WO2020107861A1 - 一种基于LCoS的波长选择开关 - Google Patents

一种基于LCoS的波长选择开关 Download PDF

Info

Publication number
WO2020107861A1
WO2020107861A1 PCT/CN2019/091120 CN2019091120W WO2020107861A1 WO 2020107861 A1 WO2020107861 A1 WO 2020107861A1 CN 2019091120 W CN2019091120 W CN 2019091120W WO 2020107861 A1 WO2020107861 A1 WO 2020107861A1
Authority
WO
WIPO (PCT)
Prior art keywords
output ports
wss
order
layer
diffraction
Prior art date
Application number
PCT/CN2019/091120
Other languages
English (en)
French (fr)
Inventor
毛磊
宗良佳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3120400A priority Critical patent/CA3120400C/en
Priority to EP19891182.8A priority patent/EP3869247A4/en
Publication of WO2020107861A1 publication Critical patent/WO2020107861A1/zh
Priority to US17/329,426 priority patent/US11307354B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3524Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being refractive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35543D constellations, i.e. with switching elements and switched beams located in a volume
    • G02B6/35581xN switch, i.e. one input and a selectable single output of N possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0026Construction using free space propagation (e.g. lenses, mirrors)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0049Crosstalk reduction; Noise; Power budget

Definitions

  • This application relates to the field of optical communications, and in particular to a wavelength selective switch based on an LCoS (Liquid Crystal on Silicon) optical switching engine.
  • LCoS Liquid Crystal on Silicon
  • ROADM Reconfigurable Add-Drop Multiplexer, a reconfigurable optical add-drop multiplexer
  • ROADM requires a considerable number of WSS (Wavelength Selective Switches) to optically interconnect the input and output ports of upstream and downstream modules and other nodes.
  • WSS Widelength Selective Switches
  • MEMS Micro-Electro-Mechanical System
  • LCoS The working principle of LCoS is to load different voltages on different pixels of LCoS. Due to the birefringence effect of liquid crystal, different voltages will correspond to different amounts of phase retardation, thus forming a blazed grating (Blazed grating) )Structure. Because the diffraction angle of the blazed grating depends on the grating period of the blazed grating, it is only necessary to change the grating period corresponding to different positions on the LCoS, that is, the diffraction angle of the incident light can be controlled so that the diffracted light is output at different ports of the WSS, thereby achieving wavelength selection Switch function.
  • FIG. 1 is a schematic diagram of a WSS structure.
  • FIG. 1 is a schematic diagram for explaining the cause of crosstalk, and the complete structure of WSS is not completely drawn.
  • the light incident from the input port undergoes a series of processing in the black frame (which may include deflection processing, demultiplexing and multiplexing processing, etc.), and then enters the LCoS panel.
  • the corresponding pixels on the LCoS will be required according to the corresponding configuration.
  • the +1st order diffracted light is diffracted to the corresponding output port.
  • light of other diffraction orders may enter other output ports.
  • these diffracted lights such as 0th order, -1st order, +2nd order, etc. enter the corresponding input port, they may cause crosstalk of the subsequent optical link.
  • +1 order diffracted light needs to be output from output port 3
  • several other diffraction orders may be output as crosstalk light from several other ports, thereby forming co-frequency crosstalk, and once this part of the signal enters After the corresponding output port is difficult to eliminate, it will affect the system performance.
  • embodiments of the present invention provide a wavelength selective switch WSS, which can effectively improve the number of output ports and the isolation performance.
  • an embodiment of the present invention provides a wavelength selective switch WSS including an optical fiber array and a liquid crystal on silicon LCoS panel.
  • the optical fiber array includes multiple ports, and the multiple ports include an input port and multiple An output port, the input port is used to receive a light beam, the light beam is diffracted onto the output port through the LCoS panel, the diffraction orders generated by the diffraction are on a straight line, and the multiple output ports are used
  • the plurality of output ports are arranged in one or more layers, and at least one of the one or more output ports is arranged Arrangement methods include:
  • the centers of the output ports are distributed along a curve, and the straight line connecting the centers of the two output ports on the curve does not pass through the input port, and the straight line passed by each order of the diffraction order has only one intersection with the curve.
  • the diffraction order at the intersection point is the strongest energy order, and an output port is arranged at the intersection point.
  • the curve is a part of a circle, and the circle meets the following conditions:
  • the curve is a part of an ellipse, and the ellipse meets the following conditions:
  • the equation expression of the ellipse in the two-dimensional rectangular coordinate system is Where x and y are the coordinates of the point on the ellipse in the two-dimensional rectangular coordinate system, a and b are constants, a is not equal to b and a is greater than 0, b is greater than 0; the two-dimensional rectangular coordinate system is at the output port Rectangular coordinate system with the input port as the center.
  • a third possible implementation manner of the first aspect in order to ensure that the straight line connecting any two output port centers on the curve cannot After the input port, a space is left at the end of the curve, and no output port is arranged at the space, then the straight line passing through the input port has at most one intersection with the curve.
  • the output ports are arranged in multiple layers, and the multilayer output ports In which, the output port of one layer intersects the straight line through which the diffraction orders of each order pass, and the diffraction order at the intersection point is the strongest order among the diffraction orders of each order, and the other single-layer arrangement Between adjacent diffraction orders in the diffraction orders of the orders.
  • the output ports are arranged in multiple layers, and the multilayer output ports
  • the output ports of each layer are the same or different, and the output ports of each layer are the same.
  • the output ports of each layer are the same as the output ports of other single layers.
  • the layered output ports are arranged differently, including that there is at least one layer of output ports arranged in the multilayered arrangement which is different from other single layers.
  • each single-layer output port in the multi-layer output port is Layer output ports do not intersect.
  • the WSS further includes a deflection processing component, a reflection component, and a demultiplexer Components, lens components;
  • the deflection processing component includes a beam deformation and deflection conversion assembly,
  • the lens component includes a lens or a combination of multiple lenses, and
  • the demultiplexing and combining component includes a grating.
  • the WSS further includes a collimator array, and the collimator array Located behind the optical fiber array, it is used to collimate the light incident from the input port, and the light passing through the collimator array enters the deflection processing part.
  • the randomly polarized light beam incident from the collimator array passes through the The deflection processing component is converted into linearly polarized light, which is then incident on the grating after the beam expansion of the lens component; the light diffracted from the grating is incident on different regions on the LCoS panel through the lens component ,
  • the direction of light reflection at different wavelengths can be controlled separately; the light output from the LCoS panel is reflected by the reflecting member, and then passes through the lens member, the The grating and the polarization processing component are finally input to the output port of the collimator array.
  • an embodiment of the present invention provides a wavelength selective switch WSS including an optical fiber array and a liquid crystal on silicon LCoS panel.
  • the optical fiber array includes multiple ports, and the multiple ports include an input port and multiple An output port, the input port is used to receive a light beam, the light beam is diffracted onto the output port through the LCoS panel, the diffraction orders generated by the diffraction are on a straight line, and the multiple output ports are used
  • the plurality of output ports are arranged in one or more layers, and at least one of the one or more output ports is arranged Arrangement methods include:
  • the centers of the output ports are distributed along a combination line, and the combination line includes a line segment.
  • the straight line connected by the centers of the two output ports on the combination line cannot pass through the input port, and the straight line passed by each order of the diffraction order and the combination
  • the line has one and only one intersection point, the diffraction order at the intersection point position is the strongest energy order, and an output port is arranged at the intersection point position.
  • the combined line further includes a curve connected to the line segment.
  • the curve is a part of a circle, and the circle satisfies the following conditions:
  • the curve is a part of an ellipse, and the ellipse satisfies the following conditions:
  • the equation expression of the ellipse in the two-dimensional rectangular coordinate system is Where x and y are the coordinates of the point on the ellipse in the two-dimensional rectangular coordinate system, a and b are constants, a is not equal to b and a is greater than 0, b is greater than 0; the two-dimensional rectangular coordinate system is at the output port Rectangular coordinate system with the input port as the center.
  • the fourth possible implementation manner of the second aspect in order to ensure that the straight line connected to the center of any two output ports on the combination line cannot pass through For the input port, leave a space at the end of the combination line, and the output port is not arranged at this space. Then, the straight line passing through the input port has at most one intersection with the combination line.
  • the output ports are arranged in multiple layers, and the multilayer output ports In which, the output port of one layer intersects the straight line through which the diffraction orders of each order pass, and the diffraction order at the intersection point is the strongest order among the diffraction orders of each order, and the other single-layer arrangement Between adjacent diffraction orders in the diffraction orders of the orders.
  • the output ports are arranged in multiple layers, and the multilayer output ports
  • the output ports of each layer are the same or different, and the output ports of each layer are the same.
  • the output ports of each layer are the same as the output ports of other single layers.
  • the layered output ports are arranged differently, including that there is at least one layer of output ports arranged in the multilayered arrangement which is different from other single layers.
  • each single-layer output port in the multi-layer output port is Layer output ports do not intersect.
  • the WSS further includes a deflection processing component, a reflection component, and a demultiplexed multiplexer Components, lens components;
  • the deflection processing component includes a beam deformation and deflection conversion assembly,
  • the lens component includes a lens or a combination of multiple lenses, and
  • the demultiplexing and combining component includes a grating.
  • the WSS further includes a collimator array, and the collimator array Located behind the optical fiber array, it is used to collimate the light incident from the input port, and the light passing through the collimator array enters the deflection processing part.
  • the randomly polarized light beam incident from the collimator array passes through the The deflection processing component is converted into linearly polarized light, which is then incident on the grating after the beam expansion of the lens component; the light diffracted from the grating is incident on different regions on the LCoS panel through the lens component ,
  • the direction of light reflection at different wavelengths can be controlled separately; the light output from the LCoS panel is reflected by the reflecting member, and then passes through the lens member, the The grating and the polarization processing component are finally input to the output port of the collimator array.
  • An embodiment of the present invention provides a wavelength selective switch WSS based on an LCoS optical switching engine, and the output port arrangement scheme of the optical fiber array adopted by the WSS includes the output port centers distributed along a curve or along a combination line including line segments, The straight line connected to the center of any two output ports on this curve or combination line cannot pass through the input port; the light beam received from the input port is diffracted onto the output port through the LCoS panel.
  • the curve or line segment intersects, and there is only one intersection point.
  • the output port at the intersection point can obtain the strongest energy level, and other crosstalk levels cannot enter the adjacent output port, which effectively improves the isolation performance; at the same time, the output port is along With the arrangement of the curve or combination line, the number of output ports can be effectively increased, and the practicability is strong.
  • FIG. 2 is a schematic structural diagram of a WSS provided by an embodiment of the present invention.
  • 3a is a schematic diagram of linear bilateral arrangement of output ports of a WSS fiber array based on LCoS in the prior art
  • FIG. 3b is a schematic diagram of linear unilateral arrangement of output ports of a WSS fiber array based on LCoS in the prior art
  • FIG. 4 is a schematic diagram of the output port arrangement of the present invention and a prior art LCoS-based WSS fiber array provided by the first embodiment of the present invention
  • FIG. 5 is a schematic diagram of the output ports of a single-layer WSS fiber array based on LCoS according to the second embodiment of the present invention arranged along a curve;
  • FIG. 6 is a schematic diagram of the output ports of a single-layer WSS fiber array based on LCoS provided along the combined line provided by the third embodiment of the present invention.
  • FIG. 7 is a schematic diagram of output ports of another single-layer WSS fiber array based on LCoS arranged along a combination line according to a third embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a multi-layer arrangement of output ports based on LCoS provided by a fourth embodiment of the present invention.
  • connection in the embodiment of the present invention refers to the connection on the optical path.
  • specific optical device may not necessarily have a physical contact relationship of substantial contact, but these optical devices The spatial location and their own device characteristics make them form a connection relationship on the optical path.
  • LCoS-based WSS mainly includes an optical fiber array for input and output, a deflection processing part for deflection processing, a reflection part for reflecting light, and a lens part for focusing light, for demultiplexing Wave splitting and combining components are used to deflect the optical path and switch the LCoS panel.
  • the WSS may also include a collimator array for collimating light after the optical fiber array. Collimation is to turn divergent light into collimated light.
  • the deflection processing component may include a beam deformation and polarization conversion component to allow the light spot to form a desired shape into the optical path at a specific angle.
  • the lens component may be a lens or a combination of multiple lenses, and the deflecting optical path makes the optical path meet the size limit of the actual device.
  • the demultiplexing and combining component may be a grating.
  • the randomly polarized light beam incident from the fiber collimator array is first converted into linearly polarized light by the polarization conversion component, and then is incident on the diffraction grating after the beam expansion effect of the lens component, and the linearly polarized light is diffracted and then enters the LCoS panel
  • the different directions of the light can be controlled separately.
  • the reflection then passes through the lens component, diffraction grating, and polarization processing component, and finally is input to the output port of the collimator array.
  • Liquid crystals in different areas on the LCoS chip can individually control the light signal incident on that area, and LSS-based WSS devices can switch any input wavelength to any output port.
  • Fig. 2 is only a schematic diagram. In fact, the light emitted from the lens component is parallel light rather than scattered light. Fig. 2 is only to illustrate that each wavelength is spread in the horizontal direction and the corresponding light rays are schematically drawn.
  • WSS based on LCoS is a mature technology. In the embodiment of the present invention, only the fiber array part that is changed from the traditional WSS is described in detail, and other known components and positional relationships are not described in detail. At the same time, for other LCoS-based WSS than FIG. 2, the embodiments of the present invention are also applicable, and only the corresponding output port arrangement needs to be changed accordingly, and the functions and positional relationships of other WSS components can be maintained as they are. . In addition, for the WSS of other structures that may appear in the future, the improved part of the output port in the embodiment of the present invention is also applicable.
  • WSS based on LCoS can achieve Flexgrid filtering of the spectral signal, however, when using LCoS as the optical engine to load the grating, multiple diffraction orders will be generated. Among them, the main light intensity level is +1 level, which is output as output light at the destination output port. At the same time, other levels of light will be output as crosstalk signals from other ports, causing the same frequency crosstalk effect between WSS ports.
  • the size of the crosstalk is usually above -25dB, and the crosstalk requirement of the system for a single WSS is usually ⁇ -30dB or even lower. Therefore, for WSS based on LCoS, it is necessary to find a method to suppress crosstalk.
  • Fig. 3a is a schematic diagram of linear bilateral arrangement of output ports of a WSS fiber array based on LCoS in the prior art
  • Fig. 3b is a schematic diagram of linear unilateral arrangement of output ports of a WSS fiber array based on LCoS in the prior art.
  • the method used to maintain higher isolation is to change the linear bilateral arrangement of the output ports of the original WSS fiber array shown in Figure 3a to the figure The linear unilateral arrangement shown in 3b.
  • the diffraction order of the gratings at all levels is symmetrical with the input port (0th order) as the center, and the +1st order is the target order, which will have the largest energy distribution, so divide + Levels other than level 1 are all crosstalk levels.
  • level 0 is in the middle of the current linear arrangement, and there will be crosstalk levels on both sides of level 0.
  • the port mode arranges all output ports on the zero-order side, avoiding all cross-talk light of negative orders.
  • the power difference of each channel must not be too large. It is required that LCoS can flexibly control the power of each channel. As far as possible, the 96 channels of the entire C-band are controlled to a similar power level, and then they can be attenuated The energy is transferred to the reverse side of level 0, that is, the secondary side of the negative level, which reserves operating space for the LCoS control algorithm.
  • the insertion loss of LCoS is positively related to the diffraction deflection angle, that is, the larger the diffraction deflection angle, the greater the insertion loss. Therefore, once the insertion loss baseline is determined, the range of diffraction deflection angles that LCoS can support is also determined. For the linear bilateral arrangement and the linear unilateral arrangement of the output ports, under the same insertion loss baseline, the diffraction deflection angles supported by the LCoS are the same, then within the limited diffraction deflection angle range, use the output port linear unilateral The arrangement scheme will result in only half the number of output ports under the linear bilateral arrangement.
  • FIG. 4 is a schematic diagram of a comparison between an output port arrangement scheme of the present invention and a prior art LCoS-based WSS optical fiber array provided by the first embodiment of the present invention.
  • the arrangement of output ports adopted in the prior art is linear distribution (ports are indicated by boxes), and the input port (level 0) is located at the center or at one end. Establish a two-dimensional rectangular coordinate system centered on the input port (0th order).
  • the light beam received by the input port is diffracted onto the output port through the LCoS panel.
  • the diffraction orders generated by the diffraction are symmetrical about the input port and are in a line Straight line.
  • the zero-order main diffraction of the amplitude grating diffraction has no dispersion and cannot be used for spectral analysis, but it occupies a large part of the total energy.
  • the energy contained in the main maximum of the high-order spectrum used for spectral analysis is too small (that is, the diffraction efficiency of the high-order sequence is low).
  • the blazed grating controls the shape of the groove to introduce additional phases to transfer zero-order energy to other stages. At the same level, the blazed grating only produces maximum light intensity at the blazed wavelength.
  • FIG. 4 shows a layout scheme of the output ports of the WSS fiber array based on LCoS provided by the first embodiment of the present invention (the circles represent the ports)-the center of the output ports Arranged in an arc, the arc is a curve.
  • the straight line connected to the center of any two output ports on the arc arrangement does not pass through the input port, so the straight line passing through the input port has at most one intersection point with the arc.
  • the light beam received from the input port is diffracted onto the output port through the LCoS panel, and the diffraction orders generated by the diffraction are symmetrical about the input port and pass through a straight line (represented by a dotted line in FIG. 4), which intersects the arc , And there is only one intersection point, the diffraction order at the intersection point is the +1 order, that is, the energy of the diffraction order of the order is the strongest order, and an output port is arranged at the intersection point to obtain This energy is the strongest order.
  • the output ports are arranged along the arc to support a larger number of output ports.
  • the arc is part of a circle or ellipse (only the case where the arc is part of a circle is shown in FIG. 4).
  • the ellipse satisfies the equation expression in the two-dimensional rectangular coordinate system as Where x and y are the coordinates of the point on the ellipse in the two-dimensional rectangular coordinate system, a and b are constants, a is not equal to b and a is greater than 0, and b is greater than 0.
  • the straight line passing through the input port is The combination line has at most one intersection.
  • the second embodiment of the present invention provides a wavelength selective switch WSS.
  • WSS wavelength selective switch
  • FIG. 5 is a single-layer WSS based on LCoS provided by the second embodiment of the present invention.
  • the schematic diagram of the output ports of the optical fiber array arranged along the curve only one case is given as an example, in principle, as long as all the curves satisfy the following requirements.
  • the WSS provided in this embodiment includes an optical fiber array and a liquid crystal on silicon LCoS panel.
  • the optical fiber array includes a plurality of ports including an input port and a plurality of output ports.
  • the input port is used to receive a light beam, and the light beam passes through
  • the LCoS panel diffracts onto the output port, and the diffraction orders generated by the diffraction are symmetrical about the input port and on a straight line (indicated by a dotted line in FIG. 5); multiple output ports are used to obtain the diffraction orders of the respective orders
  • the strongest order in the energy ie the +1 order in Figure 5
  • the centers of multiple output ports are distributed along the curve.
  • the straight line connected to the center of any two output ports on the curve does not pass through the input port.
  • the straight line passed by each order of diffraction order has only one intersection point with the curve, and the position of the intersection point.
  • the diffraction order of is the strongest energy order among the diffraction orders of the orders, and an output port needs to be arranged at the intersection point.
  • the curve includes an arc shape, and the arc shape refers to the first embodiment, and details are not repeated here.
  • the WSS provided in this embodiment further includes a deflection processing component, a reflection component, a demultiplexing and combining component, and a lens component;
  • the deflection processing component includes a beam deformation and deflection conversion assembly, and the lens component includes one lens or multiple lenses
  • the demultiplexing and combining component includes a grating.
  • the WSS provided in this embodiment further includes a collimator array, which is located behind the optical fiber array and used to collimate the light incident from the input port, and the light passing through the collimator array enters the deflection processing component.
  • a collimator array which is located behind the optical fiber array and used to collimate the light incident from the input port, and the light passing through the collimator array enters the deflection processing component.
  • the randomly polarized light beam incident from the collimator array is converted into linearly polarized light by the deflection processing component, and then is incident on the grating after the beam expansion effect of the lens component;
  • the light diffracted from the grating is incident on different regions on the LCoS panel through the lens component, and the light reflection directions of different wavelengths are separately controlled by controlling the liquid crystal phases of the different regions on the LCoS panel;
  • the light output from the LCoS panel is reflected by the reflection component, then passes through the lens component, the grating, and the polarization processing component, and is input to the output port of the collimator array.
  • the third embodiment of the present invention provides a wavelength selective switch WSS.
  • the WSS includes an optical fiber array and a liquid crystal on silicon LCoS panel.
  • the optical fiber array includes a plurality of ports including an input port and a plurality of output ports.
  • the input port is used to receive a light beam, and the light beam is diffracted by the LCoS panel
  • each order of diffraction generated by the diffraction is symmetrical about the input port and on a straight line
  • the multiple output ports are used to obtain the strongest energy order among the orders of diffraction
  • multiple outputs The ports are arranged in one layer or in multiple layers, and at least one of the output ports in the one or more layers of output ports includes:
  • FIG. 6 is a schematic diagram of the output ports of a single-layer WSS fiber array based on LCoS according to the third embodiment of the present invention arranged along the combination line ,
  • the combined line includes line segments, the straight line connected to the center of any two output ports on the combined line cannot pass through the input port, and the straight line (different dotted line in FIG. 6) passed by each order of diffraction order has only one and the combined line
  • the intersection point, the diffraction order at the intersection point position is the strongest order among the diffraction orders of each order, and an output port is arranged at the intersection point position.
  • FIG. 7 is a schematic diagram of output ports of another single-layer WSS optical fiber array based on LCoS arranged in a third embodiment of the present invention along a combination line, which may further include A curve connected to a line segment, the curve includes an arc shape, and the arc shape refers to the first embodiment, and details are not repeated here.
  • FIGS. 6 and 7 in order to ensure that the straight line connected to the center of any two output ports on the combination line cannot pass through the input port, in FIGS. 6 and 7, a space is left at the end of the combination line, and no output port is arranged at the space, then The line passing through the input port has at most one intersection with the combined line.
  • the WSS provided in this embodiment further includes a deflection processing component, a reflection component, a demultiplexing and combining component, and a lens component;
  • the deflection processing component includes a beam deformation and deflection conversion assembly, and the lens component includes a lens or a plurality of
  • the demultiplexing and combining component includes a grating.
  • the WSS provided in this embodiment further includes a collimator array.
  • the collimator array is located behind the optical fiber array and is used to collimate the light incident from the input port. The light passing through the collimator array enters the deflection processing component.
  • the randomly polarized light beam incident from the collimator array is converted into linearly polarized light by the deflection processing component, and then is incident on the grating after the beam expansion effect of the lens component;
  • the light diffracted from the grating is incident on different regions on the LCoS panel through the lens component, and the light reflection directions of different wavelengths are separately controlled by controlling the liquid crystal phases of the different regions on the LCoS panel;
  • the light output from the LCoS panel is reflected by the reflection component, then passes through the lens component, the grating, and the polarization processing component, and is input to the output port of the collimator array.
  • FIG. 8 is a schematic diagram of a multi-layer arrangement of output ports of a WSS fiber array based on LCoS provided by a fourth embodiment of the present invention.
  • the light beam received from the input port is diffracted onto the output port through the LCoS panel, and the diffraction orders generated by the diffraction are in a straight line.
  • the output ports of the WSS fiber array are arranged in multiple layers, the output ports of each layer are arranged in the same way or differently.
  • the output ports of each layer are arranged in the same way, including the arrangement of the output ports of each layer and other single
  • the output ports of the layers are arranged in the same way, and the output ports of each layer are arranged in different ways.
  • At least one layer of the output ports in the multilayer arrangement is arranged differently from other single layers.
  • the layout of each single-layer output port in the multi-layer output port can adopt any of the output port arrangements provided in the first to third embodiments of the present invention.
  • Each single-layer output port and other single-layer outputs The ports do not intersect.
  • one of the output ports intersects the straight line passing through the diffraction orders of each order, and the diffraction order at the intersection point is the strongest energy order among the diffraction orders of each order ,
  • Other single layers are arranged between adjacent diffraction orders in the diffraction orders of each order.
  • An embodiment of the present invention provides a wavelength selective switch WSS based on an LCoS optical switching engine, and the output port arrangement scheme of the optical fiber array adopted by the WSS includes the output port centers distributed along a curve or along a combination line including line segments, The straight line connected to the center of any two output ports on this curve or combination line cannot pass through the input port; the light beam received from the input port is diffracted onto the output port through the LCoS panel.
  • the curve or line segment intersects, and there is only one intersection point.
  • the output ports arranged at the intersection point can obtain the strongest energy level, and other crosstalk levels cannot enter the adjacent output port, which effectively improves the isolation performance;
  • the output ports are arranged along the curve or the combination line, which can effectively increase the number of output ports arranged and have strong practicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Liquid Crystal (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

本发明实施例公开了一种WSS,该WSS的光纤阵列输出端口排布方案为输出端口中心沿着曲线或沿着包括线段的组合线排布,该曲线或组合线上任意两个输出端口中心所连直线不能经过输入端口;从输入端口接收的光束通过LCoS面板衍射到输出端口上,所述衍射产生的各阶衍射级次所经过的直线与该曲线或线段相交,有且只有一个交点。本发明实施例提供的WSS可以实现输出端口数量和隔离度性能的有效提高,实用性强。

Description

一种基于LCoS的波长选择开关 技术领域
本申请涉及光通信领域,尤其涉及一种基于LCoS(Liquid Crystal on Silicon,硅基液晶)光交换引擎的波长选择开关。
背景技术
随着网络流量和带宽的飞速增长,运营商对于底层波分复用网络的智能调度功能的需求越来越迫切,这导致ROADM(Reconfigurable Optical Add-Drop Multiplexer,可重构光分插复用器)逐渐为越来越多的高端运营商的网络所采用。网络中引入ROADM后,运营商可以快速的提供波长级的业务,便于进行网络规划,降低运营费用,便于维护,降低维护成本。
ROADM需要相当数量的WSS(Wavelength selective switch,波长选择开关)对上下游模块与其他节点相互连接的输入、输出端口进行光互连,ROADM未来的发展首先会选择WSS的发展,所以WSS作为ROADM中重要的波长调度单元模块,其性能指标直接影响了整个网络的各项性能。另一方面,近年来,由于LCoS支持Flex-grid特性,已经取代MEMS(Micro-Electro-Mechanical System,微机电系统)成为当前WSS的主流交换引擎。
LCoS的工作原理是通过在LCoS的不同像素点(pixel)上加载不同的电压,由于液晶的双折射效应,不同的电压将对应不同的相位延迟量,从而可以形成一个类似于闪耀光栅(Blazed grating)的结构。因为闪耀光栅的衍射角度取决于闪耀光栅的光栅周期,所以只需改变LCoS上不同位置对应的光栅周期,即可以控制入射光的衍射角度,使得衍射光在WSS的不同端口输出,从而实现波长选择开关功能。
然而,由于LCoS的工作原理是基于衍射效应,在获得我们需要的衍射光的同时,由于相位误差的存在,还会产生一些高阶衍射级次。如图1所示,图1为一个WSS的结构示意图,图1是为了说明串扰产生原因的示意图,未完全画出WSS的完整结构。图1中,从输入端口入射的光经过黑框中一系列处理(可以包括偏转处理、分波合波处理等)后,入射到LCoS面板上,LCoS上相应的像素点根据相应的配置把需要的+1级衍射光衍射到相应的输 出端口。然而,这种情况下,其他衍射级的光有可能进入其他输出端口。这些衍射光,如0级、-1级、+2级等衍射光,进入相应的输入端口后,可能会造成后续光链路的串扰。比如,图1中,当+1级衍射光需要从输出端口3输出时,其他几个衍射级次可能会作为串扰光从其他几个端口输出,从而形成同频串扰,而这部分信号一旦进入相应的输出端口后难以消除,对系统性能带来影响。
发明内容
有鉴于此,本发明实施例提供一种波长选择开关WSS,可以实现输出端口数量和隔离度性能的有效提高。
第一方面,本发明实施例提供了一种波长选择开关WSS,该WSS包括光纤阵列和硅基液晶LCoS面板,所述光纤阵列包括多个端口,所述多个端口包括一个输入端口和多个输出端口,所述输入端口用于接收光束,所述光束通过所述LCoS面板衍射到所述输出端口上,所述衍射产生的各阶衍射级次在一条直线上,所述多个输出端口用于获取所述各阶衍射级次中的能量最强级次,所述多个输出端口排布成一层或多层,所述一层或多层输出端口中至少一层输出端口的排布方式排布方式包括:
所述输出端口的中心沿着曲线分布,该曲线上两个输出端口中心所连直线不经过输入端口,所述各阶衍射级次所经过的直线与该曲线有且仅有一个交点,所述交点位置的衍射级次为能量最强级次,所述交点位置排布一个输出端口。
结合第一方面的实现方式,在第一方面第一种可能的实现方式中,所述曲线为圆的一部分,所述圆满足以下条件:
所述圆在二维直角坐标系的方程表达式为x 2+y 2=r 2,其中x、y为所述圆上点在二维直角坐标系里的坐标,r为常数;所述二维直角坐标系为在输出端口所在平面以输入端口为中心建立的直角坐标系。
结合第一方面、或第一方面第一种可能的实现方式,在第一方面第二种可能的实现方式中,所述曲线为椭圆的一部分,所述椭圆满足以下条件:
所述椭圆在二维直角坐标系的方程表达式为
Figure PCTCN2019091120-appb-000001
其中x、y为所述椭圆上点在二维直角坐标系里的坐标,a、b为常数,a不等于b且a大于 0、b大于0;所述二维直角坐标系为在输出端口所在平面以输入端口为中心建立的直角坐标系。
结合第一方面、或第一方面第一种至第二种可能的实现方式,在第一方面第三种可能的实现方式中,为了保证所述曲线上任意两个输出端口中心所连直线不能经过输入端口,在曲线末端位置留出一个空格,该空格处不排布输出端口,那么经过输入端口的直线与该曲线至多只有一个交点。
结合第一方面、或第一方面第一种至第三种可能的实现方式,在第一方面第四种可能的实现方式中,所述输出端口排布成多层,所述多层输出端口中,其中一层输出端口与所述各阶衍射级次所经过的直线相交,所述交点位置的衍射级次为所述各阶衍射级次中的能量最强级次,其他单层排布在所述各阶衍射级次中的相邻衍射级次之间。
结合第一方面、或第一方面第一种至第四种可能的实现方式,在第一方面第五种可能的实现方式中,所述输出端口排布成多层,所述多层输出端口中的每一层输出端口排布方式相同或不同,所述每一层输出端口排布方式相同包括每一层输出端口排布方式与其他单层的输出端口排布方式相同,所述每一层输出端口排布方式不同包括所述多层排布中至少存在一层输出端口排布方式与其他单层不同。
结合第一方面、或第一方面第一种至第五种可能的实现方式,在第一方面第六种可能的实现方式中,所述多层输出端口中每个单层输出端口与其他单层输出端口不相交。
结合第一方面、或第一方面第一种至第六种可能的实现方式,在第一方面第七种可能的实现方式中,所述WSS还包括偏转处理部件、反射部件、分波合波部件、透镜部件;所述偏转处理部件包括光束变形和偏转转换组件,所述透镜部件包括一个透镜或者多个透镜的组合,所述分波合波部件包括光栅。
结合第一方面、或第一方面第一种至第七种可能的实现方式,在第一方面第八种可能的实现方式中,所述WSS还包括准直器阵列,所述准直器阵列位于所述光纤阵列之后,用于对从输入端口入射的光准直,经过准直器阵列的光进入偏转处理部件。
结合第一方面、或第一方面第一种至第八种可能的实现方式,在第一方 面第九种可能的实现方式中,从所述准直器阵列入射的随机偏振光束,经过所述偏转处理部件转换为线偏振光,再经过所述透镜部件的扩束作用后入射到所述光栅上;从所述光栅衍射的光,经过所述透镜部件入射到所述LCoS面板上的不同区域,通过控制所述LCoS面板上不同区域的液晶相位,就可以分别控制不同波长的光反射方向;从所述LCoS面板的输出的光经过所述反射部件反射,再经过所述透镜部件、所述光栅、所述偏振处理部件,最后输入到所述准直器阵列的输出端口。
第二方面,本发明实施例提供了一种波长选择开关WSS,该WSS包括光纤阵列和硅基液晶LCoS面板,所述光纤阵列包括多个端口,所述多个端口包括一个输入端口和多个输出端口,所述输入端口用于接收光束,所述光束通过所述LCoS面板衍射到所述输出端口上,所述衍射产生的各阶衍射级次在一条直线上,所述多个输出端口用于获取所述各阶衍射级次中的能量最强级次,所述多个输出端口排布成一层或多层,所述一层或多层输出端口中至少一层输出端口的排布方式排布方式包括:
所述输出端口的中心沿着组合线分布,该组合线包括线段,所述组合线上两个输出端口中心所连直线不能经过输入端口,所述各阶衍射级次所经过的直线与该组合线有且仅有一个交点,所述交点位置的衍射级次为能量最强级次,所述交点位置排布一个输出端口。
结合第二方面的实现方式,在第二方面第一种可能的实现方式中,所述组合线还包括与所述线段连接的曲线。
结合第二方面、或第二方面第一种可能的实现方式,在第一方面第二种可能的实现方式中,所述曲线为圆的一部分,所述圆满足以下条件:
所述圆在二维直角坐标系的方程表达式为x 2+y 2=r 2,其中x、y为所述圆上点在二维直角坐标系里的坐标,r为常数;所述二维直角坐标系为在输出端口所在平面以输入端口为中心建立的直角坐标系。
结合第二方面、或第二方面第一种至第二种可能的实现方式,在第一方面第三种可能的实现方式中,所述曲线为椭圆的一部分,所述椭圆满足以下条件:
所述椭圆在二维直角坐标系的方程表达式为
Figure PCTCN2019091120-appb-000002
其中x、y为所述椭圆上点在二维直角坐标系里的坐标,a、b为常数,a不等于b且a大于 0、b大于0;所述二维直角坐标系为在输出端口所在平面以输入端口为中心建立的直角坐标系。
结合第二方面、或第二方面第一种至第三种可能的实现方式,在第二方面第四种可能的实现方式中,为了保证组合线上任意两个输出端口中心所连直线不能经过输入端口,在组合线末端位置留出一个空格,该空格处不排布输出端口,那么经过输入端口的直线与该组合线至多只有一个交点。
结合第二方面、或第二方面第一种至第四种可能的实现方式,在第二方面第五种可能的实现方式中,所述输出端口排布成多层,所述多层输出端口中,其中一层输出端口与所述各阶衍射级次所经过的直线相交,所述交点位置的衍射级次为所述各阶衍射级次中的能量最强级次,其他单层排布在所述各阶衍射级次中的相邻衍射级次之间。
结合第二方面、或第二方面第一种至第五种可能的实现方式,在第二方面第六种可能的实现方式中,所述输出端口排布成多层,所述多层输出端口中的每一层输出端口排布方式相同或不同,所述每一层输出端口排布方式相同包括每一层输出端口排布方式与其他单层的输出端口排布方式相同,所述每一层输出端口排布方式不同包括所述多层排布中至少存在一层输出端口排布方式与其他单层不同。
结合第二方面、或第二方面第一种至第六种可能的实现方式,在第二方面第七种可能的实现方式中,所述多层输出端口中每个单层输出端口与其他单层输出端口不相交。
结合第二方面、或第二方面第一种至第七种可能的实现方式,在第二方面第八种可能的实现方式中,所述WSS还包括偏转处理部件、反射部件、分波合波部件、透镜部件;所述偏转处理部件包括光束变形和偏转转换组件,所述透镜部件包括一个透镜或者多个透镜的组合,所述分波合波部件包括光栅。
结合第二方面、或第二方面第一种至第八种可能的实现方式,在第二方面第九种可能的实现方式中,所述WSS还包括准直器阵列,所述准直器阵列位于所述光纤阵列之后,用于对从输入端口入射的光准直,经过准直器阵列的光进入偏转处理部件。
结合第二方面、或第二方面第一种至第九种可能的实现方式,在第二方 面第十种可能的实现方式中,从所述准直器阵列入射的随机偏振光束,经过所述偏转处理部件转换为线偏振光,再经过所述透镜部件的扩束作用后入射到所述光栅上;从所述光栅衍射的光,经过所述透镜部件入射到所述LCoS面板上的不同区域,通过控制所述LCoS面板上不同区域的液晶相位,就可以分别控制不同波长的光反射方向;从所述LCoS面板的输出的光经过所述反射部件反射,再经过所述透镜部件、所述光栅、所述偏振处理部件,最后输入到所述准直器阵列的输出端口。
本发明实施例提供了一种基于LCoS光交换引擎的波长选择开关WSS,该WSS采用的光纤阵列的输出端口排布方案包括输出端口中心沿着曲线分布或沿着包括线段的组合线排布,该曲线或组合线上任意两个输出端口中心所连直线不能经过输入端口;从输入端口接收的光束通过LCoS面板衍射到输出端口上,所述衍射产生的各阶衍射级次所经过的直线与该曲线或线段相交,有且只有一个交点,该交点位置的输出端口可获取能量最强级次,其他串扰级次无法进入相邻输出端口,实现了隔离度性能的有效提高;同时输出端口沿着该曲线或组合线排布,可以实现输出端口排布数量的有效提高,实用性强。
附图说明
为了更清楚地说明本发明的实施例或现有技术中的技术方案,下面将对描述背景技术和实施例时所使用的附图作简单的介绍。显而易见地,下面附图中描述的仅仅是本发明的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图和描述得到其他的附图或实施例,而本发明旨在涵盖所有这些衍生的附图或实施例。
图1是现有技术中WSS产生串扰的原理示意图;
图2是本发明实施例提供的WSS的结构示意图;
图3a为现有技术中基于LCoS的WSS光纤阵列的输出端口线性双边排布示意图;
图3b为现有技术中基于LCoS的WSS光纤阵列的输出端口线性单边排布示意图;
图4为本发明第一实施例提供的本发明与现有技术的基于LCoS的一种WSS光纤阵列的输出端口排布方案对比示意图;
图5是本发明第二实施例提供的基于LCoS的一种单层WSS光纤阵列的输出端口沿着曲线排布的示意图;
图6是本发明第三实施例提供的基于LCoS的一种单层WSS光纤阵列的输出端口沿着组合线排布的示意图;
图7是本发明第三实施例提供的基于LCoS的另一种单层WSS光纤阵列的输出端口沿着组合线排布的示意图;
图8为本发明第四实施例提供的基于LCoS的输出端口一种多层排布示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种基于LCoS的波长选择开关,能有效抑制串扰衍射光。值得注意的是,本发明实施例中的“连接”是指光路上的连接,本领域技术人员可以理解,具体的光器件可能不一定具有实质的接触性的物理连接关系,但是这些光器件的空间位置和它们本身的器件特性让它们构成一种光路上的连接关系。
如图2所示,基于LCoS的WSS主要包括用于输入输出的光纤阵列,用于偏转处理的偏转处理部件,用于反射光的反射部件,用于聚焦光的透镜部件,用于分波合波的分波合波部件,用于偏转光路和切换端口的LCoS面板。
可选的,WSS还可以包括位于光纤阵列之后的用于准直光的准直器阵列,准直就是让发散的光变成准直的光。可选的,所述偏转处理部件可以包括光束变形和偏振转换组件,让光斑形成所需要的形状以特定角度进入光路。可选的,所述透镜部件可以是一个透镜或者多个透镜的组合,偏折光路使光路满足实际器件尺寸限制。可选的,所述分波合波部件可以是光栅。
从光纤准直器阵列入射的随机偏振光束,先经过偏振转换组件转换为线 偏振光,然后经过透镜部件的扩束作用后入射到衍射光栅上,线偏振光衍射后经过透镜部件入射到LCoS面板上的不同区域,通过控制LCoS面板上不同区域的液晶相位,就可以分别控制不同波长的光反射方向,反射再经过透镜部件、衍射光栅、偏振处理部件,最后输入到准直器阵列的输出端口。在LCoS芯片上的不同区域的液晶可以单独控制入射至该区域的光信号,基于LCoS的WSS器件可以将输入的任意波长切换至任一输出端口。
图2仅为示意图,事实上,从透镜部件出射的光为平行光而不是散射光,图2仅为说明各个波长在水平方向上展开而示意性地画了相应的光线。基于LCoS的WSS是成熟的技术,本发明实施例只对相对于传统的WSS有变化的光纤阵列部分进行详细描述,对其他已知的部件和位置关系不再赘述。同时,对于图2之外的其他的基于LCoS的WSS,本发明实施例同样适用,只需对相应的输出端口排布进行相应的更改,对于WSS的其他部件的功能和位置关系保持原样即可。此外,对于未来可能出现的其他结构的WSS,本发明实施例中对于输出端口的改进部分同样适用。
基于LCoS的WSS可以实现光谱信号Flexgrid滤波,然而采用LCoS作为光学引擎加载光栅时,会产生多个衍射级次。其中,主要的光强级次为+1级,该级次作为出射光在目的输出端口进行输出。与此同时,其他级次的光将作为串扰信号从其他端口输出,从而引起WSS端口间的同频串扰效应。该串扰大小通常在-25dB以上,而系统对于单个WSS的串扰要求通常为<-30dB甚至更低。因此,针对基于LCoS的WSS,需要找到一个抑制串扰的方法。
图3a为现有技术中基于LCoS的WSS光纤阵列的输出端口线性双边排布示意图,图3b为现有技术中基于LCoS的WSS光纤阵列的输出端口线性单边排布示意图。如图3a、图3b所示,目前基于LCoS的WSS设计方案中,用来保持较高隔离度的方法是将原有如图3a所示的WSS光纤阵列的输出端口线性双边排布改为如图3b所示的线性单边排布。当LCoS上加载阶梯状的离散化闪耀光栅时,各级光栅衍射级次是以输入端口(0级)为中心对称的,+1级为目标级次,将具有最大的能量分布,因此除+1级之外的级次均是串扰级次。在输出端口线性双边排布的情况下,0级居于当前线性排布的中间位置,在0级两侧均会有串扰级次,而目前业界多数基于LCoS的WSS产品中采用单边排布输出端口的方式,将输出端口全部排布 在零级一侧,规避了所有负级次的串扰光。同时由于为了满足通信系统的要求,各个通道功率差异不能过大,要求LCoS可以对各个通道的功率灵活控制,尽可能将整个C波段96个通道控制在相近的功率水平,这时可将衰减掉的能量转移至0级反向一侧,即负级次侧,为LCoS控制算法保留了操作空间。
但是由于LCoS的插损与衍射偏转角度正相关,即衍射偏转角度越大,插损越大。因此一旦插损基线确定下来,那么LCoS可以支持的衍射偏转角度范围也随之确定。对于输出端口线性双边排布和线性单边排布,在相同的插损基线下,LCoS可以支持的衍射偏转角度是相同的,那么在有限的衍射偏转角度范围内,利用上述输出端口线性单边排布的方案,会导致输出端口数量只有线性双边排布下的一半。另外在实际的WSS产品中,各个输出端口在进行衍射角度偏转时,绝大部分情况下使用的是分数周期的闪耀光栅,会引入分布在主级次之间的子峰串扰,这些子峰串扰是无法通过输出端口线性单边排布的方式规避的,因此仍然会影响输出端口的隔离度。
在保持WSS的高输出端口数量情况下实现输出端口的高隔离度性能是当前波长选择开关WSS开发中的技术难点。目前现有技术方案将很难应对未来越来越高的串扰性能指标要求。
图4为本发明第一实施例提供的一种本发明与现有技术的基于LCoS的一种WSS光纤阵列的输出端口排布方案对比示意图。如图4所示,现有技术采用的输出端口排布方式为线性分布(用方框表示端口),输入端口(0级)位于中心或位于一端。建立以输入端口(0级)为中心的二维直角坐标系,输入端口接收的光束通过LCoS面板衍射到输出端口上,所述衍射产生的各阶衍射级次是关于输入端口对称的并且在一条直线上。因此,若输出端口排布采用线性分布,不论是输出端口单边排布还是双边排布,所述各阶衍射级次所经过的直线均会与各输出端口中心所连直线重合,导致除+1级之外的串扰级次很大可能会进入相邻的输出端口,隔离度性能差。
由光栅的分光原理可知,振幅型光栅衍射的零级主极大没有色散,不能用于光谱分析,但却占据了总能量的很大一部分。而用于光谱分析的高级次的主极大所包含的能量又太小(即高级次的衍射效率低)。闪耀光栅通过控制刻槽的形状从而引进附加相位将零级能量转移到其他级上去。闪耀光栅在同一级只对闪耀波长产生极大光强度。基于LCoS具备二维偏转能力,即 LCoS上需要加载倾斜的闪耀光栅以将入射光偏转至如图4所示的二维坐标系中x、y轴以外的方向上;借助旋转闪耀光栅的角度,可以实现整个x-y二维坐标平面的任意切换,图4中展示了一种本发明第一实施例提供的基于LCoS的WSS光纤阵列输出端口排布方案(用圆圈表示端口)——输出端口中心沿着弧形排布,所述弧形为一种曲线。尤其注意的是,弧形排布上任意两个输出端口中心所连直线不经过输入端口,那么经过输入端口的直线与该弧形至多只有一个交点。从输入端口接收的光束通过LCoS面板衍射到输出端口上,所述衍射产生的各阶衍射级次关于输入端口对称并且经过一条直线(图4中用虚线表示),该直线与所述弧形相交,且有且仅有一个交点,该交点所在位置的衍射级次即为+1级次,即所述各阶衍射级次中的能量最强级次,交点位置排布一个输出端口用来获取该能量最强级次。此时,只有目标级次+1级可以进入输出端口,而其他所有的串扰级次均无法进入相邻输出端口,可以实现极高的输出端口隔离度。另外,在保持插损基线相同,衍射偏转角度相同的情况下,输出端口沿着弧形排布可以支撑更多的输出端口数量。
可选地,弧形为圆或椭圆的一部分(图4中仅展示了弧形为圆的一部分的情况)。在输出端口所在的平面以输入端口为中心建立二维直角坐标系,则:
圆满足在二维直角坐标系的方程表达式为x 2+y 2=r 2,其中x、y为圆上点在二维直角坐标系里的坐标,r为常数;
椭圆满足在二维直角坐标系的方程表达式为
Figure PCTCN2019091120-appb-000003
其中x、y为椭圆上点在二维直角坐标系里的坐标,a、b为常数,a不等于b且a大于0、b大于0。
进一步地,为了保证弧形排布上任意两个输出端口中心所连直线不经过输入端口,在弧形末端位置留出一个空格,该空格处不排布输出端口,那么经过输入端口的直线与该组合线至多只有一个交点。
本发明第二实施例提供了一种波长选择开关WSS,以上述图2所示的WSS系统为例,参照图5,图5是本发明第二实施例提供的基于LCoS的一种单层WSS光纤阵列的输出端口沿着曲线排布的示意图,仅给出一种情形 为例,原理上只要满足下述要求的所有曲线均可。
本实施例提供的WSS包括光纤阵列和硅基液晶LCoS面板,该光纤阵列包括多个端口,该多个端口包括一个输入端口和多个输出端口,输入端口用于接收光束,所述光束通过所述LCoS面板衍射到输出端口上,该衍射产生的各阶衍射级次关于输入端口对称并且在一条直线上(图5中用虚线表示);多个输出端口用于获取所述各阶衍射级次中的能量最强级次(即图5中的+1级次),多个输出端口排布成一层或排布成多层,所述一层或多层输出端口中至少一层输出端口的排布方式包括:
多个输出端口的中心沿着曲线分布,该曲线上任意两个输出端口中心所连直线不经过输入端口,各阶衍射级次所经过的直线与该曲线有且仅有一个交点,该交点位置的衍射级次为所述各阶衍射级次中的能量最强级次,该交点位置需排布一个输出端口。
此时,其他所有串扰级次均无法进入相邻输出端口,可以实现极高的输出端口隔离度。另外,在保持插损基线相同,衍射偏转角度相同的情况下,输出端口沿着所述曲线排布可以支撑更多的输出端口数量。
进一步地,为了保证所述曲线上任意两个输出端口中心所连直线不能经过输入端口,在图5中,在曲线末端位置留出一个空格,该空格处不排布输出端口,那么经过输入端口的直线与该曲线至多只有一个交点。
可选地,所述曲线包括弧形,所述弧形参照第一实施例,此处不再赘述。
进一步地,本实施例提供的WSS还包括偏转处理部件、反射部件、分波合波部件、透镜部件;该偏转处理部件包括光束变形和偏转转换组件,该透镜部件包括一个透镜或者多个透镜的组合,该分波合波部件包括光栅。
可选地,本实施例提供的WSS还包括准直器阵列,准直器阵列位于光纤阵列之后,用于对从输入端口入射的光准直,经过准直器阵列的光进入偏转处理部件。
可选地,从准直器阵列入射的随机偏振光束,经过偏转处理部件转换为线偏振光,再经过透镜部件的扩束作用后入射到光栅上;
可选地,从光栅衍射的光,经过透镜部件入射到LCoS面板上的不同区域,通过控制所述LCoS面板上不同区域的液晶相位,分别控制不同波长的光反射方向;
可选地,从LCoS面板的输出的光经过反射部件反射,再经过透镜部件、 光栅、偏振处理部件,输入到准直器阵列的输出端口。
本发明第三实施例提供了一种波长选择开关WSS,以上述图2所示的WSS系统为例,参照图6、图7,图6与图7仅给出一种情形为例,原理上只要满足下述要求的情形均可。该WSS包括光纤阵列和硅基液晶LCoS面板,该光纤阵列包括多个端口,该多个端口包括一个输入端口和多个输出端口,输入端口用于接收光束,所述光束通过所述LCoS面板衍射到输出端口上,该衍射产生的各阶衍射级次关于输入端口对称并且在一条直线上,该多个输出端口用于获取所述各阶衍射级次中的能量最强级次,多个输出端口排布成一层或排布成多层,所述一层或多层输出端口中至少一层输出端口的排布方式包括:
多个输出端口的中心沿着组合线分布,如图6所示,图6是本发明第三实施例提供的基于LCoS的一种单层WSS光纤阵列的输出端口沿着组合线排布的示意图,该组合线包括线段,组合线上任意两个输出端口中心所连直线不能经过输入端口,各阶衍射级次所经过的直线(图6中用虚线表示)与该组合线有且仅有一个交点,交点位置的衍射级次为各阶衍射级次中的能量最强级次,该交点位置排布一个输出端口。
此时,其他所有串扰级次均无法进入相邻输出端口,可以实现极高的输出端口隔离度。另外,在保持插损基线相同,衍射偏转角度相同的情况下,输出端口沿着所述组合线排布可以支撑更多的输出端口数量。
可选地,如图7所示,图7是本发明第三实施例提供的基于LCoS的另一种单层WSS光纤阵列的输出端口沿着组合线排布的示意图,该组合线还可以包括与线段连接的曲线,该曲线包括弧形,所述弧形参照第一实施例,此处不再赘述。
进一步地,为了保证组合线上任意两个输出端口中心所连直线不能经过输入端口,在图6、图7中,在组合线末端位置留出一个空格,该空格处不排布输出端口,那么经过输入端口的直线与该组合线至多只有一个交点。
进一步地,本实施例提供的WSS还包括偏转处理部件、反射部件、分波合波部件、透镜部件;所述偏转处理部件包括光束变形和偏转转换组件,所述透镜部件包括一个透镜或者多个透镜的组合,所述分波合波部件包括光栅。
可选地,本实施例提供的WSS还包括准直器阵列,准直器阵列位于光 纤阵列之后,用于对从输入端口入射的光准直,经过准直器阵列的光进入偏转处理部件。
可选地,从准直器阵列入射的随机偏振光束,经过偏转处理部件转换为线偏振光,再经过透镜部件的扩束作用后入射到光栅上;
可选地,从光栅衍射的光,经过透镜部件入射到LCoS面板上的不同区域,通过控制所述LCoS面板上不同区域的液晶相位,分别控制不同波长的光反射方向;
可选地,从LCoS面板的输出的光经过反射部件反射,再经过透镜部件、光栅、偏振处理部件,输入到准直器阵列的输出端口。
图8本发明第四实施例提供的基于LCoS的一种WSS光纤阵列的输出端口多层排布示意图。从输入端口接收的光束通过LCoS面板衍射到输出端口上,所述衍射产生的各阶衍射级次在一条直线上。在进行WSS光纤阵列的输出端口多层排布的时候,每一层输出端口排布方式相同或不同,所述每一层输出端口排布方式相同包括每一层输出端口排布方式与其他单层的输出端口排布方式相同,所述每一层输出端口排布方式不同包括所述多层排布中至少存在一层输出端口排布方式与其他单层不同。多层输出端口中每个单层的输出端口排布方式可采用本发明第一实施例至第三实施例提供的任意一种输出端口排布方式,每个单层输出端口与其他单层输出端口不相交。所述多层输出端口中,其中一层输出端口与所述各阶衍射级次所经过的直线相交,所述交点位置的衍射级次为所述各阶衍射级次中的能量最强级次,其他单层排布在所述各阶衍射级次中的相邻衍射级次之间。
本发明实施例提供了一种基于LCoS光交换引擎的波长选择开关WSS,该WSS采用的光纤阵列的输出端口排布方案包括输出端口中心沿着曲线分布或沿着包括线段的组合线排布,该曲线或组合线上任意两个输出端口中心所连直线不能经过输入端口;从输入端口接收的光束通过LCoS面板衍射到输出端口上,所述衍射产生的各阶衍射级次所经过的直线与该曲线或线段相交,有且只有一个交点,该交点位置的排布的输出端口可获取能量最强级次,其他串扰级次无法进入相邻输出端口,实现了隔离度性能的有效提高;同时输出端口沿着该曲线或组合线排布,可以实现输出端口排布数量的有效提高,实用性强。
以上所述,仅为本申请示例性的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (16)

  1. 一种波长选择开关WSS,所述WSS包括光纤阵列和硅基液晶LCoS面板,所述光纤阵列包括多个端口,所述多个端口包括一个输入端口和多个输出端口,所述输入端口用于接收光束,所述光束通过所述LCoS面板衍射到所述多个输出端口上,其特征在于,所述衍射产生的各阶衍射级次在一条直线上,所述多个输出端口用于获取所述各阶衍射级次中的能量最强级次,所述多个输出端口排布成一层或排布成多层,所述一层或多层输出端口中至少一层输出端口的排布方式包括:
    所述多个输出端口的中心沿着曲线分布,所述曲线上任意两个输出端口中心所连直线不经过输入端口,所述各阶衍射级次所经过的直线与所述曲线有且仅有一个交点,所述交点位置的衍射级次为所述各阶衍射级次中的能量最强级次,所述交点位置排布一个输出端口。
  2. 如权利要求1所述的WSS,其特征在于,所述曲线为圆的一部分,所述圆满足以下条件:
    所述圆在二维直角坐标系的方程表达式为x 2+y 2=r 2,其中x、y为所述圆上点在二维直角坐标系里的坐标,r为常数;
    所述二维直角坐标系为输出端口所在平面以输入端口为中心的直角坐标系。
  3. 如权利要求1所述的WSS,其特征在于,所述曲线为椭圆的一部分,所述椭圆满足以下条件:
    所述椭圆在二维直角坐标系的方程表达式为
    Figure PCTCN2019091120-appb-100001
    其中x、y为所述椭圆上点在二维直角坐标系里的坐标,a、b为常数,a不等于b且a大于0、b大于0;
    所述二维直角坐标系为输出端口所在平面以输入端口为中心的直角坐标系。
  4. 如权利要求1所述的WSS,其特征在于,所述输出端口排布成多层, 所述多层输出端口中,其中一层输出端口与所述各阶衍射级次所经过的直线相交,所述交点位置的衍射级次为所述各阶衍射级次中的能量最强级次,其他单层输出端口排布在所述各阶衍射级次中的相邻衍射级次之间。
  5. 如权利要求1所述的WSS,其特征在于,所述输出端口排布成多层,所述多层输出端口中的每一层输出端口排布方式相同或不同,所述每一层输出端口排布方式相同包括每一层输出端口排布方式与其他单层的输出端口排布方式相同,所述每一层输出端口排布方式不同包括所述多层排布中至少存在一层输出端口排布方式与其他单层不同。
  6. 如权利要求4、5所述的WSS,其特征在于,所述多层输出端口中每个单层输出端口与其他单层输出端口不相交。
  7. 一种波长选择开关WSS,所述WSS包括光纤阵列和硅基液晶LCoS面板,所述光纤阵列包括多个端口,所述多个端口包括一个输入端口和多个输出端口,所述输入端口用于接收光束,所述光束通过所述LCoS面板衍射到所述输出端口上,其特征在于,所述衍射产生的各阶衍射级次在一条直线上,所述多个输出端口用于获取所述各阶衍射级次中的能量最强级次,所述多个输出端口排布成一层或排布成多层,所述一层或多层输出端口中至少一层输出端口的排布方式包括:
    所述多个输出端口的中心沿着组合线分布,所述组合线包括线段,所述组合线上任意两个输出端口中心所连直线不能经过输入端口,所述各阶衍射级次所经过的直线与所述组合线有且仅有一个交点,所述交点位置的衍射级次为所述各阶衍射级次中的能量最强级次,所述交点位置排布一个输出端口。
  8. 如权利要求7所述的WSS,其特征在于,所述组合线还包括与所述线段连接的曲线。
  9. 如权利要求8所述的WSS,其特征在于,所述曲线为圆的一部分,所述圆满足以下条件:
    所述圆在二维直角坐标系的方程表达式为x 2+y 2=r 2,其中x、y为所述圆上点在二维直角坐标系里的坐标,r为常数;
    所述二维直角坐标系为输出端口所在平面以输入端口为中心的直角坐标系。
  10. 如权利要求8所述的WSS,其特征在于,所述曲线为椭圆的一部分,所述椭圆满足以下条件:
    所述椭圆在二维直角坐标系的方程表达式为
    Figure PCTCN2019091120-appb-100002
    其中x、y为所述椭圆上点在二维直角坐标系里的坐标,a、b为常数,a不等于b且a大于0、b大于0;
    所述二维直角坐标系为输出端口所在平面以输入端口为中心的直角坐标系。
  11. 如权利要求7所述的WSS,其特征在于,所述输出端口排布成多层,所述多层输出端口中,其中一层输出端口与所述各阶衍射级次所经过的直线相交,所述交点位置的衍射级次为所述各阶衍射级次中的能量最强级次,其他单层排布在所述各阶衍射级次中的相邻衍射级次之间。
  12. 如权利要求7所述的WSS,其特征在于,所述输出端口排布成多层,所述多层输出端口中的每一层输出端口排布方式相同或不同,所述每一层输出端口排布方式相同包括每一层输出端口排布方式与其他单层的输出端口排布方式相同,所述每一层输出端口排布方式不同包括所述多层排布中至少存在一层输出端口排布方式与其他单层不同。
  13. 如权利要求11、12所述的WSS,其特征在于,所述多层输出端口中每个单层输出端口与其他单层输出端口不相交。
  14. 如权利要求1-13所述的WSS,其特征在于:
    所述WSS还包括偏转处理部件、反射部件、分波合波部件、透镜部件; 所述偏转处理部件包括光束变形和偏转转换组件,所述透镜部件包括一个透镜或者多个透镜的组合,所述分波合波部件包括光栅。
  15. 如权利要求1-14所述的WSS,其特征在于:
    所述WSS还包括准直器阵列,所述准直器阵列位于所述光纤阵列之后,用于对从输入端口入射的光准直,经过准直器阵列的光进入所述偏转处理部件。
  16. 如权利要求15所述的WSS,其特征在于:
    从所述准直器阵列入射的随机偏振光束,经过所述偏转处理部件转换为线偏振光,再经过所述透镜部件的扩束作用后入射到所述光栅上;
    从所述光栅衍射的光,经过所述透镜部件入射到所述LCoS面板上的不同区域,通过控制所述LCoS面板上不同区域的液晶相位,分别控制不同波长的光反射方向;
    从所述LCoS面板的输出的光经过所述反射部件反射,再经过所述透镜部件、所述光栅、所述偏振处理部件,输入到所述准直器阵列的输出端口。
PCT/CN2019/091120 2018-11-26 2019-06-13 一种基于LCoS的波长选择开关 WO2020107861A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3120400A CA3120400C (en) 2018-11-26 2019-06-13 Wavelength selective switch based on lcos
EP19891182.8A EP3869247A4 (en) 2018-11-26 2019-06-13 LCOS-BASED WAVELENGTH SELECTIVE SWITCH
US17/329,426 US11307354B2 (en) 2018-11-26 2021-05-25 Wavelength selective switch based on LCoS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811413981.7A CN111221081B (zh) 2018-11-26 2018-11-26 一种基于LCoS的波长选择开关
CN201811413981.7 2018-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/329,426 Continuation US11307354B2 (en) 2018-11-26 2021-05-25 Wavelength selective switch based on LCoS

Publications (1)

Publication Number Publication Date
WO2020107861A1 true WO2020107861A1 (zh) 2020-06-04

Family

ID=70830785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091120 WO2020107861A1 (zh) 2018-11-26 2019-06-13 一种基于LCoS的波长选择开关

Country Status (5)

Country Link
US (1) US11307354B2 (zh)
EP (1) EP3869247A4 (zh)
CN (1) CN111221081B (zh)
CA (1) CA3120400C (zh)
WO (1) WO2020107861A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112269226B (zh) * 2020-11-16 2022-02-01 上海交通大学 一种混合调制方法及系统
US20220271859A1 (en) * 2021-02-19 2022-08-25 Nokia Solutions And Networks Oy Wavelength selective switch with direct grating interface
WO2024011521A1 (zh) * 2022-07-14 2024-01-18 华为技术有限公司 一种波长选择开关及光束调制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049942A1 (en) * 2011-10-06 2013-04-11 Valorbec S.E.C. High efficiency mono-order concave diffraction grating
CN103543497A (zh) * 2013-11-05 2014-01-29 武汉邮电科学研究院 波长选择开关装置、用于其的波长切换方法、和通信设备
CN104297858A (zh) * 2014-10-31 2015-01-21 武汉光迅科技股份有限公司 一种多播交换光开关
US20160234576A1 (en) * 2015-02-10 2016-08-11 INLC Technology, Inc. Wavelength selective switch having multi-layer reflector

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7623235B2 (en) * 2004-03-20 2009-11-24 Seng-Tiong Ho Curved grating spectrometer with very high wavelength resolution
AU2008205423B2 (en) * 2007-08-13 2013-09-12 Lumentum Operations Llc Light steering using an array of tunable phase delay elements
US7826697B2 (en) * 2008-08-19 2010-11-02 Olympus Corporation System and method for asymmetrical fiber spacing for wavelength selective switches
US8300995B2 (en) * 2010-06-30 2012-10-30 Jds Uniphase Corporation M X N WSS with reduced optics size
WO2013016758A1 (en) * 2011-08-01 2013-02-07 Finisar Corporation Multi directional multiplexer
US8977079B2 (en) * 2012-07-18 2015-03-10 Jds Uniphase Corporation WSS with high port isolation and close spaced ports
WO2014015129A1 (en) * 2012-07-19 2014-01-23 Finisar Corporation Polarization diverse wavelength selective switch
CN102868476B (zh) * 2012-09-12 2015-05-27 武汉邮电科学研究院 基于波长选择交叉连接矩阵的roadm系统
JP5899331B2 (ja) * 2012-12-07 2016-04-06 日本電信電話株式会社 光入出力装置
CN103281153B (zh) * 2013-06-20 2016-01-20 中央民族大学 一种基于硅基液晶的m×n端口的可重构光分插复用器
US9341870B1 (en) * 2014-11-26 2016-05-17 Nistica, Inc. Launch optics with optical path compensation for a wavelength selective switch
EP3232241B1 (en) * 2014-12-29 2019-06-19 Huawei Technologies Co., Ltd. Wavelength selective switch
CN104597572B (zh) * 2015-01-16 2017-07-18 华中科技大学 一种基于硅基液晶的波长选择开关
JP6586042B2 (ja) * 2016-04-14 2019-10-02 日本電信電話株式会社 光入出力装置
WO2018076195A1 (zh) * 2016-10-26 2018-05-03 华为技术有限公司 光信号的传输方法、装置和波长选择开关

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049942A1 (en) * 2011-10-06 2013-04-11 Valorbec S.E.C. High efficiency mono-order concave diffraction grating
CN103543497A (zh) * 2013-11-05 2014-01-29 武汉邮电科学研究院 波长选择开关装置、用于其的波长切换方法、和通信设备
CN104297858A (zh) * 2014-10-31 2015-01-21 武汉光迅科技股份有限公司 一种多播交换光开关
US20160234576A1 (en) * 2015-02-10 2016-08-11 INLC Technology, Inc. Wavelength selective switch having multi-layer reflector

Also Published As

Publication number Publication date
CA3120400A1 (en) 2020-06-04
US11307354B2 (en) 2022-04-19
CN111221081A (zh) 2020-06-02
CN111221081B (zh) 2021-11-19
EP3869247A1 (en) 2021-08-25
US20210278596A1 (en) 2021-09-09
CA3120400C (en) 2023-08-15
EP3869247A4 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
CN104620155B (zh) 一种波长选择开关
US8797638B2 (en) Wavelength selective optical switch device and method of controlling characteristics thereof
US11307354B2 (en) Wavelength selective switch based on LCoS
US20130272650A1 (en) Wavelength cross connect device
JP6019466B2 (ja) 波長選択光スイッチ装置
CN103827714A (zh) 使用角度复用光学器件的波长切换系统
US9521473B2 (en) Wavelength selective switch with increased frequency separation to avoid crosstalk
WO2021134660A1 (zh) 波长选择开关
US11728919B2 (en) Optical communications apparatus and wavelength selection method
CN105739026B (zh) 一种高端口数目波长选择开关
CN108169858A (zh) 一种多波长选择开关
US9977190B2 (en) Wavelength selective switch
JP7479518B2 (ja) 光交換装置、リダイレクション方法、リコンフィギュラブル光アド/ドロップマルチプレクサ、及びシステム
CN108897102B (zh) 一种双波长选择开关
CN106054319B (zh) 一种采用非规则间距输出端口阵列的波长选择开关
JP6034319B2 (ja) 光スイッチ
US11899244B2 (en) Wavelength selective switch
WO2021000616A1 (zh) 一种波长选择开关以及相关装置
CN116466436A (zh) 一种波长选择开关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3120400

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019891182

Country of ref document: EP

Effective date: 20210519