WO2015020117A1 - Ni基合金、ガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ライナー用部材、トランジッションピース用部材、ライナー、トランジッションピース - Google Patents

Ni基合金、ガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ライナー用部材、トランジッションピース用部材、ライナー、トランジッションピース Download PDF

Info

Publication number
WO2015020117A1
WO2015020117A1 PCT/JP2014/070795 JP2014070795W WO2015020117A1 WO 2015020117 A1 WO2015020117 A1 WO 2015020117A1 JP 2014070795 W JP2014070795 W JP 2014070795W WO 2015020117 A1 WO2015020117 A1 WO 2015020117A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
gas turbine
turbine combustor
based alloy
nitride
Prior art date
Application number
PCT/JP2014/070795
Other languages
English (en)
French (fr)
Inventor
岡田 郁生
正樹 種池
英隆 小熊
上村 好古
大助 吉田
義之 井上
正登 伊東
兼一 谷口
福田 正
孝憲 松井
Original Assignee
日立金属Mmcスーパーアロイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属Mmcスーパーアロイ株式会社 filed Critical 日立金属Mmcスーパーアロイ株式会社
Priority to US14/910,106 priority Critical patent/US10208364B2/en
Priority to KR1020167005658A priority patent/KR101801672B1/ko
Priority to ES14835088T priority patent/ES2757569T3/es
Priority to EP14835088.7A priority patent/EP3031940B1/en
Priority to CN201480055025.XA priority patent/CN105960473B/zh
Publication of WO2015020117A1 publication Critical patent/WO2015020117A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts

Definitions

  • the present invention relates to a Ni-base alloy excellent in high-temperature strength characteristics and high-temperature corrosion resistance, a Ni-base alloy for a gas turbine combustor comprising the Ni-base alloy, a gas turbine combustor member, a gas turbine combustor liner member, and a transition piece member , Liner and transition piece.
  • Ni-based alloys have been widely applied as materials for members used in aircraft, gas turbines, and the like.
  • fuel is injected into the compressor discharge air, burned to generate high-temperature and high-pressure gas for driving the turbine, and the fuel gas is injected into the turbine inlet. It plays a role of guiding to the nozzles (stator blades) and is used in a high temperature environment.
  • the liner (inner cylinder) and the transition piece (tail cylinder) are exposed to high-temperature combustion gas.
  • a frequent heat cycle of heating and cooling accompanying the start, stop, and output control is loaded.
  • Ni-based alloys used in gas turbine combustors etc. are excellent in high temperature strength such as high temperature tensile strength, creep rupture strength, low cycle fatigue strength, thermal fatigue strength, and high temperature oxidation resistance. And high temperature corrosion resistance such as high temperature sulfidation resistance and cold workability, machinability, weldability, and brazeability are required.
  • high temperature strength such as high temperature tensile strength, creep rupture strength, low cycle fatigue strength, thermal fatigue strength, and high temperature oxidation resistance.
  • high temperature corrosion resistance such as high temperature sulfidation resistance and cold workability, machinability, weldability, and brazeability are required.
  • Such a use environment is the same in an aircraft or the like, and the above-described characteristics are required.
  • Ni-based alloy from the viewpoint of ensuring the above-mentioned characteristics, strict management of composition components and metal structures is required, and the input materials are also strictly limited. This is because the above-described characteristics deteriorate due to inclusions such as nitrides and oxides in the Ni-based alloy.
  • the influence of the nitride on the various properties becomes more significant as the size of the nitride increases, and it is recognized that the nitride mainly composed of Ti is harmful. Specifically, nitride reduces crack life during creep and creep fatigue during use and reduces the life of the tool. become.
  • Patent Document 2 proposes that the amount of nitrogen present in the Ni-based alloy be 0.01% by mass or less.
  • Patent Document 3 proposes that the maximum particle size of carbide and nitride is 10 ⁇ m or less. It is pointed out that if the carbide and nitride are 10 ⁇ m or more, cracking occurs at the interface between the carbide, nitride and the parent phase during processing at room temperature.
  • Patent Documents 4 and 5 As a means for evaluating inclusions, in the steel field, as shown in Patent Documents 4 and 5, in Fe-Ni alloys such as Fe-36% Ni and Fe-42% Ni, non-metallic inclusions, particularly A method for estimating and evaluating the maximum particle size of an oxide has been proposed.
  • Patent Document 2 although the upper limit value of the amount of nitrogen is regulated, it is not associated with the maximum grain size of nitride, so even if the amount of nitrogen is reduced, a sufficient Ni-based alloy is stabilized in fatigue strength. There is a problem that cannot be obtained. Further, although Patent Document 3 stipulates that the maximum particle size of carbides and nitrides is 10 ⁇ m or less, since Ni-based alloys are used as aircraft and gas turbine parts for power generation, they are very The degree of cleanliness is high, and it is practically difficult to grasp the maximum particle diameter by observing all the parts. In the example of Patent Document 3, the particle size of carbide is measured, which also suggests that it is difficult to grasp the maximum particle size of nitride.
  • the distribution of the maximum nitride particle size in the field of view actually measured is important, but the reference 3 does not describe this point at all, The estimated maximum grain size of the nitride cannot be predicted.
  • Patent Documents 4 and 5 in Fe-Ni alloys in which a relatively large amount of non-metallic inclusions are precipitated, oxides that are likely to have large particle sizes are measured, and in order to improve fatigue strength with Ni-based alloys. It is very difficult to estimate the maximum grain size of nitride, and various studies are required. In addition, in an Ni-based alloy, the amount of oxygen and nitrogen are reduced by vacuum melting, remelting, etc., so that the number of non-metallic inclusions is small and the size is small compared to steel materials. Furthermore, since Ni-based alloys contain various phases, it is not possible to perform separation of light emission patterns and observation of non-metallic inclusions as in the steel field. For this reason, even if a technique practiced in the steel field is simply applied, the relationship between the nitride in the Ni-based alloy and the fatigue strength cannot be sufficiently evaluated.
  • the above-described Ni-based alloy contains a large amount of so-called rare metals in order to ensure the characteristics, it is difficult to stably secure the raw materials. Therefore, in the above-described Ni-based alloy, promotion of scrap recycling is desired. However, when the amount of scrap used is increased, there may be a large amount of inclusions due to mixing of impurity elements and the like. For this reason, a means for accurately evaluating the inclusions in the Ni-based alloy is required.
  • the present invention has been made in view of the above-described circumstances.
  • the inventors have found that the maximum grain size of nitride in a Ni-based alloy has a large effect on fatigue strength, and it is practically difficult to observe all the target cross sections.
  • the present invention has been achieved based on the result of considering the relationship between the estimated maximum size of nitride and the fatigue strength.
  • the present invention relates to a Ni-base alloy excellent in high-temperature strength characteristics and high-temperature corrosion resistance, a Ni-base alloy for a gas turbine combustor comprising the Ni-base alloy, a gas turbine combustor member, a gas turbine combustor liner member, and a transition piece member It aims at providing a liner and a transition piece.
  • the Ni-based alloy of the present invention has Cr: 20.0% by mass to 26.0% by mass, Co: 4.7% by mass to 9.4% by mass, Mo; 0% by mass to 16.0% by mass, W; 0.5% by mass to 4.0% by mass, Al; 0.3% by mass to 1.5% by mass, Ti; 0.1% by mass to 1% .0 wt% or less, C; includes 0.001 wt% to 0.15 wt% or less, and the content of Fe are 5 mass% or less, the visual field and observed by the measurement field area S 0
  • the estimated maximum size of the nitride when the predicted cross-sectional area S is 100 mm 2 is set to 25 ⁇ m or less in terms of the area equal diameter.
  • the mechanical properties (fatigue properties) of the Ni-based alloy can be improved.
  • the early deterioration of the tool at the time of cutting can be suppressed.
  • the estimated maximum size of the nitride is set to 12 ⁇ m or more in terms of the same area.
  • the observation of nitride is preferably performed at a magnification of 400 to 1000 times and a number n of fields of view of 30 or more.
  • the nitride area is preferably measured by obtaining a luminance distribution using image processing, determining a threshold value of luminance, and separating nitride, matrix, carbide, and the like. At this time, color difference (RGB) may be used instead of luminance.
  • RGB color difference
  • Nitride includes crystallized nitride that is generated from the liquid phase in the solidification process of the molten metal and precipitated nitride that is generated from the solidified phase once. Precipitated nitrides were dissolved and re-precipitated in the substrate during hot working and heat treatment after melting, and the size etc. could change greatly, while crystallized nitrides were obtained in the solidification stage during melting. There is a difference that the size is basically maintained regardless of the subsequent hot working or heat treatment. In general, crystallized nitride tends to be larger in size than precipitated nitride, and is highly harmful to fatigue strength. Therefore, the crystallized nitride is targeted as the maximum size nitride for calculating the area equal diameter D in the present invention.
  • Cr 20.0% by mass or more and 26.0% by mass or less
  • Co 4.7% by mass or more and 9.4% by mass or less
  • Mo 5.0% by mass or more and 16.0% by mass or less
  • W 0 0.5 mass% or more and 4.0 mass% or less
  • Al 0.3 mass% or more and 1.5 mass% or less
  • Ti 0.1 mass% or more and 1.0 mass% or less
  • C 0.001 mass% or more Since the composition contains 0.15% by mass or less, it is possible to provide a high-quality Ni-based alloy excellent in high-temperature corrosion resistance, creep characteristics, high-temperature strength characteristics such as creep fatigue, and workability. Moreover, since content of Fe is 5 mass% or less, it can suppress that high temperature intensity
  • scrap may be used as a raw material.
  • raw materials such as rare metals can be stably secured.
  • the melting can be promoted sufficiently, and the energy related to the melting can be reduced. Even when scrap is used in this way, since nitrides are evaluated with high accuracy as described above, it is possible to suppress deterioration of mechanical properties, cutting workability, and the like.
  • Scrap in the present application is a material made for purposes other than raw materials and parts made of the material, or materials and parts generated in the manufacturing process, and takes various shapes such as a lump shape, a chip shape, and a powder shape. . Since these scraps can be used in appropriate combinations, they may be components different from the target component, or may be ones in which different components are integrated by welding or the like. Further, the higher the scrap composition ratio, the greater the contribution to the production, supply, and price stability of the material, and therefore 5% by mass or more is desirable. Further, when the composition ratio is high, the energy required for melting the raw material can be reduced and the melting time can be shortened. However, scrap may contain unexpected component factors, so 40 to 99% by mass is more desirable.
  • the nitride is preferably titanium nitride. Since Ti is an active element, nitrides are easily generated. In addition, since titanium nitride has a polygonal cross section, the mechanical properties are greatly affected even if the size is small. Therefore, the mechanical characteristics of the Ni-based alloy can be reliably improved by accurately evaluating the maximum size of titanium nitride in the Ni-based alloy by the method described above.
  • the Ni-base alloy for a gas turbine combustor according to the present invention is a Ni-base alloy for a gas turbine combustor used in a gas turbine combustor, and is characterized by comprising the above-mentioned Ni-base alloy.
  • the Ni-based alloy of the present invention is particularly suitable as a material for a gas turbine combustor because it is excellent in high temperature corrosion resistance, high temperature strength characteristics such as creep characteristics and creep fatigue, and workability.
  • the member for a gas turbine combustor according to the present invention is made of the above-described Ni-based alloy for a gas turbine combustor. Since the gas turbine combustor is used in a high-temperature environment, it is possible to improve the high-temperature mechanical characteristics and the high-temperature corrosion resistance by forming the gas turbine combustor with the above-described Ni-based alloy for the gas turbine combustor.
  • Gas turbine combustor members include materials such as plates and rods that constitute parts of gas turbine combustors, castings and forged products having specific shapes, and welds and welds formed when these are welded. There are welding rods etc. used.
  • the liner member for a gas turbine combustor according to the present invention is characterized by being made of the above-described Ni-based alloy for a gas turbine combustor.
  • a member for a transition piece of a gas turbine combustor according to the present invention is made of the above-described Ni-based alloy for a gas turbine combustor.
  • the liner of the gas turbine combustor according to the present invention is characterized by comprising the above-described Ni-based alloy for a gas turbine combustor.
  • the transition piece of the gas turbine combustor according to the present invention is characterized by comprising the above-described Ni-based alloy for a gas turbine combustor.
  • the liner (inner cylinder) and transition piece (tail cylinder) of the gas turbine combustor are used particularly in a high temperature environment, these are used by using the Ni-based alloy for the gas turbine combustor described above.
  • the life of the gas turbine combustor liner member, transition piece member, liner, and transition piece can be extended.
  • a Ni-based alloy that is appropriately evaluated for nitrides present therein and that is excellent in high-temperature strength characteristics and high-temperature corrosion resistance
  • a Ni-based alloy for a gas turbine combustor comprising the Ni-based alloy
  • a member for a gas turbine combustor
  • a gas turbine combustor liner member, a transition piece member, a liner, and a transition piece can be provided.
  • Ni-based alloy which is this embodiment it is explanatory drawing which shows the procedure which extracts the nitride of the largest size from the visual field of microscopic observation.
  • it is a graph which shows the result of having plotted the area equal diameter of the nitride, and the normalization variable on the XY coordinate.
  • it is a graph which shows the result of having plotted the area equal diameter of the nitride, and the normalization variable on the XY coordinate.
  • Ni-based alloy according to an embodiment of the present invention will be described.
  • the Ni-based alloy according to this embodiment is used as a material for a gas turbine combustor member, a gas turbine combustor liner member, a transition piece member, a liner, or a transition piece.
  • the Ni-based alloy according to the present embodiment includes Cr; 20.0% by mass to 26.0% by mass, Co; 4.7% by mass to 9.4% by mass, Mo; 5.0% by mass to 16. 0% by mass or less, W: 0.5% by mass or more and 4.0% by mass or less, Al: 0.3% by mass or more and 1.5% by mass or less, Ti: 0.1% by mass or more and 1.0% by mass or less, C: 0.001 mass% or more and 0.15 mass% or less is included, the Fe content is 5 mass% or less, and the balance is Ni and unavoidable impurities.
  • the reason for defining the components as described above will be described below.
  • (Cr) Cr is an element having an effect of improving high-temperature corrosion resistance such as high-temperature oxidation resistance and high-temperature sulfidation resistance by forming a good protective film. If the Cr content is less than 20% by mass, sufficient high-temperature corrosion resistance cannot be ensured. On the other hand, when the Cr content exceeds 26% by mass, harmful phases such as ⁇ phase and ⁇ phase are precipitated, and the high temperature corrosion resistance may be deteriorated. Therefore, the Cr content is set in the range of 20.0 mass% or more and 26.0 mass% or less.
  • (Co) Co is an element having an effect of improving a high-temperature strength characteristic such as a creep characteristic by dissolving in a substrate. If the Co content is less than 4.7% by mass, sufficient high-temperature strength characteristics cannot be imparted. On the other hand, if the Co content exceeds 9.4% by mass, hot workability may be reduced and high-temperature ductility during use may be reduced. Therefore, the Co content is set in the range of 4.7% by mass to 9.4% by mass.
  • Mo is an element having an effect of improving the high-temperature strength properties such as high-temperature tensile properties, creep properties, and creep fatigue properties by dissolving in the substrate.
  • the above-described operation and effect exhibit a combined effect particularly in the presence of W. If the Mo content is less than 5.0% by mass, sufficient high-temperature ductility and creep fatigue properties cannot be imparted. On the other hand, if the Mo content exceeds 16.0% by mass, the hot workability is deteriorated and a harmful phase such as a ⁇ phase is precipitated, which may cause embrittlement. Therefore, the Mo content is set in the range of 5.0% by mass to 16.0% by mass.
  • (W) W is an element having an action effect of improving the high-temperature strength properties such as high-temperature tensile properties, creep properties, and creep fatigue properties by dissolving in the substrate.
  • the above-described action and effect exhibit a combined effect particularly in the presence of Mo.
  • the W content is less than 0.5% by mass, sufficient high-temperature ductility and creep fatigue properties cannot be imparted.
  • the W content exceeds 4.0% by mass, the hot workability is lowered and the ductility is also lowered. Therefore, the W content is set in the range of 0.5% by mass or more and 4.0% by mass or less.
  • (Al) Al is an element having an effect of being dissolved in a substrate and forming a ⁇ ′ phase (Ni 3 Al) during use to improve high temperature strength properties such as high temperature tensile properties, creep properties and creep fatigue properties. .
  • a ⁇ ′ phase Ni 3 Al
  • nitride becomes a harmful phase.
  • the Al content is less than 0.3% by mass, the desired high-temperature strength cannot be ensured because the solid solution in the substrate and the precipitation ratio of the ⁇ ′ phase during use are insufficient.
  • the Al content exceeds 1.5% by mass, the hot workability is lowered and the cold workability is also lowered. Therefore, the Al content is set within the range of 0.3 mass% or more and 1.5 mass% or less.
  • Ti is an element having an effect of improving the high-temperature strength properties such as high-temperature tensile properties, creep properties, and creep fatigue properties by dissolving in the matrix and the ⁇ ′ phase. Further, carbides mainly composed of MC type are formed to improve the grain boundary strength, and also have an effect of suppressing crystal grain growth due to heating during hot working or solution treatment. If the Ti content is less than 0.1% by mass, the solid solution and the precipitation ratio of the ⁇ ′ phase during use are insufficient, so that the desired high-temperature strength cannot be ensured, and the amount of carbide formed However, the desired crystal grain growth suppressing effect cannot be obtained.
  • the Ti content exceeds 1.0% by mass, hot workability is deteriorated, and titanium nitride and carbides are used as nuclei to increase the tendency to form coarse nitrides, which is not preferable. Therefore, the Ti content is set in the range of 0.1% by mass to 1.0% by mass.
  • (C) C forms an M 6 C or MC type carbide with Ti, Mo, etc., and improves the grain boundary strength, and has the effect of suppressing crystal grain growth due to heating during hot working or solution treatment. It is an element. If the C content is less than 0.001% by mass, the precipitation ratio of M 6 C and MC type carbides is insufficient, so that a sufficient grain boundary strengthening function and a pinning effect on the grain boundaries cannot be obtained. If the C content exceeds 0.15% by mass, the amount of carbides may be excessive, which may reduce hot workability, weldability, ductility, etc., and is generated in the solidification process after melting. This is not preferable because the MC type carbide is a starting point of nitride formation and coarse nitrides are easily formed. Therefore, the C content is set in the range of 0.001% by mass to 0.15% by mass.
  • Fe Fe is an element easily mixed into the Ni-based alloy as an impurity element. If the Fe content exceeds 5% by mass, the high temperature strength is greatly deteriorated, which is not preferable. Therefore, the Fe content needs to be limited to 5% by mass or less. Fe is inexpensive and economical, and has an effect of improving hot workability. Therefore, it can be added within a range of 0.01% by mass to 5% by mass as necessary.
  • Ca 0.0005 mass% to 0.05 mass%
  • Mg 0.0005 mass% to 0.05 mass % Or less, rare earth element; 0.001% to 0.15% by weight, Nb; 0.01% to 1.0% by weight, Ta; 0.01% to 1.0% by weight, V 0.01% by mass or more and 1.0% by mass or less, B; 0.002% by mass or more and 0.01% by mass or less, Zr; 0.001% by mass or more and 0.05% by mass or less.
  • Ca and Mg are elements having an effect of improving hot workability and cold workability.
  • Y and rare earth elements such as Ce and La are elements having an effect of improving oxidation resistance and hot working.
  • Nb, Ta, and V are elements that form carbides and have the effect of suppressing crystal grain growth due to heating during hot working or solution treatment.
  • B is an element having an effect of forming a boride and enhancing the creep strength by strengthening the grain boundary.
  • Zr is an element that has the effect of segregating at the grain boundaries and improving the grain boundary ductility. In order to obtain such an effect, it is preferable to add various elements within the above-mentioned range.
  • Mn may be contained by 1% by mass or less, Si by 1% by mass or less, P by 0.015% by mass or less, S by 0.015% by mass or less, and Cu by 0.5% by mass or less. Even when these elements are contained in the above-mentioned range, various characteristics can be maintained.
  • the area defined by D A 1/2 with respect to the area A of the nitride of the maximum size existing in the field of view by observing with the measurement field area S 0.
  • a measurement visual field area S 0 to be observed with a microscope is set, and nitrides in the measurement visual field area S 0 are observed.
  • the observation magnification is preferably 400 to 1000 times.
  • the observation magnification is preferably 1000 to 3000 times.
  • nitride is preferably performed at a magnification of 400 to 1000, and the number of measurement fields n is preferably 30 or more, more preferably 50 or more.
  • the nitride area is preferably measured by obtaining a luminance distribution using image processing, determining a threshold value of luminance, and separating nitride, matrix, carbide, and the like.
  • color difference RGB
  • a carbide as disclosed in Patent Document 3 it may be difficult to distinguish it from nitride by luminance alone, and therefore, it is more preferable to separate by color difference (RGB).
  • the specimen used for observation was observed with the scanning electron microscope, and it analyzed using the energy dispersive X-ray analyzer (EDS) with which the scanning electron microscope was equipped, and confirmed that it was titanium nitride.
  • EDS energy dispersive X-ray analyzer
  • This operation is repeatedly performed with the number of measurement visual fields n times, and data of n area equal diameters D is obtained. Then, the n area equal diameters D are rearranged in order of increasing area equal diameter to obtain data of D 1 , D 2 ,..., D n . Then, using the data of D 1 , D 2 ,..., D n , a standardization variable yj defined by the following equation is obtained. (However, in the above formula, j is the number of ranks when the data of area equal diameter D is rearranged in ascending order)
  • the solution of y j is calculated from the following equation.
  • the value of D j of the regression line in the value of y j (straight line H in FIG. 2) corresponding to the cross-sectional area S to be predicted is the estimated maximum size of nitride, and this estimated maximum size is It is set to 12 ⁇ m or more and 25 ⁇ m or less.
  • the manufacturing method of the Ni base alloy which is this embodiment is demonstrated.
  • melting raw materials are blended, and these melting raw materials are pickled and then melted in a vacuum melting furnace.
  • various scraps are used as melting raw materials.
  • the active metals such as Al and Ti are preferably blended so as to be lower than the target component.
  • the scrap in the present embodiment is a material made for purposes other than raw materials and parts made of the material, or materials and parts generated in the manufacturing process, and has various shapes such as a lump, chips, and powder. Take. Since these scraps can be used in appropriate combinations, they may be components different from the target component, or may be ones in which different components are integrated by welding or the like.
  • scrap composition ratio the greater the contribution to the production, supply, and price stability of the material, and therefore 5% by mass or more is desirable. Further, when the composition ratio is high, the energy required for melting the raw material can be reduced and the melting time can be shortened. However, scrap may contain unexpected component factors, so 40 to 99% by mass is more desirable.
  • the atmosphere in the furnace is replaced with high-purity argon three or more times, and after that, vacuuming is performed to raise the temperature in the furnace. Then, after holding the molten metal for a predetermined time, Ti and Al, which are active metals, are added, and after holding for a predetermined time, the molten metal is discharged into a mold to obtain an ingot. From the viewpoint of preventing the coarsening of the nitride, it is desirable to add Ti as soon as possible to the hot water.
  • ⁇ Hot forging is performed on this ingot to produce a hot forged body without a cast structure. Further, the hot forged body is formed into a hot rolled plate by hot rolling and subjected to a solution treatment. Through this process, the Ni-based alloy according to this embodiment is manufactured.
  • the estimated maximum size of nitride when the cross-sectional area S to be predicted is 100 mm 2 is 25 ⁇ m or less in terms of the area equal diameter D j. Therefore, there is no nitride having a large size inside the Ni-based alloy, and the mechanical properties of the Ni-based alloy can be improved. Further, since the estimated maximum size of the nitride when the predicted cross-sectional area S is set to 100 mm 2 is 12 ⁇ m or more in terms of the area equal diameter D j , the manufacturing cost of the Ni alloy according to the present embodiment is significantly increased. This can be suppressed and can be industrially produced.
  • Ti which is an active element is contained, and the nitride is titanium nitride. Since titanium nitride has a polygonal cross section, it has a great influence on mechanical properties even if the size is small. Therefore, the mechanical characteristics of the Ni-based alloy can be reliably improved by accurately evaluating the maximum size of titanium nitride in the Ni-based alloy by the method described above.
  • the Ni-based alloy according to the present embodiment includes Cr; 20.0% by mass to 26.0% by mass, Co; 4.7% by mass to 9.4% by mass, Mo; 5.0% by mass or more. 16.0 mass% or less, W; 0.5 mass% or more and 4.0 mass% or less, Al; 0.3 mass% or more and 1.5 mass% or less, Ti; 0.1 mass% or more and 1.0 mass% or less
  • C 0.001% by mass or more and 0.15% by mass or less and the content of Fe is 5% by mass or less, so that high temperature corrosion resistance, creep characteristics, creep fatigue, etc. It has excellent high-temperature strength characteristics and workability, and is suitable as a material for various gas turbine combustor members.
  • the Ni-based alloy according to the present embodiment since scrap is used as a melting raw material, it is possible to stably secure raw materials such as rare metals. In addition, by selecting the shape of the scrap and the like, melting can be sufficiently promoted, and energy related to melting can be reduced. Even when scrap is used, since nitride is evaluated with high accuracy as described above, it is possible to suppress deterioration of mechanical characteristics, cutting workability, and the like.
  • Ni-based alloy according to the embodiment of the present invention has been described above, but the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the present invention.
  • the manufacturing method of this Ni base alloy is not limited to what was illustrated to this embodiment, The thing manufactured with the other manufacturing method may be used. For example, it can be melted in a vacuum atmosphere and manufactured by continuous casting.
  • the estimated maximum size of the nitride when the cross-sectional area S to be predicted is 100 mm 2 is 12 ⁇ m or more and 25 ⁇ m or less in terms of the area equal diameter.
  • a method of adding an active element such as Ti after bubbling high-purity Ar gas to a molten metal melted in a vacuum melting furnace and reducing the nitrogen concentration in the molten metal may be employed.
  • high purity Ar gas is introduced into the chamber, and the inside of the chamber is set to a positive pressure to prevent outside air from being mixed and dissolved by adding an active element such as Ti.
  • scrap as a melt
  • the alloys shown in Table 1 were melted as follows.
  • the raw materials such as Ni, Cr, Co, and Mo excluding Al and Ti, and the average components satisfy the component range of claim 1, and the scraps pickled with the composition ratio of Table 1,
  • An MgO crucible was loaded. After charging the raw materials and before starting melting, the furnace atmosphere is evacuated, and then argon substitution is repeated three or more times to introduce high-purity argon up to 0.5 atm, and then evacuation is performed to raise the furnace temperature. And dissolved at 1450 ° C. After 10 minutes had passed since the smelting, Ti and Al as active elements were added.
  • Raw materials such as Ni, Cr, Co, Mo, Ti, and Al that were not pickled were loaded into an MgO crucible and dissolved. At this time, after melting, it was held at 1500 ° C. for 10 minutes, and then held at 1450 ° C. for 10 minutes.
  • nitride of the maximum size within the measurement visual field area S 0 was performed by observation at a magnification of 450 times, and area measurement of the selected nitride was performed by observation at a magnification of 1000 times.
  • the estimated maximum size of nitride is shown in Table 2.
  • the regression line obtained by plotting to XY coordinate is shown in FIG.
  • Example 1-12 of the present invention in which the estimated maximum size of nitride was 12 ⁇ m or more and 25 ⁇ m or less in terms of the same area when the predicted cross-sectional area S was 100 mm 2 , It was confirmed that the length of cutting until a defect was generated was relatively long, 27 m or more, and the machinability was good. Moreover, in the low cycle fatigue test, the number of cycles until breakage was increased to 1007 times or more, and it was confirmed that the fatigue strength was greatly improved. The same effects as those of Example 1-10 of the present invention were confirmed in Example 11 of the present invention in which the scrap rate was 0% and Example 12 of the present invention in which air dissolution was performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 このNi基合金は、測定視野面積Sで観察を行って視野内に存在する最大サイズの窒化物の面積Aに対してD=A1/2で定義される面積等径Dを算出し、この作業を測定視野数nで繰り返し実施してn個の面積等径Dのデータを取得し、これらの面積等径Dのデータを小さい順に並び替えてD、D、・・・、Dとし、基準化変数yを求め、X軸を面積等径Dとし、Y軸を基準化変数yとして、XY軸座標上にプロットし、回帰直線y=a×D+b(a,bは定数)を求め、予測対象断面積Sを100mmとして、yを求め、得られたyの値を前記回帰直線に代入することによって窒化物の推定最大サイズを算出した場合において、この窒化物の推定最大サイズが面積等径で12μm以下25μm以下とされている。

Description

Ni基合金、ガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ライナー用部材、トランジッションピース用部材、ライナー、トランジッションピース
 この発明は、高温強度特性、高温耐食性に優れたNi基合金、このNi基合金からなるガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ガスタービン燃焼器のライナー用部材、トランジッションピース用部材、ライナー、トランジッションピースに関するものである。
 本願は、2013年8月6日に、日本に出願された特願2013-163524号に基づき優先権を主張し、その内容をここに援用する。
 従来、例えば特許文献1-3に示すように、航空機、ガスタービン等に使用される部材の素材として、Ni基合金が広く適用されている。
 例えばガスタービンの燃焼器においては、圧縮機の後方外周よりに位置し、圧縮機吐出空気に燃料を噴射し、燃焼させてタービン駆動用の高温高圧ガスを生成し、かつ、燃料ガスをタービン入口のノズル(静翼)に案内する役割を担うものであり、高温環境下で用いられるものである。
 特に、燃焼器の中でも、ライナー(内筒)及びトランジッションピース(尾筒)は、高温の燃焼ガスに曝される。また、頻繁な、起動、停止及び出力制御に伴う加熱、冷却の激しい熱サイクルが負荷されることになる。
 このような使用環境を考慮すると、ガスタービンの燃焼器等に用いられるNi基合金においては、高温引張強度、クリープ破断強度、低サイクル疲労強度、熱疲労強度などの高温強度に優れ、高温耐酸化性、高温耐硫化性などの高温耐食性にも優れ、且つ、冷間加工性、被削性、溶接性、ろう付け性が要求されることになる。このような使用環境は、航空機等においても同様であり、上述のような特性が要求されることになる。
 このNi基合金においては、上述の特性を確保する観点から、厳密な組成成分、金属組織の管理が求められ、投入原料も厳しく限定されている。これは、Ni基合金に、窒化物や酸化物等の介在物が存在することにより、上述の特性が劣化するためである。特に、窒化物は、サイズが大きくなるほど、種々の特性への影響が顕著となることが知られており、Tiを金属成分の主体とする窒化物が有害であると認識されている。具体的には、窒化物は、使用時のクリープやクリープ疲労において亀裂の起点となって寿命を低減させるとともに、切削加工において切削工具の異常損耗や欠損が発生し、工具寿命を著しく低下させることになる。
 そこで、例えば特許文献2では、Ni基合金中に存在する窒素量を0.01質量%以下にすることが提案されている。
 また、特許文献3では、炭化物、窒化物の最大粒径が10μm以下であることを提案している。炭化物、窒化物が10μm以上であると常温での加工中に炭化物、窒化物と母相との界面から割れを生じてしまうことを指摘している。
 さらに、介在物を評価する手段として鉄鋼分野においては、特許文献4,5に示すように、Fe-36%Ni、Fe-42%NiのようなFe-Ni合金において、非金属介在物、特に酸化物の最大粒径を推定して評価する手法が提案されている。
特公昭61-034497号公報 特開昭61-139633号公報 特開2009-185352号公報 特開2005-265544号公報 特開2005-274401号公報
 しかしながら、特許文献2では、窒素量の上限値について規制されているものの、窒化物の最大粒径と関連付けられていないため、窒素量を低減しても疲労強度において十分なNi基合金を安定して得られないという問題がある。
 また、特許文献3では、炭化物、窒化物の最大粒径が10μm以下であることを規定しているものの、Ni基合金は、航空機、発電用ガスタービン部品として用いられているため、そもそも非常に清浄度が高く、すべての部位を観察して最大粒径を把握することは現実的に難しい点が存在する。特許文献3の実施例では、炭化物の粒径を測定しており、この点においても窒化物の最大粒径を把握することが難しいことを示唆している。また、窒化物の最大粒径を予測するためには、実際に測定した視野における最大窒化物粒径の分布が重要となるが、引用文献3にはその点について、まったく記載されていないため、窒化物の推定最大粒径を予測することができない。
 特許文献4,5では、比較的大きな非金属介在物が多く析出するFe-Ni合金において、特に粒径が大きくなりやすい酸化物を測定対象としており、Ni基合金で疲労強度を向上させるために窒化物の最大粒径を推定することは非常に難しく、種々の検討を必要とする。また、Ni基合金においては、真空溶解や再溶解等によって、酸素量および窒素量が低減されていることから、鉄鋼材料と比較して非金属介在物の数が少なく、サイズも小さい。さらに、Ni基合金は、種々の相を含むことから、発光パターンの分離や非金属介在物の観察を、鉄鋼分野と同様に実施することができない。
 このため、鉄鋼分野で実施されている手法を単に適用しても、Ni基合金中の窒化物と疲労強度との関係を十分に評価することはできなかった。
 また、上述のNi基合金においては、特性を確保するために、いわゆるレアメタルを多く含んでいることから、原料を安定的に確保することが困難である。そこで、上述のNi基合金においては、スクラップのリサイクルの推進が望まれている。ただし、スクラップの使用量を増加した場合には、不純物元素等が混入して介在物が多く発生するおそれがある。このため、Ni基合金中の介在物を精度良く評価する手段が求められている。
 この発明は、前述した事情に鑑みてなされたものである。発明者らは、Ni基合金中における窒化物の最大粒径が疲労強度に大きな影響を与えるという知見、及び対象となる断面のすべてを観察することは現実的に難しいことから、予測対象断面積における窒化物の推定最大サイズと疲労強度との関係を考察した結果に基づいて、この発明に至ったものである。
 この発明は、高温強度特性、高温耐食性に優れたNi基合金、このNi基合金からなるガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ガスタービン燃焼器のライナー用部材、トランジッションピース用部材、ライナー、トランジッションピースを提供することを目的とする。
 前記課題を解決するために、本発明のNi基合金は、Cr;20.0質量%以上26.0質量%以下、Co;4.7質量%以上9.4質量%以下、Mo;5.0質量%以上16.0質量%以下、W;0.5質量%以上4.0質量%以下、Al;0.3質量%以上1.5質量%以下、Ti;0.1質量%以上1.0質量%以下、C;0.001質量%以上0.15質量%以下を含み、かつFeの含有量が5質量%以下とされており、測定視野面積Sで観察を行って視野内に存在する最大サイズの窒化物の面積Aに対してD=A1/2で定義される面積等径Dを算出し、この作業を測定視野数nで繰り返し実施してn個の面積等径Dのデータを取得し、これらの面積等径Dのデータを小さい順に並び替えてD、D、・・・、Dとし、下記の式で定義される基準化変数yを求め、
Figure JPOXMLDOC01-appb-M000003
 
(但し、上式において、jは、面積等径Dのデータを小さい順に並び替えたときの順位数)
 X軸を面積等径Dとし、Y軸を基準化変数yとして、XY軸座標上にプロットし、回帰直線y=a×D+b(a,bは定数)を求め、予測対象断面積Sを100mmとして、yを下記の式から求め、
Figure JPOXMLDOC01-appb-M000004
 得られたyの値を前記回帰直線に代入することによって窒化物の推定最大サイズを算出した場合において、この窒化物の推定最大サイズが面積等径で12μm以上25μm以下とされていることを特徴としている。
 このような構成とされた本発明のNi基合金においては、予測対象断面積Sを100mmとした場合における窒化物の推定最大サイズが面積等径で25μm以下とされているので、Ni基合金の内部にサイズの大きな窒化物が存在しないことになり、Ni基合金の機械的特性(疲労特性)を向上させることが可能となる。また、切削加工時における工具の早期劣化を抑制することができる。
 また、推定最大サイズの面積等径を12μm未満とするためには、溶解時のTiの溶湯滞留時間を短くし、凝固過程で大きな凝固速度を与える必要がある。さらに、Tiの投入時期を制約するために使用する原料を限定しなければならない、許容温度幅が狭くなる、鋳造素材が小さくなるといった制約があり、製造コストが大幅に上昇してしまうことになる。このため、本発明では、窒化物の推定最大サイズを面積等径で12μm以上に設定している。
 窒化物の観察は、倍率400~1000倍で、測定視野数nを30以上とすることが好ましい。また、窒化物の面積の測定は、画像処理を用いて輝度分布を取得し、輝度のしきい値を決定して、窒化物、母相、炭化物等を分離し、測定することが好ましい。このとき、輝度の代わりに色差(RGB)を用いてもよい。
 窒化物には、溶湯の凝固過程において液相から生成する晶出窒化物と、一旦凝固した固相から生成する析出窒化物がある。析出窒化物は溶解後の熱間加工や熱処理時に素地への固溶、再析出が発生し、サイズ等が大きく変わり得るのに対して、晶出窒化物は溶解時の凝固段階で得られたサイズが、以降の熱間加工や熱処理に依らず、基本的に維持されるという違いがある。一般に晶出窒化物は析出窒化物よりサイズが大きく成り易く、疲労強度等に対する有害性が高い。そこで、本発明における面積等径Dを算出する最大サイズの窒化物として、晶出窒化物を対象としている。
 また、Cr;20.0質量%以上26.0質量%以下、Co;4.7質量%以上9.4質量%以下、Mo;5.0質量%以上16.0質量%以下、W;0.5質量%以上4.0質量%以下、Al;0.3質量%以上1.5質量%以下、Ti;0.1質量%以上1.0質量%以下、C;0.001質量%以上0.15質量%以下を含む組成とされていることから、高温耐食性、クリープ特性及びクリープ疲労等の高温強度特性、加工性、に優れた高品質のNi基合金を提供できる。また、Feの含有量が5質量%以下とされているので、高温強度が大きく劣化することを抑制できる。
 本発明のNi基合金においては、原料としてスクラップを用いたものとしてもよい。
 スクラップを使用することにより、レアメタル等の原料を安定的に確保することが可能となる。また、スクラップの形状等によっては、溶解を十分に促進することができ、溶解に係るエネルギーを低減することが可能となる。このようにスクラップを用いた場合でも、上述のように窒化物を精度良く評価しているので、機械的特性、切削加工性等の劣化を抑制することができる。
 本願におけるスクラップは、原料用途以外の目的で作られた素材およびその素材からなる部品あるいはその製造工程で発生した素材および部品であって、塊状、切粉状、粉体状といった種々の形状をとる。それらのスクラップは適宜組み合せて使用することができるので、目標成分と異なる成分のものでもよいし、異なる成分のものが溶接等によって一体化したものでもよい。
 また、スクラップ構成率は、高いほど素材の生産、供給および価格の安定性に対する寄与が大きいため5質量%以上が望ましい。さらに構成率が高い場合は、素材の溶解に要するエネルギーを低減し、溶解時間を短縮できるが、スクラップは不測の成分要因を含むことがあることから、40~99質量%がより望ましい。
 また、前記窒化物としては、窒化チタンを対象とすることが好ましい。
 Tiは活性な元素であることから、窒化物を生成しやすい。また、窒化チタンは、断面が多角形状をなしていることから、サイズが小さくても機械的特性に大きな影響を与えることになる。そこで、上述の手法によって、Ni基合金中の窒化チタンの最大サイズを精度良く評価することによって、Ni基合金の機械的特性を確実に向上させることが可能となる。
 さらに、本発明のガスタービン燃焼器用Ni基合金は、ガスタービン燃焼器に用いられるガスタービン燃焼器用Ni基合金であって、上述のNi基合金からなることを特徴としている。
 上述のように、本発明のNi基合金においては、高温耐食性、クリープ特性及びクリープ疲労等の高温強度特性、加工性、に優れているので、ガスタービン燃焼器の素材として特に適している。
 本発明のガスタービン燃焼器用部材は、上述のガスタービン燃焼器用Ni基合金からなることを特徴としている。
 ガスタービン燃焼器は、高温環境下で使用されることから、上述のガスタービン燃焼器用Ni基合金で構成することにより、高温機械特性、高温耐食性を向上させることが可能となる。ガスタービン燃焼器用部材としては、ガスタービン燃焼器の部品を構成する板材、棒材等の素材、特定形状を有する鋳物や鍛造品、また、これらを溶接した際に形成される溶接部及び溶接に使用される溶接棒等がある。
 本発明のガスタービン燃焼器のライナー用部材は、上述のガスタービン燃焼器用Ni基合金からなることを特徴としている。
 本発明のガスタービン燃焼器のトランジッションピース用部材は、上述のガスタービン燃焼器用Ni基合金からなることを特徴としている。
 本発明のガスタービン燃焼器のライナーは、上述のガスタービン燃焼器用Ni基合金からなることを特徴としている。
 本発明のガスタービン燃焼器のトランジッションピースは、上述のガスタービン燃焼器用Ni基合金からなることを特徴としている。
 上述のように、ガスタービン燃焼器のライナー(内筒)、トランジッションピース(尾筒)は、特に高温環境下で使用されることから、上述のガスタービン燃焼器用Ni基合金を用いることによって、これらガスタービン燃焼器のライナー用部材、トランジッションピース用部材、ライナー、トランジッションピースの寿命延長を図ることが可能となる。
 本発明によれば、内部に存在する窒化物について適正に評価され、高温強度特性、高温耐食性に優れたNi基合金、このNi基合金からなるガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ガスタービン燃焼器のライナー用部材、トランジッションピース用部材、ライナー、トランジッションピースを提供することができる。
本実施形態であるNi基合金において、顕微鏡観察の視野内から最大サイズの窒化物を抽出する手順を示す説明図である。 本実施形態であるNi基合金において、窒化物の面積等径と基準化変数とをXY座標にプロットした結果を示すグラフである。 実施例において、窒化物の面積等径と基準化変数とをXY座標にプロットした結果を示すグラフである。
 以下に、本発明の一実施形態であるNi基合金について説明する。本実施形態であるNi基合金は、ガスタービン燃焼器用部材、ガスタービン燃焼器のライナー用部材、トランジッションピース用部材、ライナー、トランジッションピースの素材として用いられるものである。
 本実施形態であるNi基合金は、Cr;20.0質量%以上26.0質量%以下、Co;4.7質量%以上9.4質量%以下、Mo;5.0質量%以上16.0質量%以下、W;0.5質量%以上4.0質量%以下、Al;0.3質量%以上1.5質量%以下、Ti;0.1質量%以上1.0質量%以下、C;0.001質量%以上0.15質量%以下を含み、かつFeの含有量が5質量%以下とされ、残部がNi及び不可避不純物とされている。
 上述のように成分を規定した理由について以下に説明する。
(Cr)
 Crは、良好な保護被膜を形成することにより、高温耐酸化性及び高温耐硫化性等の高温耐食性を向上させる作用効果を有する元素である。
 Crの含有量が20質量%未満では、高温耐食性を十分に確保することができない。また、Crの含有量が26質量%を超えると、σ相やμ相などの有害相が析出し、逆に高温耐食性が劣化するおそれがある。そこで、Crの含有量を20.0質量%以上26.0質量%以下の範囲内に設定している。
(Co)
 Coは、素地に固溶してクリープ特性等の高温強度特性を向上させる作用効果を有する元素である。
 Coの含有量が4.7質量%未満では、十分な高温強度特性を付与することができない。また、Coの含有量が9.4質量%を超えると、熱間加工性を低下させるとともに、使用中における高温延性を低下させるおそれがある。そこで、Coの含有量を4.7質量%以上9.4質量%以下の範囲内に設定している。
(Mo)
 Moは、素地に固溶して高温引張特性、クリープ特性およびクリープ疲労特性等の高温強度特性を向上させる作用効果を有する元素である。上述の作用効果は、特にWとの共存下において複合効果を発揮することになる。
 Moの含有量が5.0質量%未満では、十分な高温延性およびクリープ疲労特性を付与することができない。また、Moの含有量が16.0質量%を超えると、熱間加工性を低下させるととともにμ相などの有害相が析出して脆化を招くおそれがある。そこで、Moの含有量を5.0質量%以上16.0質量%以下の範囲内に設定している。
(W)
 Wは、素地に固溶して高温引張特性、クリープ特性およびクリープ疲労特性等の高温強度特性を向上させる作用効果を有する元素である。上述の作用効果は、特にMoとの共存下において複合効果を発揮する。
 Wの含有量が0.5質量%未満では、十分な高温延性およびクリープ疲労特性を付与することができない。また、Wの含有量が4.0質量%を超えると、熱間加工性が低下すると共に延性も低下するため好ましくない。そこで、Wの含有量を0.5質量%以上4.0質量%以下の範囲内に設定している。
(Al)
 Alは、素地に固溶するとともに、使用中にγ′相(NiAl)を形成して高温引張特性、クリープ特性およびクリープ疲労特性等の高温強度特性を向上させる作用効果を有する元素である。このようなγ′相を有するNi基合金においては、窒化物は有害相となる。
 Alの含有量が0.3質量%未満では、素地への固溶および使用中のγ′相の析出割合が不十分なために所望の高温強度を確保することができない。また、Alの含有量が1.5質量%を超えると、熱間加工性が低下するとともに冷間加工性も低下するため好ましくない。そこで、Alの含有量を0.3質量%以上1.5質量%以下の範囲内に設定している。
(Ti)
 Tiは、素地およびγ′相に固溶して高温引張特性、クリープ特性およびクリープ疲労特性等の高温強度特性を向上させる作用効果を有する元素である。またMC型を主とした炭化物を形成し、粒界強度を向上させるとともに、熱間加工時や溶体化処理時の加熱による結晶粒成長を抑制する作用効果も有する。
 Tiの含有量が0.1質量%未満では、素地への固溶および使用中のγ′相の析出割合が不十分なために所望の高温強度を確保することができず、炭化物の形成量が不十分で所望の結晶粒成長抑制効果が得られない。また、Tiの含有量が1.0質量%を超えると、熱間加工性が低下するとともに、窒化チタン及び炭化物が核となって粗大窒化物の生成傾向が増すことになるため、好ましくない。そこで、Tiの含有量を0.1質量%以上1.0質量%以下の範囲内に設定している。
(C)
 Cは、TiやMo等とMCやMC型炭化物を形成して、粒界強度を向上させるとともに、熱間加工時や溶体化処理時の加熱による結晶粒成長を抑制する作用効果を有する元素である。
 Cの含有量が0.001質量%未満では、MCやMC型炭化物の析出割合が不十分なために十分な粒界強化機能および粒界のピン止め効果が得られない。また、Cの含有量が0.15質量%を超えると、炭化物の構成量が過剰となりすぎて熱間加工性、溶接性、延性などが低下するおそれがあるとともに、溶解後の凝固過程で生成するMC型炭化物が窒化物の生成起点となって、粗大な窒化物が形成され易くなるため、好ましくない。そこで、Cの含有量を0.001質量%以上0.15質量%以下の範囲内に設定している。
(Fe)
 Feは不純物元素としてNi基合金に混入し易い元素である。Feの含有量が5質量%を超えると、高温強度が大きく劣化するため好ましくない。よって、Feの含有量は5質量%以下に制限する必要がある。
 Feは安価で経済的であるとともに熱間加工性を向上させる作用があることから、必要に応じて0.01質量%以上5質量%以下の範囲内で添加することも可能である。
 本実施形態であるNi基合金においては、上述の元素以外に、必要に応じて、さらにCa;0.0005質量%以上0.05質量%以下、Mg;0.0005質量%以上0.05質量%以下、希土類元素;0.001質量%以上0.15質量%以下、Nb;0.01質量%以上1.0質量%以下、Ta;0.01質量%以上1.0質量%以下、V;0.01質量%以上1.0質量%以下、B;0.002質量%以上0.01質量%以下、Zr;0.001質量%以上0.05質量%以下のうちいずれか一種以上を含有していてもよい。
 Ca,Mgは、熱間加工性及び冷間加工性を向上させる作用効果を有する元素である。
 YおよびCe、La等の希土類元素は、耐酸化性および熱間加工を向上させる作用効果を有する元素である。
 Nb,Ta,Vは、炭化物を形成し、熱間加工時や溶体化処理時の加熱による結晶粒成長を抑制する作用効果を有する元素である。
 Bは、硼化物を形成し、粒界を強化することでクリープ強度を向上させる作用効果を有する元素である。
 Zrは、粒界に偏析し、粒界延性を向上させる作用効果を有する元素である。
 このような作用効果を得るためには、上述の範囲内で各種元素を添加することが好ましい。
 また、Mnを1質量%以下、Siを1質量%以下、Pを0.015質量%以下、Sを0.015質量%以下、Cuを0.5質量%以下、含有していてもよい。
 これらの元素を上述の範囲で含有した場合であっても、各種特性を維持することができる。
 そして、本実施形態であるNi基合金においては、測定視野面積Sで観察を行って視野内に存在する最大サイズの窒化物の面積Aに対してD=A1/2で定義される面積等径Dを算出し、この作業を測定視野数nで繰り返し実施してn個の面積等径Dのデータを取得し、これらの面積等径Dのデータを小さい順に並び替えてD、D、・・・、Dとし、下記の式で定義される基準化変数yを求め、
Figure JPOXMLDOC01-appb-M000005
(但し、上式において、jは、面積等径Dのデータを小さい順に並び替えたときの順位数)
 X軸を面積等径Dとし、Y軸を基準化変数yとして、XY軸座標上にプロットし、回帰直線y=a×D+b(a,bは定数)を求め、予測対象断面積Sを100mmとして、yを下記の式から求め、
Figure JPOXMLDOC01-appb-M000006
 得られたyの値を前記回帰直線に代入することによって窒化物の推定最大サイズを算出した場合において、この窒化物の推定最大サイズが面積等径で12μm以上25μm以下とされている。
 本実施形態においては、この窒化物は、主に窒化チタンとされている。
 上述の窒化物の推定最大サイズの推定方法について、図1,2を参照にして説明する。
 まず、顕微鏡で観察する測定視野面積Sを設定し、この測定視野面積S内における窒化物を観察する。このとき、観察倍率を400~1000倍とすることが好ましい。そして、図1に示すように、測定視野面積S内で観察された窒化物のうち最大サイズの窒化物を選択する。精度良くサイズを計測するために、選択した窒化物を拡大し、その面積Aを測定し、面積等径D=A1/2を算出する。このとき、観察倍率を1000倍~3000倍とすることが好ましい。
 窒化物の観察は、倍率400~1000倍で、測定視野数nを30以上とすることが好ましく、50以上とすることがより好ましい。また、窒化物の面積の測定は、画像処理を用いて輝度分布を取得し、輝度のしきい値を決定して、窒化物、母相、炭化物等を分離し、測定することが好ましい。このとき、輝度の代わりに色差(RGB)を用いてもよい。特に、特許文献3にあるような炭化物が存在する場合、輝度のみでは窒化物と区別しにくい場合があるため、色差(RGB)で分離することがより好ましい。また、観察に供した試験片を走査型電子顕微鏡で観察し、走査型電子顕微鏡に備え付けてあるエネルギー分散型X線分析装置(EDS)を用いて分析し、窒化チタンであることを確認した。
 この作業を、測定視野数n回で繰り返し実施し、n個の面積等径Dのデータを得る。そして、このn個の面積等径Dを、面積等径が小さい順に並び変えて、D、D、・・・、Dのデータを得る。
 そして、D、D、・・・、Dのデータを用いて、下記の式で定義される基準化変数yjを求める。
Figure JPOXMLDOC01-appb-M000007
(但し、上式において、jは、面積等径Dのデータを小さい順に並び替えたときの順位数)
 次に、図2に示すように、n個の面積等径D、D、・・・、DのデータをX軸、これらのデータに対応する基準化変数y、y、・・・、yの値をY軸とし、XY座標にこれらのデータをプロットする。
 そして、このプロットから、回帰直線y=a×D+b(a,bは定数)を求める。
 次に、yの解を、以下の式から算出する。このとき、予測対象断面積SをS=100mmとする。
Figure JPOXMLDOC01-appb-M000008
 つまり、図2に示すグラフにおいて、予測対象断面積Sに対応するyの値(図2における直線H)における回帰直線のDの値が窒化物の推定最大サイズとなり、この推定最大サイズが12μm以上25μm以下とされているのである。
 以下に、本実施形態であるNi基合金の製造方法の一例について説明する。
 まず、溶解原料を配合し、これらの溶解原料を酸洗した上で、真空溶解炉において溶解を行う。このとき、溶解原料として、各種スクラップを用いる。このとき、Al、Tiといった活性金属は、目標成分よりも低くなるように、配合することが好ましい。
 本実施形態におけるスクラップは、原料用途以外の目的で作られた素材およびその素材からなる部品あるいはその製造工程で発生した素材および部品であって、塊状、切粉状、粉体状といった種々の形状をとる。それらのスクラップは適宜組み合せて使用することができるので、目標成分と異なる成分のものでもよいし、異なる成分のものが溶接等によって一体化したものでもよい。
 また、スクラップ構成率は、高いほど素材の生産、供給および価格の安定性に対する寄与が大きいため5質量%以上が望ましい。さらに構成率が高い場合は、素材の溶解に要するエネルギーを低減し、溶解時間を短縮できるが、スクラップは不測の成分要因を含むことがあることから、40~99質量%がより望ましい。
 溶解開始前に、炉内雰囲気を高純度アルゴンで3回以上繰り返して置換し、その後、真空引きを行い、炉内温度を上げる。そして、溶湯を所定時間保持した後に、活性金属であるTi、Alを添加し、所定時間保持後、鋳型に出湯し、インゴットを得る。窒化物の粗大化を防ぐ観点から、Tiの添加はできるだけ出湯直前に行うことが望ましい。
 このインゴットに対して、熱間鍛造を実施し、鋳造組織のない熱間鍛造体を製出する。さらに熱間圧延によって熱間鍛造体を熱間圧延板に成形し、溶体化処理を施す。このような工程により、本実施形態であるNi基合金が製造される。
 このような製造方法によって製造されたNi基合金は、Ni基合金中の窒素濃度が低く、かつ、活性元素であるTiが高温で保持される時間が短いため、窒化チタンの発生や成長を抑制することができる。これにより、上述のように、予測対象断面積SをS=100mmとした際の窒化物(窒化チタン)の推定最大サイズが12μm以上25μm以下となる。
 以上のような構成とされた本実施形態であるNi基合金によれば、予測対象断面積Sを100mmとした場合における窒化物の推定最大サイズが面積等径Dで25μm以下とされているので、Ni基合金の内部にサイズの大きな窒化物が存在しないことになり、Ni基合金の機械的特性を向上させることが可能となる。
 また、予測対象断面積Sを100mmとした場合における窒化物の推定最大サイズが面積等径Dで12μm以上とされているので、本実施形態であるNi合金の製造コストが大幅に上昇することを抑制でき、工業的に生産することができる。
 特に、本実施形態では、活性元素であるTiを含有しており、窒化物が窒化チタンとされている。窒化チタンは、断面が多角形状をなしていることから、サイズが小さくても機械的特性に大きな影響を与えることになる。そこで、上述の手法によって、Ni基合金中の窒化チタンの最大サイズを精度良く評価することによって、Ni基合金の機械的特性を確実に向上させることが可能となる。
 また、本実施形態であるNi基合金は、Cr;20.0質量%以上26.0質量%以下、Co;4.7質量%以上9.4質量%以下、Mo;5.0質量%以上16.0質量%以下、W;0.5質量%以上4.0質量%以下、Al;0.3質量%以上1.5質量%以下、Ti;0.1質量%以上1.0質量%以下、C;0.001質量%以上0.15質量%以下を含み、かつFeの含有量が5質量%以下とされた組成とされていることから、高温耐食性、クリープ特性及びクリープ疲労等の高温強度特性、加工性、に優れており、各種ガスタービン燃焼器用部材の素材として適している。
 さらに、本実施形態であるNi基合金においては、溶解原料としてスクラップを用いているので、レアメタル等の原料を安定的に確保することができる。また、スクラップの形状等を選択することにより、溶解を十分に促進することができ、溶解に係るエネルギーを低減することができる。また、スクラップを用いた場合でも、上述のように窒化物を精度良く評価しているので、機械的特性、切削加工性等の劣化を抑制することができる。
 以上、本発明の実施形態であるNi基合金について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 また、このNi基合金の製造方法は、本実施形態に例示したものに限定されることはなく、他の製造方法によって製造されたものであってもよい。例えば、真空雰囲気中で溶解し、連続鋳造により製造することもできる。上述の手法によって窒化物を評価した結果、予測対象断面積Sを100mmとしたときの窒化物の推定最大サイズが面積等径で12μm以上25μm以下とされていればよい。
 例えば、真空溶解炉内で溶解した溶湯に対して高純度Arガスをバブリングし、溶湯中の窒素濃度を低減させた後に、Ti等の活性元素を添加する方法を採用してもよい。
 また、真空溶解炉のチャンバー内を減圧した後に、高純度Arガスをチャンバー内に導入して、チャンバー内を正圧として外気の混入を防止した状態で、Ti等の活性元素を添加して溶解する方法を採用してもよい。
 また、溶解原料としてスクラップを用いたもので説明したが、これに限定される必要はない。
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
(本発明例1-12)
 誘導溶解炉による真空溶解によって表1に示す本発明例1-11の合金を溶製、鋳造して直径:100mm 、高さ:150mm のインゴットを作製した。本発明例12の合金については誘導溶解炉による大気溶解によって溶製、鋳造して上述と同一サイズのインゴットを作製した。これらのインゴットを熱間鍛造して厚さ:50mm、幅:120mm、長さ:200mmの寸法を有する熱間鍛造体を作製した。この熱間鍛造体をさらに熱間圧延して厚さ:5mmを有する熱延板を作製し、温度:1180℃ に15分間保持したのち水冷する溶体化処理を施した。
 表1において、スクラップ構成率を35質量%以下とした場合には、次のようにして、表1に示す合金を溶製した。
 酸洗したバージン原料のうち、Al、Tiを除くNi、Cr、Co、Moなどの原料と、平均的成分が請求項1の成分範囲を満たし、酸洗したスクラップを表1の構成率で、MgOるつぼに装填した。原料を装填した後、溶解開始前に、炉内雰囲気を真空引きした後、高純度アルゴンを0.5atmまで導入するアルゴン置換を3回以上繰り返し、その後、真空引きを行い、炉内温度を上げて、1450℃で溶解した。溶落後10分経過した後に、活性元素であるTi、Alを添加した。
 一方、表1において、スクラップ構成率を40質量%以上とした場合には、次のようにして、表1に示す合金を溶製した。
 酸洗したバージン原料のうち、Al、Tiを除くNi、Cr、Co、Moなどの原料と、Al濃度が0.3%未満、Ti濃度が0.1%未満の酸洗したスクラップを表1の構成率で、MgOるつぼに装填した。原料を装填した後、溶解開始前に、炉内雰囲気を真空引きした後、高純度アルゴンを0.5atmまで導入するアルゴン置換を3回以上繰り返し、その後、真空引きを行い、炉内温度を上げて、1450℃で溶解した。溶落後10分経過した後に、活性元素であるTi、Alを添加した。
 また、本発明例12については、所望の成分範囲を持つスクラップを順次投入し、炉内温度を上げて、1450℃に達したところで鋳造した。
(比較例1、2)
 誘導溶解炉による大気溶解によって表1に示す合金を溶製、鋳造して直径:100mm 、高さ:150mmのインゴットを作製した。このインゴットを熱間鍛造して厚さ:50mm、幅:120mm、長さ:200mmの寸法を有する熱間鍛造体を作製した。この熱間鍛造体をさらに熱間圧延して厚さ:5mmを有する熱延板を作製し、温度:1180℃ に15分間保持したのち水冷する溶体化処理を施した。
 合金の溶製は、次のように実施した。酸洗していないNi、Cr、Co、Mo、Ti及びAlなどの原料をMgOるつぼ内に装填し、溶解した。このとき、溶落後、1500℃で10分間保持し、その後、1450℃で10分間保持した。
(窒化物の最大サイズ推定)
 このようにして得られた本発明例1-12の熱延板、比較例1,2の熱延板を用いて、窒化物の最大サイズを以下の手順によって実施した。
 得られた板から組織観察用の試料を切り出し、研磨して顕微鏡観察を実施した。そして、上述した手順によって、予測対象断面積SをS=100mmとした場合における窒化物の推定最大サイズを算出した。本実施例では、測定視野面積SをS=0.306mmとした。測定視野面積S内での最大サイズの窒化物の選択は倍率450倍の観察で行い、選択した窒化物の面積測定は1000倍の観察で行った。測定視野数nをn=50とした。窒化物の推定最大サイズを表2に示す。また、XY座標にプロットして得た回帰直線を、図3に示す。
(切削試験)
 得られた熱延板の圧延面に対して超硬合金からなるボールエンドミルを用いて、油性切削油環境下で、回転数20000rpm、送り速度1400mm/min、切削速度188mm/min、軸方向切込深さ0.3mmの切削試験を実施し、刃先に欠損が発生した時点までの切削加工長を測定した。結果を表2に示す。
(低サイクル疲労試験)
 得られたビレットから平行部幅:6.4mm 、平行部厚さ:3mm、平行部長さ:16mmの寸法を有する板状試験片を採取し、この試験片を温度:700 ℃に加熱し、引張/ 圧縮の付与歪範囲:0.7%を繰り返し付与することにより低サイクル疲労試験を行い、引張側ピーク応力が最大値の1/2に減少した時あるいは試験片の破断した時のサイクル数を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 予測対象断面積Sを100mmとした場合における窒化物の推定最大サイズが面積等径で25μmを超えた比較例1,2においては、切削試験において、歯先に欠損が発生するまでの切削加工長が20m、22mと短く、切削性に劣っていることが確認された。また、低サイクル疲労試験において、破断までのサイクル数が461回、430回と少なく、疲労強度が低いことが確認された。
 これに対して、予測対象断面積Sを100mmとした場合における窒化物の推定最大サイズが面積等径で12μm以上25μm以下とされた本発明例1-12においては、切削試験において、歯先に欠損が発生するまでの切削加工長が27m以上と比較的長く、切削性が良好であることが確認された。また、低サイクル疲労試験において、破断までのサイクル数が1007回以上と多くなっており、疲労強度が大幅に向上していることが確認された。スクラップ率を0%とした本発明例11や大気溶解を実施した本発明例12においても、本発明例1-10と同様の効果が確認された。
 以上、本発明例によれば、内部に存在する窒化物について適正に評価することができ、高温強度特性、高温耐食性に優れたNi基合金を提供できる。

Claims (10)

  1.  Cr;20.0質量%以上26.0質量%以下、Co;4.7質量%以上9.4質量%以下、Mo;5.0質量%以上16.0質量%以下、W;0.5質量%以上4.0質量%以下、Al;0.3質量%以上1.5質量%以下、Ti;0.1質量%以上1.0質量%以下、C;0.001質量%以上0.15質量%以下を含み、かつFeの含有量が5質量%以下とされており、
     測定視野面積Sで観察を行って視野内に存在する最大サイズの窒化物の面積Aに対してD=A1/2で定義される面積等径Dを算出し、この作業を測定視野数nで繰り返し実施してn個の面積等径Dのデータを取得し、これらの面積等径Dのデータを小さい順に並び替えてD、D、・・・、Dとし、下記の式で定義される基準化変数yを求め、
    Figure JPOXMLDOC01-appb-M000001
     (但し、上式において、jは、面積等径Dのデータを小さい順に並び替えたときの順位数)
     X軸を面積等径Dとし、Y軸を基準化変数yとして、XY軸座標上にプロットし、回帰直線y=a×D+b(a,bは定数)を求め、予測対象断面積Sを100mmとして、yを下記の式から求め、
    Figure JPOXMLDOC01-appb-M000002
     得られたyの値を前記回帰直線に代入することによって窒化物の推定最大サイズを算出した場合において、この窒化物の推定最大サイズが面積等径で12μm以上25μm以下とされていることを特徴とするNi基合金。
  2.  原料としてスクラップを用いたことを特徴とする請求項1に記載のNi基合金。
  3.  前記窒化物は、窒化チタンであることを特徴とする請求項1又は請求項2に記載のNi基合金。
  4.  ガスタービン燃焼器に用いられるガスタービン燃焼器用Ni基合金であって、
     請求項1から請求項3のいずれか一項に記載のNi基合金からなることを特徴とするガスタービン燃焼器用Ni基合金。
  5.  請求項4に記載のガスタービン燃焼器用Ni基合金からなるガスタービン燃焼器用部材。
  6.  請求項4に記載のガスタービン燃焼器用Ni基合金からなるガスタービン燃焼器のライナー用部材。
  7.  請求項4に記載のガスタービン燃焼器用Ni基合金からなるガスタービン燃焼器のトランジッションピース用部材。
  8.  請求項4に記載のガスタービン燃焼器用Ni基合金からなるガスタービン燃焼器のライナー。
  9.  請求項4に記載のガスタービン燃焼器用Ni基合金からなるガスタービン燃焼器のトランジッションピース。
  10.  請求項1に記載のNi基合金からなる熱延板であって、Feの含有量が0.01質量%以上5質量%以下であることを特徴とする熱延板。
PCT/JP2014/070795 2013-08-06 2014-08-06 Ni基合金、ガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ライナー用部材、トランジッションピース用部材、ライナー、トランジッションピース WO2015020117A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/910,106 US10208364B2 (en) 2013-08-06 2014-08-06 Ni-based alloy, ni-based alloy for gas turbine combustor, member for gas turbine combustor, liner member, transition piece member, liner, and transition piece
KR1020167005658A KR101801672B1 (ko) 2013-08-06 2014-08-06 Ni기 합금, 가스 터빈 연소기용 Ni기 합금, 가스 터빈 연소기용 부재, 라이너용 부재, 트랜지션 피스용 부재, 라이너, 트랜지션 피스
ES14835088T ES2757569T3 (es) 2013-08-06 2014-08-06 Aleación a base de Ni, aleación a base de Ni para la cámara de combustión de la turbina de gas, miembro de la cámara de combustión de la turbina de gas
EP14835088.7A EP3031940B1 (en) 2013-08-06 2014-08-06 Ni-based alloy, ni-based alloy for gas turbine combustor, member for gas turbine combustor
CN201480055025.XA CN105960473B (zh) 2013-08-06 2014-08-06 Ni基合金、燃气轮机燃烧器用Ni 基合金、燃气轮机燃烧器用构件、衬垫构件、过渡件构件、衬垫和过渡件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-163524 2013-08-06
JP2013163524A JP6532182B2 (ja) 2013-08-06 2013-08-06 Ni基合金、ガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ライナー用部材、トランジッションピース用部材、ライナー、トランジッションピース

Publications (1)

Publication Number Publication Date
WO2015020117A1 true WO2015020117A1 (ja) 2015-02-12

Family

ID=52461447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070795 WO2015020117A1 (ja) 2013-08-06 2014-08-06 Ni基合金、ガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ライナー用部材、トランジッションピース用部材、ライナー、トランジッションピース

Country Status (7)

Country Link
US (1) US10208364B2 (ja)
EP (1) EP3031940B1 (ja)
JP (1) JP6532182B2 (ja)
KR (1) KR101801672B1 (ja)
CN (1) CN105960473B (ja)
ES (1) ES2757569T3 (ja)
WO (1) WO2015020117A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6739309B2 (ja) * 2016-10-07 2020-08-12 三菱日立パワーシステムズ株式会社 タービン翼の製造方法
JP7081096B2 (ja) * 2016-10-24 2022-06-07 大同特殊鋼株式会社 析出硬化型Ni合金
JP7153502B2 (ja) * 2018-08-09 2022-10-14 山陽特殊製鋼株式会社 窒化物分散型Ni基合金からなる成形体
CN111118347B (zh) * 2020-02-08 2021-07-30 河南城建学院 一种高强度Ni基复合基带的制备方法
CN111676393B (zh) * 2020-06-12 2022-04-12 江苏隆达超合金股份有限公司 一种挤压清理垫及其制备方法
CN114015909B (zh) * 2021-11-16 2022-05-17 南京中远海运船舶设备配件有限公司 一种大规格柴油机气阀及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139633A (ja) 1984-12-10 1986-06-26 スペシヤル・メタルス・コーポレーシヨン ニツケル基合金
JPS6134497B2 (ja) 1981-12-22 1986-08-08 Mitsubishi Jukogyo Kk
JPH1068035A (ja) * 1996-08-29 1998-03-10 Sumitomo Metal Ind Ltd 耐粒界応力腐食割れ性に優れたNi−Cr系合金およびその製造方法
JP2005265544A (ja) 2004-03-17 2005-09-29 Jfe Steel Kk 鋼材中のアルミナ介在物の粒度分布測定方法
JP2005274401A (ja) 2004-03-25 2005-10-06 Nippon Yakin Kogyo Co Ltd Fe−Ni合金板のスラブ段階での最大非金属介在物の大きさの特定する方法、およびFe−Ni合金スラブ中の最大非金属介在物の大きさが特定されたFe−Ni合金板
WO2007119832A1 (ja) * 2006-04-14 2007-10-25 Mitsubishi Materials Corporation ガスタービン燃焼器用Ni基耐熱合金
JP2009185352A (ja) 2008-02-07 2009-08-20 Nippon Yakin Kogyo Co Ltd 常温での強度と加工性およびクリープ特性に優れるNi基合金材料とその製造方法
JP2013049902A (ja) * 2011-08-31 2013-03-14 Nippon Steel & Sumitomo Metal Corp Ni基合金およびNi基合金の製造方法
WO2013118750A1 (ja) * 2012-02-07 2013-08-15 三菱マテリアル株式会社 Ni基合金

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143462A (en) 1981-03-02 1982-09-04 Mitsubishi Heavy Ind Ltd Heat resistant ni alloy
JPS6134497A (ja) 1984-07-26 1986-02-18 株式会社荏原製作所 炉内循環ポンプ
JP3712614B2 (ja) * 1998-07-21 2005-11-02 株式会社豊田中央研究所 チタン基複合材料、その製造方法およびエンジンバルブ
US7645315B2 (en) * 2003-01-13 2010-01-12 Worldwide Strategy Holdings Limited High-performance hardmetal materials
EP2330225B1 (en) * 2008-10-02 2015-03-25 Nippon Steel & Sumitomo Metal Corporation Nickel based heat-resistant alloy
CH705750A1 (de) * 2011-10-31 2013-05-15 Alstom Technology Ltd Verfahren zur Herstellung von Komponenten oder Abschnitten, die aus einer Hochtemperatur-Superlegierung bestehen.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134497B2 (ja) 1981-12-22 1986-08-08 Mitsubishi Jukogyo Kk
JPS61139633A (ja) 1984-12-10 1986-06-26 スペシヤル・メタルス・コーポレーシヨン ニツケル基合金
JPH1068035A (ja) * 1996-08-29 1998-03-10 Sumitomo Metal Ind Ltd 耐粒界応力腐食割れ性に優れたNi−Cr系合金およびその製造方法
JP2005265544A (ja) 2004-03-17 2005-09-29 Jfe Steel Kk 鋼材中のアルミナ介在物の粒度分布測定方法
JP2005274401A (ja) 2004-03-25 2005-10-06 Nippon Yakin Kogyo Co Ltd Fe−Ni合金板のスラブ段階での最大非金属介在物の大きさの特定する方法、およびFe−Ni合金スラブ中の最大非金属介在物の大きさが特定されたFe−Ni合金板
WO2007119832A1 (ja) * 2006-04-14 2007-10-25 Mitsubishi Materials Corporation ガスタービン燃焼器用Ni基耐熱合金
JP2009185352A (ja) 2008-02-07 2009-08-20 Nippon Yakin Kogyo Co Ltd 常温での強度と加工性およびクリープ特性に優れるNi基合金材料とその製造方法
JP2013049902A (ja) * 2011-08-31 2013-03-14 Nippon Steel & Sumitomo Metal Corp Ni基合金およびNi基合金の製造方法
WO2013118750A1 (ja) * 2012-02-07 2013-08-15 三菱マテリアル株式会社 Ni基合金

Also Published As

Publication number Publication date
KR20160063322A (ko) 2016-06-03
JP2015030908A (ja) 2015-02-16
KR101801672B1 (ko) 2017-11-27
US20160177423A1 (en) 2016-06-23
EP3031940B1 (en) 2019-10-16
JP6532182B2 (ja) 2019-06-19
EP3031940A1 (en) 2016-06-15
CN105960473A (zh) 2016-09-21
CN105960473B (zh) 2018-04-06
US10208364B2 (en) 2019-02-19
ES2757569T3 (es) 2020-04-29
EP3031940A4 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6499546B2 (ja) 積層造形用Ni基超合金粉末
EP2009123B1 (en) Nickel-based heat-resistant alloy for gas turbine combustor
WO2015020117A1 (ja) Ni基合金、ガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ライナー用部材、トランジッションピース用部材、ライナー、トランジッションピース
US9932655B2 (en) Ni-based alloy
EP2224025B1 (en) Nickel-based superalloy and manufacturing process thereof
CA3053741A1 (en) Ni-based heat resistant alloy and method for producing the same
CN111819300B (zh) 航空器发动机壳体用Ni基超耐热合金及由其制成的航空器发动机壳体
KR20200002965A (ko) 석출 경화성의 코발트-니켈 베이스 초합금 및 이로부터 제조된 물품
JP7310978B2 (ja) 析出硬化型Ni合金の製造方法
EP3581669A1 (en) Austenitic heat-resistant alloy and method for producing same
JP2019112686A (ja) Ni基耐熱合金
JP2011052239A (ja) O相基耐熱チタン合金およびその製造方法
KR20180043361A (ko) 저열팽창 초내열 합금 및 그의 제조 방법
WO2017170433A1 (ja) Ni基超耐熱合金の製造方法
JP5670929B2 (ja) Ni基合金鍛造材
JP2010024544A (ja) 温熱間鍛造用金型
JP7081096B2 (ja) 析出硬化型Ni合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14910106

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014835088

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167005658

Country of ref document: KR

Kind code of ref document: A