入光束,并将该M个输入光束中的每个光束分成至少N份,得到至少M*N个光束;波长色散系统,用于从该第一开关阵列接收该P个输入光束,并对该P个输入光束进行色散,得到该P个输入光束的子光束,还用于从该分束器接收该至少M*N个光束,并对该至少M*N个光束进行色散,得到该至少M*N个光束的子光束;第二开关阵列,包括N行开关单元,其中每行开关单元包括K个开关单元,该K个开关单元一一对应K个波长,该K个开关单元分别用于路由各自对应的波长的子光束,其中,K为大于1的整数;重定向系统,用于从该波长色散系统接收该P个输入光束的子光束,并将该P个输入光束的子光束重定向至该第二开关阵列的该N行开关单元,并由该N行开关单元将该P个输入光束的子光束路由至该N个输出端口,其中,该第一开关阵列、该第二开关阵列、该波长色散系统和该重定向系统的布置使得该P个输入光束的子光束能够路由至该N个输出端口;其中,该重定向系统还用于从该波长色散系统接收该至少M*N个光束中的M*N个光束的子光束,并将该M*N个光束的子光束重定向至该第二开关阵列中的该N行开关单元,并由该N行开关单元将该M*N个光束的子光束路由至该N个输出端口,其中,该分束器、该第二开关阵列、该波长色散系统和该重定向系统的布置使得该M*N个光束的子光束能够路由至该N个输出端口。
结合第一方面,在第一方面的第一种可能的实现方式中,该可重构光分插复用器还包括:第三开关阵列,包括至少Q个开关单元,该至少Q个输 出端口中的每个输出端口对应该至少Q个开关单元中的至少一个开关单元;该输入组件还包括Q个输出端口,该Q个输出端口用于下波,Q为大于1的整数;该至少N份为N+1份,该至少M*N个光束为M*(N+1)个光束;该第二开关阵列还包括J行开关单元,J为大于等于1且小于等于M的整数;该重定向系统还用于从该波长色散系统接收该M*(N+1)个光束中的除该M*N个光束之外剩余的M个光束的子光束,并将该M个光束的子光束重定向至该第二开关阵列中的该J行开关单元,并由该J行开关单元将该M个光束的子光束路由至该第三开关阵列的该至少Q个开关单元,然后由该至少Q个开关单元将从该J行开关单元接收到的光束分别输出至对应的Q个输出端口,其中,该第二开关阵列、该第三开关阵列、该波长色散系统和该重定向系统的布置使得该M个光束的子光束能够路由至该Q个输出端口。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,J=M,该第二开关阵列中的该J行开关单元与该M个输入端口一一对应,该第二开关阵列中的该J行开关单元中的每行开关单元用于路由与该每行开关单元对应的输入端口的输入光束经过该波长色散系统得到的子光束。
结合第一方面、第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,该第二开关阵列中的该N行开关单元与该N个输出端口一一对应,该第二开关阵列中的该N行开关单元中的每行开关单元中的每个开关单元用于从传输至该每个开关单元的多个子光束中选择一束目标子光束,并将该目标子光束路由至该每行开关单元对应的输出端口。
结合第一方面、第一方面的第一种至第三种可能的实现方式,在第一方面的第四种可能的实现方式中,该重定向系统包括第一子重定向系统,该第一子重定向系统用于改变该P个输入光束的子光束和该至少M*N个光束的子光束在子波长展开平面方向的光束传播特性,使该P个输入光束的子光束和该至少M*N个光束的子光束中相同波长的子光束在该子波长展开平面方向上路由至该第二开关阵列的同一位置;该重定向系统还包括第二子重定向系统,该第二子重定向系统用于改变该P个输入光束的子光束和该M*N个光束的子光束在端口交换平面方向上的光束传播特性,使该P个输入光束的子光束和该M*N个光束的子光束中对应相同输出端口的子光束在该端口交换平面方上路由至该第二开关阵列的同一位置。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第五种可能的实现方式中,该重定向系统包括第三子重定向系统,该第三子重定向系统用于改变该剩余的M个光束的子光束的在该端口交换平面方向上的光束传播特性,使该剩余的M个光束的子光束中从相同输入端口输入的光束的子光束在该端口交换平面方向上路由至该第二开关阵列的同一位置。
结合第一方面、第一方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,该分束器为硅基液晶LCOS、空间分束器或平面波导分束器中的一种。
结合第一方面,第一方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,该第一开关阵列、该第二开关阵列为微机电系统MEMS、LCOS或平面波导开关阵列中的一种或多种。
结合第一方面,第一方面的第一种至第七种可能的实现方式中的任一种可能的实现方式,在第一方面的第八种可能的实现方式中,K为该M+P个输入端口输入的波分复用信号的最大子波长数。
结合第一方面,第一方面的第一种至第八种可能的实现方式中的任一种可能的实现方式,在第一方面的第九种可能的实现方式中,该波长色散系统包括至少一个光栅。
结合第一方面,第一方面的第一种至第九种可能的实现方式中的任一种可能的实现方式,在第一方面的第十种可能的实现方式中,该重定向系统包括至少一个透镜。
结合第一方面,第一方面的第一种至第十种可能的实现方式中的任一种可能的实现方式,在第一方面的第十一种可能的实现方式中,该可重构光分插复用器还包括:输入准直器阵列,包括M+P个准直器,分别与该M+P个输入端口对应,用于将该M+P个输入端口输入的光束转换成准直光束。
输出准直器阵列,包括N个准直器,分别与该N个输出端口对应,用于将准备在该N个输出端口输出的光束转换成准直光束。
在本发明实施例中,通过在可重构光分插复用器中设置分束器,使用分束器将M个输入端口接收的M个输入光束中的每个光束分成至少N份,将该至少N份光束中的N份光束用于维度间交换,并通过布置可重构光分插复用器中的各组件,使得第一开关阵列、波长色散系统、重定向系统和第二 开关阵列的布置能够实现上波的功能,使得分束器、波长色散系统、第二开关阵列的布置能够实现维度间交换的功能。从而通过设置分束器、以及重复利用第二开关阵列的光交换功能,在单一光学系统中利用两级开关阵列实现本地上波以及维度间交换的功能,能够提高可重构光分插复用器的集成度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的可重构光分插复用器的示意性框图。
图2是根据本发明再一实施例的分束器的示意图。
图3是根据本发明又一实施例的分束器的示意图。
图4A是根据本发明又一实施例的可重构光分插复用器的子波长展开平面方向示意图。
图4B是图4A的可重构光分插复用器的端口交换平面方向示意图。
图4C是图4A的可重构光分插复用器的维度间交换的光路示意图。
图4D是图4A的可重构光分插复用器的上波的光路示意图。
图4E是图4A的可重构光分插复用器的下波的光路示意图。
图5A是根据本发明又一实施例的可重构光分插复用器的子波长展开平面方向示意图。
