WO2015019974A1 - レドックスフロー電池 - Google Patents

レドックスフロー電池 Download PDF

Info

Publication number
WO2015019974A1
WO2015019974A1 PCT/JP2014/070424 JP2014070424W WO2015019974A1 WO 2015019974 A1 WO2015019974 A1 WO 2015019974A1 JP 2014070424 W JP2014070424 W JP 2014070424W WO 2015019974 A1 WO2015019974 A1 WO 2015019974A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
ions
concentration
electrode electrolyte
positive electrode
Prior art date
Application number
PCT/JP2014/070424
Other languages
English (en)
French (fr)
Inventor
宏一 加來
雍容 董
慶 花房
良潤 關根
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP14833875.9A priority Critical patent/EP3032629B1/en
Priority to US14/909,855 priority patent/US10290889B2/en
Priority to CN201480044422.7A priority patent/CN105474446B/zh
Priority to JP2015530864A priority patent/JP6358566B2/ja
Publication of WO2015019974A1 publication Critical patent/WO2015019974A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery.
  • the present invention relates to a redox flow battery that can suppress the generation of precipitates and has a high energy density.
  • RF battery redox flow battery
  • MW class megawatt class
  • long life long life
  • the RF battery performs charge and discharge by supplying a positive electrode electrolyte and a negative electrode electrolyte to battery cells in which a diaphragm is interposed between the positive electrode and the negative electrode, respectively.
  • a solution containing, as an active material, a metal ion whose valence changes by oxidation and reduction is typically used.
  • Typical examples are Fe-Cr RF batteries using iron (Fe) ions as the positive electrode active material and chromium (Cr) ions as the negative electrode active material, and V-based RF batteries using vanadium (V) ions as the active materials of both electrodes ( Paragraph 0003 of the specification of Patent Document 1).
  • Patent Document 1 as an RF battery capable of obtaining a higher electromotive force than a conventional V-type RF battery, manganese (Mn) ions are used as a positive electrode active material and titanium (Ti) ions are used as a negative electrode active material.
  • An RF battery is disclosed.
  • Patent Document 1 by containing together titanium ions in the positive electrode electrolyte solution, it is possible to suppress the generation of precipitates such as manganese oxide (MnO 2), it can be performed stably reaction of Mn 2+ / Mn 3+ Is disclosed.
  • MnO 2 manganese oxide
  • the generation of precipitates can be suppressed as described above by containing titanium ions in the positive electrode electrolyte.
  • the titanium ions in the positive electrode electrolyte basically do not function as a positive electrode active material and do not contribute to charge / discharge. Therefore, when the total concentration of metal ions in the positive electrode electrolyte is constant, the ratio of the active material in the positive electrode electrolyte is relatively decreased due to the inclusion of titanium ions, and the energy density is lowered. Further, for example, in order to use an electrolytic solution with a small proportion of the active material as a redox flow battery having a long capacity, it is necessary to use a large amount of the electrolytic solution. Then, the capacity of the tank increases, the size of the entire RF battery system due to the increase in the tank (enlargement of the installation space), the increase in the electrolyte cost, and the like are caused.
  • one of the objects of the present invention is to provide a redox flow battery that can suppress the generation of precipitates and has a high energy density.
  • a redox flow battery performs charge and discharge by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes.
  • the positive electrode electrolyte contains manganese ions, titanium ions, and reactive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, chromium ions, and zinc ions.
  • the reactive metal ion is at least one selected from vanadium ion, chromium ion, iron ion, cobalt ion, copper ion, molybdenum ion, ruthenium ion, palladium ion, silver ion, tungsten ion, mercury ion and cerium ion. .
  • the redox flow battery of the present invention can suppress the generation of precipitates and has a high energy density.
  • the redox flow battery according to the embodiment performs charge and discharge by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes.
  • the positive electrode electrolyte contains manganese ions, titanium ions, and reactive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, chromium ions, and zinc (Zn) ions.
  • the reactive metal ions include vanadium ions, chromium ions, iron (Fe) ions, cobalt (Co) ions, copper (Cu) ions, molybdenum (Mo) ions, ruthenium (Ru) ions, palladium (Pd) ions, silver It is at least one selected from (Ag) ions, tungsten (W) ions, mercury (Hg) ions, and cerium (Ce) ions.
  • the said reactive metal ion means what has a function as a positive electrode active material, and the function which suppresses precipitation of a deposit.
  • the RF battery of the embodiment uses manganese ions contained in the positive electrode electrolyte as the positive electrode active material, (1) the electromotive force can be increased as compared with a conventional V-type RF battery, (2) Since manganese ions are water-soluble metal ions, the electrolytic solution can be made into an aqueous solution and excellent in manufacturability. (3) Manganese ions are relatively inexpensive and preferable from the viewpoint of resource supply. Play.
  • the specific metal ion (reactive metal ion) contained in the positive electrode electrolyte also functions as the positive electrode active material, so that the ratio of the active material in the electrolyte can be increased.
  • the RF battery of the embodiment has a higher energy density than an RF battery including a positive electrode electrolyte that includes manganese ions and titanium ions and does not include the reactive metal ions. Moreover, since the RF battery of the embodiment can suppress the generation of precipitates by the reactive metal ions in addition to the titanium ions, the cell resistance due to the precipitates can be increased even when the state of charge is increased. The cell resistance is low. Thus, the RF battery of the embodiment has excellent battery characteristics. Furthermore, the RF battery of the embodiment can reduce the size of the tank, the installation space, the cost of the electrolyte, and the like.
  • the positive electrode electrolyte further contains added metal ions.
  • the additive metal ions include aluminum (Al) ions, cadmium (Cd) ions, indium (In) ions, tin (Sn) ions, antimony (Sb) ions, iridium (Ir) ions, gold (Au) ions, lead ( Pb), at least one selected from bismuth (Bi) and magnesium (Mg) ions.
  • the said additive metal ion means what has a function which does not function as an active material substantially, but suppresses precipitation of a deposit.
  • the above-mentioned specific metal ions are present together with manganese ions in the positive electrode electrolyte, thereby suppressing the generation of precipitates such as manganese oxides.
  • the additive metal ions can suppress the generation of precipitates even if the content of the added metal ions is very small.
  • the said form can suppress generation
  • the said form can suppress the fall of the ratio of the active material in electrolyte solution by reducing content of a titanium ion or an addition metal ion, and can have a high energy density.
  • the concentration of the reactive metal ions in the positive electrode electrolytic solution (total concentration in the case of plural) is 0.001 M or more and 5 M or less can be given.
  • M shown as a unit of concentration means volume molar concentration, that is, mol / L (mol / liter).
  • the said form contains a reactive metal ion in the above-mentioned specific range, (1) It can utilize a reactive metal ion favorably as an active material, and can have a high energy density, (2) Precipitate (3) Even when the electrolytic solution is an aqueous acid solution, it can be dissolved satisfactorily, and the electrolytic solution is excellent in manufacturability.
  • the concentration of the additive metal ions in the positive electrode electrolyte is 0.001M or more and 1M or less.
  • concentration of the additive metal ions in the positive electrode electrolyte is 0.001M or more and 1M or less.
  • the generation of precipitates can be effectively suppressed by containing the added metal ions in the specific range described above.
  • the RF battery of the embodiment there is a form in which at least one of the manganese ion concentration in the positive electrode electrolyte and the metal ion concentration in the negative electrode electrolyte is 0.3 M or more and 5 M or less. .
  • the metal ions contained in the negative electrode electrolyte are plural kinds, the total concentration is used.
  • the said form contains the metal ion which functions as an active material of each pole in the above-mentioned specific range, (i) It can fully contain the metal element which performs a valence change reaction, and can have a high energy density. (Ii) Even when the electrolytic solution is an aqueous acid solution, it can be dissolved satisfactorily, and the electrolytic solution is excellent in manufacturability.
  • the negative electrode electrolyte contains titanium ions as the metal ions, the concentration of the manganese ions in the positive electrode electrolyte, and the concentration of the titanium ions in the negative electrode electrolyte.
  • the form whose at least one is 0.3M or more and 5M or less is mentioned.
  • the manganese ion concentration and the titanium ion concentration satisfy a specific range, whereby a Mn—Ti RF battery having a high energy density can be obtained. Further, as described in the above-described embodiment (5) ( The effect of ii) is also achieved.
  • a form in which the concentration of the titanium ion in the positive electrode electrolyte is 5M or less can be given.
  • the generation of precipitates can be suppressed by the titanium ions in the positive electrode electrolyte, and the concentration of the titanium ions is in the specific range described above, so that even when the electrolyte is an aqueous acid solution, it can be dissolved well. It is excellent in electrolyte productivity.
  • the reactive metal ion may have a form satisfying at least one of the following (A) to (L).
  • the vanadium ion is a divalent vanadium ion, a trivalent vanadium ion, a tetravalent vanadium ion, or a pentavalent vanadium ion.
  • the chromium ion is a divalent chromium ion, 3
  • the iron ion is at least one of a divalent iron ion and a trivalent iron ion
  • the cobalt ion is at least one of a divalent cobalt ion and a trivalent cobalt ion.
  • the copper ion is at least one of a monovalent copper ion and a divalent copper ion.
  • the molybdenum ion. Is at least one of a tetravalent molybdenum ion, a pentavalent molybdenum ion, and a hexavalent molybdenum ion.
  • the mu ion is at least one of a divalent ruthenium ion, a trivalent ruthenium ion, and a tetravalent ruthenium ion.
  • the palladium ion is at least one of a divalent palladium ion and a tetravalent palladium ion.
  • the silver ion is at least one of a monovalent silver ion and a divalent silver ion.
  • the tungsten ion is at least a tetravalent tungsten ion, a pentavalent tungsten ion, and a hexavalent tungsten ion.
  • the mercury ion is at least one of monovalent mercury ion and divalent mercury ion.
  • the cerium ion is at least one of trivalent cerium ion and tetravalent cerium ion. is there
  • the metal ions having the respective valences listed above function as a positive electrode active material and exhibit the effect of suppressing precipitates. Therefore, the above form has high energy density and can suppress the generation of precipitates.
  • the negative electrode electrolyte contains titanium ions and further manganese ions.
  • both the positive electrode electrolyte and the negative electrode electrolyte contain manganese ions and titanium ions. That is, in the above embodiment, a plurality of ionic species existing in the electrolyte solution of both electrodes overlap. Therefore, in the above embodiment, (i) it is easy to avoid a decrease in battery capacity due to a relative decrease in metal ions (active material) that originally react with each other when metal ions move to the counter electrode, (ii) (Iii) It is easy to correct even when there is a variation in the amount of electrolyte solution in both electrodes due to a liquid transfer (a phenomenon in which the electrolyte solution in one electrode moves to the other electrode) with charging / discharging over time. There is an effect that the electrolytic solution is excellent in manufacturability. Therefore, the above form is expected to be practical and easy to use.
  • the negative electrode electrolyte includes a form containing titanium ions, further manganese ions, and the reactive metal ions.
  • both the positive electrode electrolyte and the negative electrode electrolyte contain manganese ions, titanium ions, and reactive metal ions. That is, in the above embodiment, both of the electrolyte solutions of both electrodes include a plurality of ion species, and a plurality of ion species existing in the electrolyte solution of both electrodes overlap, and typically exist in the electrolyte solution of both electrodes. All ionic species match.
  • the negative electrode electrolyte contains titanium ions, further manganese ions, the reactive metal ions, and the addition The form containing a metal ion is mentioned.
  • both the positive electrode electrolyte and the negative electrode electrolyte contain manganese ions, titanium ions, reactive metal ions, and additive metal ions. That is, in the above embodiment, both of the electrolyte solutions of both electrodes include a plurality of ion species, and a plurality of ion species existing in the electrolyte solution of both electrodes overlap, and typically exist in the electrolyte solution of both electrodes. All ionic species match.
  • the above form is (i) it is easier to avoid a decrease in battery capacity due to the above-described reduction of the active material over time, (ii) over time along with charge / discharge Even when the liquid transfer occurs and the amount of electrolyte solution in both electrodes varies, the effect can be easily corrected, and (iii) it is excellent in the productivity of the electrolyte solution.
  • the negative electrode electrolyte contains manganese ions
  • a form in which the concentration of manganese ions in the negative electrode electrolyte is 0.3 M or more and 5 M or less.
  • the above embodiment has the same effects as the above embodiments (9) to (11). Specifically, the said form can suppress the reduction
  • the added metal ions satisfy at least one of the following (a) to (j).
  • the aluminum ion is a monovalent aluminum ion, a divalent aluminum ion, or a trivalent aluminum ion.
  • the cadmium ion is a monovalent cadmium ion or a divalent cadmium ion.
  • the indium ion is at least one of monovalent indium ion, divalent indium ion, and trivalent indium ion.
  • the tin ion is divalent tin ion and tetravalent.
  • the antimony ion is a trivalent antimony ion and at least one of a pentavalent antimony ion
  • the iridium ion is a monovalent iridium ion or a divalent iridium ion Trivalent iridium ion, tetravalent iridium ion, pentavalent iri
  • the gold ion is a monovalent gold ion, a divalent gold ion, a trivalent gold ion, a tetravalent gold ion, or a pentavalent gold ion.
  • the lead ion is at least one of a divalent lead ion and a tetravalent lead ion
  • the bismuth ion is at least a trivalent bismuth ion and a pentavalent bismuth ion
  • the magnesium ion is at least one of a monovalent magnesium ion and a divalent magnesium ion
  • the above-described form contains the added metal ions having the respective valences in addition to the reactive metal ions, thereby generating precipitates. Can be more effectively suppressed.
  • the manganese ion is at least one of a divalent manganese ion and a trivalent manganese ion
  • the titanium ion is a trivalent titanium ion and a tetravalent titanium ion. The form which is at least one of these is mentioned.
  • the enumerated manganese ions of each valence function as a positive electrode active material in the positive electrode electrolyte, and in particular, the tetravalent titanium ions have the effect of suppressing precipitates in the positive electrode electrolyte.
  • the titanium ions having the respective valences listed above are contained in the negative electrode electrolyte, the titanium ions function as a negative electrode active material. Therefore, the above embodiment provides a Mn—Ti RF battery that can provide a high electromotive force. Can be built.
  • FIG. 1 shows an example of ionic species contained in the electrolytic solution.
  • a solid line arrow means charging
  • a broken line arrow means discharging.
  • the redox flow battery (RF battery) 1 of the embodiment typically includes a power generation unit 300 (for example, a solar power generator, a wind power generator, and the like, via an AC / DC converter 200, a transformer facility 210, and the like. General power plant etc.) and a power system or a customer (power system / customer 400) are connected and charged using the power generation unit 300 as a power supply source, and discharged using the power system / customer 400 as a power supply target.
  • a circulation mechanism for circulating the electrolyte in the RF battery 1 is constructed.
  • the RF battery 1 includes a positive electrode cell 102 containing a positive electrode 104, a negative electrode cell 103 containing a negative electrode 105, and a diaphragm 101 that separates the cells 102 and 103 and transmits predetermined ions. Is a main component.
  • a positive electrode electrolyte tank 106 is connected to the positive electrode cell 102 via conduits 108 and 110.
  • a negative electrode electrolyte tank 107 is connected to the negative electrode cell 103 via conduits 109 and 111.
  • the conduits 108 and 109 are provided with pumps 112 and 113 for circulating the electrolyte solution of each electrode.
  • the RF battery 1 uses the conduits 108 to 111 and the pumps 112 and 113 to the positive electrode cell 102 (positive electrode 104) and the negative electrode cell 103 (negative electrode 105), respectively.
  • the electrolyte solution is circulated and supplied, and charging / discharging is performed in accordance with the valence change reaction of the metal ion that becomes the active material in the electrolyte solution of each electrode.
  • the RF battery 1 typically uses a form called a cell stack including a plurality of battery cells 100.
  • the cells 102 and 103 include a bipolar plate (not shown) in which the positive electrode 104 is disposed on one surface and the negative electrode 105 is disposed on the other surface, a supply hole for supplying an electrolytic solution, and an exhaust for discharging the electrolytic solution.
  • a configuration using a cell frame having a liquid hole and having a frame (not shown) formed on the outer periphery of the bipolar plate is representative.
  • the liquid supply hole and the drainage hole constitute an electrolyte flow path, and the flow path is connected to conduits 108-111.
  • the cell stack is configured by repeatedly stacking a cell frame, a positive electrode 104, a diaphragm 101, a negative electrode 105, a cell frame,.
  • As the basic configuration of the RF battery system a known configuration can be appropriately used.
  • the positive electrode electrolyte contains manganese ions and titanium ions
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, chromium ions, and zinc ions. contains.
  • a reactive metal ion is contained as a specific metal ion which has a some function further in positive electrode electrolyte solution.
  • Manganese ions have at least one valence ion in the positive electrode electrolyte.
  • a divalent manganese ion and a trivalent manganese ion can be mentioned.
  • tetravalent manganese may be contained. This tetravalent manganese is considered to be MnO 2 .
  • this MnO 2 is not a solid precipitate but exists in a stable state as dissolved in the electrolyte, and is reduced to Mn 2+ by a two-electron reaction (Mn 4+ + 2e ⁇ ⁇ Mn 2+ ) during discharge. In other words, it can be discharged to act as an active material and be used repeatedly, which may contribute to an increase in battery capacity. Therefore, the presence of a slight amount (about 10% or less of the total amount (mol) of manganese ions) of tetravalent manganese is allowed in the positive electrode electrolyte.
  • Examples of the manganese ion concentration (hereinafter referred to as Mn content) in the positive electrode electrolyte include 0.3M or more and 5M or less. When it is 0.3 M or more, a sufficient energy density (for example, about 10 kWh / m 3 ) as a large-capacity storage battery can be obtained. Since the energy density is increased as the Mn content is higher, the Mn content can be set to 0.5 M or more, and more preferably 1.0 M or more. In the RF battery 1 of the embodiment, the generation of precipitates can be satisfactorily suppressed even when the concentration of manganese ions is increased by containing titanium ions and reactive metal ions described later in the positive electrode electrolyte. Ions can be present stably. However, considering the solubility in a solvent, the Mn content is easily 5M or less, more preferably 2M or less, and the productivity of the electrolytic solution is excellent.
  • the positive electrode electrolyte solution with which the RF battery 1 of embodiment is equipped contains a titanium ion further.
  • This titanium ion functions as an inhibitor for the generation of precipitates such as manganese oxide, and does not substantially function as a positive electrode active material.
  • Titanium ions are typically present as tetravalent titanium ions in the positive electrode electrolyte. Tetravalent titanium ions include TiO 2+ and the like.
  • concentration (henceforth Ti content) of the titanium ion in a positive electrode electrolyte solution 5M or less (except 0) is mentioned, for example. If it is 5M or less, for example, even when the electrolytic solution is an acid aqueous solution, it can be dissolved well, and the electrolytic solution is excellent in manufacturability.
  • the positive electrode electrolyte solution with which RF battery 1 of embodiment is equipped contains a reactive metal ion further.
  • This reactive metal ion functions as a positive electrode active material, and also functions as an inhibitor for the generation of precipitates such as manganese oxide. That is, in the RF battery 1 of the embodiment, at least two types of metal ions (titanium ions, reactive metal ions) are included as an inhibitor for the generation of precipitates.
  • the specific reactive metal ion is at least one selected from vanadium ion, chromium ion, iron ion, cobalt ion, copper ion, molybdenum ion, ruthenium ion, palladium ion, silver ion, tungsten ion, mercury ion and cerium ion. Is mentioned.
  • Each reactive metal ion has at least one valence ion in the positive electrode electrolyte.
  • vanadium ions include divalent vanadium ions, trivalent vanadium ions, tetravalent vanadium ions, and pentavalent vanadium ions.
  • Examples of (B) chromium ions include divalent chromium ions, trivalent chromium ions, tetravalent chromium ions, and hexavalent chromium ions.
  • the iron ion includes a divalent iron ion and a trivalent iron ion.
  • Examples of (D) cobalt ions include divalent cobalt ions and trivalent cobalt ions.
  • the copper ion includes a monovalent copper ion and a divalent copper ion.
  • Examples of (F) molybdenum ions include tetravalent molybdenum ions, pentavalent molybdenum ions, and hexavalent molybdenum ions.
  • (G) Ruthenium ions include divalent ruthenium ions, trivalent ruthenium ions, and tetravalent ruthenium ions.
  • Examples of (H) palladium ions include divalent palladium ions and tetravalent palladium ions.
  • (I) Silver ions include monovalent silver ions and divalent silver ions.
  • Examples of tungsten ions include tetravalent tungsten ions, pentavalent tungsten ions, and hexavalent tungsten ions.
  • Examples of (K) mercury ions include monovalent mercury ions and divalent mercury ions.
  • Examples of (L) cerium ions include trivalent cerium ions and tetravalent cerium ions. There may be other valences than those listed. In some cases, ions of the same element but different in valence are included. Furthermore, the case where these elements exist as a metal (solid) in addition to ions is allowed.
  • each metal ion listed as a reactive metal ion is a lower potential or a higher potential than that of manganese ions. For this reason, these metal ions are contained together with manganese ions in the positive electrode electrolyte solution, so that the valence change reaction is sequentially performed substantially in accordance with the potential and functions as a positive electrode active material.
  • any of a form containing a single type of reactive metal ion and a form containing a plurality of types of reactive metal ions can be used.
  • the vanadium ions when vanadium ions are included as reactive metal ions, the vanadium ions have a track record as an active material for conventional V-type RF batteries, so that the reliability of the battery can be improved.
  • the concentration of the reactive metal ions in the positive electrode electrolyte (the total concentration when plural kinds of reactive metal ions are included) is, for example, 0.001M or more and 5M or less.
  • concentration of the reactive metal ions in the positive electrode electrolyte is, for example, 0.001M or more and 5M or less.
  • reactive metal ions can be effectively used as a positive electrode active material together with manganese ions, and the ratio of the positive electrode active material in the positive electrode electrolyte can be increased. Therefore, the RF battery 1 having a high energy density can be obtained.
  • production of a precipitate can be suppressed as it is 0.001M or more.
  • the concentration of the reactive metal ion in the positive electrode electrolyte is 5M or less, and more preferably 2M or less, which is excellent in the productivity of the electrolyte.
  • the electrolytic solution is an aqueous acid solution
  • the generation of precipitates can be suppressed by increasing the acid concentration to some extent, as will be described later.
  • increasing the acid concentration causes a decrease in the solubility of the metal ions. Since the RF battery 1 of the embodiment can suppress the generation of precipitates by containing both titanium ions and reactive metal ions, there is no need to excessively increase the acid concentration, and the metal ion concentration is practical. Range. Either the same or different manganese ion concentration and reactive metal ion concentration can be used.
  • the positive electrode electrolyte provided in the RF battery 1 of the embodiment further contains ions such as manganese oxide that have an inhibitory effect on the generation of precipitates. be able to.
  • ions include at least one selected from aluminum ions, cadmium ions, indium ions, tin ions, antimony ions, iridium ions, gold ions, lead ions, bismuth ions, and magnesium ions.
  • Each metal ion has at least one valence ion in the positive electrode electrolyte.
  • aluminum ions include monovalent aluminum ions, divalent aluminum ions, and trivalent aluminum ions.
  • Cadmium ions include monovalent cadmium ions and divalent cadmium ions.
  • Indium ions include monovalent indium ions, divalent indium ions, and trivalent indium ions.
  • D As for a tin ion, a bivalent tin ion and a tetravalent tin ion are mentioned.
  • Antimony ions include trivalent antimony ions and pentavalent antimony ions.
  • iridium ions include monovalent iridium ions, divalent iridium ions, trivalent iridium ions, tetravalent iridium ions, pentavalent iridium ions, and hexavalent iridium ions.
  • Gold ions include monovalent gold ions, divalent gold ions, trivalent gold ions, tetravalent gold ions, and pentavalent gold ions.
  • Lead ions include divalent lead ions and tetravalent lead ions.
  • Bismuth ions include trivalent bismuth ions and pentavalent bismuth ions.
  • Magnesium ions include monovalent magnesium ions and divalent magnesium ions. There may be other valences than those listed. In some cases, ions of the same element but different in valence are included. Furthermore, the case where these elements exist as a metal (solid) in addition to ions is allowed.
  • Each metal ion enumerated as an additive metal ion is effective in suppressing the generation of the above-mentioned precipitates, even if it is in a trace amount, and therefore suppresses a decrease in the ratio of the active material accompanying the inclusion of the additive metal ion in the electrolyte. easy.
  • the amount of the additive metal ion a trace amount, it is expected that the decrease in the ratio of the active material accompanying the inclusion of the titanium ion and the additive metal ion in the positive electrode electrolyte can be suppressed and the energy density can be easily increased.
  • Each of the metal ions listed above mainly functions as an inhibitor of the generation of the precipitate, and does not substantially function as an active material.
  • some ionic species may function as an active material (for example, lead ions).
  • the added metal ion also functions as a positive electrode active material, the energy density can be further increased.
  • any of a form containing a single kind of added metal ion and a form containing a plurality of kinds of added metal ions can be used.
  • the concentration of the added metal ions in the positive electrode electrolyte (the total concentration when plural kinds of added metal ions are included) is, for example, 0.001M or more and 1M or less.
  • production of a precipitate can be effectively suppressed with a titanium ion and a reactive metal ion as it is 0.001M or more.
  • the concentration of the added metal ions is expected to increase the effect of suppressing the precipitate as the concentration increases, it can be 0.005M or more, and further 0.01M or more.
  • the concentration of the added metal ion is preferably 0.8M or less, more preferably 0.5M or less.
  • the negative electrode electrolyte with which the RF battery 1 of embodiment is equipped contains at least 1 type of metal ion selected from a titanium ion, vanadium ion, chromium ion, and zinc ion as a negative electrode active material. Any of these metal ions can be combined with manganese ions as the positive electrode active material to form a redox pair having a high electromotive force.
  • Each metal ion used as the negative electrode active material has at least one valence ion in the negative electrode electrolyte.
  • ions of the same element and different valences are included.
  • these elements exist as a metal (solid) in addition to ions is allowed.
  • a form containing a single kind of metal ion or a form containing a plurality of kinds of metal ions can be used.
  • an electromotive force of about 1.4 V can be obtained in a Mn—Ti RF battery containing titanium ions as the negative electrode active material.
  • the electrolyte solution of both electrodes contains a titanium ion. In this form, even if the titanium ions of each electrode may move over time due to repeated charge and discharge, the titanium ions mixed into the positive electrode electrolyte from the negative electrode electrolyte are deposited in the positive electrode electrolyte. It can function as a generation inhibitor.
  • Titanium ions mixed into the negative electrode electrolyte from the positive electrode electrolyte can function as a negative electrode active material, and can easily suppress a decrease in battery capacity due to a reduction in the negative electrode active material.
  • the titanium ion in the negative electrode electrolyte contains at least one valence ion.
  • a trivalent titanium ion and a tetravalent titanium ion can be mentioned.
  • the vanadium ions have a track record as the negative electrode active material of the conventional V-based RF battery, so that the reliability of the battery can be improved.
  • the negative electrode electrolyte can increase the utilization rate of metal ions and improve the energy density.
  • the negative electrode active material for example, a form containing titanium ions and vanadium ions can be given.
  • the RF battery 1 with high electromotive force and high reliability can be obtained as described above.
  • the positive electrode electrolyte may include vanadium ions as reactive metal ions
  • the negative electrode electrolyte may include titanium ions and vanadium ions.
  • This embodiment has the effects (i) to (iv) described later because the electrolyte solution of both electrodes contains titanium ions and vanadium ions, and a plurality of ion species existing in the electrolyte solution of both electrodes overlap. Can do.
  • the concentration of titanium ions in the electrolyte solution of each electrode in this form is, for example, about 0.3M to 5M, and the concentration of vanadium ions is, for example, about 0.3M to 5M.
  • the positive electrode electrolyte contains a plurality of types of metal ions of manganese ions and vanadium ions as a positive electrode active material
  • the negative electrode electrolyte contains a plurality of types of metal ions of titanium ions and vanadium ions as a negative electrode active material. Therefore, the ratio of the active material in the electrolyte solution of both electrodes can be increased. As a result, the RF battery 1 having a higher energy density can be obtained.
  • Examples of the concentration of each metal ion listed as the negative electrode active material include 0.3 M or more and 5 M or less. When it is 0.3 M or more, a sufficient energy density (for example, about 10 kWh / m 3 ) as a large-capacity storage battery can be obtained. Since the energy density increases as the concentration of the metal ion in the negative electrode electrolyte increases, it can be set to 0.5 M or more, and further 1.0 M or more. However, considering the solubility in the solvent, the concentration of the metal ion in the negative electrode electrolyte is easily 5M or less, more preferably 2M or less, and the productivity of the electrolyte is excellent.
  • a Mn—Ti RF battery having a high energy density as described above when titanium ions are contained as a negative electrode active material in the range of 0.3M to 5M, a Mn—Ti RF battery having a high energy density as described above can be obtained.
  • the total form of the concentration of manganese ions that mainly function as a positive electrode active material and the concentration of reactive metal ions in the positive electrode electrolyte and the concentration of metal ions that mainly function as the negative electrode active material in the negative electrode electrolyte are the same, Any of the different forms can be used.
  • the negative electrode electrolyte solution can contain at least one of the above-mentioned ionic species of added metal ions. That is, at least one of the positive electrode electrolyte and the negative electrode electrolyte can be in a form containing an additive metal ion.
  • the negative electrode electrolyte contains at least one kind of added metal ion, (1) the battery reactivity of the metal ion functioning as the negative electrode active material can be increased (the reaction rate can be increased), and (2) depending on the ionic species, the active material (3) the generation of hydrogen accompanying water decomposition can be suppressed.
  • the negative electrode electrolyte solution can include the above-described metal ions such as titanium ions serving as a negative electrode active material, and can have the following form.
  • A A form containing manganese ions.
  • B A form containing at least one of the same ionic species as the reactive metal ion contained in the positive electrode electrolyte.
  • C A form in which at least one of the same ionic species is included when the positive electrode electrolyte contains at least one of the ionic species of the additive metal ions listed above.
  • D A form satisfying two of the above forms (a) to (c) (for example, form (a) + form (b)).
  • E A form satisfying all of the above forms (a) to (c).
  • any of the above forms (a) to (e) at least one ionic species contained in the positive electrode electrolyte and the negative electrode electrolyte overlaps. Therefore, these forms are (i) easy to avoid a decrease in battery capacity due to a decrease in active material over time, (ii) easy to correct variations in the amount of electrolyte in both electrodes due to liquid transfer, (iii) There are effects that it is easy to prevent a change in concentration due to the movement of metal ions to the counter electrode, and (iv) it is easy to produce an electrolytic solution. For example, in the form (a), it is easy to suppress at least a decrease with time of the positive electrode active material.
  • the concentration of the metal ion overlapping in the electrolyte solution of both electrodes can be used either in a different form in both electrodes or in an equal form in both electrodes.
  • the valence of the metal ions overlapping in the electrolyte solution of both electrodes either a different form in both electrodes or an equal form in both electrodes can be used.
  • the negative electrode electrolyte contains titanium ions and manganese ions (a)
  • the negative electrode electrolyte contains titanium ions, manganese ions, and reactive metal ions of the same ionic species contained in the positive electrode electrolyte.
  • Form (d) (form (a) + form (b)), form in which the negative electrode electrolyte contains titanium ions, manganese ions, and reactive metal ions and added metal ions of the same ionic species contained in the positive electrode electrolyte ( e).
  • the effects of (i) to (iv) described above can be obtained more easily if the concentration of the overlapping ion species is the same in both electrodes.
  • the concentration of manganese ions in the negative electrode electrolyte is, for example, 0.3 M or more and 5 M or less. If it is this concentration range, it will be easy to melt
  • the negative electrode electrolyte contains manganese ions, for example, divalent manganese ions and trivalent manganese ions can be mentioned.
  • reactive metal ions or additive metal ions are included in the electrolyte solution of both electrodes, at least one ion species of each electrode can include different ions.
  • the Ti content in the cathode electrolyte solution can be adjusted according to the concentration of titanium ions in the anode electrolyte solution.
  • the Ti content in the positive electrode electrolyte can be 0.3M or more, 0.5M or more, and further 1M or more.
  • the Ti content in the positive electrode electrolyte is easily 5M or less, and more preferably 2M or less.
  • the titanium ions in the electrolyte solution of each electrode in this form include trivalent titanium ions and tetravalent titanium ions.
  • the concentration of manganese ions present in the electrolyte solution of both electrodes is equal and the concentration of titanium ion present in the electrolyte solution of both electrodes is equal, It is easier to obtain the effects i) to (iv).
  • the concentration of manganese ions in the electrolyte solution of each electrode in this form is, for example, 0.3M to 5M, and the concentration of titanium ions is, for example, 0.3M to 5M.
  • Manganese ions in the electrolyte solution of each electrode in this form include divalent manganese ions and trivalent manganese ions, and titanium ions include trivalent titanium ions and tetravalent titanium ions.
  • An aqueous solution (electrolytic solution) of an acid prepared using sulfuric acid or sulfate includes, for example, sulfate anion (SO 4 2 ⁇ ).
  • the generation of precipitates such as manganese oxide can be suppressed to some extent by increasing the acid concentration.
  • an electrolytic solution containing metal ions capable of suppressing the generation of precipitates such as reactive metal ions the generation of precipitates may be suppressed even if the acid concentration in the electrolytic solution is lowered to some extent.
  • an aqueous solution prepared using a known acid or a known salt in addition to sulfuric acid or a sulfate can be used.
  • the materials of the positive electrode 104 and the negative electrode 105 include those mainly composed of carbon fiber, for example, non-woven fabric (carbon felt) and paper.
  • carbon felt non-woven fabric
  • the electrolyte oxygen gas is hardly generated even when the oxygen generation potential is reached during charging, (2) the surface area is large, (3) the electrolyte It has the effect of being excellent in the distribution of Known electrodes can be used.
  • an ion exchange membrane such as a cation exchange membrane or an anion exchange membrane can be mentioned.
  • the ion exchange membrane has the effects of (1) excellent separation between the metal ions of the positive electrode active material and the metal ions of the negative electrode active material, and (2) excellent permeability of H + ions (charge carriers inside the battery). Yes, it can be suitably used for the diaphragm 101.
  • a known diaphragm can be used.
  • Test Example 1 A positive electrode electrolyte containing manganese ions and titanium ions and a negative electrode electrolyte containing titanium ions were prepared, the RF battery system shown in FIG. 1 was constructed, charged, and the deposition state was examined.
  • the positive electrode electrolyte 1-1 was prepared using manganese sulfate, vanadium oxosulfate, titanium sulfate, and sulfuric acid (here, an aqueous solution).
  • the produced positive electrode electrolyte has a manganese ion (divalent) concentration of 0.5M, a vanadium ion (tetravalent) concentration of 0.5M, a titanium ion (tetravalent) concentration of 0.5M, a sulfate ion concentration (in the electrolyte) This is the total concentration, and is shown as the total concentration in the table, and the same applies to the following test examples.) Is 4.5M.
  • the positive electrode electrolyte 1-2 was prepared using manganese sulfate, vanadium oxosulfate, titanium sulfate, bismuth sulfate, and sulfuric acid (in this case, an aqueous solution).
  • the produced positive electrode electrolyte has a manganese ion (divalent) concentration of 0.5M, a vanadium ion (tetravalent) concentration of 0.5M, a titanium ion (tetravalent) concentration of 0.5M, and a bismuth ion (trivalent) concentration of 0.5M.
  • 0.05M, sulfate ion concentration (total concentration) is 4.575M.
  • Sample No. A positive electrode electrolyte of 1-100 was prepared using manganese sulfate and sulfuric acid (here, an aqueous solution).
  • the prepared positive electrode electrolyte has a manganese ion (divalent) concentration of 0.5M and a sulfate ion concentration (total concentration) of 3.5M.
  • the positive electrode electrolyte of 1-110 was prepared using manganese sulfate, titanium sulfate, and sulfuric acid.
  • the produced positive electrode electrolyte has a manganese ion (divalent) concentration of 0.5M, a titanium ion (tetravalent) concentration of 0.5M, and a sulfate ion concentration (total concentration) of 4.0M.
  • the negative electrode electrolyte was prepared using titanium sulfate and sulfuric acid (in this case, an aqueous solution).
  • the produced negative electrode electrolyte has a titanium ion (tetravalent) concentration of 1.0 M and a sulfate ion concentration (total concentration) of 4.0 M.
  • a small cell having an electrode reaction area of 9 cm 2 was produced. Carbon felt was used for each electrode, and an ion exchange membrane was used for the diaphragm.
  • a ⁇ h Charging current (A) x Charging time (h)
  • Theoretical electricity of one-electron reaction (A ⁇ h) electrolyte volume (L) ⁇ manganese ion concentration (mol / L) ⁇ Faraday constant: 96,485 (A ⁇ second / mol) ⁇ 1 (electron) / 3600
  • sample No. 1 containing only manganese ions in the positive electrode electrolyte was obtained.
  • a brown substance solid was attached to the region where the positive electrode electrolyte was present on the inner wall of the tank of the positive electrode electrolyte.
  • This brown material was analyzed and found to be MnO 2 . From this, sample no. It can be seen that in 1-100, precipitates are generated when the state of charge is increased.
  • Test Example 2 A positive electrode electrolyte containing manganese ions and titanium ions and a negative electrode electrolyte containing titanium ions are prepared to construct the RF battery system shown in FIG. 1, and after charging, the state of charge (SOC) is changed. Examined.
  • sample no. 2-1 has a manganese ion (divalent) concentration of 0.5M, a vanadium ion (tetravalent) concentration of 0.5M, a titanium ion (tetravalent) concentration of 0.5M, and a sulfate ion concentration (as a positive electrode electrolyte).
  • an electrolyte solution having a composition of 4.5M was prepared.
  • 2-2 is a positive electrode electrolyte having a manganese ion (divalent) concentration of 0.5M, a vanadium ion (tetravalent) concentration of 0.5M, a titanium ion (tetravalent) concentration of 0.5M, a bismuth ion (3
  • An electrolytic solution having a composition of (valence) of 0.05M and a sulfate ion concentration (total concentration) of 4.575M was prepared.
  • Sample No. In No. 2-100 an electrolytic solution having a composition of a manganese ion (divalent) concentration of 0.5 M and a sulfate ion concentration (total concentration) of 3.5 M was prepared as a positive electrode electrolytic solution.
  • 2-110 is a positive electrode electrolyte having a composition of manganese ion (divalent) concentration of 0.5M, titanium ion (tetravalent) concentration of 0.5M, and sulfate ion concentration (total concentration) of 4.0M.
  • an electrolyte solution having a composition of a negative electrode electrolyte having a titanium ion (tetravalent) concentration of 1.0 M and a sulfate ion concentration (total concentration) of 4.0 M was prepared.
  • 9 ml of the positive electrode electrolyte and 30 ml of the negative electrode electrolyte were prepared.
  • a small cell having an electrode reaction area of 9 cm 2 was prepared and charged using the prepared electrolyte.
  • the charging conditions were a constant current of 630 mA (a constant current with a current density of 70 mA / cm 2 ), and a charge termination voltage of 2.0V.
  • SOC,% of manganese ions at the end of this charge was examined. The results are shown in Table 1. Further, after the end of charging, the amount of precipitates (here, MnO 2 ) present in the tank or the like was visually examined. The results are shown in Table 1.
  • sample No. 1 containing only manganese ions in the positive electrode electrolyte was used.
  • Sample No. 2 contains metal ions such as vanadium ions in addition to manganese ions in the positive electrode electrolyte.
  • 2-1, No. 2 In 2-2 it can be seen that the state of charge (SOC) is higher.
  • SOC state of charge
  • One reason for the improved state of charge is that of sample No. 2-1, No. 2 In 2-2, it is considered that manganese ions were sufficiently utilized as an active material because generation of precipitates such as MnO 2 was suppressed by metal ions such as vanadium ions in addition to titanium ions.
  • Sample No. 2-1 sample no.
  • sample No. 2-2 sample No.
  • Test Example 3 A positive electrode electrolyte containing manganese ions and titanium ions and a negative electrode electrolyte containing titanium ions were prepared, the RF battery system shown in FIG. 1 was constructed, and the battery characteristics were examined by charging and discharging.
  • positive electrode electrolyte and the negative electrode electrolyte those having the same ion species and concentration as those in Test Example 1 were used. That is, sample no. 3-1, as a positive electrode electrolyte, manganese ion (divalent) concentration is 0.5M, vanadium ion (tetravalent) concentration is 0.5M, titanium ion (tetravalent) concentration is 0.5M, sulfate ion concentration ( For the total concentration, an electrolyte solution having a composition of 4.5M was prepared. Sample No.
  • 3-2 is a positive electrode electrolyte having a manganese ion (divalent) concentration of 0.5M, a vanadium ion (tetravalent) concentration of 0.5M, a titanium ion (tetravalent) concentration of 0.5M, a bismuth ion (3
  • An electrolytic solution having a composition of (valence) of 0.05M and a sulfate ion concentration (total concentration) of 4.575M was prepared.
  • Sample No. No. 3-100 prepared a positive electrode electrolyte having a composition of manganese ion (divalent) concentration of 0.5M and sulfate ion concentration (total concentration) of 3.5M.
  • 3-110 is an electrolyte having a composition of manganese ion (divalent) concentration of 0.5M, titanium ion (tetravalent) concentration of 0.5M, and sulfate ion concentration (total concentration) of 4.0M as a positive electrode electrolyte.
  • an electrolyte solution having a composition of a negative electrode electrolyte having a titanium ion (tetravalent) concentration of 1.0 M and a sulfate ion concentration (total concentration) of 4.0 M was prepared.
  • 6 ml of electrolyte solution for each electrode was prepared.
  • a small cell having an electrode reaction area of 9 cm 2 was prepared, and a charge / discharge cycle test was performed using the prepared electrolyte.
  • the charging / discharging conditions are a constant current of 630 mA (constant current of 70 mA / cm 2 current density), a charging side switching voltage (voltage switching from charging to discharging) is 1.5 V, and a discharging side switching voltage (from discharging to charging).
  • the voltage to be switched) was 0 V, and the number of cycles was 3.
  • current efficiency (%) and discharge capacity (Ah / L) were examined.
  • the current efficiency (%) was obtained by (discharge time / charge time) ⁇ 100 for each cycle.
  • Table 2 shows the average of the current efficiency at the second cycle and the current efficiency at the third cycle.
  • discharge time (s) discharge time (s) ⁇ current value (A) / 3600) / electrolyte volume (L) was determined for each cycle.
  • Table 2 shows the average of the discharge capacity at the second cycle and the discharge capacity at the third cycle.
  • sample No. 1 containing only manganese ions in the positive electrode electrolyte was used.
  • sample No. 3 contains a positive electrode electrolyte containing metal ions such as titanium ions and vanadium ions in addition to manganese ions.
  • 3-1. 3-2 shows that the current efficiency and the discharge capacity are high.
  • Sample No. 3-2 contains manganese ions and titanium ions but does not contain vanadium ions in the positive electrode electrolyte. Even when compared to 3-110, it can be seen that the current efficiency and discharge capacity are high.
  • sample no. 3-1. 3-2 shows the sample No. 3-2. 3-100, no.
  • the discharge capacity is 1.5 times higher, and it is expected that the battery can be used well as a large capacity battery.
  • One of the reasons for the improvement in current efficiency and discharge capacity is that of sample no. 3-1.
  • Test Example 4 An electrolyte solution containing manganese ions and titanium ions in both the positive electrode electrolyte and the negative electrode electrolyte was prepared, and the RF battery system shown in FIG. 1 was constructed, and charge / discharge was performed to examine battery characteristics.
  • the positive electrode electrolyte and the negative electrode electrolyte were prepared using sulfate and sulfuric acid as in Test Example 1.
  • Sample No. 4-1 As a positive electrode electrolyte, manganese ion (divalent) concentration is 0.5M, vanadium ion (tetravalent) concentration is 0.5M, titanium ion (tetravalent) concentration is 0.5M, sulfate ion concentration ( 6 ml of an electrolytic solution having a composition having a total concentration of 4.5 M was prepared.
  • the negative electrode electrolyte 12 ml of an electrolyte having a composition of titanium ion (tetravalent) concentration of 0.5M, manganese ion (divalent) concentration of 0.5M, and sulfate ion concentration (total concentration) of 4.0M was prepared.
  • Sample No. 4-2 has a manganese ion (divalent) concentration of 0.5 M, a vanadium ion (trivalent) concentration of 0.25 M, a vanadium ion (tetravalent) concentration of 0.25 M, as a positive electrode electrolyte and a negative electrode electrolyte.
  • An electrolyte solution having a titanium ion (tetravalent) concentration of 0.5M and a sulfate ion concentration (total concentration) of 4.5M was prepared.
  • Sample No. 4-3 is a positive electrode electrolyte having a manganese ion (divalent) concentration of 0.5M, a vanadium ion (tetravalent) concentration of 0.5M, a titanium ion (tetravalent) concentration of 0.5M, a bismuth ion (3 6 ml of an electrolytic solution having a composition of (valence) concentration of 0.05M and sulfate ion concentration (total concentration) of 4.575M was prepared.
  • the negative electrode electrolyte 12 ml of an electrolyte having a composition of titanium ion (tetravalent) concentration of 0.5M, manganese ion (divalent) concentration of 0.5M, and sulfate ion concentration (total concentration) of 4.0M was prepared.
  • Sample No. 4-4 has a manganese ion (divalent) concentration of 0.5M, a vanadium ion (trivalent) concentration of 0.25M, a vanadium ion (tetravalent) concentration of 0.25M, a titanium ion (4) as a positive electrode electrolyte.
  • An electrolytic solution having a composition of (valence) of 0.5M, bismuth ion (trivalent) concentration of 0.05M, and sulfate ion concentration (total concentration) of 4.575M was prepared.
  • the negative electrode electrolyte has a titanium ion (tetravalent) concentration of 0.5M, a manganese ion (divalent) concentration of 0.5M, a vanadium ion (trivalent) concentration of 0.25M, and a vanadium ion (tetravalent) concentration of 0.
  • An electrolyte solution having a composition of .25M and a sulfate ion concentration (total concentration) of 4.5M was prepared.
  • Sample No. 4-5 is a positive electrode electrolyte and a negative electrode electrolyte.
  • Manganese ion (divalent) concentration is 0.5M
  • vanadium ion (trivalent) concentration is 0.25M
  • vanadium ion (tetravalent) concentration is 0.25M
  • An electrolytic solution having a composition with a titanium ion (tetravalent) concentration of 0.5M, a bismuth ion (trivalent) concentration of 0.05M, and a sulfate ion concentration (total concentration) of 4.575M was prepared.
  • Sample No. In 4-5 6 ml of the electrolyte solution for each electrode was prepared.
  • sample No. 1 containing metal ions such as vanadium ions in addition to manganese ions in the positive electrode electrolyte. 4-1. 4-5 has a high current efficiency and a discharge capacity equivalent to or higher than that when the positive electrode electrolyte contains only manganese ions (the above-mentioned sample No. 3-100).
  • sample no. 4-2, no. 4-4, no. No. 4-5 has a discharge capacity of sample no. It can be seen that the discharge capacity of 3-100 is about 1.5 times higher.
  • One of the reasons for the improvement in current efficiency and discharge capacity is that of sample no. 4-1.
  • the metal ions in the electrolyte solution of both electrodes are matched (here, the concentration of each metal ion is also matched), thereby suppressing the above-mentioned reduction of the active material, the ease of correcting the liquid transfer, It is easier to obtain and use the effect of ease of manufacture.
  • Test Example 5 A positive electrode electrolyte containing manganese ions and titanium ions and a negative electrode electrolyte containing titanium ions were prepared, the RF battery system shown in FIG. 1 was constructed, and the battery characteristics were examined by charging and discharging.
  • sample no. 5-1 uses manganese sulfate, titanium sulfate, sulfuric acid, iron (II) sulfate as the positive electrode electrolyte, and has a titanium ion (tetravalent) concentration of 0.5M, a manganese ion (divalent) concentration of 0.5M, An electrolyte solution having a sulfate ion concentration (total concentration) of 4.5 M and an Fe ion (divalent) concentration of 0.5 M was prepared.
  • a small cell having an electrode reaction area of 9 cm 2 was prepared, and a charge / discharge cycle test was performed using the prepared electrolyte.
  • the charging / discharging conditions are a constant current of 630 mA (constant current of 70 mA / cm 2 current density), a charging side switching voltage (voltage to switch from charging to discharging) is 1.8 V, and a discharging side switching voltage (from discharging to charging).
  • the voltage to be switched) was 0 V, and the number of cycles was 3.
  • the discharge capacity (Ah / L) was examined.
  • Table 4 shows the average of the discharge capacity at the second cycle and the discharge capacity at the third cycle.
  • One of the reasons for the improved discharge capacity is that of sample no. 5-1 to No.
  • the redox flow battery of the present invention has a large capacity for the purpose of stabilizing fluctuations in power generation output, storing power when surplus generated power, load leveling, etc., for power generation of natural energy such as solar power generation and wind power generation. It can utilize suitably for this storage battery.
  • the redox flow battery of the present invention can be suitably used as a large-capacity storage battery that is provided in a general power plant and is used for the purpose of instantaneous voltage drop / power failure countermeasures and load leveling.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

析出物の析出を抑制できる上に、エネルギー密度が高いレドックスフロー電池を提供する。正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルに正極電解液及び負極電解液を供給して充放電を行うレドックスフロー電池であって、前記正極電解液は、マンガンイオンと、チタンイオンと、反応性金属イオンとを含有し、前記負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、及び亜鉛イオンから選択される少なくとも一種の金属イオンを含有し、前記反応性金属イオンは、バナジウムイオン、クロムイオン、鉄イオン、コバルトイオン、銅イオン、モリブデンイオン、ルテニウムイオン、パラジウムイオン、銀イオン、タングステンイオン、水銀イオン及びセリウムイオンから選択される少なくとも一種である。

Description

レドックスフロー電池
 本発明は、レドックスフロー電池に関するものである。特に、析出物の発生を抑制できる上に、エネルギー密度が高いレドックスフロー電池に関するものである。
 近年、電力不足の深刻化に伴って、世界規模での風力発電や太陽光発電などの自然エネルギーの急速導入や電力系統の安定化(例えば、周波数や電圧の維持など)が課題となっている。この対策技術の一つとして、大容量の蓄電池を設置して、出力変動の平滑化、余剰電力の貯蓄、負荷平準化などを図ることが注目されている。
 大容量の蓄電池の一つにレドックスフロー電池(以下、RF電池と呼ぶことがある)がある。RF電池は、(1)メガワット級(MW級)の大容量化が容易である、(2)長寿命である、(3)電池の充電状態が正確に監視可能である、などの特徴を有しており、電力系統の安定化用途の蓄電池として最適であると期待される。
 RF電池は、正極電極と負極電極との間に隔膜を介在させた電池セルに、正極電解液及び負極電解液をそれぞれ供給して充放電を行う。各極の電解液は、代表的には、酸化還元により価数が変化する金属イオンを活物質として含有する溶液が利用される。正極活物質に鉄(Fe)イオン、負極活物質にクロム(Cr)イオンを用いるFe-Cr系RF電池、両極の活物質にバナジウム(V)イオンを用いるV系RF電池が代表的である(特許文献1の明細書の段落0003)。
 特許文献1では、従来のV系RF電池よりも高い起電力が得られるRF電池として、正極活物質にマンガン(Mn)イオン、負極活物質にチタン(Ti)イオンなどを用いたMn-Ti系RF電池を開示している。また、特許文献1では、正極電解液にチタンイオンを合わせて含有することで、マンガン酸化物(MnO)といった析出物の発生を抑制でき、Mn2+/Mn3+の反応を安定して行えることを開示している。
特許第4835792号公報
 エネルギー密度がより高いレドックスフロー電池の開発が望まれている。
 特許文献1に開示されるMn-Ti系RF電池では、正極電解液にチタンイオンを含有することで、上述のように析出物の発生を抑制できる。しかし、正極電解液中のチタンイオンは、基本的に正極活物質として機能せず、充放電に寄与しない。そのため、正極電解液中の金属イオンの総濃度を一定とする場合、チタンイオンの含有によって正極電解液中の活物質の割合が相対的に低下して、エネルギー密度が低くなる。また、例えば、活物質の割合が少ない電解液を用いて長時間容量のレドックスフロー電池として使用するには、電解液を大量に用いる必要がある。すると、タンクの容量の増大、タンクの増大に起因するRF電池システム全体の大型化(設置スペースの大型化)、電解液コストの増大などを招く。
 そこで、本発明の目的の一つは、析出物の発生を抑制できる上に、エネルギー密度が高いレドックスフロー電池を提供することにある。
 本発明の一形態であるレドックスフロー電池は、正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルに正極電解液及び負極電解液を供給して充放電を行う。前記正極電解液は、マンガンイオンと、チタンイオンと、反応性金属イオンとを含有する。前記負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、及び亜鉛イオンから選択される少なくとも一種の金属イオンを含有する。前記反応性金属イオンは、バナジウムイオン、クロムイオン、鉄イオン、コバルトイオン、銅イオン、モリブデンイオン、ルテニウムイオン、パラジウムイオン、銀イオン、タングステンイオン、水銀イオン及びセリウムイオンから選択される少なくとも一種である。
 本発明のレドックスフロー電池は、析出物の発生を抑制できる上に、エネルギー密度が高い。
実施形態のレドックスフロー電池を備える電池システムの動作原理を示す説明図である。
 [本発明の実施の形態の説明]
 本発明者らは、正極活物質にマンガンイオンを用いるレドックスフロー電池について、エネルギー密度の向上を図るために、活物質として機能するイオン種を複数にすることを検討した。その結果、特定の金属イオンは、正極電解液中で活物質として機能すると共に、マンガン酸化物といった析出物の発生を抑制できるという驚くべき知見を得た。この知見に基づき、正極電解液に、正極活物質であるマンガンイオンに加えて、活物質として機能すると共に析出物の抑制効果を備える金属イオンを別途含む構成を提案する。最初に本発明の実施形態の内容を列記して説明する。
 (1) 実施形態に係るレドックスフロー電池は、正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルに正極電解液及び負極電解液を供給して充放電を行う。上記正極電解液は、マンガンイオンと、チタンイオンと、反応性金属イオンとを含有する。上記負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、及び亜鉛(Zn)イオンから選択される少なくとも一種の金属イオンを含有する。上記反応性金属イオンは、バナジウムイオン、クロムイオン、鉄(Fe)イオン、コバルト(Co)イオン、銅(Cu)イオン、モリブデン(Mo)イオン、ルテニウム(Ru)イオン、パラジウム(Pd)イオン、銀(Ag)イオン、タングステン(W)イオン、水銀(Hg)イオン及びセリウム(Ce)イオンから選択される少なくとも一種である。上記反応性金属イオンとは、正極活物質としての機能、及び析出物の析出を抑制する機能を有するものをいう。
 実施形態のRF電池は、正極電解液に含有するマンガンイオンを正極活物質とすることから、(1)従来のV系RF電池などと比較して起電力を高くすることができる、(2)マンガンイオンが水溶性の金属イオンであることから、電解液を水溶液とすることができ、製造性に優れる、(3)マンガンイオンは比較的安価であり、資源供給の点から好ましい、といった効果を奏する。かつ、実施形態のRF電池は、正極電解液に含有する特定の金属イオン(反応性金属イオン)も正極活物質として機能することから、電解液中の活物質の割合を高められる。そのため、実施形態のRF電池は、マンガンイオン及びチタンイオンを含みかつ上記反応性金属イオンを含まない正極電解液を備えるRF電池に比較して、エネルギー密度が高い。また、実施形態のRF電池は、チタンイオンに加えて、上記反応性金属イオンによっても、析出物の発生を抑制できるため、充電状態を高めた場合でも、析出物に起因するセル抵抗の増大を抑制でき、セル抵抗が低い。このように実施形態のRF電池は、優れた電池特性を有する。更に、実施形態のRF電池は、タンクの小型化、設置スペースの小型化、電解液コストの低減などを図ることができる。
 (2) 実施形態のRF電池の一例として、上記正極電解液が更に添加金属イオンを含有する形態が挙げられる。上記添加金属イオンは、アルミニウム(Al)イオン、カドミウム(Cd)イオン、インジウム(In)イオン、錫(Sn)イオン、アンチモン(Sb)イオン、イリジウム(Ir)イオン、金(Au)イオン、鉛(Pb)イオン、ビスマス(Bi)イオン及びマグネシウム(Mg)イオンから選択される少なくとも一種である。上記添加金属イオンとは、実質的に活物質として機能せず、析出物の析出を抑制する機能を有するものをいう。
 本発明者らが検討した結果、上述の特定の金属イオン(添加金属イオン)は、正極電解液にマンガンイオンと共に存在することで、マンガン酸化物といった析出物の発生を抑制することができる、との知見を得た。特に、添加金属イオンは、その含有量が極僅かであっても、析出物の発生の抑制効果が得られる、との知見を得た。上記形態は、チタンイオン及び反応性金属イオンに加えて、添加金属イオンを含有することで、析出物の発生をより効果的に抑制することができる。また、上記形態は、チタンイオンや添加金属イオンの含有量を少なくすることで、電解液中における活物質の割合の低下を抑制でき、高いエネルギー密度を有することができる。
 (3) 実施形態のRF電池の一例として、上記正極電解液における上記反応性金属イオンの濃度(複数の場合には合計濃度)が0.001M以上5M以下である形態が挙げられる。濃度の単位として示すMとは、体積モル濃度、即ちmol/L(モル/リットル)を意味する。以下、濃度について同様である。
 上記形態は、反応性金属イオンを上述の特定の範囲で含有することで、(1)反応性金属イオンを活物質として良好に利用できて高いエネルギー密度を有することができる、(2)析出物の発生を抑制できる、(3)電解液を酸の水溶液とする場合でも良好に溶解でき、電解液の製造性に優れる、という効果を奏する。
 (4) 実施形態のRF電池の一例として、上述の添加金属イオンを含有する場合、上記正極電解液における上記添加金属イオンの濃度(複数の場合には合計濃度)が0.001M以上1M以下である形態が挙げられる。
 上記形態は、添加金属イオンを上述の特定の範囲で含有することで、析出物の発生を効果的に抑制できる。
 (5) 実施形態のRF電池の一例として、上記正極電解液における上記マンガンイオンの濃度、及び上記負極電解液における上記金属イオンの濃度の少なくとも一方が0.3M以上5M以下である形態が挙げられる。負極電解液に含む上記金属イオンが複数種の場合、合計濃度とする。
 上記形態は、各極の活物質として機能する金属イオンを上述の特定の範囲で含有することで、(i)価数変化反応を行う金属元素を十分に含み、高いエネルギー密度を有することができる、(ii)電解液を酸の水溶液とする場合でも良好に溶解でき、電解液の製造性に優れる、という効果を奏する。
 (6) 実施形態のRF電池の一例として、上記負極電解液が上記金属イオンとしてチタンイオンを含有し、上記正極電解液における上記マンガンイオンの濃度、及び上記負極電解液における上記チタンイオンの濃度の少なくとも一方が0.3M以上5M以下である形態が挙げられる。
 上記形態は、上記マンガンイオンの濃度や上記チタンイオンの濃度が特定の範囲を満たすことで、エネルギー密度が高いMn-Ti系RF電池とすることができ、更に上記形態(5)で述べた(ii)の効果も奏する。
 (7) 実施形態のRF電池の一例として、上記正極電解液における上記チタンイオンの濃度が5M以下である形態が挙げられる。
 上記形態は、正極電解液中のチタンイオンによって析出物の発生を抑制できると共に、このチタンイオンの濃度が上述の特定の範囲であることで、電解液を酸の水溶液とする場合でも良好に溶解でき、電解液の製造性に優れる。
 (8) 実施形態のRF電池の一例として、上記反応性金属イオンは、下記(A)~(L)の少なくとも1つを満たす形態が挙げられる。
 (A)上記バナジウムイオンが2価のバナジウムイオン、3価のバナジウムイオン、4価のバナジウムイオン、及び5価のバナジウムイオンの少なくとも一種である
 (B)上記クロムイオンが2価のクロムイオン、3価のクロムイオン、4価のクロムイオン、及び6価のクロムイオンの少なくとも一種である
 (C)上記鉄イオンが2価の鉄イオン、及び3価の鉄イオンの少なくとも一方である
 (D)上記コバルトイオンが2価のコバルトイオン、及び3価のコバルトイオンの少なくとも一方である
 (E)上記銅イオンが1価の銅イオン、及び2価の銅イオンの少なくとも一方である
 (F)上記モリブデンイオンが4価のモリブデンイオン、5価のモリブデンイオン、及び6価のモリブデンイオンの少なくとも一種である
 (G)上記ルテニウムイオンが2価のルテニウムイオン、3価のルテニウムイオン、及び4価のルテニウムイオンの少なくとも一種である
 (H)上記パラジウムイオンが2価のパラジウムイオン、及び4価のパラジウムイオンの少なくとも一方である
 (I)上記銀イオンが1価の銀イオン、及び2価の銀イオンの少なくとも一方である
 (J)上記タングステンイオンが4価のタングステンイオン、5価のタングステンイオン、及び6価のタングステンイオンの少なくとも一種である
 (K)上記水銀イオンが1価の水銀イオン、及び2価の水銀イオンの少なくとも一方である
 (L)上記セリウムイオンが3価のセリウムイオン、及び4価のセリウムイオンの少なくとも一方である
 列挙した各価数の金属イオンは、正極活物質として機能すると共に、析出物の抑制効果を奏することから、上記形態は、エネルギー密度が高い上に、析出物の発生を抑制できる。
 (9) 実施形態のRF電池の一例として、上記負極電解液がチタンイオンと、更にマンガンイオンとを含む形態が挙げられる。
 上記形態は、正極電解液及び負極電解液の双方がマンガンイオンとチタンイオンとを含む。つまり、上記形態は、両極の電解液中に存在する複数のイオン種が重複する。そのため、上記形態は、(i)金属イオンが対極に移動して、各極で本来反応する金属イオン(活物質)が相対的に減少することによる電池容量の減少を回避し易い、(ii)充放電に伴って経時的に液移り(一方の極の電解液が他方の極に移動する現象)が生じて両極の電解液の液量にばらつきが生じた場合でも是正し易い、(iii)電解液の製造性に優れる、といった効果を奏する。従って、上記形態は、実用的であり、利用し易いと期待される。
 (10) 実施形態のRF電池の一例として、上記負極電解液は、チタンイオンと、更にマンガンイオンと、上記反応性金属イオンとを含む形態が挙げられる。
 上記形態は、正極電解液及び負極電解液の双方がマンガンイオン、チタンイオン、及び反応性金属イオンを含む。つまり、上記形態は、両極の電解液のいずれもが複数のイオン種を含み、かつ両極の電解液中に存在する複数のイオン種が重複し、代表的には両極の電解液中に存在する全てのイオン種が一致する。そのため、上記形態は、(i)上述の経時的な活物質の低減による電池容量の減少をより回避し易い、(ii)充放電に伴って経時的に液移りが生じて両極の電解液の液量にばらつきが生じた場合でも容易に是正できる、(iii)電解液の製造性により優れる、といった効果を奏する。
 (11) 実施形態のRF電池の一例として、正極電解液が上述の添加金属イオンを含む場合に、上記負極電解液が、チタンイオンと、更にマンガンイオンと、上記反応性金属イオンと、上記添加金属イオンとを含む形態が挙げられる。
 上記形態は、正極電解液及び負極電解液の双方にマンガンイオン、チタンイオン、反応性金属イオン及び添加金属イオンを含む。つまり、上記形態は、両極の電解液のいずれもが複数のイオン種を含み、かつ両極の電解液中に存在する複数のイオン種が重複し、代表的には両極の電解液中に存在する全てのイオン種が一致する。そのため、上記形態は、上述の形態(10)と同様に、(i)上述の経時的な活物質の低減による電池容量の減少をより回避し易い、(ii)充放電に伴って経時的に液移りが生じて両極の電解液の液量にばらつきが生じた場合でも容易に是正できる、(iii)電解液の製造性により優れる、といった効果を奏する。
 (12) 実施形態のRF電池の一例として、負極電解液がマンガンイオンを含む場合に、上記負極電解液におけるマンガンイオンの濃度が0.3M以上5M以下である形態が挙げられる。
 上記形態は、上述の形態(9)~(11)と同様の効果を奏する。具体的には、上記形態は、少なくとも経時的な正極活物質の低減による電池容量の減少を抑制できる。更に、上記形態は、負極電解液中のマンガンイオンの濃度が上述の特定の範囲であることで、電解液を酸の水溶液とする場合でも良好に溶解でき、電解液の製造性に優れる。
 (13) 実施形態のRF電池の一例として、正極電解液が上記添加金属イオンを含む場合に、上記添加金属イオンが下記(a)~(j)の少なくとも1つを満たす形態が挙げられる。
(a)上記アルミニウムイオンが1価のアルミニウムイオン、2価のアルミニウムイオン、及び3価のアルミニウムイオンの少なくとも一種である
(b)上記カドミウムイオンが1価のカドミウムイオン、及び2価のカドミウムイオンの少なくとも一方である
(c)上記インジウムイオンが1価のインジウムイオン、2価のインジウムイオン、及び3価のインジウムイオンの少なくとも一種である
(d)上記錫イオンが2価の錫イオン、及び4価の錫イオンの少なくとも一方である
(e)上記アンチモンイオンが3価のアンチモンイオン、及び5価のアンチモンイオンの少なくとも一方である
(f)上記イリジウムイオンが1価のイリジウムイオン、2価のイリジウムイオン、3価のイリジウムイオン、4価のイリジウムイオン、5価のイリジウムイオン、及び6価のイリジウムイオンの少なくとも一種である
(g)上記金イオンが1価の金イオン、2価の金イオン、3価の金イオン、4価の金イオン、及び5価の金イオンの少なくとも一種である
(h)上記鉛イオンが2価の鉛イオン、及び4価の鉛イオンの少なくとも一方である
(i)上記ビスマスイオンが3価のビスマスイオン、及び5価のビスマスイオンの少なくとも一方である
(j)上記マグネシウムイオンが1価のマグネシウムイオン、及び2価のマグネシウムイオンの少なくとも一方である
 列挙した各価数の金属イオンは、析出物の抑制効果を奏することから、上記形態は、反応性金属イオンに加えて、上記各価数の添加金属イオンを含有することで、析出物の発生をより効果的に抑制することができる。
 (14) 実施形態のRF電池の一例として、上記マンガンイオンが2価のマンガンイオン、及び3価のマンガンイオンの少なくとも一方であり、上記チタンイオンが3価のチタンイオン、及び4価のチタンイオンの少なくとも一方である形態が挙げられる。
 列挙した各価数のマンガンイオンは、正極電解液中では正極活物質として機能し、特に4価のチタンイオンは、正極電解液中では析出物の抑制効果を奏する。列挙した各価数のチタンイオンが負極電解液に含有される場合には、このチタンイオンは負極活物質として機能することから、上記形態は、高い起電力が得られるMn-Ti系RF電池を構築することができる。列挙した各価数のマンガンイオンが負極電解液にも含有される場合には、上述の形態(9)~(11)と同様の効果、即ち少なくとも経時的な正極活物質の低減による電池容量の減少を抑制できる。
 [本発明の実施形態の詳細]
 以下、本発明の実施形態に係るレドックスフロー電池を詳細に説明する。なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、後述の試験例において、正極電解液中のマンガンイオンの濃度・チタンイオンの濃度、負極電解液中の金属イオン(負極活物質)の種類・濃度、各極の電解液の酸の種類・酸濃度、反応性金属イオン・添加金属イオンの種類・濃度、電解液の量、電極の材質・大きさ、隔膜の材質などを適宜変更することができる。
 まず、図1を参照して、実施形態に係るレドックスフロー電池を備える電池システムの概要を説明し、その後、電解液を詳細に説明する。図1のタンク内に示す元素は、電解液中に含むイオン種の一例を示す。図1において、実線矢印は、充電、破線矢印は、放電を意味する。
 (全体構成)
 実施形態のレドックスフロー電池(RF電池)1は、代表的には、交流/直流変換器200や変電設備210などを介して、発電部300(例えば、太陽光発電機、風力発電機、その他、一般の発電所など)と電力系統や需要家(電力系統/需要家400)とに接続され、発電部300を電力供給源として充電を行い、電力系統/需要家400を電力提供対象として放電を行う。充放電を行うにあたり、RF電池1と、RF電池1に電解液を循環させる循環機構(タンク、導管、ポンプ)とを備える以下の電池システムが構築される。
 RF電池1は、正極電極104を内蔵する正極セル102と、負極電極105を内蔵する負極セル103と、両セル102,103を分離すると共に所定のイオンを透過する隔膜101とを備える電池セル100を主要構成部材とする。正極セル102には、正極電解液用のタンク106が導管108,110を介して接続される。負極セル103には、負極電解液用のタンク107が導管109,111を介して接続される。導管108,109には、各極の電解液を循環させるためのポンプ112,113を備える。RF電池1は、導管108~111、ポンプ112,113を利用して、正極セル102(正極電極104)、負極セル103(負極電極105)にそれぞれ、タンク106の正極電解液、タンク107の負極電解液を循環供給して、各極の電解液中の活物質となる金属イオンの価数変化反応に伴って充放電を行う。
 RF電池1は、代表的には、複数の電池セル100を備えるセルスタックと呼ばれる形態が利用される。ここで、上記セル102,103は、一面に正極電極104、他面に負極電極105が配置される双極板(図示せず)と、電解液を供給する給液孔及び電解液を排出する排液孔を有し、かつ上記双極板の外周に形成される枠体(図示せず)とを備えるセルフレームを用いた構成が代表的である。複数のセルフレームを積層することで、上記給液孔及び上記排液孔は電解液の流路を構成し、この流路は導管108~111に接続される。セルスタックは、セルフレーム、正極電極104、隔膜101、負極電極105、セルフレーム、…と順に繰り返し積層されて構成される。RF電池システムの基本構成は、公知の構成を適宜利用することができる。
 実施形態のRF電池1では、上記正極電解液にマンガンイオンとチタンイオンとを含有し、上記負極電解液にチタンイオン、バナジウムイオン、クロムイオン、及び亜鉛イオンから選択される少なくとも一種の金属イオンを含有する。そして、実施形態のRF電池1では、正極電解液に更に複数の機能を有する特定の金属イオンとして反応性金属イオンを含有する。
 (電解液)
 ・正極電解液
 ・・マンガンイオン
 実施形態のRF電池1に備える正極電解液は、正極活物質としてマンガンイオンを含有する。マンガンイオンは、正極電解液中において少なくとも一つの価数のイオンが存在する。例えば、2価のマンガンイオン、3価のマンガンイオンが挙げられる。更に、4価のマンガンを含有する場合がある。この4価のマンガンは、MnOと考えられる。但し、このMnOは、固体の析出物ではなく、電解液中に溶解したような安定な状態で存在し、放電時、2電子反応(Mn4++2e→Mn2+)によってMn2+に還元されて、即ち放電して、活物質として作用し、繰り返し使用できることで、電池容量の増加に寄与することがある。従って、正極電解液中に、若干量(マンガンイオンの総量(mol)に対して10%程度以下)の4価のマンガンの存在を許容する。
 正極電解液中のマンガンイオンの濃度(以下、Mn含有量と呼ぶ)は、例えば、0.3M以上5M以下が挙げられる。0.3M以上であると、大容量の蓄電池として十分なエネルギー密度(例えば、10kWh/m程度)を有することができる。Mn含有量は、高いほどエネルギー密度が高められることから、0.5M以上、更に1.0M以上とすることができる。実施形態のRF電池1では、正極電解液中に後述するチタンイオン及び反応性金属イオンを合わせて含有することで、マンガンイオンの濃度を高めても、析出物の発生を良好に抑制でき、マンガンイオンを安定して存在させられる。但し、溶媒に対する溶解度を考慮すると、Mn含有量は、5M以下、更に2M以下が利用し易く、電解液の製造性に優れる。
 ・・チタンイオン
 実施形態のRF電池1に備える正極電解液は、更に、チタンイオンを含有する。このチタンイオンは、マンガン酸化物といった析出物の発生の抑制剤として機能し、正極活物質として実質的に機能しない。チタンイオンは、代表的には正極電解液中において4価のチタンイオンとして存在する。4価のチタンイオンは、TiO2+などを含む。正極電解液中のチタンイオンの濃度(以下、Ti含有量と呼ぶ)は、例えば、5M以下(0を除く)が挙げられる。5M以下であれば、例えば、電解液を酸の水溶液とする場合でも良好に溶解でき、電解液の製造性に優れる。
 ・・反応性金属イオン
 実施形態のRF電池1に備える正極電解液は、更に、反応性金属イオンを含有する。この反応性金属イオンは、正極活物質として機能すると共に、マンガン酸化物といった析出物の発生の抑制剤としても機能する。即ち、実施形態のRF電池1では、析出物の発生の抑制剤として、少なくとも2種類の金属イオン(チタンイオン、反応性金属イオン)を含む。具体的な反応性金属イオンは、バナジウムイオン、クロムイオン、鉄イオン、コバルトイオン、銅イオン、モリブデンイオン、ルテニウムイオン、パラジウムイオン、銀イオン、タングステンイオン、水銀イオン及びセリウムイオンから選択される少なくとも一種が挙げられる。各反応性金属イオンはそれぞれ、正極電解液中において少なくとも一つの価数のイオンが存在する。例えば、(A)バナジウムイオンは、2価のバナジウムイオン、3価のバナジウムイオン、4価のバナジウムイオン、5価のバナジウムイオンが挙げられる。(B)クロムイオンは、2価のクロムイオン、3価のクロムイオン、4価のクロムイオン、6価のクロムイオンが挙げられる。(C)鉄イオンは、2価の鉄イオン、3価の鉄イオンが挙げられる。(D)コバルトイオンは、2価のコバルトイオン、3価のコバルトイオンが挙げられる。(E)銅イオンは、1価の銅イオン、2価の銅イオンが挙げられる。(F)モリブデンイオンは、4価のモリブデンイオン、5価のモリブデンイオン、6価のモリブデンイオンが挙げられる。(G)ルテニウムイオンは、2価のルテニウムイオン、3価のルテニウムイオン、4価のルテニウムイオンが挙げられる。(H)パラジウムイオンは、2価のパラジウムイオン、4価のパラジウムイオンが挙げられる。(I)銀イオンは、1価の銀イオン、2価の銀イオンが挙げられる。(J)タングステンイオンは、4価のタングステンイオン、5価のタングステンイオン、6価のタングステンイオンが挙げられる。(K)水銀イオンは、1価の水銀イオン、2価の水銀イオンが挙げられる。(L)セリウムイオンは、3価のセリウムイオン、及び4価のセリウムイオンが挙げられる。列記した以外の価数も有り得る。また、同一元素のイオンであって、価数が異なるイオンを含む場合がある。更に、これらの元素がイオンに加えて、金属(固体)として存在する場合を許容する。
 反応性金属イオンとして列挙した各金属イオンの標準酸化還元電位(電位)は、マンガンイオンの電位よりも卑な電位又は貴な電位である。そのため、これらの金属イオンは、正極電解液中にマンガンイオンと合わせて含まれることで、概ね電位に応じて、順次、価数変化反応を行って、正極活物質として機能する。上記列挙した各金属イオンのうち、単一種の反応性金属イオンを含有した形態、複数種の反応性金属イオンを含有した形態のいずれも利用できる。特に、反応性金属イオンとしてバナジウムイオンを含む場合には、バナジウムイオンが従来のV系RF電池の活物質としての実績があることから、電池の信頼性を高められる。
 正極電解液中の反応性金属イオンの濃度(複数種の反応性金属イオンを含む場合には合計濃度)は、例えば、0.001M以上5M以下が挙げられる。0.001M以上であると、反応性金属イオンをマンガンイオンと共に正極活物質として有効に利用でき、正極電解液中における正極活物質の割合を高められる。そのため、エネルギー密度が高いRF電池1とすることができる。また、0.001M以上であると、析出物の発生を抑制できる。反応性金属イオンの濃度は、高いほどエネルギー密度を高められ、かつ析出物を抑制し易いことから、更に0.1M以上とすることができる。但し、溶媒に対する溶解度を考慮すると、正極電解液中の反応性金属イオンの濃度は5M以下、更に2M以下が利用し易く、電解液の製造性に優れる。ここで、電解液を酸の水溶液とする場合、後述するように、酸の濃度をある程度高めることで、析出物の発生を抑制できる。しかし、酸の濃度を高めると、金属イオンの溶解度の低下を招く。実施形態のRF電池1は、チタンイオンと反応性金属イオンとの双方を含有することで析出物の発生を抑制できることから、酸の濃度を過度に高める必要がなく、金属イオンの濃度を実用的な範囲とすることができる。マンガンイオンの濃度と反応性金属イオンの濃度とが同じ形態、異なる形態のいずれも利用できる。
 ・・添加金属イオン
 実施形態のRF電池1に備える正極電解液は、チタンイオンや反応性金属イオンに加えて、更に、マンガン酸化物といった析出物の発生に対して抑制効果があるイオンを含有することができる。このようなイオンとして、アルミニウムイオン、カドミウムイオン、インジウムイオン、錫イオン、アンチモンイオン、イリジウムイオン、金イオン、鉛イオン、ビスマスイオン及びマグネシウムイオンから選択される少なくとも一種が挙げられる。各金属イオンはそれぞれ、正極電解液中において少なくとも一つの価数のイオンが存在する。例えば、(a)アルミニウムイオンは、1価のアルミニウムイオン、2価のアルミニウムイオン、3価のアルミニウムイオンが挙げられる。(b)カドミウムイオンは、1価のカドミウムイオン、2価のカドミウムイオンが挙げられる。(c)インジウムイオンは、1価のインジウムイオン、2価のインジウムイオン、3価のインジウムイオンが挙げられる。(d)錫イオンは、2価の錫イオン、4価の錫イオンが挙げられる。(e)アンチモンイオンは、3価のアンチモンイオン、5価のアンチモンイオンが挙げられる。(f)イリジウムイオンは、1価のイリジウムイオン、2価のイリジウムイオン、3価のイリジウムイオン、4価のイリジウムイオン、5価のイリジウムイオン、6価のイリジウムイオンが挙げられる。(g)金イオンは、1価の金イオン、2価の金イオン、3価の金イオン、4価の金イオン、5価の金イオンが挙げられる。(h)鉛イオンは、2価の鉛イオン、4価の鉛イオンが挙げられる。(i)ビスマスイオンは、3価のビスマスイオン、5価のビスマスイオンが挙げられる。(j)マグネシウムイオンは、1価のマグネシウムイオン、2価のマグネシウムイオンが挙げられる。列記した以外の価数も有り得る。また、同一元素のイオンであって、価数が異なるイオンを含む場合がある。更に、これらの元素がイオンに加えて、金属(固体)として存在する場合を許容する。
 その他、リチウム(Li)イオン、ベリリウム(Be)イオン、ナトリウム(Na)イオン、カリウム(K)イオン、カルシウム(Ca)イオン、スカンジウム(Sc)イオン、ニッケル(Ni)イオン、亜鉛(Zn)イオン、ガリウム(Ga)イオン、ゲルマニウム(Ge)イオン、ルビジウム(Rb)イオン、ストロンチウム(Sr)イオン、イットリウム(Y)イオン、ジルコニウム(Zr)イオン、ニオブ(Nb)イオン、テクネチウム(Tc)イオン、ロジウム(Rh)イオン、セシウム(Cs)イオン、バリウム(Ba)イオン、ランタノイド元素(但しセリウムを除く)のイオン、ハフニウム(Hf)イオン、タンタル(Ta)イオン、レニウム(Re)イオン、オスミウム(Os)イオン、白金(Pt)イオン、タリウム(Tl)イオン、ポロニウム(Po)イオン、フランシウム(Fr)イオン、ラジウム(Ra)イオン、アクチニウム(Ac)イオン、トリウム(Th)イオン、プロトアクチニウム(Pa)イオン、ウラン(U)イオンは、マンガン酸化物といった析出物の発生に対して抑制効果があると期待される。従って、上記に列挙した少なくとも一つの金属イオンも、添加金属イオンとしての利用が期待できる。
 添加金属イオンとして列挙した各金属イオンは、微量であっても、上記析出物の発生の抑制に効果があることから、電解液における添加金属イオンの含有に伴う活物質の割合の低下を抑制し易い。添加金属イオンを微量とすることで、正極電解液におけるチタンイオン及び添加金属イオンの含有に伴う活物質の割合の低下を抑制でき、エネルギー密度を高め易いと期待される。上記列挙した各金属イオンは、主として、上記析出物の発生の抑制剤として機能し、実質的に活物質として機能しない。但し、イオン種によっては、活物質として機能する場合がある(例えば、鉛イオンなど)。添加金属イオンが正極活物質としても機能する場合、エネルギー密度を更に高められる。上記列挙した各金属イオンのうち、単一種の添加金属イオンを含有した形態、複数種の添加金属イオンを含有した形態のいずれも利用できる。
 正極電解液中の添加金属イオンの濃度(複数種の添加金属イオンを含む場合には合計濃度)は、例えば、0.001M以上1M以下が挙げられる。0.001M以上であると、チタンイオン及び反応性金属イオンと共に、析出物の発生を効果的に抑制できる。添加金属イオンの濃度は、高いほど析出物の抑制効果が高いと期待されることから、0.005M以上、更に0.01M以上とすることができる。但し、添加金属イオンの濃度が高過ぎると、電解液中における活物質の割合の低下を招き、ひいてはエネルギー密度の低下を招く。従って、添加金属イオンの濃度は、0.8M以下、更に0.5M以下が好ましい。
 ・負極電解液
 実施形態のRF電池1に備える負極電解液は、負極活物質としてチタンイオン、バナジウムイオン、クロムイオン、及び亜鉛イオンから選択される少なくとも一種の金属イオンを含有する。これらの金属イオンはいずれも、正極活物質のマンガンイオンと組み合わせることで、高い起電力を有するレドックス対を構成することができる。負極活物質とする各金属イオンはそれぞれ、負極電解液中において少なくとも一つの価数のイオンが存在する。同一元素のイオンであって、価数が異なるイオンを含む場合がある。また、これらの元素がイオンに加えて、金属(固体)として存在する場合を許容する。列挙した各金属イオンのうち、単一種の金属イオンを含有した形態、複数種の金属イオンを含有した形態のいずれも利用できる。
 特に、負極活物質としてチタンイオンを含むMn-Ti系RF電池では、1.4V程度の起電力が得られる。また、負極活物質としてチタンイオンを含む場合、両極の電解液がチタンイオンを含む。この形態は、充放電の繰り返しによって、経時的に各極のチタンイオンが移動することがあっても、負極電解液から正極電解液に混入されたチタンイオンは、正極電解液中で析出物の発生の抑制剤として機能することができる。正極電解液から負極電解液に混入されたチタンイオンは、負極活物質として機能することができ、負極活物質の低減による電池容量の低下を抑制し易い。負極電解液中のチタンイオンは、少なくとも一つの価数のイオンが存在する。例えば、3価のチタンイオン、4価のチタンイオンが挙げられる。
 特に、負極活物質としてバナジウムイオンを含む形態とすると、バナジウムイオンは、従来のV系RF電池の負極活物質としての実績があることから、電池の信頼性を高められる。
 負極活物質として複数種の金属イオンを含有する場合、各金属イオンの標準酸化還元電位(電位)を考慮した組み合わせとする、即ち、貴な電位のものと卑な電位のものとの組み合わせとすると、正極電解液と同様に、負極電解液でも金属イオンの利用率を高められ、エネルギー密度を向上できる。
 負極活物質として複数種の金属イオンを含有する具体例として、例えば、チタンイオンとバナジウムイオンとを含む形態が挙げられる。この形態は、上述のように起電力が高く、信頼性の高いRF電池1とすることができる。特に、正極電解液が反応性金属イオンとしてバナジウムイオンを含み、負極電解液がチタンイオンとバナジウムイオンとを含む形態とすることができる。この形態は、両極の電解液がチタンイオンとバナジウムイオンとを含み、両極の電解液中に存在する複数のイオン種が重複することから、後述する(i)~(iv)の効果を奏することができる。この形態の各極の電解液中のチタンイオンの濃度は例えば0.3M以上5M以下程度、バナジウムイオンの濃度は例えば0.3M以上5M以下程度が挙げられる。この形態では、正極電解液が正極活物質としてマンガンイオンとバナジウムイオンとの複数種の金属イオンを含み、負極電解液が負極活物質としてチタンイオンとバナジウムイオンとの複数種の金属イオンを含むことから、両極の電解液中における活物質の割合をそれぞれ高められる。その結果、エネルギー密度がより高いRF電池1とすることができる。
 負極活物質として列挙した各金属イオンの濃度(複数種の金属イオンを含む場合には合計濃度)は、例えば、0.3M以上5M以下が挙げられる。0.3M以上であると、大容量の蓄電池として十分なエネルギー密度(例えば、10kWh/m程度)を有することができる。負極電解液中の上記金属イオンの濃度は、高いほどエネルギー密度が高められることから、0.5M以上、更に1.0M以上とすることができる。但し、溶媒に対する溶解度を考慮すると、負極電解液中の上記金属イオンの濃度は、5M以下、更に2M以下が利用し易く、電解液の製造性に優れる。特に、負極活物質としてチタンイオンを0.3M以上5M以下の範囲で含む場合には、上述のように高いエネルギー密度を有するMn-Ti系RF電池とすることができる。正極電解液中において主として正極活物質として機能するマンガンイオンの濃度と反応性金属イオンの濃度との合計濃度と、負極電解液中において主として負極活物質として機能する金属イオンの濃度とが同じ形態、異なる形態のいずれも利用できる。
 負極電解液は、上述の列挙した添加金属イオンのイオン種のうち、少なくとも一つを含有することができる。即ち、正極電解液及び負極電解液の少なくとも一方が、添加金属イオンを含有する形態とすることができる。負極電解液が少なくとも一種の添加金属イオンを含有する場合、(1)負極活物質として機能する金属イオンの電池反応性を高められる(反応速度を速められる)、(2)イオン種によっては活物質として機能することがある(錫イオン、亜鉛イオンなど)、(3)水の分解に伴う水素の発生を抑制することができる、といった効果が期待される。
 その他、負極電解液は、負極活物質となるチタンイオンなどの上述の金属イオンを含むと共に、以下の形態とすることができる。
 (a) マンガンイオンを含む形態。
 (b) 正極電解液に含まれる反応性金属イオンと同じイオン種のものを少なくとも一つ含む形態。
 (c) 正極電解液が上述の列挙した添加金属イオンのイオン種のうちの少なくとも一つを含む場合に、同じイオン種のものを少なくとも一つ含む形態。
 (d) 上記形態(a)~形態(c)のうちの二つを満たす形態(例えば、形態(a)+形態(b))。
 (e) 上記形態(a)~形態(c)の全てを満たす形態。
 上述の形態(a)~形態(e)はいずれも、正極電解液及び負極電解液に含まれる少なくとも一つのイオン種が重複する。そのため、これらの形態は、(i)経時的な活物質の低減による電池容量の減少を回避し易い、(ii)液移りによる両極の電解液の液量のばらつきを是正し易い、(iii)対極への金属イオンの移動に起因する濃度の変化を防止し易い、(iv)電解液を製造し易い、といった効果を奏する。例えば、形態(a)では、少なくとも正極活物質の経時的な低減を抑制し易い。両極の電解液中で重複する金属イオンの濃度は、両極で異なる形態、両極で等しい形態のいずれも利用できる。両極の電解液中で重複する金属イオンの価数は、両極で異なる形態、両極で等しい形態のいずれも利用できる。
 特に、形態(a)~形態(e)において負極活物質としてチタンイオンを含む形態では、正極電解液及び負極電解液のそれぞれに含まれる複数のイオン種が重複することから、好ましくは全てのイオン種が一致することから、上記(i)~(iv)の効果をより得易い。より具体的な形態は、負極電解液がチタンイオンとマンガンイオンとを含む形態(a)、負極電解液がチタンイオンとマンガンイオンと正極電解液に含まれる同じイオン種の反応性金属イオンとを含む形態(d)(形態(a)+形態(b))、負極電解液がチタンイオンとマンガンイオンと正極電解液に含まれる同じイオン種の反応性金属イオン及び添加金属イオンとを含む形態(e)などが挙げられる。両極の電解液中に存在するイオン種が重複する形態では、重複するイオン種の濃度が両極で等しいと、上述の(i)~(iv)の効果を更に得易い。両極の電解液中に存在する全てのイオン種が一致する場合に各イオン種のイオン濃度も一致すると、一つの電解液を両極の電解液に利用でき、電解液の製造性に更に優れる。負極電解液がマンガンイオンを含有する場合、負極電解液中のマンガンイオンの濃度は、例えば0.3M以上5M以下が挙げられる。この濃度範囲であれば、上述のように溶解し易く、電解液の製造性にも優れる。負極電解液がマンガンイオンを含有する場合、例えば、2価のマンガンイオン、3価のマンガンイオンが挙げられる。なお、両極の電解液に反応性金属イオンや添加金属イオンを含む場合に、各極の少なくとも一つのイオン種が異なるイオンを含む形態とすることができる。
 両極の電解液がチタンイオンを含有する場合、負極電解液中のチタンイオンの濃度に応じて、正極電解液中のTi含有量を調整することができる。例えば、正極電解液中のTi含有量を0.3M以上、0.5M以上、更に1M以上とすることができる。但し、溶媒に対する溶解度を考慮すると、正極電解液中のTi含有量は、5M以下、更に2M以下が利用し易い。この形態の各極の電解液中のチタンイオンは、3価のチタンイオン、4価のチタンイオンが挙げられる。
 両極の電解液がマンガンイオンとチタンイオンとを含む場合、両極の電解液中に存在するマンガンイオンの濃度が等しく、かつ両極の電解液中に存在するチタンイオンの濃度が等しいと、上述の(i)~(iv)の効果をより得易い。この形態の各極の電解液中のマンガンイオンの濃度は、例えば0.3M以上5M以下、チタンイオンの濃度は、例えば0.3M以上5M以下が挙げられる。この形態の各極の電解液中のマンガンイオンは、2価のマンガンイオン、3価のマンガンイオンが挙げられ、チタンイオンは、3価のチタンイオン、4価のチタンイオンが挙げられる。
 ・電解液の溶媒など
 上述の各極の電解液に含有する金属イオンは、いずれも水溶性イオンである。従って、正極電解液及び負極電解液には、溶媒を水とする水溶液を好適に利用することができる。特に、電解液を硫酸や硫酸塩を含有する酸の水溶液とすると、(1)各種の金属イオンの安定性の向上、活物質となる金属イオンの反応性の向上、溶解度の向上が得られる場合がある、(2)マンガンイオンのような電位が高い金属イオンを用いる場合でも、副反応が生じ難い(分解が生じ難い)、(3)イオン伝導度が高く、電池の内部抵抗が小さくなる、(4)塩酸を利用した場合と異なり、塩素ガスが発生しない、(5)硫酸塩などと水とを用いて電解液が容易に得られ、製造性に優れる、といった複数の効果が期待できる。上記硫酸や硫酸塩を用いて作製した酸の水溶液(電解液)は、例えば、硫酸アニオン(SO 2-)が存在する。電解液を酸溶液とする場合、酸の濃度を高めると、マンガン酸化物といった析出物の発生をある程度抑制できる。反応性金属イオンといった析出物の発生を抑制可能な金属イオンを含む電解液では、電解液中における酸の濃度をある程度低くしても、析出物の発生を抑制できる可能性がある。電解液には、硫酸や硫酸塩の他、公知の酸や公知の塩を用いて作製した水溶液を利用することができる。
 (その他の構成)
 ・電極
 正極電極104及び負極電極105の材質は、炭素繊維を主体とするもの、例えば、不織布(カーボンフェルト)やペーパーが挙げられる。カーボンフェルト製の電極を利用すると、(1)電解液に水溶液を用いた場合において充電時に酸素発生電位になっても、酸素ガスが発生し難い、(2)表面積が大きい、(3)電解液の流通性に優れる、といった効果がある。公知の電極を利用できる。
 ・隔膜
 隔膜101は、例えば、陽イオン交換膜や陰イオン交換膜といったイオン交換膜が挙げられる。イオン交換膜は、(1)正極活物質の金属イオンと負極活物質の金属イオンとの隔離性に優れる、(2)Hイオン(電池内部の電荷担体)の透過性に優れる、といった効果があり、隔膜101に好適に利用することができる。公知の隔膜を利用できる。
 以下、試験例を挙げて、RF電池の電解液の安定性、電池特性を具体的に説明する。
 [試験例1]
 マンガンイオンとチタンイオンとを含有する正極電解液と、チタンイオンを含有する負極電解液とを用意して図1に示すRF電池システムを構築し、充電を行った後、析出状態を調べた。
 この試験では、正極活物質としてマンガンイオンのみを含む試料No.1-100,No.1-110と、正極活物質としてマンガンイオンとバナジウムイオン(反応性金属イオン)とを含む試料No.1-1,No.1-2とを用意した。
 試料No.1-1の正極電解液は、硫酸マンガン、オキソ硫酸バナジウム、硫酸チタン、硫酸を用いて作製した(ここでは水溶液)。作製した正極電解液のマンガンイオン(2価)濃度が0.5M、バナジウムイオン(4価)濃度が0.5M、チタンイオン(4価)濃度が0.5M、硫酸イオン濃度(電解液中の合計濃度であり、表中では総濃度として示す。以降の試験例についても同様である。)は4.5Mである。
 試料No.1-2の正極電解液は、硫酸マンガン、オキソ硫酸バナジウム、硫酸チタン、硫酸ビスマス、硫酸を用いて作製した(ここでは水溶液)。作製した正極電解液のマンガンイオン(2価)濃度が0.5M、バナジウムイオン(4価)濃度が0.5M、チタンイオン(4価)濃度が0.5M、ビスマスイオン(3価)濃度が0.05M、硫酸イオン濃度(合計濃度)は4.575Mである。
 試料No.1-100の正極電解液は、硫酸マンガンと硫酸とを用いて作製した(ここでは水溶液)。作製した正極電解液のマンガンイオン(2価)濃度は0.5M、硫酸イオン濃度(合計濃度)は3.5Mである。
 試料No.1-110の正極電解液は、硫酸マンガンと、硫酸チタンと、硫酸とを用いて作製した。作製した正極電解液のマンガンイオン(2価)濃度は0.5M、チタンイオン(4価)の濃度は0.5M、硫酸イオン濃度(合計濃度)は4.0Mである。
 いずれの試料も負極電解液は、硫酸チタンと硫酸とを用いて作製した(ここでは水溶液)。作製した負極電解液のチタンイオン(4価)濃度は1.0M、硫酸イオン濃度(合計濃度)は4.0Mである。
 電極の反応面積が9cmである小型セルを作製した。各極の電極には、カーボンフェルト、隔膜には、イオン交換膜を用いた。
 作製した各極の電解液をそれぞれ7mlずつ用意し、作製した小型セルを用いて充電を行った。充電条件は、630mAの定電流(電流密度が70mA/cmの定電流)とし、マンガンイオンの充電状態(SOC)が70%となるまで充電を行った。この充電直後に、正極電解液のタンクの内壁を目視にて確認した。マンガンイオンの充電状態(SOC、%)は、(充電電気量/1電子反応時の理論電気量)×100によって求めた。なお、充電電気量、1電子反応の理論電気量は以下のように表わされる。マンガンイオンの1電子反応は、Mn2+→Mn3++eである。
 充電電気量(A・h)=充電電流(A)×充電時間(h)
 1電子反応の理論電気量(A・h)=電解液の体積(L)×マンガンイオンの濃度(mol/L)×ファラデーの定数:96,485(A・秒/mol)×1(電子)/3600
 その結果、正極電解液にマンガンイオンのみを含有する試料No.1-100では、正極電解液のタンクの内壁において、正極電解液が存在した領域に茶色の物質(固体)が付着していた。この茶色の物質を分析したところ、MnOであった。このことから、試料No.1-100では、充電状態を高めると、析出物が発生することが分かる。一方、試料No.1-1,No.1-2,No.1-110ではいずれも、正極電解液のタンクの内壁に上述のような付着物が実質的に見られなかった。このことから、正極電解液にマンガンイオンに加えて、チタンイオンを添加することで、MnOといった析出物の発生が抑制できることが分かる。特に、試料No.1-1,No.1-2に着目すると、正極電解液にマンガンイオンに加えて、チタンイオンと、更にバナジウムイオンといった金属イオンやビスマスイオンといった金属イオンとを添加した場合に、MnOといった析出物の発生を抑制できることが確認できた。
 [試験例2]
 マンガンイオンとチタンイオンとを含有する正極電解液と、チタンイオンを含有する負極電解液とを用意して図1に示すRF電池システムを構築し、充電を行った後、充電状態(SOC)を調べた。
 正極電解液及び負極電解液は、試験例1と同様のイオン種、濃度のものを用いた。即ち、試料No.2-1は、正極電解液として、マンガンイオン(2価)濃度が0.5M、バナジウムイオン(4価)濃度が0.5M、チタンイオン(4価)濃度が0.5M、硫酸イオン濃度(合計濃度)は4.5Mの組成の電解液を用意した。試料No.2-2は、正極電解液として、マンガンイオン(2価)濃度が0.5M、バナジウムイオン(4価)濃度が0.5M、チタンイオン(4価)濃度が0.5M、ビスマスイオン(3価)濃度が0.05M、硫酸イオン濃度(合計濃度)は4.575Mの組成の電解液を用意した。試料No.2-100は、正極電解液として、マンガンイオン(2価)濃度が0.5M、硫酸イオン濃度(合計濃度)が3.5Mの組成の電解液を用意した。試料No.2-110は、正極電解液として、マンガンイオン(2価)濃度が0.5M、チタンイオン(4価)濃度が0.5M、硫酸イオン濃度(合計濃度)が4.0Mの組成の電解液を用意した。いずれの試料も負極電解液は、チタンイオン(4価)濃度が1.0M、硫酸イオン濃度(合計濃度)は4.0Mの組成の電解液を用意した。各試料について、正極電解液は、9ml、負極電解液は、30ml用意した。
 電極の反応面積が9cmである小型セルを作製し、用意した電解液を用いて、充電を行った。充電条件は、630mAの定電流(電流密度が70mA/cmの定電流)とし、充電終了電圧を2.0Vとした。この充電終了時のマンガンイオンの充電状態(SOC、%)を調べた。その結果を表1に示す。また、充電終了後、タンクなどに存在する析出物(ここではMnO)の量を目視にて調べた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、正極電解液にマンガンイオンのみを含有する試料No.2-100に比較して、正極電解液にマンガンイオンに加えて、バナジウムイオンといった金属イオンを含有する試料No.2-1,No.2-2では、充電状態(SOC)がより高いことが分かる。充電状態が向上した理由の一つとして、試料No.2-1,No.2-2では、チタンイオンに加えてバナジウムイオンといった金属イオンによってMnOといった析出物の発生を抑制できたことで、マンガンイオンを活物質として十分に利用できたため、と考えられる。また、試料No.2-1と試料No.2-2とを比較すると、ビスマスイオンを含有する試料No.2-2の方が、充電状態(SOC)が高いことが分かる。この理由の一つとして、試料No.2-2の方が、MnOといった析出物の発生を抑制できたことが考えられる。なお、この試験例の結果では、試料No.2-1,No.2-2は、試料No.2-110よりも充電状態(SOC)が低くなっているが、試料No.2-100と対比して、上述のように析出物の発生を抑制することで、エネルギー密度の向上が期待できると考えられる。
 [試験例3]
 マンガンイオンとチタンイオンとを含有する正極電解液と、チタンイオンを含有する負極電解液とを用意して図1に示すRF電池システムを構築し、充放電を行って電池特性を調べた。
 正極電解液及び負極電解液は、試験例1と同様のイオン種、濃度のものを用いた。即ち、試料No.3-1は、正極電解液として、マンガンイオン(2価)濃度が0.5M、バナジウムイオン(4価)濃度が0.5M、チタンイオン(4価)濃度が0.5M、硫酸イオン濃度(合計濃度)は4.5Mの組成の電解液を用意した。試料No.3-2は、正極電解液として、マンガンイオン(2価)濃度が0.5M、バナジウムイオン(4価)濃度が0.5M、チタンイオン(4価)濃度が0.5M、ビスマスイオン(3価)濃度が0.05M、硫酸イオン濃度(合計濃度)は4.575Mの組成の電解液を用意した。試料No.3-100は、正極電解液として、マンガンイオン(2価)濃度が0.5M、硫酸イオン濃度(合計濃度)が3.5Mの組成の電解液を用意した。試料No.3-110は、正極電解液として、マンガンイオン(2価)濃度が0.5M、チタンイオン(4価)濃度が0.5M、硫酸イオン濃度(合計濃度)が4.0Mの組成の電解液を用意した。いずれの試料も負極電解液は、チタンイオン(4価)濃度が1.0M、硫酸イオン濃度(合計濃度)は4.0Mの組成の電解液を用意した。各試料について、各極の電解液をそれぞれ6mlずつ用意した。
 電極の反応面積が9cmである小型セルを作製し、用意した電解液を用いて、充放電のサイクル試験を行った。充放電条件は、630mAの定電流(電流密度が70mA/cmの定電流)とし、充電側切替電圧(充電から放電に切り替える電圧)を1.5Vとし、放電側切替電圧(放電から充電に切り替える電圧)を0Vとし、サイクル数=3とした。そして、電流効率(%)、放電容量(Ah/L)をそれぞれ調べた。ここでは、電流効率(%)は、サイクルごとに、(放電時間/充電時間)×100で求めた。2サイクル目の電流効率と3サイクル目の電流効率との平均を表2に示す。放電容量は、サイクルごとに、(放電時間(s)×電流値(A)/3600)/電解液体積(L)を求めた。2サイクル目の放電容量と3サイクル目の放電容量との平均を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、正極電解液にマンガンイオンのみを含有する試料No.3-100に比較して、正極電解液にマンガンイオンに加えて、チタンイオンとバナジウムイオンといった金属イオンとを含有する試料No.3-1,No.3-2では、電流効率及び放電容量が高いことが分かる。また、試料No.3-1,No.3-2は、正極電解液にマンガンイオンとチタンイオンとを含有するがバナジウムイオンを含有していない試料No.3-110に比較した場合でも、電流効率及び放電容量が高いことが分かる。特に、試料No.3-1,No.3-2は、試料No.3-100,No.3-110に比較して放電容量が1.5倍以上高く、大容量の電池として良好に利用できると期待される。電流効率や放電容量が向上した理由の一つとして、試料No.3-1,No.3-2では、チタンイオンに加えてバナジウムイオンといった金属イオンによってMnOといった析出物の発生を抑制できたことで、マンガンイオンを活物質として十分に利用できたため、と考えられる。
 [試験例4]
 正極電解液及び負極電解液の双方がマンガンイオンとチタンイオンとを含有する電解液を用意して図1に示すRF電池システムを構築し、充放電を行って電池特性を調べた。
 正極電解液及び負極電解液は、試験例1と同様に硫酸塩と硫酸とを用いて作製した。試料No.4-1は、正極電解液として、マンガンイオン(2価)濃度が0.5M、バナジウムイオン(4価)濃度が0.5M、チタンイオン(4価)濃度が0.5M、硫酸イオン濃度(合計濃度)が4.5Mの組成の電解液を6ml用意した。負極電解液は、チタンイオン(4価)濃度が0.5M、マンガンイオン(2価)濃度が0.5M、硫酸イオン濃度(合計濃度)は4.0Mの組成の電解液を12ml用意した。
 試料No.4-2は、正極電解液及び負極電解液として、マンガンイオン(2価)濃度が0.5M、バナジウムイオン(3価)濃度が0.25M、バナジウムイオン(4価)濃度が0.25M、チタンイオン(4価)濃度が0.5M、硫酸イオン濃度(合計濃度)が4.5Mの組成の電解液を用意した。試料No.4-2では、各極の電解液をそれぞれ6mlずつ用意した。
 試料No.4-3は、正極電解液として、マンガンイオン(2価)濃度が0.5M、バナジウムイオン(4価)濃度が0.5M、チタンイオン(4価)濃度が0.5M、ビスマスイオン(3価)濃度が0.05M、硫酸イオン濃度(合計濃度)が4.575Mの組成の電解液を6ml用意した。負極電解液は、チタンイオン(4価)濃度が0.5M、マンガンイオン(2価)濃度が0.5M、硫酸イオン濃度(合計濃度)は4.0Mの組成の電解液を12ml用意した。
 試料No.4-4は、正極電解液として、マンガンイオン(2価)濃度が0.5M、バナジウムイオン(3価)濃度が0.25M、バナジウムイオン(4価)濃度が0.25M、チタンイオン(4価)濃度が0.5M、ビスマスイオン(3価)濃度が0.05M、硫酸イオン濃度(合計濃度)が4.575Mの組成の電解液を用意した。負極電解液は、チタンイオン(4価)濃度が0.5M、マンガンイオン(2価)濃度が0.5M、バナジウムイオン(3価)濃度が0.25M、バナジウムイオン(4価)濃度が0.25M、硫酸イオン濃度(合計濃度)は4.5Mの組成の電解液を用意した。試料No.4-4では、各極の電解液をそれぞれ6mlずつ用意した。
 試料No.4-5は、正極電解液及び負極電解液として、マンガンイオン(2価)濃度が0.5M、バナジウムイオン(3価)濃度が0.25M、バナジウムイオン(4価)濃度が0.25M、チタンイオン(4価)濃度が0.5M、ビスマスイオン(3価)濃度が0.05M、硫酸イオン濃度(合計濃度)が4.575Mの組成の電解液を用意した。試料No.4-5では、各極の電解液をそれぞれ6mlずつ用意した。
 用意した電解液を用いて、試験例3と同様の小型セル(電極の反応面積が9cm)を作製し、充放電のサイクル試験を行い、電流効率及び放電容量を測定した。その結果を表3に示す。充放電条件及び測定方法は、試験例3と同様である。但し、試料No.4-2,No.4-4,No.4-5については、充放電条件の充電側切替電圧を1.85Vとし、放電側切替電圧を0Vとした。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、正極電解液にマンガンイオンに加えて、バナジウムイオンといった金属イオンを含有する試料No.4-1~No.4-5は、電流効率が高く、かつ正極電解液にマンガンイオンのみを含有する場合(上述の試料No.3-100)と同等程度の放電容量、又はそれ以上の放電容量を有していることが分かる。特に、試料No.4-2,No.4-4,No.4-5は、その放電容量が、試料No.3-100の放電容量の約1.5倍以上高いことが分かる。電流効率や放電容量が向上した理由の一つとして、試料No.4-1~No.4-5は、チタンイオンに加えてバナジウムイオンといった金属イオンによってMnOといった析出物の発生を抑制できたことで、マンガンイオンを活物質として十分に利用でき、更にはバナジウムイオンを活物質として利用できたため、と考えられる。かつ、試料No.4-1~No.4-5では、正極電解液と負極電解液とが同じイオン種の金属イオンを含有することで、経時的なイオンの移動に伴う活物質の低下を抑制したり、液移りの是正を行い易かったり、製造性に優れたりする点で実用的であり、利用し易い。とりわけ試料No.4-2,No.4-5は、両極の電解液中の金属イオンが一致することで(ここでは各金属イオンの濃度も一致)、上述の活物質の低下の抑制、液移りの是正の容易性、電解液の製造の容易性という効果を更に得易く、利用し易い。
 [試験例5]
 マンガンイオンとチタンイオンとを含有する正極電解液と、チタンイオンを含有する負極電解液とを用意して図1に示すRF電池システムを構築し、充放電を行って電池特性を調べた。
 正極電解液及び負極電解液は、表4に記載のイオン種、濃度のものを用いた。即ち、試料No.5-1は、正極電解液として、硫酸マンガン、硫酸チタン、硫酸、硫酸鉄(II)を用い、チタンイオン(4価)濃度が0.5M、マンガンイオン(2価)濃度が0.5M、硫酸イオン濃度(合計濃度)が4.5M、Feイオン(2価)濃度が0.5Mの組成の電解液を用意した。
 試料No.5-2は、正極電解液として、硫酸マンガン、硫酸チタン、硫酸、硫酸セリウム(III)を用い、チタンイオン(4価)濃度が0.5M、マンガンイオン(2価)濃度が0.5M、硫酸イオン濃度(合計濃度)が4.15M、Ceイオン(3価)濃度が0.1Mの組成の電解液を用意した。
 試料No.5-3は、正極電解液として、硫酸マンガン、硫酸チタン、硫酸、モリブデン酸二ナトリウムを用い、チタンイオン(4価)濃度が0.5M、マンガンイオン(2価)濃度が0.5M、硫酸イオン濃度(合計濃度)が4.0M、Moイオン(6価)濃度が0.01Mの組成の電解液を用意した。
 試料No.5-4は、正極電解液として、硫酸マンガン、硫酸チタン、硫酸を用い、チタンイオン(4価)濃度が0.5M、マンガンイオン(2価)濃度が0.5M、硫酸イオン濃度(合計濃度)が4.0Mの組成の電解液を用意した。
 いずれの試料も負極電解液は、チタンイオン(4価)濃度が1.0M、硫酸イオン濃度(合計濃度)は4.0Mの組成の電解液を用意した。各試料について、各極の電解液をそれぞれ6mlずつ用意した。
 電極の反応面積が9cmである小型セルを作製し、用意した電解液を用いて、充放電のサイクル試験を行った。充放電条件は、630mAの定電流(電流密度が70mA/cmの定電流)とし、充電側切替電圧(充電から放電に切り替える電圧)を1.8Vとし、放電側切替電圧(放電から充電に切り替える電圧)を0Vとし、サイクル数=3とした。そして、放電容量(Ah/L)を調べた。ここでは、放電容量は、サイクルごとに、(放電時間(s)×電流値(A)/3600)/電解液体積(L)を求めた。2サイクル目の放電容量と3サイクル目の放電容量との平均を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、正極電解液にマンガンイオンに加えて、チタンイオンと添加金属(Fe、Ce、Mo)といった金属イオンとを含有する試料No.5-1~No.5-3では、放電容量(No.5-1(11.8Ah/L)、No.5-2(11.1Ah/L)、No.5-3(8.1Ah/L))が、正極電解液にマンガンイオン及びチタンイオンのみを含有する試料No.5-4(6.5Ah/L)より高いことが分かる。放電容量が向上した理由の一つとして、試料No.5-1~No.5-3では、チタンイオンに加えて添加金属(Fe、Ce、Mo)イオンといった金属イオンによってMnOといった析出物の発生を抑制できたことで、マンガンイオンを活物質として十分に利用できたため、と考えられる。また、放電容量が向上した他の理由として、試料No.5-1~No.5-4では、マンガンイオンに加えて含有された金属イオンが活物質として機能することでエネルギー密度が高められたため、と考えられる。
 試験例1~5の結果から、正極電解液にマンガンイオンと、チタンイオンと、特定の金属イオン(反応性金属イオン)とを含有することで、マンガン酸化物といった析出物の発生を抑制することができながら、起電力が高い、充電状態を高められる、電流効率を高められる、放電容量を高められる、といった電池特性に優れるレドックスフロー電池とすることができることが確認できた。また、このレドックスフロー電池は、エネルギー密度や放電容量が高いことから、電解液量を低減できるため、小型化、電解液コストの低減なども期待できる。また、両極の電解液中の複数のイオン種が重複する場合には、更には全てのイオン種が一致する場合には、液移りの是正が容易であったり、電解液を製造し易かったりする電解液となる。このような電解液を備えることで、実用的で、運転制御なども行い易いレドックスフロー電池とすることができる。
 本発明のレドックスフロー電池は、太陽光発電、風力発電などの自然エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした大容量の蓄電池に好適に利用することができる。また、本発明のレドックスフロー電池は、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用することができる。
 1 レドックスフロー電池(RF電池) 100 電池セル
 101 隔膜 102 正極セル 103 負極セル
 104 正極電極 105 負極電極
 106 正極電解液用のタンク 107 負極電解液用のタンク
 108~111 導管 112,113 ポンプ
 200 交流/直流変換器 210 変電設備
 300 発電部 400 電力系統/需要家

Claims (14)

  1.  正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルに正極電解液及び負極電解液を供給して充放電を行うレドックスフロー電池であって、
     前記正極電解液は、マンガンイオンと、チタンイオンと、反応性金属イオンとを含有し、
     前記負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、及び亜鉛イオンから選択される少なくとも一種の金属イオンを含有し、
     前記反応性金属イオンは、バナジウムイオン、クロムイオン、鉄イオン、コバルトイオン、銅イオン、モリブデンイオン、ルテニウムイオン、パラジウムイオン、銀イオン、タングステンイオン、水銀イオン及びセリウムイオンから選択される少なくとも一種であるレドックスフロー電池。
  2.  前記正極電解液は、更に、添加金属イオンを含有し、
     前記添加金属イオンは、アルミニウムイオン、カドミウムイオン、インジウムイオン、錫イオン、アンチモンイオン、イリジウムイオン、金イオン、鉛イオン、ビスマスイオン及びマグネシウムイオンから選択される少なくとも一種である請求項1に記載のレドックスフロー電池。
  3.  前記正極電解液における前記反応性金属イオンの濃度は、0.001M以上5M以下である請求項1又は請求項2に記載のレドックスフロー電池。
  4.  前記正極電解液における前記添加金属イオンの濃度は、0.001M以上1M以下である請求項2に記載のレドックスフロー電池。
  5.  前記正極電解液における前記マンガンイオンの濃度、及び前記負極電解液における前記金属イオンの濃度の少なくとも一方は、0.3M以上5M以下である請求項1~請求項4のいずれか1項に記載のレドックスフロー電池。
  6.  前記負極電解液は、前記金属イオンとしてチタンイオンを含有し、
     前記正極電解液における前記マンガンイオンの濃度、及び前記負極電解液における前記チタンイオンの濃度の少なくとも一方は、0.3M以上5M以下である請求項1~請求項5のいずれか1項に記載のレドックスフロー電池。
  7.  前記正極電解液における前記チタンイオンの濃度は、5M以下である請求項1~請求項6のいずれか1項に記載のレドックスフロー電池。
  8.  前記反応性金属イオンは、下記(A)~(L)の少なくとも1つを満たす請求項1~請求項7のいずれか1項に記載のレドックスフロー電池。
     (A)前記バナジウムイオンが2価のバナジウムイオン、3価のバナジウムイオン、4価のバナジウムイオン、及び5価のバナジウムイオンの少なくとも一種である
     (B)前記クロムイオンが2価のクロムイオン、3価のクロムイオン、4価のクロムイオン、及び6価のクロムイオンの少なくとも一種である
     (C)前記鉄イオンが2価の鉄イオン、及び3価の鉄イオンの少なくとも一方である
     (D)前記コバルトイオンが2価のコバルトイオン、及び3価のコバルトイオンの少なくとも一方である
     (E)前記銅イオンが1価の銅イオン、及び2価の銅イオンの少なくとも一方である
     (F)前記モリブデンイオンが4価のモリブデンイオン、5価のモリブデンイオン、及び6価のモリブデンイオンの少なくとも一種である
     (G)前記ルテニウムイオンが2価のルテニウムイオン、3価のルテニウムイオン、及び4価のルテニウムイオンの少なくとも一種である
     (H)前記パラジウムイオンが2価のパラジウムイオン、及び4価のパラジウムイオンの少なくとも一方である
     (I)前記銀イオンが1価の銀イオン、及び2価の銀イオンの少なくとも一方である
     (J)前記タングステンイオンが4価のタングステンイオン、5価のタングステンイオン、及び6価のタングステンイオンの少なくとも一種である
     (K)前記水銀イオンが1価の水銀イオン、及び2価の水銀イオンの少なくとも一方である
     (L)前記セリウムイオンが3価のセリウムイオン、及び4価のセリウムイオンの少なくとも一方である
  9.  前記負極電解液は、チタンイオンと、更にマンガンイオンとを含む請求項1~請求項8のいずれか1項に記載のレドックスフロー電池。
  10.  前記負極電解液は、チタンイオンと、更にマンガンイオンと、前記反応性金属イオンとを含む請求項1~請求項8のいずれか1項に記載のレドックスフロー電池。
  11.  前記負極電解液は、チタンイオンと、更にマンガンイオンと、前記反応性金属イオンと、前記添加金属イオンとを含む請求項2又は請求項4に記載のレドックスフロー電池。
  12.  前記負極電解液におけるマンガンイオンの濃度は、0.3M以上5M以下である請求項9~請求項11のいずれか1項に記載のレドックスフロー電池。
  13.  前記添加金属イオンは、下記(a)~(j)の少なくとも1つを満たす請求項2、請求項4、及び請求項11のいずれか1項に記載のレドックスフロー電池。
    (a)前記アルミニウムイオンが1価のアルミニウムイオン、2価のアルミニウムイオン、及び3価のアルミニウムイオンの少なくとも一種である
    (b)前記カドミウムイオンが1価のカドミウムイオン、及び2価のカドミウムイオンの少なくとも一方である
    (c)前記インジウムイオンが1価のインジウムイオン、2価のインジウムイオン、及び3価のインジウムイオンの少なくとも一種である
    (d)前記錫イオンが2価の錫イオン、及び4価の錫イオンの少なくとも一方である
    (e)前記アンチモンイオンが3価のアンチモンイオン、及び5価のアンチモンイオンの少なくとも一方である
    (f)前記イリジウムイオンが1価のイリジウムイオン、2価のイリジウムイオン、3価のイリジウムイオン、4価のイリジウムイオン、5価のイリジウムイオン、及び6価のイリジウムイオンの少なくとも一種である
    (g)前記金イオンが1価の金イオン、2価の金イオン、3価の金イオン、4価の金イオン、及び5価の金イオンの少なくとも一種である
    (h)前記鉛イオンが2価の鉛イオン、及び4価の鉛イオンの少なくとも一方である
    (i)前記ビスマスイオンが3価のビスマスイオン、及び5価のビスマスイオンの少なくとも一方である
    (j)前記マグネシウムイオンが1価のマグネシウムイオン、及び2価のマグネシウムイオンの少なくとも一方である
  14.  前記マンガンイオンが2価のマンガンイオン、及び3価のマンガンイオンの少なくとも一方であり、
     前記チタンイオンが3価のチタンイオン、及び4価のチタンイオンの少なくとも一方である請求項1~請求項13のいずれか1項に記載のレドックスフロー電池。
PCT/JP2014/070424 2013-08-07 2014-08-04 レドックスフロー電池 WO2015019974A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14833875.9A EP3032629B1 (en) 2013-08-07 2014-08-04 Redox flow battery
US14/909,855 US10290889B2 (en) 2013-08-07 2014-08-04 Redox flow battery
CN201480044422.7A CN105474446B (zh) 2013-08-07 2014-08-04 氧化还原液流电池
JP2015530864A JP6358566B2 (ja) 2013-08-07 2014-08-04 レドックスフロー電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013164543 2013-08-07
JP2013-164543 2013-08-07

Publications (1)

Publication Number Publication Date
WO2015019974A1 true WO2015019974A1 (ja) 2015-02-12

Family

ID=52461307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070424 WO2015019974A1 (ja) 2013-08-07 2014-08-04 レドックスフロー電池

Country Status (5)

Country Link
US (1) US10290889B2 (ja)
EP (1) EP3032629B1 (ja)
JP (2) JP6358566B2 (ja)
CN (1) CN105474446B (ja)
WO (1) WO2015019974A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020788A1 (ja) * 2016-07-26 2018-02-01 住友電気工業株式会社 電解液、電解槽用電解液、及び電解槽システム
WO2018025737A1 (ja) * 2016-08-02 2018-02-08 住友電気工業株式会社 レドックスフロー電池、及びレドックスフロー電池の運転方法
WO2019181982A1 (ja) * 2018-03-20 2019-09-26 昭和電工株式会社 レドックスフロー電池用電解液およびレドックスフロー電池
WO2020036107A1 (ja) * 2018-08-13 2020-02-20 昭和電工株式会社 レドックスフロー電池用電解液、レドックスフロー電池およびその運転方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014303614B2 (en) 2013-08-07 2017-09-14 Sumitomo Electric Industries, Ltd. Redox flow battery
ES2968670T3 (es) 2016-08-25 2024-05-13 Proton Energy Sys Inc Conjunto de electrodos de membrana y método de fabricación del mismo
CN108232265A (zh) * 2016-12-10 2018-06-29 中国科学院大连化学物理研究所 一种中性锌铁液流电池
EP3565049A4 (en) * 2016-12-28 2020-09-09 Showa Denko K.K. REDOX FLOW BATTERY SYSTEM AND OPERATING PROCEDURES FOR IT
KR101803825B1 (ko) * 2017-04-10 2017-12-04 스탠다드에너지(주) 레독스 흐름전지
CN107887629B (zh) * 2017-11-10 2020-11-20 四川川润液压润滑设备有限公司 一种双液流储能电池
CN108258292A (zh) * 2018-03-29 2018-07-06 四川大学 一种全钒液流电池正极电解液及其配置方法
CN110649304A (zh) * 2019-09-25 2020-01-03 何国珍 锡-碘酸可充电电池
CN113903963B (zh) * 2020-07-06 2023-06-16 国家能源投资集团有限责任公司 中性锌铁液流电池及其应用
US11664518B2 (en) * 2021-05-21 2023-05-30 Raytheon Technologies Corporation Alkaline manganese redox flow battery with inhibitor
CN113270648B (zh) * 2021-05-24 2022-07-15 中国科学技术大学 金属离子诱导的水系锌锰二次电池
US20230090097A1 (en) * 2021-09-21 2023-03-23 Uop Llc Method for refreshing asymmetric mixed solution for redox flow batteries
US20230086739A1 (en) * 2021-09-21 2023-03-23 Uop Llc Mitigation of solution cross-over using differential electrolyte formulations in redox flow battery systems
CN114899466B (zh) * 2022-06-21 2023-02-21 中山大学 一种锰铁液流电池及其制造方法
CN117174977A (zh) * 2023-09-20 2023-12-05 湖北振华化学股份有限公司 一种用于非氟碳氢多孔膜铁铬液流电池的电解液及铁铬液流电池
CN117317331A (zh) * 2023-11-28 2023-12-29 华中科技大学 一种铬螯合物的正极电解液及液流电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136256A1 (ja) * 2010-04-27 2011-11-03 住友電気工業株式会社 レドックスフロー電池
JP4835792B2 (ja) 2010-03-12 2011-12-14 住友電気工業株式会社 レドックスフロー電池
JP2012079679A (ja) * 2010-03-12 2012-04-19 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2012518247A (ja) * 2009-02-18 2012-08-09 フラウンホーファー − ゲゼルシャフト ツル フェーデルング デル アンゲヴァントテン フォルシュング エー.ファォ. イオン性液体中に電気エネルギーを蓄える方法
JP2012160344A (ja) * 2011-01-31 2012-08-23 Sumitomo Electric Ind Ltd 電解液循環型電池のタンク、および電解液循環型電池
JP2013008642A (ja) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2013037776A (ja) * 2011-08-03 2013-02-21 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2013037814A (ja) * 2011-08-04 2013-02-21 Sumitomo Electric Ind Ltd 電解液流通型電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2815389A (en) 1987-12-10 1989-07-05 Unisearch Limited All-vanadium redox battery and additives
US9531028B2 (en) 2011-06-27 2016-12-27 Sumitomo Electric Industries, Ltd. Redox flow battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518247A (ja) * 2009-02-18 2012-08-09 フラウンホーファー − ゲゼルシャフト ツル フェーデルング デル アンゲヴァントテン フォルシュング エー.ファォ. イオン性液体中に電気エネルギーを蓄える方法
JP4835792B2 (ja) 2010-03-12 2011-12-14 住友電気工業株式会社 レドックスフロー電池
JP2012079679A (ja) * 2010-03-12 2012-04-19 Sumitomo Electric Ind Ltd レドックスフロー電池
WO2011136256A1 (ja) * 2010-04-27 2011-11-03 住友電気工業株式会社 レドックスフロー電池
JP2012160344A (ja) * 2011-01-31 2012-08-23 Sumitomo Electric Ind Ltd 電解液循環型電池のタンク、および電解液循環型電池
JP2013008642A (ja) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2013037776A (ja) * 2011-08-03 2013-02-21 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2013037814A (ja) * 2011-08-04 2013-02-21 Sumitomo Electric Ind Ltd 電解液流通型電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020788A1 (ja) * 2016-07-26 2018-02-01 住友電気工業株式会社 電解液、電解槽用電解液、及び電解槽システム
JP2018016834A (ja) * 2016-07-26 2018-02-01 住友電気工業株式会社 電解液、電解槽用電解液、及び電解槽システム
WO2018025737A1 (ja) * 2016-08-02 2018-02-08 住友電気工業株式会社 レドックスフロー電池、及びレドックスフロー電池の運転方法
WO2019181982A1 (ja) * 2018-03-20 2019-09-26 昭和電工株式会社 レドックスフロー電池用電解液およびレドックスフロー電池
WO2020036107A1 (ja) * 2018-08-13 2020-02-20 昭和電工株式会社 レドックスフロー電池用電解液、レドックスフロー電池およびその運転方法

Also Published As

Publication number Publication date
CN105474446A (zh) 2016-04-06
EP3032629A1 (en) 2016-06-15
JPWO2015019974A1 (ja) 2017-03-02
US20160181640A1 (en) 2016-06-23
JP6390810B2 (ja) 2018-09-19
EP3032629B1 (en) 2018-05-23
EP3032629A4 (en) 2016-08-10
US10290889B2 (en) 2019-05-14
CN105474446B (zh) 2018-07-03
JP2018137238A (ja) 2018-08-30
JP6358566B2 (ja) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6390810B2 (ja) レドックスフロー電池
JP5708963B1 (ja) レドックスフロー電池
WO2015019973A1 (ja) レドックスフロー電池
US8288030B2 (en) Redox flow battery
WO2011111717A1 (ja) レドックスフロー電池
JP6646896B2 (ja) レドックスフロー電池
JP5713186B2 (ja) レドックスフロー電池
JP2012079679A (ja) レドックスフロー電池
JP2011233372A (ja) レドックスフロー電池
JP2011210696A (ja) レドックスフロー電池
JP5489008B2 (ja) レドックスフロー電池
JP2018016834A (ja) 電解液、電解槽用電解液、及び電解槽システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044422.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530864

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014833875

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14909855

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE