WO2015022780A1 - インクジェットインクの脱気方法、インクジェット記録方法および記録装置 - Google Patents
インクジェットインクの脱気方法、インクジェット記録方法および記録装置 Download PDFInfo
- Publication number
- WO2015022780A1 WO2015022780A1 PCT/JP2014/004189 JP2014004189W WO2015022780A1 WO 2015022780 A1 WO2015022780 A1 WO 2015022780A1 JP 2014004189 W JP2014004189 W JP 2014004189W WO 2015022780 A1 WO2015022780 A1 WO 2015022780A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ink
- hollow fiber
- degassing
- inkjet
- inkjet ink
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/19—Ink jet characterised by ink handling for removing air bubbles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/101—Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/12—Printing inks based on waxes or bitumen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/38—Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/40—Ink-sets specially adapted for multi-colour inkjet printing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/08—Homopolymers or copolymers of acrylic acid esters
Definitions
- the present invention relates to an inkjet ink degassing method, an inkjet recording method, and a recording apparatus.
- the inkjet recording method is often used because it can form an image easily and inexpensively.
- an ink used in the ink jet recording method there is an actinic ray curable ink jet ink.
- Actinic ray curable ink-jet inks are cured by irradiation with actinic rays such as ultraviolet rays, so that most of the ink components are easy to dry compared to solvent-based ink compositions. It has the advantage that an image can be formed.
- Image formation by the ink jet recording method is usually performed by ejecting ink supplied from an ink tank of an ink jet recording apparatus from a recording head.
- ink supplied to the recording head, if the ink contains bubbles, the flow resistance becomes high, and an ejection failure may occur.
- a method of removing such bubbles for example, a method of degassing the ink jet ink before filling the cartridge through a hollow fiber degassing module (for example, Patent Document 1); an ink tank and a recording head of an ink jet recording apparatus
- a method for example, Patent Document 2 of degassing inkjet ink immediately before ejection using a deaeration filter provided between the nozzles.
- actinic ray curable inkjet inks particularly actinic ray curable inkjet inks containing wax, contain more dissolved oxygen than water-based inks, have higher viscosities than solvent-based inks, and discharge stability tends to decrease. It is known (for example, Patent Document 3).
- Patent Document 4 a method has been proposed in which actinic ray curable inkjet ink immediately before ejection is heated in a recording head to lower the viscosity (for example, Patent Document 4).
- the present invention has been made in view of the above circumstances, and it is possible to sufficiently remove bubbles contained in an actinic ray curable inkjet ink, and to improve the ejection stability and curability of the inkjet ink, Another object of the present invention is to provide an ink jet recording method using the same.
- the material of the hollow fiber is selected from the group consisting of a fluorine resin, a silicone resin, and polymethylpentene.
- the photopolymerizable compound contains a (meth) acrylate compound having a ClogP value in the range of 3.0 to 7.0, and the content of the (meth) acrylate compound is 10 with respect to the whole ink.
- a recording head that discharges ink-jet ink, an ink tank that stores the ink-jet ink supplied to the recording head, and an ink-jet supplied from the ink tank that communicates between the recording head and the ink tank.
- a hollow fiber degassing module for degassing the ink, and an irradiation unit for irradiating the ink droplets ejected from the recording head with an actinic ray, the hollow fiber degassing module comprising: an assembly of hollow fibers;
- An ink jet recording apparatus comprising: a housing that houses the hollow fiber assembly; and a heating unit that heats the inside of the housing.
- the inkjet recording apparatus wherein the material of the hollow fiber is selected from the group consisting of a fluorine-based resin, a silicone-based resin, and polymethylpentene.
- the hollow fiber deaeration module is of an external reflux type in which the ink jet ink is circulated outside the hollow fiber to deaerate.
- an ink jet degassing method capable of sufficiently removing bubbles contained in an actinic ray curable ink jet ink and improving ejection stability and curability, and an ink jet recording method using the same. be able to.
- FIG. 1 is a side view illustrating an example of a configuration of a main part of a line recording type inkjet recording apparatus.
- FIG. 1B is a top view of FIG. 1A.
- It is a schematic diagram which shows an example of the hollow fiber deaeration module of an external reflux system.
- It is a schematic diagram which shows an example of the aggregate
- It is a schematic diagram which shows an example of the hollow fiber deaeration module of an internal reflux system.
- the bubbles contained in the ink can be sufficiently removed by performing the deaeration treatment with the hollow fiber of the actinic ray curable ink-jet ink while being heated to a certain temperature or higher.
- the reason is not necessarily clear, but it is considered that the surface energy of the hollow fiber is increased by heating, and the actinic ray curable inkjet ink is easily wetted.
- the actinic ray curable inkjet ink from which bubbles are sufficiently removed has high ejection stability and reduced dissolved oxygen, so that it is difficult to receive oxygen inhibition during curing and has high curability. Can be included.
- the removal efficiency of the bubbles by heating can be further enhanced by using a hollow fiber material of fluororesin or silicone resin; preferably fluororesin.
- the fluororesin film is considered to be because 1) the surface energy is increased by heating and the ink is easily wetted; 2) the gas permeability coefficient is increased. That is, the fluororesin inherently contains —F, which is a polar group, and therefore has high intermolecular force and low gas permeability.
- —F which is a polar group
- the liquid component of the ink can be easily wetted on the pigment surface (highly hydrophobic), and the bubble nuclei on the pigment surface can be easily removed.
- degassing such actinic ray curable inkjet ink containing wax under heating air bubbles can be removed to a high degree and discharge stability can be further improved.
- Actinic-light curable inkjet ink contains a photopolymerizable compound, a coloring material, and a photoinitiator, and may further contain other components as needed.
- the photopolymerizable compound contained in the actinic ray curable inkjet is a compound that crosslinks or polymerizes upon irradiation with actinic rays.
- the actinic rays are, for example, electron beams, ultraviolet rays, ⁇ rays, ⁇ rays, and X-rays, and are preferably ultraviolet rays.
- a radical polymerizable compound is used, but a cationic polymerizable compound may be further used.
- the radical polymerizable compound is a compound (monomer, oligomer, polymer or mixture thereof) having an ethylenically unsaturated bond capable of radical polymerization.
- a radically polymerizable compound may be used independently and may be used in combination of 2 or more type.
- Examples of the compound having an ethylenically unsaturated bond capable of radical polymerization include an unsaturated carboxylic acid and a salt thereof, an unsaturated carboxylic acid ester compound, an unsaturated carboxylic acid urethane compound, an unsaturated carboxylic acid amide compound and an anhydride thereof, Examples include acrylonitrile, styrene, unsaturated polyester, unsaturated polyether, unsaturated polyamide, and unsaturated urethane.
- Examples of the unsaturated carboxylic acid include (meth) acrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid and the like.
- the radical polymerizable compound is preferably an unsaturated carboxylic acid ester compound, and more preferably a (meth) acrylate compound.
- the (meth) acrylate compound may be not only a monomer described later, but also an oligomer, a mixture of a monomer and an oligomer, a modified product, an oligomer having a polymerizable functional group, and the like.
- “(meth) acrylate” refers to both and / or “acrylate” and “methacrylate”
- (meth) acryl” refers to both and / or “acryl” and “methacryl”.
- Examples of (meth) acrylate compounds include isoamyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl (meth) ) Acrylate, 2-ethylhexyl-diglycol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate , Methoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypropylene glycol (meth) acrylate, phenoxyethyl (Meth)
- the (meth) acrylate compound may be a modified product.
- examples thereof include ethylene oxide-modified (meth) acrylate compounds such as ethylene oxide-modified trimethylolpropane tri (meth) acrylate and ethylene oxide-modified pentaerythritol tetraacrylate; Caprolactone-modified (meth) acrylate compounds such as caprolactone-modified trimethylolpropane tri (meth) acrylate; and caprolactam-modified (meth) acrylate compounds such as caprolactam-modified dipentaerythritol hexa (meth) acrylate and the like are included.
- an ethylene oxide-modified (meth) acrylate compound is preferable from the viewpoint of high photosensitivity and easy formation of a card house structure described later when a wax described later is contained.
- the ethylene oxide-modified (meth) acrylate compound is easily dissolved in other ink components at high temperatures and has little curing shrinkage, so that curling of the printed matter hardly occurs.
- Examples of ethylene oxide-modified (meth) acrylate compounds include 4EO-modified hexanediol diacrylate CD561 (molecular weight 358), 3EO-modified trimethylolpropane triacrylate SR454 (molecular weight 429), 6EO-modified trimethylolpropane triacrylate SR499 manufactured by Sartomer.
- 3PO modified trimethylolpropane tri manufactured by Cognis Acrylic Photomer 4072 (molecular weight 471, Clog P4.90); 1,10-decandiol dimethacrylate NK ester DOD-N (molecular weight 310, ClogP 5.75), Shin-Nakamura Chemical Co., Ltd., tricyclodecane dimethanol diacrylate NK ester A DCP (molecular weight 304, ClogP 4.69) and tricyclodecane dimethanol dimethacrylate NK ester DCP (molecular weight 332, ClogP5. 2); Miwon Co. trimethylolpropane PO-modified triacrylate Miramer M360 (molecular weight 471, include ClogP4.90) and the like.
- the (meth) acrylate compound may be a polymerizable oligomer, and examples of such a polymerizable oligomer include an epoxy (meth) acrylate oligomer, an aliphatic urethane (meth) acrylate oligomer, and an aromatic urethane (meth) acrylate. Examples include oligomers, polyester (meth) acrylate oligomers, and linear (meth) acrylic oligomers.
- the ClogP value of the (meth) acrylate compound is preferably in the range of 3.0 to 7.0. Since the (meth) acrylate compound having a ClogP value in the above range is highly hydrophobic, it can increase the hydrophobicity of the ink. Since the highly hydrophobic ink is easily wetted by the highly hydrophobic fluorine-based resin or silicone-based resin film, the bubble removal efficiency can be further increased.
- the “CLogP value” is a LogP value calculated by calculation.
- the CLogP value can be calculated by a fragment method, an atomic approach method, or the like. More specifically, ClogP values can be calculated in the literature (C. Hansch and A. Leo, “Substituent Constants for Correlation Analysis in Chemistry and Biology” (John Wiley & Sons, New York, 69). Or the following commercially available software package 1 or 2 may be used.
- Software Package 1 MedChem Software (Release 3.54, Aug. 1991, Medicinal Chemistry Project, Pomona College, Clarmont, CA)
- Software package 2 Chem Draw Ultra ver. 8.0. (April 2003, CambridgeSoft Corporation, USA)
- the numerical value of the ClogP value described in the present specification and the like is a “ClogP value” calculated using the software package 2.
- radical polymerizable compound when a cationic polymerizable compound is further used, an epoxy compound, a vinyl ether compound, an oxetane compound, or the like can be used.
- a cationically polymerizable compound may be used independently and may be used in combination of 2 or more type.
- the epoxy compound is an aromatic epoxide, an alicyclic epoxide, an aliphatic epoxide, or the like, and an aromatic epoxide or an alicyclic epoxide is preferable in order to increase curability.
- the aromatic epoxide may be a di- or polyglycidyl ether obtained by reacting a polyhydric phenol or an alkylene oxide adduct thereof with epichlorohydrin.
- examples of the polyhydric phenol to be reacted or its alkylene oxide adduct include bisphenol A or its alkylene oxide adduct.
- the alkylene oxide in the alkylene oxide adduct can be ethylene oxide, propylene oxide, and the like.
- the alicyclic epoxide can be a cycloalkane oxide-containing compound obtained by epoxidizing a cycloalkane-containing compound with an oxidizing agent such as hydrogen peroxide or peracid.
- the cycloalkane in the cycloalkane oxide-containing compound can be cyclohexene or cyclopentene.
- the aliphatic epoxide can be a di- or polyglycidyl ether obtained by reacting an aliphatic polyhydric alcohol or an alkylene oxide adduct thereof with epichlorohydrin.
- the aliphatic polyhydric alcohol include ethylene glycol, propylene glycol, alkylene glycol such as 1,6-hexanediol, and the like.
- the alkylene oxide in the alkylene oxide adduct can be ethylene oxide, propylene oxide, and the like.
- vinyl ether compounds include ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, octadecyl vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexanedimethanol monovinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, isopropenyl ether.
- -Monovinyl ether compounds such as o-propylene carbonate, dodecyl vinyl ether, diethylene glycol monovinyl ether, octadecyl vinyl ether; Diethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexane dimethanol divinyl ether, trimethylolpropane trivinyl ether, etc. Or a trivinyl ether compound etc. are contained. Of these vinyl ether compounds, di- or trivinyl ether compounds are preferred in view of curability and adhesion.
- the oxetane compound is a compound having an oxetane ring, and examples thereof include oxetane compounds described in JP-A Nos. 2001-220526, 2001-310937, and JP-A-2005-255821.
- the compound represented by the general formula (1) described in paragraph No. 0089 of JP-A No. 2005-255821 the compound represented by the general formula (2) described in paragraph No. 0092 of the same publication
- the paragraph Examples include a compound represented by general formula (7) of number 0107, a compound represented by general formula (8) of paragraph number 0109, a compound represented by general formula (9) of paragraph number 0116, and the like.
- the general formulas (1), (2), (7) to (9) described in JP-A-2005-255821 are shown below.
- the content of the photopolymerizable compound in the actinic ray curable inkjet ink is preferably 1 to 97% by mass, more preferably 10 to 95% by mass, and more preferably 30 to 95% by mass with respect to the total mass of the ink. More preferably.
- the content of the (meth) acrylate compound is preferably 10% by mass or more with respect to the total mass of the ink.
- the upper limit of the content of the (meth) acrylate compound can be 95% by mass with respect to the total mass of the ink, as described above.
- the color material contained in the actinic ray curable ink-jet ink can be a dye or a pigment, but a pigment is preferable because an image having good weather resistance can be easily obtained.
- the pigment is not particularly limited, and may be, for example, an organic pigment or an inorganic pigment having the following numbers described in the color index.
- red or magenta pigments examples include Pigment Red 3, 5, 19, 22, 31, 38, 43, 48: 1, 48: 2, 48: 3, 48: 4, 48: 5, 49: 1, 53. : 1, 57: 1, 57: 2, 58: 4, 63: 1, 81, 81: 1, 81: 2, 81: 3, 81: 4, 88, 104, 108, 112, 122, 123, 144 146, 149, 166, 168, 169, 170, 177, 178, 179, 184, 185, 208, 216, 226, 257, Pigment Violet 3, 19, 23, 29, 30, 37, 50, 88, Pigment Orange 13, 16, 20, 36, etc. are included.
- Examples of blue or cyan pigments include Pigment Blue 1, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 17-1, 22, 27, 28, 29, 36. , 60 and the like.
- Examples of green pigments include Pigment Green 7, 26, 36, and 50.
- Examples of yellow pigments include Pigment Yellow 1, 3, 12, 13, 14, 17, 34, 35, 37, 55, 74, 81, 83, 93, 94, 95, 97, 108, 109, 110, 137. 138, 139, 153, 154, 155, 157, 166, 167, 168, 180, 185, 193 and the like.
- Examples of the black pigment include Pigment Black 7, 28, 26 and the like.
- the average particle diameter of the pigment is preferably 0.08 to 0.5 ⁇ m, and the maximum particle diameter of the pigment is preferably 0.3 to 10 ⁇ m, more preferably 0.3 to 3 ⁇ m.
- the pigment content is preferably 0.1 to 20% by mass, more preferably 0.4 to 10% by mass, based on the total amount of ink. If the pigment content is too small, the color of the resulting image tends to be low. On the other hand, when the content of the pigment is too large, the viscosity of the ink increases, and the jetting property tends to decrease.
- the pigment can be dispersed by, for example, a ball mill, sand mill, attritor, roll mill, agitator, Henschel mixer, colloid mill, ultrasonic homogenizer, pearl mill, wet jet mill, paint shaker, or the like.
- the pigment is preferably dispersed so that the average particle diameter of the pigment particles falls within the above range.
- the dispersion of the pigment is adjusted by selection of the pigment, the pigment dispersant, and the dispersion medium, the dispersion conditions, the filtration conditions, and the like.
- the actinic ray curable inkjet ink may further contain a pigment dispersant in order to enhance the dispersibility of the pigment.
- pigment dispersants include hydroxyl group-containing carboxylic acid esters, salts of long chain polyaminoamides and high molecular weight acid esters, salts of high molecular weight polycarboxylic acids, salts of long chain polyaminoamides and polar acid esters, high molecular weight unsaturated acids.
- Ester, polymer copolymer, modified polyurethane, modified polyacrylate, polyether ester type anionic activator, naphthalenesulfonic acid formalin condensate salt, aromatic sulfonic acid formalin condensate salt, polyoxyethylene alkyl phosphate ester, polyoxy Ethylene nonylphenyl ether, stearylamine acetate and the like are included.
- Examples of commercially available pigment dispersants include Avecia's Solsperse series and Ajinomoto Fine Techno's PB series (for example, Azisper PB824).
- the content of the dispersant in the actinic ray curable inkjet ink is preferably 1 to 50% by mass with respect to the pigment.
- Photopolymerization initiators contained in the actinic ray curable ink jet ink include an intramolecular bond cleavage type and an intramolecular hydrogen abstraction type.
- Examples of intramolecular bond cleavage type photopolymerization initiators include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2.
- intramolecular hydrogen abstraction type photopolymerization initiators examples include benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl.
- Benzophenones such as sulfide, acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4 -Thioxanthone series such as dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone; Aminobenzophenone series such as Michler ketone, 4,4'-diethylaminobenzophenone; 10-butyl-2-chloroacridone, 2-ethyl Anthraquinone, 9,10-phenanthrene Quinone, include camphor quinone and the like.
- the photopolymerization initiator is acyl phosphine oxide or acyl phosphonate
- the sensitivity is good.
- bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, and the like are preferable.
- the content of the photopolymerization initiator in the actinic ray curable ink-jet ink is preferably 0.1% by mass to 10% by mass, although it depends on the light irradiated at the time of ink curing and the type of the photopolymerizable compound. More preferably, it is 2 to 8% by mass.
- the photopolymerization initiator may contain a photoacid generator.
- photoacid generators include chemically amplified photoresists and compounds used for photocationic polymerization (Organic Materials Research Group, “Organic Materials for Imaging”, Bunshin Publishing (1993), 187. See page 192).
- the actinic ray curable inkjet ink may further contain a photopolymerization initiator auxiliary agent, a polymerization inhibitor, and the like as necessary.
- the photopolymerization initiator assistant may be a tertiary amine compound, preferably an aromatic tertiary amine compound.
- aromatic tertiary amine compounds include N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethylamino-p-benzoic acid ethyl ester, N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester, N, N-dihydroxyethylaniline, triethylamine, N, N-dimethylhexylamine and the like are included.
- N, N-dimethylamino-p-benzoic acid ethyl ester and N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester are preferred. Only one kind of these compounds may be contained, or two or more kinds may be contained.
- polymerization inhibitors include (alkyl) phenol, hydroquinone, catechol, resorcin, p-methoxyphenol, t-butylcatechol, t-butylhydroquinone, pyrogallol, 1,1-picrylhydrazyl, phenothiazine, p-benzoquinone , Nitrosobenzene, 2,5-di-t-butyl-p-benzoquinone, dithiobenzoyl disulfide, picric acid, cuperone, aluminum N-nitrosophenylhydroxylamine, tri-p-nitrophenylmethyl, N- (3-oxyanilino- 1,3-dimethylbutylidene) aniline oxide, dibutylcresol, cyclohexanone oxime cresol, guaiacol, o-isopropylphenol, butyraloxime, methyl ethyl ketoxime, cyclohexanone oxime
- the actinic radiation curable inkjet ink may further contain a wax. Since the wax usually has a hydrophobic group, the wax tends to interact with the highly hydrophobic pigment surface. Thereby, the liquid component of the actinic radiation curable inkjet ink containing the wax is easily wetted on the pigment surface, and the bubble nuclei on the pigment surface are easily removed. By degassing such an actinic radiation curable inkjet ink containing wax under heating, air bubbles can be removed to a high degree and high ejection stability is easily obtained.
- waxes examples include An aliphatic ketone compound; Aliphatic ester compounds; Petroleum waxes such as paraffin wax, microcrystalline wax, petrolactam; Plant waxes such as candelilla wax, carnauba wax, rice wax, wood wax, jojoba oil, jojoba solid wax, and jojoba ester; Animal waxes such as beeswax, lanolin and whale wax; Mineral waxes such as montan wax and hydrogenated wax; Hydrogenated castor oil or hydrogenated castor oil derivative; Modified waxes such as montan wax derivatives, paraffin wax derivatives, microcrystalline wax derivatives or polyethylene wax derivatives; Higher fatty acids such as behenic acid, arachidic acid, stearic acid, palmitic acid, myristic acid, lauric acid, oleic acid, and erucic acid; Higher alcohols such as stearyl alcohol and behenyl alcohol; Hydroxystearic acid such as 12-hydroxystearic acid; 12-hydroxystearic acid derivative
- Nomucoat series, etc. Amide compounds such as N-lauroyl-L-glutamic acid dibutylamide and N- (2-ethylhexanoyl) -L-glutamic acid dibutylamide (available from Ajinomoto Fine-Techno); Dibenzylidene sorbitols such as 1,3: 2,4-bis-O-benzylidene-D-glucitol (available from Gelol D Shin Nippon Chemical); And low molecular oil waxes described in JP-A-2005-126507, JP-A-2005-255821 and JP-A-2010-11117.
- Amide compounds such as N-lauroyl-L-glutamic acid dibutylamide and N- (2-ethylhexanoyl) -L-glutamic acid dibutylamide (available from Ajinomoto Fine-Techno); Dibenzylidene sorbitols such as 1,3: 2,4-bis-O
- Such a wax is desired to be at least 1) soluble in the photopolymerizable compound at a temperature above the gelling temperature, and 2) crystallized in the ink at a temperature below the gelling temperature.
- the structure in which the photopolymerizable compound is encapsulated in the space three-dimensionally surrounded by the plate crystal is sometimes referred to as “card house structure”.
- the card house structure is formed, the liquid photopolymerizable compound can be held and ink droplets can be pinned. Thereby, coalescence of droplets can be suppressed.
- the photopolymerizable compound dissolved in the ink and the wax are compatible.
- the photopolymerizable compound dissolved in the ink and the wax are phase-separated, it may be difficult to form a card house structure.
- the compatibility between the photopolymerizable compound and the wax is good in the sol-like ink (at a high temperature). Furthermore, in order to stably suppress coalescence of droplets even during high-speed printing, it is desired that the wax crystallizes quickly after the ink droplets have landed on the recording medium to form a strong card house structure. .
- the wax is preferably a compound having an alkyl group having 12 or more carbon atoms.
- the alkyl group may be any one of a linear alkyl group, a branched alkyl group, and a cyclic alkyl group, and is preferably a linear alkyl group or a branched alkyl group, and the above-mentioned “card house structure” It is more preferable that it is a linear alkyl group from a viewpoint which is easy to form.
- wax having a linear alkyl group having 12 or more carbon atoms examples include aliphatic ketone compounds, aliphatic ester compounds, higher fatty acids, higher alcohols, fatty acid amides and the like having a linear alkyl group having 12 or more carbon atoms. Is included.
- the wax is preferably a compound represented by the following general formula (G1) or (G2).
- the hydrocarbon groups represented by R 1 and R 2 are each independently preferably an aliphatic hydrocarbon group including a linear portion having 12 to 25 carbon atoms.
- the number of carbon atoms in the straight chain portion contained in the aliphatic hydrocarbon group represented by R 1 and R 2 is less than 12, there is a possibility that sufficient crystallinity may not be obtained.
- the above-mentioned card house structure there is a possibility that a sufficient space for encapsulating the photopolymerizable compound cannot be formed.
- the number of carbon atoms in the straight chain portion contained in the aliphatic hydrocarbon group exceeds 25, the melting point becomes too high. For this reason, unless the ink ejection temperature is increased, the ink may not be dissolved.
- Examples of the aliphatic ketone compound represented by the general formula (G1) include dilignoceryl ketone (C24-C24), dibehenyl ketone (C22-C22, melting point 88 ° C.), distearyl ketone (C18-C18, 84 ° C.), dieicosyl ketone (C20-C20), dipalmityl ketone (C16-C16, melting point 80 ° C.), dimyristyl ketone (C14-C14), dilauryl ketone (C12-C12, melting point 68 ° C.) , Lauryl myristyl ketone (C12-C14), lauryl palmityl ketone (C12-C16), myristyl palmityl ketone (C14-C16), myristyl stearyl ketone (C14-C18), myristyl behenyl ketone (C14-C22), palmityl Stearyl
- Examples of commercially available compounds represented by the general formula (G1) include 18-Pentriacontanon (Alfa Aeser), Hentriacontan-16-on (Alfa Aeser), Kao Wax T1 (Kao Corporation), etc. Is included.
- the aliphatic ketone compound contained in the actinic ray curable inkjet ink may be only one kind or a mixture of two or more kinds.
- the hydrocarbon group represented by R 3 and R 4 is not particularly limited, but is preferably an aliphatic hydrocarbon group including a straight chain portion having 12 to 26 carbon atoms.
- the number of carbon atoms in the straight chain portion contained in the aliphatic hydrocarbon group represented by R 3 and R 4 is 12 or more and 26 or less, as in the compound represented by the general formula (G1), a good crystal
- the above-mentioned card house structure can be formed while having the property, and the melting point is not too high.
- Examples of the aliphatic ester compound represented by the general formula (G2) include behenyl behenate (C21-C22, melting point 70 ° C.), icosyl icosanoate (C19-C20), stearyl stearate (C17-C18, melting point 60).
- Examples of commercially available aliphatic ester compounds represented by the general formula (G2) include Unistar M-2222SL (manufactured by NOF Corporation), EXCEPARL SS (manufactured by Kao Corporation, melting point 60 ° C.), EMALEX® CC-18 (Manufactured by Nippon Emulsion Co., Ltd.), Amreps PC (manufactured by Higher Alcohol Industry Co., Ltd.), EXCEPARL MY-M (manufactured by Kao Corporation), SPARM ACETI (manufactured by NOF Corporation), EMALEX ALCC-10 (manufactured by Nippon Emulsion Co., Ltd.) Etc. are included. Since these commercial products are often a mixture of two or more types, they may be separated and purified as necessary.
- the aliphatic ester compound contained in the actinic ray curable inkjet ink may be only one kind or a mixture of two or more kinds.
- the content of the wax in the actinic ray curable inkjet ink is preferably 1.0 to 10.0% by mass, more preferably 1.0 to 7.0% by mass, based on the total amount of the ink. If it is less than 1.0% by mass, the liquid component of the ink is not sufficiently wetted on the pigment surface, and there is a possibility that bubbles cannot be removed efficiently. Further, there is a possibility that the ink droplet cannot be sufficiently gelled (or sol-gel phase transition). On the other hand, if it exceeds 10% by mass, the wax cannot be sufficiently dissolved in the ink, and the ejection properties of the ink droplets may be lowered.
- the wax used in the present invention has a hydrophobic group such as an alkyl group having 12 or more carbon atoms, it easily interacts with a highly hydrophobic pigment surface.
- the liquid component of the actinic radiation curable inkjet ink containing the wax is easily wetted on the pigment surface, and the bubble nuclei on the pigment surface are easily removed.
- degassing such an actinic radiation curable inkjet ink containing wax under heating air bubbles can be removed to a high degree and high ejection stability is easily obtained.
- the ink droplets after landing on the recording medium have a high viscosity and do not wet and spread excessively, it is possible to reduce the dissolution of oxygen into the surface of the ink droplets and to further improve the curability.
- the actinic ray curable inkjet ink may further contain other components as necessary.
- Other components may be various additives, other resins, and the like.
- the additive include a surfactant, a leveling additive, a matting agent, an ultraviolet absorber, an infrared absorber, an antibacterial agent, and a basic compound for enhancing the storage stability of the ink.
- basic compounds include basic alkali metal compounds, basic alkaline earth metal compounds, basic organic compounds such as amines, and the like.
- other resins include resins for adjusting the physical properties of the cured film, such as polyester resins, polyurethane resins, vinyl resins, acrylic resins, rubber resins, and waxes. It is.
- the actinic ray curable ink-jet ink preferably has a viscosity of the ink at a high temperature or less in order to improve the discharge property of ink droplets.
- the viscosity of the actinic ray curable inkjet ink at 80 ° C. is preferably 3 to 20 mPa ⁇ s.
- the actinic ray curable ink-jet ink preferably has a viscosity of the ink at a certain temperature or higher after landing in order to suppress coalescence of adjacent dots.
- the viscosity of the ink at 25 ° C. is preferably 1000 mPa ⁇ s or more.
- Actinic ray curable inkjet ink containing wax can reversibly undergo a sol-gel phase transition depending on temperature.
- Actinic ray curable ink that undergoes a sol-gel phase transition is a liquid (sol) at a high temperature (for example, about 80 ° C.), and thus can be ejected from a recording head in a sol state.
- a high temperature for example, about 80 ° C.
- ink droplets (dots) land on the recording medium and then naturally cool to gel. Thereby, coalescence of adjacent dots can be suppressed and image quality can be improved.
- the gelling temperature of the actinic ray curable inkjet ink containing wax is preferably 30 ° C. or higher and lower than 100 ° C., more preferably 50 ° C. or higher and 65 ° C. or lower. If the gelation temperature of the ink is too high, gelation is likely to occur at the time of ejection, and the ejectability tends to be low. On the other hand, if the gelation temperature of the ink is too low, it does not gel immediately after landing on the recording medium.
- the gelation temperature is a temperature at which the fluidity is lowered due to gelation in the process of cooling the ink in the sol state.
- the viscosity at 80 ° C., the viscosity at 25 ° C., and the gelation temperature of the ink-jet ink can be determined by measuring the temperature change of the dynamic viscoelasticity of the ink with a rheometer. Specifically, a temperature change curve of viscosity is obtained when the ink is heated to 100 ° C. and cooled to 20 ° C. under conditions of a shear rate of 11.7 (/ s) and a temperature decrease rate of 0.1 ° C./s. And the viscosity in 80 degreeC and the viscosity in 25 degreeC can be calculated
- the gelation temperature can be determined as the temperature at which the viscosity becomes 200 mPa ⁇ s in the temperature change curve of the viscosity.
- the rheometer can be a stress control type rheometer Physica MCR series manufactured by Anton Paar.
- the cone plate can have a diameter of 75 mm and a cone angle of 1.0 °.
- the ink-jet ink degassing method of the present invention includes a step of degassing the above-mentioned actinic radiation curable ink-jet ink heated to a certain temperature or more with a hollow fiber.
- the degassing step using the hollow fiber may be performed inside the ink jet recording apparatus; it may be performed outside the ink jet recording apparatus.
- Examples of the mode in which the degassing by the hollow fiber is performed outside the inkjet recording apparatus include a mode in which the degassing by the hollow fiber is performed when the cartridge is filled with the inkjet ink.
- the hollow fiber is a hollow (straw) thread that allows gas to pass through but does not allow liquid to pass through.
- hollow fiber materials include polyolefin resins such as polypropylene and poly (4-methyl-1-pentene); silicone resins such as polydimethylsiloxane and copolymers thereof; fluorine resins such as PTFE and vinylidene fluoride Resin etc. are included.
- fluororesin, silicone resin, or polymethylpentene is preferred, and silicone resin and fluororesin are more preferred from the viewpoint that the surface energy is easily increased by heating and the deaeration efficiency is easily improved.
- the properties of the side wall membrane of the hollow fiber may be a porous membrane, a non-porous membrane (homogeneous membrane having no pores), or a composite membrane combining these. Since the actinic ray curable inkjet ink tends to wet the surface of the hollow fiber, the hollow fiber is preferably a non-porous membrane.
- the hollow inner diameter of the hollow fiber can be about 50 to 500 ⁇ m.
- the film thickness of the hollow fiber can be about 10 to 150 ⁇ m.
- Hollow fiber can be used as an aggregate of hollow fibers.
- the aggregate of hollow fibers may be filled with one long hollow fiber; it may be a bundle of a plurality of hollow fibers or knitted.
- Examples of the bundle of a plurality of hollow fibers include a bundle-like body in which a plurality of hollow fibers are bundled so as to be arranged in parallel in the length direction.
- Examples of those in which a plurality of hollow fibers are knitted include a sheet in which a plurality of hollow fibers are knitted together in a stitch shape as shown in FIG. 3 described later.
- seat can be used as a winding body wound with respect to the axis
- a sheet in which a plurality of hollow fibers are knitted together has a fine hollow fiber, and since all the ink easily passes through the hollow fiber, it is easy to improve the deaeration efficiency; flexible This is preferable because a certain level of strength is easily obtained even from hollow fibers.
- the effective membrane area of the aggregate of hollow fibers can be about 0.1 to 5 m 2 , preferably about 0.3 to 2 m 2 , more preferably about 0.5 to 1 m 2 .
- the effective membrane area of the aggregate of hollow fibers can be defined as the surface area per hollow fiber (m 2 / line) ⁇ the number of hollow fibers (line).
- the deaeration method may be an external reflux method in which ink is circulated to the outside (hollow outside) of the hollow fiber and the inside (hollow inside) of the hollow fiber is depressurized to deaerate (see FIG. 2 described later).
- An internal reflux system may be employed in which ink is circulated inside the hollow fiber (inside the hollow), and the outside (hollow outside) of the hollow fiber is depressurized and deaerated (see FIG. 4 described later).
- 1) a large amount of ink can be processed because the pressure loss of the ink is small, and 2) when the ink is heated from the outer periphery of the housing of the deaeration module by heating means as described later, the ink conducts more heat than air.
- the external reflux system is preferable.
- the internal reflux method is preferable because the ink temperature is maintained because the outside of the hollow fiber is thermally insulated by vacuum.
- the ink is reheated to lower the viscosity and reduce the pressure loss. Difficult to discharge.
- the deaeration process in order to sufficiently remove bubbles contained in the actinic radiation curable inkjet ink, it is preferable to perform the deaeration process in a state of being heated to a certain temperature or higher.
- the deaeration temperature is preferably 60 ° C. or higher and 120 ° C. or lower, and more preferably 80 ° C. or higher and 100 ° C. or lower. If the deaeration temperature is too low, the surface energy of the hollow fiber is not sufficiently increased, so that the ink is not sufficiently wetted and the deaeration efficiency is difficult to increase. On the other hand, if the deaeration temperature is too high, thermal radicals are generated in the ink or the pigment dispersibility becomes unstable, so that the storage stability of the ink tends to be lowered.
- the deaeration temperature can be adjusted by heating one or both of the ink supplied to the hollow fiber and the hollow fiber.
- the degassing temperature can be adjusted by a heating means included in the hollow fiber degassing module.
- a heating means for example, a heating wire or a plate heater that is in contact with or fixed to the side wall of the deaeration module is used in addition to a jacket heater provided on the outer periphery of the housing of the hollow fiber deaeration module as described later.
- the heating wire and the plate heater are configured to generate Joule heat when energized.
- the housing of the deaeration module is preferably composed of a heat transfer member.
- a heat transfer member is a member having a high thermal conductivity, for example, a member formed of an aluminum alloy or the like, and can transfer heat to the ink in the deaeration module.
- the pressure outside or inside the hollow fiber during the deaeration treatment is preferably 0.1 atm or less.
- the deaeration treatment is preferably performed so that the oxygen removal rate is 60% or more, preferably 80% or more, more preferably 90% or more.
- the ink ejection stability can be preferably increased.
- the dissolved oxygen amount of the ink can be measured using an Orbis Fair® oxygen meter model® 3600 (manufactured byhack Ultra Co., Ltd.) and an Orbis Fair® oxygen sensor model® 31130.
- Orbis Fair® oxygen meter model® 3600 manufactured by Hack Ultra Co., Ltd.
- Orbis Fair® oxygen sensor model® 31130 As a measurement principle, oxygen molecules permeate through the semipermeable membrane according to the partial pressure, reach the electrode, and react with the electrolytic solution to generate current. By measuring this generated current, the oxygen partial pressure is quantified, and converted to the oxygen solubility factor of water and displayed as ppm (mg / L).
- the dissolved oxygen content of the solvent (acrylate monomer) is not properly expressed in ppm, and is often expressed in KPa / Pa of the partial pressure actually measured as a measurement unit.
- the dissolved oxygen amount can be calculated from the oxygen partial pressure of the ink. For example, when the oxygen partial pressure in the ink before deaeration is 20 kPa and the oxygen partial pressure in the ink after deaeration is 2 kPa, the deaeration is performed. The treatment removed 90% of oxygen.
- the inkjet recording method of the present invention comprises at least (1) a step of degassing an actinic ray curable inkjet ink while being heated to a certain temperature or more by an assembly of hollow fibers incorporated in the inkjet recording apparatus; (2) a step of ejecting ink droplets of the deaerated actinic radiation curable ink jet ink from the recording head and landing on the recording medium; and (3) actinic rays being applied to the ink droplets landing on the recording medium. Irradiating and curing the ink droplets.
- the actinic ray curable inkjet ink may be the actinic ray curable inkjet ink described above.
- Degassing with a hollow fiber can be performed in the same manner as the above-described degassing method for inkjet ink. That is, the material, structure, inner diameter, film thickness, form of use (aggregate of hollow fibers), degassing method and degassing conditions of the hollow fiber can be the same as described above.
- Degassing temperature can be adjusted by heating means of the hollow fiber degassing module.
- the heating means can be, for example, a jacket heater provided on the outer periphery of the housing of the hollow fiber deaeration module as described later.
- Ink droplets of the actinic ray curable inkjet ink deaerated as described above are ejected from the recording head.
- the actinic ray curable inkjet ink immediately before ejection is preferably heated to 60 to 100 ° C., preferably 60 to 80 ° C., from the viewpoint of enhancing the ejection properties of the ink droplets. If the temperature of the actinic radiation curable inkjet ink immediately before ejection is too low, the ink viscosity is too high, or if the ink contains wax, it will gel in the recording head or on the nozzle surface, causing ink droplet ejection properties Tends to decrease. On the other hand, if the temperature of the actinic ray curable inkjet ink immediately before ejection is too high, the ink component tends to deteriorate.
- the heating of the actinic ray curable inkjet ink can be performed in a recording head of an inkjet recording apparatus, an ink channel connected to the recording head, an ink tank connected to the ink channel, or the like.
- the amount of droplets ejected from each nozzle of the recording head is preferably 0.5 to 10 pl, although it depends on the resolution of the image. In order to form a high-definition image, 0. It is more preferably 5 to 4 pl, and further preferably 0.5 to 2.5 pl. If the actinic ray curable ink-jet ink contains a wax, it can quickly undergo sol-gel transition, so that even after such a droplet amount, the ink after landing is difficult to coalesce, and a high-definition image is stably formed. Cheap.
- the ink droplets that land on the recording medium are cooled.
- the actinic ray curable inkjet ink contains a wax
- the ink droplets that have landed on the recording medium can be quickly gelled by the sol-gel phase transition. Thereby, the ink droplets can be pinned without being spread.
- the ink viscosity increases due to gelation, and oxygen hardly enters the ink droplets. Therefore, the curing of the photopolymerizable compound is not easily inhibited by oxygen.
- the recording medium may be paper or a resin film.
- the paper include coated paper for printing, art paper for printing, and the like.
- the resin film include a polyethylene terephthalate film, a polypropylene film, and a vinyl chloride film.
- the temperature of the recording medium when the ink droplets land is preferably set to a temperature that is 10 to 20 ° C. lower than the gelation temperature of the ink. If the temperature of the recording medium is too low, the ink droplets gel excessively and pinning, so that the ink droplets are not sufficiently leveled and the glossiness of the image may be lowered. On the other hand, if the temperature of the recording medium is too high, the ink droplets are difficult to gel, and adjacent dots of the ink droplets may be mixed together. By appropriately adjusting the temperature of the recording medium, it is possible to achieve appropriate leveling and appropriate pinning so that adjacent dots of ink droplets do not mix with each other.
- the conveyance speed of the recording medium is preferably 100 to 1500 mm / s.
- the higher the conveyance speed the higher the image forming speed, which is preferable.
- the conveyance speed is too high, the image quality is deteriorated or the photocuring (described later) of the ink becomes insufficient.
- the actinic ray applied to the ink droplets attached to the recording medium is preferably ultraviolet light from an LED light source.
- LED light source Specific examples include Heraeus 395 nm, water-cooled LED, and the like.
- a metal halide lamp is an example of a general ultraviolet light source.
- the LED light source is installed so that the peak illuminance on the image surface is 0.5 to 10 W / cm 2 with ultraviolet rays of 360 to 410 nm, and more preferably 1 to 5 W / cm 2 .
- the amount of light applied to the image is preferably less than 500 mJ / cm 2 , more preferably less than 350 mJ / cm 2 . This is to prevent the radiant heat from being applied to the ink droplets.
- Irradiation of the actinic ray to the ink droplets is performed within 10 seconds after the ink droplets adhere on the recording medium, preferably from 0.001 seconds to suppress the adjacent ink droplets from being coalesced. It is preferable to carry out within 5 seconds, more preferably within 0.01 second to 2 seconds. Irradiation with actinic rays is preferably performed after ink droplets are ejected from all the recording heads accommodated in the head carriage.
- the bubbles are sufficiently removed as described above, the amount of dissolved oxygen is also reduced. Thereby, oxygen inhibition during curing can be reduced, and high curability can be obtained.
- Inkjet recording apparatus The inkjet recording method of the present invention can be performed using an actinic ray curable inkjet recording apparatus.
- An ink jet recording apparatus of the present invention communicates between a recording head that discharges actinic ray curable ink jet ink, an ink tank that stores actinic ray curable ink jet ink supplied to the recording head, and the recording head and the ink tank. And a hollow fiber degassing module for degassing the actinic radiation curable inkjet ink supplied from the ink tank, and an irradiation unit for irradiating the ink droplets ejected from the recording head with the actinic light.
- the hollow fiber deaeration module includes an assembly of hollow fibers, a housing that houses the hollow fiber assembly, and a heating unit that heats the inside of the housing.
- the hollow fiber deaeration module may be an internal reflux type or an external reflux type.
- the hollow fiber can be the hollow fiber described above.
- the heating means is not particularly limited, but may be a jacket heater provided on the outer periphery of the housing.
- the line recording method is preferable from the viewpoint of high-speed recording, although it may be selected according to the required image resolution and recording speed.
- FIG. 1 is a diagram illustrating an example of a configuration of a main part of a line recording type inkjet recording apparatus.
- FIG. 1A is a side view
- FIG. 1B is a top view.
- the ink jet recording apparatus 10 includes a head carriage 13 that houses a plurality of recording heads 11, an ink tank 17 that stores ink supplied through an ink flow path 15, an ink tank 17, and a head carriage 13.
- a hollow fiber deaeration module 19 that degass the ink supplied from the ink tank 17 and covers the entire width of the recording medium 20 and on the downstream side of the head carriage 13 (the conveyance direction of the recording medium).
- An actinic ray irradiation unit 21 disposed and a temperature control unit 23 disposed on the lower surface of the recording medium 20 may be included.
- the head carriage 13 is fixedly arranged so as to cover the entire width of the recording medium 20 and accommodates a plurality of recording heads 11. Each head carriage 13 accommodates recording heads 11 of different colors.
- Ink is supplied to the recording head 11.
- the ink may be supplied directly or by an ink supply unit (not shown) from an ink cartridge (not shown) that is detachably attached to the inkjet recording apparatus 10.
- the number of recording heads 11 arranged in the conveyance direction of the recording medium 20 is set according to the nozzle density of the recording head 11 and the resolution of the print image. For example, when an image having a resolution of 1440 dpi is formed using the recording head 11 having a droplet amount of 2 pl and a nozzle density of 360 dpi, the four recording heads 11 may be arranged so as to be shifted with respect to the conveyance direction of the recording medium 20. . Further, when an image having a resolution of 720 ⁇ 720 dpi is formed using the recording head 11 having a droplet amount of 6 pl and a nozzle density of 360 dpi, the two recording heads 11 may be arranged in a shifted manner. dpi represents the number of ink droplets (dots) per 2.54 cm.
- the ink tank 17 is connected to the head carriage 13 via the ink flow path 15 and the hollow fiber deaeration module 19.
- the ink flow path 15 is a path for supplying the ink in the ink tank 17 to the head carriage 13.
- the ink in the ink tank 17, the ink flow path 15, the head carriage 13, and the recording head 11 can be heated to a predetermined temperature.
- FIG. 2 is a schematic view showing an example of an external reflux type hollow fiber deaeration module.
- Arrow X indicates ink flow; arrow Y indicates bubble flow.
- the hollow fiber deaeration module 19 includes a hollow fiber assembly 25, a housing 27 that houses the hollow fiber assembly 25, and a jacket heater 29 provided around the housing 27. including.
- the hollow fiber assembly 25 is preferably a sheet in which a plurality of hollow fibers 31 are arranged so as to be parallel to each other in the length direction (arranged so as to be parallel to each other in the length direction as shown in FIG. 3).
- a sheet or the like obtained by knitting a plurality of hollow fibers 31 with warps 32 may be wound around a shaft parallel to the longitudinal direction of the hollow fibers 31.
- the hollow fiber 31 can be the hollow fiber described above.
- Effective membrane area of the assembly 25 of hollow fibers can be 0.005 ⁇ 1.0 m 2, preferably about may be about 0.01 ⁇ 0.5 m 2.
- One end 25a of the hollow fiber assembly 25 (the end portion on the ink introduction port 33 side described later) is sealed between the hollow fibers 31 and the hole 31A of the hollow fiber with a sealing resin or the like. Ink cannot flow into the hollow fiber assembly 25.
- the other end 25b of the hollow fiber assembly 25 (the end on the suction port 35 side described later) is sealed between the hollow fibers 31 with a sealing resin or the like. Is not sealed and is open. Thereby, the inside of the hollow of the hollow fiber 31 (inside the hole 31A) can be depressurized.
- the housing 27 is in contact with the cylindrical housing main body 27A, the ink introduction port 33 for introducing ink into the housing main body 27A, the suction port 35 for evacuating the housing main body 27A, and the hollow fiber assembly 25. And an ink discharge port 37 through which the discharged ink is discharged.
- a central hole 39 surrounded by the hollow fiber assembly 25 and extending in parallel with the length direction of the hollow fiber 31 is formed in the central portion of the housing main body 27A. One end of the central hole 39 (end on the suction port 35 side) is sealed with a sealing resin or the like.
- the jacket heater 29 (heating means) can be provided so as to cover the outer peripheral surface of the housing main body 27A. Thereby, the temperature in the housing main body 27A can be adjusted to a predetermined temperature.
- the ink introduced into the housing main body 27A from the ink introduction port 33 circulates through the central hole 39; (Refer to arrow X); it flows through the outer surface of the hollow fiber 31 and is discharged from the ink discharge port 37.
- the actinic ray irradiation unit 21 covers the entire width of the recording medium 20 and is arranged on the downstream side of the head carriage 13 in the recording medium conveyance direction.
- the actinic ray irradiation unit 21 irradiates the droplets ejected by the recording head 11 and landed on the recording medium with light, thereby curing the droplets.
- the temperature control unit 23 is disposed on the lower surface of the recording medium 20, and maintains the recording medium 20 at a predetermined temperature.
- the temperature control unit 23 can be, for example, various heaters.
- the recording medium 20 is conveyed between the head carriage 13 and the temperature control unit 23 of the inkjet recording apparatus 10. On the other hand, the recording medium 20 is adjusted to a predetermined temperature by the temperature control unit 23.
- the ink in the ink tank 17 is introduced into the hollow fiber deaeration module 19 through the ink flow path 15.
- the ink is introduced into the housing body 27 ⁇ / b> A from the ink introduction port 33 and flows through the central hole 39.
- the ink flowing through the central hole 39 flows from the side wall surface into the hollow fiber assembly 25 (arrow X); the ink flows through the outer surface of the hollow fiber 31.
- the inside of the hollow of the hollow fiber 31 (in the hole 31A) is depressurized, air bubbles in the ink pass through the hollow fiber 31 and are sucked into the hollow (in the hole 31A).
- the bubbles sucked into the hollow of the hollow fiber 31 are discharged from the other end of the hollow fiber 31 (see arrow Y) and discharged through the suction port 35.
- the inside of the housing main body 27A is heated to a certain temperature or more by the jacket heater 29, the surface energy of the outer surface of the hollow fiber 31 becomes large, and the ink tends to get wet on the outer surface of the hollow fiber 31. . Thereby, the bubbles contained in the ink can be efficiently removed.
- the ink from which the bubbles are removed is discharged from the ink discharge port 37 of the hollow fiber degassing module 19 and supplied to the recording head 11 in the head carriage 13.
- the total ink droplet thickness after curing is preferably 2 to 25 ⁇ m.
- the “total ink droplet thickness” is the maximum value of the ink droplet thickness drawn on the recording medium.
- the hollow fiber deaeration module is an external reflux system
- an internal reflux system may be used.
- FIG. 4 is a schematic view showing an example of an internal reflux type hollow fiber deaeration module.
- Arrow X indicates ink flow; arrow Y indicates bubble flow.
- the hollow fiber deaeration module 19 ′ includes a hollow fiber assembly 41, a housing 27 that accommodates the hollow fiber assembly 41, and a jacket heater 29 provided around the housing 27.
- the hollow fiber assembly 41 is formed by winding a sheet in which a plurality of hollow fibers 31 are arranged parallel to each other in the length direction, with an axis parallel to the length direction of the hollow fibers 31 as a center.
- One end 41a (end portion on the ink introduction port 33 side) of the hollow fiber assembly 41 is fixed by an introduction connection port 45 and a fixing member (shaded portion); the other end 41b (end portion on the ink discharge port 37 side) ) Is fixed by a discharge connection port 47 and a fixing member (shaded portion). This prevents ink from leaking out of the hollow fiber assembly 41.
- the introduction connection port 45 is connected to the ink introduction port 33; the discharge connection port 47 is connected to the ink discharge port 37.
- the housing 27 has a housing body 27A and a suction port 35 for evacuating the housing body 27A. Thereby, the inside of the housing main body 27A can be depressurized.
- the ink introduced into the hollow fiber deaeration module 19 ′ is introduced from the ink introduction port 33 into the hollow fiber assembly 41 through the introduction connection port 45; the hollow fiber 31 in the hollow (in the hole 31A). (See arrow X).
- the outside of the hollow fiber assembly 41 in the housing main body 27A is depressurized, the bubbles in the ink flowing through the hollow of the hollow fiber 31 permeate through the side wall membrane of the hollow fiber 31 to the outside. And discharged through the suction port 35 (see arrow Y).
- the inside of the housing main body 27A is heated to a predetermined temperature or more by the jacket heater 29.
- the surface energy of the hollow inner surface of the hollow fiber 31 is increased, and the ink is easily wetted in the hollow of the hollow fiber 31.
- the bubbles contained in the ink can be efficiently removed.
- the ink from which bubbles are removed is discharged from the ink discharge port 37 through the discharge connection port 47.
- FIG. 5 is a diagram illustrating an example of a configuration of a main part of the serial recording type inkjet recording apparatus 60.
- the inkjet recording apparatus 60 is provided with a width narrower than the entire width of the recording medium, instead of the head carriage 13 fixedly arranged so as to cover the entire width of the recording medium, and includes a plurality of recording heads 61. 1B, and a guide portion 65 for moving the head carriage 63 in the width direction of the recording medium 20 can be used.
- Members having the same or similar functions as those in FIG. 1B are denoted by the same reference numerals.
- the head carriage 63 ejects ink droplets from the recording head 61 accommodated in the head carriage 63 while moving in the width direction of the recording medium 20 along the guide portion 65. After the head carriage 63 has completely moved in the width direction of the recording medium 20 (for each pass), the recording medium 20 is sent in the transport direction, and the active light irradiation unit 21 irradiates the active light. Except for these operations, an image is recorded in substantially the same manner as the line recording type inkjet recording apparatus 10 described above.
- Pigment dispersant EFKA7701 (manufactured by BASF, block copolymer, amine value 40 mgKOH / g) Ajisper PB824 (Ajinomoto Fine Techno Co., Ltd.) Pigment: PY-185 (manufactured by BASF, isoindoline yellow pigment) Pigment Blue 15: 4 (manufactured by Dainichi Seika, Chromo Fine Blue 6332JC)
- Photoinitiator DAROCURE TPO (made by BASF) IRGACURE 369 (BASF) SPEEDCURE ITX (manufactured by DKSH) SPEEDCURE EDB (manufactured by DKSH)
- Pigment dispersion 1 9 parts by mass of EFKA7701 as pigment dispersant 1, 70 parts by mass of APG-200 as a photopolymerizable compound, and 0.02 parts by mass of UV10 (manufactured by BASF) as a polymerization inhibitor are placed in a stainless beaker. The mixture was heated and stirred for 1 hour while being heated on a hot plate at 65 ° C. After cooling the obtained solution to room temperature, 20 parts by mass of PY-185 as a pigment was added, and it was sealed in a glass bottle together with 200 g of zirconia beads having a diameter of 0.5 mm, and dispersed with a paint shaker for 8 hours. Thereafter, zirconia beads were removed to prepare Pigment Dispersion Liquid 1.
- Pigment dispersion 2 A stainless steel beaker containing 9 parts by mass of Ajisper PB824 (manufactured by Ajinomoto Fine Techno); 70 parts by mass of APG-200 as a photopolymerizable compound; 0.02 parts by mass of UV10 (manufactured by BASF) as a polymerization inhibitor And stirred for 1 hour while heating on a 65 ° C. hot plate. After cooling the resulting solution to room temperature, Pigment Dispersion 2 was obtained in the same manner as described above except that 20 parts by mass of Pigment Blue 15: 4 (manufactured by Dainichi Seika, Chromofine Blue 6332JC) was added. .
- Actinic ray curable inkjet inks 1 to 6 were prepared using the following components.
- Actinic ray curable inkjet ink 1 12.5 parts by mass of the pigment dispersion 1 prepared above as a pigment dispersion; 12.0 parts by mass of A-400 (manufactured by Shin-Nakamura Chemical Co., Ltd., polyethylene glycol # 400 diacrylate) as a photopolymerizable compound; 8.0 parts by mass of A-600 (manufactured by Shin-Nakamura Chemical Co., Ltd., polyethylene glycol # 600), 10.0 parts by mass of APG-200 (manufactured by Shin-Nakamura Chemical Co., Ltd., tripropylene glycol diacrylate), SR499 (manufactured by Sartomer) ) 26.3 parts by mass, SR494 (Sartomer) 20.0 parts by mass; Photopolymerization initiator DAROCURE TPO (BASF) 4.0 parts by mass
- Inks 2 to 6 (yellow ink) were prepared in the same manner as described above except that the composition of the photopolymerizable compound and the composition of the wax were changed as shown in Table 1.
- Inks 7 to 12 were prepared in the same manner as ink 1 described above except that the type of pigment dispersion was changed as shown in Table 2.
- compositions of the prepared actinic ray curable inkjet inks 1 to 6 are shown in Table 1; the compositions of the actinic ray curable inkjet inks 7 to 12 are shown in Table 2.
- the unit of numerical values in these tables represents “parts by mass”.
- Table 3 shows combinations of ink sets.
- Example 1 A monochromatic image was formed using the line recording type inkjet recording apparatus shown in FIGS. 1A and 1B.
- the ink supply system of the ink jet recording apparatus is composed of an ink tank, a supply pipe, a hollow fiber deaeration module having a heating means, a sub ink tank immediately before the head, a pipe with a filter, and a piezo head (recording head) in this order.
- the obtained ink 1 was supplied to the ink supply system of the ink jet recording apparatus, and the entire ink supply system except the hollow fiber degassing module from the ink tank to the recording head portion was heated to 90 ° C.
- the outside of the hollow fiber was set to atmospheric pressure, and the inside of the hollow fiber was depressurized.
- the degassing temperature in the hollow fiber degassing module was 80 ° C .; the ink supply rate to the hollow fiber degassing module was 50 cc / min.
- the hollow fiber degassing module As the hollow fiber degassing module, the following hollow fiber degassing module produced using a hollow fiber manufactured by Taisei Corporation was used.
- Hollow fiber Hollow fiber made by Taisei Co., Ltd. used in MF-500 (Material: fluororesin PFA (copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether), hollow inner diameter: 500 ⁇ m )
- the recording head used was a Konica Minolta inkjet head having 1776 nozzles, and the resolution was 600 dpi.
- the applied voltage was adjusted so that the amount of one droplet was 3.5 pl and the droplet velocity was 7 m / sec.
- Two heads were arranged in a staggered manner, and an image having a resolution of 1200 dpi ⁇ 1200 dpi was recorded.
- dpi represents the number of dots per 2.54 cm.
- the image was formed in an environment of 23 ° C. and 55% RH.
- ⁇ Some missing nozzles are recognized in yellow ink, but no missing nozzle is recognized in cyan ink ⁇ : Both yellow ink and cyan ink have less than 10 missing nozzles ⁇ : Both yellow ink and cyan ink The number of missing nozzles is 10 or more and less than 30 ⁇ : The number of missing nozzles is 30 or more for both yellow ink and cyan ink
- the cyan ink was applied in an amount of 6 g / m 2 and the yellow ink A solid solid image of 6 g / m 2 was formed with a total amount of 12 g / m 2 .
- the coated paper for printing was irradiated with ultraviolet rays by an LED lamp (manufactured by Heraeus, 8 W / cm 2 , 395 nm, water cooled unit) disposed in the downstream part of the ink jet recording apparatus. Then, the ink landed on the coated paper for printing was cured.
- the LED lamp was irradiated with ultraviolet rays at a distance of 10 mm from the surface of the coated paper for printing.
- Examples 2 to 15, Comparative Examples 2 to 3 The same evaluation as in Example 1 was performed except that the ink type and deaeration temperature were changed as shown in Table 4 or 5.
- Example 16 to 25 Hollow fiber deaeration module (degassing method: external reflux method, hollow fiber: NAGASEP (material: silicone rubber, hollow inner diameter: 200 ⁇ m), manufactured by Nagayanagi Kogyo Co., Ltd.) The same evaluation as in Example 1 was performed except that the effective membrane area (wetted area) of the aggregate was 0.6 m 2 ) and the ink type and degassing temperature were changed as shown in Table 4. .
- Example 26 to 28 Hollow fiber degassing module manufactured using hollow fiber manufactured by DIC (degassing method: external reflux method, hollow fiber: hollow fiber used in EF-G5 manufactured by DIC (material: poly-4-methyl-1 Example 1 except that the effective membrane area (wetted area) of the pentene) and hollow fiber assembly was 0.5 m 2 ), and the ink type and degassing temperature were changed as shown in Table 5. The same evaluation was performed.
- Example 29 to 32 Evaluation was performed in the same manner as in Example 1 except that the following hollow fiber deaeration module of the internal reflux system was used and the type of ink and the deaeration temperature were changed as shown in Table 5.
- Hollow fiber degassing module manufactured by Taiseisha (trade name: MF-500)
- Deaeration method Internal reflux method
- Hollow fiber material Fluorine resin PFA (copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether) Hollow inner diameter: 500 ⁇ m
- Example 33 to 35 Hollow fiber deaeration module (degassing method: internal reflux method, hollow fiber: NAGASEP (material: silicone rubber, hollow inner diameter: 300 ⁇ m) manufactured by Nagayanagi Kogyo Co., Ltd.) The same evaluation as in Example 16 was performed, except that the effective membrane area (wetted area) of the aggregate was 0.6 m 2 ) and the ink type and degassing temperature were changed as shown in Table 5. .
- Example 1 The same evaluation as in Example 1 was performed except that the deaeration treatment was not performed.
- the inks of Examples 7 to 9 containing a highly hydrophobic wax have higher ejection properties and curability than the inks of Examples 2 to 4 not containing the wax.
- the improvement in ejection performance is considered to be due to the fact that the ink containing wax has high hydrophobicity and is easily wetted on the pigment surface, so that the bubble nuclei on the pigment surface are easily removed.
- the improvement in curability is thought to be due to the fact that the ink containing the wax increases in viscosity after landing, so that the oxygen penetration is reduced.
- Examples 7 to 9 and 10 to 12 using wax having 12 or more carbon atoms have higher ejection stability than Examples 13 to 15 using wax having less than 12 carbon atoms. Recognize. This is presumably because wax having 12 or more carbon atoms has high hydrophobicity, so that the ink easily wets the pigment surface and easily removes bubbles on the pigment surface.
- the inks of Examples 7 to 8 and the inks of Examples 18 to 19 in which the hollow fiber material is a fluorine resin are the inks of Examples 26 to 27 in which 4-methyl-1-pentene is used. It can also be seen that it has high dischargeability and curability.
- an ink-jet ink degassing method capable of sufficiently removing bubbles contained in an actinic ray curable ink-jet ink and improving ejection stability and curability, and an ink-jet recording method using the same. can do.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Ink Jet (AREA)
Abstract
Description
[2] 前記中空糸の材質が、フッ素系樹脂、シリコーン系樹脂、およびポリメチルペンテンからなる群より選ばれる、[1]に記載のインクジェットインクの脱気方法。
[3] 前記光重合性化合物が、ClogP値が3.0~7.0の範囲内にある(メタ)アクリレート化合物を含み、前記(メタ)アクリレート化合物の含有量が、インク全体に対して10質量%以上である、[1]または[2]に記載のインクジェットインクの脱気方法。
[4] 前記インクジェットインクは、ワックスをさらに含有する、[1]~[3]のいずれかに記載のインクジェットインクの脱気方法。
[5] 前記ワックスの含有量が、前記インクジェットインク全体に対して1~10質量%である、[4]に記載のインクジェットインクの脱気方法。
[6] 前記脱気は、前記中空糸の外側に前記インクジェットインクを流通させて脱気する外部還流方式で行う、[1]~[5]のいずれかに記載のインクジェットインクの脱気方法。
前記脱気されたインクジェットインクのインク液滴を、記録ヘッドから吐出して記録媒体上に着弾させる工程と、
前記記録媒体上に着弾したインク液滴に活性光線を照射して、前記インク液滴を硬化させる工程と、を含む、インクジェット記録方法。
[8] 前記インク液滴の液滴量が0.5~4plである、[7]に記載のインクジェット記録方法。
[9] インクジェットインクを吐出する記録ヘッドと、前記記録ヘッドに供給する前記インクジェットインクを収納するインクタンクと、前記記録ヘッドと前記インクタンクとの間を連通し、前記インクタンクから供給されるインクジェットインクを脱気する中空糸脱気モジュールと、前記記録ヘッドから吐出されたインク液滴に活性光線を照射する照射部と、を含み、前記中空糸脱気モジュールは、中空糸の集合体と、前記中空糸の集合体を収納するハウジングと、前記ハウジング内を加熱する加熱手段とを含む、インクジェット記録装置。
[10] 前記中空糸の材質は、フッ素系樹脂、シリコーン系樹脂、およびポリメチルペンテンからなる群より選ばれる、[9]に記載のインクジェット記録装置。
[11] 前記中空糸脱気モジュールは、前記中空糸の外側に前記インクジェットインクを流通させて脱気する外部還流方式のものである、[9]または[10]に記載のインクジェット記録装置。
本発明における活性光線硬化型インクジェットインクは、光重合性化合物と、色材と、光重合開始剤とを含み、必要に応じてその他の成分をさらに含んでもよい。
活性光線硬化型インクジェットに含まれる光重合性化合物は、活性光線の照射により架橋または重合する化合物である。活性光線は、例えば電子線、紫外線、α線、γ線、およびエックス線等であり、好ましくは紫外線である。光重合性化合物には、ラジカル重合性化合物が用いられるが、カチオン重合性化合物をさらに用いてもよい。
トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ビスフェノールAのPO付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等の二官能モノマー;
トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート等の三官能以上の多官能モノマー等が含まれる。
ソフトウェアパッケージ1:MedChem Software (Release 3.54,1991年8月、Medicinal Chemistry Project, Pomona College,Claremont,CA)
ソフトウェアパッケージ2:Chem Draw Ultra ver.8.0.(2003年4月、CambridgeSoft Corporation,USA)
エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリメチロールプロパントリビニルエーテル等のジまたはトリビニルエーテル化合物等が含まれる。これらのビニルエーテル化合物のうち、硬化性や密着性などを考慮すると、ジまたはトリビニルエーテル化合物が好ましい。
活性光線硬化型インクジェットインクに含まれる色材は、染料または顔料でありうるが、耐候性の良好な画像が得られやすいことなどから、顔料が好ましい。顔料は、特に限定されないが、例えばカラーインデックスに記載される下記番号の有機顔料または無機顔料でありうる。
活性光線硬化型インクジェットインクは、顔料の分散性を高めるために、顔料分散剤をさらに含んでもよい。顔料分散剤の例には、水酸基含有カルボン酸エステル、長鎖ポリアミノアマイドと高分子量酸エステルの塩、高分子量ポリカルボン酸の塩、長鎖ポリアミノアマイドと極性酸エステルの塩、高分子量不飽和酸エステル、高分子共重合物、変性ポリウレタン、変性ポリアクリレート、ポリエーテルエステル型アニオン系活性剤、ナフタレンスルホン酸ホルマリン縮合物塩、芳香族スルホン酸ホルマリン縮合物塩、ポリオキシエチレンアルキル燐酸エステル、ポリオキシエチレンノニルフェニルエーテル、およびステアリルアミンアセテート等が含まれる。顔料分散剤の市販品の例には、Avecia社のSolsperseシリーズや、味の素ファインテクノ社のPBシリーズ(例えばアジスパーPB824など)が含まれる。
活性光線硬化型インクジェットインクに含まれる光重合開始剤には、分子内結合開裂型と分子内水素引き抜き型とがある。分子内結合開裂型の光重合開始剤の例には、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン系;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド等のアシルホスフィンオキシド系;ベンジルおよびメチルフェニルグリオキシエステル等が含まれる。
活性光線硬化型インクジェットインクは、ワックスをさらに含んでもよい。ワックスは、通常、疎水性基を有することから、疎水性が高い顔料表面と相互作用しやすい。それにより、ワックスを含む活性光線硬化型インクジェットインクの液体成分が顔料表面に濡れやすくなり、顔料表面の気泡核を除去しやすい。そのような、ワックスを含む活性光線硬化型インクジェットインクを加熱下で脱気することで、高度に気泡を除去することができ、高い吐出安定性が得られやすい。
脂肪族ケトン化合物;
脂肪族エステル化合物;
パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタム等の石油系ワックス;
キャンデリラワックス、カルナウバワックス、ライスワックス、木ロウ、ホホバ油、ホホバ固体ロウ、およびホホバエステル等の植物系ワックス;
ミツロウ、ラノリンおよび鯨ロウ等の動物系ワックス;
モンタンワックス、および水素化ワックス等の鉱物系ワックス;
硬化ヒマシ油または硬化ヒマシ油誘導体;
モンタンワックス誘導体、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体またはポリエチレンワックス誘導体等の変性ワックス;
ベヘン酸、アラキジン酸、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸、オレイン酸、およびエルカ酸等の高級脂肪酸;
ステアリルアルコール、ベヘニルアルコール等の高級アルコール;
12-ヒドロキシステアリン酸等のヒドロキシステアリン酸;
12-ヒドロキシステアリン酸誘導体;ラウリン酸アミド、ステアリン酸アミド、ベヘン酸アミド、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、12-ヒドロキシステアリン酸アミド等の脂肪酸アミド(例えば日本化成社製 ニッカアマイドシリーズ、伊藤製油社製 ITOWAXシリーズ、花王社製 FATTYAMIDシリーズ等);
N-ステアリルステアリン酸アミド、N-オレイルパルミチン酸アミド等のN-置換脂肪酸アミド;
N,N'-エチレンビスステアリルアミド、N,N'-エチレンビス-12-ヒドロキシステアリルアミド、およびN,N'-キシリレンビスステアリルアミド等の特殊脂肪酸アミド;
ドデシルアミン、テトラデシルアミンまたはオクタデシルアミンなどの高級アミン;
ステアリルステアリン酸、オレイルパルミチン酸、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、エチレングリコール脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等の脂肪酸エステル化合物(例えば日本エマルジョン社製 EMALLEXシリーズ、理研ビタミン社製 リケマールシリーズ、理研ビタミン社製 ポエムシリーズ等);
ショ糖ステアリン酸、ショ糖パルミチン酸等のショ糖脂肪酸のエステル(例えばリョートーシュガーエステルシリーズ 三菱化学フーズ社製);
ポリエチレンワックス、α-オレフィン無水マレイン酸共重合体ワックス等の合成ワックス(Baker-Petrolite社製 UNILINシリーズ等);
ダイマー酸;
ダイマージオール(CRODA社製 PRIPORシリーズ等);
ステアリン酸イヌリン等の脂肪酸イヌリン;
パルミチン酸デキストリン、ミリスチン酸デキストリン等の脂肪酸デキストリン(千葉製粉社製 レオパールシリーズ等);
ベヘン酸エイコサン二酸グリセリル;
ベヘン酸エイコサンポリグリセリル(日清オイリオ社製 ノムコートシリーズ等);
N-ラウロイル-L-グルタミン酸ジブチルアミド、N-(2-エチルヘキサノイル)-L-グルタミン酸ジブチルアミド等のアミド化合物(味の素ファインテクノより入手可能);
1,3:2,4-ビス-O-ベンジリデン-D-グルシトール(ゲルオールD 新日本理化より入手可能)等のジベンジリデンソルビトール類;
特開2005-126507号公報、特開2005-255821号公報および特開2010-111790号公報に記載の低分子オイルワックス;等が含まれる。
一般式(G1):R1-CO-R2
一般式(G2):R3-COO-R4
活性光線硬化型インクジェットインクは、必要に応じて他の成分をさらに含んでもよい。他の成分は、各種添加剤や他の樹脂等であってよい。添加剤の例には、界面活性剤、レベリング添加剤、マット剤、紫外線吸収剤、赤外線吸収剤、抗菌剤、インクの保存安定性を高めるための塩基性化合物等も含まれる。塩基性化合物の例には、塩基性アルカリ金属化合物、塩基性アルカリ土類金属化合物、アミンなどの塩基性有機化合物などが含まれる。他の樹脂の例には、硬化膜の物性を調整するための樹脂などが含まれ、例えばポリエステル系樹脂、ポリウレタン系樹脂、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、およびワックス類等が含まれる。
活性光線硬化型インクジェットインクは、インク液滴の吐出性を高めるために、高温下におけるインクの粘度が一定以下であることが好ましい。具体的には、活性光線硬化型インクジェットインクの、80℃における粘度が3~20mPa・sであることが好ましい。一方、活性光線硬化型インクジェットインクは、隣り合うドットの合一を抑制するために、着弾後の常温下におけるインクの粘度が一定以上であることが好ましい。具体的には、25℃におけるインクの粘度は1000mPa・s以上であることが好ましい。
本発明のインクジェットインクの脱気方法は、一定以上の温度に加熱された前述の活性光線硬化型インクジェットインクを中空糸により脱気する工程を含む。中空糸による脱気工程は、インクジェット記録装置内で行ってもよいし;インクジェット記録装置外で行ってもよい。中空糸による脱気をインクジェット記録装置外で行う態様の例には、インクジェットインクをカートリッジに充填する際に中空糸による脱気を行う態様が含まれる。
酸素除去率=(1-脱気後のインク中の溶存酸素量/脱気前のインク中の溶存酸素量)×100
本発明のインクジェット記録方法は、少なくとも(1)活性光線硬化型インクジェットインクを、インクジェット記録装置に内蔵された中空糸の集合体により、一定以上の温度に加熱しながら脱気する工程、(2)脱気された活性光線硬化型インクジェットインクのインク液滴を、記録ヘッドから吐出して記録媒体上に着弾させる工程、および(3)記録媒体上に着弾したインク液滴に活性光線を照射し、インク液滴を硬化させる工程を含む。活性光線硬化型インクジェットインクは、前述の活性光線硬化型インクジェットインクとしうる。
活性光線硬化型インクジェットインクを、インクジェット記録装置に内蔵された中空糸により脱気する。
前述のように脱気された活性光線硬化型インクジェットインクのインク液滴を記録ヘッドから吐出する。吐出直前の活性光線硬化型インクジェットインクは、インク液滴の射出性を高める観点から、60~100℃、好ましくは60~80℃に加熱されることが好ましい。吐出直前の活性光線硬化型インクジェットインクの温度が低すぎると、インクの粘度が高すぎたり、インクがワックスを含む場合は記録ヘッド内もしくはノズル表面でゲル化したりして、インク液滴の射出性が低下しやすくなる。一方、吐出直前の活性光線硬化型インクジェットインクの温度が高すぎると、インク成分が劣化しやすくなる。
記録媒体に着弾したインク液滴に活性光線を照射することで、インク液滴に含まれる光重合性化合物を架橋または重合させてインク液滴を硬化させる。
本発明のインクジェット記録方法は、活性光線硬化型インクジェット方式のインクジェット記録装置を用いて行うことができる。
EFKA7701(BASF社製、ブロック共重合体、アミン価40mgKOH/g)
アジスパーPB824(味の素ファインテクノ社製)
顔料:
PY-185(BASF社製、イソインドリン系黄色顔料)
Pigment Blue 15:4(大日精化製、クロモファインブルー6332JC)
APG-200(新中村化学社製、トリプロピレングリコールジアクリレート、ClogP値=2.21)
MKエステルA-400(新中村化学社製、ポリエチレングリコール#400ジアクリレート、ClogP値=0.47)
MKエステルA-600(新中村化学社製、ポリエチレングリコール#600ジアクリレート、ClogP値<0.47)
SR499(サートマー社製、6EO変性トリメチロールプロパントリアクリレート、ClogP値=3.57)
SR494(サートマー社製、4EO変性ペンタエリスリトールテトラアクリレート、ClogP値=2.28)
ステアロン(花王社製、ジステアリルケトン)
ニッカアマイドS(日本化成社製、N-ステアリルステアリン酸アマイド)
ルナックL-98(花王社製、ラウリン酸)
DAROCURE TPO(BASF社製)
IRGACURE 369(BASF社製)
SPEEDCURE ITX(DKSH社製)
SPEEDCURE EDB(DKSH社製)
KF352(信越化学社製)
重合禁止剤:
UV10(BASF社製)
(顔料分散液1)
顔料分散剤1として、EFKA7701を9質量部と;光重合性化合物として、APG-200を70質量部と;重合禁止剤としてUV10(BASF社製)を0.02質量部とをステンレスビーカーに入れ、65℃のホットプレート上で加熱しながら1時間加熱攪拌した。得られた溶液を室温まで冷却後、顔料としてPY-185を20質量部加えて、直径0.5mmのジルコニアビーズ200gとともにガラス瓶に入れて密栓し、ペイントシェーカーにて8時間分散処理した。その後、ジルコニアビーズを除去して、顔料分散液1を調製した。
アジスパーPB824(味の素ファインテクノ社製)を9質量部と;光重合性化合物として、APG-200を70質量部と;重合禁止剤としてUV10(BASF社製)を0.02質量部とをステンレスビーカーに入れ、65℃のホットプレート上で加熱しながら1時間加熱攪拌した。得られた溶液を室温まで冷却した後、顔料としてPigment Blue 15:4(大日精化製、クロモファインブルー6332JC)を20質量部加えた以外は前述と同様の方法で顔料分散液2を得た。
以下の成分を用いて、活性光線硬化型インクジェットインク1~6を調製した。
(活性光線硬化型インクジェットインク1)
顔料分散液として、上記調製した顔料分散液1を12.5質量部と;光重合性化合物として、A-400(新中村化学社製、ポリエチレングリコール#400ジアクリレート)を12.0質量部、A-600(新中村化学社製、ポリエチレングリコール#600)を8.0質量部、APG-200(新中村化学社製、トリプロピレングリコールジアクリレート)を10.0質量部、SR499(サートマー社製)を26.3質量部、SR494(サートマー社製)を20.0質量部と;光重合開始剤として、DAROCURE TPO(BASF社製)を4.0質量部、IRGACURE 369(BASF社製)を2.0質量部、SPEEDCURE ITX(DKSH社製)を2.0質量部、SPEEDCURE EDB(DKSH社製)を3.0質量部と;界面活性剤として、KF352(信越化学社製)を0.05質量部と;重合禁止剤として、UV10(BASF社製)を0.2質量部とを混合して、80℃で攪拌した。得られた溶液をADVATEC社製テフロン(登録商標)3μmメンブランフィルターで濾過してインク1(イエローインク)を調製した。
光重合性化合物の組成およびワックスの組成を表1に示されるように変更した以外は前述と同様にしてインク2~6(イエローインク)を調製した。
顔料分散液の種類を表2に示されるように変更した以外は前述のインク1と同様にしてそれぞれインク7~12(シアンインク)を調製した。
活性光線硬化型インクジェットインク1と活性光線硬化型インクジェットインク7の組み合わせをインクセットAとした。同様にして、表3に示されるようなインクの組み合わせをインクセットB~Fとした。
(実施例1)
図1Aおよび図1Bに示されるライン記録方式のインクジェット記録装置を用いて、単色画像を形成した。インクジェット記録装置のインク供給系は、インクタンク、供給パイプ、加熱手段を有する中空糸脱気モジュール、ヘッド直前のサブインクタンク、フィルター付き配管、およびピエゾヘッド(記録ヘッド)がこの順に連通して構成されている。そして、得られたインク1を、インクジェット記録装置のインク供給系に供給し、インクタンクから記録ヘッド部分までの、中空糸脱気モジュールを除くインク供給系の全体を90℃に加熱した。中空糸の外側を大気圧とし、中空糸の内側を減圧した。中空糸脱気モジュールでの脱気温度は80℃とし;中空糸脱気モジュールへのインクの供給速度は50cc/minとした。
(中空糸脱気モジュール)
脱気方式:外部還流方式
中空糸:MF-500で使用されている大成社製の中空糸(材質:フッ素系樹脂PFA(テトラフルオロエチレンとパーフルオロアルキルビニルエーテルの共重合体)、中空内径:500μm)
中空糸の集合体の有効膜面積(接液面積):1m2
前述の記録ヘッドを用いて、液滴量3.5pl、液滴速度7m/sec、射出周波数40kHz、印字率100%となる条件で連続吐出(駆動)させた。そして、駆動開始から1分後、5分後、10分後に射出していないノズル数をカウントした。
◎:イエローインクでわずかに欠ノズルが認められるが、シアンインクでは欠ノズルは認められない
○:イエローインク、シアンインクともに、欠ノズルの数が10個未満である
△:イエローインク、シアンインクともに、欠ノズルの数が10個以上30個未満である
×:イエローインク、シアンインクともに、欠ノズルの数が30個以上である
印刷物の表面ベタつきの評価は、得られたベタ画像を指で触診して行った。印刷物の擦過性の評価は、「JIS規格 K5701-1 6.2.3 耐摩擦性試験」に記載された方法に準じて、2cm2の大きさに切り取った印刷用コート紙(OKトップコート+ 米坪量104.7g/m2 王子製紙社製)を印刷面に載せて、800gの荷重をかけて擦り合わせた後、印刷用コート紙への色移りの程度を目視観察し、硬化性の評価を行った。
◎:色移りがなく、表面のべたつきもなし
○:わずかに色移りがあるが、表面のべたつきはなし
△:わずかに色移りがあり、やや表面のべたつきがあり
×:色移りがあり、さらに表面のべたつきがあり
10mlのインクを容器に採取し、脱気温度と同じ温度で24時間保存した。その後、インクを5μmのフィルターでろ過したときの、析出の有無を確認した。
○:析出が全く確認されない
△:一部析出が確認される
×:多くの析出が確認される
インクの種類および脱気温度を表4または5に示されるように変更した以外は実施例1と同様の評価を行った。
永柳工業社製の中空糸を用いて作製した中空糸脱気モジュール(脱気方式:外部還流方式、中空糸:永柳工業社製のNAGASEP(材質:シリコーンゴム、中空内径:200μm)、中空糸の集合体の有効膜面積(接液面積):0.6m2)を用い、かつインクの種類と脱気温度を表4に示されるように変更した以外は実施例1と同様の評価を行った。
DIC社製の中空糸を用いて作製した中空糸脱気モジュール(脱気方式:外部還流方式、中空糸:DIC社製のEF-G5に使用された中空糸(材質:ポリ4-メチル-1-ペンテン)、中空糸の集合体の有効膜面積(接液面積):0.5m2)を用い、かつインクの種類と脱気温度を表5に示されるように変更した以外は実施例1と同様の評価を行った。
内部還流方式の下記中空糸脱気モジュールを用い、かつインクの種類および脱気温度を表5に示されるように変更した以外は実施例1と同様の評価を行った。
(中空糸脱気モジュール)
大成社製の中空糸脱気モジュール(商品名:MF-500)
脱気方式:内部還流方式
中空糸の材質:フッ素系樹脂PFA(テトラフルオロエチレンとパーフルオロアルキルビニルエーテルの共重合体)
中空内径:500μm
中空糸の集合体の有効膜面積(接液面積):1m2
永柳工業社製の中空糸を用いて作製した中空糸脱気モジュール(脱気方式:内部還流方式、中空糸:永柳工業社製のNAGASEP(材質:シリコーンゴム、中空内径:300μm)、中空糸の集合体の有効膜面積(接液面積):0.6m2)を用い、かつインクの種類および脱気温度を表5に示されるように変更した以外は実施例16と同様の評価を行った。
脱気処理を行わなかった以外は実施例1と同様の評価を行った。
11、61 記録ヘッド
13、63 ヘッドキャリッジ
15 インク流路
17 インクタンク
19、19’ 中空糸脱気モジュール
20 記録媒体
21 活性光線照射部
23 温度制御部
25、41 中空糸の集合体
27 ハウジング
27A ハウジング本体
29 ジャケットヒータ(加熱手段)
31 中空糸
31A 中空糸の孔
32 経糸
33 インク導入口
35 吸引口
37 インク排出口
39 中央孔
43 多孔ケース
45 導入接続口
47 排出接続口
65 ガイド部
Claims (11)
- 色材、光重合性化合物および光重合開始剤を含有する活性光線硬化型インクジェットインクの脱気方法であって、
60℃以上120℃以下に加熱された前記インクジェットインクを中空糸により脱気する工程を含む、インクジェットインクの脱気方法。 - 前記中空糸の材質が、フッ素系樹脂、シリコーン系樹脂、およびポリメチルペンテンからなる群より選ばれる、請求項1に記載のインクジェットインクの脱気方法。
- 前記光重合性化合物が、ClogP値が3.0~7.0の範囲内にある(メタ)アクリレート化合物を含み、
前記(メタ)アクリレート化合物の含有量が、インク全体に対して10質量%以上である、請求項1に記載のインクジェットインクの脱気方法。 - 前記インクジェットインクは、ワックスをさらに含有する、請求項1に記載のインクジェットインクの脱気方法。
- 前記ワックスの含有量が、前記インクジェットインク全体に対して1~10質量%である、請求項4に記載のインクジェットインクの脱気方法。
- 前記脱気は、前記中空糸の外側に前記インクジェットインクを流通させて脱気する外部還流方式で行う、請求項1に記載のインクジェットインクの脱気方法。
- 色材、光重合性化合物および光重合開始剤を含有する活性光線硬化型インクジェットインクを用いたインクジェット記録方法であって、
60℃以上120℃以下に加熱された前記インクジェットインクを、インクジェット記録装置に内蔵された中空糸により脱気する工程と、
前記脱気されたインクジェットインクのインク液滴を、記録ヘッドから吐出して記録媒体上に着弾させる工程と、
前記記録媒体上に着弾したインク液滴に活性光線を照射して、前記インク液滴を硬化させる工程と、を含む、インクジェット記録方法。 - 前記インク液滴の液滴量が0.5~4plである、請求項7に記載のインクジェット記録方法。
- インクジェットインクを吐出する記録ヘッドと、
前記記録ヘッドに供給する前記インクジェットインクを収納するインクタンクと、
前記記録ヘッドと前記インクタンクとの間を連通し、前記インクタンクから供給されるインクジェットインクを脱気する中空糸脱気モジュールと、
前記記録ヘッドから吐出されたインク液滴に活性光線を照射する照射部と、を含み、
前記中空糸脱気モジュールは、中空糸の集合体と、前記中空糸の集合体を収納するハウジングと、前記ハウジング内を加熱する加熱手段とを含む、インクジェット記録装置。 - 前記中空糸の材質は、フッ素系樹脂、シリコーン系樹脂、およびポリメチルペンテンからなる群より選ばれる、請求項9に記載のインクジェット記録装置。
- 前記中空糸脱気モジュールは、前記中空糸の外側に前記インクジェットインクを流通させて脱気する外部還流方式のものである、請求項9に記載のインクジェット記録装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015531726A JP6292235B2 (ja) | 2013-08-14 | 2014-08-14 | インクジェットインクの脱気方法およびインクジェット記録方法 |
EP14835835.1A EP3034304B1 (en) | 2013-08-14 | 2014-08-14 | Inkjet ink degassing method, inkjet recording method, and recording apparatus |
US14/911,635 US9656473B2 (en) | 2013-08-14 | 2014-08-14 | Inkjet ink degassing method, inkjet recording method, and recording apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013168619 | 2013-08-14 | ||
JP2013-168619 | 2013-08-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015022780A1 true WO2015022780A1 (ja) | 2015-02-19 |
Family
ID=52468173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004189 WO2015022780A1 (ja) | 2013-08-14 | 2014-08-14 | インクジェットインクの脱気方法、インクジェット記録方法および記録装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9656473B2 (ja) |
EP (1) | EP3034304B1 (ja) |
JP (1) | JP6292235B2 (ja) |
WO (1) | WO2015022780A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015137498A1 (ja) * | 2014-03-14 | 2015-09-17 | コニカミノルタ株式会社 | インクジェット記録方法 |
JP2016168808A (ja) * | 2015-03-16 | 2016-09-23 | セイコーエプソン株式会社 | インクジェット方法及びインクジェット装置 |
JP2017226143A (ja) * | 2016-06-22 | 2017-12-28 | セイコーエプソン株式会社 | 画像記録方法およびインクジェットインク組成物 |
JP2021133522A (ja) * | 2020-02-25 | 2021-09-13 | コニカミノルタ株式会社 | 脱気装置、脱気方法、及びインクジェット記録装置 |
JP2021176939A (ja) * | 2020-05-08 | 2021-11-11 | Dic株式会社 | インクジェットインクの脱気方法、インクジェットインクの製造方法およびインクジェットプリンタ |
WO2022070932A1 (ja) * | 2020-09-29 | 2022-04-07 | Dic株式会社 | 可食用インクジェットプリンタおよび印刷方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018144430A (ja) * | 2017-03-08 | 2018-09-20 | セイコーエプソン株式会社 | インクジェット方法及びインクジェット装置 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11209670A (ja) | 1998-01-28 | 1999-08-03 | Mitsubishi Rayon Co Ltd | インクジェットプリンタ用インク並びにインクジェットプリンタ用インク中の溶存ガスの除去方法及びインクジェットプリンタ用インクカートリッジの製造方法 |
JP2001220526A (ja) | 2000-02-09 | 2001-08-14 | Brother Ind Ltd | インクジェット記録方式用エネルギー線硬化型組成物 |
JP2001310937A (ja) | 2000-04-27 | 2001-11-06 | Hitachi Chem Co Ltd | 硬化性オキセタン組成物およびその硬化方法ならびにその方法により得られる硬化物 |
JP2003136756A (ja) | 2001-10-31 | 2003-05-14 | Konica Corp | インクジェットプリンタ |
JP2003341083A (ja) * | 2002-05-30 | 2003-12-03 | Canon Inc | インクジェット記録装置用の脱気装置及び脱気方法 |
JP2005126507A (ja) | 2003-10-22 | 2005-05-19 | Konica Minolta Holdings Inc | インクジェット用インク及びそれを用いたインクジェット記録方法 |
JP2005255821A (ja) | 2004-03-11 | 2005-09-22 | Konica Minolta Holdings Inc | 活性光線硬化型インクジェットインクとそれを用いたインクジェット記録方法 |
JP2006075683A (ja) * | 2004-09-07 | 2006-03-23 | Sharp Corp | 液体塗布装置およびその液体脱気方法 |
WO2007063720A1 (ja) * | 2005-11-30 | 2007-06-07 | Konica Minolta Holdings, Inc. | インクジェットインクの脱気方法およびインクジェットインクの製造方法およびインクジェットプリンタ |
JP2009510184A (ja) | 2005-09-01 | 2009-03-12 | オセ−テクノロジーズ・ベー・ヴエー | 放射線硬化性インクジェットインクおよびこのインクを用いて被印刷物を印刷する方法 |
JP2010111790A (ja) | 2008-11-07 | 2010-05-20 | Konica Minolta Holdings Inc | 活性光線硬化型インクジェット用インクとそれを用いたインクジェット記録方法 |
JP2013010832A (ja) | 2011-06-28 | 2013-01-17 | Fujifilm Corp | インク組成物、インク容器及びインクジェット記録方法 |
JP2013119243A (ja) * | 2011-12-08 | 2013-06-17 | Konica Minolta Inc | 光硬化型インクジェットインクを用いた画像形成方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003136745A (ja) | 2001-10-31 | 2003-05-14 | Upepo & Maji Inc | インクジェットプリントシステム |
US7360882B2 (en) * | 2005-04-22 | 2008-04-22 | Toshiba Tec Kabushiki Kaisha | Ink-jet recording apparatus, method of removing air of ink-jet recording apparatus and removing air device |
EP1923435A4 (en) * | 2005-06-01 | 2009-12-23 | Konica Minolta Holdings Inc | INK JET INK, INK JET INK SET, AND INK JET PRINTING METHOD |
EP2789470B1 (en) * | 2011-12-08 | 2018-01-24 | Konica Minolta, Inc. | Photocuring inkjet ink and image forming method using same |
-
2014
- 2014-08-14 JP JP2015531726A patent/JP6292235B2/ja active Active
- 2014-08-14 EP EP14835835.1A patent/EP3034304B1/en active Active
- 2014-08-14 US US14/911,635 patent/US9656473B2/en active Active
- 2014-08-14 WO PCT/JP2014/004189 patent/WO2015022780A1/ja active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11209670A (ja) | 1998-01-28 | 1999-08-03 | Mitsubishi Rayon Co Ltd | インクジェットプリンタ用インク並びにインクジェットプリンタ用インク中の溶存ガスの除去方法及びインクジェットプリンタ用インクカートリッジの製造方法 |
JP2001220526A (ja) | 2000-02-09 | 2001-08-14 | Brother Ind Ltd | インクジェット記録方式用エネルギー線硬化型組成物 |
JP2001310937A (ja) | 2000-04-27 | 2001-11-06 | Hitachi Chem Co Ltd | 硬化性オキセタン組成物およびその硬化方法ならびにその方法により得られる硬化物 |
JP2003136756A (ja) | 2001-10-31 | 2003-05-14 | Konica Corp | インクジェットプリンタ |
JP2003341083A (ja) * | 2002-05-30 | 2003-12-03 | Canon Inc | インクジェット記録装置用の脱気装置及び脱気方法 |
JP2005126507A (ja) | 2003-10-22 | 2005-05-19 | Konica Minolta Holdings Inc | インクジェット用インク及びそれを用いたインクジェット記録方法 |
JP2005255821A (ja) | 2004-03-11 | 2005-09-22 | Konica Minolta Holdings Inc | 活性光線硬化型インクジェットインクとそれを用いたインクジェット記録方法 |
JP2006075683A (ja) * | 2004-09-07 | 2006-03-23 | Sharp Corp | 液体塗布装置およびその液体脱気方法 |
JP2009510184A (ja) | 2005-09-01 | 2009-03-12 | オセ−テクノロジーズ・ベー・ヴエー | 放射線硬化性インクジェットインクおよびこのインクを用いて被印刷物を印刷する方法 |
WO2007063720A1 (ja) * | 2005-11-30 | 2007-06-07 | Konica Minolta Holdings, Inc. | インクジェットインクの脱気方法およびインクジェットインクの製造方法およびインクジェットプリンタ |
JP2010111790A (ja) | 2008-11-07 | 2010-05-20 | Konica Minolta Holdings Inc | 活性光線硬化型インクジェット用インクとそれを用いたインクジェット記録方法 |
JP2013010832A (ja) | 2011-06-28 | 2013-01-17 | Fujifilm Corp | インク組成物、インク容器及びインクジェット記録方法 |
JP2013119243A (ja) * | 2011-12-08 | 2013-06-17 | Konica Minolta Inc | 光硬化型インクジェットインクを用いた画像形成方法 |
Non-Patent Citations (2)
Title |
---|
"Imaging Yo Yuki Zairyo", BUNSHIN PUBLISHING, pages: 187 - 192 |
C. HANSCH; A. LEO: "Substituent Constants for Correlation Analysis in Chemistry and Biology", 1969, JOHN WILEY & SONS |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015137498A1 (ja) * | 2014-03-14 | 2015-09-17 | コニカミノルタ株式会社 | インクジェット記録方法 |
JPWO2015137498A1 (ja) * | 2014-03-14 | 2017-04-06 | コニカミノルタ株式会社 | インクジェット記録方法 |
EP3118011A4 (en) * | 2014-03-14 | 2017-09-27 | Konica Minolta, Inc. | Ink-jet recording method |
US9840086B2 (en) | 2014-03-14 | 2017-12-12 | Konica Minolta, Inc. | Ink-jet recording method |
JP2016168808A (ja) * | 2015-03-16 | 2016-09-23 | セイコーエプソン株式会社 | インクジェット方法及びインクジェット装置 |
JP2017226143A (ja) * | 2016-06-22 | 2017-12-28 | セイコーエプソン株式会社 | 画像記録方法およびインクジェットインク組成物 |
JP2021133522A (ja) * | 2020-02-25 | 2021-09-13 | コニカミノルタ株式会社 | 脱気装置、脱気方法、及びインクジェット記録装置 |
JP7435013B2 (ja) | 2020-02-25 | 2024-02-21 | コニカミノルタ株式会社 | 脱気装置、脱気方法、及びインクジェット記録装置 |
JP2021176939A (ja) * | 2020-05-08 | 2021-11-11 | Dic株式会社 | インクジェットインクの脱気方法、インクジェットインクの製造方法およびインクジェットプリンタ |
WO2022070932A1 (ja) * | 2020-09-29 | 2022-04-07 | Dic株式会社 | 可食用インクジェットプリンタおよび印刷方法 |
JPWO2022070932A1 (ja) * | 2020-09-29 | 2022-04-07 |
Also Published As
Publication number | Publication date |
---|---|
EP3034304A1 (en) | 2016-06-22 |
JP6292235B2 (ja) | 2018-03-14 |
US9656473B2 (en) | 2017-05-23 |
EP3034304B1 (en) | 2020-05-20 |
EP3034304A4 (en) | 2017-03-22 |
US20160193848A1 (en) | 2016-07-07 |
JPWO2015022780A1 (ja) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6292235B2 (ja) | インクジェットインクの脱気方法およびインクジェット記録方法 | |
JP5991371B2 (ja) | インクジェットインクセット、及びこれを用いた画像形成方法 | |
JP5867585B2 (ja) | インクジェット記録方法 | |
JP5659619B2 (ja) | インクジェット記録方法 | |
JP5880244B2 (ja) | 画像形成方法 | |
JP5954317B2 (ja) | インクジェット記録装置 | |
JP6414200B2 (ja) | 活性光線硬化型インクジェットマゼンタインクおよびインクジェット記録方法 | |
JP6471743B2 (ja) | インクジェット記録方法 | |
JP6451739B2 (ja) | インクジェット記録方法およびインクジェット記録装置 | |
JP2014058623A (ja) | 活性光線硬化型インクジェットインク、および画像形成方法 | |
JP5807608B2 (ja) | 活性光線硬化型インクジェットインク | |
JP6183455B2 (ja) | 画像形成装置 | |
JP6237529B2 (ja) | 活性光線硬化型インクジェットインクの脱気方法、インクジェット記録方法および活性光線硬化型インクジェットインク | |
WO2017014014A1 (ja) | 色インクを用いたインクジェット記録方法 | |
JP2017132861A (ja) | 活性光線硬化型インクジェットインク及びインクジェット画像形成方法 | |
JP5867274B2 (ja) | インク流路ユニット | |
JP5673055B2 (ja) | インクジェット記録装置 | |
WO2017010462A1 (ja) | 活性光線硬化型インクジェットインク、硬化膜の製造方法およびインクジェット画像形成方法 | |
WO2017078079A1 (ja) | インクジェット画像形成方法 | |
JP2014148684A (ja) | 活性光線硬化型インク及びインクジェット記録方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14835835 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015531726 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14911635 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014835835 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |