WO2015024088A1 - Processo para produção de polipropileno modificado, polipropileno modificado e seu uso, e blenda polimérica - Google Patents

Processo para produção de polipropileno modificado, polipropileno modificado e seu uso, e blenda polimérica Download PDF

Info

Publication number
WO2015024088A1
WO2015024088A1 PCT/BR2014/000293 BR2014000293W WO2015024088A1 WO 2015024088 A1 WO2015024088 A1 WO 2015024088A1 BR 2014000293 W BR2014000293 W BR 2014000293W WO 2015024088 A1 WO2015024088 A1 WO 2015024088A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
bsa
masterbatch
polypropylene
modified
Prior art date
Application number
PCT/BR2014/000293
Other languages
English (en)
French (fr)
Inventor
Ana Paula De Azeredo
Marcelo FARAH
Original Assignee
Braskem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Braskem S.A. filed Critical Braskem S.A.
Priority to US14/913,620 priority Critical patent/US9815951B2/en
Priority to EP14837588.4A priority patent/EP3037443A4/en
Priority to BR112016003706-5A priority patent/BR112016003706B1/pt
Publication of WO2015024088A1 publication Critical patent/WO2015024088A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/10Chemical modification of a polymer including a reactive processing step which leads, inter alia, to morphological and/or rheological modifications, e.g. visbreaking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches

Definitions

  • the present invention relates to polypropylene (PP) modifications for use in polypropylene foams, thermoforming processes, flat films, blown films, blowing, spinning, raffia, coating, BOPP, ISBM, injection, extrusion, injection and other applications.
  • PP polypropylene
  • Polypropylene (PP) is a widely exploited resin due to its wide range of properties and versatility.
  • One of its intrinsic characteristics is the linearity of its chains.
  • Linear polypropylenes are extremely low performance products when subjected to elongational regimes and therefore a large number of documents describe branching PPs providing adequate rheological behavior under elongational deformation regime, further expanding their range of applications.
  • foaming process Among the types of processing known to require the product most in terms of elongational rheological properties is the foaming process, and these properties are also important in other processes such as thermoforming, blowing, ISB [Injection Strech Blow Molding], extrusion of tubular films. , flat film extrusion, BOPP (bi-oriented polypropylene), fibers, coating, among others that require the resin lower levels of branching.
  • ISB injection Strech Blow Molding
  • PP is a product of difficult modification through reactive extrusion or polymerization process, due to its strong tendency to beta fission, where the chain is broken and the recombination of radicals occurs in molecules of smaller molar mass in presence of free radicals or lack of catalytic system supporting multifunctional system.
  • beta fission where the chain is broken and the recombination of radicals occurs in molecules of smaller molar mass in presence of free radicals or lack of catalytic system supporting multifunctional system.
  • branching to occur in PP it is necessary for the process to take place at low temperatures below its melting, which is a drawback for most processes.
  • Branch type control is essential as general PP modification processes can generate highly cross-linked products resulting in undesirable gels.
  • Branches may be of type Y and type H, both of which may have different rheological properties.
  • H branches are better than Y because they physically have two branches rather than one per chain.
  • the key to manipulating rheological properties involves controlling the number, length and distribution of branches in modified products.
  • the first commercially applied PP modification process was based on the irradiation of electron beam PP resins, as described in US 4,916,198, where electron bombarded material generates radicals and branches at low temperatures.
  • the major problems of this process are the high investment cost of the irradiation system, the cost of operating via electron beam or other sources of irradiation, heterogeneity of the modified samples and the limitation of production scale.
  • Reactive extrusion processes are also found, such as the use of highly reactive peroxides, as disclosed in WO 99/27007 and US 5,416,169, promoting reaction at low temperatures in the very early stages of extrusion.
  • the limitation of this type of process, even in the presence of comonomers, is that this type of peroxide has limited mixing to the polymer spheres, having a significant limit of action in the modification.
  • US 6,649,666 cites the formation of modified products by bis-sulfonyl azides, including generally in the form of masterbatches. Another differential is that said document describes a simultaneous modification and foaming process. It is noteworthy that, as it is a reactive extrusion, and because the foaming process has a significant amount of specific additives, it is not recommended to mix BSA with other chemical components, as undesirable reactions can occur causing safety problems of the product. process, operator health and the environment. Contrary to the state of the art, the process of the present invention is advantageous in that the fact that it comprises two steps allows for more precise control of the process and its possible instabilities, even with the advantage of using lower BSA contents than those used. in the technology described in US 6,649,666.
  • US 7,141,182 does not cite or refer to the effect of accelerators on process optimization, not even branch length control and by-product control generated during masterbatch preparation.
  • the process disclosed in the present invention achieves technological results such as perfecting the modification process using BSA through the preparation and composition of BSA masterbatch, achieving significant improvement over the processes described in US 7,141,182.
  • US 20080021137 apparently describes a combination of the technologies described in US 20030138627 and US 7,141,182, which teaches the preparation of molecular melt and the reaction product with PP, without considering process optimizations, accelerator effects, control of the length of branches, or use of bis-sulfonazides in masterbatch form.
  • vulcanization agents sulfur, metal oxides, bifunctional compounds and peroxides
  • accelerators activators, retarders, among others, used to produce the desired vulcanization characteristics and properties of the sulfur.
  • the crosslinking agent is BSA, the initiator being the molecule itself.
  • organic accelerators requires the use of organic and / or inorganic activators for accelerators to reach their potential.
  • the most commonly used activators are zinc oxide (ZnO) and magnesium oxide (MgO).
  • ZnO zinc oxide
  • MgO magnesium oxide
  • the use of fatty acids or fatty acid salts such as zinc stearate is possible.
  • Fatty acids and zinc oxide are incorporated to form a zinc or magnesium salt that functions as a cation donor, activator of the vulcanization system.
  • these stearic salts are added with antacid function, without function of modifying reaction kinetics of modifiers.
  • the invention described in the present application describes the effect of stearic salts on the polypropylene modification process.
  • a first object of the present invention is to provide a process for producing a modified polypropylene.
  • a second object of the present invention is to obtain a modified polypropylene having lower g1, B n greater than 0.1 and IF less than 100 g / 10min, as well as its use.
  • a third object of the invention is to obtain a polymer blend comprising the modified polypropylene disclosed in the present patent application.
  • the objects of the present invention are achieved by a process comprising the addition of a masterbatch prepared by dispersing BSA in a polyolefin and at least one metal cationic fatty acid salt in the polypropylene to be modified.
  • the present invention has as advantages the control of the type and length of the modified polypropylene branches, as well as the optimized coupling agent reaction, minimizing the formation of byproducts.
  • modified polypropylene of the present invention has low residue content and, therefore, performs better in various applications such as foaming, blowing, thermoforming, coating, film extrusion, BOPP, spinning, and other molding techniques.
  • modified polypropylene has a higher branching index (g ') than commercially found polymers due to its superior efficiency in rheological modification by the generation of branching without the presence of gels.
  • Figure 1 illustrates molecular structures of Irganox ® 1010 and DPO_BSA
  • Figure 2 * ⁇ MN spectrum of DPO_BSA and BSA masterbatch
  • Figure 3 illustrates the residence time distribution for preparing an extrusion BSA masterbatch
  • FIG. 4 BSA particle size distribution in the masterbatch (SEM), SEM image
  • Figure 5 illustrates the melt strength versus extensibility plot model and parameters used for property calculation
  • Figure 7 Complex viscosity graph for BSA powder modified PP and BSA masterbatch
  • Figure 8 Representative scheme of BSA masterbatch using calcium stearate and zinc stearate and their effects on PP branching.
  • Figure 9 Complex viscosity graph for BSA masterbatch-modified PP containing zinc stearate and calcium stearate;
  • Figure 10 Strength graph of BSA masterbatch modified PP melt containing zinc stearate and calcium stearate
  • Figure 12 Activation energy evolution graph according to modification process
  • Figure 13 Graph with melt strength results comparing results between BSA dust versus BSA masterbatch routes
  • Figure 14 Graph with residual BSA and SA contents comparing results between BSA dust versus BSA masterbatch routes
  • Figure 15 effect of masterbatch carrier molecular mass on modified PP melt strength
  • Figure 16 effect of masterbatch vehicle molecular mass on complex viscosity of modified PP
  • the present invention is a process for producing a modified polypropylene comprising the following steps:
  • modified polypropylene is meant a polypropylene (PP) which has undergone chemical modifications where the end product has properties that differ from a reactor polymer, in this case the presence of long branches.
  • Modified polypropylenes include PP-HMS (High Melt Strength) which are polypropylenes with high melt strength and may be by the presence of branches or reduced IF.
  • Step A Preparing a BSA Masterbatch (also referred to as a BSA Master, Master, or Masterbatch)
  • the BSA masterbatch is prepared by dispersing the BSA in polyolefin or another carrier in an extrusion process having a mass temperature of less than 190 ° C, preferably less than 180 ° C.
  • Polyolefin may be added to the extruder in the form of grains, pellets, powders, spheres or mixtures thereof.
  • the polyolefin used in the preparation of the BSA masterbatch is selected from polyethylene, polyalefin, polypropylene, ethylene with alpha-olefin copolymers of 3 to 10 carbon atoms, ethylene-propylene copolymers and / or alpha-olefin of 4 to 10 10 carbon atoms, preferably using polypropylene.
  • the polypropylene used in the masterbatch composition may be selected from the group comprising homopolymers, copolymers, propylene (RAHECO) and / or random (RACO) homopolymer (HECO) and / or random (RACO) copolymer matrix homopolymer (HECO) copolymers comprising propylene / ethylene and / or ⁇ -olefin containing from 4 to 10 carbons.
  • the IF of polypropylene may range from 1 to 300 g / min.
  • BSA is bisulfonazide.
  • the bisulfonazides may be selected from the group comprising sulfonyl azides, poly (sulfonyl azides), phosphazene azides, poly (phosphazene azides), silyl azides, poly (silyl azides), formyl azides, poly (formyl azides), azides, poly (azides), N-colorosulfonamide salts, N, N dichlorosulfonamides, 2-trialkyl-1-sulfonylhydrazide internal salts, diazo alkanes, poly (diazo alkanes), geminally substituted methylene groups, ketenes, metallocarbenes and others, and mixtures thereof, with the use of bis-sulfonazide 4,4'-diphenyl ether (DPO-BSA) being preferred.
  • DPO-BSA bis-sulfonazide 4,4'-dipheny
  • BSA may be in liquid, suspension, solid, or in physical mixtures with polymers, and in the form of Molecular Melt.
  • Molecular Melt is a mixture of DPO-BSA and an antioxidant ( Figure 1). use of DPO-BSA with the antioxidant tetrakis- (methylene (3,5-di-tert-butyl-4-hydroxycinnamate)] methane (commercially known as Irganox 1010 provided by BASF - The Chemical Company).
  • the BSA content in the masterbatch is up to 7.5%.
  • the content of Molecular Meit should be up to 80%, preferably between 5% and 35% in the masterbatch composition.
  • the BSA masterbatch of the present invention comprises at least one antioxidant selected from the group comprising phenolics, thioesters, phosphites, phosphates, among others commonly used in polyolefin. If BSA in the form of Molecular Meit is used, the addition of antioxidants is optional, as Molecular Meit already contains antioxidants in its composition.
  • metal cationic or compatibilizing fatty acid salts may be added.
  • the metal cation containing fatty acid salts are preferably stearates whose cation is selected from valence cations from +1 to +3, and most preferably selected from the group comprising Ca, Zn, Mg, Na, Li and Ba.
  • the masterbatch of the present invention optionally comprises other additives such as antacids, crystallization nucleators, COF (friction coefficient) controllers, compatibilizers, flow aids, plasticizers, among others capable of improving the performance of the composition.
  • additives such as antacids, crystallization nucleators, COF (friction coefficient) controllers, compatibilizers, flow aids, plasticizers, among others capable of improving the performance of the composition.
  • the addition of these additives to the masterbatch is not recommended as the azide functional group has a strong chemical interaction with acids and bases and may result in undesired reactions.
  • Figure 2 shows results of Hydrogen Nuclear Magnetic Resonance analysis for Molecular Meit and polypropylene masterbatch prepared with Molecular Meit. DPO-BSA remains intact. The characteristic peaks of the aromatic ring hydrogens showed no chemical displacement or noise in the base, indicating that no product changes occurred in the masterbatch preparation.
  • the extruder used in the preparation of the masterbatch can be single screw, double screw or planetary screw, interpenetrating or non-interpenetrating, counter rotational or corrotational, with L / D (thread length / diameter) greater than 20.
  • the extruder used It is the co-rotational, interpenetrating twin screw extruder.
  • the distribution of residence time can be seen in Figure 3.
  • the residence time in masterbatch preparation should be less than 40s.
  • the average residence time is 20s.
  • a reduction of the BSA and / or Molecular Melt domains to mean values less than 50 ⁇ is expected.
  • the BSA masterbatch obtained in the first process step (A) can be dosed directly into the extruder where it will automatically proceed to the next process step (B); or may be obtained in the first step (A) directly in the form of grains, pellets, spheres, powders or mixtures thereof, and stored for later use.
  • Step B Polypropylene Modification
  • Step B of the process is accomplished by adding:
  • the polypropylene to be modified may be selected from the group comprising homopolymers, copolymers, heterophasic propylene and alpha-olefin (RAHECO) and / or random (RACO) homopolymer matrix (HECO) copolymers comprising propylene / ethylene and / or ⁇ -olefin containing from 4 to 10 carbons.
  • the IF of polypropylene may range from 1 to 300 g / min.
  • the polypropylene to be modified may be in the form of grains, pellets, powders, spheres or mixtures thereof.
  • the mixing of the components is carried out in an extruder at a temperature of up to 270 ° C, preferably below 250 ° C.
  • the extruder used in the preparation of the masterbatch is single, double or planetary, interpenetrating or noninterpenetrating, counter rotational or corrotational and can be industrial with a diameter greater than 250 mm and L / D greater than 10; or compounding (composting) extruder with a diameter of 20 to 250 mm and an L / D greater than 25.
  • the residence time of the step B extrusion should be less than 30s.
  • the metal cation-containing fatty acid salts are preferably stearates whose cation is selected from valence cations of +1 to +3, preferably Ca, Zn, Mg, Na, Li and Ba. More preferably, the cations are selected from Zn and Mg.
  • the amount of metal cation-containing fatty acid salts may range from 200 to 6000 ppm (parts per million) based on total modified PP mass.
  • antioxidants may be added to the polypropylene to be modified, that is, in the second step (B) of the present process.
  • Antioxidants can be selected from phenolic antioxidants, thioesters, phosphites, phosphates, among others capable of presenting the same desired performance.
  • additives commonly used in polymer preparation may be added to the polypropylene to be modified, such as crystallization nucleators, flame retardants, pigments, anti-UV (ultraviolet) agents, COF (friction coefficient) controllers, release agents, infrared absorption agents, release aids, lubricants, flow aids, among others capable of delivering the same desired performance.
  • the BSA masterbatch is added to the polypropylene to be modified in sufficient quantity so that the BSA content in the final composition (modified polypropylene) is between 200 and 2000 ppm - depending on the degree of modification desired.
  • the masterbatch route will use less BSA for polypropylene modification as compared to conventional methods using direct powder dosing. With this, we notice the reduction of BSA residues in the final product, which allows its use in applications that have direct contact with food.
  • the modified polypropylene of the present invention has a residue content of less than 6 ppm.
  • the masterbatch process generates products with lower antioxidant consumption and better color appearance by not consuming Irganox 1010 ® antioxidants, for example when using Molecular Melt.
  • Steps (A) and (B) of the process of the present invention may occur independently or in an integrated manner.
  • the masterbatch obtained in step (A) may be in the form of grains which may be bagged and added in step B as an additive even after storage.
  • masterbatch extrusion can occur in an extruder integrated with another extruder, such as an industrial extruder, where the PP modification reaction occurs.
  • the masterbatch can be dosed directly into the industrial extrusion system without the need to bag and store the masterbatch.
  • the extrusion process may or may not be in line with the polypropylene polymerization process used as the base resin.
  • the process of the present invention provides greater control in the configuration (type and length) and amount of branches generated, reducing the occurrence of crosslinking.
  • a modified polypropylene suitable for use in foaming processes and other applications such as foaming, thermoforming, blowing, ISBM, extrusion of tubular films, blown films, flat films, BOPP, fibers, raffia, injection, coating, blowing, among others that require resin lower levels of branching.
  • the modified polypropylene obtained by the process of this invention has branching index (g ') less than one, branching number (Bn) greater than 0.1 and IF less than 100 g / 10min.
  • the modified polypropylene has g 'greater than 0.55 and less than 1 and B is not less than 4 atoms per 1000 carbon atoms.
  • this polypropylene has melt strength greater than 30 cN, extensibility greater than 11 cm / s, activation energy less than 120 kl / mol and IF between 2 and 6 g / 10 min.
  • the modified polypropylene of the present invention has no restrictions on blending with other polymers, as the superior rheological changes are maintained even in blends. Blends comprising said modified polypropylene retain the properties provided for in the present invention as compared to blends comprising existing branched products.
  • the polymeric blends formed with the modified PP of the present invention may comprise linear PP homopolymer, random and heterophasic homopolymer and copolymers, low density polyethylene (LDPE), low density linear polyethylene (PELBD), high density polyethylene (HDPE), rubber ethylene propylene (EPR) thermoplastic, ethylene / olefin copolymers, ethylene vinyl acetate (EVA) copolymer, ethylene / octene copolymer, ethylene / butene, ethylene hexene.
  • Modified PP may be present in polymer blends in contents ranging from 5% to 95%.
  • the polypropylene modification process of the present invention is an optimized process, providing control on the amount, type and size of the branches.
  • the masterbatch resin IF has a fundamental effect on the properties of the modified polypropylene, being crucial for the control of branch length.
  • the use of zinc stearate, for example, in the modification step (Step B) tends to favor the formation of branched, non-crosslinked modified structures as occurs in conventional processes using BSA powder.
  • branch length and branch shape are controlled, thereby optimizing coupling agent reaction and avoiding significant by-product formation.
  • Step B Another advantage of the process of the present invention is that in a short mixing time in an industrial extrusion (Step B), residence time of approximately 30s, the mixing capacity is limited. Therefore, the previous dispersion of BSA in the masterbatch makes the process less dependent on this limitation due to the increased contact area and consequent modification intensity.
  • the reaction is still strongly influenced by the molar mass of the masterbatch vehicle.
  • the lower IF of the masterbatch vehicle resin tends to produce longer branches and these branches will have a stronger influence on the rheological properties of the modified resin.
  • a polymer suitable for different types of processing, with fewer branches can be generated than polymers of other technologies.
  • Gc is the crossover module.
  • IV Br is the intrinsic viscosity of branched resins
  • IV L is the intrinsic viscosity for the same Mw (molar mass) data.
  • branched resins tend to have lower intrinsic viscosity than a linear resin of the same molar mass, because they have a lower degree of interpenetration of hydrodynamic volumes (in the case of concentrated solutions) or are less voluminous structures, consequently the values of g ' Resins are always smaller than 1 when they have branches.
  • the number of branches (B Collins) is a calculation derived from branch index data (g ').
  • B n can be estimated via EtaO viscosity determination, where in this work the Carreua-Yasuda model on frequency scan data was used, as described by the reference (Tsenoglou, C.
  • os is the zero viscosity of the modified (branched) resin.
  • OL is the viscosity of the resin before (linear) modification.
  • ML is Mw of the resin to be modified.
  • Ratio of Slopes is the variation in the slope of the beginning of the curve in relation to the strain hardening region.
  • RSI values indicate how much the polymer stiffens by deformation.
  • the onset value is related to the type of branch generated and to what degree of deformation the strain-hardening process begins.
  • is stress The stress ratio being the extensibility of 100 mm / s and 50 mm / s.
  • SHI gives an indication of stress nonlinearity at different extensibilities, but can hardly differentiate HMS-PP resins.
  • a first assessment can be made by the SHI value, but it is necessary to evaluate the entire curve profile obtained to understand if the resin properties are adequate. In the foaming process, for example, it is ideal that the force at the first slap should be very low, allowing the process to start and then stiffening to prevent rupture / collapse of the cells formed by gas expansion. .
  • EtaO, Strength, extensibility, SHI, RSI (slope ratio) and number of branches are determined.
  • Table 3 shows the characteristics of the components used and Table 4 lists the properties obtained after modification.
  • Example 02-a - BSA masterbatch with Ca and Zn stearates Example 02-a - BSA masterbatch with Ca and Zn stearates.
  • Example 2-b - BSA masterbatch with Ca and Zn stearates In this example the use of calcium and zinc stearate in PP modification is compared.
  • An illustrative scheme can be seen in Figure 9.
  • samples generated with calcium stearate-containing masterbatch tend to have slightly higher PI values than zinc stearate, and the Strain Hardening process starts at larger strain values (on-set).
  • zinc stearate should act by being added in steps after masterbatch formation to accelerate the reaction in a high dispersion step, thus allowing the free BSA residue to be reduced to values below 3 ppm active BSA and not sulfonamide release at levels greater than 3 ppm, suitable for food and beverage applications, subject to legal restrictions.
  • Example 3 compares two additive routes in the polypropylene modification process.
  • Table 10 shows the properties verified for modified polypropylene via route A.
  • Table 11 shows the properties verified for route D modified polypropylene.
  • FIG. 13 for activation energy, there is a description of evolution with process and mixing changes, demonstrating how far it goes towards obtaining a purely branched sample rather than crosslinked samples.
  • Linear systems are less sensitive to temperature variations, ie, temperature increases cause minor variations in the mobility of molecules.
  • the presence of long branches makes the PP chains more temperature sensitive, increasing the Flow Activation Energy.
  • the evolution of activation energy as technology advances makes it possible to control the type of modification generated, improving to have a branching system tending to fewer cross-links, giving better and higher system performance.
  • the SA residue levels are clearly minimal, very close to the target values for food contact.
  • the values given in this example are the values of the pellet resin prior to the foaming process.
  • the levels after the foaming process will be even lower, since normally the resin is diluted in the final processor composition and reheating will consume the BSA residue.
  • the explanation for this effect is given by the PP dispersion kinematics of the master in PP matrix.
  • the residence time in an extruder can be varied, but industrially, meaning industrial plant, is around 30s.
  • PP matrix and master tend to merge, but PP matrix with smaller particle size has larger contact area and will preferentially merge.
  • the molecules surrounding the dispersed BSA particles will be those of the master carrier.

Abstract

A presente invenção trata de um processo de modificação de polipropileno com controle na quantidade, tamanho e configuração das ramificações, compreendendo as etapas de (A) Preparar um masterbatch de bis-sulfonazida (BSA) por meio da dispersão do BSA em poliolefina; (B) Adicionar (i) pelo menos um sal de ácido graxo com cátion metálico de valência +1 a +3, e (ii) o masterbatch de BSA preparado na etapa (A) no polipropileno a ser modificado. O polipropileno modificado da presente invenção apresenta e propriedades adequada para uso em processos de espumação, sopro, termoformagem, recobrimento, extrusão de filmes, BOPP, fiação entre outros processos e aplicações, sendo também adequado para o contato com alimentos.

Description

"PROCESSO PARA PRODUÇÃO DE POLIPROPILENO MODIFICADO, POLIPROPILENO MODIFICADO E SEU USO, E BLENDA POLIMÉRICA".
Campo da invenção
A presente invenção se refere a modificações de polipropileno (PP) para utilização em espumas de polipropileno, processos de termoformagem, filmes planos, filmes soprados, sopro, fiação, ráfia, recobrimento, BOPP, ISBM, injeção, extrusão, injeção entre outras aplicações.
Estado da técnica
O polipropileno (PP) é uma resina amplamente explorada devido a sua vasta faixa de propriedades e versatilidade. Uma de suas características intrínsecas é a linearidade de suas cadeias.
Polipropilenos lineares são produtos de baixíssimo desempenho ao serem submetidos a regimes elongacionais e, portanto, um grande número de documentos descreve PP com ramificações fornecendo um comportamento reológico adequado em regime de deformação elongacional, ampliando ainda mais sua gama de aplicações.
Dentre os tipos de processamento que conhecidamente mais exigem do produto em termos de propriedades reológicas elongacionais está o processo de espumação, sendo que estas propriedades também são importantes em outros processos como termoformagem, sopro, ISB [Injection Strech Blow Molding), extrusão de filmes tubulares, extrusão de filmes planos, BOPP (polipropileno bi-orientado), fibras, recobrimento, entre outros que demandam da resina menores níveis de ramificação.
Por sua natureza química, o PP é um produto de difícil modificação, através de processo de extrusão reativa ou polimerização, devido à sua forte tendência a cisão beta, onde a cadeia é rompida e ocorre a recombinação dos radicais em moléculas de menor massa molar na presença de radicais livres ou por falta de sistema catalítico que suporte sistema multifuncionais. Para ocorrer ramificação no PP é necessário que o processo ocorra a temperaturas baixas, abaixo da sua fusão, o que é um inconveniente para a maioria dos processos.
O controle do tipo de ramificação é essencial, pois processos gerais de modificação de PP podem gerar produtos altamente reticulados resultando em géis indesejáveis. As ramificações podem ser do tipo Y e tipo H, sendo que ambas podem ter diferentes propriedades reológicas. Em geral, as ramificações H são melhores que as Y por apresentarem fisicamente duas ramificações ao invés de uma por cadeia.
Alguns documentos reivindicam modificações de PP com agentes de acoplamento, que buscam atingir diretamente a configuração H. A principal desvantagem deste processo é que o controle da dispersão pré-reação é fundamental, pois existe a necessidade de evitar que agentes próximos gerem produtos reticulados (entenda-se mais de um acoplamento por cadeia).
A chave da manipulação das propriedades reológicas envolve controle do número, comprimento e distribuição das ramificações nos produtos modificados.
O primeiro processo de modificação de PP comercialmente aplicado foi baseado na irradiação das resinas de PP com feixe de elétrons, conforme descrito no documento US 4,916,198, em que o material bombardeado por elétrons gera radicais e ramificações a baixas temperaturas. Os grandes problemas deste processo são o alto custo de investimento do sistema de irradiação, o custo de operação via feixe de elétrons ou outras fontes de irradiação, heterogeneidade das amostras modificadas e a limitação de escala de produção.
Processos de modificação via peróxido também foram sugeridos nos documentos EP 0384431 e US 5,047,485, em que o peróxido é misturado às esferas de PP e essas mantidas em vaso, em atmosfera de N2, e a temperaturas de até 100°C. Neste caso, o tempo de processo para atingir a especificação é elevado e as bateladas dependem do tamanho do vaso usado, limitando a escala de operação e até mesmo a sua reprodutibilidade.
Processos de extrusão reativa também são encontrados, como a utilização de peróxidos altamente reativos, conforme revelado nos documentos WO 99/27007 e US 5,416,169, promovendo a reação a temperaturas baixas logo nos primeiros estágios da extrusão. A limitação deste tipo de processo, mesmo na presença de comonômeros, é que este tipo de peróxido tem mistura limitada às esferas de polímero, tendo um significativo limite de atuação na modificação.
Outros processos de extrusão reativa com outros peróxidos na presença de coagentes, como dienos, silanos, acrilatos, siloxanos, dentre outros, estão descritos em documentos como US 7,247,385, US 6,136,926, WO 2011/086581, US 6,433,109 e US 6,077,907. Porém, nessas tecnologias há concorrência entre processos de degradação (cisão beta) e enxertia concomitantemente. Após a enxertia, uma segunda reação deve ser conduzida para se obter a ramificação do sistema entre os monômeros enxertados. A complexidade de tipo de processo o torna desvantajoso frente a outros realizados em apenas uma etapa, com inúmeras reações laterais indesejadas. Outro possível problema é que este tipo de reação também limita a produção quando comparado à escala de plantas industriais. Os documentos US 6,388,020, WO 2008/022804 e US 7,799,841 descrevem produtos ramificados onde a configuração H é mais desejada que a Y. As ramificações são geradas através de modificação pós-reator com peróxidos e dienos, descritos nos referidos documentos a partir de resinas metalocênicas. As faixas de IF indicadas para a resina de PP indicam que o processo utilizado (Borstar®) é nitidamente restrito a empresas que detém a proteção da referida tecnologia, o que limita a comercialização e o desenvolvimento de produtos por concorrentes. Rotas de produção de resinas amplamente difundidas pelo mundo (licenciadas) são mais vantajosas (tanto do ponto de vista técnico como comercial) que o processo acima descrito.
Um importante processo por meio do qual é possível inserir ramificações no PP é através de agentes de acoplamento, em que o agente se liga às cadeias de PP podendo formar conexões entre duas cadeias gerando ramificações do tipo H. A vantagem é evitar a necessidade de processos de enxertia. Porém, a simples mistura do agente de acoplamento e do PP, não significa que o processo é viável, pois podem-se observar subprodutos indesejados, além de reações de difícil controle. Nesse sentido, os documentos US 7,141,182, US 20030138627, US 20080021137 e US 6,649,666 descrevem uma tecnologia relacionada ao mesmo processo por meio do uso de bis-sulfonazidas (BSA), como, por exemplo, 4, 4'-difenyl éter de bis-sulfonazida. Dita tecnologia prevê uma série de possibilidades, desde a adição direta até à utilização de masterbatch. Porém, não é abordado, em nenhum dos documentos, o controle de processo de subprodutos como o próprio BSA não reagido e as possíveis sulfonamidas geradas, nem o controle da reticulação que pode ocorrer ao invés da ramificação e nem efeitos de otimização pela forma de preparo do masterbatch e sua composição.
O documento US 7,141,182 descreve a preparação de uma mistura {Molecular Me/f) de forma a se obter um produto manuseável, devido ao caráter explosivo da bis-sulfonilazida. É mencionada a possibilidade de também serem adicionados nesta mistura produtos usuais na aditivação de polímeros, como antiácidos (estearato de cálcio ou zinco), lubrificantes, entre outros.
O documento US 6,649,666, cita a formação de produtos modificados através de bis- sulfonilazidas, inclusive, genericamente, na forma de masterbatch. Outro diferencial é que o referido documento descreve um processo simultâneo de modificação e espumação. Cumpre ressaltar que, por se tratar de uma extrusão reativa, e pelo fato de o processo de espumação ter uma significante quantidade de aditivos específicos, não se recomenda a mistura de BSA com outros componentes químicos, pois podem ocorrer reações indesejadas gerando problemas de segurança de processo, à saúde dos operadores e ao meio ambiente. Diferentemente do estado da técnica, o processo da presente invenção é vantajoso, pois o fato de compreender duas etapas permite um controle mais preciso do processo e de suas possíveis instabilidades, até mesmo com a vantagem de se usar menores teores de BSA do que aqueles utilizados na tecnologia descrita no documento US 6,649,666. Com relação à utilização de masterbatch, o documento US 7,141,182 não cita ou se refere ao efeito de aceleradores na otimização do processo, nem mesmo ao controle do comprimento da ramificação e controle de subprodutos gerados durante a preparação do masterbatch. O processo revelado na presente invenção alcança resultados inovadores como aperfeiçoar o processo de modificação utilizando BSA através da preparação e composição de masterbatch de BSA, obtendo significativa melhora em relação aos processos descritos no US 7,141,182.
O documento US 20080021137, aparentemente, descreve uma junção das tecnologias descritas nos documentos US 20030138627 e US 7,141,182, em que se ensina a preparação do molecular melt e o produto da reação com PP, sem considerar otimizações de processo, efeitos de aceleradores, controle do comprimento de ramificações, ou uso das bis-sulfonazidas na forma de masterbatch.
O documento US 20130303642 descreve a utilização de BSA para preparação de espumas de copolímeros de polipropilenos-alfa olefinas através da adição de BSA no polímero preliminarmente à reação de acoplamento seguido de espumação. Porém, a mistura de vários componentes químicos, como agente de expansão (exemplo: azodicarbonamida), aumenta a possibilidade de ocorrer falta de controle, conforme mencionado anteriormente. Ao contrário da tecnologia ensinada no referido documento, um fator importante no processo é a limitação de se fazer a mistura em uma temperatura em que não ocorra reação/decomposição nem interação química entre o agente de expansão e o BSA. Assim, em comparação com o citado documento do estado da técnica, a presente invenção tem a vantagem do controle mais preciso de reação, além do controle de comprimento de ramificação e melhores propriedades finais, inclusive com a modificação de polipropileno homopolímero.
Em tecnologia de vulcanização, os sistemas são compostos por agentes de vulcanização (enxofre, óxidos metálicos, compostos bifuncionais e peróxidos) e, se necessário, aceleradores, ativadores, retardadores, entre outros, usados para produzir as características de vulcanização desejadas e as propriedades do vulcanizado pretendidas. Neste caso, o agente de reticulação é o BSA, sendo que o iniciador é a própria molécula. Com o uso de aceleradores orgânicos é necessário o uso de ativadores orgânicos e/ou inorgânicos para que os aceleradores atinjam o seu potencial. Os ativadores mais usados são o óxido de zinco (ZnO) e o óxido de magnésio (MgO). Além destes ativadores, é possível a utilização de ácidos graxos, ou sais de ácidos graxos, como o estearato de zinco. Os ácidos graxos e o óxido de zinco são incorporados para formarem um sal de zinco ou magnésio que funciona como um doador de cátions, ativador do sistema de vulcanização. Em resinas de PP, normalmente, estes sais esteáricos são adicionados com função antiácida, sem função de alterar a cinética de reação de modificadores. Por sua vez, a invenção descrita no presente pedido descreve o efeito dos sais esteáricos sobre o processo de modificação do polipropileno.
Objetivos da invenção
Um primeiro objetivo da presente invenção é prover um processo de produção de um polipropileno modificado.
Um segundo objetivo da presente invenção é obter um polipropileno modificado com g' inferior 1, Bn maior que 0,1 e IF menor que 100 g/10min, bem como seu uso.
Um terceiro objetivo da invenção é obter uma blenda polimérica compreendendo o polipropileno modificado revelado no presente pedido de patente. Breve descrição da invenção
Os objetivos da presente invenção são alcançados por um processo que compreende a adição de um masterbatch, preparado pela dispersão de BSA em uma poliolefina, e de pelo menos um sal de ácido graxo com cátion metálico no polipropileno a ser modificado.
A presente invenção apresenta como vantagens o controle do tipo e comprimento das ramificações do polipropileno modificado, bem como a reação otimizada do agente de acoplamento, minimizando a formação de subprodutos.
Ainda, o polipropileno modificado da presente invenção apresenta teor reduzido de resíduos e, consequentemente, apresenta melhor desempenho em diversas aplicações como espumação, sopro, termoformagem, recobrimento, extrusão de filmes, BOPP, fiação, entre outras técnicas de moldagem. Além disso, o polipropileno modificado possui índice de ramificação (g') maior do que os polímeros encontrados comercialmente devido à sua eficiência superior na modificação reológica pela geração de ramificações sem a presença de géis. Descrição resumida das figuras
A presente invenção será, a seguir, mais detalhadamente descrita com base em um exemplo de execução representado nos desenhos. As figuras mostram:
Figura 1: ilustra estruturas moleculares do Irganox® 1010 e do DPO_BSA;
Figura 2: espectro de *Η MN do DPO_BSA e do masterbatch de BSA; Figura 3: ilustra o a distribuição de tempo de residência para a preparação de um masterbatch de BSA na extrusão;
Figura 4: distribuição do tamanho de partículas de BSA no masterbatch (MEV), imagem de MEV;
Figura 5: ilustra o modelo de gráfico de resistência do fundido versus extensibilidade e parâmetros utilizados para cálculo de propriedades;
Figura 6: gráfico de resistência do fundido para PP modificado com pó de BSA e masterbatch de BSA;
Figura 7: gráfico de viscosidade complexa para PP modificado com pó de BSA e masterbatch de BSA;
Figura 8: esquema representativo do masterbatch de BSA utilizando estearato de Cálcio e estearato de zinco e seus efeitos sobre a formação de ramificações do PP.
Figura 9: gráfico de viscosidade complexa para PP modificado com masterbatch de BSA contendo estearato de zinco e estearato de cálcio;
Figura 10: gráfico de resistência do fundido para PP modificado com masterbatch de BSA contendo estearato de zinco e estearato de cálcio;
Figura 11: rotas de modificação de PP;
Figura 12: gráfico de evolução de energia de ativação de acordo com processo de modificação; Figura 13: gráfico com os resultados de resistência do fundido, comparando os resultados entre as rotas pó de BSA versus masterbatch de BSA;
Figura 14: gráfico com os teores de BSA e SA residuais, comparando os resultados entre as rotas pó de BSA versus masterbatch de BSA;
Figura 15: efeito da massa molecular do veículo do masterbatch na resistência do fundido do PP modificado;
Figura 16:: efeito da massa molecular do veículo do masterbatch na viscosidade complexa do PP modificado
Descrição detalhada da invenção
A presente invenção trata de um processo de produção de um polipropileno modificado que compreende as seguintes etapas:
(A) Preparar um masterbatch de bis-sulfonazida (BSA) por meio da dispersão do BSA em poliolefina;
(B) Adicionar (i) pelo menos um sal de ácido graxo com cátion metálico de valência +1 a +3, e (ii) o masterbatch de BSA preparado na etapa (A) no polipropileno a ser modificado. Por polipropileno modificado entende-se um polipropileno (PP) que sofreu modificações químicas onde o produto final apresenta propriedades que se diferem de um polímero de reator, neste caso a presença de ramificações longas. Entre os polipropilenos modificados, estão incluídos os PP-HMS (High Melt Strength) que são polipropilenos com elevada resistência do fundido, podendo ser pela presença de ramificações ou reduzido IF.
A seguir, as etapas e os componentes utilizados no processo de produção de polipropileno modificado da presente invenção serão descritos com mais detalhes. Etapa A: Preparação de um masterbatch de BSA (também referido como máster de BSA, máster ou masterbatch)
O masterbatch de BSA é preparado por meio da dispersão do BSA em poliolefina ou outro veículo em um processo de extrusão com temperatura de massa inferior a 190°C, preferencialmente inferior a 180°C.
A poliolefina pode ser adicionada na extrusora em formato de grãos, pellets, pó, esferas ou mistura destes.
A poliolefina utilizada na preparação do masterbatch de BSA é selecionada entre polietileno, poli alfa-olefinas, polipropileno, copolímeros de etileno com alfa-olefinas de 3 a 10 átomos de carbono, copolímeros de propileno com eteno e/ou alfa-olefinas de 4 a 10 átomos de carbono, sendo preferível o uso de polipropileno. O polipropileno utilizado na composição do masterbatch pode ser selecionado do grupo que compreende homopolímeros, copolímeros, copolímeros heterofásicos de matriz hompolímero (HECO) de matriz de copolímero randômico de propileno e alfa-olefinas (RAHECO) e/ou random (RACO) compreendendo propileno/etileno e/ou α-olefina contendo de 4 a 10 carbonos. O IF do polipropileno pode variar entre 1 e 300 g/min.
Por BSA entende-se bis-sulfonazida. As bis-sulfonazidas podem ser selecionadas do grupo que compreende sulfonil azidas, poli(sulfonil azidas), fosfazeno azidas, poli(fosfazeno azidas), silil azidas, poli(silil azidas), formil azidas, poli(formil azidas), azidas, poli(azidas), sais de N-colorosulfonamidas, N, N diclorosulfonamidas, sais internos de 2-trialquil-l- sulfonilhidrazidas, diazo alcanos, poli(diazo alcanos), grupos metileno geminalmente- substituidos, cetenos, metalocarbenos entre outros e suas misturas, sendo preferencial o uso de 4, 4'-difenil éter de bis-sulfonazida (DPO-BSA). O BSA pode estar na forma líquida, suspensão, sólida, ou em misturas físicas com polímeros, e ainda na forma de Molecular Melt. Molecular Melt é a mistura de DPO-BSA com um antioxidante (Figura 1), sendo mais comum o uso de DPO-BSA com o antioxidante tetrakis-(metileno(3,5-di-terc-butil-4-hidroxicinamato)]- metano (comercialmente conhecido como Irganox 1010 fornecido pela empresa BASF - The Chemical Company).
O teor de BSA no masterbatch é de até 7,5%. Quando o BSA utilizado estiver na forma de Molecular Meit, o teor de Molecular Meit deve ser de até 80%, preferencialmente entre 5% e 35% na composição do masterbatch.
O masterbatch de BSA da presente invenção compreende pelo menos um antioxidante selecionado do grupo que compreende fenólicos, tio-ésteres, fosfitos, fosfatos, entre outros comumente utilizados em poliolefina. Caso seja utilizado BSA na forma de Molecular Meit, a adição de antioxidantes é opcional, tendo em vista que o Molecular Meit já contem antioxidantes em sua composição.
Opcionalmente, podem ser adicionados sais de ácidos graxos com cátions metálicos ou compatibilizantes. Os sais de ácido graxo contendo cátion metálico são, preferencialmente, estearatos cujo cátion é selecionado dentre cátions de valência de +1 a +3, e mais preferencialmente selecionados do grupo que compreende Ca, Zn, Mg, Na, Li e Ba.
Ainda, o masterbatch da presente invenção compreende, opcionalmente, outros aditivos como antiácidos, nucleantes de cristalização, controladores de COF (coeficiente de fricção), compatibilizantes, auxiliares de fluxo, plastificantes, dentre outros capazes de melhorar o desempenho da composição. No entanto, não é recomendada a adição destes aditivos no masterbatch, pois o grupo funcional azida possui forte interação química com ácidos e bases podendo resultar em reações indesejadas.
É esperado que as características químicas do BSA após a extrusão sejam preservadas. A Figura 2 apresenta resultados de análises de Ressonância Magnética Nuclear de Hidrogénio para o Molecular Meit e masterbatch de polipropileno preparado com o Molecular Meit. Observa-se que o DPO-BSA permanece íntegro. Os picos característicos dos hidrogênios dos anéis aromáticos não apresentaram deslocamento químico nem ruídos na base, indicativos de que nenhuma alteração do produto ocorreu na preparação do masterbatch.
A extrusora utilizada na preparação do masterbatch pode ser de rosca simples, rosca dupla ou planetária, interpenetrante ou não-interpenetrante, contra-rotacional ou corrotacional, com L/D (comprimento/diâmetro da rosca) maior que 20. Preferencialmente, a extrusora utilizada é a extrusora de rosca dupla, co-rotaconal, interpenetrante. A distribuição do tempo de residência pode ser visto na Figura 3. O tempo de residência na preparação do masterbatch deve ser inferior a 40s. O tempo de residência médio é de 20s.
A dispersão obtida através da escolha correta de perfil de rosca adequado aos requisitos do processo, refletindo uma significante redução de tamanho de partícula, de aproximadamente 800 μητι para um diâmetro médio inferior a 5 ι e faixa de tamanho inferior a 10 μηι exemplificado na Figura 4. É esperada uma redução dos domínios de BSA e/ou Molecular Melt para valores médios menores que 50 μηη.
O masterbatch de BSA obtido na primeira etapa (A) do processo pode ser dosado diretamente na extrusora onde seguirá automaticamente para a próxima etapa (B) do processo; ou pode ser obtido na primeira etapa (A) diretamente em formato de grãos, pellets, esferas, pó ou misturas destes, e armazenado para uso posterior.
Etapa B: Modificação do polipropileno
A etapa B do processo é realizada por meio da adição de:
(i) pelo menos um sal de ácido graxo com cátion metálico de valência +1 a +3 ,
(ii) o masterbatch de BSA obtido na etapa (A)
no polipropileno a ser modificado.
O polipropileno a ser modificado pode ser selecionado do grupo que compreende homopolímeros, copolímeros, copolímeros heterofásicos de matriz hompolímero (HECO) de matriz de copolímero randômico de propileno e alfa-olefinas (RAHECO) e/ou random (RACO) compreendendo propileno/etileno e/ou α-olefina contendo de 4 a 10 carbonos. O IF do polipropileno pode variar entre 1 e 300 g/min. O polipropileno a ser modificado pode estar em formato de grãos, pellets, pó, esferas ou mistura destes.
A mistura dos componentes é realizada em uma extrusora em temperatura de até 270°C, preferencialmente inferior a 250°C. A extrusora utilizada na preparação do masterbatch é de rosca simples, dupla ou planetária, interpenetrante ou não-interpenetrante, contra- rotacional ou corrotacional e pode ser industrial com diâmetro maior que 250 mm e L/D maior que 10; ou extrusora de composição (compostagem) com diâmetro de 20 a 250 mm e L/D maior que 25. O tempo de residência da extrusão da etapa B deve ser inferior a 30s.
Os sais de ácido graxo contendo cátion metálico são, preferencialmente, estearatos cujo cátion é selecionado dentre cátions de valência de +1 a +3, preferencialmente Ca, Zn, Mg, Na, Li e Ba. Mais preferencialmente, os cátions são selecionados entre Zn e Mg. A quantidade de sais de ácido graxo contendo cátion metálico pode variar de 200 a 6000 ppm (partes por milhão) baseada na massa total de PP modificado.
Opcionalmente, podem ser adicionados antioxidantes no polipropileno a ser modificado, ou seja, na segunda etapa (B) do presente processo. Os antioxidantes podem ser selecionados dentre antioxidantes fenólicos, tio-ésteres, fosfitos, fosfatos, entre outros capazes de apresentar o mesmo desempenho desejado.
Além de antioxidantes, podem ser adicionados no polipropileno a ser modificado outros aditivos comumente utilizados na preparação de polímeros, como nucleantes de cristalização, retardantes de chama, pigmentos, agentes anti-UV (ultravioleta), controladores de COF (coeficiente de fricção), agentes desmoldantes, agentes de absorção de infravermelho, auxiliares de desmolde, lubrificantes, auxiliares de fluxo, entre outros capazes de apresentar o mesmo desempenho desejado.
O masterbatch de BSA é adicionado no polipropileno a ser modificado em quantidade suficiente para que teor de BSA, na composição final (polipropileno modificado) esteja entre 200 e 2000 ppm - a depender do grau de modificação desejado.
Por se tratar a presente invenção de um processo de melhor desempenho, é previsto que a rota via masterbatch utilize menor quantidade de BSA para a modificação de polipropileno, quando comparada com os processos convencionais que utilizam dosagem direta de pó. Com isso, nota-se a redução de resíduos de BSA no produto final, o que permite sua utilização em aplicações que tenham contato direto com alimentos. O polipropileno modificado da presente invenção apresenta teor de resíduos menor que 6 ppm. Além disso, o processo utilizando masterbatch gera produtos com menor consumo de antioxidante e melhor aspecto de cor, por não consumir antioxidantes Irganox 1010®, por exemplo, ao se usar o Molecular Melt
As etapas (A) e (B) do processo da presente invenção podem ocorrer de forma independente ou integrada. Quando na forma independente (como, por exemplo, em extrusoras de compostagem), o masterbatch obtido na etapa (A) pode estar na forma de grãos que podem ser ensacados e adicionados na etapa B como um aditivo, mesmo após ter sido armazenado. Na forma integrada, a extrusão do masterbatch pode ocorrer em uma extrusora integrada à outra extrusora, como por exemplo, uma extrusora industrial, onde ocorre a reação de modificação do PP. Neste caso, o masterbatch pode ser dosados diretamente no sistema de extrusão industrial, sem a necessidade de se ensacar e armazenar o masterbatch. Em ambos os casos, o processo de extrusão pode, ou não, estar em linha com o processo de polimerização do polipropileno, usado como resina base.
O processo da presente invenção proporciona maior controle na configuração (tipo e comprimento) e quantidade de ramificações geradas, diminuindo a ocorrência de reticulação. Por meio do presente processo, obtém-se um polipropileno modificado adequado para uso em processos de espumação e outras aplicações como espumação, termoformagem, sopro, ISBM, extrusão de filmes tubulares, filmes soprados, filmes planos, BOPP, fibras, ráfia, injeção, recobrimento, sopro, entre outros que demandam da resina menores níveis de ramificação.
O polipropileno modificado obtido pelo processo da presente invenção possui índice de ramificação (g') inferior 1, número de ramificação (Bn) maior que 0,1 e IF menor que 100 g/10min. Preferencialmente, o polipropileno modificado apresenta g' superior a 0,55 e inferior a 1 e Bn menor que 4 átomos por 1000 átomos de carbono.
Por meio do processo da presente invenção é possível obter um polipropileno modificado com propriedades adequadas para espumação apresentando g' menor que 0,75 e Bn maior que 2 e menor que 4 átomos a cada 1000 átomos de carbono. Ainda, este polipropileno apresenta resistência do fundido maior que 30 cN, extensibilidade maior que 11 cm/s, energia de ativação menor que 120 kl/mol e IF entre 2 e 6 g/10 min.
Além disso, apesar do menor número de ramificações, o polipropileno modificado da presente invenção não apresenta restrições quanto a misturas (blendas) com outros polímeros, pois as alterações reológicas superiores são mantidas mesmo em misturas. As blendas compreendendo o referido polipropileno modificado mantém as propriedades previstas na presente invenção quando comparadas às blendas compreendendo produtos ramificados já existentes. As blendas poliméricas formadas com o PP modificado da presente invenção podem compreender PP linear homopolímero, homopolímero e copolímeros randômicos e heterofásicos, polietileno de baixa densidade (PEBD), polietileno linear de baixa densidade (PELBD), polietileno de alta densidade (PEAD), borracha termoplástica de etileno- propileno (EPR), copolímeros eteno/olefinas, copolímero de etileno acetato de vinila (EVA), copolímero de eteno/octeno, eteno/buteno, eteno hexeno. O PP modificado pode estar presente nas blendas poliméricas em teores que variam de 5% a 95%.
O processo de modificação de polipropileno da presente invenção é um processo otimizado, proporcionando o controle na quantidade, tipo e tamanho das ramificações. O IF da resina do masterbatch apresenta efeito fundamental nas propriedades do polipropileno modificado, sendo determinante para o controle do comprimento das ramificações. O uso de estearato de zinco, por exemplo, em etapa de modificação (Etapa B) tende a favorecer a formação de estruturas modificadas com ramificações, e não reticuladas como ocorre em processos convencionais utilizando pó de BSA. Assim, por meio da rota masterbatch, do ajuste do IF do veículo do masterbatch e da adição de estearatos de metais de valência de +1 a +3 na etapa de modificação, controla-se o comprimento da ramificação e a forma ramificada, otimizando assim a reação do agente de acoplamento e evitando a significativa formação de subprodutos. Outra vantagem do processo da presente invenção é que em pouco tempo de mistura em uma extrusão industrial (Etapa B), tempo de residência de 30s aproximadamente, a capacidade de mistura é limitada. Portanto a prévia dispersão do BSA no masterbatch torna o processo menos dependente desta limitação pelo aumento da área de contato e consequente intensidade da modificação. A reação sofre ainda forte influência da massa molar do veículo do masterbatch. Assim, quando menor o IF da resina do veículo do masterbatch há a tendência de que as ramificações geradas sejam mais longas e estas ramificações terão influência mais intensa sobre as propriedades reológicas da resina modificada. Como efeito da combinação destes diferentes fatores, pode-se gerar um polímero adequado a diferentes tipos de processamento, com menor número de ramificações, que os polímeros de outras tecnologias.
TESTES
Determinação de EtaO
Para determinação da propriedade do material EtaO(r|o), referente à viscosidade do material sem cisalhamento, utilizou-se o modelo de Carreau Yassuda descrito por 5 parâmetros: = [1 + (A * y)a] a
Άο— línf
Para a aplicação deste modelo, utilizou-se curvas obtidas em reometria rotacional, (neste caso reômetro rotacional da Antoon Paar MC 501, com geometria de placas paralelas, de 25 mm de diâmetro e distância entre placas de lmm, na região de viscoelasticidade linear, na faixa de frequência de 0,0628 até 628 rad/s a 200°C) através do ajuste do modelo aos pontos obtidos no equipamento.
Destas análises é possível retirar valores PI (índice de polidispersividade), sendo uma relação com o cruzamento entre módulos elástico e viscoso da resina.
IO5
PI =
Gc
Gc é o módulo de cruzamento. Energia de ativacão
É conhecido na literatura que polímeros com ramificações têm maior energia de ativação de fluxo (Ea) do que polímeros lineares. A Tabela 1 indica valores de literatura para dois polímeros lineares e ramificados: Tabela 1. Valores de energia de ativação de fluxo de poliolefinas
Figure imgf000015_0001
*Daploye WB140HMS, comercializado por Borealis
Para o cálculo da energia de ativação, foram realizadas medidas de viscosidade complexa em três temperaturas (200, 215 e 230°C). Como referência, tem-se que valores muito elevados significam que o sistema pode ter passado de um estado de ramificação para um estado de reticulação, onde mesmo aplicando pouca energia se alcançam mudanças significativas no emaranhamento/interação das moléculas.
Número de ramificações e índice de ramificação
Para melhor esclarecer as diferenças entre amostras geradas, podemos usar as referências dos artigos "Investigation of Long-Chain Branching in HDPE using Triple-Detector GPC (Hammons, J. et al. Annual Technical Conference ANTEC, 2002)" e "Characterization of Complex Polymer Systems by Size Exclusion Chromatography— Homopolymers With Long Chain Branching and Copolymers With Composition Drift (Hamielec, A. Pure & Appi. Chern., Vol.54, No.2, pp.293—307. 00334545/82/020293- 15$03. OO/O Great Britain, 1982)" .
Portanto, g' (índice de ramificação) correspondente à relação abaixo:
" IV,
onde:
IVBr é a viscosidade intrínseca de resinas ramificadas e
IVL é a viscosidade intrínseca para um mesmo dado de Mw (massa molar).
Considerando que resinas ramificadas tendem a apresentar viscosidade intrínseca menor do que uma resina linear de mesma massa molar, pelo fato de possuírem menor grau de interpenetração dos volumes hidrodinâmicos (em caso de soluções concentradas) ou serem estruturas menos volumosas, consequentemente os valores de g' das resinas são sempre menores do que 1 ao apresentarem ramificações. Assim, quanto menor o valor de g', maior será o valor de Bn. O número de ramificações (B„) é um cálculo derivado de dados de índice de ramificação (g').
Figure imgf000016_0001
eologicamente, Bn pode ser estimado via determinação da viscosidade EtaO, onde neste trabalho utilizou-se o modelo de Carreua-Yasuda sobre dados de varredura de frequência, como descrito pela referência (Tsenoglou, C. J, Gotsys, A. D., Macromolecules, 2001,34,4, 4685). Este método é muito mais consistente e rápido quando comparado a ao método de GPC (Gel Permeation Cromatography) ou SEC (Size Exclusion Cromatography), além de ser menos suscetível a erros, pois utiliza medidas diretas em reologia, baseadas na viscosidade zero da amostra antes e depois da modificação:
Figure imgf000016_0002
Onde: ¾
vr =—
e os é a viscosidade zero da resina modificada(ramificada). T|OL é a viscosidade da resina antes da modificação(linear). ML é Mw da resina a ser modificada.
Mc é a massa molar critica para PP - 11200 g/mol α = 0,42
RSI e on-set de strain hardening
Estas análises foram realizadas em equipamento Rheotens 71.9 da Gõttfert, acoplado a extrusora de laboratório Haake (Thermo Haake Rheomex), com capilar de diâmetro de 2 mm e 20 mm de comprimento, a distância de 50 mm das roldanas e aceleração de 60 mm/s2, a uma temperatura de 190°C. A Figura 5 mostra um exemplo de gráfico que fornece os valores de força x extensibilidade, e o seguinte tratamento é realizado:
slopej
Onde,
RSI: relação de inclinação {Ratio of Slopes) é a variação da inclinação do início da curva em relação a região com strain hardening (encruamento).
On-set: é o ponto teórico de mudança de regime de comportamento.
Para alguns polipropilenos, é possível diferenciar o comportamento de produtos que tem bom desempenho no processo de espumação e são ou já foram comerciais (Tabela 2):
Tabela 2. Parâmetros de análise da curva de resistência do fundido para resinas comercias
Figure imgf000017_0001
Os valores de RSI indicam o quanto o polímero enrijece por deformação. O valor de on- set é relacionado ao tipo de ramificação gerada e em que grau de deformação o processo de strain-hardening inicia.
Pelas caraterizações, é possível identificar que os produtos PP-HMS reconhecidos pelo mercado, têm características diferentes, algo que não é possível diferenciar por outra forma ou técnica. Em geral, quanto maiores os valores de RSI e diferentes formas de ramificação geram menores "on-set" (início do enrijecimento). Porém, formas de ramificações diferentes geram "on-sef característicos.
Outra medida usualmente utilizada é o SHI, descrita como:
Onde,
SHI: é stress hardening Índex (índice de enrijecimento)
σ: é stress (tensão) Sendo a relação de tensões a extensibilidade de 100 mm/s e 50 mm/s.
O SHI dá um indicativo de não linearidade da tensão a diferentes extensibilidades, mas dificilmente consegue diferenciar resinas HMS-PP. Uma primeira avaliação pode ser feita pelo valor de SHI, mas é necessário avaliar todo o perfil da curva obtida para entender se as propriedades da resina estão adequadas. No processo de espumação, por exemplo, o ideal é que a força, na primeira tapa, seja muito baixa, permitindo que o processo inicie e, em seguida, deve ocorrer o enrijecimento para evitar o rompimento/colapso das células formadas pela expansão do gás.
A partir das análises, determina-se EtaO, Força, extensibilidade, SHI, RSI (relação de inclinação) e número de ramificações.
Exemplo 01 - Mistura pó-polímero e
Figure imgf000018_0001
Neste exemplo foram comparados dois processos de modificação: modificação de polipropileno com adição de BSA em pó e processo de modificação da presente invenção utilizando masterbatch de BSA.
A Tabela 3 mostra as características dos componentes utilizados e na Tabela 4 estão relacionadas as propriedades obtidas após a modificação.
Tabela 3. Amostras utilizadas na modificação do PP
Figure imgf000018_0002
Tabela 4. Propriedades do PP modificado com as amostras da Tabela 3
Figure imgf000018_0003
A partir dos gráficos apresentados na Figura 6 e Figura 7, observa-se que há um efeito de modificação muito mais pronunciado ao se usar um masterbatch de BSA ao invés da adição apenas do pó de BSA ao polímero de PP. Além de maior viscosidade, maior resistência do fundido, há a redução da energia de ativação do sistema quando usado o masterbatch. Como já mencionado, a energia de ativação é uma forma de medida do número de ramificações e também da estrutura ramificada/reticulada. Observando-se os gráficos pode-se concluir que o uso do masterbatch gera estruturas mais ramificadas que o uso com apenas pó, pois a modificação global da resina é maior, mas com menor energia de ativação. A utilização do pó gera uma dispersão pobre, possibilitando a formação de reticulação.
Exemplo 02-a - Masterbatch de BSA com estearatos de Ca e Zn.
Neste exemplo foi verificado o efeito do uso de sais de ácido graxo na modificação do polipropileno. Para isso, foram utilizados masterbatchs de BSA contendo estearatos de cálcio e zinco e masterbatch sem estearatos. A composição das amostras está na Tabela 5 e as propriedades verificadas no PP modificado estão apresentadas na Tabela 6.
Tabela 5. Amostras de masterbatch de BSA com ou sem estearatos de cálcio e zinco
Figure imgf000019_0001
Tabela 6. Propriedades do polipropileno modificado com os masterbatchs da Tabela 5
Figure imgf000019_0002
Observa-se que o uso do masterbatch contendo estearatos é muito mais eficiente na modificação da resina, resultando em propriedades significativamente melhores. Dois mecanismos são propostos, onde o estearato pode atuar como compatibilizante, e/ou, atua como acelerador da reação.
Exemplo 2-b - Masterbatch de BSA com estearatos de Ca e Zn. Neste exemplo compara-se a utilização de estearato de cálcio e zinco na modificação de PP. Um esquema ilustrativo pode ser visto na Figura 9. Utilizaram-se masterbatchs de BSA com estearato Ca e Zn , resina IF 100 g/10min (resina do masterbatch) e IF resina base (resina a ser modificada) 17g/10 min.
As composições das amostras estão relacionadas na Tabela 7. As propriedades verificadas para o poíipropiieno modificado são apresentadas na Tabela 8, na Figura 10 e Figura 11.
Tabela 7. Amostras para modificação de poíipropiieno: estearato de cálcio versus zinco
Figure imgf000020_0001
Tabela 8. Propriedades do poíipropiieno modificado com as amostras da Tabela 7
Figure imgf000020_0002
Neste exemplo, pode-se observar que as amostras geradas com masterbatch contendo estearato de cálcio tendem a apresentar valores de PI levemente superiores às de estearato de zinco, e o processo de Strain Hardening inicia em valores de deformação maiores (on-set).
Outro detalhe é a energia de ativação maior para as amostras modificadas com estearato de zinco. Esses efeitos levam a crer que o estearato de zinco atua na reação de acoplamento, assim como no processo de vulcanização, acelerando o mesmo. Com isso, espera-se que a dispersão prévia do estearato de zinco no masterbatch de BSA antes da reação de modificação não seja tão adequada, ocorrendo a reação em tempos de mistura menores e resultando em um maior número de acoplamentos numa mesma molécula, gerando um grau de reticulação maior que em sistema com Cálcio. O estearato de cálcio por sua vez, atua na dispersão do BSA, mas por não acelerar a reação, tem maior tendência a formar ramificações evitando reticuiações. Neste acaso, o estearato de zinco deveria atuar sendo adicionado em etapas posteriores à formação do masterbatch, para acelerar a reação numa etapa de alta dispersão, permitindo então que o resíduo de BSA livre seja reduzido a valores inferiores a 3 ppm de BSA ativo e não haja liberação de sulfonamida a teores maiores que 3 ppm, valores adequados para aplicações em alimentos e bebidas, de acordo com restrições legais.
Exemplo 03- Rotas de aditivação
O exemplo 3 compara duas rotas de aditivação no processo de modificação de polipropileno.
Na rota A, o estearato é previamente adicionado no masterbatch de BSA, e o masterbatch aditivado é utilizado para modificação de polipropileno.
Na rota D, o estearato é adicionado diretamente no polipropileno a ser modificado. As rotas A e D são mostradas na
Figura 12. Nestas rotas é alterada a composição do masterbatch através da aditivação ou não aditivação com estearatos na sua etapa de preparação.
Foram testadas duas resinas base (veículo do masterbatch) com diferentes IF para avaliar seu efeito na presença do estearato de cálcio e zinco. Um PP homopolímero de IF 25 g/10 min e outro PP homopolímero de IF 100 g/10 min, como mostrado na Tabela 9.
Tabela 9. Amostras para modificação de polipropileno
Figure imgf000021_0001
Figure imgf000022_0001
Exemplo 3-a - Rota A
A Tabela 10 apresenta as propriedades verificadas no polipropileno modificado por meio da rota A.
Tabela 10. Propriedades do polipropileno modificado - Rota A
Figure imgf000022_0002
Nesta condição de mistura, observa-se que a presença de estearato na preparação do masterbatch tende a resultar em valores maiores de propriedades alvo quando se utiliza resinas com maior IF na preparação do masterbatch, provavelmente pela facilidade de dispersão, pela razão de viscosidade e molhabilidade da mesma.
No entanto, quando os estearatos são misturados somente na etapa de modificação da resina (rota D), é observada uma inversão de comportamento.
Exemplo 3-b - Rota D
A Tabela 11 apresenta as propriedades verificadas no polipropileno modificado por meio da rota D.
Tabela 11. Propriedades do polipropileno modificado
Amostra Extensibilidade
Força (cN) SHI PI RSI On-set
(cm/s)
PP DZN 25 (com
29,60 12,70 9,14 8,70 4,31 86,93 masterbatch de BSA)
PP DZN 100 (com
14,10 12,70 7,06 6,85 2,44 79,23 masterbatch de BSA) PP DCA 25 (com
23,40 12,10 7,95 7,30 3,69 87,51 masterbatch de BSA)
PP DCA 100 (com
15,20 12,10 7,55 6,62 2,64 87,94 masterbatch de BSA)
Existe forte tendência de melhores propriedades com resinas de IF menores, ao se misturar os estearatos na etapa de modificação. Por não ativarem a modificação na preparação do masterbatch, o processo deve consistir numa reação preferencial com moléculas de maior massa molar, gerando ramificações mais longas, sendo mais eficientes no incremento de propriedades. Comparado ao exemplo 3-a, observa-se que neste processo, o nível de algumas propriedades foi maior, como SHI, PI e RSI, para a amostra que foi adicionada estearato de zinco. Pode-se concluir que o estearato Zn ao ser adicionado no masterbatch tende a formar estruturas reticuladas e, se adicionado na etapa de modificação, apenas terá contato com as moléculas de BSA após estas estarem bem dispersas na resina base do masterbatch, assim gera maior número de ramificações longas ao final do processo.
Exemplo 4 - Efeitos da modificação com BSA em resinas
Neste exemplo são comparados os efeitos da modificação com BSA em resinas, através de diferentes composições e formas dos componentes, conforme a Tabela 12.
Tabela 12. Diferentes formas de adição do BSA
Figure imgf000023_0001
* melhores composições e condições de processamento. Observando ιοο,ο
Figure imgf000024_0001
800 1000 1200 1400 1600 1800
MM-BSA adicionado (ppm)
Figura 13 referente à energia de ativação, há uma descrição de evolução com mudanças de processo e mistura, demonstrando o quanto se avança no sentido de obter uma amostra puramente ramificada ao invés de amostras reticuladas. Sistemas lineares são menos sensíveis a variações de temperatura, ou seja, o aumento de temperatura causa variações menores na mobilidade das moléculas. A presença de ramificações longas faz com que as cadeias do PP fiquem mais sensíveis à temperatura, aumentando a Energia de Ativação de Fluxo. A evolução da energia de ativação de acordo com o avanço da tecnologia torna possível o controle do tipo de modificação gerada, aprimorando para se ter um sistema com ramificação tendendo ao menor número de reticulações, dando melhor e maior desempenho ao sistema.
Exemplo 5 - Comparação de adição de BSA em pó versus via masterbatch
Após a otimização de composições e sequenciamento da preparação da amostra, rota via masterbatch é comparada à adição de pó direta, como mostra a Tabela 12.
Tabela 13. Forma de adição do BSA: pó versus masterbatch
IF da resina Sal de ácido
BSA IF veículo Estágio de
Amostra a ser Veículo graxo (1000
(ppm) (g/10min) aditivação modificada ppm)
1 20 875 - St-Zn T
2 20 1125 - - St-Zn T
3 20 1375 — - St-Zn 2°
4 20 1625 — — St-Zn 2°
5 20 875 PP 25 St-Zn 2° 6 20 1125 PP 25 St-Zn 2°
7 20 1375 PP 25 St-Zn 2°
8 20 1625 PP 25 St-Zn 2°
Como pode ser visto na Figura 14, é possível observar que a adição de BSA na forma de masterbatch é significantemente mais efetiva, principalmente para teores inferiores a 1375 ppm. Isso significa que pré-dispersão do masterbatch, escolha correta do sequenciamento de mistura, IF do veículo do masterbatch, permitem uma reação melhor distribuída e mais homogénea em toda a amostra. Com concentrações maiores, a tendência diminui, mas continua sendo mais eficiente.
Exemplo 6 - Controle de resíduos de BSA não reagido e SA (sulfonazida)
Nas amostras do exemplo 5, onde na Figura 16 mostra os resultados obtidos para as amostras testadas, observa-se que, além de todos os benefícios da rota masterbatch em termos de controle de ramificações e comprimento, tem-se uma redução drástica dos teores de SA livre no sistema, tornando a aplicação para contato com alimentos possível segundo legislações ativas em diferentes partes do mundo.
Com produtos gerados via masterbatch nitidamente os teores de resíduos de SA são mínimos, muito próximos dos valores alvo para uso em contato com alimentos. Assim, a rota tecnológica torna-se viável para todas as aplicações de espumas, sem restrições regulamentares/legislações. Os valores apresentados neste exemplo são os valores da resina em forma de pellets, antes do processo de espumação. Os teores após o processo de espumação serão ainda menores, visto que normalmente a resina é diluída na composição final dos processadores e o reaquecimento, consumirá o resíduo de BSA.
Exemplo 7 - Avaliação do IF do veículo nas propriedades do PP modificado
As formulações testadas estão descritas na Tabela 14. Como verificado nos exemplos anteriores, houve um indicativo de que IF do veículo do masterbatch atuava como uma importante variável nas propriedades finais do PP modificado. Neste exemplo, se aprofunda um pouco mais nestes ganhos de processo. Os resultados obtidos estão na Tabela 15.
Tabela 14. Caraterísticas das resinas de veiculo, máster e preparação a amostras para o exemplo 7.
IF da resina Veículo do IF veículo do Sal de
DPO-BSA Mw Rota de
Amostra a ser máster de máster de BSA ácido
(ppm) (g/mol) aditivação modificada BSA (g/10min) graxo
1 25 1250 PP 25 180000 Zn D 2 25 1250 PP 10 260000 Zn D
3 25 1250 PP 3 380000 Zn D
Tabela 15. Propriedades obtidas das amostras do exem
Figure imgf000026_0001
Após a modificação das amostras, obtiveram-se os seguintes resultados mostrados na
Figura 16. A alteração de resistência do fundido é proporcional ao Mw, onde quanto maior a massa molar do veículo do máster, maior a resistência do fundido (RF) apresentada pela amostra modificada. Em gráficos de viscosidade (Figura 16), não são observadas alterações de viscosidade, sendo este efeito de aumento de RF resultado apenas da inserção de ramificações mais longas no processo de extrusão reativa. Este efeito é um contrassenso tecnológico do ponto de vista da preparação do máster. O Molecular Melt, a 150°C, é um líquido de baixa viscosidade (menor que 10 Pa.s) e além disso funde em temperaturas de 97 a 105°C, anteriormente ao PP. Portanto, a necessidade de dispersar teores de até 30 % no máster é um desafio tecnológico. Em termos de tecnologia de dispersão, seria óbvia a dispersão em um PP de elevada fluidez (IF 100 g/10min, por exemplo), comumente encontrado comercialmente com outros aditivos e compostos. Porém, com os resultados aqui demonstrados e com o agravante da limitação de temperatura (menores que 180°C), atingir elevada dispersão do BSA dentro de um polipropileno de IF baixo, sem que haja instabilidade de fluxo por efeito de elasticidade do polímero é realmente algo diferenciado. Assim, além dos ganhos demonstrados pelo uso do máster em relação ao pó, escolha adequada de sequenciamento de processo e aditivação, há também a escolha do veículo do masterbatch, o qual permite incremento das propriedades elongacionais, sem aumento de IF ou de viscosidade aparente da resina. A explicação para este efeito se dá pela cinemática de dispersão de PP do máster em PP matriz. O tempo de residência em uma extrusora pode ser variado, mas industrialmente, entenda-se planta industrial, é em torno de 30s. Neste processo, o PP matriz e o máster tendem a fundir, mas o PP matriz por menor granulometria tem maior área de contato e fundirá preferencialmente. Em determinado estágio inicial de aquecimento, as moléculas que rodearão as partículas dispersas de BSA serão as de veículo do máster. Estatisticamente ao se atingir temperaturas de 190°C, com ambos fundidos, haverá a tendência de mistura entre o PP matriz e PP veículo do máster, mas algum dos grupos azida da sulfonazida já terá energia para reagir e reagirá com as moléculas do veículo do máster para o segundo grupamento ter contato com moléculas de PP da matriz e permitir o acoplamento nestas moléculas. Assim, quanto maior o w do PP veículo, maior a massa molar da molécula de PP ramificada, com ramificação mais longas e, consequentemente, atuando com maior intensidade na alteração das propriedades reológicas dos polímeros. Através deste controle, espera-se que com esta otimização, um número total menor de ramificações seja necessário para se ter uma resina adequada para determinados processos, em comparação aos produtos descritos em processos de irradiação e outras extrusões reativas como descrito na Tabela 2.
Tendo sido descrito um exemplo de concretização preferido, deve ser entendido que o escopo da presente invenção abrange outras possíveis variações, sendo limitado tão somente pelo teor das reivindicações apensas, aí incluídos os possíveis equivalentes.

Claims

REIVINDICAÇÕES
1. Processo de produção de um polipropileno modificado, caracterizado pelo fato de que compreende as seguintes etapas:
(A) Preparar um masterbatch de bis-sulfonazida (BSA) por meio da dispersão do BSA em poliolefina;
(B) Adicionar (i) pelo menos um sal de ácido graxo com cátion metálico de valência
+1 a +3, e (ii) o masterbatch de BSA preparado na etapa (A) no polipropileno a ser modificado.
2. Processo de produção de acordo com a reivindicação 1, caracterizado pelo fato de que as etapas (A) e (B) ocorrem por extrusão.
3. Processo de acordo com a reivindicação 2 caracterizado pelo fato de que a rosca da extrusora é selecionada do grupo que compreende rosca simples, dupla ou planetária, interpenetrante ou não-interpenetrante, contra-rotacional ou corrotacional.
4. Processo de acordo com a reivindicação 3 caracterizado pelo fato de que na etapa (A) o L/D da rosca é superior a 20, e na etapa (B) a extrusora é selecionada entre extrusora industrial com diâmetro maior que 250 mm e L/D maior que 10, ou extrusora de composição com diâmetro de 20 a 250 mm e com L/D maior que 25.
5. Processo de acordo com a reivindicação 2 caracterizado pelo fato de que o tempo de residência da etapa (A) é inferior a 40s e o tempo de residência da etapa (B) é inferior a 30s.
6. Processo de acordo com a reivindicação 2 caracterizado pelo fato de que a temperatura de extrusão da etapa (A) é inferior a 190°C, preferencialmente inferior a 1802C, e a temperatura de extrusão da etapa (B) é inferior a 270°C, preferencialmente inferior a 2502C.
7. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que as etapas (A) e (B) ocorrem de forma integrada ou independente.
8. Processo de acordo com a reivindicação 1 caracterizado pelo fato de o BSA é selecionado do grupo que compreende sulfonil azidas, poli(sulfonil azidas), fosfazeno azidas, poli(fosfazeno azidas), silil azidas, poli(silil azidas), formil azidas, poli(formil azidas), azidas, poli(azidas), sais de N-colorosulfonamidas, N, N diclorosulfonamidas, sais internos de 2- trialquil-l-sulfonilhidrazidas, diazo alcanos, poli(diazo alcanos), grupos metileno geminalmente-substituidos, cetenos, metalocarbenos e suas misturas.
9. Processo de acordo com a reivindicação 1 caracterizado pelo fato de o BSA é 4, 4'-difenil éter de bis-sulfonazida.
10. Processo de acordo com a reivindicação 1 caracterizado pelo fato de o
BSA pode estar na forma líquida, suspensão, sólida, em misturas físicas com polímeros e/ou na forma de Molecular Melt.
11. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que na etapa (A) o teor de BSA no masterbatch é inferior a 7,5%.
12. Processo de acordo com a reivindicação 1 ou 10 caracterizado pelo fato de que o teor de Molecular Melt no masterbatch é de até 80%, preferencialmente entre 5% e 35% na composição de masterbatch.
13. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que a quantidade de BSA no polipropileno modificado varia entre 200 e 2000 ppm.
14. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que a poliolefina da etapa (A) é selecionada do grupo que compreende polietileno, poli alfa- olefinas, polipropileno, copolímeros de etileno com alfa-olefinas de 3 a 10 átomos de carbono, copolímeros de propileno com eteno e/ou alfa-olefinas de 4 a 10 átomos de carbono, e suas misturas.
15. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que a poliolefina da etapa (A) é um polipropileno selecionado do grupo que compreende homopolímeros, copolímeros, copolímeros heterofásicos de matriz hompolímero (HECO), de matriz de copolímero randômico de propileno e alfa-olefinas (RAHECO), random (RACO) compreendendo propileno/etileno e/ou α-olefina contendo de 4 a 10 carbonos.
16. Processo de acordo com a reivindicação 15 caracterizado pelo fato o IF do polipropileno varia entre 1 e 300 g/min.
17. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que o polipropileno a ser modificado é selecionado do grupo que compreende homopolímeros, copolímeros, copolímeros heterofásicos de matriz hompolímero (HECO), de matriz de copolímero randômico de propileno e alfa-olefinas (RAHECO), random (RACO) compreendendo propileno/etileno e/ou ct-olefina contendo de 4 a 10 carbonos.
18. Processo de acordo com a reivindicação 17 caracterizado pelo fato o IF do polipropileno a ser modificado varia entre 1 e 300 g/min.
19. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que a poliolefina e o polipropileno ser modificado estão em formato de pellet, esferas, pó e/ou mistura destes.
20. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que opcionalmente nas etapas (A) e/ou (B) são adicionados aditivos selecionados do grupo que compreende nucleantes, retardantes de chama, pigmentos, agentes anti-UV, controladores de COF, agentes desmoldantes, agentes de absorção de infravermelho, auxiliares de desmoide, anti-estáticos, e misturas destes.
21. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que opcionalmente na etapa (A) e/ou (B) são adicionados antioxidantes selecionados do grupo que compreende antioxidantes fenólicos, fosfatos, fosfitos, e misturas destes.
22. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que opcionalmente na etapa (A) são adicionados compatibilizantes ou sais de ácido graxo com cátions metálicos de valência +1 a +3.
23. Processo de acordo com a reivindicação 1 ou 22 caracterizado pelo fato de que os sais de ácido graxo são estearatos e o cátion metálico é selecionado dentre Ca, Zn, Mg, Na, Li, Ba.
24. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que na etapa (B) os sais de ácido graxo são adicionados em quantidade que varia de 200 a 6000 ppm baseada na massa total de polipropileno modificado.
25. Processo de acordo com a reivindicação 1 caracterizado pelo fato de que o masterbatch apresenta redução dos domínios de BSA e/ou Molecular Melt para valores médios menores que 50 μηι.
26. Polipropileno modificado produzido pelo processo definido em qualquer uma das reivindicações de 1 a 25, caracterizado pelo fato de apresentar g' inferior 1, Bn maior que 0,1 e IF menor que 100 g/10min.
27. Polipropileno modificado de acordo com a reivindicação 26, caracterizado pelo fato de apresentar g' superior a 0,55 e B„ menor que 4 átomos por 1000 átomos de carbono.
28. Polipropileno modificado de acordo com a reivindicação 26 ou 27, caracterizado pelo fato de apresentar resistência do fundido maior que 30 cN, extensibilidade maior que 11 cm/s, energia de ativação menor que 120 kJ/mol, g' menor que 0,75, Bn maior que 2 átomos a cada 1000 átomos de carbono e IF entre 2 e 6 g/10 min.
29. Polipropileno modificado de acordo com qualquer uma das reivindicações 26 a 28, caracterizado pelo fato de apresentar teor de resíduos menor que 6 ppm.
30. Uso do polipropileno modificado conforme definido em qualquer uma das reivindicações 26 a 29, caracterizado pelo fato de ser para aplicação em espumação, termoformagem, injeção, filmes soprados, filmes planos, BOPP, injeção, fibras, ráfia, recobri mento, sopro.
31. Blenda polimérica compreendendo o polipropileno modificado conforme definido em qualquer uma das reivindicações 26 a 29, caracterizada pelo falo de compreender pelo menos um polímero selecionado dentre PP linear homopolímero, copolímeros randômicos e heterofásicos, PEAD, PEBD, LLDPE, EVA, copolímero de eteno/octeno, eteno/buteno, eteno hexeno, borrachas termoplásticas de EPR, e mistura destes.
32. Blenda polimérica de acordo com a reivindicação 31, caracterizada pelo fato de que o polipropileno modificado está presente em teores que variam de 5% a 95%.
PCT/BR2014/000293 2013-08-23 2014-08-25 Processo para produção de polipropileno modificado, polipropileno modificado e seu uso, e blenda polimérica WO2015024088A1 (pt)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/913,620 US9815951B2 (en) 2013-08-23 2014-08-25 Process for producing modified poly(propene), the modified poly(propene) and the use thereof, and the polymer blend
EP14837588.4A EP3037443A4 (en) 2013-08-23 2014-08-25 Process for producing modified poly(propene), the modified poly(propene) and the use thereof, and the polymer blend
BR112016003706-5A BR112016003706B1 (pt) 2013-08-23 2014-08-25 Processo para produção de um polipropileno modificado, polipropileno modificado, uso do polipropileno modificado, e, blenda polimérica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361869102P 2013-08-23 2013-08-23
US61/869,102 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015024088A1 true WO2015024088A1 (pt) 2015-02-26

Family

ID=52482861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2014/000293 WO2015024088A1 (pt) 2013-08-23 2014-08-25 Processo para produção de polipropileno modificado, polipropileno modificado e seu uso, e blenda polimérica

Country Status (4)

Country Link
US (1) US9815951B2 (pt)
EP (1) EP3037443A4 (pt)
BR (1) BR112016003706B1 (pt)
WO (1) WO2015024088A1 (pt)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US664966A (en) 1900-04-14 1901-01-01 Adolph Muenker Electrothermostatic cable for fire-alarms.
US4916198A (en) 1985-01-31 1990-04-10 Himont Incorporated High melt strength, propylene polymer, process for making it, and use thereof
EP0384431A2 (en) 1989-02-21 1990-08-29 Himont Incorporated Process for making a propylene polymer with free-end long chain branching and use thereof
US5416169A (en) 1992-11-26 1995-05-16 Chisso Corporation Polypropylene having a high melt-tensile strength, a process for producing the same and a molded product from the same
WO1999027007A1 (en) 1997-11-21 1999-06-03 Akzo Nobel N.V. Extrusion process for enhancing the melt strength of polypropylene
US6077907A (en) 1997-07-09 2000-06-20 Borealis Ag Molded polyolefin parts of improved dimensional stability at elevated temperatures and improved stiffness
US6136926A (en) 1996-07-22 2000-10-24 Borealis Gmbh Cross-linkable, olefinic polymers and methods for their synthesis
WO2001092403A2 (en) * 2000-05-26 2001-12-06 Dow Global Technologies Inc. Polyethylene rich/polypropylene blends and their uses
US6388020B2 (en) 1996-02-01 2002-05-14 Borealis Gmbh Structural isomers of poly (alkyl ethylenes)
US6433109B1 (en) 1997-05-20 2002-08-13 Borealis Gmbh Modified polypropylenes of improved processability
US6593005B2 (en) * 2000-01-24 2003-07-15 Dow Global Technologies Inc. Composition and films thereof
US20030138627A1 (en) 2001-11-02 2003-07-24 Finlayson Malcolm F. Molecular melt and methods for making and using the molecular melt
US6649666B1 (en) 2002-05-21 2003-11-18 Dow Global Technologies Inc. Propylene polymer coupling and foams
US20050241820A1 (en) * 2002-09-10 2005-11-03 Wasserman Scott H Polypropylene cable jacket compositons with enhanced melt strength and physical properties
US7141183B2 (en) 2002-07-22 2006-11-28 Sumitomo Rubber Industries, Ltd. Conductive elastomer composition and method of producing same
US7141182B2 (en) 2000-05-04 2006-11-28 Dow Global Technologies Inc. Molecular melt and methods for making and using the molecular melt
US7247385B1 (en) 1998-08-14 2007-07-24 University Of Waterloo Melt phase hydrosilylation of polypropylene
WO2008022804A1 (en) 2006-08-25 2008-02-28 Borealis Technology Oy Polypropylene foam
WO2011086581A1 (en) 2010-01-15 2011-07-21 Reliance Industries Limited Concurrent solid & melt state grafting of coagents for making long chain branched polypropylene via direct reactive extrusion process
US20130303642A1 (en) 2010-09-15 2013-11-14 Yong Chen Propylene-Alpha-Olefin Copolymer Compositions with Improved Foaming Window

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0012197A (pt) * 1999-06-24 2002-03-12 Dow Chemical Co Composição de poliolefina com propriedade de impacto melhoradas e artigo fabricado da mesma
WO2003082971A2 (en) * 2002-03-22 2003-10-09 Dow Global Technologies Inc. Thermoplastic vulcanizate composition and method of making same
US6734253B2 (en) * 2002-07-19 2004-05-11 Dow Global Technologies, Inc. Scratch and mar resistant propylene polymer composition
KR20100016034A (ko) * 2007-03-30 2010-02-12 다우 글로벌 테크놀로지스 인크. 폴리프로필렌 조성물, 그의 제조 방법, 및 그로부터 제조된 물품

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US664966A (en) 1900-04-14 1901-01-01 Adolph Muenker Electrothermostatic cable for fire-alarms.
US4916198A (en) 1985-01-31 1990-04-10 Himont Incorporated High melt strength, propylene polymer, process for making it, and use thereof
EP0384431A2 (en) 1989-02-21 1990-08-29 Himont Incorporated Process for making a propylene polymer with free-end long chain branching and use thereof
US5047485A (en) 1989-02-21 1991-09-10 Himont Incorporated Process for making a propylene polymer with free-end long chain branching and use thereof
US5416169A (en) 1992-11-26 1995-05-16 Chisso Corporation Polypropylene having a high melt-tensile strength, a process for producing the same and a molded product from the same
US6388020B2 (en) 1996-02-01 2002-05-14 Borealis Gmbh Structural isomers of poly (alkyl ethylenes)
US6136926A (en) 1996-07-22 2000-10-24 Borealis Gmbh Cross-linkable, olefinic polymers and methods for their synthesis
US6433109B1 (en) 1997-05-20 2002-08-13 Borealis Gmbh Modified polypropylenes of improved processability
US6077907A (en) 1997-07-09 2000-06-20 Borealis Ag Molded polyolefin parts of improved dimensional stability at elevated temperatures and improved stiffness
WO1999027007A1 (en) 1997-11-21 1999-06-03 Akzo Nobel N.V. Extrusion process for enhancing the melt strength of polypropylene
US7247385B1 (en) 1998-08-14 2007-07-24 University Of Waterloo Melt phase hydrosilylation of polypropylene
US6593005B2 (en) * 2000-01-24 2003-07-15 Dow Global Technologies Inc. Composition and films thereof
US7141182B2 (en) 2000-05-04 2006-11-28 Dow Global Technologies Inc. Molecular melt and methods for making and using the molecular melt
US20080021137A1 (en) 2000-05-04 2008-01-24 Dow Global Technologies, Inc. Molecular melt and methods for making and using the molecular melt
WO2001092403A2 (en) * 2000-05-26 2001-12-06 Dow Global Technologies Inc. Polyethylene rich/polypropylene blends and their uses
US20030138627A1 (en) 2001-11-02 2003-07-24 Finlayson Malcolm F. Molecular melt and methods for making and using the molecular melt
US6649666B1 (en) 2002-05-21 2003-11-18 Dow Global Technologies Inc. Propylene polymer coupling and foams
US7141183B2 (en) 2002-07-22 2006-11-28 Sumitomo Rubber Industries, Ltd. Conductive elastomer composition and method of producing same
US20050241820A1 (en) * 2002-09-10 2005-11-03 Wasserman Scott H Polypropylene cable jacket compositons with enhanced melt strength and physical properties
WO2008022804A1 (en) 2006-08-25 2008-02-28 Borealis Technology Oy Polypropylene foam
US7799841B2 (en) 2006-08-25 2010-09-21 Borealis Technology Oy Polypropylene foam
WO2011086581A1 (en) 2010-01-15 2011-07-21 Reliance Industries Limited Concurrent solid & melt state grafting of coagents for making long chain branched polypropylene via direct reactive extrusion process
US20130303642A1 (en) 2010-09-15 2013-11-14 Yong Chen Propylene-Alpha-Olefin Copolymer Compositions with Improved Foaming Window

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAMIELEC, A: "Characterization of Complex Polymer Systems by Size Extrusion Chromatography - Homopolymers With Long Chain Branching and Copolymers With Composition Drift", PURE & APPI. CHEM., vol. 54, no. 2, pages 293 - 307, XP055366593
HAMMONS, J. ET AL.: "Investigation of Long-Chain Branching in HDPE using Triple-Detector GPC", ANNUAL TECHNICAL CONFERENCE ANTEC, 2002
See also references of EP3037443A4
TSENOGLOU, C. J.; GOTSYS, A. D., MACROMOLECULES, vol. 34, no. 4, 2001, pages 4685

Also Published As

Publication number Publication date
EP3037443A1 (en) 2016-06-29
US20160355644A1 (en) 2016-12-08
EP3037443A4 (en) 2017-08-02
US9815951B2 (en) 2017-11-14
BR112016003706B1 (pt) 2021-09-08
BR112016003706A2 (pt) 2017-08-01

Similar Documents

Publication Publication Date Title
ES2393223T3 (es) Agentes extensores de cadena y materiales espumados celulares termoplásticos obtenidos mediante un procedimiento de extrusión reactiva y con ayuda de tales agentes
BR112017016387B1 (pt) Composições de polipropileno com encruamento, resistência à fusão e pseudoplasticidade equilibrada e artigo de espuma
Svoboda et al. Elastic properties of polypropylene/ethylene–octene copolymer blends
ES2382704T3 (es) Elastómeros de olefina termoplásticos, reticulables, y elastómeros de olefina termoestables, reticulados, obtenidos a partir de éstos
BR112016020830B1 (pt) Composição de poliolefina heterofásica modificada e método de preparação
BRPI0616550A2 (pt) composição de polìmero de propileno, método para preparar uma composição de polìmero de propileno, método para produzir um artigo moldado ou extrudado e artigo moldado ou extrudado
BR112017017721B1 (pt) Composição de poliolefina heterofásica e processo de preparação da mesma
JP2015527471A (ja) 熱可塑性発泡剤
BR112017005472B1 (pt) Composição reticulável compreendendo polietileno, seu uso e produtos finais
BR112018010314B1 (pt) Composição, processo de fabricação de um tubo, tubo e cabo
BR112019010212A2 (pt) lote mestre de peróxido, processo para a preparação de um lote mestre de peróxido, processo para reticulação de um elastômero, e uso do lote mestre de peróxido
Albano et al. Mechanical, thermal and morphological behaviour of the polystyrene/polypropylene (80/20) blend, irradiated with γ-rays at low doses (0–70 kGy)
Jozaghkar et al. Preparation and assessment of phase morphology, rheological properties, and thermal behavior of low-density polyethylene/polyhexene-1 blends
Wang et al. Thermal stability and non-isothermal crystallization kinetics of metallocene poly (ethylene-butene-hexene)/high fluid polypropylene copolymer blends
Mirzadeh et al. The effect of compatibilizer on the co‐continuity and nanoclay dispersion level of tpe nanocomposites based on PP/EPDM
JP6200174B2 (ja) プロピレン樹脂組成物およびその射出成形体
WO2015085390A2 (pt) Método de preparação de polipropileno de reologia controlada, polipropileno e seu uso, e artigos de manufatura
JP5956278B2 (ja) プロピレン樹脂組成物およびその射出成形体
BR112019010218A2 (pt) lote principal de peróxido, processo para a preparação de um loto principal de peróxido, processo para reticulação de um elastômero, e uso do lote principal de peróxido
WO2015024088A1 (pt) Processo para produção de polipropileno modificado, polipropileno modificado e seu uso, e blenda polimérica
Formela et al. Interfacial adhesion evaluation in (low‐density polyethylene)/elastomer blends
US10654997B2 (en) Buffer tubes for fiber optic cables
JP2002226649A (ja) 注射器外筒
George et al. Influence of static and dynamic crosslinking techniques on the transport properties of ethylene propylene diene monomer rubber/poly (ethylene-co-vinyl acetate) blends
Merabet et al. The physical modification of a natural rubber-polypropylene thermoplastic elastomer blend by azobisformamide blowing agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837588

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016003706

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014837588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14913620

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112016003706

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160222