WO2015022758A1 - 推力制御バルブ及び飛翔体 - Google Patents

推力制御バルブ及び飛翔体 Download PDF

Info

Publication number
WO2015022758A1
WO2015022758A1 PCT/JP2013/078381 JP2013078381W WO2015022758A1 WO 2015022758 A1 WO2015022758 A1 WO 2015022758A1 JP 2013078381 W JP2013078381 W JP 2013078381W WO 2015022758 A1 WO2015022758 A1 WO 2015022758A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
valve
thrust control
control valve
seat surface
Prior art date
Application number
PCT/JP2013/078381
Other languages
English (en)
French (fr)
Inventor
章三 日▲高▼
敦 森脇
二橋 謙介
修平 保坂
正明 長瀬
康平 小島
満 稲田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to ES13891432.0T priority Critical patent/ES2666669T3/es
Priority to NO13891432A priority patent/NO3009650T3/no
Priority to US14/908,349 priority patent/US10138844B2/en
Priority to EP13891432.0A priority patent/EP3009650B1/en
Priority to PL13891432T priority patent/PL3009650T3/pl
Publication of WO2015022758A1 publication Critical patent/WO2015022758A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/80Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control
    • F02K9/86Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control using nozzle throats of adjustable cross- section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/023Aircraft characterised by the type or position of power plants of rocket type, e.g. for assisting taking-off or braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/80Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/94Re-ignitable or restartable rocket- engine plants; Intermittently operated rocket-engine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/75Shape given by its similarity to a letter, e.g. T-shaped

Definitions

  • the present invention relates to a thrust control valve and a projectile equipped with the same.
  • a thrust control valve that performs trajectory control and attitude control of a projectile is known (see, for example, Patent Document 1).
  • the thrust control valve has a nozzle through which a propulsion gas (working gas) flows.
  • a gas supply chamber, a gas passage, and a gas injection chamber are formed in the nozzle from the upstream side in the gas flow direction.
  • a plug is inserted inside the nozzle.
  • the plug is movably disposed between the gas passage and the gas injection chamber.
  • the position of the plug with respect to the nozzle may be biased.
  • the central axis of the plug and the central axis of the nozzle are misaligned, so that the gap between the inner peripheral surface of the nozzle and the outer peripheral surface of the plug becomes uneven, or the plug
  • the inclination of the central axis may change the shape of the flow path between the inner peripheral surface of the nozzle and the outer peripheral surface of the plug. In this case, the injection distribution of the propulsion gas from the thrust control valve will vary.
  • this invention makes it a subject to provide the thrust control valve and projectile which can inject working gas suitably, controlling dispersion of injection distribution of working gas.
  • the thrust control valve according to the present invention is formed with a gas injection passage through which the working gas to be injected flows, a valve body having a valve seat surface formed in the gas injection passage, and a valve seat surface provided inside the gas injection passage And a guide rod having a valve seat surface in contact with the valve seat, the guide surface being in contact with the inner peripheral surface of the gas injection passage of the valve body being formed on the outer peripheral surface of the valve rod.
  • a guide surface in contact with the inner peripheral surface of the gas injection passage of the valve body is formed on the outer peripheral surface of the valve rod. For this reason, even when the valve seat surface of the valve rod is separated from the valve seat surface of the valve body, the guide surface of the valve rod contacts the inner peripheral surface of the valve body. It can be guided along the surface. Thereby, since between the valve body and the valve stem can be maintained by the inner circumferential surface of the valve body, the mutual position of the valve body and the valve stem can be maintained suitably. From the above, it is possible to suitably inject the working gas while suppressing the variation in the injection distribution of the working gas.
  • the guide surface is preferably formed downstream of the valve seat surface in the gas flow direction of the working gas.
  • valve rod along the inner circumferential surface of the valve body on the downstream side of the valve seat surface even when the working gas passing between the valve seat surface and the valve seat surface is directed downstream. Can be guided. For this reason, since it can be hard to receive the influence of working gas, the position of the valve rod and the valve disc around the valve seat surface and the valve seat surface can be suitably maintained.
  • a gas flow portion through which the working gas flows is formed at the tip of the valve rod on the downstream side of the valve seat surface where the guide surface is formed.
  • the gas circulation portion can be formed at the tip end portion. For this reason, the working gas that has passed between the valve seat surface and the valve seat surface can flow through the gas circulation unit and flow downstream in the gas flow direction.
  • the gas circulation portion is a V-shaped groove whose upstream side is a top and which extends from the top toward the downstream.
  • the top of the V-groove appears when the space between the valve seat surface of the valve body and the valve seat surface of the valve stem is separated. Then, as the distance between the valve seat surface of the valve body and the valve seat surface of the valve rod further separates, the flow passage area formed by the V groove increases. Therefore, the working gas flowing between the valve seat surface of the valve body and the valve seat surface of the valve stem can be suitably circulated in the V-groove.
  • the gas flow portion can be formed by a simple process of processing the V groove at the tip end. Furthermore, by setting the shape of the V-shaped groove according to the injection amount of the working gas, the injection amount of the working gas can be appropriately adjusted.
  • the gas flow portion be a plurality of V-shaped grooves crossed so as to pass through the center of the valve rod.
  • the end portion preferably has a closed portion provided between the top of the V-shaped groove and the valve seat surface.
  • the gas circulation part is a through hole formed in the tip end part from the upstream side to the downstream side in the gas flow direction.
  • the through hole is a rectangular in which a cross section taken along a plane perpendicular to the gas flow direction is curved along the guide surface.
  • the through hole preferably has a circular cross section cut by a plane perpendicular to the gas flow direction.
  • the gas circulation portion is preferably a groove formed on the outer peripheral surface of the tip portion from the upstream side to the downstream side in the gas flow direction.
  • the gas injection passage is connected to the gas inlet for allowing the working gas to flow into the gas injection passage, and the flow passage area of the gas circulation portion closer to the gas inlet is closer to the gas inlet Preferably, the area is smaller than the flow passage area of the gas flow portion.
  • the size of the flow passage area of the gas circulation unit can be changed in consideration of the position at which the gas inlet is formed. Injection distribution can be made more uniform.
  • the projectile of the present invention is characterized by including the above-mentioned thrust control valve.
  • the working gas with uniform injection distribution can be injected to control the attitude of the flying object itself or the head body stored on the tip side of the flying object, the attitude can be controlled with high accuracy. can do.
  • FIG. 1 is a schematic view of a projectile provided with a thrust control valve according to a first embodiment.
  • FIG. 2 is a cross-sectional view of the thrust control valve according to the first embodiment taken along the axial direction.
  • FIG. 3 is a perspective view showing a valve rod of a thrust control valve according to the first embodiment.
  • FIG. 4 is a cross-sectional view of a thrust control valve according to a second embodiment taken along the axial direction.
  • FIG. 5 is a cross-sectional view of a tip end portion of a valve rod of a thrust control valve according to a second embodiment, taken along a plane orthogonal to the axial direction.
  • FIG. 6 is a cross-sectional view of a tip end portion of a valve rod of a thrust control valve according to a third embodiment, taken along a plane orthogonal to the axial direction.
  • FIG. 7 is a cross-sectional view of a tip end portion of a valve rod of a thrust control valve according to a fourth embodiment, cut by a plane orthogonal to the axial direction.
  • FIG. 8 is a cross-sectional view in which a thrust control valve according to a fifth embodiment is cut along the axial direction.
  • FIG. 9 is a cross-sectional view of a straightening vane of a thrust control valve according to a fifth embodiment taken along a plane orthogonal to the axial direction.
  • FIG. 10 is a cross-sectional view of a tip end portion of a valve stem of a thrust control valve according to a sixth embodiment, cut by a plane orthogonal to the axial direction.
  • FIG. 1 is a schematic view of a projectile provided with a thrust control valve according to a first embodiment.
  • the thrust control valve 10 according to the first embodiment is a so-called thruster, and a plurality of thrust control valves 10 are provided in the head body 5 stored in the nose cone 4 on the tip end side of the projectile 1.
  • the plurality of thrust control valves 10 can control the projectile 1 by injecting working gas.
  • the thrust control valve 10 may be attached to the flying object 1 itself to control the trajectory and attitude of the flying object 1 itself.
  • FIG. 2 is a cross-sectional view of the thrust control valve according to the first embodiment taken along the axial direction.
  • FIG. 3 is a perspective view showing a valve rod of a thrust control valve according to the first embodiment.
  • the thrust control valve 10 has a valve body 15 in which a gas injection passage L is formed, and a valve rod 16 inserted into the valve body 15 along the gas injection passage L.
  • the valve body 15 is formed in a cylindrical shape, and a hollow cylindrical gas injection passage L through which the working gas G to be injected flows is formed in the valve body 15.
  • this valve body 15 may be comprised with a several member, and may be comprised with a single-piece
  • the valve body 15 includes a throttling portion 21 that protrudes inward in the radial direction, and a nozzle portion 22 provided on the downstream side in the gas flow direction of the throttling portion 21.
  • the throttling portion 21 is formed with a valve seat surface P1 with which the valve rod 16 is in close contact and a guided surface P2 for guiding the valve rod 16.
  • the valve seat surface P1 is formed in a tapered shape in which the gas injection passage L is tapered from the upstream side to the downstream side in the gas flow direction.
  • the guided surface P2 is a cylindrical surface continuing on the downstream side of the valve seat surface P1, and has a diameter smaller than the diameter of the gas injection passage L on the upstream side of the throttle portion 21.
  • the nozzle portion 22 is a portion for injecting the working gas G, and has a nozzle surface P3 connected to the downstream side of the guided surface P2.
  • the nozzle surface P3 is formed in a tapered shape in which the gas injection passage L spreads from the upstream side to the downstream side in the gas flow direction.
  • the gas injection passage L has a large diameter on the upstream side of the valve seat surface P1, a diameter reduction on the valve seat surface P1, a small diameter on the guided surface P2, and a diameter increase on the nozzle surface P3.
  • the valve rod 16 is formed in a cylindrical shape, and is disposed such that the axial center of the valve rod 16 and the axial center of the valve body 15 coincide with each other.
  • the valve rod 16 is reciprocally movable in the axial direction.
  • the valve rod 16 has a tip 25 which is a downstream end in the gas flow direction, and a valve 26 provided on the upstream side of the tip 25.
  • An outer peripheral surface of the tip end portion 25 is a guide surface P4, and is in sliding contact with a to-be-guided surface P2 which is an inner peripheral surface of the gas injection passage L of the valve body 15.
  • the tip 25 of the guide surface P4 of the valve rod 16 is formed in a circular shape slightly smaller in diameter than the inner diameter of the gas injection passage L in the guided surface P2 of the valve 15.
  • a pair of V-grooves 31 (see FIG. 3) functioning as a gas flow portion through which the working gas G flows toward the nozzle portion 22 are formed in the tip portion 25.
  • Each V groove 31 has a top 31a located on the upstream side in the gas flow direction, and has a shape that spreads from the top 31a toward the downstream.
  • the pair of V-grooves 31 intersect at right angles such that the tops 31 a pass through the axial center of the valve rod 16. Therefore, the tip portion 25 is formed by intersecting the pair of V-grooves 31 to form four protrusions 32 having the guide surface P4.
  • the valve portion 26 is formed in a cylindrical shape having a diameter larger than the inner diameter of the gas injection passage L in the guided surface P2 of the valve body 15. For this reason, the valve portion 26 has a size that can not pass through the gas injection passage L on the guided surface P2.
  • the valve portion 26 has a valve seat surface P5 in contact with the upstream side of the guide surface P4 of the distal end portion 25.
  • the valve seat surface P5 has a shape complementary to the valve seat surface P1 of the valve body 15, and can be in close contact with the valve seat surface P1. That is, the valve seat surface P ⁇ b> 5 has a tapered shape which is tapered toward the distal end portion 25.
  • the tip end portion 25 has a blocking portion 33 for suppressing the flow of the working gas G between the top portion 31 a of the V groove 31 and the valve seat surface P5 of the valve portion 26.
  • the closed portion 33 is a portion where the V groove 31 provided between the valve portion 26 and the protrusion 32 is not formed, and has a length d in the axial direction. For this reason, from the state in which the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 6 are in close contact, the valve rod 16 axially moves within a range where the valve rod 16 fits within the length d. Even if the space between the valve seat surface P1 and the valve seat surface P5 is slightly opened, the flow of the working gas G can be suppressed.
  • the thrust control valve 10 configured as described above moves the valve seat surface P1 of the valve body 15 and the valve seat of the valve rod 16 when the valve stem 16 moves in the forward path direction closing the valve body 15. The distance between the surface P5 and the surface P5 becomes narrower. When the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16 are in close contact with each other, the thrust control valve 10 is closed.
  • the space between the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16 spreads.
  • the top 31 a of the V groove 31 of the distal end portion 25 corresponds to the narrowed portion 21 of the valve body 15.
  • valve rod 16 is inserted into the narrowed portion 21 without being pulled out from the narrowed portion 21 of the valve body 15. It will be That is, the distal end portion 25 of the valve rod 16 moves in the axial direction in a state of being inserted into the throttle portion 21 of the valve body 15.
  • the working gas G is injected from the nozzle portion 22 by passing through the V-shaped groove 31 emerging from the narrowed portion 21.
  • the V groove 31 has a shape corresponding to the injection amount of the working gas G to be injected. That is, when it is desired to increase the injection amount of the working gas G transiently, the groove width of the V groove 31 is made wide, while when the injection amount of the working gas G is desired to be small, the groove width of the V groove 31 is made narrow. .
  • the guide surface P4 in contact with the guided surface P2 of the gas injection passage L of the valve body 15 can be formed on the outer peripheral surface of the valve rod 16. Therefore, even when the valve seat surface P5 of the valve rod 16 is separated from the valve seat surface P1 of the valve body 15, the guide surface P4 of the valve rod 16 contacts the guided surface P2 of the valve body 15, The valve rod 16 can be guided along the guided surface P2 of the valve body 15. Thereby, the valve stem 16 can be moved in the axial direction in a state where the axial centers of the valve body 15 and the valve rod 16 are aligned by the guided surface P2 of the valve body 15. For this reason, since the mutual position of the valve body 15 and the valve stem 16 can be maintained suitably, the working gas G can be suitably injected, suppressing the dispersion
  • the guide surface P4 can be formed on the downstream side of the valve seat surface P5.
  • the working gas G which has passed between the valve seat surface P1 and the valve seat surface P5 passes the V groove 31 of the tip 25 of the valve rod 16.
  • the valve rod 16 and the valve body 15 can be made less susceptible to the passing working gas G. The position of and can be maintained suitably.
  • channel 31 as a gas distribution part can be formed in the front-end
  • the closed portion 33 can be provided between the valve seat surface P5 of the valve portion 26 and the top portion 31a of the V groove 31 of the distal end portion 25. Therefore, when the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16 are slightly separated due to the influence of vibration or impact applied to the valve stem 16 and the valve body 15, this is the case. However, since the top 31a of the V-shaped groove 31 does not appear from the narrowed portion 21, it is possible to suppress the unexpected injection of the working gas G due to the influence on the valve rod 16 and the valve body 15.
  • FIG. 4 is a cross-sectional view of a thrust control valve according to a second embodiment taken along the axial direction.
  • FIG. 5 is a cross-sectional view of a tip end portion of a valve rod of a thrust control valve according to a second embodiment, taken along a plane orthogonal to the axial direction.
  • the V groove 31 is formed in the tip 25 of the valve rod 16, but in the second embodiment, the through hole 55 (details will be described later) is formed in the tip 51 of the valve rod 16.
  • the thrust control valve 50 according to the second embodiment will be described.
  • the valve rod 16 of the thrust control valve 50 has a tip 51 and a valve 26.
  • the valve part 26 is the structure similar to Example 1, description is abbreviate
  • the distal end portion 51 has a small diameter portion 53 connected to the valve portion 26 and a large diameter portion 54 connected to the small diameter portion 53.
  • the small diameter portion 53 has a diameter smaller than that of the gas injection passage L on the guided surface P2 of the throttle portion 21 of the valve body 15. For this reason, a predetermined gap is formed between the small diameter portion 53 and the gas injection passage L in the guided surface P2.
  • the outer peripheral surface of the large diameter portion 54 is a guide surface P4, and the large diameter portion 54 is in sliding contact with a guided surface P2 which is an inner peripheral surface of the gas injection passage L of the valve body 15.
  • the large diameter portion 54 in the guide surface P4 of the valve rod 16 is formed in a circular shape slightly smaller in diameter than the inner diameter of the gas injection passage L in the guided surface P2 of the valve body 15.
  • a plurality of through holes 55 (see FIG. 5) functioning as a gas flow portion through which the working gas G flows toward the nozzle portion 22 are formed.
  • Each through hole 55 is axially penetrated from the upstream side to the downstream side with respect to the large diameter portion 54.
  • Each through hole 55 is a rectangular opening that curves along the guide surface P4 in a cross section viewed in the axial direction, and between the outer diameter of the small diameter portion 53 and the outer diameter of the large diameter portion 54. Is formed.
  • the plurality of through holes 55 are formed side by side along the circumferential direction of the large diameter portion 54.
  • the thrust control valve 50 configured as described above, in a state where the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16 are in close contact, that is, in the valve closed state, When the valve body 15 is moved in the return path direction to open, the gap between the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16 is expanded. At this time, the small diameter portion 53 of the tip end portion 51 of the valve rod 16 emerges from the narrowed portion 21 of the valve body 15. When the small diameter portion 53 emerges from the narrowed portion 21, the working gas G passing between the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16 is a gas in the small diameter portion 53 and the guided surface P2. It flows into the gap formed between the injection passage L and the injection passage L. Then, the working gas G flowing into the gap passes through the plurality of through holes 55, flows into the nozzle portion 22, and is jetted from the nozzle portion 22.
  • the small diameter portion 53 appears from the narrowed portion 21 by separating between the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16. Thereby, the plurality of through holes 55 are opened. Therefore, the working gas G flowing between the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16 can be suitably flowed into the plurality of through holes 55.
  • the injection amount of the working gas G is appropriately adjusted It is possible to make the shape of the through hole 55 which becomes the curved rectangular opening a shape corresponding to the injection amount of the working gas G.
  • FIG. 6 is a cross-sectional view of a tip end portion of a valve rod of a thrust control valve according to a third embodiment, taken along a plane orthogonal to the axial direction.
  • the large diameter portion 54 of the tip 51 of the valve rod 16 is formed with a plurality of through holes 55 serving as a curved rectangular opening.
  • the diameter of the tip 51 of the valve rod 16 is large.
  • a plurality of through holes 61 to be circular openings are formed in the diameter portion 54.
  • the large diameter portion 54 of the tip 51 functions as a gas flow portion through which the working gas G flows toward the nozzle portion 22.
  • a plurality of through holes 61 are formed.
  • Each through hole 61 is axially formed through the large diameter portion 54 from the upstream side to the downstream side.
  • Each through hole 61 is a circular opening in a cross section viewed in the axial direction, and is formed between the outer diameter of the small diameter portion 53 and the outer diameter of the large diameter portion 54.
  • the plurality of through holes 61 are formed side by side along the circumferential direction of the large diameter portion 54. At this time, the plurality of through holes 61 have the same inner diameter.
  • the small diameter portion 53 appears from the narrowed portion 21 by separating between the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16. Thereby, the plurality of through holes 61 are opened. Therefore, the working gas G flowing between the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16 can be suitably flowed into the plurality of through holes 61.
  • the injection amount of the working gas G is appropriately adjusted by making the inside diameter of the through hole 61 which is a circular opening the inside diameter according to the injection amount of the working gas G. Is possible.
  • FIG. 7 is a cross-sectional view of a tip end portion of a valve rod of a thrust control valve according to a fourth embodiment, cut by a plane orthogonal to the axial direction.
  • the fourth embodiment in order to avoid overlapping descriptions with the first to third embodiments, only portions different from the first to third embodiments will be described.
  • the inner diameters of the plurality of through holes 61 serving as circular openings formed in the large diameter portion 54 of the distal end portion 51 of the valve rod 16 have the same diameter. The inner diameter of the hole 61 is different.
  • the thrust control valve 70 according to the fourth embodiment will be described.
  • a gas inlet 71 that causes the working gas G to flow into the gas injection passage L is connected to the gas injection passage L.
  • the gas inlet 71 is connected to the axial center of the valve body 15 so that the working gas G flows in from the radial direction.
  • the plurality of through holes 61 formed through the large diameter portion 54 of the distal end portion 51 are the closest to the gas inlet 71
  • the hole 61 is a through hole 61 a having the smallest inner diameter
  • the through hole 61 farthest from the gas inlet 71 is the through hole 61 b having the largest inner diameter.
  • the inner diameter of the plurality of other through holes 61 gradually increases as going from the through hole 61 a having the smallest diameter to the through hole 61 b having the largest diameter.
  • the inner diameter of the through hole 61 closer to the gas inlet 71 is reduced in consideration of the position at which the gas inlet 71 is formed.
  • the inner diameter of the further through hole 61 can be increased. Therefore, even if the distribution of the working gas G flowing in from the gas inlet 71 in the gas injection passage L is uneven, the injection of the working gas G injected from the nozzle portion 22 through the plurality of through holes 61 is performed. The distribution can be made uniform.
  • the fourth embodiment has been described as being applied to the through hole 61 of the third embodiment, the V groove 31 of the first embodiment or the through hole 55 of the second embodiment may be applied.
  • FIG. 8 is a cross-sectional view in which a thrust control valve according to a fifth embodiment is cut along the axial direction.
  • FIG. 9 is a cross-sectional view of a straightening vane of a thrust control valve according to a fifth embodiment taken along a plane orthogonal to the axial direction.
  • a straightening vane 81 is attached to the upstream side of the valve portion 26 of the valve rod 16. The thrust control valve 80 according to the fifth embodiment will be described below.
  • the valve rod 16 has a straightening vane 81 provided on the upstream side in the gas flow direction of the valve portion 26.
  • the straightening vane 81 is formed in a disk shape, and its outer peripheral surface is in sliding contact with the inner peripheral surface of the gas injection passage L on the upstream side of the throttle portion 21. Further, the straightening vane 81 is disposed downstream of the gas inlet 71.
  • the flow straightening plate 81 is formed with a plurality of flow straightening through holes 82 through which the working gas G flows. Each straightening through hole 82 is axially formed through the straightening plate 81 from the upstream side to the downstream side.
  • each straight through hole 82 is a circular opening in a cross section viewed from the axial direction, and is formed between the outer peripheral surface of the valve portion 26 and the inner peripheral surface of the gas injection passage L. .
  • a plurality of flow straightening through holes 82 are formed along the circumferential direction of the flow straightening plate 81. At this time, the inner diameters of the plurality of rectifying through holes 82 are the same.
  • the working gas G directed between the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16 is rectified by the rectifying plate 81. Therefore, it is possible to make the injection distribution of the working gas G injected passing between the valve seat surface P1 and the valve seat surface P5 more uniform.
  • the plurality of flow straightening through holes 82 formed in the flow straightening plate 81 have the same diameter, but in consideration of the position at which the gas inlet 71 is formed, the one closer to the gas inlet 71 The inner diameter of the straightening through hole 82 may be reduced, and the inner diameter of the straightening through hole 82 farther from the gas inlet 71 may be increased.
  • the rectifying plate 81 is not limited to the fifth embodiment, and may be applied to any of the first to fourth embodiments.
  • FIG. 10 is a cross-sectional view of a tip end portion of a valve stem of a thrust control valve according to a sixth embodiment, cut by a plane orthogonal to the axial direction.
  • the plurality of through holes 55 are formed through the large diameter portion 54 of the tip portion 51 of the valve rod 16.
  • the gas flow groove is formed in the large diameter portion 54 of the tip portion 51 of the valve rod 16. It forms 91.
  • the thrust control valve 90 according to the sixth embodiment will be described.
  • the large diameter portion 54 of the tip portion 51 functions as a gas flow portion through which the working gas G flows toward the nozzle portion 22.
  • a plurality of gas flow grooves 91 are formed.
  • Each gas flow groove 91 is formed in the axial direction from the upstream side to the downstream side with respect to the outer peripheral surface of the large diameter portion 54. Further, each gas flow groove 91 has a recessed shape in a cross section viewed from the axial direction. The plurality of gas flow grooves 91 are formed along the circumferential direction of the large diameter portion 54.
  • the small diameter portion 53 appears from the narrowed portion 21 by separating between the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16. Thereby, the plurality of gas flow grooves 91 are opened. Therefore, the working gas G flowing between the valve seat surface P1 of the valve body 15 and the valve seat surface P5 of the valve rod 16 can be suitably flowed into the plurality of gas flow channels 91.
  • the shape of the gas flow groove 91 by making the shape of the gas flow groove 91 a shape corresponding to the injection amount of the working gas G, it becomes possible to appropriately adjust the injection amount of the working gas G.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Lift Valve (AREA)

Abstract

 推力制御バルブは、噴射される作動ガスGが流通するガス噴射通路Lが形成され、ガス噴射通路Lに弁座面P1が形成される弁体15と、ガス噴射通路Lの内部に設けられ、弁座面P1に当接する被弁座面P5を有する弁棒16と、を備え、弁棒16の外周面には、弁体15のガス噴射通路Lの内周面に接する案内面P4が形成されている。案内面P4は、作動ガスGのガス流れ方向において、被弁座面P5の下流側に形成されている。弁棒16は、案内面P4が形成される被弁座面P5の下流側の先端部に、作動ガスGが流通するV溝31が形成されている。

Description

推力制御バルブ及び飛翔体
 本発明は、推力制御バルブ及びこれを備える飛翔体に関するものである。
 従来、飛翔体の軌道制御及び姿勢制御を行う推力制御バルブが知られている(例えば、特許文献1参照)。この推力制御バルブは、推進用ガス(作動ガス)が流通するノズルを有している。ノズルには、ガス流れ方向の上流側から、ガス供給室、ガス通路、ガス噴射室が形成されている。このノズルの内部には、プラグが挿入される。プラグは、ガス通路及びガス噴射室の間で移動自在に配置されている。推進制御バルブを閉弁する場合、ノズルの内周面にプラグの外周面を密接させる一方で、推進制御バルブを開弁する場合、ノズルの内周面からプラグの外周面を離している。
特開2004-251181号公報
 しかしながら、従来の推力制御バルブでは、開弁時において、ノズルの内周面からプラグの外周面が離れる。このとき、プラグは、ノズルから離れた自由状態になることから、ノズルに対するプラグの位置が偏ってしまう可能性がある。具体的には、プラグの中心軸とノズルの中心軸とが位置ずれして、ノズルの内周面とプラグの外周面と間の隙間が不均一となったり、ノズルの中心軸に対しプラグの中心軸が傾いたりすることで、ノズルの内周面とプラグの外周面との間の流路の形状が変化したりする可能性がある。この場合、推力制御バルブからの推進用ガスの噴射分布にばらつきが生じてしまう。
 そこで、本発明は、作動ガスの噴射分布のばらつきを抑制しつつ、作動ガスを好適に噴射することができる推力制御バルブ及び飛翔体を提供することを課題とする。
 本発明の推力制御バルブは、噴射される作動ガスが流通するガス噴射通路が形成され、ガス噴射通路に弁座面が形成される弁体と、ガス噴射通路の内部に設けられ、弁座面に当接する被弁座面を有する弁棒と、を備え、弁棒の外周面には、弁体のガス噴射通路の内周面に接する案内面が形成されていることを特徴とする。
 この構成によれば、弁棒の外周面には、弁体のガス噴射通路の内周面に接する案内面が形成されている。このため、弁体の弁座面から弁棒の被弁座面が離れた場合であっても、弁棒の案内面が弁体の内周面に接するため、弁棒を弁体の内周面に沿って案内することができる。これにより、弁体の内周面によって弁体と弁棒との間を維持することができるため、弁体と弁棒との相互における位置を好適に保つことができる。以上から、作動ガスの噴射分布のばらつきを抑制しつつ、作動ガスを好適に噴射することができる。
 この場合、案内面は、作動ガスのガス流れ方向において、被弁座面の下流側に形成されていることが好ましい。
 この構成によれば、弁座面と被弁座面との間を通過する作動ガスが下流側へ向かっても、被弁座面の下流側において、弁体の内周面に沿って弁棒を案内することができる。このため、作動ガスの影響を受け難くできることから、弁座面及び被弁座面周りにおける弁棒と弁体との位置を好適に保つことができる。
 この場合、弁棒は、案内面が形成される被弁座面の下流側の先端部に、作動ガスが流通するガス流通部が形成されていることが好ましい。
 この構成によれば、先端部にガス流通部を形成することができる。このため、弁座面と被弁座面との間を通過した作動ガスは、ガス流通部を流れて、ガス流れ方向の下流側に流れることができる。
 この場合、ガス流通部は、上流側を頂部とし、頂部から下流側に向かって広がるV溝であることが好ましい。
 この構成によれば、弁体の弁座面と弁棒の被弁座面との間が離れると、V溝の頂部が出現する。そして、弁体の弁座面と弁棒の被弁座面との間がさらに離れるにつれて、V溝によって形成される流路面積が大きくなっていく。このため、弁体の弁座面と弁棒の被弁座面との間を流れる作動ガスを、V溝に好適に流通させることができる。また、先端部にV溝を加工するという簡易な加工により、ガス流通部を形成することができる。さらに、V溝の形状を、作動ガスの噴射量に応じた形状にすることで、作動ガスの噴射量を適宜調整することが可能となる。
 この場合、ガス流通部は、弁棒の中心を通るように交差させた複数のV溝であることが好ましい。
 この構成によれば、先端部に複数のV溝を形成することができるため、弁体の弁座面と弁棒の被弁座面との間を流れる作動ガスを、複数のV溝に好適に流通させることができる。
 この場合、先端部は、V溝の頂部と被弁座面との間に設けられる閉塞部を有していることが好ましい。
 この構成によれば、弁棒及び弁体に与えられる振動または衝撃等の影響によって、弁体の弁座面と弁棒の被弁座面との間が僅かに離れた場合であっても、V溝が出現することなく、閉塞部によりガス噴射通路が閉塞されるため、弁棒及び弁体への影響による予想しない作動ガスの噴射を抑制することができる。
 この場合、ガス流通部は、ガス流れ方向の上流側から下流側に亘って、先端部に貫通形成される貫通孔であることが好ましい。
 この構成によれば、弁体の弁座面と弁棒の被弁座面との間が離れると、貫通孔が出現する。このため、弁体の弁座面と弁棒の被弁座面との間を流れる作動ガスを、貫通孔に好適に流通させることができる。
 この場合、貫通孔は、ガス流れ方向に直交する面で切った断面が、案内面に沿って湾曲する矩形であることが好ましい。
 この構成によれば、湾曲した矩形となる貫通孔の形状を、作動ガスの噴射量に応じた形状にすることで、作動ガスの噴射量を適宜調整することが可能となる。
 この場合、貫通孔は、ガス流れ方向に直交する面で切った断面が、円形であることが好ましい。
 この構成によれば、円形となる貫通孔の形状を、作動ガスの噴射量に応じた形状にすることで、作動ガスの噴射量を適宜調整することが可能となる。
 この場合、ガス流通部は、ガス流れ方向の上流側から下流側に亘って先端部の外周面に形成された溝であることが好ましい。
 この構成によれば、弁体の弁座面と弁棒の被弁座面との間が離れると、溝が出現する。このため、弁体の弁座面と弁棒の被弁座面との間を流れる作動ガスを、溝に好適に流通させることができる。
 この場合、ガス噴射通路には、作動ガスをガス噴射通路内に流入させるガス流入口が接続されており、ガス流入口に近いほうのガス流通部の流路面積は、ガス流入口に遠いほうのガス流通部の流路面積に比して小さいことが好ましい。
 この構成によれば、ガス流入口が形成される位置を考慮して、ガス流通部の流路面積の大きさを変更することができるため、ガス流通部を通過して噴射される作動ガスの噴射分布をより均一にすることができる。
 この場合、ガス流れ方向において、被弁座面の上流側に設けられ、ガス噴射通路内を流れる作動ガスを整流する整流板をさらに備えることが好ましい。
 この構成によれば、弁体の弁座面と弁棒の被弁座面との間に向かう作動ガスを、整流板により整流することができるため、弁座面と被弁座面との間を通過して噴射される作動ガスの噴射分布をより均一にすることができる。
 本発明の飛翔体は、上記の推力制御バルブを備えることを特徴とする。
 この構成によれば、噴射分布が均一となる作動ガスを噴射して、飛翔体自体または飛翔体の先端側に格納される頭部体の姿勢制御を行うことができるため、姿勢を精度良く制御することができる。
図1は、実施例1に係る推力制御バルブを備える飛翔体の模式図である。 図2は、実施例1に係る推力制御バルブを軸方向に沿って切った断面図である。 図3は、実施例1に係る推力制御バルブの弁棒を示す斜視図である。 図4は、実施例2に係る推力制御バルブを軸方向に沿って切った断面図である。 図5は、実施例2に係る推力制御バルブの弁棒の先端部を軸方向に直交する面で切った断面図である。 図6は、実施例3に係る推力制御バルブの弁棒の先端部を軸方向に直交する面で切った断面図である。 図7は、実施例4に係る推力制御バルブの弁棒の先端部を軸方向に直交する面で切った断面図である。 図8は、実施例5に係る推力制御バルブを軸方向に沿って切った断面図である。 図9は、実施例5に係る推力制御バルブの整流板を軸方向に直交する面で切った断面図である。 図10は、実施例6に係る推力制御バルブの弁棒の先端部を軸方向に直交する面で切った断面図である。
 以下に、本発明に係る実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
 図1は、実施例1に係る推力制御バルブを備える飛翔体の模式図である。図1に示すように、実施例1に係る推力制御バルブ10は、いわゆるスラスタであり、飛翔体1の先端側のノーズコーン4に格納される頭部体5に複数設けられている。複数の推力制御バルブ10は、作動ガスを噴射することで、飛翔体1の制御を行える。飛翔体1の制御としては、飛翔体1のノーズコーン4から露出した頭部体5の軌道及び姿勢を制御している。なお、この構成に限定されず、推力制御バルブ10を飛翔体1自体に取り付け、飛翔体1自体の軌道及び姿勢を制御してもよい。
 図2は、実施例1に係る推力制御バルブを軸方向に沿って切った断面図である。図3は、実施例1に係る推力制御バルブの弁棒を示す斜視図である。推力制御バルブ10は、内部にガス噴射通路Lが形成された弁体15と、ガス噴射通路Lに沿って弁体15の内部に挿入される弁棒16とを有している。
 弁体15は、円筒形状に形成されており、その内部に、噴射される作動ガスGが流通する中空円柱形状のガス噴射通路Lが形成されている。なお、この弁体15は、複数の部材で構成されてもよいし、単体の部材で構成されてもよい。弁体15は、径方向の内側に突出する絞り部21と、絞り部21のガス流れ方向の下流側に設けられるノズル部22とを含んでいる。
 絞り部21は、弁棒16が密接する弁座面P1と、弁棒16を案内する被案内面P2とが形成されている。弁座面P1は、ガス流れ方向の上流側から下流側に向けて、ガス噴射通路Lが先細りとなるテーパ形状に形成されている。被案内面P2は、弁座面P1の下流側に連なる円筒面となっており、絞り部21の上流側におけるガス噴射通路Lの径に比して小径となっている。
 ノズル部22は、作動ガスGを噴射する部位となっており、被案内面P2の下流側に連なるノズル面P3を有している。ノズル面P3は、ガス流れ方向の上流側から下流側に向けて、ガス噴射通路Lが広がるテーパ形状に形成されている。
 このため、ガス噴射通路Lは、弁座面P1の上流側において大径となり、弁座面P1において縮径し、被案内面P2において小径となり、ノズル面P3において拡径する通路となる。
 弁棒16は、円柱形状に形成されており、弁棒16の軸心と、弁体15の軸心とを一致させて配置されている。この弁棒16は、軸方向に往復移動可能となっている。弁棒16は、ガス流れ方向の下流側の端部である先端部25と、先端部25の上流側に設けられる弁部26とを有している。
 先端部25は、その外周面が案内面P4となっており、弁体15のガス噴射通路Lの内周面である被案内面P2に摺接する。このため、弁棒16の案内面P4における先端部25は、弁体15の被案内面P2におけるガス噴射通路Lの内径よりも僅かに小径となる円形状に形成されている。また、先端部25には、ノズル部22へ向けて作動ガスGが流通するガス流通部として機能する一対のV溝31(図3参照)が形成されている。各V溝31は、その頂部31aが、ガス流れ方向の上流側に位置し、頂部31aから下流側に向かって広がる形状となっている。そして、図3に示すように、一対のV溝31は、各頂部31aが弁棒16の軸心を通るように直交に交差している。このため、先端部25は、一対のV溝31が交差して形成されることにより、案内面P4を有する4つの突起部32が形成される。
 弁部26は、弁体15の被案内面P2におけるガス噴射通路Lの内径よりも大径となる円柱状に形成されている。このため、弁部26は、被案内面P2におけるガス噴射通路Lを通過不能な大きさとなっている。この弁部26は、先端部25の案内面P4の上流側に接する被弁座面P5を有している。被弁座面P5は、弁体15の弁座面P1と相補的形状となっており、弁座面P1に密接可能となっている。つまり、被弁座面P5は、先端部25へ向かって先細りとなるテーパ形状となっている。
 また、先端部25は、V溝31の頂部31aと、弁部26の被弁座面P5との間に、作動ガスGの流通を抑制する閉塞部33を有している。閉塞部33は、弁部26と突起部32との間に設けられたV溝31が形成されていない部位であり、軸方向における長さdを有している。このため、弁体15の弁座面P1と、弁棒6の被弁座面P5とが密接した状態から、弁体15に対して弁棒16が長さdに収まる範囲で軸方向に移動し、弁座面P1と被弁座面P5との間が僅かに開いても、作動ガスGの流通を抑制することが可能となる。
 上記のように構成される推力制御バルブ10は、その弁棒16が、弁体15に対して閉弁する往路方向に移動すると、弁体15の弁座面P1と弁棒16の被弁座面P5との間が狭くなっていく。そして、弁体15の弁座面P1と弁棒16の被弁座面P5とが密接することで、推力制御バルブ10は閉弁される。
 一方で、弁体15の弁座面P1と弁棒16の被弁座面P5との間が密着した状態、つまり閉弁状態において、弁棒16が、弁体15に対して開弁する復路方向に移動すると、弁体15の弁座面P1と弁棒16の被弁座面P5との間が広がっていく。このとき、弁棒16は、その先端部25の閉塞部33が、弁体15の絞り部21から出現した後、その先端部25のV溝31の頂部31aが、弁体15の絞り部21から出現する。そして、弁体15の弁座面P1と弁棒16の被弁座面P5との間がさらに広がると、V溝31がさらに出現することで、V溝31によって形成される作動ガスGの流路面積が大きくなる。V溝31が絞り部21から出現すると、作動ガスGは、V溝31を通過して、ノズル部22へ流入し、ノズル部22から噴射される。
 なお、弁棒16は、弁体15との開度が最大となった場合であっても、その先端部25が、弁体15の絞り部21から引き抜かれることなく、絞り部21に挿入された状態となる。つまり、弁棒16の先端部25は、弁体15の絞り部21に挿入された状態で軸方向に移動する。
 このように、作動ガスGは、絞り部21から出現するV溝31を通過することで、ノズル部22から噴射される。このとき、V溝31は、その形状が、噴射される作動ガスGの噴射量に応じた形状とする。つまり、作動ガスGの噴射量を過渡的に大きくしたい場合は、V溝31の溝幅を広くする一方で、作動ガスGの噴射量を小さくしたい場合は、V溝31の溝幅を狭くする。
 以上のように、実施例1の構成によれば、弁棒16の外周面に、弁体15のガス噴射通路Lの被案内面P2に接する案内面P4を形成することができる。このため、弁体15の弁座面P1から弁棒16の被弁座面P5が離れた場合であっても、弁棒16の案内面P4が弁体15の被案内面P2に接するため、弁棒16を弁体15の被案内面P2に沿って案内することができる。これにより、弁体15の被案内面P2によって、弁体15と弁棒16との軸心を一致させた状態で、弁棒16を軸方向に移動させることができる。このため、弁体15と弁棒16との相互の位置を好適に保つことができることから、作動ガスGの噴射分布のばらつきを抑制しつつ、作動ガスGを好適に噴射することができる。
 また、実施例1の構成によれば、案内面P4を、被弁座面P5の下流側に形成することができる。このため、弁座面P1と被弁座面P5との間を通過した作動ガスGは、弁棒16の先端部25のV溝31を通過する。このとき、弁棒16は、その先端部25が、弁体15の被案内面P2に沿って案内されるため、通過する作動ガスGの影響を受け難くできることから、弁棒16と弁体15との位置を好適に保つことができる。
 また、実施例1の構成によれば、案内面P4が形成される被弁座面P5の下流側の先端部25に、ガス流通部としてのV溝31を形成することができる。このため、弁座面P1と被弁座面P5との間を通過した作動ガスGを、V溝31からノズル部22へ向けて好適に流すことができる。このとき、先端部25に形成されるV溝31は、切り欠いて加工することにより、容易に形成することができる。また、V溝31の形状を、作動ガスGの噴射量に応じた形状にすることで、作動ガスGの噴射量を適宜調整することが可能となる。
 また、実施例1の構成によれば、弁部26の被弁座面P5と、先端部25のV溝31の頂部31aとの間に閉塞部33を設けることができる。このため、弁棒16及び弁体15に与えられる振動または衝撃等の影響によって、弁体15の弁座面P1と弁棒16の被弁座面P5との間が僅かに離れた場合であっても、V溝31の頂部31aが絞り部21から出現することがないため、弁棒16及び弁体15への影響による予想しない作動ガスGの噴射を抑制することができる。
 次に、図4及び図5を参照して、実施例2に係る推力制御バルブ50について説明する。図4は、実施例2に係る推力制御バルブを軸方向に沿って切った断面図である。図5は、実施例2に係る推力制御バルブの弁棒の先端部を軸方向に直交する面で切った断面図である。なお、実施例2では、実施例1と重複する記載を避けるべく、実施例1と異なる部分についてのみ説明する。実施例1では、弁棒16の先端部25にV溝31を形成したが、実施例2では、弁棒16の先端部51に貫通孔55(詳細は後述)を形成している。以下、実施例2に係る推力制御バルブ50について説明する。
 図4に示すように、実施例2に係る推力制御バルブ50の弁棒16は、先端部51と弁部26とを有している。なお、弁部26は、実施例1と同様の構成であるため、説明を省略する。先端部51は、弁部26に連なる小径部53と、小径部53に連なる大径部54とを有する。小径部53は、弁体15の絞り部21の被案内面P2におけるガス噴射通路Lよりも小径となっている。このため、小径部53と被案内面P2におけるガス噴射通路Lとの間には、所定の隙間が形成される。
 大径部54は、その外周面が案内面P4となっており、弁体15のガス噴射通路Lの内周面である被案内面P2に摺接する。このため、弁棒16の案内面P4における大径部54は、弁体15の被案内面P2におけるガス噴射通路Lの内径よりも僅かに小径となる円形状に形成されている。また、大径部54には、ノズル部22へ向けて作動ガスGが流通するガス流通部として機能する複数の貫通孔55(図5参照)が形成されている。各貫通孔55は、大径部54に対し、上流側から下流側に亘って軸方向に貫通形成されている。また、各貫通孔55は、軸方向から見た断面において、案内面P4に沿って湾曲する矩形状の開口となっており、小径部53の外径と大径部54の外径との間に形成されている。そして、複数の貫通孔55は、大径部54の周方向に沿って並んで形成されている。
 上記のように構成される推力制御バルブ50は、弁体15の弁座面P1と弁棒16の被弁座面P5との間が密着した状態、つまり閉弁状態において、弁棒16が、弁体15に対して開弁する復路方向に移動すると、弁体15の弁座面P1と弁棒16の被弁座面P5との間が広がっていく。このとき、弁棒16は、その先端部51の小径部53が、弁体15の絞り部21から出現する。小径部53が絞り部21から出現すると、弁体15の弁座面P1と弁棒16の被弁座面P5との間を通過する作動ガスGは、小径部53と被案内面P2におけるガス噴射通路Lとの間に形成される隙間に流入する。そして、隙間に流入した作動ガスGは、複数の貫通孔55を通過して、ノズル部22へ流入し、ノズル部22から噴射される。
 以上のように、実施例2の構成によれば、弁体15の弁座面P1と弁棒16の被弁座面P5との間が離れることで、小径部53が絞り部21から出現し、これにより、複数の貫通孔55が開放される。このため、弁体15の弁座面P1と弁棒16の被弁座面P5との間を流れる作動ガスGを、複数の貫通孔55に好適に流入させることができる。
 また、実施例2の構成によれば、湾曲した矩形状の開口となる貫通孔55の形状を、作動ガスGの噴射量に応じた形状にすることで、作動ガスGの噴射量を適宜調整することが可能となる。
 次に、図6を参照して、実施例3に係る推力制御バルブ60について説明する。図6は、実施例3に係る推力制御バルブの弁棒の先端部を軸方向に直交する面で切った断面図である。なお、実施例3では、実施例1及び2と重複する記載を避けるべく、実施例1及び2と異なる部分についてのみ説明する。実施例2では、弁棒16の先端部51の大径部54に、湾曲する矩形状の開口となる貫通孔55を複数形成したが、実施例3では、弁棒16の先端部51の大径部54に、円形の開口となる貫通孔61を複数形成している。以下、実施例3に係る推力制御バルブ60について説明する。
 図6に示すように、実施例3に係る推力制御バルブ60の弁棒16において、先端部51の大径部54には、ノズル部22へ向けて作動ガスGが流通するガス流通部として機能する複数の貫通孔61が形成されている。各貫通孔61は、大径部54に対し、上流側から下流側に亘って軸方向に貫通形成されている。また、各貫通孔61は、軸方向から見た断面において、円形状の開口となっており、小径部53の外径と大径部54の外径との間に形成されている。そして、複数の貫通孔61は、大径部54の周方向に沿って並んで形成されている。このとき、複数の貫通孔61は、その内径が同径となっている。
 以上のように、実施例3の構成によれば、弁体15の弁座面P1と弁棒16の被弁座面P5との間が離れることで、小径部53が絞り部21から出現し、これにより、複数の貫通孔61が開放される。このため、弁体15の弁座面P1と弁棒16の被弁座面P5との間を流れる作動ガスGを、複数の貫通孔61に好適に流入させることができる。
 また、実施例3の構成によれば、円形状の開口となる貫通孔61の内径を、作動ガスGの噴射量に応じた内径にすることで、作動ガスGの噴射量を適宜調整することが可能となる。
 次に、図7を参照して、実施例4に係る推力制御バルブ70について説明する。図7は、実施例4に係る推力制御バルブの弁棒の先端部を軸方向に直交する面で切った断面図である。なお、実施例4では、実施例1から3と重複する記載を避けるべく、実施例1から3と異なる部分についてのみ説明する。実施例3では、弁棒16の先端部51の大径部54に形成した円形状の開口となる複数の貫通孔61の内径が同径となっていたが、実施例4では、複数の貫通孔61の内径が異径となっている。以下、実施例4に係る推力制御バルブ70について説明する。
 図4を参照すると、ガス噴射通路Lには、作動ガスGをガス噴射通路L内に流入させるガス流入口71が接続されている。ガス流入口71は、弁体15の軸心に対して、径方向から作動ガスGが流入するように接続されている。
 図7に示すように、実施例4に係る推力制御バルブ70の弁棒16において、先端部51の大径部54に貫通形成される複数の貫通孔61は、ガス流入口71に最も近い貫通孔61が最も小径の内径となる貫通孔61aとなっており、ガス流入口71に最も遠い貫通孔61が最も大径の内形となる貫通孔61bとなっている。そして、他の複数の貫通孔61は、最も小径となる貫通孔61aから最も大径となる貫通孔61bへ向かうにつれて、内径が徐々に大きくなっている。
 以上のように、実施例4の構成によれば、ガス流入口71が形成される位置を考慮して、ガス流入口71に近いほうの貫通孔61の内径を小さくし、ガス流入口71に遠いほうの貫通孔61の内径を大きくすることができる。このため、ガス流入口71から流入する作動ガスGのガス噴射通路L内における分布が不均一であっても、複数の貫通孔61を通過してノズル部22から噴射される作動ガスGの噴射分布を均一にすることができる。
 なお、実施例4では、実施例3の貫通孔61に適用して説明したが、実施例1のV溝31、または実施例2の貫通孔55に適用してもよい。
 次に、図8及び図9を参照して、実施例5に係る推力制御バルブ80について説明する。図8は、実施例5に係る推力制御バルブを軸方向に沿って切った断面図である。図9は、実施例5に係る推力制御バルブの整流板を軸方向に直交する面で切った断面図である。なお、実施例5では、実施例1から4と重複する記載を避けるべく、実施例1から4と異なる部分についてのみ説明する。実施例5では、弁棒16の弁部26の上流側に整流板81が取り付けられている。以下、実施例5に係る推力制御バルブ80について説明する。
 図8に示すように、弁棒16は、弁部26のガス流れ方向の上流側に設けられる整流板81を有している。整流板81は、円盤状に形成され、その外周面が、絞り部21の上流側におけるガス噴射通路Lの内周面に摺接している。また、整流板81は、ガス流入口71の下流側に配置されている。図9に示すように、整流板81には、作動ガスGが流通する複数の整流用貫通孔82が形成されている。各整流用貫通孔82は、整流板81に対し、上流側から下流側に亘って軸方向に貫通形成されている。また、各整流用貫通孔82は、軸方向から見た断面において、円形状の開口となっており、弁部26の外周面とガス噴射通路Lの内周面との間に形成されている。そして、複数の整流用貫通孔82は、整流板81の周方向に沿って並んで形成されている。このとき、複数の整流用貫通孔82は、その内径が同径となっている。
 以上のように実施例5の構成によれば、弁体15の弁座面P1と弁棒16の被弁座面P5との間との間に向かう作動ガスGを、整流板81により整流することができるため、弁座面P1と被弁座面P5との間を通過して噴射される作動ガスGの噴射分布をより均一にすることができる。
 なお、実施例5では、整流板81に形成される複数の整流用貫通孔82を同径としたが、ガス流入口71が形成される位置を考慮して、ガス流入口71に近いほうの整流用貫通孔82の内径を小さくし、ガス流入口71に遠いほうの整流用貫通孔82の内径を大きくしてもよい。また、整流板81は、実施例5に限らず、実施例1から4のいずれに適用してもよい。
 次に、図10を参照して、実施例6に係る推力制御バルブ90について説明する。図10は、実施例6に係る推力制御バルブの弁棒の先端部を軸方向に直交する面で切った断面図である。なお、実施例6では、実施例1から5と重複する記載を避けるべく、実施例1から5と異なる部分についてのみ説明する。実施例2では、弁棒16の先端部51の大径部54に複数の貫通孔55を貫通形成したが、実施例6では、弁棒16の先端部51の大径部54にガス流通溝91を形成している。以下、実施例6に係る推力制御バルブ90について説明する。
 図10に示すように、実施例6に係る推力制御バルブ90の弁棒16において、先端部51の大径部54には、ノズル部22へ向けて作動ガスGが流通するガス流通部として機能する複数のガス流通溝91が形成されている。各ガス流通溝91は、大径部54の外周面に対し、上流側から下流側に亘って軸方向に形成されている。また、各ガス流通溝91は、軸方向から見た断面において、凹状に没入する形状となっている。そして、複数のガス流通溝91は、大径部54の周方向に沿って並んで形成されている。
 以上のように、実施例6の構成によれば、弁体15の弁座面P1と弁棒16の被弁座面P5との間が離れることで、小径部53が絞り部21から出現し、これにより、複数のガス流通溝91が開放される。このため、弁体15の弁座面P1と弁棒16の被弁座面P5との間を流れる作動ガスGを、複数のガス流通溝91に好適に流入させることができる。
 また、実施例6の構成によれば、ガス流通溝91の形状を、作動ガスGの噴射量に応じた形状にすることで、作動ガスGの噴射量を適宜調整することが可能となる。
 1 飛翔体
 4 ノーズコーン
 5 頭部体
 10 推力制御バルブ
 15 弁体
 16 弁棒
 21 絞り部
 22 ノズル部
 25 先端部
 26 弁部
 31 V溝
 32 突起部
 33 閉塞部
 50 推力制御バルブ(実施例2)
 51 先端部(実施例2)
 53 小径部
 54 大径部
 55 貫通孔
 60 推力制御バルブ(実施例3)
 61 貫通孔(実施例3)
 70 推力制御バルブ(実施例4)
 71 ガス流入口
 80 推力制御バルブ(実施例5)
 81 整流板
 82 整流用貫通孔
 90 推力制御バルブ(実施例6)
 91 ガス流通溝
 L ガス噴射通路
 G 作動ガス
 d 閉塞部の長さ
 P1 弁座面
 P2 被案内面
 P3 ノズル面
 P4 案内面
 P5 被弁座面

Claims (13)

  1.  噴射される作動ガスが流通するガス噴射通路が形成され、前記ガス噴射通路に弁座面が形成される弁体と、
     前記ガス噴射通路の内部に設けられ、前記弁座面に当接する被弁座面を有する弁棒と、を備え、
     前記弁棒の外周面には、前記弁体の前記ガス噴射通路の内周面に接する案内面が形成されていることを特徴とする推力制御バルブ。
  2.  前記案内面は、前記作動ガスのガス流れ方向において、前記被弁座面の下流側に形成されていることを特徴とする請求項1に記載の推力制御バルブ。
  3.  前記弁棒は、前記案内面が形成される前記被弁座面の下流側の先端部に、前記作動ガスが流通するガス流通部が形成されていることを特徴とする請求項2に記載の推力制御バルブ。
  4.  前記ガス流通部は、上流側を頂部とし、前記頂部から下流側に向かって広がるV溝であることを特徴とする請求項3に記載の推力制御バルブ。
  5.  前記ガス流通部は、前記弁棒の中心を通るように交差させた複数の前記V溝であることを特徴とする請求項4に記載の推力制御バルブ。
  6.  前記先端部は、前記V溝の頂部と前記被弁座面との間に設けられる閉塞部を有していることを特徴とする請求項4または5に記載の推力制御バルブ。
  7.  前記ガス流通部は、前記ガス流れ方向の上流側から下流側に亘って、前記先端部に貫通形成される貫通孔であることを特徴とする請求項3に記載の推力制御バルブ。
  8.  前記貫通孔は、前記ガス流れ方向に直交する面で切った断面が、前記案内面に沿って湾曲する矩形であることを特徴とする請求項7に記載の推力制御バルブ。
  9.  前記貫通孔は、前記ガス流れ方向に直交する面で切った断面が、円形であることを特徴とする請求項7に記載の推力制御バルブ。
  10.  前記ガス流通部は、前記ガス流れ方向の上流側から下流側に亘って前記先端部の外周面に形成された溝であることを特徴とする請求項3に記載の推力制御バルブ。
  11.  前記ガス噴射通路には、前記作動ガスを前記ガス噴射通路内に流入させるガス流入口が接続されており、
     前記ガス流入口に近いほうの前記ガス流通部の流路面積は、前記ガス流入口に遠いほうの前記ガス流通部の流路面積に比して小さいことを特徴とする請求項3から10のいずれか1項に記載の推力制御バルブ。
  12.  前記ガス流れ方向において、前記被弁座面の上流側に設けられ、前記ガス噴射通路内を流れる前記作動ガスを整流する整流板をさらに備えることを特徴とする請求項1から11のいずれか1項に記載の推力制御バルブ。
  13.  請求項1から12のいずれか1項に記載の推力制御バルブを備えることを特徴とする飛翔体。
PCT/JP2013/078381 2013-08-12 2013-10-18 推力制御バルブ及び飛翔体 WO2015022758A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES13891432.0T ES2666669T3 (es) 2013-08-12 2013-10-18 Válvula de control de empuje y objeto volador
NO13891432A NO3009650T3 (ja) 2013-08-12 2013-10-18
US14/908,349 US10138844B2 (en) 2013-08-12 2013-10-18 Thrust control valve and flying object
EP13891432.0A EP3009650B1 (en) 2013-08-12 2013-10-18 Thrust control valve and flying object
PL13891432T PL3009650T3 (pl) 2013-08-12 2013-10-18 Zawór kontroli ciągu oraz obiekt latający

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013167921A JP6129682B2 (ja) 2013-08-12 2013-08-12 推力制御バルブ及び飛翔体
JP2013-167921 2013-08-12

Publications (1)

Publication Number Publication Date
WO2015022758A1 true WO2015022758A1 (ja) 2015-02-19

Family

ID=52468156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078381 WO2015022758A1 (ja) 2013-08-12 2013-10-18 推力制御バルブ及び飛翔体

Country Status (7)

Country Link
US (1) US10138844B2 (ja)
EP (1) EP3009650B1 (ja)
JP (1) JP6129682B2 (ja)
ES (1) ES2666669T3 (ja)
NO (1) NO3009650T3 (ja)
PL (1) PL3009650T3 (ja)
WO (1) WO2015022758A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2583570A (en) * 1945-06-28 1952-01-29 Clarence N Hickman Nozzle for rocket motors
US3302890A (en) * 1964-07-10 1967-02-07 Atlantic Res Corp Rocket nozzle
JPH08312463A (ja) * 1995-05-11 1996-11-26 Soc Europ Propulsion <Sep> パルス型ロケットエンジン
JP2002039014A (ja) * 2000-07-21 2002-02-06 Kawasaki Heavy Ind Ltd ノズル装置
JP2003336545A (ja) * 2002-05-21 2003-11-28 Mitsubishi Heavy Ind Ltd サイドスラスタバルブ及びサイドスラスタ装置
JP2004251181A (ja) 2003-02-19 2004-09-09 Kawasaki Heavy Ind Ltd 推力制御バルブ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317184A (en) * 1967-05-02 Pintle valve and flow collimator
FR1012021A (fr) * 1949-05-19 1952-07-02 Soc Tech De Rech Ind Perfectionnements aux réacteurs
US3182447A (en) * 1957-02-27 1965-05-11 Thiokol Chemical Corp Reaction motor
NL111420C (ja) * 1958-12-31
US3210928A (en) * 1960-08-19 1965-10-12 Joseph J Zelinski Fuel cooled combustor assembly
US3914935A (en) * 1969-03-17 1975-10-28 Rockwell International Corp Dual area nozzle
GB1480723A (en) * 1971-05-06 1977-07-20 Rockwell International Corp Dual area solid propellant rocket nozzle
US4478040A (en) * 1982-09-28 1984-10-23 Thiokol Corporation Dual area nozzle actuating mechanical actuation system
FR2594490B1 (fr) * 1986-02-18 1989-09-15 Aerospatiale Dispositif pour faire varier la poussee d'un propulseur a propergol solide
US4826104A (en) * 1986-10-09 1989-05-02 British Aerospace Public Limited Company Thruster system
FR2740106B1 (fr) * 1995-10-20 1998-01-09 Europ Propulsion Dispositif pour le pilotage d'engin spatial par vannage de gaz par tuyere mobile
US6988705B1 (en) * 2002-09-24 2006-01-24 Hoose Karl V Fluent control valve
US8016211B2 (en) * 2007-03-30 2011-09-13 Aerojet-General Corporation Pintle-controlled propulsion system with external ring actuator
FR2933745B1 (fr) * 2008-07-11 2011-07-01 Snecma Moteur-fusee a propergol liquide avec obturateur de chambre propulsive.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2583570A (en) * 1945-06-28 1952-01-29 Clarence N Hickman Nozzle for rocket motors
US3302890A (en) * 1964-07-10 1967-02-07 Atlantic Res Corp Rocket nozzle
JPH08312463A (ja) * 1995-05-11 1996-11-26 Soc Europ Propulsion <Sep> パルス型ロケットエンジン
JP2002039014A (ja) * 2000-07-21 2002-02-06 Kawasaki Heavy Ind Ltd ノズル装置
JP2003336545A (ja) * 2002-05-21 2003-11-28 Mitsubishi Heavy Ind Ltd サイドスラスタバルブ及びサイドスラスタ装置
JP2004251181A (ja) 2003-02-19 2004-09-09 Kawasaki Heavy Ind Ltd 推力制御バルブ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3009650A4

Also Published As

Publication number Publication date
EP3009650A1 (en) 2016-04-20
ES2666669T3 (es) 2018-05-07
JP6129682B2 (ja) 2017-05-17
EP3009650B1 (en) 2018-03-21
US20160208743A1 (en) 2016-07-21
US10138844B2 (en) 2018-11-27
NO3009650T3 (ja) 2018-08-18
PL3009650T3 (pl) 2018-08-31
JP2015036531A (ja) 2015-02-23
EP3009650A4 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
US10427501B2 (en) Outlet device
RU2711718C2 (ru) Шумопонижающий затвор диффузора
ES2708925T3 (es) Sistema de moldeo por inyección de canal de fusión caliente de coinyección
EP3371497B1 (en) Balanced valve trim and method of reducing stem forces on a valve stem
EP3658808B1 (en) Improved noise attenuation trim assembly
JP5951557B2 (ja) 蒸気弁
CN105143659A (zh) 燃料喷射阀及其制造方法
US9358558B2 (en) Spray gun
WO2015022758A1 (ja) 推力制御バルブ及び飛翔体
JP5838107B2 (ja) 燃料噴射弁
EP2695678A1 (en) Spray gun
JP2017061869A (ja) 燃料噴射弁
WO2015068534A1 (ja) 燃料噴射弁
CN109073100A (zh) 飞机引擎燃料回路阀滑块
JP2014148956A (ja) 燃料噴射弁
JP4490840B2 (ja) 燃料噴射弁
EP3335528B1 (en) Nozzle with elliptical orifice inlet profile
JP5511862B2 (ja) バーナ用ガスノズル装置
WO2018198309A1 (ja) 燃料噴射弁
CN114876689B (zh) 用于计量流体的阀
JP6771403B2 (ja) 燃料噴射装置
WO2017098905A1 (ja) 燃料噴射弁及びその製造方法
CN107345625B (zh) 安全泄放装置、瓶阀及相应的压力瓶
EP3616877B1 (en) Valve
EP3319755B1 (en) Nozzle tip manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891432

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013891432

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14908349

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE