WO2015021900A1 - 带标签中空成形容器以及中空容器成形方法 - Google Patents

带标签中空成形容器以及中空容器成形方法 Download PDF

Info

Publication number
WO2015021900A1
WO2015021900A1 PCT/CN2014/084151 CN2014084151W WO2015021900A1 WO 2015021900 A1 WO2015021900 A1 WO 2015021900A1 CN 2014084151 W CN2014084151 W CN 2014084151W WO 2015021900 A1 WO2015021900 A1 WO 2015021900A1
Authority
WO
WIPO (PCT)
Prior art keywords
label
container
thickness
mold
hollow molded
Prior art date
Application number
PCT/CN2014/084151
Other languages
English (en)
French (fr)
Inventor
船户孝
上田隆彦
岩濑祐一
Original Assignee
优泊公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 优泊公司 filed Critical 优泊公司
Priority to US14/911,837 priority Critical patent/US20160251116A1/en
Priority to CN201480001721.2A priority patent/CN104640776B/zh
Publication of WO2015021900A1 publication Critical patent/WO2015021900A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • B65D23/0842Sheets or tubes applied around the bottle with or without subsequent folding operations
    • B65D23/0864Applied in mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/22Boxes or like containers with side walls of substantial depth for enclosing contents
    • B65D1/26Thin-walled containers, e.g. formed by deep-drawing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • B29C49/2408In-mould lining or labelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/40Details of walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • B29C2049/2412Lining or labelling outside the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • B29C2049/2414Linings or labels, e.g. specific geometry, multi-layered or material
    • B29C2049/2429Multilayered labels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • B29C2049/2414Linings or labels, e.g. specific geometry, multi-layered or material
    • B29C2049/24302Label materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • B29C2049/2464Means for verifying or keeping the position of the lining or label, e.g. sensors, or attachment on mould wall
    • B29C2049/2472Means for verifying or keeping the position of the lining or label, e.g. sensors, or attachment on mould wall using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C2049/4879Moulds characterised by mould configurations
    • B29C2049/4882Mould cavity geometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles

Definitions

  • the present invention relates to a labelled hollow formed container and a method of manufacturing the same.
  • a blank label (label not showing information) or a label displaying information (hereinafter collectively referred to as "label") is embedded in the mold, and then A resin molded article such as a container is molded in the mold by injection molding, hollow molding, differential pressure molding, foam molding, or the like, and molded into a resin molded article integrally formed with a label, that is, a labeled hollow molded container.
  • the general structure of the label used at this time is a structure in which printing is applied to one surface of the substrate and an adhesive layer is provided on the other surface of the substrate.
  • the substrate of the label paper, thick paper, unstretched film, stretched film, synthetic paper, aluminum vapor-deposited film, or the like can be used. Further, as the printing method of the label, gravure printing, offset printing, flexographic printing, or the like can be performed. Further, the above-mentioned base material is appropriately combined with the above-described printing method and used for practical use.
  • a hollow-shaped container having a single layer or a plurality of resin layers which is produced by a blow molding method using a thermoplastic resin such as polyethylene, polypropylene, polyester, or polyamide, is suitably used.
  • a thermoplastic resin such as polyethylene, polypropylene, polyester, or polyamide.
  • the conventional labelled hollow molded container has a label embedded in the container body portion. Therefore, the container thickness of the label bonding portion becomes extremely thin compared to the container thickness of the label non-bonding portion.
  • the label boundary portion of the labelled hollow molded container is notched. For these reasons, there is a problem in that the labelled hollow molded container is inferior in impact resistance, for example, when the labeled hollow molded container in a state in which the contents are filled is dropped, the container is easily broken.
  • the labelled hollow molded container filled with the contents is placed in a corrugated cardboard box for transportation, and when the corrugated cardboard box is stacked in a plurality of layers, there is a problem that the labelled hollow molded container is easily broken when transported. .
  • the reason for these problems is that the labelled hollow shaped container is broken along the label boundary of the container, the larger the inner volume of the labelled hollow shaped container, the thinner the container of the labelled hollow shaped container, or the thicker the label thickness The more obvious the problem.
  • a method for improving the impact resistance of the labelled hollow molded container a method of providing a rib on the outer side of the container main body portion along the edge of the label is proposed (for example, refer to Patent Documents 1 and 2); Or a method of label thickness (for example, refer to Patent Document 3); a method of chamfering an end face of a label (for example, refer to Patent Documents 4 and 5); and a thermoplastic resin composition having a memory effect (ME) of a resin in a specific range, A method in which the label attachment portion is increased in angle with the concave portion of the container surface (for example, refer to Patent Documents 6 and 7).
  • a method of providing a rib on the outer side of the container main body portion along the edge of the label is proposed (for example, refer to Patent Documents 1 and 2); Or a method of label thickness (for example, refer to Patent Document 3); a method of chamfering an end face of a label (for example, refer to Patent Documents 4 and 5); and a thermoplastic resin
  • Patent Document 1 Japanese Patent Publication No. 2000-247334
  • Patent Document 2 Japanese Patent Publication No. 2002-179041
  • Patent Document 3 Japanese Special Publication No. 2012-180096
  • Patent Document 4 Japanese Special Publication No. 2001-39427
  • Patent Document 5 Japanese Patent Laid-Open No. 8-142171
  • Patent Document 6 Japanese Patent Laid-Open No. 7-100906
  • Patent Document 7 Japanese Special Publication No. 2002-52601
  • thermoplastic resin composition in which the memory effect (ME) of the resin is in a specific range under a specific condition to increase the angle of the concave portion of the label attachment portion and the surface of the container, in the case of attaching a label having a large thickness
  • the label attachment portion is larger than the concave portion on the surface of the container, and the impact resistance cannot be improved.
  • An object of the present invention is to provide a labelled hollow molded container having excellent impact resistance and a method for producing the same, which solve the above problems.
  • the present inventors have found that the wall portion thickness variation amount X of the cross-section of the labeled hollow molded container obtained by observation with an optical electron microscope satisfies the following formula (1), and the impact resistance of the container is improved. Thus, the present invention has been achieved.
  • a labelled hollow molded container wherein the container is formed of a thermoplastic resin composition, and the amount of change in thickness of the main body portion of the cross section of the container obtained by observation with an optical microscope is satisfied. Said I), and the value of X is below 90,
  • Container thickness of the non-sticking part of the label
  • the molding machine mold in a method of forming a labeled hollow container, has a label embedding portion, and the label embedding portion has a structure capable of providing a label filling recess suitable for the label shape.
  • the label is inserted into the label insertion portion of the mold, and then the thermoplastic resin composition in a moldable state is introduced into the mold to perform container molding.
  • the present invention has the following constitution.
  • a labelled hollow shaped container characterized in that it comprises a label and a hollow shaped container
  • the container is formed of a thermoplastic resin composition.
  • the amount of change in the thickness of the main body portion of the cross section of the container obtained by observation with an optical microscope X satisfies the following formula (1), and the value of X is 90 or less.
  • Container thickness of the non-sticking part of the label
  • thermoplastic resin composition contains a polyolefin resin composition.
  • a molding method of a labelled hollow container characterized in that the molding machine mold has a label embedding portion having a structure capable of providing a label filling recess suitable for the shape of the label, and inserting the label into the mold The label inserting portion is then introduced into the mold into a moldable thermoplastic resin composition for container molding.
  • thermoplastic resin composition comprises a polyolefin resin composition.
  • Fig. 1 is an example of a cross-sectional view of a hollow molded container of the present invention.
  • Fig. 2 is another example of a cross-sectional view of the hollow molded container of the present invention.
  • Fig. 3 is a view showing an example of a state in which a mold is loaded in a mold of the present invention.
  • Fig. 4 is an example of a cross-sectional view showing a state in which a container is molded using the mold of the present invention.
  • Fig. 5 is an example of a cross-sectional view showing a state in which a container is molded using a conventional mold.
  • Fig. 6 shows a jig for measuring a compression ratio used in the embodiment. Description of the reference numerals
  • means a range including the numerical values described before and after the minimum value and the maximum value.
  • (meth)acrylic acid includes both acrylic acid and methacrylic acid.
  • main component means a component having the highest content based on the mass of each component contained in the target composition.
  • the container is formed of a thermoplastic resin composition, and the amount of change in the thickness of the main body portion of the cross section of the container obtained by observation with an optical microscope satisfies the following formula (1), and X The value is below 90.
  • the "labelled hollow molded container” refers to a resin molded article including a label and a container having a hollow portion.
  • the shape of the resin molded article is a cup shape, a bottle shape, or the like, and the molding method includes injection. Forming, direct blow molding, stretch blow molding, pressure forming, and the like.
  • the amount of change in the wall thickness of the main body portion X is -50 ⁇ m or more, preferably -20 ⁇ m or more, and more preferably ⁇ or more, from the viewpoint of easily taking out the labelled hollow molded container from the mold. Further, from the viewpoint of suppressing stress at the time of dropping from concentrating on the container due to the end portion of the label, the value of X is preferably 90 ⁇ m or less, preferably 60 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the value of X is described as the thickness of the label of the label bonding portion as ⁇ . It is less than ⁇ , preferably ⁇ /2 ⁇ or less, more preferably ⁇ /3 ⁇ or less.
  • Label thickness of the label-bonding part 1 ⁇ container thickness ⁇ and container thickness of the non-sticking part of the label ⁇ The measurement was performed by cross-sectional observation and image processing based on an optical microscope.
  • the observation sample was taken as follows: In the labelled hollow molded container, the container body portion was cut at any position including the label boundary, and cooled to a temperature below -60 ° C with liquid nitrogen, and the razor blade was placed in vertical contact. The sample on the glass plate was cut and the sample was cut to prepare a sample for cross-section measurement. The cut surface was observed at any magnification (e.g., 50 to 500 times magnification:) which was easily observed by an optical microscope. Further, the observed area is imported into the computer as an image.
  • magnification e.g., 50 to 500 times magnification:
  • the thickness of the container shown in Figs. 1 and 2 was measured on a computer, and the label thickness (T) of the label bonding portion, the thickness of the container, and the container thickness ( ⁇ :) of the non-bonding portion of the label were determined.
  • the label thickness of the label bonding portion and the thickness of the container were measured at an angle of l ⁇ 0.05 mm from the outer edge of the label along the label surface. Further, the container thickness (Z) of the label non-bonding portion was similarly measured at a distance of 1 ⁇ 0.05 mm outward from the outer edge of the label along the label surface.
  • the label thickness 0 does not include the thickness of the adhesive layer (B). This is because when the labelled hollow molded container is molded, the thermoplastic resin constituting the adhesive layer (B) is melted and integrated with the thermoplastic resin which is a material of the hollow molded container, and the boundary thereof is not clear.
  • the labeled hollow molded container of the present invention is formed by using a mold having a label insertion portion having a structure for providing a label filling recess suitable for the shape of the label.
  • the labelled hollow molded container is formed by a method of integrating the label while blow molding.
  • the labeled hollow molded container of the present invention is excellent in impact resistance, and the labelled hollow molded container is less likely to be damaged when it is filled with the contents.
  • the labelled hollow molded container filled with the contents is loaded into a corrugated cardboard box for transportation, When the stacker is transported in a plurality of layers, the labelled hollow molded container tends to be less likely to be damaged.
  • the mold used for molding the hollow molded container of the present invention preferably has a label inserting portion having a structure in which a recess for label loading suitable for the shape of the label can be provided.
  • the label filling recess of "the shape suitable for the label” means that the label can be accommodated in the concave portion provided in the mold without overflowing from the concave portion, and the label filling recess does not necessarily have to conform to the shape of the label.
  • the depth d of the label filling recess preferably satisfies the following formula (2).
  • the depth d of the label filling recess is preferably ⁇ or more, and more preferably 40 ⁇ m or more, from the viewpoint of improving the impact resistance of the labelled hollow molded container.
  • the depth d is preferably 200 ⁇ m or less, and more preferably 150 ⁇ m or less from the viewpoint of easiness of mold production and easy removal of the labelled hollow molded container from the mold.
  • the mold which is preferably used in the molding of the hollow molded container of the present invention has a recess for label filling as described above, and the depth d of the recess is a non-accidental value of non-zero. Therefore, in the labeled hollow molded container obtained by using the mold, the label The shape protruding from the surface of the container of the label non-bonding portion as shown in Figs. 1 and 2 is exhibited, and in the formula (1), there is an X ⁇ T relationship.
  • the above mold can be produced by a known method in addition to the recess for label loading.
  • a method of providing a recess for label loading in the above mold is not particularly limited, and for example, It is provided by directly engraving the recess for label filling of the mold depth d, and it is also possible to separate the portion corresponding to the recess for filling as a mold insert and to load the mold insert from the surface of the chamber of the mold only by retracting the label.
  • the depth d of the recess is set.
  • the mold of the present invention may be provided with a suction hole 7, and in the case of a mold in the form of a mold insert, the mold inserts may be placed between each other.
  • the gap or the gap between the mold insert and the mold body is set wider as a gap.
  • the diameter of the suction hole and/or the width of the gap are preferably 1 mm or more, and more preferably 2 mm or more from the viewpoint of ensuring the flow rate of the air to be vacuumed.
  • the diameter of the suction hole and/or the width of the gap is preferably 10 mm or less, more preferably 5 mm or less.
  • the label used in the present invention comprises at least a base material (A) and an adhesive layer (B), and has at least two layers of a structure in which an adhesive layer (B) is laminated on one surface of the base material (A).
  • Any material, configuration, and production method may be employed as long as the label is inserted into the mold and the thermoplastic resin composition in a molten state is introduced into the mold to form the labeled hollow molded container of the present invention.
  • the base layer (A) of the label may have a single layer structure or a multilayer structure of two or more layers.
  • printed information can be applied to the surface of the substrate A) that is not in contact with the adhesive layer B).
  • a recording layer suitable for printing may be provided on the surface of the substrate (A) that is not in contact with the bonding layer (B), and printing is applied through the recording layer C).
  • the thickness t of the label used in the present invention is preferably 20 ⁇ m or more, more preferably 40 ⁇ m or more, from the viewpoint of being easily fixed at an accurate position when the label inserter is inserted into the mold, or is not easily wrinkled. It is 60 ⁇ or more.
  • the gap between the label and the hollow molded container does not generate a void or a thin portion, thereby improving the fall resistance of the molded article or reducing the drop strength.
  • the viewpoint of the processing cost of the mold is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, and further preferably 150 ⁇ m or less.
  • the thickness t of the label is based on the ⁇ method of JIS K 7130: 1999 ("Plastic-film and sheet-thickness measurement method thousand, y- ⁇ and 1, ⁇ "), using a micrometer The measurement is performed mechanically.
  • the label thickness T of the label bonding portion in the formula (1) is usually smaller than the value of the label thickness t in the formula (2).
  • the label preferably has a void inside, and when the resin which is melted when the label is formed into a hollow molded container is pressed against the bonding surface of the label, the label is compressed in the thickness direction.
  • the label thickness ring I] in the formula (2) is an overall thickness of the label including the thickness of the adhesive layer (B), and the adhesive layer (B) of the label is melted and The thermoplastic resin composition of the hollow molded container is mixed and integrated, so that the label thickness ⁇ of the label bonding portion in the formula does not consider the adhesive layer
  • the compression ratio c of the label obtained by the compression ratio measuring method described later at a pressure of 3.138 MPa is preferably 30% or more, and more preferably 45% or more.
  • the compression ratio c is preferably 60% or less, more preferably 55% or less.
  • thermoplastic resin composition constituting the hollow molded container of the present invention When the thermoplastic resin composition constituting the hollow molded container of the present invention is introduced into a mold to form a container, the back pressure of the resin becomes a compressive force, and the label is fixed in a state of being compressed in the thickness direction. Therefore, when the compression ratio c is higher than the lower limit value, the amount of change in the thickness of the main body portion X can be made small. Then, when the labelled hollow molded container is taken out from the mold, the aforementioned compressive force of the label is released, so that the label expands in the thickness direction. Therefore, a container in which the label surface protrudes from the surface of the hollow molded container (gp, X ⁇ T) can be obtained.
  • the compression ratio c of the label at a pressure of 3.138 MPa is measured by using the measuring apparatus shown in Fig. 6 to measure the initial film thickness e at the time when the compressive stress is 0 and the compressive stress on the surface of the film.
  • the film thickness f after pressurization at a time of 3.138 MPa (32 k g f/cm 2 ) was calculated by the following formula.
  • the film thicknesses e and f were measured using a CCD laser displacement sensor.
  • the surface roughness of the label due to the unevenness of the surface is calculated as follows: Using JIS ⁇ 0633:2001 ("Product Geometry Specification (GPS) - Surface Structure: Contour Method - Surface Feature Evaluation Rules and Procedures (Product Geometry Features) (GPS) - Surface properties: skating curve method - surface trait evaluation (7) method and ⁇ hand shun)
  • the stylus type surface roughness measuring machine specified in ":) measures the label surface
  • JIS ⁇ 0601 : 2001 measures the label surface
  • JIS ⁇ 0601 JIS ⁇ 0601 : 2001
  • Product Geometric Quantity Specification (GPS) - Surface Structure: Contour Method - Terms, Definitions, and Surface Structure Parameters Product Geometry (GPS) - Surface Properties: Turning Curves - Terms, Definitions and Surface Properties ⁇ ⁇ )
  • the surface of the adhesive layer (B) of the label with irregularities of appropriate size, when the label is attached to the mold, the air enclosed between the label and the container can be quickly discharged to the outside through the concave portion, and the formation of the hollow molded container with the label can be suppressed. Bubbles are generated (bubbling on the label).
  • the arithmetic mean roughness Ra of the surface of the adhesive layer (B) of the label is preferably 0.5 ⁇ m or more, and more preferably 1.5 ⁇ m or more from the viewpoint of suppressing bubbles.
  • the roughness Ra is preferably ⁇ or less, more preferably 5 ⁇ m or less.
  • the method of setting the arithmetic mean roughness Ra of the surface of the adhesive layer of the label to the above range may be a method of imparting a shape by an embossing roll during or after molding of the adhesive layer (B).
  • the surface of the label opposite to the adhesive layer (B) having irregularities of appropriate size, the printing suitability of the surface can be improved.
  • the arithmetic mean roughness Ra of the surface on the side opposite to the adhesive layer is preferably 0.15 ⁇ m or more, and more preferably 0.2 ⁇ m or more.
  • the roughness Ra is preferably 2 ⁇ m or less, and more preferably ⁇ or less, from the viewpoint of suppressing appearance defects due to roughening of the surface.
  • the method of setting the arithmetic mean roughness Ra of the surface of the label opposite to the adhesive layer in the above range includes a method of mixing the inorganic fine particles into the substrate (A) and stretching the film to form micropores on the surface. Or a method of providing a recording layer C) to be described later on the surface of the substrate (A) that is not in contact with the adhesive layer (B).
  • the adhesive layer (B) of one of the adjacent two labels and the other sheet in the case where the labels overlap
  • the coefficient of static friction between the surface of the label on the opposite side of the bonding layer (B) is low.
  • the static friction coefficient and the dynamic friction coefficient of the label can be measured based on JIS K 7125 : 1999 ("Plastic-film and sheet-friction coefficient test method":).
  • the static friction coefficient is preferably in the range of 0.55 to 1.0, and more preferably in the range of 0.7 to 0.9.
  • the static friction coefficient is 0.55 or more, the label drop failure due to the label being too smooth tends to be suppressed.
  • the static friction coefficient is 1.0 or less, the separation between the labels is good, and the failure of feeding the two labels to the mold tends to be suppressed.
  • the dynamic friction between the adhesive layer (B) of one of the adjacent two labels and the surface of the other label opposite to the adhesive layer (B) is preferably in the range of 0.3 to 1.0, more preferably in the range of 0.4 to 0.9.
  • the method of controlling the static friction coefficient or the dynamic friction coefficient of the label to the above range includes directly reducing the friction by setting the surface roughness of the surface of the adhesive layer (B) of the label and the surface on the opposite side to the above range. And a method of suppressing adsorption by static electricity by providing an antistatic function to at least one of the outermost layers of the label, and it is preferable to use the above two methods in combination. (printing adaptability of labels)
  • the label which can be used in the present invention can impart printing adaptability to the surface of the label opposite to the adhesive layer (B) by various methods.
  • the surface of the substrate A) opposite to the adhesive layer (B) may be subjected to surface oxidation treatment, or the coating treatment may be carried out to provide the recording layer C:).
  • the above two methods are used in combination.
  • the surface oxidation treatment method includes at least one treatment method selected from the group consisting of corona discharge treatment, flame treatment, plasma treatment, glow discharge treatment, and ozone treatment.
  • corona discharge treatment is preferred.
  • the processing amount thereof is preferably 10 ⁇ 200W 'min / m 2 (600 ⁇ 12,000J / m 2), more preferably 20-180W- Minutes / m 2 (1,200 - 10,800 J/m 2 ).
  • the method of providing the recording layer (C) includes a method of applying a surface treatment liquid containing at least an antistatic agent and a polymer binder, and drying it as necessary to form a recording layer (C).
  • antistatic agent examples include low molecular weight represented by stearic acid monoglyceride, mercapto diethanolamine, sorbitan monolaurate, mercaptobenzenesulfonate, and mercaptodiphenyl ether sulfonate.
  • nonionic polymer type antistatic agent such as polyethylene glycol, polyoxyethylene diamine, polyvinyl benzyl trimethyl chlorination
  • a quaternary ammonium salt type copolymer such as ammonium or poly(methyl:) dimethylaminoethyl acrylate quaternary ammonium salt
  • the quaternary ammonium salt type copolymer is more preferable because it has good antistatic properties and has little influence on the antistatic property due to environmental humidity.
  • the content of the antistatic agent in the recording layer (C) is preferably 5% by mass or more, and more preferably 10% by mass or more based on the solid content, from the viewpoint of exhibiting the antistatic property.
  • the content is preferably 75 mass based on the solid content. % or less, more preferably 50% by mass or less.
  • polymer binder examples include polyethyleneimine, fluorenyl-modified polyethyleneimine having a carbon number of 1 to 12, poly(ethyleneimine-urea), and poly(ethyleneimine-urea).
  • Polyethyleneimine polymers such as amine adducts, polyamine polyamides, ethyleneimine adducts of polyamine polyamides, and epichlorohydrin adducts of polyamine polyamides; acrylate copolymers, methacrylic acid An acrylate-based polymer such as an ester copolymer, an acrylamide-acrylate copolymer, an acrylamide-acrylate-methacrylate copolymer, a polyacrylamide derivative, and an oxazoline group-containing acrylate polymer; Polyvinylpyrrolidone, polyethylene glycol, vinyl acetate resin, polyurethane resin, polyether resin, polyester resin, urea resin, terpene resin, petroleum resin, ethylene-vinyl acetate copolymer
  • the content of the polymer binder in the recording layer (C) is preferably 10% by mass or more, and more preferably 20% by mass or more, in terms of solid content, from the viewpoint of improving the adhesion of the printing ink.
  • the content is preferably 75 mass% or less, and more preferably 50 mass% or less in terms of solid content, from the viewpoint of the prevention of the adhesion of the label.
  • the recording layer of the label may also contain pigment particles as needed.
  • the pigment particles the oil absorbing property is improved, the fixing property of the printing ink is improved, the surface feeling/gloss is improved as a body pigment, the whiteness is improved as a white pigment, the surface unevenness is imparted to improve the blocking resistance, and the ultraviolet reflective material is used. Further, the function of improving light resistance, weather resistance, and the like can be appropriately selected and used.
  • pigment particles a fine powder of an organic substance or an inorganic substance can be used.
  • silicon oxide, calcium carbonate, calcined clay, titanium oxide, zinc oxide, barium sulfate, diatomaceous earth, acrylic particles, styrene particles, or the like can be used.
  • the particle diameter of the pigment particles which the recording layer (C) of the label can contain is determined by a laser diffraction method.
  • the volume average particle diameter indicates that the volume average particle diameter of the pigment particles is preferably 20 ⁇ m or less, and more preferably 15 ⁇ m or less from the viewpoint that the pigment particles are less likely to fall off from the recording layer (C).
  • the content of the pigment particles in the recording layer (C) is preferably 0 to 0, from the viewpoint that the content of the antistatic agent and the polymer binder is relatively sufficient, the surface of the recording layer (C) is not easily charged, and the adhesion of the printing ink is high. 25 mass%, more preferably 0 to 15 mass%, and further preferably 0 to 5 mass%.
  • the above components may be dissolved in a separate solvent system or a mixed solvent system selected from an organic solvent selected from the group consisting of water, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, ethyl acetate, toluene, xylene, etc., and used as a surface treatment in a solution state.
  • the agent is either dispersed or used as a surface treatment agent in an emulsion or dispersion state. Among them, if it is used in the form of an aqueous solution, the process management is easy, and therefore it is preferable.
  • the solution concentration is usually 0.1 to 20% by mass, preferably 0.2 to 10% by mass.
  • a mouth mode coater As a coating method of the surface treatment agent, a mouth mode coater, a roll coater, a gravure coater, a spray coater, a knife coater, a reverse coater, an air knife coater, a size press can be used.
  • the coating of the surface treatment agent can be carried out together with the film formation in the forming line of the substrate A) or the label, or it can be carried out on the already formed substrate A) or label on another production line. If necessary, the excess solvent is removed by a drying process using an oven or the like to form a recording layer (C).
  • the substrate (AM ⁇ functions as a support of the label, and is usually formed of a paper material or a thermoplastic resin film, and is preferably formed of a thermoplastic resin film.
  • the substrate By forming the substrate from a thermoplastic resin, it is possible to have water resistance and a container. A label with excellent shape followability.
  • the base layer (A) may have a single layer structure or a multilayer structure of two or more layers. By multilayering the base layer (A), various functions such as recording property, printability, scratch resistance, and secondary processing suitability can be added.
  • Each of the layers constituting the substrate (A) may be a non-stretched layer, a uniaxially stretched layer, or a biaxially stretched layer.
  • thermoplastic resin thermoplastic resin
  • thermoplastic resin used in the base layer (A) is not particularly limited.
  • high-density polyethylene, medium-density polyethylene, low-density polyethylene, polypropylene, propylene-based copolymer resin, polymethyl-1-pentene, ethylene-cyclic olefin copolymer, etc. which can be formed into a film can be mentioned.
  • Olefin resin such as atactic polystyrene, syndiotactic polystyrene, styrene-maleic acid copolymer; polyethylene terephthalate, polyethylene terephthalate / Ethylene isophthalate, polybutylene terephthalate and polybutylene succinate, polybutylene adipate, polylactic acid and other ester resins; ethylene vinyl acetate copolymerization a functional group-containing polyolefin resin such as a vinyl ester, an acrylic acid copolymer, a maleic acid-modified polyethylene or a maleic acid-modified polypropylene; an amide resin such as nylon-6 or nylon-6, 6; and a polycarbonate. These resins may be used alone or in combination of two or more.
  • thermoplastic resins an olefin resin or a functional group-containing olefin resin is preferably used from the viewpoint of excellent workability of the film, and an olefin resin is more preferably used.
  • the olefin-based resins high-density polyethylene and propylene-based resins are preferable from the viewpoint of chemical resistance, workability, and low cost.
  • the propylene-based resin include polypropylene which is a propylene homopolymer and exhibits stereoregularity, isotacticity, randomness, and the like; propylene as a main component and propylene and ethylene, 1-butene, and 1 a copolymer obtained by copolymerizing one or more kinds of ⁇ -olefins such as hexene, 1-heptene, 1-octene, and 4-methyl-1-pentene.
  • the copolymer may be a random copolymer or a block copolymer.
  • a material obtained by graft-modifying the above olefin-based resin or a functional group-containing olefin-based resin may also be used.
  • the graft modification may, for example, be a method in which an unsaturated carboxylic acid or a derivative thereof is reacted in the presence of a peracid such as peracetic acid, persulfuric acid or potassium persulfate, a metal salt thereof, or an oxidizing agent such as ozone.
  • the graft modification ratio is usually 0.005 to 10% by mass, preferably 0.01 to 5% by mass based on the olefin resin or the functional group-containing olefin resin.
  • the substrate (A) preferably contains 25 masses.
  • the thermoplastic resin in an amount of at least 5% by mass is more preferably contained in an amount of 45% by mass or more, and more preferably 65% by mass or more.
  • the base material (A) preferably contains 99% by mass or less of the thermoplastic resin, and more preferably contains 95% by mass or less.
  • the substrate (am) preferably contains an inorganic fine powder.
  • the substrate (A) By allowing the substrate (A) to contain an inorganic fine powder, whitening and opacity of the substrate (A) can be achieved, and printing on the label can be improved. Visibility.
  • the particle diameter of the inorganic fine powder is represented by a volume average particle diameter measured by a laser diffraction method, and the volume average particle diameter is usually ⁇ . ⁇ or more, from the viewpoint of achieving whitening and opacity of the substrate (A). For ⁇ . ⁇ above. On the other hand, from the viewpoint of improving the appearance of the label, the volume average particle diameter is usually 15 ⁇ m or less, preferably 5 ⁇ m or less.
  • Examples of the type of the inorganic fine powder used in the substrate include calcium carbonate, calcined clay, silica, diatomaceous earth, clay, talc, titanium oxide, barium sulfate, alumina, zeolite, mica, sericite, and the like. Bentonite, sepiolite, vermiculite, dolomite, wollastonite, glass fiber, etc. Among them, from the viewpoints of whitening, opacity, and resin moldability, calcium carbonate, talc, and titanium oxide are preferable, and calcium carbonate and titanium oxide are more preferable.
  • the surface of these inorganic fine powders may be subjected to hydrophilic treatment or hydrophobic treatment in advance.
  • hydrophilic treatment or hydrophobic treatment various properties such as printability, coating suitability, scratch resistance, secondary processing suitability, and the like can be imparted to the substrate A).
  • the base material (A) preferably contains 1% by mass or more of the inorganic fine powder, and more preferably 5% by mass or more, from the viewpoint of the opacity and the whiteness of the base material (A).
  • the base material (A) preferably contains 75% by mass or less of the inorganic fine powder, more preferably 55% by mass or less, and further preferably contains 35%. Below mass%.
  • the substrate (A) may contain an organic filler, a heat stabilizer (antioxidant:), if necessary, Light stabilizers, dispersants or lubricants.
  • the organic filler When the organic filler is contained in the substrate (A), it is preferably contained in an amount of 0.01% by mass or more from the viewpoint of exhibiting the function of the organic filler. On the other hand, from the viewpoint of improving the appearance of the label, it is preferably contained in an amount of 20% by mass or less, more preferably 10% by mass or less.
  • the organic filler it is preferred to select a resin different from the thermoplastic resin which is the main component of the substrate (A). Among them, it is more preferable to select a crystal having a higher melting point or glass transition temperature than a thermoplastic resin which is a main component of the substrate (A).
  • the melting point of the organic filler is preferably 170 to 300 ° C, and the organic filler is vitrified.
  • the transition temperature is preferably from 170 to 280 °C.
  • the organic filler showing such a melting point or glass transition temperature polyethylene terephthalate, polybutylene terephthalate, polycarbonate, nylon-6, nylon-6, 6 may be mentioned. Wait.
  • thermoplastic resin which is the main component of the base material (A) is a polyolefin-based resin
  • examples of the organic filler include polystyrene and polymethyl methacrylate, in addition to the above-exemplified resins.
  • examples of the organic filler include high-density polyethylene, low-density polyethylene, and cyclic polycondensation in addition to the above-exemplified resins. Olefins, etc.
  • the heat stabilizer When the heat stabilizer is contained in the base material (A), it is preferable to contain a heat stabilizer of 0.001% by mass or more from the viewpoint of exhibiting the function of the heat stabilizer. On the other hand, from the viewpoint of improving the appearance of the label and economical, it is preferable to contain 1% by mass or less of the heat stabilizer, and more preferably 0.5% by mass or less.
  • heat stabilizer one or two or more kinds of heat stabilizers (antioxidants) such as a hindered phenol type, a phosphorus type, and an amine type which are generally known can be suitably used.
  • antioxidants such as a hindered phenol type, a phosphorus type, and an amine type which are generally known can be suitably used.
  • the light stabilizer When the light stabilizer is contained in the base material (A), it is preferable to contain a light stabilizer of 0.001% by mass or more from the viewpoint of exhibiting the function of the light stabilizer. On the other hand, from the viewpoint of making the appearance of the label good, From the viewpoint of economy, it is preferable to contain 1% by mass or less, and more preferably 0.5% by mass or less of a light stabilizer.
  • the light stabilizer one or two or more kinds of light stabilizers such as a hindered amine type, a benzotriazole type, and a benzophenone type which are generally known can be used.
  • the dispersing agent or the lubricant is contained in the base material (A), it is preferable to contain a dispersing agent or a lubricant of 0.01% by mass or more from the viewpoint of exhibiting the function of the dispersing agent or the lubricant. On the other hand, from the viewpoint of improving the moldability and printing suitability of the label, it is preferable to contain a dispersant or a lubricant of 4% by mass or less, more preferably 2% by mass or less of a dispersant or a lubricant.
  • a commonly known silicon germanium coupling agent a fatty acid having a carbon number of 8 to 24 such as oleic acid or stearic acid, and a metal salt thereof, an amide, the fatty acid and a carbon number of 1 to 6 may be suitably used.
  • the method of forming the base material (A) as the thermoplastic resin film is not particularly limited, and various known methods can be used.
  • thermoplastic resin composition constituting the substrate (A), which is melt-kneaded using a screw extruder, and a molten resin is extruded into a sheet shape using a T die attached to the extruder.
  • a casting method of pressing to a cooling roll for cooling a blow molding method of extruding molten resin into a tubular shape by using a circular die attached to the extruder and expanding it by air pressure inside the tube;
  • the stretching method is not particularly limited, and various known methods can be used.
  • a stretching method in the case of stretching a cast formed film, a longitudinal stretching method using a circumferential speed difference of a roll group, a transverse stretching method using a tenter furnace, a rolling method, and a tentering method are used.
  • a homogenous biaxial stretching method based on a tubular method is exemplified.
  • a preferred molding example is that one of the layers is subjected to the above-described casting molding, and if necessary, the film is stretched by the circumferential speed difference of the roll, and then formed.
  • the resin composition of the other layer of the substrate (A) is melted and laminated to form a multilayer structure.
  • a preferred example of the molding is a method in which a plurality of resin compositions are laminated in the T-die and co-extruded from the T-die to form a multilayer structure. In addition, these methods can also be combined as appropriate.
  • the stretching condition of the substrate (A) is not particularly limited, and is appropriately determined in consideration of the properties of the thermoplastic resin to be used and the like.
  • a propylene homopolymer or a copolymer thereof is used as the thermoplastic resin, and when it is stretched in one direction, it is about 1.2 to 12 times, preferably 2 to 10 times, and biaxial stretching is used.
  • the area is 1.5 to 60 times, preferably 4 to 50 times, in terms of area magnification.
  • it is 1.2 to 10 times, preferably 2 to 5 times in the case of stretching in one direction, and 1.5 to 20 times, preferably 4 to 4 times in the case of biaxial stretching. 12 times.
  • the stretching temperature can be selected from a known temperature range suitable for the stretching of the thermoplastic resin from the glass transition temperature of the thermoplastic resin to be used or less to the melting point of the crystal portion.
  • the thermoplastic resin is 100 164 ° C in the case of a propylene homopolymer (melting point: 155 to 167 ° C) and 70 to 133 ° C in the case of a high-density polyethylene (melting point: 121 to 134 ° C). It is a temperature 1 to 70 ° C lower than the melting point.
  • polyethylene terephthalate melting point: 246 to 252 ° C; > a temperature at which crystallization does not proceed sharply is selected.
  • the stretching speed is preferably set to 20 to 350 m/min.
  • the temperature at the time of heat treatment is preferably in a range of not less than the stretching temperature and not higher than the stretching temperature by 30 ° C.
  • the heat treatment method is usually carried out by using a roller and a hot furnace, or They are combined. From the viewpoint of obtaining a high treatment effect, the heat treatment is preferably carried out while the stretched film is kept under tension.
  • the thickness of the substrate (A) in the label is preferably 19.9 ⁇ m or more, and more preferably 39.5 ⁇ m or more, from the viewpoint of being able to easily obtain sufficient mechanical strength and rigidity of the label as the support.
  • it is preferably 230 ⁇ m or less, and more preferably 190 ⁇ m or less.
  • the adhesive layer ( ⁇ ) has a function of being attached to the hollow molded container in the label.
  • the adhesive layer ( ⁇ ) is usually formed of a resin composition containing a thermoplastic resin as a main component, and the thermoplastic resin exhibits a melting point lower than the melting point of the resin composition constituting the substrate ( ⁇ ).
  • the difference between the melting point of the thermoplastic resin as the main component of the adhesive layer and the melting point of the resin composition constituting the substrate ( ⁇ ) from the viewpoint of not being deformed when the substrate is attached to the hollow molded container It is preferably 10 ° C or more, and more preferably 15 ° C or more.
  • the difference in melting point is preferably 150 ° C or less from the viewpoint of the fact that the label for molding is less likely to cause blocking during the storage before the attachment to the hollow molded container, and the workability is excellent.
  • thermoplastic resin used in the adhesive layer (B) include ultra low density, low density or medium density high pressure polyethylene, linear linear low density polyethylene, and ethylene vinyl acetate copolymer.
  • ethylene acrylic acid copolymer, fluorenyl group having 1 to 8 carbon atoms, decyl acrylate polymer, fluorenyl group having 1 to 8 ethylene ⁇ methacrylic acid decyl ester copolymer, propylene ⁇ - a propylene resin represented by an olefin copolymer; a polyester resin; a styrene elastomer resin, a polyamide resin, or the like.
  • any other known resin additive may be arbitrarily added within a range not to impair the heat sealability.
  • the additive include a dye, a nucleating agent, a plasticizer, a releasing agent, a flame retardant, an antioxidant, a light stabilizer, and an ultraviolet absorber.
  • thermoplastic resin film there is no particular limitation on the method of forming the adhesive layer ( ⁇ ) as the thermoplastic resin film, and Various methods known in the art are employed.
  • a method in which a molten resin of the base material (A) and the adhesive layer (B) is laminated in the same mold and extruded into a sheet-like co-extrusion casting molding method is preferably used. Forming and laminating to obtain a laminate. Further, a method of laminating the molten resin of the adhesive layer (B) on the side surface of the substrate (A) obtained by the above method is also preferable. Further, the obtained laminate sheet may be stretched in the longitudinal direction or the transverse direction in the same manner as the stretching of the substrate A).
  • the thickness of the adhesive layer (B) of the label is preferably ⁇ . ⁇ or more, more preferably 0.5 ⁇ m or more, from the viewpoint of obtaining sufficient adhesion to the hollow molded container.
  • the thickness of the adhesive layer ( ⁇ ) of the label is preferably 20 ⁇ m or less, more preferably ⁇ or less, from the viewpoint of offset printing in the form of a sheet, and the label is not easily curled when the label is inserted into the mold.
  • the material and molding method of the hollow molded container constituting the labelled hollow molded container of the present invention are not particularly limited, and a known material and a molding method can be used.
  • thermoplastic resin As the material of the container main body of the labelled hollow molded container, a material which can be formed into a hollow container is used.
  • a thermoplastic resin is usually used, and examples thereof include polyethylene terephthalate (PET) and copolymers thereof, polyolefin resins such as polypropylene (PP) and polyethylene (PE), and polycarbonate resins.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • polycarbonate resins polycarbonate resins
  • the polyolefin resin is preferably used because it is a resin which is easily blow molded. Further, it is preferred to use a thermoplastic resin composition containing these thermoplastic resins as a main component.
  • a method of inserting a label into a mold and introducing a thermoplastic resin composition in a moldable state into the mold is preferred.
  • the following method is preferred: First, a preform made of these resins, a parison, and a method of clamping them by a mold and performing blow molding are produced in a mold.
  • the label can be attached to the container while the container is being formed.
  • the labelled hollow molded container can be easily manufactured in a short time while maintaining the design, weight reduction, and productivity of the container.
  • the labeled hollow molded container of the present invention is produced by inserting a label into a mold having a recess for label filling, and introducing a molten thermoplastic resin into the mold to produce the label. Among them, it can be easily manufactured by a method of integrating a label at the same time as blow molding.
  • the label When the label is placed in the mold, it is preferable to make the label having a Gurley flexibility of 150 to 350 mN in line with the vertical direction of the mold. By providing in this way, it is possible to suppress the label from being wound up and drooping or wrinkles due to its own weight in the mold. Further, the label is placed in the mold so that the surface of the label opposite to the adhesive layer comes into contact with the mold. When the label is placed in the mold, the position of the label can also be fixed by suction from a hole opened in the mold.
  • the inserter in order to accurately load the label into the label filling recess provided in the mold and suitable for the shape of the label, it is preferable to mechanically load using the inserter, and the inserter preferably uses an inserter having a stroke precision of the servo motor.
  • the blow molding a commonly known biaxial stretch blow molding method, direct blow molding method, or the like can be suitably selected and used.
  • the blow molding pressure is usually 0.59 to 3.92 MPa (5 to 40 kg/cm 2 ), preferably 0.98 to 2.94 MPa (10 to 30 kg/cm 2 ), and the blow molding is usually 0.5 10 seconds, preferably 1 to 6 seconds.
  • the labeled hollow shaped container of the present invention can be manufactured.
  • the body section of the container does not necessarily have to be a perfect circle, and may be, for example, an ellipse or a rectangle.
  • the facet is a rectangle
  • the corner of the rectangle has a curvature.
  • the fracture surface of the main body is preferably a perfect circle or an elliptical shape close to a perfect circle, and most preferably a perfect circle.
  • the thickness of the label was measured by a method of JIS K 7130:19991; "plastic-film and sheet-thickness measuring method”:) using a constant pressure thickness measuring device (manufactured by TECLOCK Corporation, machine name: PG-01J).
  • the basis weight of the label is based on JIS P 8124: 1998 "Paper and board - determination method of basis weight”:), and the sample cut into a size of lOOmm x 100 mm is weighed and measured by an electric balance.
  • the density of the label was determined as the value obtained by dividing the basis weight of the label obtained above by the thickness of the label obtained above. The results are summarized in Table 2.
  • the density of the thermoplastic resin to be used is based on the A method of JIS K 7112:1999 ("Determination of density and specific gravity of plastic-non-foamed plastics":), and the pressed sheet of the thermoplastic resin to be used is replaced by water. And find it.
  • the jig for measuring the compression ratio shown in Fig. 6 is configured as follows.
  • the test stand 9 has a sample stage 10 and a laser displacement sensor head 11 (manufactured by KEYENCE Corporation, product name: LK010) capable of carrying the measurement sample 8.
  • the center of the sample stage 10 was hollowed out to a circular shape with a diameter of 20 mm.
  • the laser displacement sensor 12 is irradiated with laser light to the sample pressing jig 12, and the laser light 13 reflected by the sample pressing jig 12 is again incident on the laser displacement sensing head 11.
  • the output of the laser displacement sensor head 11 is captured by an amplification unit (not shown, manufactured by KEYENCE Corporation, product name: LK3100).
  • a disk-shaped sample compacting jig 12 having a diameter of 50 mm was placed on the area of the sample contact surface: 2.5434 cm 2 ;>, and the jig 12 was connected to the compression tensile tester via the metal ball 15 (Loaded by Shimadzu Corporation, product name: Autograph AGS-5KND).
  • the stress data was introduced into the computer from the analog output of the compression tensile tester at a sampling period of 50 msec, and the displacement data was introduced into the computer from the analog output of the amplifying unit at a sampling period of 2048 microseconds.
  • the label was cut into a square of 50 mm x 50 mm, and the center was hollowed out into a circle having a diameter of 20 mm, and three measurement samples 8 were produced.
  • the blank measurement of the displacement 0 is performed in a state where the sample 8 is not placed.
  • the sample 8 was placed in the sample pressing jig 12, and the displacement when the stress was ON was measured, and the initial film thickness e was recorded.
  • Label thickness 1 of the label bonding portion ⁇ Container thickness ⁇ and container thickness of the label non-bonding portion ⁇ : The container body portion is cut out from the labelled hollow molded container so as to include the label boundary (label outer edge) as a sample, and then The sample was cooled to a temperature of -60 ° C or lower with liquid nitrogen, and a blade (manufactured by Schick Japan KK, trade name: Proline Blade) was placed in vertical contact with the sample placed on the glass plate, and the sample was cut to prepare a section for measurement. Sample.
  • a blade manufactured by Schick Japan KK, trade name: Proline Blade
  • the obtained sample was subjected to cross-sectional observation using a digital microscope (manufactured by KEYENCE Corporation, machine name: VHX-1000), and the thicknesses of the 1/Y and Z portions shown in Fig. 1 were measured, and the label thickness T of the label bonding portion was determined.
  • Container thickness ⁇ and label The container thickness Z of the non-bonding portion.
  • the label thickness ⁇ of the label bonding portion and the container thickness Y were measured at an angle of l ⁇ 0.05 mm from the label outer edge la along the label surface as shown in Fig. 1 .
  • the container thickness Z of the label non-adhering portion was similarly measured at a distance of ⁇ ⁇ 0.05 mm from the outer edge la of the label along the label surface outward.
  • the formed 3 L of the labeled hollow molded container was filled with 3 L of water to cover the lid as a sample for the fall test.
  • a drop test manufactured by SHINYEI Technology Co., Ltd., device name: DTS-50 was used to carry out a drop test in which the sample was dropped from a height of 1200 mm to the concrete floor four times.
  • the number of cracks of the sample was evaluated according to the following criteria.
  • thermoplastic resin (PP-1) and the inorganic fine powder (CA-1 and TI-1) described in Table 1 were mixed according to the compounding ratio (mass standard) described in Table 2 as a material of the base material layer (A).
  • the mixture was supplied to an extruder set at 250 ° C, and melt-kneaded in an extruder, and the molten resin composition was supplied to a T mold set at 250 ° C, and the T mold was used. Extrusion into a sheet.
  • the sheet-like resin composition was cooled to about 60 ° C with a cooling roll to obtain an unstretched sheet.
  • the unstretched sheet was further heated to 150 ° C, and then stretched four times in the longitudinal direction by the circumferential speed difference of the roll group, and cooled to about 60 V by a cooling roll to obtain a 4-fold stretched sheet.
  • thermoplastic resin (PE-1) was melt-kneaded by an extruder set at 230 °C.
  • the molten thermoplastic resin (PE-1) was extruded into a sheet shape using a mold set at 230 ° 0, and the thermoplastic resin was laminated on the above-mentioned 4 times stretched sheet to obtain a felt-like pattern.
  • the rubber roller side is introduced into contact with the 4-fold stretched sheet in a manner of introducing a #150 line of gravure-embossed metal cooling roll and a felt-like rubber roll, pressing and joining the two, and simultaneously transferring the thermoplastic resin side.
  • the embossed pattern was cooled by a cooling roll to obtain a laminated resin sheet having a two-layer structure.
  • the laminated resin sheet was further heated to 165 ° C in a tenter oven, and then stretched 9 times in the transverse direction by a tenter, and then further annealed by a heat setting zone adjusted to 165 ° C, using a cooling roll. After cooling to about 60 ° C, the edge portion was cut off to obtain a biaxially stretched resin film having a two-layer structure of a base layer (Ay adhesive layer (B)), which was used as a label of Production Example 1.
  • the material of the base material layer (A), the compounding ratio, the longitudinal stretching temperature, the longitudinal stretching ratio, the transverse stretching temperature, and the transverse stretching ratio in the production of the label in Production Example 1 were changed to the conditions described in Table 2. In the same manner as in Production Example 1, labels were produced, and these were used as labels of Production Examples 2 to 5.
  • the label of Production Example 1 was die-cut into a predetermined size having a width of 110 mm and a length of 171 mm having the shape shown in Fig. 3 to produce a labeled hollow molded container.
  • This label was placed in a mold which can be formed into a bottle having a volume of 3 L as shown in Fig. 3 so that the adhesive layer (B) faces the chamber side, and is fixed to the mold by suction.
  • the label d recess d of the cooling mold shown in Fig. 4 was set to 100 ⁇ m.
  • the thermoplastic resin ( ⁇ -2) was melted at 170 ° C, and extruded into a mold shape at a cooling temperature of 20 ° C.
  • 0.4 MPa (4.2 k g / C m 2 ) of compressed air was supplied into the parison, and the parison was expanded and adhered to the mold for 16 seconds to form a container, and the label was simultaneously formed. Fusion.
  • the molded product was cooled in a mold, and the mold was opened to obtain a labeled hollow molded container of Example 1.
  • the shot cycle me of Example 1 was 28 seconds/time.
  • a sample for measuring physical properties of the labelled hollow molded container was taken from the position shown in 2a.
  • the molding conditions (label, mold) of the labeled hollow molded container of Example 1 and the physical properties of the labeled hollow molded container are shown in Table 3.
  • the labelled hollow molding of Examples 2 and 3 was obtained in the same manner as in Example 1 except that the label used for the first embodiment and the label d recess d for the cooling mold were changed to the values described in Table 3. container.
  • the physical properties of the label, the mold conditions, and the obtained labeled hollow molded container used in the production of the labeled hollow molded container in each of the examples and the comparative examples are shown in Table 3.
  • the drop test determines that the level of ⁇ is (good:) In the comparative example 1 in which the amount of change in the thickness of the main body portion X does not satisfy the formula (1), the fall test is judged to be the X level (: defective:).
  • the label embedding portion has a structure in which a recess for label loading suitable for the shape of the label can be provided, and the depth d of the recess satisfies the cooling mold of the hollow molding machine of the formula (2)
  • the fall test was judged to be the ⁇ level (: good:)
  • the labelled hollow molded container of the present invention is excellent in impact resistance, and the labelled hollow molded container is less likely to be damaged when the contents are filled with the contents. Further, there is a label that is filled with the contents even if it is filled.
  • the hollow molded container is placed in a corrugated cardboard box for transportation, and the corrugated cardboard box is transported in a state in which a plurality of layers are stacked, and the labelled hollow molded container is also less likely to be damaged.
  • the labeled hollow shaped container of the present invention is suitable for containing a wide variety of liquids (for example, edible oils, liquid seasonings, beverages, alcoholic beverages, kitchen detergents, laundry detergents, shampoos, conditioners, liquids) Soap, disinfectant alcohol, automotive oil, automotive detergent, pesticides, pesticides, herbicides, etc., for distribution, display, purchase, storage, and use.
  • liquids for example, edible oils, liquid seasonings, beverages, alcoholic beverages, kitchen detergents, laundry detergents, shampoos, conditioners, liquids
  • Soap disinfectant alcohol, automotive oil, automotive detergent, pesticides, pesticides, herbicides, etc.
  • the labelled hollow molding obtained by the present invention
  • the effect of the excellent impact resistance of the container is more pronounced.

Abstract

一种带标签中空成形容器及其成形方法,所述容器坠落时的耐冲击性良好,利用光学显微镜观察所求出的所述容器的断面的主体部壁厚的变化量X满足下式(1),-50≤Χ<Τ…式(1),主体部壁厚变化量(μm):Χ=Ζ-Υ,标签贴合部的标签厚度:Τ,标签贴合部的容器厚度:Υ,标签非贴合部的容器厚度:Ζ。

Description

说 明 书
带标签中空成形容器以及中空容器成形方法 技术领域
本发明涉及带标签中空成形容器及其制造方法。
尤其是涉及耐冲击性良好的带标签中空成形容器及其制造方法。 背景技术
一直以来, 为了容纳多种多样的液体 (例如食用油、 液体调味料、 饮料、 酒类、 厨房用洗涤剂、 衣料用洗涤剂、 洗发水、 整发剂、 液体肥皂、 消毒用 醇、 汽车用油、 汽车用洗涤剂、 农药、 杀虫剂、 除草剂等:)并将其流通、 陈 列、 购买、 保管、 使用, 使用尺寸、 形状多种多样的中空成形容器。
作为在上述中空成形容器的外周面显示标签的方法,在模具内预先嵌入 空白标签 (未显示信息的标签:)或显示有信息的标签 (以下, 将两者统称为 "标 签":), 接着通过注射成形、 中空成形、 压差成形、 发泡成形等在该模具内成 形容器等树脂成形品, 成形为与标签成为一体的树脂成形品、 即带标签中空 成形容器。 此时使用的标签的一般结构是在基材的一侧的面上施加有印刷、 并在基材的另一面设置有粘接层的结构。
作为该标签的基材, 可以使用纸、 厚纸、 未拉伸薄膜、 拉伸薄膜、 合成 纸、 铝蒸镀薄膜等。 另外, 作为该标签的印刷方式, 可进行凹版印刷、 胶印 印刷、柔版印刷等。而且,将前述基材与前述印刷方式适当组合而供于实用。
其中, 在填充液体的用途中, 适合使用的是: 使用聚乙烯、 聚丙烯、 聚 酯、 聚酰胺等热塑性树脂利用吹塑成形法制造的、 单层或具有多个树脂层的 中空成形容器所形成的带标签中空成形容器。
然而, 现有的带标签中空成形容器在容器主体部嵌入有标签。 因此, 标 签贴合部的容器厚度与标签非贴合部的容器厚度相比变得极薄。 另外, 由于 带标签中空成形容器在刚成形之后的冷却过程中的标签收缩率与前述热塑 性树脂收缩率之差, 带标签中空成形容器的标签边界部产生缺口。 由于这些 原因, 存在带标签中空成形容器的耐冲击性差、 例如使填充有内容物的状态 下的带标签中空成形容器坠落时容器容易破损的问题。 另外, 将填充有内容 物的带标签中空成形容器装入运输用瓦楞纸箱中,进而在将瓦楞纸箱层叠数 层的状态下运输时,存在运输时的冲击导致带标签中空成形容器容易破损的 问题。 这些问题的原因在于, 带标签中空成形容器沿着容器的标签边界而破 损, 带标签中空成形容器的容器内容积越大、 带标签中空成形容器的容器厚 度越薄、 或标签厚度越厚时这些问题越显著。
作为改善带标签中空成形容器的耐冲击性的方法, 提出了: 沿着标签的 边缘在容器主体部的外侧设置肋部的方法 (例如参照专利文献 1、 2); 降低标 签的拉伸模量或标签厚度的方法 (例如参照专利文献 3);对标签的端面进行倒 角的方法 (例如参照专利文献 4、 5); 使用树脂的记忆效应 (ME)处于特定范围 的热塑性树脂组合物, 使标签贴附部分与容器表面的凹部角度增大的方法 (例如参照专利文献 6、 7)等。
现有技术文献
专利文献
专利文献 1 : 日本特开 2000-247334号公报
专利文献 2: 日本特开 2002-179041号公报
专利文献 3 : 日本特开 2012-180096号公报
专利文献 4: 日本特开 2001-39427号公报
专利文献 5: 日本特开平 8-142171号公报
专利文献 6: 日本特开平 7-100906号公报
专利文献 7: 日本特开 2002-52601号公报
发明内容 发明要解决的问题
然而, 沿着标签的边缘在容器主体部的外侧设置肋部的方法中, 容器的 外观设计存在限制。 另外, 降低标签的拉伸模量或标签厚度的方法中, 容器 尺寸大时,容器坠落时的载重增加, 因此改善耐冲击性的效果不显著。另外, 向模具装填 (嵌入)标签时存在标签弯曲或从模具中掉落而导致生产率降低的 问题。 另外, 对标签的端面进行倒角的方法中, 倒角的工业制造方法尚未确 立。另外, 使用在特定条件下树脂的记忆效应 (ME)处于特定范围的热塑性树 脂组合物来使标签贴附部分与容器表面的凹部角度增大的方法中,在贴附厚 度大的标签的情况下, 标签贴附部分与容器表面的凹部大, 无法改善耐冲击 性。
本发明的课题在于, 解决上述问题, 提供耐冲击性良好的带标签中空成 形容器及其制造方法。
用于解决问题的方案
本发明人等鉴于上述课题, 发现了使通过光学电子显微镜观察而求出 的带标签中空成形容器断面的主体部壁厚变化量 X满足下述式 (1), 该容器的 耐冲击性会提高, 从而实现了本发明。
本发明的第一技术方案为一种带标签中空成形容器, 其特征在于, 该容 器由热塑性树脂组合物形成, 利用光学显微镜观察所求出的该容器断面的主 体部壁厚变化量 X满足下述式 I), 且 X的值为 90以下,
-50^X<T · · ·式 (1)
主体部壁厚变化量: Χ=Ζ-Υ
标签贴合部的标签厚度: τ
标签贴合部的容器厚度: Υ
标签非贴合部的容器厚度: ζ,
X、 Υ、 Ζ、 Τ的单位: μπι。 本发明的第二技术方案为一种带标签的中空容器的成形方法,其特征在 于, 成形机模具具有标签嵌入部, 所述标签嵌入部具有能够设置适合标签的 形状的标签装填用凹陷的结构, 将标签插入该模具的标签嵌入部, 接着向该 模具内导入能够成形的状态的热塑性树脂组合物进行容器成形。
SP , 本发明具有下述构成。
[1] 一种带标签中空成形容器, 其特征在于, 其包含标签和中空成形容 器,
该容器由热塑性树脂组合物形成,
利用光学显微镜观察所求出的该容器断面的主体部壁厚变化量 X满足下 述式 (1), 且 X的值为 90以下,
-50^X<T · · · 式 (1)
主体部壁厚变化量: Χ=Ζ-Υ
标签贴合部的标签厚度: τ
标签贴合部的容器厚度: Υ
标签非贴合部的容器厚度: ζ,
X、 Υ、 Ζ、 Τ的单位: μπι。
[2] 根据 [1]所述的带标签中空成形容器, 其特征在于, 所述标签在 3.138MPa压力下的压缩率 c为 30%以上且 60%以下。
[3] 根据 [1]或 [2]所述的带标签中空成形容器, 其特征在于, 其是使用具 有标签嵌入部的模具成形而成的,所述标签嵌入部具有能够设置适合所述标 签的形状的标签装填用凹陷的结构。
[4] 根据 [1卜 [3]中任一项所述的带标签中空成形容器, 其特征在于, 所 述中空成形容器是通过在吹塑成形的同时将标签一体化的方法而得到的中 空成形容器。
[5] 根据 [1]~[4]中任一项所述的带标签中空成形容器, 其特征在于, 所 述热塑性树脂组合物包含聚烯烃系树脂组合物。
[6] 一种带标签中空容器的成形方法, 其特征在于, 成形机模具具有标 签嵌入部,所述标签嵌入部具有能够设置适合标签的形状的标签装填用凹陷 的结构, 将标签插入该模具的标签嵌入部, 接着向该模具内导入能够成形的 状态的热塑性树脂组合物进行容器成形。
[7] 根据 [6]所述的带标签中空容器的成形方法, 其特征在于, 所述标签 装填用凹陷的深度 d满足下述式 (2),
0<d t+50 · · ·式 (2)
标签装填用凹陷的深度: d
标签的厚度: t,
d、 t的单位: μπι。
[8] 根据 [6]或 [7]所述的带标签中空容器的成形方法, 其特征在于, 所述 热塑性树脂组合物包含聚烯烃系树脂组合物。
发明的效果
根据本发明, 可以提供一种容器的外观设计性、 轻量性以及生产率得以 维持、 带标签中空成形容器的耐冲击性提高、 即使容器尺寸变大也不易因坠 落等的冲击而破裂的带标签中空成形容器及其制造方法。 附图说明
图 1是本发明的中空成形容器的断面图的一个例子。
图 2是本发明的中空成形容器的断面图的另外一个例子。
图 3是本发明的模具内装填有标签的状态的一个例子。
图 4是使用本发明的模具来成形容器的状态的断面图的一个例子。
图 5是使用现有的模具来成形容器的状态的断面图的一个例子。
图 6示出实施例中使用的压缩率测定用夹具。 附图标记说明
1: 标签断面
2: 中空成形容器断面
3: 标签
4: 成形机模具
5: 标签装填用凹陷
6: 腔室
7: 抽吸孔
8: 测定样品
9: 试验用架台
10: 样品台
11: 激光位移传感头
12: 样品压紧夹具
13: 激光
14: 负荷传感器
15: 金属球
la: 标签外缘
2a: 测定用样品采集位置 具体实施方式
以下, 对本发明进行详细说明, 以下记载的技术特征的说明是本发明的 实施方式的一个例子 (代表例), 本发明不限定于这些内容。
另外, 本发明中, 记为"〜"时是指分别包含其前后记载的数值作为最小 值和最大值的范围。
另外, 本发明中, 表述为 "(甲基)丙烯酸 "时包含丙烯酸和甲基丙烯酸两 者。
另外, 本发明中, 表述为 "主成分"时是指对象组合物中包含的各成分 之中以质量基准计含量最多的成分。
<带标签中空成形容器〉
本发明的带标签中空成形容器的特征在于, 该容器由热塑性树脂组合物 形成, 利用光学显微镜观察所求出的该容器断面的主体部壁厚变化量 X满足 下述式 (1), 且 X的值为 90以下。
-50^X<T · · ·式 (1)
主体部壁厚变化量 (μπι): Χ=Ζ-Υ
标签贴合部的标签厚度 0im T
标签贴合部的容器厚度 0im Y
标签非贴合部的容器厚度 0im Z
X、 Y、 Ζ、 Τ的单位: μπι。
本发明中, "带标签中空成形容器"是指包含标签和具有中空部位的容器 形状的树脂成形品的物质, 树脂成形品的形状有杯状、 瓶 (bottle)状等, 其成 形方法有注射成形、 直接吹塑成形、 拉伸吹塑成形、 压空成形等。
(主体部壁厚变化量 X)
从容易自模具中取出带标签中空成形容器的观点出发, 前述主体部壁厚 变化量 X为 -50μπι以上、 优选为 -20μπι以上、 更优选为 Ομπι以上。 此外, 从抑 制掉落时的应力集中于标签端部所导致的容器破裂的观点考虑, 前述 X的值 优选为 90μπι以下, 优选为 60μπι以下, 更优选为 40μπι以下。
另一方面,从标签贴合部的容器厚度与标签非贴合部的容器厚度相比不 会变得极薄的观点出发, 前述 X的值在将标签贴合部的标签厚度记为 Τμπι时 为不足 Τμπι、 优选为 Τ/2μπι以下、 更优选为 Τ/3μπι以下。
标签贴合部的标签厚度1\容器厚度 Υ以及标签非贴合部的容器厚度 Ζ的 测定通过基于光学显微镜的断面观察和图像处理来进行。
观察用样品的采取如下操作: 在带标签中空成形容器中, 在包含标签边 界的任意位置切取容器主体部, 用液态氮冷却至 -60°C以下的温度, 将刀片 (razor blade) 垂直接触放置于玻璃板上的试样并切断试样, 制成断面测定 用的试样。 以容易用光学显微镜观察所得试样的任意倍率 (例如放大至 50倍 ~500倍:)观察前述切断面。 进而, 将所观察的区域以图像的形式导入到计算 机中。
对于图像处理, 在计算机上计测图 1、 2所示部位的容器厚度, 求出标签 贴合部的标签厚度 (T)、 容器厚度 、 标签非贴合部的容器厚度 (Ζ:)。
需要说明的是, 标签贴合部的标签厚度 0 以及容器厚度 如图 1和图 2 所示那样, 在前述切断面的从标签外缘沿着标签表面向内 l±0.05mm处测定。 另外, 标签非贴合部的容器厚度 (Z)同样地在前述切断面的从标签外缘沿着 标签表面向外 1±0.05mm处测定。
另外, 该测定方法中, 标签厚度 0不包含粘接层 (B)的厚度。 这是因为, 成形带标签中空成形容器时, 构成粘接层 (B)的热塑性树脂熔融而与中空成 形容器的材料即热塑性树脂混合一体化, 其边界不明确。
优选的是, 本发明的带标签中空成形容器是使用下述模具成形而成的: 所述模具具有标签嵌入部,所述标签嵌入部具有能够设置适合标签的形状的 标签装填用凹陷的结构。
另外, 优选的是, 带标签中空成形容器通过在吹塑成形的同时将标签一 体化的方法而成形。
(耐冲击性:)
本发明的带标签中空成形容器的耐冲击性优异,存在即使在填充有内容 物的状态下使带标签中空成形容器坠落容器也不易破损的倾向。 另外, 即使 将填充有内容物的带标签中空成形容器装入运输用瓦楞纸箱中,进而在将瓦 楞纸箱层叠数层的状态下运输, 也存在带标签中空成形容器不易破损的倾 向。
<模具〉
本发明的中空成形容器的成形所使用的模具优选具有标签嵌入部,所述 标签嵌入部具有能够设置适合标签的形状的标签装填用凹陷的结构。
此处, "适合标签的形状"的标签装填用凹陷是指, 标签能够收纳到设置 于模具的凹部而不会从凹部溢出,标签装填用凹陷与标签的形状不需要一定 一致。
另外, 前述标签装填用凹陷的深度 d优选满足下述式 (2)。
0<d t+50 · · · 式 (2)
标签装填用凹陷的深度: d、
标签的厚度: t,
d、 t的单位: μπι。
从提高带标签中空成形容器的耐冲击性的观点出发,前述标签装填用凹 陷的深度 d优选为 ΙΟμπι以上、 更优选为 40μπι以上。 另一方面, 从模具制作的 容易性、 容易将带标签中空成形容器从模具中取出的观点出发, 深度 d优选 为 200μπι以下、 更优选为 150μπι以下。
本发明的中空成形容器的成形中优选使用的模具如上所述具有标签装 填用凹陷, 凹陷的深度 d为非 0的非偶然的值, 因此使用该模具而得到的带标 签中空成形容器中, 标签呈现如图 1、 2所示的从标签非贴合部的容器表面突 出的形状, 式 (1)中, 具有 X<T 关系。
(模具的制造方法)
上述模具除了设置标签装填用凹陷以外, 可以通过公知的方法进行制 造。
对在上述模具中设置标签装填用凹陷的方法没有特别限定, 例如, 可以 通过对模具直接雕刻深度为 d的标签装填用凹陷来设置, 也可以通过将相当 于装填用凹陷的部分分开作为模具镶块、并使该模具镶块从模具的腔室表面 仅后退标签装填用凹陷的深度 d来设置。
另外, 为了在装填有标签时真空抽吸标签而使其密合, 本发明的模具可 以设置抽吸孔 7, 在为模具镶块方式的模具的情况下, 也可以使模具镶块彼 此之间的空隙或模具镶块与模具主体之间的空隙设置得较宽, 作为间隙。 抽 吸孔的直径和 /或间隙的宽度从确保真空抽吸的空气流量的观点出发,优选为 lmm以上、 更优选为 2mm以上。 另一方面, 如果抽吸孔和 /或间隙的形状在 标签表面残留痕迹,则会使制品外观受损, 因此抽吸孔的直径和 /或间隙的宽 度优选为 10mm以下、 更优选为 5mm以下。
<标签 >
本发明中使用的标签至少包含基材 (A)和粘接层 (B), 具有在基材 (A) 的一个面层叠有粘接层 (B) 的至少 2层结构。 只要是将该标签插入模具内、 接着向该模具内导入熔融状态的热塑性树脂组合物而能够成形为本发明的 带标签中空成形容器, 则可以是任意材料、 构成、 制造方法。
(层结构)
标签的基层 (A)可以为单层结构, 也可以为 2层以上的多层结构。 另外, 基材A)的不与粘接层B)接触的面可以施加印刷信息。 需要说明的是, 施加 印刷信息时, 可以在基材 (A)的不与粘接层(B)接触一侧的表面上设置适于 印刷的记录层 , 介由该记录层C)来施加印刷信息。
(标签的厚度)
从用标签插入器向模具插入标签时容易固定在准确的位置、或者不易使 标签产生褶皱的观点出发, 本发明中使用的标签的厚度 t优选为 20μπι以上、 更优选为 40μπι以上、 进一歩优选为 60μπι以上。 另一方面, 从标签与中空成 形容器之间不会产生空隙、 薄壁部分而提高成形品的耐坠落强度、 或者降低 模具的加工成本的观点出发, 优选为 250μπι以下、 更优选为 200μπι以下, 进 一歩优选为 150μπι以下。
需要说明的是, 标签的厚度 t基于 JIS K 7130: 1999( "塑料-薄膜以及片- 厚度测定方法 千、 y - 厶及 1 、 一卜一厚 測定方法) ,,)的 Α法, 使用千分尺等机械地进行测定。
需要说明的是, 式 (1)中的标签贴合部的标签厚度 T通常小于式 (2)中的标 签厚度 t的值。其原因有, 标签优选内部存在空隙, 成形带标签中空成形容器 时熔融的树脂被压接于标签的粘接面时, 标签被沿厚度方向压缩。 另外, 可 列举出: 式 (2)中的标签厚度環 I]定的是包括粘接层(B ) 的厚度在内的标签的 整体厚度, 而由于标签的粘接层 (B)熔融而与中空成形容器的热塑性树脂组 合物混合并一体化, 因而式 中的标签贴合部的标签厚度 τ未考虑粘接层
(B ) 的厚度。
(标签的压缩率)
为了使主体部壁厚变化量 X进一歩小, 利用后述的压缩率测定方法求出 的标签在 3.138MPa压力下的压缩率 c优选为 30%以上、更优选为 45%以上。另 一方面, 从保持标签表面的耐久性的观点出发, 该压缩率 c优选为 60%以下、 更优选为 55%以下。
将构成本发明的中空成形容器的热塑性树脂组合物导入模具内而成形 为容器时, 树脂的背压成为压缩力, 标签在沿厚度方向被压缩的状态下被固 定。 因此, 压缩率 c高于前述下限值时, 可以使主体部壁厚变化量 X小。 接着 从模具中取出带标签中空成形容器时, 标签的前述压缩力被释放, 因此标签 向厚度方向膨胀。 因此, 可以得到标签表面从中空成形容器的表面突出的状 态 (gp, X<T)的容器。
标签在 3.138MPa压力下的压缩率 c的测定方法为,使用图 6所示的测定装 置, 测定压缩应力为 0的时刻的初始薄膜厚度 e以及薄膜表面的压缩应力为 3.138MPa(32kgf/cm2)的时刻的加压后的薄膜厚度 f, 按照下式算出压缩率 c。 薄膜厚度 e和 f的测定使用 CCD激光位移传感器。
压缩率 c=100x(e-f)/e · · ·式 (3)
c的单位: %,
e、 f的单位: μπι。
(标签的表面粗糙度)
标签的起因于表面存在的凹凸尺寸的表面粗糙度如下算出: 利用 JIS Β 0633:2001( "产品几何量技术规范 (GPS)-表面结构: 轮廓法-表面特征评估规 则和程序 (製品 幾何特性仕様 (GPS) -表面性状:輪郭曲線方式 -表面 性状評価 (7)方式及^手順) ":)中规定的触针式表面粗糙度测定机测定标签表 面, 求出 JIS Β 0601 :2001( "产品几何量技术规范 (GPS)-表面结构: 轮廓法- 用语、 定义以及表面结构参数 (製品 幾何特性仕様 (GPS) -表面性状: 輪郭曲線方式 -用語,定義及 ^表面性状 ^ ^一夕) ":)中规定的算术平均粗 糙度 Ra。
通过使标签的粘接层 (B)表面具有适度尺寸的凹凸, 在将标签安装于模 具时, 能够将标签与容器之间封入的空气借助凹部迅速地排出到外部, 抑制 带标签中空成形容器成形时产生气泡 (标签上的鼓泡)。
从抑制气泡的观点出发, 标签的粘接层 (B ) 表面的算术平均粗糙度 Ra 优选为 0.5μπι以上、 更优选为 1.5μπι以上。 另一方面, 从使带标签中空成形容 器的表面外观保持良好的观点出发, 该粗糙度 Ra优选为 ΙΟμπι以下、 更优选 为 5μπι以下。
使标签的粘接层 (Β)表面的算术平均粗糙度 Ra处于上述范围的方法可以 列举出: 在粘接层 (B)的成形时或成形后, 用压花辊赋予形状的方法等。
另一方面, 通过使标签的与粘接层 (B ) 相反侧的表面具有适度尺寸的 凹凸, 可以提高该表面的印刷适应性。 从使墨附着性良好的观点出发, 标签 的与粘接层相反侧的表面的算术平均粗糙度 Ra优选为 0.15μπι以上、更优选为 0.2μπι以上。 另一方面, 从抑制表面的粗糙导致的外观不良的观点出发, 该 粗糙度 Ra优选为 2μπι以下、 更优选为 Ιμπι以下。
使标签的与粘接层相反侧的表面的算术平均粗糙度 Ra处于上述范围的 方法可列举出: 向基材 (A)中配混无机微细颗粒并拉伸, 从而在表面制作微 孔的方法; 或者, 在基材 (A)的不与粘接层 (B)接触侧的表面上设置后述的记 录层C)的方法等。
(标签的摩擦系数)
成形中空成形容器时, 为了稳定地进行标签向模具的嵌入, 优选的是, 在标签重叠的情况下的、 相邻的 2张标签中其中一张标签的粘接层 (B)和另一 张标签的与粘接层 (B ) 相反侧的面之间的静摩擦系数为低。 本发明中, 标 签的静摩擦系数和动摩擦系数可以基于 JIS K 7125:1999( "塑料-薄膜以及片- 摩擦系数试验方法":)进行测定。
上述静摩擦系数优选为 0.55~1.0的范围、 更优选为 0.7~0.9的范围。 通过 使静摩擦系数为 0.55以上, 存在由于标签过于光滑而导致的标签掉落故障受 到抑制的倾向。 另一方面, 通过使静摩擦系数为 1.0以下, 存在标签间的分离 良好、 向模具进料两张标签的故障受到抑制的倾向。
另外, 将标签重叠的情况下的、 相邻的 2张标签中其中一张标签的粘接 层 (B)和另一张标签的与粘接层(B )为相反侧的面之间的动摩擦系数优选为 0.3-1.0, 更优选为 0.4~0.9的范围。
将标签的静摩擦系数或动摩擦系数控制为上述范围的方法可列举出:通 过将标签的粘接层 (B ) 表面以及其相反侧的表面的表面粗糙度设为上述的 范围, 从而直接降低摩擦力的方法; 以及, 通过对标签的最表层中的至少 1 个面赋予抗静电功能, 从而抑制静电引起的吸附的方法, 优选组合使用上述 2个方法。 (标签的印刷适应性)
本发明中能够使用的标签可以通过各种方法对标签的与粘接层 (B)相反 侧的面赋予印刷适应性。
作为其方法, 可以是对基材A)的与粘接层(B )相反侧的面实施表面氧 化处理,也可以实施涂布处理而设置记录层 C:)。优选组合使用上述 2个方法。
作为表面氧化处理方法, 可列举出选自电暈放电处理、 火焰处理、 等离 子体处理、 辉光放电处理、 臭氧处理等中的至少一种处理方法。 其中, 优选 电暈放电处理。 在电暈放电处理的情况下, 从稳定且进行有效的处理的观点 出发, 其处理量优选为 10~200W'分钟 /m2(600~12,000J/m2), 更优选为 20-180W-分钟 /m2( 1,200- 10,800 J/m2)。
作为设置记录层 (C)的方法, 可列举出涂布包含至少抗静电剂和高分子 粘结剂的表面处理液, 根据需要进行干燥而制成记录层 (C ) 的方法。 这样 操作得到的记录层 (CM尤选包含 1~99质量%的抗静电剂和 99~1质量%的高分 子粘结剂以及 0~25质量%的颜料颗粒。
作为抗静电剂, 可列举出硬脂酸单甘油酯、 垸基二乙醇胺、 脱水山梨糖 醇单月桂酸酯、 垸基苯磺酸盐、 垸基二苯醚磺酸盐等所代表的低分子量有机 化合物; 具有抗静电功能的聚合物等, 其以下列物质为代表: 聚乙二醇、 聚 氧乙烯二胺等非离子性聚合物型抗静电剂, 聚乙烯基苄基三甲基氯化铵、 聚 (甲基:)丙烯酸二甲氨基乙酯季铵盐等季铵盐型共聚物, 向含亚垸基氧基和 / 或羟基的聚合物添加碱金属离子添加物等得到的含碱金属盐的聚合物。
其中, 季铵盐型共聚物的抗静电性能良好、 对于环境湿度造成的抗静电 性能的影响小, 因而更优选。
从表现出抗静电性能的观点出发, 记录层 (C)中的抗静电剂的含量以固 体成分基准计优选为 5质量%以上、 更优选为 10质量%以上。 另一方面, 从印 刷墨的转移性、 附着性的观点出发, 该含量以固体成分基准计优选为 75质量 %以下、 更优选为 50质量%以下。
作为高分子粘结剂, 可列举出聚乙烯亚胺、碳数 1~12的垸基改性聚乙烯 亚胺、 聚 (乙烯亚胺-脲)、 聚 (乙烯亚胺 -脲)的乙烯亚胺加成物、 聚胺聚酰胺、 聚胺聚酰胺的乙烯亚胺加成物以及聚胺聚酰胺的表氯醇加成物等聚乙烯亚 胺系聚合物; 丙烯酸酯共聚物、 甲基丙烯酸酯共聚物、 丙烯酰胺-丙烯酸酯 共聚物、 丙烯酰胺-丙烯酸酯-甲基丙烯酸酯共聚物、 聚丙烯酰胺的衍生物以 及含噁唑啉基的丙烯酸酯系聚合物等丙烯酸酯系聚合物; 聚乙烯基吡咯垸 酮、 聚乙二醇、 醋酸乙烯酯树脂、 聚氨酯树脂、 聚醚树脂、 聚酯树脂、 脲树 月旨、 萜烯树脂、 石油树脂、 乙烯-醋酸乙烯酯共聚物、 氯乙烯树脂、 氯乙烯- 醋酸乙烯酯共聚物树脂、 偏二氯乙烯树脂、 氯乙烯 -偏二氯乙烯共聚物树脂、 氯代乙烯树脂、 氯代丙烯树脂、 丁醛树脂、 有机硅树脂、 硝基纤维素树脂、 苯乙烯-丙烯酸系共聚物树脂、 苯乙烯-丁二烯共聚物树脂、 以及丙烯腈 -丁二 烯共聚物等。
从提高印刷墨的附着性的观点出发, 记录层 (C)中的高分子粘结剂的含 量以固体成分换算优选为 10质量%以上、更优选为 20质量%以上。另一方面, 从容易防止标签的粘连的观点出发, 该含量以固体成分换算优选为 75质量% 以下、 更优选为 50质量%以下。
标签的记录层 根据需要还可以包含颜料颗粒。 对于颜料颗粒, 考虑 到其吸油性会提高印刷墨的定影性、 作为体质颜料而提高表面的手感 /光泽 感、 作为白色颜料而提高白色度、 赋予表面凹凸而提高抗粘连性能、 作为紫 外线反射材料而提高耐光性或耐候性等的功能赋予, 可以适当选择并使用。
作为颜料颗粒, 可以使用有机物、 无机物的微细粉末, 作为具体例子, 可以使用氧化硅、 碳酸钙、 煅烧粘土、 氧化钛、 氧化锌、 硫酸钡、 硅藻土、 丙烯酸系颗粒、 苯乙烯颗粒、 聚乙烯颗粒、 聚丙烯颗粒等。
标签的记录层 (C)能够包含的颜料颗粒的粒径用通过激光衍射法测定的 体积平均粒径来表示, 从颜料颗粒不易从记录层 (C) 脱落的观点出发, 颜 料颗粒的体积平均粒径优选为 20μπι以下、 更优选为 15μπι以下。
从抗静电剂、 高分子粘结剂的含量相对充分、 记录层 (C)表面不易带电、 印刷墨的附着性变高的观点出发, 记录层 (C)中的颜料颗粒的含量优选为 0~25质量%、 更优选为 0~15质量%、 进一歩优选为 0~5质量%。
可以使上述成分在选自水、 甲醇、 乙醇、 异丙醇、 丙酮、 甲乙酮、 醋酸 乙酯、 甲苯、 二甲苯等有机溶剂的单独溶剂体系或混合溶剂体系中溶解而以 溶液状态用作表面处理剂,或者进行分散而以乳剂或分散液状态用作表面处 理剂。 其中, 如果以水溶液的形式使用, 则工序管理容易, 因此是优选的。 溶液浓度通常为 0.1~20质量%, 优选为 0.2~10质量%。
作为表面处理剂的涂布方法, 可以采用利用口模式涂布机、 辊涂机、 凹 版涂布机、 喷涂机、 刮刀涂布机、 逆向涂布机、 气刀涂布机、 施胶压搾涂布
Figure imgf000017_0001
表面处理剂的涂布可以在基材A)或标签的成形生产线中与薄膜成形一 起实施, 也可以在另一条生产线上在已经成形的基材A)或标签上实施。 根 据需要, 经过使用烘箱等的干燥工序, 除去多余的溶剂, 形成记录层 (C)。
[基材 (A)]
基材 (AM乍为标签的支承体而起作用, 通常由纸材、 热塑性树脂薄膜形 成, 优选由热塑性树脂薄膜形成。 通过使基材由热塑性树脂形成, 可制成具 有耐水性、 对容器的形状追随性优异的标签。
另外, 基层 (A)可以为单层结构, 也可以为 2层以上的多层结构。 通过基 层 (A)的多层化, 能够附加记录性、 印刷适应性、 耐擦拭性、 二次加工适应 性等各种功能。
构成基材 (A)的各层分别可以为无拉伸层, 也可以为单轴拉伸层, 还可 以为双轴拉伸层。 [热塑性树脂]
基层 (A)中使用的热塑性树脂的种类没有特别限定。 例如, 可列举出能 够成形为薄膜的高密度聚乙烯、 中密度聚乙烯、 低密度聚乙烯、 聚丙烯、 丙 烯系共聚树脂、 聚甲基 -1-戊烯、 乙烯 ·环状烯烃共聚物等烯烃系树脂; 无规 聚苯乙烯、 间规聚苯乙烯、 苯乙烯 -马来酸共聚物等苯乙烯系树脂; 聚对苯 二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯 /间苯二甲酸乙二醇酯、聚对苯二甲 酸丁二醇酯以及聚丁二酸丁二醇酯、聚己二酸丁二醇酯、聚乳酸等酯系树脂; 乙烯 ·醋酸乙烯酯共聚物、 乙烯,丙烯酸共聚物、 马来酸改性聚乙烯、 马来酸 改性聚丙烯等含官能团的聚烯烃树脂; 尼龙 -6、 尼龙 -6,6等酰胺系树脂; 以 及聚碳酸酯。 这些树脂之中, 可以使用 1种或混合 2种以上而使用。
这些热塑性树脂之中, 从薄膜的加工性优异的观点出发, 优选使用烯烃 系树脂或含官能团的烯烃系树脂、 更优选使用烯烃系树脂。
进而, 烯烃系树脂之中, 从耐化学品性、 加工性、 低成本的观点出发, 优选为高密度聚乙烯、 丙烯系树脂。 作为丙烯系树脂, 可列举出作为丙烯均 聚物且表现出等规、 间规、 无规等立构规整性的聚丙烯; 以丙烯为主要成分 并使丙烯与乙烯、 1-丁烯、 1-己烯、 1-庚烯、 1-辛烯、 4-甲基 -1-戊烯等 α-烯烃 的 1种以上共聚而得到的共聚物。 进而, 作为共聚物, 可以是无规共聚物也 可以是嵌段共聚物。
另外, 也可以使用对上述烯烃系树脂或含官能团的烯烃系树脂进行接枝 改性后得到的物质。接枝改性可列举出例如使不饱和羧酸或其衍生物在过醋 酸、 过硫酸、 过硫酸钾等过酸及其金属盐; 臭氧等氧化剂的存在下发生反应 的方法。
接枝改性率相对于烯烃系树脂或含官能团的烯烃系树脂通常为 0.005~10 质量%、 优选为 0.01~5质量%。
从制造基材A)时的成形的稳定性的观点出发, 基材 (A)中优选包含 25质 量%以上的热塑性树脂、 更优选包含 45质量%以上, 进一歩优选包含 65质量 %以上。另一方面, 从提高基材 (A)的不透明度、 白色度的观点出发,基材 (A) 中优选包含 99质量%以下的热塑性树脂、 更优选包含 95质量%以下。
(无机微细粉末)
基材 (AM尤选除了热塑性树脂之外还含有无机微细粉末。 通过使基材 (A) 含有无机微细粉末, 可以实现基材 (A)的白色化和不透明化, 提高标签上设 置的印刷的可视性。
无机微细粉末的粒径用利用激光衍射法测定的体积平均粒径来表示,从 实现基材 (A)的白色化和不透明化的观点出发, 该体积平均粒径通常为 Ο.ΟΙμπι以上、 优选为 Ο.ΐμπι以上。 另一方面, 从使标签的外观良好的观点出 发, 该体积平均粒径通常为 15μπι以下、 优选为 5μπι以下。
作为基材 (Α)中使用的无机微细粉末的种类, 可列举出碳酸钙、 煅烧粘 土、 硅石、 硅藻土、 白土、 滑石、 氧化钛、 硫酸钡、 氧化铝、 沸石、 云母、 绢云母、 膨润土、 海泡石、 蛭石、 白云石、 硅灰石、 玻璃纤维等。 其中, 从 白色化、 不透明化以及树脂成形性的观点出发, 优选为碳酸钙、 滑石、 氧化 钛, 更优选为碳酸钙、 氧化钛。
可以事先对这些无机微细粉末的表面实施亲水性处理或疎水性处理。通 过这些表面处理, 可以对基材A)赋予印刷适应性、 涂布适应性、 耐擦拭性、 二次加工适应性等各种性质。
从提高基材 (A)的不透明度、 白色度的观点出发, 基材 (A)优选包含 1质 量%以上的无机微细粉末、 更优选包含 5质量%以上。 另一方面, 从制造基材 A)时的成形的稳定性的观点出发, 基材 (A)中优选包含 75质量%以下的无机 微细粉末、 更优选包含 55质量%以下, 进一歩优选包含 35质量%以下。
(其他成分)
本发明中,基材 (A)中根据需要可以含有有机填料、热稳定剂 (抗氧化剂:)、 光稳定剂、 分散剂或润滑剂等。
基材 (A)中含有有机填料时, 从表现出有机填料的功能的观点出发, 优 选含有 0.01质量%以上。 另一方面, 从使标签的外观良好的观点出发, 优选 含有 20质量%以下、 更优选含有 10质量%以下。 作为有机填料, 优选选择与 作为基材 (A)的主成分的热塑性树脂不同种类的树脂。 其中, 更优选选择显 示比作为基材 (A)的主成分的热塑性树脂更高的熔点或玻璃化转变温度的树 月旨。 例如, 在作为基材 (A)的主成分的热塑性树脂为聚烯烃系树脂 (熔点为 80~160°C)的情况下, 有机填料的熔点优选为 170~300°C、 有机填料的玻璃化 转变温度优选为 170~280°C。 作为显示这种熔点或玻璃化转变温度的有机填 料, 可列举出聚对苯二甲酸乙二醇酯、 聚对苯二甲酸丁二醇酯、 聚碳酸酯、 尼龙 -6、 尼龙 -6,6等。
另一方面, 更优选选择与作为基材 (A)的主成分的热塑性树脂不相容的 树脂。 在作为基材 (A)的主成分的热塑性树脂为聚烯烃系树脂的情况下, 作 为有机填料, 除了上述列举的树脂之外, 还可列举出聚苯乙烯、 聚甲基丙烯 酸甲酯等, 在作为基材 (A)的主成分的热塑性树脂为丙烯系树脂的情况下, 作为有机填料, 除了上述列举的树脂之外, 还可列举出高密度聚乙烯、 低密 度聚乙烯、 环状聚烯烃等。
基材 (A)中含有热稳定剂的情况下, 从表现出热稳定剂的功能的观点出 发, 优选含有 0.001质量%以上的热稳定剂。 另一方面, 从使标签的外观良好 的观点、 经济性的观点出发, 优选含有 1质量%以下的热稳定剂、 更优选含 有 0.5质量%以下。
作为热稳定剂, 可以适当使用通常已知的受阻酚系、 磷系、 胺系等热稳 定剂 (抗氧化剂)中的 1种或 2种以上。
基材 (A)中含有光稳定剂时, 从表现出光稳定剂的功能的观点出发, 优 选含有 0.001质量%以上的光稳定剂。另一方面,从使标签的外观良好的观点、 经济性的观点出发, 优选含有 1质量%以下、 更优选含有 0.5质量%以下的光 稳定剂。
作为光稳定剂, 可以适当使用通常已知的受阻胺系、 苯并三唑系、 二苯 甲酮系等光稳定剂中的 1种或 2种以上。
另外, 更优选组合使用光稳定剂和上述的热稳定剂。
基材 (A)中含有分散剂或润滑剂时, 从表现出分散剂或润滑剂的功能的 观点出发, 优选含有 0.01质量%以上的分散剂或润滑剂。 另一方面, 从使标 签的成形性、 印刷适应性良好的观点出发, 优选含有 4质量%以下的分散剂 或润滑剂、 更优选含有 2质量%以下的分散剂或润滑剂。
作为分散剂或润滑剂, 可以适当使用通常已知的硅垸偶联剂; 油酸、 硬 脂酸等碳数 8~24的脂肪酸及其金属盐、 酰胺、 该脂肪酸与碳数 1~6的醇形成 的酯等; 聚 (甲基:)丙烯酸及其金属盐中的 1种或 2种以上。
(基材 (A)的成形)
对于形成基材(A )作为热塑性树脂薄膜的方法没有特别限定, 可以使 用公知的各种方法。
作为具体例, 可以列举出: 将构成基材(A ) 的热塑性树脂组合物使用 螺杆型挤出机进行熔融混炼, 使用连接于该挤出机的 T模头将熔融树脂挤出 为片状并按压到冷却辊进行冷却的浇铸成形法; 使用连接于该挤出机的圆形 模头将熔融树脂挤出成管状并利用管内部的空气压力使其膨胀的吹塑成形 法; 利用多个热辊将熔融混炼的热塑性树脂组合物压延并加工成片状的压延
(calendar) 成形法、 轧制成形法等。
将基材 (A)以及构成基材 (A)的任意层进行拉伸时, 对拉伸方法没有特别 限定, 可以使用公知的各种方法。 作为拉伸方法, 在拉伸浇铸成形薄膜的情 况下, 可列举出利用了辊组的圆周速度差的纵向拉伸法、 使用了拉幅炉的横 向拉伸法、 轧制法、 利用拉幅炉和线性电动机 (linear motor)的组合的同歩双 轴拉伸法、 利用拉幅炉和缩放仪的同时双轴拉伸法等。 此外, 在拉伸吹塑薄 膜 (inflation film)的情况下, 可列举出基于管膜法(tubular method) 的同歩双 轴拉伸法。
另外, 在基材 (A)呈多层结构的情况下, 作为优选的成形例, 可以列举 出: 对其中的 1层进行上述浇铸成形, 根据需要利用辊圆周速度差进行拉伸 后, 将构成基材 (A)的其它层的树脂组合物熔融并层压, 制成多层结构的方 法。 另一方面, 作为优选的成形例还可以列举出: 在前述 T模具内层叠多种 树脂组合物而从 T模具共挤出并进行成形从而制成多层结构的方法。 另外, 也可以适当组合这些方法。
基材 (A)的拉伸条件没有特别限定, 考虑到要使用的热塑性树脂的特性 等进行适当决定。 例如, 对于拉伸倍率, 作为热塑性树脂使用丙烯均聚物或 其共聚物, 对其沿单方向拉伸的情况下约为 1.2~12倍、 优选为 2~10倍, 双轴 拉伸的情况下以面积倍率计为 1.5~60倍、 优选为 4~50倍。 使用其它热塑性树 脂时, 对其沿单方向拉伸的情况下为 1.2~10倍、 优选为 2~5倍, 双轴拉伸的 情况下以面积倍率计为 1.5~20倍、 优选为 4~12倍。
另外,拉伸温度可以从所使用的热塑性树脂的玻璃化转变温度以上至晶 体部分的熔点以下的、 适合于热塑性树脂的拉伸的公知的温度范围选择。 具 体来说, 热塑性树脂是丙烯均聚物 (熔点 155~167°C)的情况下为 100 164 °C、 高密度聚乙烯 (熔点 121~134°C)的情况下为 70~133 °C,是比熔点低 1~70°C的温 度。另外,聚对苯二甲酸乙二醇酯 (熔点 246~252°C;>选择结晶化不会急剧进行 的温度。 另外, 拉伸速度优选设为 20~350m/分钟。
进一歩优选对拉伸后的基材 (A) 进行热处理。 热处理时的温度优选为 在拉伸温度以上且比拉伸温度高 30°C的温度以下的范围内。 通过进行热处 理, 拉伸方向的热收缩率降低, 制品保管时的卷紧、 由热和将片熔断时的收 缩而产生的褶皱等减少。 热处理的方法通常是用辊和热炉来进行, 也可以将 它们组合。 从可以获得高处理效果的观点出发, 热处理优选在已拉伸的薄膜 保持于拉紧的状态进行。
从能够容易地获得标签作为支持体的充分的机械强度、 刚度的观点考 虑, 标签中的基材 (A ) 的厚度优选为 19.9μπι以上, 更优选为 39.5μπι以上。 另一方面, 从容易获得标签对中空成形容器的形状追随性的观点考虑, 优选 为 230μπι以下, 更优选为 190μπι以下。
[粘接层 (Β)]
粘接层 (Β)在标签中具有贴附于中空成形容器的功能。 粘接层 (Β)通常由 以热塑性树脂为主成分的树脂组合物形成,所述热塑性树脂显示出比构成基 材 (Α)的树脂组合物的熔点低的熔点。
从贴附于中空成形容器时基材 (Α)不会变形的观点出发, 作为粘接层 (Β) 的主成分的热塑性树脂的熔点与构成基材 (Α)的树脂组合物的熔点之差优选 为 10°C以上、 更优选为 15°C以上。 另一方面, 从贴附于中空成形容器之前的 保管时、 加工时成形用标签不易产生粘连、 操作性优异的观点出发, 该熔点 之差优选为 150°C以下。
作为粘接层 (B)中使用的热塑性树脂的具体例子, 可列举出超低密度、 低密度或中密度的高压法聚乙烯、直链线状低密度聚乙烯、乙烯 ·醋酸乙烯酯 共聚物、乙烯,丙烯酸共聚物、垸基的碳数为 1~8的乙烯,丙烯酸垸基酯聚合物、 垸基的碳数为 1~8的乙烯 ·甲基丙烯酸垸基酯共聚物、 丙烯 ·α-烯烃共聚物所代 表的丙烯系树脂; 聚酯系树脂; 苯乙烯系弹性体树脂、 聚酰胺系树脂等。 另 夕卜, 粘接层 (Β)中在不妨碍热封性的范围内可以任意添加公知的其它的树脂 用添加剂。 作为该添加剂, 例如可列举出染料、 成核剂、 增塑剂、 脱模剂、 阻燃剂、 抗氧化剂、 光稳定剂、 紫外线吸收剂等。
[粘接层 (Β ) 的成形]
对形成粘接层( Β )作为热塑性树脂薄膜的方法没有特别的限定, 可以 采用公知的各种方法。
作为具体例, 优选如下方法: 通过将基材 (A)和粘接层 (B)的熔融树脂在 同一个模具内层叠并挤出成片状的共挤出浇铸成形法, 同时进行两层的成形 和层叠, 从而得到层叠体。 另外, 还优选对利用上述方法得到的基材 (A)的 —侧的面层压粘接层 (B)的熔融树脂的方法。 另外, 还可以对所得层叠片进 一歩与基材A)的拉伸同样地沿纵向或横向拉伸。
从获得对中空成形容器的充分的粘接力的观点出发, 标签的粘接层 (B) 的厚度优选为 Ο.ΐμπι以上、 更优选为 0.5μπι以上。 另一方面, 从片状下的胶版 印刷时、 将标签插入模具时该标签不易卷曲的观点出发, 标签的粘接层 (Β) 的厚度优选为 20μπι以下、 更优选为 ΙΟμπι以下。
<中空成形容器及其制造〉
本发明的构成带标签中空成形容器的中空成形容器的材料和成形方法 没有特别限定, 可以使用公知的材料和成形方法。
[容器的材料]
作为带标签中空成形容器的容器主体材料, 使用能够成形为中空容器的 材料。 通常使用热塑性树脂, 例如可列举出聚对苯二甲酸乙二醇酯 (PET)及 其共聚物、 聚丙烯 (PP)、 聚乙烯 (PE)等聚烯烃系树脂、 聚碳酸酯树脂等。 其 中, 聚烯烃系树脂由于为易于吹塑成形的树脂, 因此优选使用。 另外, 优选 使用以这些热塑性树脂为主成分的热塑性树脂组合物。
制造带标签中空成形容器时, 优选的是, 将标签插入模具内, 并在该 模具内导入能够成形的状态的热塑性树脂组合物的方法。 其中, 优选如下方 法: 首先在模具中制造由这些树脂形成的预成形坯、 型坯, 将它们用模具夹 持并进行吹塑成形的方法。 通过吹塑成形, 可在将容器成形的同时将标签贴 附于容器。 由此,可以在维持容器的外观设计性、轻量化以及生产率的同时, 在短时间内简便地制造带标签中空成形容器。 [标签在模具内的设置]
本发明的带标签中空成形容器如下制造:将标签插入具有标签装填用凹 陷的模具, 并向该模具内导入熔融状态的热塑性树脂, 从而制造。 其中, 可 以通过在吹塑成形的同时对标签进行一体化的方法来容易地制造。
在将标签设置于模具内时,优选使标签的葛利柔软度(Gurley flexibility) 为 150~350mN的方向与模具的铅垂方向保持一致。通过这样地设置, 可以抑 制标签在模具内因自身重量而卷取并下垂或者产生褶皱。 另外, 以标签的与 粘接剂层为相反侧的面与模具相接触的方式将标签设置于模具内。在将标签 设置于模具内时, 也可通过从模具内所开的孔进行抽吸从而固定标签的位 置。
另外, 为了将标签准确地装填到设置在模具内的、 适合标签的形状的标 签装填用凹陷, 优选使用插入器进行机械装填, 该插入器优选使用具有伺服 电机的冲程精度高的插入器。
作为吹塑成形, 可适宜选择并使用通常已知的双轴拉伸吹塑成形法、直 接吹塑成形法等。 例如, 在通过直接吹塑成形来制造带标签容器的情况下, 制作通常 150 240 °C、 优选 170~230°C的热型坯, 在通常 10~50°C、 优选 20~40 °C的模具内, 以通常 0.49~3.92MPa ( 5~40kg/cm2 )、 优选 0.98~2.94MPa ( 10~30kg/cm2) 的吹塑压力, 吹塑通常 0.5 10秒钟、 优选 1~6秒钟, 从而可 以制造本发明的带标签中空成形容器。
容器的主体断面未必一定是正圆形的, 例如可以是椭圆形或矩形。 在断 面为矩形的情况下, 优选矩形的角带有曲率。 从强度的观点考虑, 主体的断 面优选为正圆或接近正圆的椭圆形, 最优选为正圆。
[实施例]
以下列举实施例和比较例对本发明的特征进一歩具体说明。 以下实施例 所示的材料、 使用量、 比例、 处理内容、 处理顺序等可以在不脱离本发明主 旨的范围内适当变更。 因此, 本发明的范围并非局限于以下所示具体例子。
[评价方法]
标签的厚度:
标签的厚度基于 JIS K 7130:19991;"塑料-薄膜以及片-厚度测定方法 ":)的 A 法, 使用定压厚度测定器 (TECLOCK Corporation制、 机器名: PG-01J)进行 测定。
标签的基重:
标签的基重基于 JIS P 8124: 1998 "纸以及板纸 -基重的测定方法":), 用电 子天平称量并测定冲切成 lOOmmxlOOmm尺寸的样品。
标签的密度:
标签的密度以用上述得到的标签的基重除以上述得到的标签的厚度所 得的值的形式求出。 结果总结示于表 2。
另外, 所使用的热塑性树脂的密度基于 JIS K 7112:1999( "塑料-非发泡 塑料的密度以及比重的测定方法":)的 A法, 由所使用的热塑性树脂的压制片 利用水中置换法而求出。
标签的压缩率:
图 6所示的压缩率测定用夹具如下构成。
试验用架台 9具有能够承载测定样品 8的样品台 10和激光位移传感头 11 (KEYENCE Corporation制、制品名: LK010)。样品台 10的中心被掏空成直 径 20mm的圆形。 由激光位移传感头 11向样品压紧夹具 12照射激光 13, 被样 品压紧夹具 12反射的激光 13再次入射到激光位移传感头 11中。激光位移传感 头 11的输出被放大单元 (未图示、 KEYENCE Corporation制、制品名: LK3100) 捕获。
在测定样品 8上放上直径 50mm的圆盘状的样品压紧夹具 12样品接触面 的面积: 2.5434cm2;>, 进而介由金属球 15将该夹具 12连接于压缩拉伸试验机 (岛津制作所制、 制品名: Autograph AGS-5KND)的负荷传感器 14上。
测定时, 从压缩拉伸试验机的模拟输出以 50毫秒的取样周期向计算机中 导入应力数据, 同时从放大单元的模拟输出以 2048微秒的取样周期向计算机 中导入位移数据。
另一方面, 将标签切割成 50mmx50mm的正方形, 将其中心掏空成直径 为 20mm的圆形, 制作 3个测定样品 8。
首先, 在图 6所示的样品压紧夹具 12中, 在未放置样品 8的状态下进行位 移 0的空白测定。
接着, 在样品压紧夹具 12中放置样品 8, 测定应力为 ON时的位移, 记为 初始薄膜厚度 e。
接着, 用压缩拉伸试验机以 lmm/分钟的速度对薄膜表面施加应力, 在 薄膜表面的压力达到 3.138MPa(32kgf/cm2)后, 释放应力。 接着, 分析由计算 机中的压缩拉伸试验机的输出和激光位移传感器的输出得到的图形, 求出薄 膜表面的压力达到 3.138MPa 32kgf/cm2;)时的位移量, 记作加压后的薄膜厚度 f。 进而通过下式求出压缩率 C。
压缩率 c=100x(e-f)/e · · ·式 (3)
c的单位: %
e、 f的单位: μπι。
标签贴合部的标签厚度1\ 容器厚度 Υ以及标签非贴合部的容器厚度 Ζ: 从带标签中空成形容器中以包含标签边界(标签外缘) 的方式切取容器 主体部作为试样, 接着将试样用液态氮冷却至 -60 °C以下的温度, 将刀片 (Schick Japan K.K.制, 商品名: Proline Blade)垂直接触放置于玻璃板上的试 样并切断试样, 制成断面测定用的试样。 使用数码显微镜 (KEYENCE Corporation制、机器名: VHX-1000)对所得试样进行断面观察, 计测图 1所示 的1\ Y和 Z部位的厚度, 求出标签贴合部的标签厚度 T、容器厚度 Υ以及标签 非贴合部的容器厚度 Z。
需要说明的是, 标签贴合部的标签厚度 τ和容器厚度 Y如图 1所示那样, 在前述切断面的从标签外缘 la沿着标签表面向内 l±0.05mm处测定。另外,标 签非贴合部的容器厚度 Z同样地在前述切断面的从标签外缘 la沿着标签表面 向外 l±0.05mm处测定。
带标签中空成形容器的坠落试验:
在已成形的 3L的带标签中空成形容器中充满 3L的水,以盖紧盖子的状态 作为坠落试验用试样。 在 23 °C的环境下, 使用坠落试验机 (SHINYEI Technology Co.,LTD.制、 装置名: DTS-50), 实施 4次使试样从 1200mm的高 度坠落到水泥地面的坠落试验,确认各试样的破裂个数,按照以下基准评价。
-容器破裂个数 0个 : 〇 (良好)
1~2个 : △ (合格)
3个以上: X (不良)
[标签的制造]
制造例 1 :
作为基材层 (A)的材料, 将表 1记载的热塑性树脂 (PP-1)、 无机微细粉末 (CA-1和 TI-1)按照表 2记载的配混比 (质量基准)进行混合。 将该混合物供给至 设定为 250°C的挤出机中, 在挤出机内进行熔融混炼, 将已熔融的树脂组合 物供给至设定为 250°C的 T模具中, 由 T模具挤出成片状。 将片状的树脂组合 物用冷却辊冷却至约 60°C, 从而得到无拉伸片。 接着, 将该无拉伸片材再加 热至 150°C后, 利用辊组的圆周速度差沿纵向拉伸 4倍, 用冷却辊冷却至约 60 V, 得到 4倍拉伸片。
另一方面, 作为粘接层 (B)的材料, 将热塑性树脂 (PE-1)用设定为 230°C 的挤出机进行熔融混炼。 接着, 将已熔融的热塑性树脂 (PE-1)用设定为 230 °0的1模具挤出成片状, 将该热塑性树脂层叠于前述 4倍拉伸片上, 以毛毡样 橡胶辊侧与 4倍拉伸片接触的方式导入赋形有 #150线的凹版压花的金属冷却 辊与毛毡样橡胶辊之间, 挟压而使两者接合, 同时使热塑性树脂侧转印压花 图案, 用冷却辊冷却, 得到具有 2层结构的层叠树脂片。
接着, 将该层叠树脂片用拉幅烘箱再加热至 165°C后, 使用拉幅机沿横 向拉伸 9倍, 然后进一歩利用调整为 165°C的热定形区进行退火处理, 用冷却 辊冷却至约 60°C, 切去边缘部, 得到基材层 (Ay粘接层 (B)的 2层结构的双轴 拉伸树脂薄膜, 将其作为制造例 1的标签。
制造例 1的标签的制造条件以及物性示于表 2。
制造例 2〜5:
除了将制造例 1中的标签的制造中基材层 (A)的材料以及配混比、 纵拉伸 温度、 纵拉伸倍率、 横拉伸温度和横拉伸倍率变更为表 2记载的条件以外, 与制造例 1同样地制造标签, 将其作为制造例 2〜5的标签。
各标签的制造条件以及物性示于表 2。
[表 1]
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000031_0002
[带标签中空成形容器的制造]
实施例 1 :
将制造例 1的标签冲切成具有图 3的 3所示的形状的横 110mm、 纵 171mm 的规定尺寸, 用于制造带标签中空成形容器。 将该标签在图 3所示的能够成 形为 3L内容量的瓶的模具中以粘接层 (B ) 面向腔室侧的方式进行配置, 利 用抽吸而固定在模具上。 此时, 将图 4所示的冷却用模具的标签装填用凹陷 d 设定为 100μπι。
接着, 作为中空成形容器主体部的材料,将热塑性树脂 (ΡΕ-2)以 170°C进 行熔融, 并在冷却温度设定为 20°C的模具内部挤出成型坯状。 接着, 将模具 合模后, 向型坯内供给 0.4MPa(4.2kg/Cm2)的压缩空气, 使型坯膨胀, 与模具 密合 16秒钟, 从而制成容器状, 同时与标签融合。 接着, 在模具内将成形物 冷却, 打开模具, 得到实施例 1的带标签中空成形容器。
实施例 1的注射循环时间 (shot cycle me ) 为 28秒 /次。
图 3中, 从 2a所示的位置采集带标签中空成形容器的物性测定用样品。 实施例 1的带标签中空成形容器的成形条件 (标签、模具)以及带标签中空 成形容器物性示于表 3。
实施例 2〜6、 比较例 1 :
除了将实施例 1中所使用的标签、冷却用模具的标签装填用凹陷 d的设定 变更为表 3记载的值以外, 与实施例 1同样操作, 得到实施例 2和 3的带标签中 空成形容器。 各实施例、 比较例中制造带标签中空成形容器时使用的标签、 模具条件和所得的带标签中空成形容器的物性示于表 3。
[表 3]
Figure imgf000033_0001
如表 3可知, 带标签中空成形容器断面的利用光学显微镜观察所求出的 主体部壁厚变化量 X满足式 I)的实施例 1~6中,坠落试验判定为〇水平 (:良好:) 或 Δ水平 (合格), 是良好的, 与此相对, 主体部壁厚变化量 X不满足式 (1)的 比较例 1中, 坠落试验判定为 X水平 (:不良:)。
另一方面,使用了标签嵌入部具有能够设置适合标签的形状的标签装填 用凹陷的结构、 且该凹陷的深度 d满足式 (2)的中空成形机的冷却用模具的实 施例 1或 2中, 坠落试验判定为〇水平 (:良好:), 与此相对, 使用了不具有该凹 陷、 gPd=0且不满足式 (2)的现有模具的比较例 1中, 坠落试验判定为 X水平 (不良)。
需要说明的是, 即使是现有模具, 3.138MPa下的标签压缩率 c不足 30% 的比较例 1中, 主体部壁厚变化量 X为 χ = τ、 无法满足式 I), 坠落试验判定 为 X水平 (:不良:), 而标签的压缩率 c为 30%以上且 60%以下的实施例 3中, 主 体部壁厚变化量 X满足式 (1), 坠落试验判定为八水平 (合格), 容器坠落时的 耐冲击性提高。
产业上的可利用性
本发明的带标签中空成形容器的耐冲击性优异,存在即使在填充有内容 物的状态下使带标签中空成形容器坠落容器也不易破损的倾向, 另外, 存在 即使将填充有内容物的带标签中空成形容器装入运输用瓦楞纸箱中,进而在 将瓦楞纸箱层叠数层的状态下运输, 带标签中空成形容器也不易破损的倾 向。 因此, 本发明的带标签中空成形容器适用于容纳多种多样的液体 (例如 食用油、 液体调味料、 饮料、 酒类、 厨房用洗涤剂、衣料用洗涤剂、 洗发水、 护发素、 液体肥皂、 消毒用醇、 汽车用油、 汽车用洗涤剂、 农药、 杀虫剂、 除草剂等)并对其进行流通、 陈列、 购买、 保管、 使用的目的。
另外, 带标签中空成形容器的容器内容积越大、 带标签中空成形容器的 容器厚度越薄、 以及标签厚度越厚时, 通过本发明而得到的带标签中空成形 容器的耐冲击性优异的效果越明显。

Claims

权 利 要 求 书
1. 一种带标签中空成形容器,其特征在于,其包含标签和中空成形容器, 该容器由热塑性树脂组合物形成,
利用光学显微镜观察所求出的该容器断面的主体部壁厚变化量 X满足下 述式 (1), 且 X的值为 90以下,
-50^X<T · · · 式 (1)
主体部壁厚变化量: Χ=Ζ-Υ
标签贴合部的标签厚度: τ
标签贴合部的容器厚度: Υ
标签非贴合部的容器厚度: ζ,
X、 Υ、 Ζ、 Τ的单位: μπι。
2. 根据权利要求 1所述的带标签中空成形容器, 其特征在于, 所述标签 在 3.138MPa压力下的压缩率 c为 30%以上且 60%以下。
3. 根据权利要求 1或 2所述的带标签中空成形容器,其特征在于,其是使 用具有标签嵌入部的模具成形而成的,所述标签嵌入部具有能够设置适合所 述标签的形状的标签装填用凹陷的结构。
4. 根据权利要求 1~3中任一项所述的带标签中空成形容器,其特征在于, 所述中空成形容器是通过在吹塑成形的同时将标签一体化的方法而得到的 中空成形容器。
5.根据权利要求 1~4中任一项所述的带标签中空成形容器,其特征在于, 所述热塑性树脂组合物包含聚烯烃系树脂组合物。
6. 一种带标签中空容器的成形方法,其特征在于,成形机模具具有标签 嵌入部,所述标签嵌入部具有能够设置适合标签的形状的标签装填用凹陷的 结构, 将标签插入该模具的标签嵌入部, 接着向该模具内导入能够成形的状 态的热塑性树脂组合物进行容器成形。
7. 根据权利要求 6所述的带标签中空容器的成形方法, 其特征在于, 所 述标签装填用凹陷的深度 d满足下述式 (2),
0<d^t+50 · · ·式 (2)
标签装填用凹陷的深度: d
标签的厚度: t,
d、 t的单位: μπι。
8. 根据权利要求 6或 7所述的带标签中空容器的成形方法, 其特征在于, 所述热塑性树脂组合物包含聚烯烃系树脂组合物。
PCT/CN2014/084151 2013-08-13 2014-08-12 带标签中空成形容器以及中空容器成形方法 WO2015021900A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/911,837 US20160251116A1 (en) 2013-08-13 2014-08-12 Labeled hollow formed container and forming method thereof
CN201480001721.2A CN104640776B (zh) 2013-08-13 2014-08-12 带标签中空成形容器以及中空容器成形方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310351549.0 2013-08-13
CN201310351549 2013-08-13

Publications (1)

Publication Number Publication Date
WO2015021900A1 true WO2015021900A1 (zh) 2015-02-19

Family

ID=52468048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084151 WO2015021900A1 (zh) 2013-08-13 2014-08-12 带标签中空成形容器以及中空容器成形方法

Country Status (3)

Country Link
US (1) US20160251116A1 (zh)
CN (2) CN104640776B (zh)
WO (1) WO2015021900A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104077956B (zh) * 2013-03-28 2017-05-17 优泊公司 模内成型用标签及使用其的带标签的塑料容器
CN114633463B (zh) * 2022-05-18 2022-07-19 天津科达科技发展有限公司 一种高分子bopa薄膜材料加工系统和加工方法
CN116832285B (zh) * 2023-09-01 2023-11-07 吉林大学 基于云平台的呼吸机运行异常监测预警系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255311A (ja) * 1989-03-29 1990-10-16 Arutetsuku Kk インモールドラベル法
CN1235576A (zh) * 1996-09-09 1999-11-17 B及H制造公司 易去除的标签
JP2000025100A (ja) * 1998-07-09 2000-01-25 Sharp Corp 貯液タンク及びその製造方法
JP2000073120A (ja) * 1998-08-31 2000-03-07 Kawasaki Steel Corp 耳割れ、耳歪のない方向性電磁鋼板の製造方法
CN1840306A (zh) * 2005-03-29 2006-10-04 黄胜昌 标签模内一体成型的模具
CN203512199U (zh) * 2013-08-13 2014-04-02 优泊公司 带标签中空成形容器及模具
CN203752500U (zh) * 2013-08-13 2014-08-06 优泊公司 模具

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085122B2 (ja) * 1992-04-30 1996-01-24 日本写真印刷株式会社 ラベル付膨張プラスチックボトルとその製造方法
US20050068182A1 (en) * 2003-09-30 2005-03-31 Dunlap Richard L. Application of radio frequency identification
JP5660431B2 (ja) * 2010-05-31 2015-01-28 株式会社吉野工業所 ラベル付き容器
GB2498775A (en) * 2012-01-27 2013-07-31 Innovia Films Ltd In-mould labelling process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255311A (ja) * 1989-03-29 1990-10-16 Arutetsuku Kk インモールドラベル法
CN1235576A (zh) * 1996-09-09 1999-11-17 B及H制造公司 易去除的标签
JP2000025100A (ja) * 1998-07-09 2000-01-25 Sharp Corp 貯液タンク及びその製造方法
JP2000073120A (ja) * 1998-08-31 2000-03-07 Kawasaki Steel Corp 耳割れ、耳歪のない方向性電磁鋼板の製造方法
CN1840306A (zh) * 2005-03-29 2006-10-04 黄胜昌 标签模内一体成型的模具
CN203512199U (zh) * 2013-08-13 2014-04-02 优泊公司 带标签中空成形容器及模具
CN203752500U (zh) * 2013-08-13 2014-08-06 优泊公司 模具

Also Published As

Publication number Publication date
US20160251116A1 (en) 2016-09-01
CN104640776A (zh) 2015-05-20
CN104369939A (zh) 2015-02-25
CN104640776B (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN107428134B (zh) 热塑性树脂膜及其制造方法、模内成型用标签以及带有标签的塑料容器及其制造方法
JP5579394B2 (ja) インモールド成形用ラベル
US20070003777A1 (en) In-mold label and molded article using the same
TWI651200B (zh) 薄膜及附標籤塑膠容器
JP2011081404A (ja) インモールド成形用ラベル
TWI552928B (zh) Labeled blow molding container
WO2015021900A1 (zh) 带标签中空成形容器以及中空容器成形方法
JP2016047598A (ja) インモールドラベル、樹脂成形品及びその製造方法
JP2016521372A (ja) インモールド成形用ラベルおよびこれを用いたラベル付きプラスチック容器
JP5492547B2 (ja) ラベル付き容器とその製造方法
US20160009018A1 (en) In-mold label for stretch blow molding and labeled stretch blow molded product using same
CN203752500U (zh) 模具
US10810909B2 (en) Labeled molded container having light contrast at three-dimensional end portion
CN203512199U (zh) 带标签中空成形容器及模具
JP2001353770A (ja) インモールド成形用ラベルおよび該ラベル付き樹脂成形品
JP4202789B2 (ja) スクリーン
US20220020296A1 (en) Resin Formed Product with Label, Production Method of Resin Formed Product with Label, and Label
WO2021193861A1 (ja) 感熱ラベル及び感熱ラベルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14911837

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14836478

Country of ref document: EP

Kind code of ref document: A1