图5B是图5A的可重构光分插复用器的端口交换平面方向示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的技术方案,可以应用于各种能够使用光束(或者说,信号光)来传输数据的通信系统,例如:全球移动通讯系统(GSM,Global System of Mobile communication),码分多址(CDMA,Code Division Multiple Access) 系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term Evolution)等。
现有技术中,可以在光网络节点中使用可重构光分插复用器实现对光网络业务的重构。光网络节点业务可以包括维度间交换、上波、下波等功能。光网络节点业务可以通过网管系统远程配置可重构光分插复用器(ROADM,Reconfigurable Optical Add/Drop Multiplexer)来实现。
目前,存在多种不同结构的或用于实现不同功能的ROADM。例如,存在一种第一N*M ROADM,其包括M个输入端口、N个输出端口以及两级开关阵列,其中,M个输入端口用于输入波分复用(WDM,Wavelength Division Multiplex)光束,并通过光栅将WDM光束分解成K个不同波长的子光束。第一级开关阵列包括M*K个开关单元,用于把经过光栅的子光束交换到第二级开关阵列的不同开关单元上(即“分波”),第二级开关阵列包括N个开关单元,用于改变各子光束的光束传播特性,使各子光束重新进行组合(即“合波”),并通过光栅将来自于第二级光开关阵列的波长相异且对应的输出端口相同的子光束合成WDM信号,输出到N个输出端口。为了适应高速光通信的高效灵活的需求,作为网络交叉连接核心的ROADM需要不断的发展,希望ROADM具有更多的输入端口(包括用于维度输入的输入端口和用于上波的输入端口)和输出端口(包括用于维度输出的输出端口和用于下波的输出端口)。由于WDM光束包括的子光束的数量(具体说,是所包括的子光束的波长数量)K较大且相对固定,因此,第一N*M ROADM的输入端口数量主要取决于M,输出端口数量主要取决于N,但是受配置空间和单个开关单元的交叉能力(例如,旋转范围)限制,M和N不能做到很大,故输出/输入端口的数量收到限制,无法满足当前日益增长的网络需求以及用户的要求。
又例如,还存在一种第二N*M ROADM,其包括M个输入端口、N个输出端口以及两级开关阵列,其中,M个输入端口用于输入WDM光束,第一级开关阵列包括M*K(M行,K列)个开关单元,用于对WDM光束的子光束进行光路处理,使处理过的子光束传输到第二级开关阵列的开关单元上,第二级开关阵列包括N个二维排列的开关单元,用于将经过第一级开关阵列处理的子光束输出到N个输出端口。由于第二级开关阵列呈二维排 列,该第二N*M ROADM相对于第一N*M可以实现更多的输出端口,但是受限于配置结构和光路设计,该第二N*M ROADM只能实现第一N*M RODAM的“分波”的功能,或者也可以理解为,只能实现下波功能,如果需要同时实现上下波和维度间交换的功能,需要N*M RODAM与其他光学器件进行组合,从而在规模、体积和成本方面都不能满足光网络高集成度、高交叉能力以及低成本的要求。
又例如,还存在一种第三N*M ROADM,其相当于第二N*M ROADM的镜像结构。具体地,其包括M个输入端口,N个输出的端口以及两级开关阵列。其中,第一级开关阵列包括M个二维排列的开关单元,用于将从M个输入端口接收的光束传输到第二级开关阵列的开关单元上,第二级开关阵列包括N*K行,用于对光束进行重新组合,并将组合后的光束传输到N个输出端口处。由于第一开关阵列呈二维分布,所以该第三N*M ROADM相比于第一N*M ROADM可以实现更多的输入端口,但是受限于配置结构和光路设计,该第三N*M ROADM只能实现N*M RODAM的“合波”功能,或者也可以理解为,只能实现上波功能。
可选地,可以将第二N*M RODAM和第二N*M RODAM级联起来,其中,第二N*M RODAM包括N个输入端口,用于输入维度WDM光束,还包括N*N+M个输出端口,其中N*N个端口用于输出WDM光束,其中M个输出端口用于输出下波信号。第三N*M RODAM可以包括N*N+M个输入端口,其中N*N个输入端口用于接收第二N*M RODAM输出的WDM光束,其中M个输入端口用于接收上波信号。各个维度输入的光束被分为N+M份,其中N份WDM信号用于不同的维度输出,另外M份被用于下波。可以通过两个模块实现本地上下波以及维度间交换的功能。但是,本发明实施例中使用了两个光学模块,四级光开关阵列实现网络交叉的各功能。随着光通信网络的高速发展,亟需能集成度更高、功能更多、体积更小和成本更低的RODAM。
图1示出了本发明实施例的可重构光分插复用器的示意性结构,如图1所示,该可重构光分插复用器包括:
输入组件,包括M+P个输入端口,其中M个输入端口用于维度输入,P个输入端口用于上波,其中,M、P为大于等于1的整数;
输出组件,包括N个输出端口,该N个输出端口用于维度输出,其中, N为大于等于1的整数;
第一开关阵列,包括至少P个开关单元,该P个输入端口中的每个输入端口对应该至少P个开关单元中至少一个开关单元,该至少P个开关单元,用于从该P个输入端口接收P个输入光束,并对该P个输入光束进行路由;
分束器,用于从该M个输入端口接收M个输入光束,并将该M个输入光束中的每个光束分成至少N份,得到至少M*N个光束;
波长色散系统,用于从该第一开关阵列接收该P个输入光束,并对该P个输入光束进行色散,得到该P个输入光束的子光束,还用于从该分束器接收该至少M*N个光束,并对该至少M*N个光束进行色散,得到该至少M*N个光束的子光束;
第二开关阵列,包括N行开关单元,其中每行开关单元包括K个开关单元,该K个开关单元一一对应K个波长,该K个开关单元分别用于路由各自对应的波长的子光束,其中,K为大于1的整数;
重定向系统,用于从该波长色散系统接收该P个输入光束的子光束,并将该P个输入光束的子光束重定向至该第二开关阵列的该N行开关单元,并由该N行开关单元将该P个输入光束的子光束路由至该N个输出端口,其中,该第一开关阵列、该第二开关阵列、该波长色散系统和该重定向系统的布置使得该P个输入光束的子光束能够路由至该N个输出端口;
其中,该重定向系统还用于从该波长色散系统接收该至少M*N个光束中的M*N个光束的子光束,并将该M*N个光束的子光束重定向至该第二开关阵列中的该N行开关单元,并由该N行开关单元将该M*N个光束的子光束路由至该N个输出端口,其中,该分束器、该第二开关阵列、该波长色散系统和该重定向系统的布置使得该M*N个光束的子光束能够路由至该N个输出端口。
在本发明实施例中,通过在可重构光分插复用器中设置分束器,使用分束器将M个输入端口接收的M个输入光束中的每个光束分成至少N份,将该至少N份光束中的N份光束用于维度间交换,并通过布置可重构光分插复用器中的各组件,使得第一开关阵列、波长色散系统、重定向系统和第二开关阵列的布置能够实现上波的功能,使得分束器、波长色散系统、第二开关阵列的布置能够实现维度间交换的功能。从而通过设置分束器、以及重复利用第二开关阵列的光交换功能,在单一光学系统中利用两级开关阵列实现 本地上波以及维度间交换的功能,能够提高可重构光分插复用器的集成度。
可选地,作为一个实施例,本发明实施例中的可重构光分插复用器还可以包括:第三开关阵列,包括至少Q个开关单元,该至少Q个输出端口中的每个输出端口对应该至少Q个开关单元的至少一个开关单元;
该输入组件还包括Q个输出端口,该Q个输出端口用于下波,Q为大于1的整数;
该至少N份为N+1份,该至少M*N个光束为M*(N+1)个光束;
该第二开关阵列还包括J行开关单元,J为大于等于1且小于等于M的整数;
该重定向系统还用于从该波长色散系统接收该M*(N+1)个光束中的除该M*N个光束之外剩余的M个光束的子光束,并将该M个光束的子光束重定向至该第二开关阵列中的该J行开关单元,并由该J行开关单元将该M个光束的子光束路由至该第三开关阵列的该至少Q个开关单元,然后由该至少Q个开关单元将从该J行开关单元接收到的光束分别输出至对应的Q个输出端口,其中,该第二开关阵列、该第三开关阵列、该波长色散系统和该重定向系统的布置使得该M个光束的子光束能够路由至该Q个输出端口。
在本发明实施例中,通过增加第三开关阵列,并使用分束器将M个输入端口接收的M个输入光束中的每个光束分成N+1份,将其中N份光束用于维度间交换,将剩下的1份光束用于本地下波,并通过布置可重构光分插复用器中的各组件,使得第一开关阵列、波长色散系统、重定向系统和第二开关阵列的布置能够实现上波的功能,使得分束器、波长色散系统、第二开关阵列和第三开关阵列的布置能够同时实现本地下波以及维度间交换的功能。从而通过设置分束器、以及重复利用第二开关阵列的光交换功能,在单一光学系统中利用三级开关阵列实现本地上波、本地下波以及维度间交换的功能,能够提高可重构光分插复用器的集成度。
首先,下文将对可重构光分插复用器的各器件的功能和结构进行说明。
A1.输入组件
在本发明实施例中,输入端口可以呈一维排列,也可以呈二维排布。其中,M个输入端口用于获取M个维度的光束。该M个维度的光束可以为波分复用(Wavelength Division Multiplex,WDM)光。一束WDM光束可以包括多束(至少两束)子光束,各子光束的中心波长(或者说,各子光束的中 心频点)彼此相异。其中,该M个维度的光束可以是来自不同的外地通信节点(例如,通信链路中的上一跳通信节点)的光束。另外,上述P个输入端口用于获取本地上波的光束,该上行光束可以是单波长的光束,也可以是WDM光。该上行光束可以是发给外地通信节点的光束,也可以是发给本地通信节点的光束,本发明并未特别限定。
另外,上述维度可以指其来源在预设规则下的类别数量(或者说,该可重构光分插复用器所连接的光纤的数量),该预设规则可以是以区域划分,例如,以城市级别、省份级别或国家级别划分;也可以是以实体划分,例如,一个通信节点即为一个维度,或者,一组通信节点即为一个维度。
应理解,以上列举的维度划分方式仅为示例性说明,本发明并未特别限定于此,其他能够区分各通信节点的划分方法均落入本发明的保护范围内。
可选地,在本发明实施例中,输入组件还可以包括输入光纤阵列和输入准直器阵列。
输入光纤阵列可以包括一维排列或二维排列的M+P个输入光纤,其中M个输入光纤用于获取来自各维度的光束,剩余P个光纤用于获取上波的光束。
输入准直器阵列可以包括一维排列或二维排列的的M+P个准直器,分别与该M+P个输入端口对应,用于将该M+P个输入端口输入的光束转换成准直光束。其中,该M+P个准直器与M+P个输入光纤一一对应,一个准直器用于对从所对应的输入光纤输出的光束进行准直,也可以理解为将输入光纤输入的光束转换成平行光,同时扩展光束束腰值,以便于进行后续的光路处理。
A2.波长色散系统
在本发明实施例中,波长色散系统可以利用衍射方式,在子波长交换平面(或者说,俯视平面)将光束分解成波长(或者说,中心频点)相异的各子光束,从而,从波长色散系统输出的各子光束在子波长展开平面方向上辐射式分散。
可选地,在本发明实施例中,波长色散系统还可以用于将第二开关阵列出射的子光束中的目标为同一输出端口的子光束组合成WDM光束,并可以通过重定向系统将传输至对应的输出端口。
可选地,该波长色散系统为至少一个光栅。
例如,该波长色散系统可以为阵列波导光栅、反射光栅、透射光栅、色散棱镜或平面波导光栅。并且,为增加色散效应,可采用多片光栅组合,或者,可以采用调整光路使光束多次经过同一光栅。
A3.分束器
在本发明实施例中,分束器用于将上述M个输入端口接收的M个输入光束中的每个光束分成至少N份,或者,可以理解为将该每个光束广播成至少N份,也可以理解为,将该每个光束复制成至少N个,该至少N个光束中的每个光束包括的子光束的个数与分束之前的原输入光束的包含的子光束的个数相同,最后得到至少N组(每组包括M个光束)光束,或者说,至少M*N个光束。其中,该至少N组中的N组光束(或者说,M*N个光束)可以用于维度间交换。例如,该至少N组可以为N组,该N组可以用于维度间交换,此时不能实现本地下波的功能。又例如,至少N组可以为N+1组,其中N组可以用于维度间交换,剩余的1组光束(或者说,M*1个光束)可以用于本地下波。可选地,该分束器可以为LCOS、空间分束器或平面波导分束器中的一种。
作为示例而非限定,图2和图3分别示出了本发明实施例的两种分束器的示意图。分束器可以采用如图2所示的空间光学分束器和多角度微镜的组合。或者,分束器也可以采用如图3所示的波导分束器和多角度微镜的组合。或者采用其他具有分束功能的器件,本发明实施例并不限于此。
应理解,本发明实施例中,分束器对维度输入的每个光束复制了至少N份,并将其中N份复制的光束传输到后续的光路中用于维度间交换,所以本发明实施例中的可重构光分插复用器具有广播功能。
A4.第一开关阵列
在本发明实施例中,第一开关阵列可以包括至少P个呈一维排布或二维排布的开关单元。P个用于上波的输入端口中的每个输入端口与该至少P个开关单元中的至少一个开关对应。例如,当该至少P个开关单元为P个开关单元时,该至少P个开关单元与P个用于上波的输入端口一一对应。该至少P个开关单元用于对P个上波的光束进行路由,使该P个上波的光束在经过重定向系统处理之后可以传输至第二开关阵列的N行开关单元。本发明实施例对第一开关阵列路由的具体方式不作限定,例如,可以根据P个上波的光束的目标维度输出端口,改变P个光束的光束传播特性(例如,光束出射的 角度),使其按照特定的光路传输至第二开关阵列的N行开关单元。
A5.重定向系统
在本发明实施例中,重定向系统可以对上述P个输入光束的子光束作重定向处理,将上述子光束重定向至第二开关阵列的N行开关单元。该P个输入光束可以是用于上波的光束,该N行开关单元可以分别对应N个用于维度输出的输出端口,该P个输入光束的子光束各自对应N个输出端口的其中一个端口,作为该子光束上波的目标输出端口。重定向系统可以通过改变各子光束的光束传播路线,将各子光束路由至第二开关阵列中与目标输出端口对应的开关单元。
具体地,该重定向系统还可以用于对从波长色散系统接收的至少M*N个光束的子光束作重定向处理,其中,该至少M*N个光束中的M*N个光束可以用于维度间交换,即该M*N个光束的子光束可以用于维度间输出。该重定向系统可以用于将该M*N个光束的子光束重定向至第二开关阵列中的该N行开关单元,
如上文所述,该N行开关单元可以分别对应N个用于维度输出的输出端口,即该第二开关阵列中的该N行开关单元与该N个输出端口一一对应,该第二开关阵列中的该N行开关单元中的每行开关单元中的每个开关单元用于从传输至该每个开关单元的多个子光束中选择一束目标子光束,并将该目标子光束路由至该每行开关单元对应的输出端口。可以理解为,该M*N光束为N组光束,每组光束可以包括M个光束,其中每组光束的子光束被路由至N行开关单元中相应的一行开关单元。换而言之,该N行开关单元中的每行开关单元都可以接收到M个来自各维度输入端口的光束的子光束。然后,该N行开关单元可以将该M*N个光束中的子光束路由至对应的N个用于维度输出的端口。
具体地,该至少M*N个光束可以为M*(N+1)个光束,该M*(N+1)个光束中的剩余的M个光束可以用于本地下波。该重定向系统用于将该M个光束的子光束重定向至第二开关阵列中除上述N行开关单元之外的剩余J行开关单元。其中J为大于等于1小于等于M的整数。当J小于M时,光束在下波时具有波长阻塞特性,当J=M时,光束在下波时不具有波长阻塞特性。
当J=M时,可以理解为,该J行开关单元与M个用于维度输入的输入 端口一一对应,从而该J行开关单元与来自M个维度的M个光束也一一对应。该第二开关阵列中的该J行开关单元中的每行开关单元用于路由与该每行开关单元对应的输入端口的输入光束经过该波长色散系统得到的子光束。该J行开关单元可以将该M个维度的子光束分别路由至第三开关阵列的至少Q个开关单元。应理解,该J行开关单元路由该M个维度的子光束的具体规则可以依据上层配置或远程配置进行,也可以根据其他规则进行,本发明实施例对此不作限定。
可选地,该重定向系统包括至少一个透镜。例如,重定向系统可以包括透镜、凹面镜或者柱透镜。并且,根据所选择的作为重定向系统的器件的差异,可重构光分插复用器的各器件的配置位置相异,或者说,光束在可重构光分插复用器中的传输路径相异。
可选地,作为一个实施例,该重定向系统可以包括第一子重定向系统,该第一子重定向系统用于改变该P个输入光束的子光束和该M*(N+1)个光束的子光束在子波长展开平面方向的光束传播特性,使该P个输入光束的子光束和该M*(N+1)个光束的子光束中相同波长的子光束在该子波长展开平面方向上路由至该第二开关阵列的同一位置(或者说,该第二开关阵列的同一列开关单元)。可选地,该第一子重定向系统可以是一个或多个凸透镜或凹面镜。
可选地,该重定向系统还可以包括第二子重定向系统,该第二子重定向系统用于改变该P个输入光束的子光束和该M*N个光束的子光束在端口交换平面(或者说,侧视平面)方向上的光束传播特性,使该P个输入光束的子光束和该M*N个光束的子光束中对应相同输出端口的子光束在该端口交换平面方上路由至该第二开关阵列的同一位置(或者说,该第二开关阵列的同一行开关单元)。可选地,该第二子重定向系统可以是一个或多个凸透镜或凹面镜。
可选地,该重定向系统还可以包括第三子重定向系统,该第三子重定向系统可以用于改变该剩余的M个光束的子光束的在该端口交换平面方向上的光束传播特性,使该剩余的M个光束的子光束中从相同输入端口输入的光束的子光束在端口交换平面上路由至该第二开关阵列的同一位置(或者说,该第二开关阵列的同一行开关单元)。例如,该第二子重定向系统和该第三子重定向系统可以用同一个或同一组透镜实现。
应理解,该第一子重定向系统用于在子波长平面方向上改变光束的传播特性,该第二子重定向系统和第三子重定向系统用于在端口交换平面上改变光束的传播特性,在具体实现时,该第一、第二以及第三子重定向系统可以由同一个透镜或同一组透镜实现,本发明实施例对此不作具体限定。
A6.第二开关阵列
在本发明实施例中,第二开关阵列可以包括N行开关单元,其中,该第二开关阵列中的每行开关单元可以包括K个开关单元,K个开关单元分别用于处理K个波长的子光束,K可以是M+P个输入端口输入的波分复用信号的最大子波长数。
可选地,该第二开关阵列中的该N行开关单元中的每行开关单元中的每个开关单元用于从传输至该每个开关单元的多个子光束中确定一束目标子光束,并将该目标子光束路由至该每行开关单元对应的输出端口。具体而言,该第二开关阵列中的N行开关单元可以与N个用于维度输出的输出端口一一对应。该N行开关单元可以用于处理维度间交换的光束,该第二开关阵列中的N行开关单元还可以用于处理本地上波的光束。如上文所述,该N行开关单元除了接收来自于M个维度的M*N个光束的子光束之外,还用于接收来自于P个输入端口的本地上波的光束。换而言之,该N行开关单元中的每个开关单元都可以接收来自于M个维度的光束的子光束以及来自于上波端口的光束的子光束。该N行开关单元中的每个开关单元可以从多个子光束中确定一束目标子光束,每行开关单元中的多个开关单元确定的多个目标子光束的组合即是该每行开关单元对应的维度输出端口的输出光束。重定向系统和波长色散系统的布置使得该多个目标子光束最终汇聚成一束WDM光,从对应的输出端口输出。
可选地,该第二开关阵列还可以包括J行开关单元,每行开关单元也可以包括K个开关单元。
具体地,当J小于M时,该第二开关阵列中的该J行开关单元中的每行开关单元用于路由从各输入端口输入的维度光束的子光束,此时,具有波长阻塞特性,即同一波长的子光束在下波时不能同时从任意的下波输出端口输出。J越小,波长阻塞特性越严重。当J=M时,不具有波长阻塞特性,即同一波长的子光束在下波时可以同时从任意的下波输出端口输出。
当J=M时,该第二开关阵列中的该J行开关单元中的每行开关单元用于 路由与该每行开关单元对应的输入端口的输入光束的子光束,该J行开关单元中的每行开关单元中的每个开关单元用于将传输至该每个开关单元的第一子光束路由至该第一子光束对应的输出端口;具体而言,该第二开关阵列中的剩下的J行开关单元可以与M个用于维度输入的输入端口一一对应,该J行开关单元可以用于处理本地下波的光束。该J行开关单元中的用于接收上述M*(N+1)个光束中的剩余的M个光束。也可以理解为,该J行开关单元中的每行开关单元用于接收与该行开关单元对应的维度输入端口的输入光束的子光束。该J行开关单元中的每个开关单元对接收到的第一子光束进行路由,使第一子光束通过光色散系统和重定向系统传输至该第一子光束对应的下波输出端口。从而完成从各维度输入的子光束到本地下波的调度过程。
需要说明的是,在本发明实施例中,第二开关阵列的J行、N行开关单元分别对应M个维度输入端口与N个维度输出端口,而与P个上波端口以及Q个下波端口的个数无关。所以,本发明实施例中的上波端口和下波端口的个数不受第二开关阵列的规模的限制,从而本发明实施例中的上波端口和下波端口的个数可以做到更大的规模。
A7、第三开关阵列
在本发明实施例中,该第三开关阵列可以包括一维排布或二维排布的至少Q个开关单元,上述Q个输出端口中的每个输出单元对应至少Q个开关单元中的至少一开关个单元。例如,当至少Q个输出端口为Q个输出端口时,该至少Q个开关单元与Q个用于下波的输出端口一一对应。该至少Q个开关单元用于处理本地下波的光束。如上文所述,该至少Q个开关单元中的每个开关单元可以接收第二开关阵列的M行开关单元路由的一个或多个子光束。该子光束可以来自不同的维度。该至少Q个开关单元中的每个开关单元可以用于从接收到的一个或多个子光束中选择一个目标子光束,将该目标子光束作为与该开关单元对应的下波输出端口的输出光束,并将该目标子光束路由至对应的输出端口。例如,该至少Q个开关单元中的每个开关单元可以被设置为具有M个光束角度偏折状态,每个光束角度偏折状态对应第二开关阵列的J行开关单元中的其中一行,该至少Q个开关单元可以根据改变光束角度偏折的状态来确定选择特定维度的光束的子光束。
作为示例而非限定,本发明实施例中的开关阵列(例如,第一开关阵列、 第二开关阵列或第三开关阵列)可以为微机电系统MEMS、LCOS或平面波导开关阵列中的一种或多种。
例如,在本发明实施例中,开关阵列可以通过微电子机械系统(MEMS,Micro-Electro-Mechanical System)技术实现,MEMS技术是将几何尺寸或操作尺寸仅在微米、亚微米甚至纳米量级的微机电装置与控制电路高度集成在硅基或非硅基材料上的一个非常小的空间里,构成一个机电一体化的器件或系统。通过MEMS技术实现的开关阵列是通过静电力或其他控制力使微反射镜产生机械运动,从而使打在微反射镜上的光束偏转至任意一个方向。在通过MEMS技术实现本发明的开关阵列的情况下,控制器可以通过控制指令控制微机械结构,以驱动光调制器(微透镜)转动,从而实现光路的偏转,从而实现光束的维度(或者说,传输路径)切换。
再例如,在本发明实施例中,开关阵列可以通过硅基液晶(LCOS,Liquid Crystal On Silicon)技术实现,LCOS技术是利用液晶光栅原理,调整不同波长的光反射角度来达到分离光的目的。由于没有活动部件,LCOS技术具有相当高的可靠性。LCOS技术采用液晶单元折射率变化控制实现反射角变化,可以方便的实现扩展和升级。不同通道对应空间光调制器(液晶)阵列的不同区域,通过调节光斑的相位,来改变光的传输方向,达到切换不同端口及调节衰减的目的。
再例如,在本发明实施例中,开关阵列可以通过液晶(LC,liquid crystal)技术实现,在通过LC技术实现的开关阵列中,入射的光束经过双折射晶体后,分成两个偏振态,其中一路经过半波片后,两路光的偏振态相同,然后打在开关阵列(液晶模组)上,通过调节双折射晶体的电压改变液晶的排列结构(改变晶体内部分子的角度),从而使晶体折射率发生变化,光源以不同角度的光输出。光经过每层液晶都有两个方向可以选择,经过多层液晶层后可以有多个光路可供选择。
再例如,在本发明实施例中,开关阵列可以通过数字光处理(DLP,Digital Light Processing)技术实现,通过DLP技术实现的开关阵列的内部结构与通过MEMS技术实现的光调制器的内部结构相似,通过微透镜的偏转实现光能量的切换。区别在于,DLP微镜转动角度只有几个状态限制输出端口数量。
A8.输出组件
在本发明实施例中,输出组件可以包括N个用于维度输出的维度输出端 口,可选地,输出组件也可以包括Q个用于下波输出的下波输出端口。并且,该N个维度输出端口用于发送N个维度的光束,该光束可以是需要发送至外地通信节点(例如,通信链路中的下一跳通信节点)。该Q个下波输出端口用于输出本地下波的光束。
这里,所谓“下波”,是指光网络节点中需要发送至本地节点的下行光束,该下行光束可以是来自外地通信节点的光束中的子光束,即来自于各个维度的光束中的子光束。
可选地,在本发明实施例中,输出组件还可以包括输出光纤阵列和输出准直器阵列。
输出光纤阵列可以包括一维排列或二维排列的N+Q个输出光纤,其中N个输出光纤用于发送各维度的输出光束,剩余Q个输出光纤用于发送各下波光束。。
输出准直器阵列可以包括一维排列或二维排列的的N个准直器,分别与该N个输出端口对应,用于将准备在该N个输出端口输出的光束转换成准直光束。其中,该N+Q个准直器与N个输出光纤一一对应,一个准直器用于对从所对应的输出光纤输出的光束进行准直,也可以理解为将输出光纤输出的光束转换成准直光束,以便于向输出端口输出光束。
可选地,输出准直器阵列还可以包括一维排列或二维排列的Q个准直器,分别于上述Q个用于下波的端口对应,将准备在该Q个输出端口输出的光束转换成准直光束。
上文阐述了本发明实施例的可重构光分插复用器中的各组成器件以及功能,下文将对本发明实施例的可重构光分插复用器中各器件的配置,或者说,光路设计,进行示例性说明。
图4A至图4E示出了根据本发明实施例的可重构光分插复用器的一个具体实施例。其中,图4A示出了可重构光分插复用器在波长展开平面方向(俯视图)上的示意图,图4B示出了可重构光分插复用器在端口交换平面方向(侧视图)上的示意图。图4C示出了根据本发明实施例的可重构光分插复用器维度间交换的光路示意图。图4D示出了根据本发明实施例的可重构光分插复用器上波的光路示意图。图4E示出了根据本发明实施例的可重构光分插复用器下波的光路示意图。
如图4A至图4E所示,上述第一开关阵列和第三开关阵列可以利用 MEMS1实现,上述第二开关阵列可以利用MEMS2实现。上述波长色散系统可以包括光栅一和光栅二。上述重定向系统可以包括透镜三和透镜四。透镜一和透镜二用于光斑扩束。在输入端和输出端分别包括输入、输出光纤阵列以及输入、输出准直阵列。如图4A所示,输入端包括3*5个输入端口,其中包括3个维度输入端口以及12个上波输入端口,输出端包括3*5个输出端口,其中包括3个维度输出端口以及12个下波输入端口。
如图4B所示,具体地,MEMS1可以对上波输入光束进行路由处理,使得目标为同一输出端口的光束以同一角度出射。分束器将来自各维度的输入光束各复制4份,得到3*4个光束。并且,如图4C所示,其中3*3个光束被路由至MEMS2中的用于维度间交换及下波的的3行开关单元(相当于上述第二开关阵列中的N行开关单元),该用于维度间交换及下波的3行开关单元与3个维度输出端口一一对应。如图4D所示,剩下的3*1份被路由至MEMS2中的用于上波的3行开关单元(相当于上述第二开关阵列中的J行开关单元),该用于上波的3行开关单元与3个维度输入端口一一对应。且分束器还可以对该3*4个光束的出射角度进行处理,使该3*4个光束中目标为相同输出端口的光束在端口交换平面方向上以相同的角度出射。
光栅一和光栅二可以布置为可以将所述3*4个维度输入光束以及12个上波输入光束中的每个光束色散成多个中心波长不同的子波长。
透镜一和透镜二可以用于对输入光束进行光斑扩束。透镜三(相当于上述第二子重定向系统和第三子重定向系统)可以用于对维度输入光束和上波光束进行光路变换,使得在端口交换平面上从MEMS1中以同一角度出射的光束入射至MEMS2的同一位置,也可以理解为传输至MEMS2的同一行开关单元。透镜四(相当于上述第一子重定向系统)可以用于对维度输入光束和上波光束进行光路变换,使得维度输入光束和上波光束中波长相同的子波长在子波长展开平面上传输至MEMS2的同一位置,也可以理解为传输至MEMS2中的同一列开关单元。从而,MEMS1、MEMS2、透镜三和透镜四的布置使得该12个上波输入光束的任意子光束能够路由至该3个维度输出端口中的任意维度输出端口。分束器、MEMS2、透镜三和透镜四的布置使得该3个维度输入端口以及该12个上波端口的输入光束中的任意子光束能够路由至该3个维度输出端口中的任意端口。本发明实施例对可重构光分插复用器内各组件的位置不作具体限定,以能够实现相应的功能为准。例如, 如图4A和图4B所示,MEMS2可以位于透镜三和透镜四的焦平面处。
如图4C所示,MEMS2包括3行用于维度间交换以及上波的开关单元(相当于上述N行开关单元),为了表述方便,可以称之为维度间调度及上波开关单元。MEMS2还包括3行用于下波的开关单元(相当于上述J行开关单元),为了表述方便,可以称之为下波开关单元。其中该3行维度间调度及上波开关单元用于接收上述3*3个来自各维度的光束的子光束以及12个来自各上波端口的光束的子光束。该3行维度间调度及上波开关单元中的每行维度间调度及上波开关单元中的每个维度间调度及上波开关单元处理与之对应的波长的子光束。该3行维度间调度及上波开关单元中的每个开关单元都可以接收3个维度的输入光束的子光束,并且每个维度间调度及上波开关单元也可以接收上波光束的子光束。该每个维度间调度及上波开关单元从该3个维度的输入光束的子光束或上波光束的子光束中选取一束目标子光束,并将该目标子光束路由至与该维度间调度及上波开关单元对应的输出端口。如图4E所示,该3行下波开关单元用于接收剩余的3*1束来自各维度的光束,每行下波开关单元对应一个维度,该3行下波开关单元中的每行下波开关单元中的每个下波开关单元用于根据接收到的子光束的目标下波端口,将接收到的子光束按照特定的角度传输至MEMS1的12个开关单元(相当于上述第三开关阵列的至少Q个开关单元)。
MEMS1中的该12个开关单元与12个下波输出端口一一对应。该12个开关单元可以对MEMS2的3行下波开关单元路由的来自各维度的光束的子光束进行路由。另外MEMS1中还包括3个用于维度输出的开关单元,该3个开关单元与MEMS2中的三行维度间调度及上波开关单元一一对应,并被分别设置为与该三行维度间调度及上波开关单元对应的特定的偏折角度,只允许对应的维度间调度及上波开关单元传输的子光束通过,从而完成维度输出。
图5A和图5B示出了根据本发明实施例的可重构光分插复用器的另一具体实施例。其中,图5A示出了可重构光分插复用器在波长展开平面方向(俯视图)上的示意图,图5B示出了可重构光分插复用器在端口交换平面方向(侧视图)上的示意图。
如图5A和图5B所示,第一开关阵列和第三开关阵列可以采用LCOS1实现,分束器也可以采用LCOS1实现。第二开关阵列可以采用LCOS2实现。 由于LCOS只能处理单一偏振态的光束,所以在可重构光分插复用器中还增加了偏振分束器和半波片,以将光束中相互正交的偏振光转换成单一偏振态的光束,以便于后续光路处理。上述波长色散系统可以用光栅一和光栅二实现。上述重定向系统可以包括透镜三和透镜四。透镜一和透镜二用于扩斑。在输入端和输出端分别包括输入、输出光纤阵列以及输入、输出准直阵列。为了描述的方便和简洁,本发明实例的可重构光分插复用器的具体工作原理和过程可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明实施例中,通过在可重构光分插复用器中设置分束器,使用分束器将M个输入端口接收的M个输入光束中的每个光束分成N+1份,将其中N份光束用于维度间交换,将剩下的1份光束用于本地下波,并通过布置可重构光分插复用器中的各组件,使得第一开关阵列、波长色散系统、重定向系统和第二开关阵列的布置能够实现上波的功能,使得分束器、波长色散系统、第二开关阵列和第三开关阵列的布置能够同时实现本地下波以及维度间交换的功能。从而通过设置分束器、以及重复利用第二开关阵列的光交换功能,在单一光学系统中利用三级开关阵列实现本地上波、本地下波以及维度间交换的功能,能够提高可重构光分插复用器的集成度。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种可重构光分插复用器,其特征在于,包括:
    输入组件,包括M+P个输入端口,其中M个输入端口用于维度输入,P个输入端口用于上波,其中,M、P为大于等于1的整数;
    输出组件,包括N个输出端口,所述N个输出端口用于维度输出,其中,N为大于等于1的整数;
    第一开关阵列,包括至少P个开关单元,所述P个输入端口中的每个输入端口对应所述至少P个开关单元中至少一个开关单元,所述至少P个开关单元,用于从所述P个输入端口接收P个输入光束,并对所述P个输入光束进行路由;
    分束器,用于从所述M个输入端口接收M个输入光束,并将所述M个输入光束中的每个光束分成至少N份,得到至少M*N个光束;
    波长色散系统,用于从所述第一开关阵列接收所述P个输入光束,并对所述P个输入光束进行色散,得到所述P个输入光束的子光束,还用于从所述分束器接收所述至少M*N个光束,并对所述至少M*N个光束进行色散,得到所述至少M*N个光束的子光束;
    第二开关阵列,包括N行开关单元,其中每行开关单元包括K个开关单元,所述K个开关单元一一对应K个波长,所述K个开关单元分别用于路由各自对应的波长的子光束,其中,K为大于1的整数;
    重定向系统,用于从所述波长色散系统接收所述P个输入光束的子光束,并将所述P个输入光束的子光束重定向至所述第二开关阵列的所述N行开关单元,并由所述N行开关单元将所述P个输入光束的子光束路由至所述N个输出端口,其中,所述第一开关阵列、所述第二开关阵列、所述波长色散系统和所述重定向系统的布置使得所述P个输入光束的子光束能够路由至所述N个输出端口;
    其中,所述重定向系统还用于从所述波长色散系统接收所述至少M*N个光束中的M*N个光束的子光束,并将所述M*N个光束的子光束重定向至所述第二开关阵列中的所述N行开关单元,并由所述N行开关单元将所述M*N个光束的子光束路由至所述N个输出端口,其中,所述分束器、所述第二开关阵列、所述波长色散系统和所述重定向系统的布置使得所述M*N个光束的子光束能够路由至所述N个输出端口。
  2. 如权利要求1所述的可重构光分插复用器,其特征在于,还包括:第三开关阵列,包括至少Q个开关单元,所述至少Q个输出端口中的每个输出端口对应所述至少Q个开关单元中的至少一个开关单元;
    所述输入组件还包括Q个输出端口,所述Q个输出端口用于下波,Q为大于1的整数;
    所述至少N份为N+1份,所述至少M*N个光束为M*(N+1)个光束;
    所述第二开关阵列还包括J行开关单元,J为大于等于1且小于等于M的整数;
    所述重定向系统还用于从所述波长色散系统接收所述M*(N+1)个光束中的除所述M*N个光束之外剩余的M个光束的子光束,并将所述M个光束的子光束重定向至所述第二开关阵列中的所述J行开关单元,并由所述J行开关单元将所述M个光束的子光束路由至所述第三开关阵列的所述至少Q个开关单元,然后由所述至少Q个开关单元将从所述J行开关单元接收到的光束分别输出至对应的Q个输出端口,其中,所述第二开关阵列、所述第三开关阵列、所述波长色散系统和所述重定向系统的布置使得所述M个光束的子光束能够路由至所述Q个输出端口。
  3. 如权利要求2所述的可重构光分插复用器,其特征在于,J=M,所述第二开关阵列中的所述J行开关单元与所述M个输入端口一一对应,所述第二开关阵列中的所述J行开关单元中的每行开关单元用于路由与所述每行开关单元对应的输入端口的输入光束经过所述波长色散系统得到的子光束。
  4. 如权利要求1-3中任一项所述的可重构光分插复用器,其特征在于,所述第二开关阵列中的所述N行开关单元与所述N个输出端口一一对应,所述第二开关阵列中的所述N行开关单元中的每行开关单元中的每个开关单元用于从传输至所述每个开关单元的多个子光束中选择一束目标子光束,并将所述目标子光束路由至所述每行开关单元对应的输出端口。
  5. 如权利要求1-4中任一项所述的可重构光分插复用器,其特征在于,所述重定向系统包括第一子重定向系统,所述第一子重定向系统用于改变所述P个输入光束的子光束和所述至少M*N个光束的子光束在子波长展开平面方向的光束传播特性,使所述P个输入光束的子光束和所述至少M*N个光束的子光束中相同波长的子光束在所述子波长展开平面方向上路由至所述第二开关阵列的同一位置;
    所述重定向系统还包括第二子重定向系统,所述第二子重定向系统用于改变所述P个输入光束的子光束和所述M*N个光束的子光束在端口交换平面方向上的光束传播特性,使所述P个输入光束的子光束和所述M*N个光束的子光束中对应相同输出端口的子光束在所述端口交换平面方上路由至所述第二开关阵列的同一位置。
  6. 如权利要求2或3所述的可重构光分插复用器,其特征在于,所述重定向系统包括第三子重定向系统,所述第三子重定向系统用于改变所述剩余的M个光束的子光束的在所述端口交换平面方向上的光束传播特性,使所述剩余的M个光束的子光束中从相同输入端口输入的光束的子光束在所述端口交换平面方向上路由至所述第二开关阵列的同一位置。
  7. 如权利要求1-6中任一项所述的可重构光分插复用器,其特征在于,所述分束器为硅基液晶LCOS、空间分束器或平面波导分束器中的一种。
  8. 如权利要求1-7中任一项所述的可重构光分插复用器,其特征在于,所述第一开关阵列、所述第二开关阵列为微机电系统MEMS、LCOS或平面波导开关阵列中的一种或多种。
  9. 如权利要求1-8中任一项所述的可重构光分插复用器,其特征在于,K为所述M+P个输入端口输入的波分复用信号的最大子波长数。
  10. 如权利要求1-9中任一项所述的可重构光分插复用器,其特征在于,所述波长色散系统包括至少一个光栅。
  11. 如权利要求1-10中任一项所述的可重构光分插复用器,其特征在于,所述重定向系统包括至少一个透镜。
  12. 如权利要求1-11中任一项所述的可重构光分插复用器,其特征在于,还包括:
    输入准直器阵列,包括M+P个准直器,分别与所述M+P个输入端口对应,用于将所述M+P个输入端口输入的光束转换成准直光束。
    输出准直器阵列,包括N个准直器,分别与所述N个输出端口对应,用于将准备在所述N个输出端口输出的光束转换成准直光束。
PCT/CN2015/095491 2015-11-25 2015-11-25 可重构光分插复用器 WO2017088115A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580084340.XA CN108352921B (zh) 2015-11-25 2015-11-25 可重构光分插复用器
PCT/CN2015/095491 WO2017088115A1 (zh) 2015-11-25 2015-11-25 可重构光分插复用器
ES15909027T ES2923645T3 (es) 2015-11-25 2015-11-25 Multiplexor de adición-extracción óptica reconfigurable
EP15909027.3A EP3364575B1 (en) 2015-11-25 2015-11-25 Reconfigurable optical add-drop multiplexer
US15/988,760 US10620376B2 (en) 2015-11-25 2018-05-24 Reconfigurable optical add/drop multiplexer
US16/836,488 US11067752B2 (en) 2015-11-25 2020-03-31 Reconfigurable optical add/drop multiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/095491 WO2017088115A1 (zh) 2015-11-25 2015-11-25 可重构光分插复用器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/988,760 Continuation US10620376B2 (en) 2015-11-25 2018-05-24 Reconfigurable optical add/drop multiplexer

Publications (1)

Publication Number Publication Date
WO2017088115A1 true WO2017088115A1 (zh) 2017-06-01

Family

ID=58762776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095491 WO2017088115A1 (zh) 2015-11-25 2015-11-25 可重构光分插复用器

Country Status (5)

Country Link
US (2) US10620376B2 (zh)
EP (1) EP3364575B1 (zh)
CN (1) CN108352921B (zh)
ES (1) ES2923645T3 (zh)
WO (1) WO2017088115A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149165A (zh) * 2018-02-13 2019-08-20 华为技术有限公司 一种光交叉连接装置
CN110780388A (zh) * 2018-07-31 2020-02-11 华为技术有限公司 一种波长交换装置及系统
CN111856658A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种光通信的装置和波长选择方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7416729B2 (ja) * 2018-06-19 2024-01-17 ベクトン・ディキンソン・アンド・カンパニー 検出器アレイのための可変多重化スイッチ、システム、およびその使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833031A (zh) * 2012-09-13 2012-12-19 电子科技大学 一种基于ofdma的可重构光分插复用器
CN102868476A (zh) * 2012-09-12 2013-01-09 武汉邮电科学研究院 基于波长选择交叉连接矩阵的roadm系统
CN103023599A (zh) * 2011-09-20 2013-04-03 武汉邮电科学研究院 可重构光分插复用器和可重构光分插复用方法
CN103609041A (zh) * 2013-06-21 2014-02-26 华为技术有限公司 光通信的方法和装置
US9008514B2 (en) * 2013-06-22 2015-04-14 Mark E. Boduch Method and apparatus for construction of compact optical nodes using wavelength equalizing arrays

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141224B (zh) * 2007-09-29 2012-07-04 中兴通讯股份有限公司 一种roadm系统及波长选择方法及其装置
CN104350698B (zh) * 2012-06-08 2018-09-07 瑞典爱立信有限公司 光路由选择装置和方法
US9304257B2 (en) * 2014-03-31 2016-04-05 Lumentum Operations Llc Wavelength selective switch using orthogonally polarized optical beams
CN105409140B (zh) * 2014-04-22 2017-12-08 华为技术有限公司 光通信的装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023599A (zh) * 2011-09-20 2013-04-03 武汉邮电科学研究院 可重构光分插复用器和可重构光分插复用方法
CN102868476A (zh) * 2012-09-12 2013-01-09 武汉邮电科学研究院 基于波长选择交叉连接矩阵的roadm系统
CN102833031A (zh) * 2012-09-13 2012-12-19 电子科技大学 一种基于ofdma的可重构光分插复用器
CN103609041A (zh) * 2013-06-21 2014-02-26 华为技术有限公司 光通信的方法和装置
US9008514B2 (en) * 2013-06-22 2015-04-14 Mark E. Boduch Method and apparatus for construction of compact optical nodes using wavelength equalizing arrays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364575A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149165A (zh) * 2018-02-13 2019-08-20 华为技术有限公司 一种光交叉连接装置
CN110149165B (zh) * 2018-02-13 2021-06-15 华为技术有限公司 一种光交叉连接装置
US11953732B2 (en) 2018-02-13 2024-04-09 Huawei Technologies Co., Ltd. Optical cross-connect
CN110780388A (zh) * 2018-07-31 2020-02-11 华为技术有限公司 一种波长交换装置及系统
US11372163B2 (en) 2018-07-31 2022-06-28 Huawei Technologies Co., Ltd. Wavelength switching apparatus and system
CN111856658A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种光通信的装置和波长选择方法
CN111856658B (zh) * 2019-04-30 2022-03-25 华为技术有限公司 一种光通信的装置和波长选择方法
US11728919B2 (en) 2019-04-30 2023-08-15 Huawei Technologies Co., Ltd. Optical communications apparatus and wavelength selection method

Also Published As

Publication number Publication date
US20180267247A1 (en) 2018-09-20
US11067752B2 (en) 2021-07-20
EP3364575A4 (en) 2018-11-07
CN108352921A (zh) 2018-07-31
EP3364575A1 (en) 2018-08-22
ES2923645T3 (es) 2022-09-29
EP3364575B1 (en) 2022-05-04
US20200225417A1 (en) 2020-07-16
CN108352921B (zh) 2019-12-17
US10620376B2 (en) 2020-04-14

Similar Documents

Publication Publication Date Title
US10996399B2 (en) Space-division multiplexed reconfigurable, wavelength selective switch
JP4678530B2 (ja) 波長操作システムおよび方法
US9641917B2 (en) Optical communications apparatus and method
JP6609789B2 (ja) 波長選択スイッチアレイ
JP6726671B2 (ja) マルチポイント、コンテンションレス波長選択スイッチ(wss)
US9158072B2 (en) Multicast optical switch
WO2015024238A1 (zh) 一种波长选择开关
US11728919B2 (en) Optical communications apparatus and wavelength selection method
US7529441B2 (en) Wavelength routing optical switch
US11067752B2 (en) Reconfigurable optical add/drop multiplexer
JP2018504007A (ja) カラーレス、ディレクションレスおよびコンテンションレスのネットワークノード
CN107577010B (zh) 一种双波长选择开关
JP6533743B2 (ja) 光クロスコネクト装置
US9369783B2 (en) Wavelength-selective cross-connect device having astigmatic optics
CN108702234B (zh) 可重构光分插复用器
CN108897102B (zh) 一种双波长选择开关
JP5651904B2 (ja) N×n波長選択スイッチ
WO2021000616A1 (zh) 一种波长选择开关以及相关装置
US11899244B2 (en) Wavelength selective switch
WO2019157811A1 (zh) 一种光交叉连接装置
CN117031636B (zh) 一种Twin结构的波长选择开关及智能光网络器件
WO2024093330A1 (zh) 光交换装置和光交换方法
CN117075266A (zh) 一种wss、roadm、光传输系统和光信号的传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015909027

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE