WO2015019858A1 - ミラーディスプレイ、ハーフミラープレート及び電子機器 - Google Patents

ミラーディスプレイ、ハーフミラープレート及び電子機器 Download PDF

Info

Publication number
WO2015019858A1
WO2015019858A1 PCT/JP2014/069530 JP2014069530W WO2015019858A1 WO 2015019858 A1 WO2015019858 A1 WO 2015019858A1 JP 2014069530 W JP2014069530 W JP 2014069530W WO 2015019858 A1 WO2015019858 A1 WO 2015019858A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
plate
polarizing plate
display
reflective polarizing
Prior art date
Application number
PCT/JP2014/069530
Other languages
English (en)
French (fr)
Inventor
坂井 彰
雅浩 長谷川
博之 箱井
吉田 秀史
繁光 水嶋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/909,545 priority Critical patent/US10146086B2/en
Priority to CN201480042909.1A priority patent/CN105474291B/zh
Publication of WO2015019858A1 publication Critical patent/WO2015019858A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/40Filling a planar surface by adding surface attributes, e.g. colour or texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/60Rotation of a whole image or part thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • G02F1/133557Half-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image

Definitions

  • the present invention relates to a mirror display, a half mirror plate, and an electronic device. More specifically, the present invention relates to a mirror display that is compatible with a mirror mode that functions as a mirror and a display mode that displays an image, a half mirror plate used in the mirror display, and an electronic apparatus using the mirror display.
  • FIG. 29 is an explanatory diagram showing a display state when the power is turned on and a display state when the power is turned off in a conventional general display device.
  • a display state when the power is turned on and a display state when the power is turned off in a conventional general display device.
  • an image is displayed in the display area A, and an area called a frame or bezel (frame area B) on the outer periphery of the display area A does not contribute to display.
  • frame area B an area on the outer periphery of the display area A
  • the frame area B does not contribute to display.
  • Such a conventional general display device is not useful for the user because the screen is only black or gray when the power is off, such as when the power is off.
  • the black screen of a large display device placed in a bright room has a great sense of incongruity without being in harmony with the interior.
  • the conventional general display device has an existence value only recognized at the time of display.
  • a mirror display that can be used as a mirror when not displayed by providing a half mirror plate on the front surface of the display device has been proposed (see, for example, Patent Documents 1 to 4).
  • the mirror display can be used as a mirror in addition to the display that is the original purpose. That is, in the mirror display, display is performed when the display light is emitted from the display device and in the area where the display light is emitted from the display device, while the display light is emitted from the display device. When it is not, and in a region where display light is not emitted from the display device, it is used as a mirror by reflecting external light.
  • a multilayer reflective polarizing plate for example, a nanowire grid polarizing plate (for example, refer to Patent Documents 5 and 6), a circularly polarized light separating sheet using selective reflection of cholesteric liquid crystal (for example, a patent) Document 7) is known.
  • JP 2003-241175 A Japanese Patent Laid-Open No. 11-15392 JP 2004-085590 A JP 2004-125858 A JP 2006-201782 A JP 2005-195824 A JP 2007-65314 A
  • the reflectance in the mirror mode is not sufficient, and the screen brightness in the display mode may be lowered.
  • Patent Document 4 discloses a case where a reflective polarizing plate is used as the half mirror layer.
  • the reflectance of one reflective polarizing plate is limited to about 50% in principle, the mirror function is not sufficient due to insufficient reflectance in the mirror mode, and there is room for improvement.
  • the half mirror plate using the metal vapor deposition film as the half mirror layer transmits only a part of the incident light and reflects and / or absorbs the rest, in terms of screen brightness in the display mode, It is more disadvantageous than a half mirror plate using a reflective polarizing plate as a half mirror layer.
  • the display mode is used to increase the reflectance in the mirror mode. There was a problem that the screen brightness at the time decreased, and there was room for improvement.
  • the present inventors sufficiently reduce the screen brightness in the display mode by configuring the half mirror plate by a plurality of reflective polarizing plates arranged so that the transmission axes intersect each other.
  • the inventors have conceived that the reflectance in the mirror mode can be sufficiently increased while preventing this.
  • each reflective polarizing plate when the reflectance is designed to be about 70%, the angle formed by the transmission axis of each reflective polarizing plate is 45 °, but the length of the short side is 1300 mm. If a reflective polarizing plate is used, it can be used only for a display device of 40 inches or less.
  • the reflectivity is theoretically limited to about 50%. Therefore, the mirror function is insufficient due to insufficient reflectivity in the mirror mode. There was room for improvement.
  • An object of the present invention is to provide a half mirror plate used for the mirror display and an electronic device using the mirror display.
  • a half mirror plate is formed using a plurality of reflective polarizing plates, and the transmission axes of the respective reflective polarizing plates are arranged to cross each other.
  • the present inventors have studied various types of mirror displays that are sufficiently high in mirror mode and sufficiently prevent a decrease in screen brightness in display mode, and that are excellent in manufacturing efficiency.
  • the half mirror plate is composed of at least two half mirror layers including at least one reflective polarizing plate, and the half mirror with respect to the transmission axis of the polarizing plate of the display device disposed on the back side of the half mirror plate
  • the transmission axis of at least one reflective polarizing plate of the layer substantially parallel or substantially orthogonal, the reflectance in the mirror mode is sufficiently increased, and the screen brightness in the display mode is sufficiently lowered. It has been found that the production efficiency can be further improved.
  • the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
  • one embodiment of the present invention is a mirror display including a half mirror plate having at least two half mirror layers and a display device disposed on the back side of the half mirror plate, wherein the display device
  • the at least two half mirror layers include at least one reflective polarizing plate, and the transmission axis of the polarizing plate and the transmission axis of the at least one reflective polarizing plate are substantially parallel or substantially
  • the display mode is switchable between a display mode in which display light is emitted from the display device and the display light is transmitted through a half mirror plate, and a mirror mode in which display light is not emitted from the display device. May be a mirror display in which the sum of the transmittance of the mirror and the reflectance of the mirror mode is larger than 100%.
  • Another embodiment of the present invention is a half mirror plate having at least two half mirror layers, wherein the at least two half mirror layers include at least one reflective polarizing plate, and the polarizing plate of the display device.
  • the transmission axis and the transmission axis of the at least one reflective polarizing plate may be a half mirror plate that is substantially parallel or substantially orthogonal.
  • Yet another embodiment of the present invention may be an electronic device having the mirror display.
  • the half mirror plate and the electronic apparatus of the present invention while sufficiently increasing the reflectance in the mirror mode, the screen brightness in the display mode is sufficiently prevented from being lowered, and the manufacturing efficiency is further improved. can do.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration of a mirror display of Example 1.
  • FIG. It is a cross-sectional schematic diagram which shows the structure of the mirror display of Example 1 '.
  • 6 is a schematic cross-sectional view illustrating a configuration of a mirror display of Example 2.
  • FIG. 6 is a schematic cross-sectional view showing a configuration of a mirror display of Example 3.
  • FIG. It is a cross-sectional schematic diagram which shows the structure of the mirror display of Example 3 '.
  • FIG. 6 is a schematic cross-sectional view showing a configuration of a mirror display of Example 4.
  • FIG. 10 is a schematic cross-sectional view showing a configuration of a mirror display of Example 5.
  • FIG. It is a cross-sectional schematic diagram which shows the structure of the mirror display of Example 5 '.
  • 10 is a schematic cross-sectional view showing a configuration of a mirror display of Example 6.
  • FIG. FIG. 10 is a schematic cross-sectional view showing a configuration of a mirror display of Example 7.
  • 10 is a schematic cross-sectional view showing a configuration of a mirror display of Example 8.
  • FIG. 10 is a schematic cross-sectional view showing a configuration of a mirror display of Example 9.
  • FIG. It is a cross-sectional schematic diagram which shows the structure of the mirror display of Example 10.
  • FIG. 14 is a schematic cross-sectional view showing a configuration of a mirror display of Example 11.
  • FIG. It is a cross-sectional schematic diagram which shows the structure of the mirror display of the reference example 1.
  • FIG. 6 is a schematic cross-sectional view showing a configuration of a mirror display of Comparative Example 1.
  • FIG. It is a cross-sectional schematic diagram which shows the structure of the mirror display of the comparative example 2.
  • FIG. 30 is a block diagram for explaining a main configuration of an electronic apparatus according to a twelfth embodiment.
  • FIG. 29 is a block diagram for explaining a main configuration of an electronic apparatus according to a thirteenth embodiment. It is explanatory drawing which shows the display state at the time of power-on and the display state at the time of power-off of the conventional general display apparatus.
  • Example 1 relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display including a ⁇ / 2 plate.
  • the “half mirror layer” is a translucent layer imparted with a reflection performance with respect to incident light, and preferably exhibits a reflectance of 40% or more with respect to natural light. More preferably, the reflectance is 50% or more.
  • “reflectance” refers to “luminous reflectance” unless otherwise specified.
  • the half mirror layer may absorb a part of incident light.
  • FIG. 1 is an explanatory diagram illustrating a display mode and a screen in the mirror mode of the mirror display according to the first embodiment.
  • the display area A displays an image
  • the frame area B functions as a mirror.
  • the display area A and the frame area B are one mirror surface, and the entire surface of the mirror display is a mirror.
  • the display mode and the mirror mode may be used together, and an area in the display area A that does not display an image may be used as a mirror.
  • FIG. 2 is a schematic cross-sectional view illustrating the configuration of the mirror display according to the first embodiment.
  • FIG. 2 is a view showing a cross section of a part of the display area A in FIG.
  • the mirror display 4a according to the first embodiment includes a liquid crystal display device 5a in order from the back side (back side with respect to the half mirror plate) to the observer side (front side with respect to the half mirror plate).
  • An air layer 6a and a half mirror plate 7a are provided.
  • the liquid crystal display device 5a and the half mirror plate 7a were fixed by fitting the upper and lower ends of the half mirror plate 7a into a pair of aluminum rails attached in a frame shape to the upper and lower ends of the liquid crystal display device 5a.
  • the air layer 6a is a space formed in a slight gap between the liquid crystal display device 5a and the half mirror plate 7a.
  • the liquid crystal display device 5a uses a liquid crystal television (trade name: LC-20F5) manufactured by Sharp Corporation including a backlight 9a, two absorption polarizing plates 10a and 10b arranged in crossed Nicols, and a liquid crystal panel 11a. It was. When it is defined as positive (+) counterclockwise with respect to the long side of the liquid crystal display device 5a, the direction of the transmission axis of the back-side absorption polarizing plate 10a is 0 °, and the viewer-side absorption polarizing plate 10b. The direction of the transmission axis was 90 °. Below, the azimuth
  • the surface of the observer-side absorption polarizing plate 10b was not subjected to antireflection treatment, and was subjected to AG (antiglare, antiglare) treatment with a haze of 3.0%.
  • the display mode of the liquid crystal panel 11a was UV 2 A.
  • the liquid crystal display device 5a may appropriately include a bezel or the like in a portion corresponding to the frame region B in FIG. A bezel made of black plastic resin is suitable.
  • the absorption polarizing plate 10b provided on the viewer side of the liquid crystal display device 5a may be omitted, and the function thereof may be replaced with the reflective polarizing plate 13a as a half mirror layer provided in the half mirror plate 7a. Good. However, since the degree of polarization of the reflective polarizing plate is generally lower than that of the absorbing polarizing plate, if the absorbing polarizing plate 10b is omitted, the contrast in the display mode is lowered. In other words, if the degree of polarization of the reflective polarizing plate 13a is sufficient, the absorption polarizing plate 10b provided on the viewer side of the liquid crystal display device 5a can be omitted.
  • the polarization degree of the reflective polarizing plate 13a is preferably 90% or more (contrast ratio is 10 or more), more preferably 99% or more (contrast ratio is 100). Above).
  • the half mirror plate 7a includes a reflective polarizing plate 13a, a ⁇ / 2 plate 14a, a reflective polarizing plate 13b, and a glass plate 12 having a thickness of 2.5 mm in order from the back side to the viewer side. Each member was bonded via an acrylic pressure-sensitive adhesive (not shown). From the viewpoint of sufficiently functioning the half mirror plate 7a as a mirror, an antireflection film was not disposed on the observation surface side of the glass plate 12.
  • the thickness of the glass plate 12 is not limited to 2.5 mm mentioned above, and may be thinner or thicker than that.
  • tempered glass is suitable. Instead of the glass plate 12, for example, a transparent plate made of acrylic resin may be used.
  • the reflective polarizing plates 13a and 13b for example, a multilayer reflective polarizing plate or a nanowire grid polarizing plate can be used.
  • the multilayer reflective polarizing plate include a reflective polarizing plate (trade name: DBEF) manufactured by Sumitomo 3M Limited.
  • DBEF reflective polarizing plate
  • nanowire grid polarizing plate what was indicated by the said patent documents 5 and 6 is mentioned.
  • DBEF a multilayer reflective polarizing plate (trade name: DBEF) manufactured by Sumitomo 3M Co., Ltd., which has a mass production record in a large area, was used.
  • the reflective polarizing plates 13a and 13b were arranged so that their transmission axes were 90 ° azimuth.
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal. Further, the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • a slow axis of a cycloolefin polymer film (trade name: ZEONOR film) manufactured by Nippon Zeon Co., Ltd. is used to adjust the in-plane retardation to 275 nm.
  • the in-plane retardation and slow axis were measured using a dual retarder rotation type polarimeter (manufactured by Axometrics, trade name: Axo-scan). The same applies to each of the following embodiments. Unless otherwise noted, the measurement results at a wavelength of 550 nm are shown.
  • the glass plate 12, the reflective polarizing plates 13a and 13b, and the ⁇ / 2 plate 14a may each be extended to a portion corresponding to the frame region B in FIG.
  • the mirror display 4a of the present embodiment can be operated in both the display mode and the mirror mode on the following principle.
  • the display mode an image is displayed on the liquid crystal panel 11a, and the observer views the image on the liquid crystal panel 11a through the half mirror plate 7a.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in a 90 ° azimuth, and the reflection type polarizing plate 13a has a transmission axis set in a 90 ° azimuth direction. Can be transmitted. Thereafter, the light transmitted through the reflective polarizing plate 13a is transmitted through the ⁇ / 2 plate 14a, so that the vibration direction is rotated.
  • linearly polarized light with a relative orientation (angle formed by the slow axis of the ⁇ / 2 plate 14a and the vibration direction of the linearly polarized light) ⁇ is transmitted through the ⁇ / 2 plate 14a, it becomes linearly polarized light with a relative orientation ⁇ after transmission.
  • the light transmitted through the ⁇ / 2 plate 14a having the slow axis set to 5 ° azimuth becomes linearly polarized light oscillating in the ⁇ 80 ° azimuth.
  • the reflection type polarizing plate 13b has a transmission axis set at 90 °.
  • linearly polarized light that oscillates in the ⁇ 80 ° azimuth is considered to be decomposed into a linearly polarized light component that oscillates in the 0 ° azimuth and a linearly polarized light component that oscillates in the direction perpendicular to it, that is, in the 90 ° azimuth direction.
  • the linearly polarized component oscillating in the 90 ° azimuth can be transmitted.
  • the mirror display 4a of the present embodiment can display with high brightness despite the arrangement of the half mirror plate 7a.
  • linearly polarized light that vibrates in the 0 ° azimuth direction is a reflection type polarization in which the transmission axis is set to 90 °, that is, the reflection axis is set to the 0 ° azimuth direction. Almost everything is reflected by the plate 13b.
  • the linearly polarized light that vibrates in the 90 ° azimuth is transmitted through the reflective polarizing plate 13b whose transmission axis is set in the 90 ° azimuth.
  • the light transmitted through the reflective polarizing plate 13b is rotated in the azimuth direction by the ⁇ / 2 plate 14a, and then a part of the component is reflected by the reflective polarizing plate 13a.
  • the reflected light is again transmitted to the ⁇ / 2 plate 14a.
  • the polarization state is changed by transmitting. Thereafter, a part of the light component transmitted through the ⁇ / 2 plate 14a can be transmitted through the reflective polarizing plate 13b.
  • the mirror display 4a of a present Example exhibits a reflectance larger than 50%, and can provide a high performance mirror mode.
  • the reflection type polarizing plates 13a and 13b are arranged so that the respective transmission axes are 90 ° azimuth, the area yield of the reflection type polarizing plate is not deteriorated and can be manufactured efficiently. it can.
  • a cycloolefin polymer film (trade name: ZEONOR film) manufactured by ZEON Corporation was uniaxially stretched and an in-plane retardation was adjusted to 275 nm.
  • the stretching method is not particularly limited, and any stretching method can be used.
  • the multilayer reflective polarizing plate (trade name: DBEF) manufactured by Sumitomo 3M Co., Ltd. used in this example has a transmission axis parallel to the flow direction of the roll film, and therefore forms a relative angle that is not parallel to it.
  • a ⁇ / 2 plate having a slow axis using a roll-to-roll laminating process it is particularly preferable to use an oblique stretching method in which the film is stretched and oriented in an oblique direction with respect to the flow direction of the roll film.
  • a method of applying a birefringent material other than the conductive material may be used. Also in these methods, by performing an orientation treatment in an oblique direction with respect to the flow direction of the roll-shaped base film, it is possible to cope with a roll-to-roll bonding process with a multilayer reflective polarizing plate, Costs can be reduced.
  • the direction of the transmission axis of the reflective polarizing plate 13a (90 °), the direction of the slow axis of the ⁇ / 2 plate 14a (5 °), the direction of the transmission axis of the reflective polarizing plate 13b (90 °), and the absorption type
  • the relative relationship between the azimuth (0 °) of the transmission axis of the polarizing plate 10a and the azimuth (90 °) of the transmission axis of the absorptive polarizing plate 10b is important, and the display quality deteriorates when it deviates from the set angle. However, for example, a deviation of about 3 ° is acceptable in practice. The same applies to the other embodiments.
  • Example 1 ′ relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display including a ⁇ / 2 plate.
  • the difference from Example 1 is that the retardation of the ⁇ / 2 plate
  • the axis is a 95 ° azimuth.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the mirror display of Example 1 ′.
  • the half mirror plate 7a ′ of Example 1 ′ includes a reflective polarizing plate 13a (direction of transmission axis: 90 °) and a ⁇ / 2 plate 14a in order from the back side to the viewer side.
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal. Further, the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • the mirror display 4a 'of the present embodiment can be operated in both the display mode and the mirror mode on the following principle.
  • the display mode an image is displayed on the liquid crystal panel 11a, and the observer views the image on the liquid crystal panel 11a through the half mirror plate 7a '.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in a 90 ° azimuth, and the reflection type polarizing plate 13a has a transmission axis set in a 90 ° azimuth direction. Can be transmitted. Thereafter, the light transmitted through the reflective polarizing plate 13a is transmitted through the ⁇ / 2 plate 14a ', and the vibration direction thereof is rotated.
  • the mirror display 4a 'of Example 1' high luminance display can be performed while exhibiting a reflectance higher than 50%, and the manufacturing efficiency can be further improved. Since the mirror display of Example 1 and Example 1 ′ in which the slow axis of the retardation film is different by 90 ° has the same performance, the angle of the slow axis of the retardation plate is set to 5 ° or set to 95 °. Whether to do this may be determined from the viewpoint of manufacturing efficiency. Although the detailed description is omitted, the same can be said for the other embodiments.
  • Example 2 relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display including a ⁇ / 2 plate.
  • the difference from Example 1 is that the slow axis of the ⁇ / 2 plate Is a 15 ° azimuth.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the mirror display of Example 2.
  • the half mirror plate 7b of Example 2 includes a reflective polarizing plate 13a (transmission axis direction: 90 °) and a ⁇ / 2 plate 14b (slow) in order from the back side to the viewer side.
  • Phase axis orientation 15 °
  • reflective polarizing plate 13b transmission axis orientation: 90 °
  • glass plate 12 Each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal.
  • the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • the operation principle of the display mode and the mirror mode is the same as that of the first embodiment except for the difference due to the difference in the direction of the slow axis of the ⁇ / 2 plate 14b, and the description thereof will be omitted. Also in the mirror display 4b of the second embodiment, high luminance display can be performed while exhibiting a reflectance higher than 50%, and the manufacturing efficiency can be further improved.
  • Example 3 relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display including a ⁇ / 2 plate.
  • the difference from Example 1 is that the slow axis of the ⁇ / 2 plate Is set to 22.5 ° azimuth.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the mirror display of Example 3.
  • the half mirror plate 7c of Example 3 includes a reflective polarizing plate 13a (transmission axis direction: 90 °) and a ⁇ / 2 plate 14c (slow) in order from the back side to the viewer side.
  • Phase axis orientation 22.5 °
  • reflective polarizing plate 13b transmission axis orientation: 90 °
  • glass plate 12 Each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal.
  • the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • the operation principle of the display mode and the mirror mode is the same as that of the first embodiment except for the difference due to the difference in the direction of the slow axis of the ⁇ / 2 plate 14c, the description thereof is omitted. Also in the mirror display 4c of Example 3, high luminance display can be performed while exhibiting a reflectance higher than 50%, and the manufacturing efficiency can be further improved.
  • Example 3 ′ relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display including a ⁇ / 2 plate.
  • a ⁇ / 2 plate is Instead of a uniaxially stretched cycloolefin polymer film (trade name: ZEONOR film) manufactured by ZEON Corporation, rubbed with a non-stretched cycloolefin polymer film so that the slow axis is 22.5 ° azimuth.
  • a coating type retardation plate coated with a liquid crystalline material is used.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of the mirror display of Example 3 ′. As shown in FIG.
  • the half mirror plate 7c ′ of Example 3 ′ includes a reflective polarizing plate 13a (transmission axis orientation: 90 °) and a ⁇ / 2 plate 14c in order from the back side to the viewer side.
  • ' (Slow axis orientation: 22.5 °), reflective polarizing plate 13b (transmission axis orientation: 90 °), and glass plate 12.
  • Each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal.
  • the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • the operation principle of the display mode and the mirror mode is the same as that of the third embodiment except for the difference due to the difference in the material of the ⁇ / 2 plate, the description is omitted. Also in the mirror display 4c 'of Example 3', high luminance display can be performed while exhibiting a reflectance higher than 50%, and the manufacturing efficiency can be further improved.
  • Example 3 '' relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display provided with a ⁇ / 2 plate.
  • the difference from Example 3 is that a ⁇ / 2 plate is Instead of a uniaxially stretched cycloolefin polymer film (trade name: ZEONOR film) manufactured by Nippon Zeon Co., Ltd., a phase difference plate made of polycarbonate resin having a slow axis set to 22.5 ° azimuth was used. That is.
  • FIG. 7 is a schematic cross-sectional view showing the configuration of the mirror display of Example 3 ′′. As shown in FIG.
  • the half mirror plate 7c ′′ of Example 3 ′′ has a reflective polarizing plate 13a (direction of transmission axis: 90 °), ⁇ / 2 in order from the back side to the viewer side.
  • a plate 14c ′′ (slow axis orientation: 22.5 °), a reflective polarizing plate 13b (transmission axis orientation: 90 °), and a glass plate 12 are provided.
  • Each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal.
  • the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • the operation principle of the display mode and the mirror mode is the same as that of the third embodiment except for the difference due to the difference in the material of the ⁇ / 2 plate, the description is omitted. Also in the mirror display 4c ′′ of the example 3 ′′, it is possible to display with high luminance while exhibiting a reflectance higher than 50%, and to further improve the manufacturing efficiency.
  • Example 4 relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display provided with a retardation plate.
  • the difference from Example 1 is that a ⁇ / 2 plate 14a is used as a slow phase.
  • a phase difference plate having a phase difference different from that of the ⁇ / 2 plate 14a is arranged so that its slow axis has an azimuth different from 5 °.
  • FIG. 8 is a schematic cross-sectional view showing the configuration of the mirror display of Example 4. As shown in FIG.
  • the half mirror plate 7d of Example 4 includes a reflective polarizing plate 13a (transmission axis orientation: 90 °), a retardation plate 15a, and a reflective type in order from the back side to the viewer side.
  • a polarizing plate 13b (direction of transmission axis: 90 °) and a glass plate 12 are provided. Each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal.
  • the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • phase difference plate 15a a cycloolefin polymer film (trade name: ZEONOR film) manufactured by Nippon Zeon Co., Ltd. is stretched uniaxially, and the in-plane retardation is adjusted to 60 nm. It arrange
  • the glass plate 12, the reflective polarizing plates 13a and 13b, and the retardation plate 15a may each be extended to a portion corresponding to the frame region B in FIG.
  • the mirror display 4d of the present embodiment can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in the 90 ° azimuth, and the reflection type polarizing plate 13a has the transmission axis set in the 90 ° azimuth. Can pass through the polarizing plate 13a. Thereafter, the light transmitted through the reflective polarizing plate 13a may be transmitted through the phase difference plate 15a, so that its ellipticity and principal axis orientation may change.
  • the polarization state that was linearly polarized light with an ellipticity of 0 before passing through the retardation plate 15a is changed to the retardation plate 15a. After passing through, it changes to elliptically polarized light with an ellipticity of 0.35. At this time, the principal axis orientation does not change.
  • the reflection type polarizing plate 13b has a transmission axis set at 90 °.
  • the elliptically polarized light can be considered by being decomposed into a linearly polarized light component that oscillates in the 0 ° azimuth and a linearly polarized light component that oscillates in the direction orthogonal to the azimuth, that is, the 90 ° azimuth. Therefore, when the elliptically polarized light is incident on the reflective polarizing plate 13b having the transmission axis in the 90 ° azimuth, the linearly polarized light component oscillating in the 90 ° azimuth can be transmitted. For this reason, the mirror display 4d according to the present embodiment can display with high luminance even though the half mirror plate 7d is disposed.
  • the linearly polarized light that vibrates in the 0 ° azimuth is a reflection type polarizing plate in which the transmission axis is set to 90 °, that is, the reflection axis is set to the 0 ° azimuth. Almost everything is reflected at 13b.
  • the linearly polarized light that vibrates in the 90 ° azimuth is transmitted through the reflective polarizing plate 13b whose transmission axis is set in the 90 ° azimuth.
  • the light transmitted through the reflective polarizing plate 13b is changed in its ellipticity by the retardation plate 15a, and then a part of the component is reflected by the reflective polarizing plate 13a.
  • the reflected light is transmitted through the retardation plate 15a again. To change the polarization state. Thereafter, a part of the light component transmitted through the phase difference plate 15a can be transmitted through the reflective polarizing plate 13b.
  • the mirror display 4d of a present Example exhibits a reflectance larger than 50%, and can provide a high performance mirror mode.
  • the reflection type polarizing plates 13a and 13b are arranged so that the respective transmission axes are 90 ° azimuth, the area yield of the reflection type polarizing plate is not deteriorated and can be manufactured efficiently. it can.
  • phase difference plate in which an in-plane retardation was adjusted to 60 nm by uniaxially stretching a cycloolefin polymer film (trade name: ZEONOR film) manufactured by Nippon Zeon Co., Ltd. was used.
  • the stretching method is not particularly limited, and any stretching method can be used.
  • the multilayer reflective polarizing plate (trade name: DBEF) manufactured by Sumitomo 3M Co., Ltd. used in this example has a transmission axis parallel to the flow direction of the roll film, and therefore forms a relative angle that is not parallel to it.
  • a retardation plate having a slow axis by using a roll-to-roll bonding process it is particularly preferable to use an oblique stretching method in which the film is stretched and oriented in an oblique direction with respect to the flow direction of the roll film.
  • a diagonally stretched ⁇ / 4 plate that has been put into practical use for producing a circularly polarizing plate is preferably used.
  • a method for fixing the orientation there may be a method for fixing the orientation, a method for performing no special orientation treatment on the base film, a method for removing the orientation film from the base film and transferring it to another film, etc.
  • a method of applying a birefringent material other than the conductive material may be used. Also in these methods, by performing an orientation treatment in an oblique direction with respect to the flow direction of the roll-shaped base film, it is possible to cope with a roll-to-roll bonding process with a multilayer reflective polarizing plate, Costs can be reduced.
  • Example 5 relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display provided with a phase difference plate.
  • the difference from Example 4 is that a phase difference is obtained using an oblique stretching method.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the mirror display of Example 5.
  • the half mirror plate 7e of Example 5 includes a reflective polarizing plate 13a (transmission axis orientation: 90 °) and a retardation plate 15b (slow phase) in order from the back side to the viewer side.
  • Each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal.
  • the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • the operating principle of the display mode and the mirror mode is different from that of the fourth embodiment except that the in-plane retardation of the retardation plate 15b is different, that is, the light transmitted through the retardation plate 15b is circularly polarized. Since it is the same, description is abbreviate
  • ⁇ / 4 a commercially available obliquely stretched ⁇ / 4 plate (for example, a ZD film manufactured by Nippon Zeon Co., Ltd.) is used as it is to produce a circularly polarizing plate. It is also possible to divert, and the production efficiency can be made particularly excellent.
  • Example 5 ′ relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display provided with a phase difference plate.
  • the difference from Example 5 is that a ⁇ / 4 plate is Instead of a uniaxially stretched cycloolefin polymer film (trade name: ZEONOR film) manufactured by Teijin Kasei Co., Ltd. (trade name: Pure Ace (trade name: Pure Ace) (Registered trademark)) retardation plate (reverse wavelength dispersion type retardation plate).
  • FIG. 10 is a schematic cross-sectional view showing the configuration of the mirror display of Example 5 ′. As shown in FIG.
  • the half mirror plate 7e ′ of Example 5 ′ includes a reflective polarizing plate 13a (transmission axis orientation: 90 °) and a retardation plate 15b ′ in order from the back side to the viewer side. (Slow axis orientation: 45 °), reflective polarizing plate 13b (transmission axis orientation: 90 °), and glass plate 12.
  • Each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal.
  • the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • the operation principle of the display mode and the mirror mode is the same as that of the fifth embodiment except for the difference due to the difference in the material of the ⁇ / 4 plate, the description is omitted. Also in the mirror display 4e 'of Example 5', high luminance display can be performed while exhibiting a reflectance higher than 50%, and the manufacturing efficiency can be further improved.
  • Example 5 ′′ relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display including a retardation plate.
  • the difference from Example 5 is that the direction of the slow axis is 45.
  • the unstretched cycloolefin polymer film was subjected to a rubbing alignment treatment so that the slow axis was 22.5 °, and then a coating type position in which a liquid crystalline material was applied.
  • FIG. 11 is a cross-sectional schematic diagram which shows the structure of the mirror display of Example 5 ''. As shown in FIG.
  • the half mirror plate 7e ′′ of Example 5 ′′ has a reflective polarizing plate 13a (transmission axis direction: 90 °), ⁇ / 2 in order from the back side to the viewer side.
  • Plate 14c ′ (azimuth of slow axis: 22.5 °), retardation film 15b ′′ (azimuth of slow axis: 90 °), reflective polarizing plate 13b (azimuth of transmission axis: 90 °), and
  • a glass plate 12 is provided. Each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal. Further, the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • the operation principle of the display mode and the mirror mode is the same as that of the fifth embodiment except for the difference due to the difference in the configuration of the phase difference plate, the description thereof is omitted. Also in the mirror display 4e ′′ of the embodiment 5 ′′, it is possible to display with high luminance while exhibiting a reflectance higher than 50%, and to further improve the manufacturing efficiency.
  • Example 6 relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display including a retardation plate. The difference from Example 4 is that the in-plane retardation of the retardation plate is changed. That is 200 nm.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of the mirror display of Example 6. As shown in FIG. 12, the half mirror plate 7f of Example 6 includes a reflective polarizing plate 13a (transmission axis orientation: 90 °) and a retardation plate 15c (slow phase) in order from the back side to the viewer side. Axis orientation: 45 °), reflective polarizing plate 13b (transmission axis orientation: 90 °), and glass plate 12.
  • each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal.
  • the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • the operation principle of the display mode and the mirror mode is the same as that of the fourth embodiment except for the difference due to the difference in the in-plane phase difference of the phase difference plate 15c, and the description thereof will be omitted. Also in the mirror display 4f of Example 6, a high-luminance display can be performed while exhibiting a reflectance higher than 50%, and the manufacturing efficiency can be further improved.
  • Example 7 relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display provided with a retardation plate.
  • the difference from Example 1 is that polyethylene is used instead of ⁇ / 2 plate 14a.
  • FIG. 13 is a schematic cross-sectional view showing the configuration of the mirror display of Example 7.
  • the half mirror plate 7g of Example 7 includes a reflective polarizing plate 13a (transmission axis direction: 90 °), a PET film 16, and a reflective polarized light in order from the back side to the viewer side.
  • a plate 13b (direction of transmission axis: 90 °) and a glass plate 12 are provided.
  • each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal.
  • the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • the PET film 16 As the PET film 16, a biaxially stretched PET film (trade name: Diafoil T100-50) manufactured by Mitsubishi Plastics, Inc. was used. The in-plane retardation of the PET film 16 was 872 nm. Also, due to the biaxial stretching bowing phenomenon, the slow axis with respect to the flow direction of the film is a 31 ° azimuth, and a film cut into a rectangle with sides parallel to and perpendicular to the flow direction is PET film 16 (slow axis (Azimuth: 31 °).
  • the bowing phenomenon is a phenomenon in which, when biaxial stretching is performed by a tenter-type stretching method, the film is stretched obliquely toward the end of the film. The bowing phenomenon is a phenomenon that occurs because the film end portion gripped by the stretching clip and the film center portion that is not gripped differ in how they are stretched.
  • the glass plate 12, the reflective polarizing plates 13a and 13b, and the PET film 16 may each be extended to a portion corresponding to the frame region B in FIG.
  • the mirror display 4g of the present embodiment can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in the 90 ° azimuth, and the reflection type polarizing plate 13a has the transmission axis set in the 90 ° azimuth. Can pass through the polarizing plate 13a. Thereafter, the light transmitted through the reflective polarizing plate 13a is transmitted through the PET film 16, and the ellipticity thereof changes. That is, the light transmitted through the PET film 16 becomes elliptically polarized light.
  • the reflection type polarizing plate 13b has a transmission axis set at 90 °.
  • the elliptically polarized light can be considered by being decomposed into a linearly polarized light component that oscillates in the 0 ° azimuth and a linearly polarized light component that oscillates in the direction orthogonal to the azimuth, that is, the 90 ° azimuth. Therefore, when the elliptically polarized light is incident on the reflective polarizing plate 13b having the transmission axis in the 90 ° azimuth, the linearly polarized light component oscillating in the 90 ° azimuth can be transmitted. For this reason, the mirror display 4g according to the present embodiment can display with high luminance despite the arrangement of the half mirror plate 7g.
  • the linearly polarized light oscillating in the 0 ° azimuth among the light incident on the half mirror plate 7g from the observer side is a reflection type polarizing plate in which the transmission axis is set to 90 °, that is, the reflection axis is set to the 0 ° azimuth. Almost everything is reflected at 13b.
  • the mirror display 4g of a present Example exhibits a reflectance larger than 50%, and can provide a high performance mirror mode.
  • the reflection type polarizing plates 13a and 13b are arranged so that the respective transmission axes are 90 ° azimuth, the area yield of the reflection type polarizing plate is not deteriorated and can be manufactured efficiently. it can.
  • PET films are mass-produced for use as protective films for optical films, they can be obtained at a lower cost than other retardation plates. And even if it does not perform oblique stretching specially, the slow axis of the phase difference is not parallel to the flow direction of the roll film due to the bowing phenomenon, so the roll-to-roll bonding process with the multilayer reflective polarizing plate Therefore, manufacturing costs can be reduced.
  • Example 8 relates to a liquid crystal display device, two reflective polarizing plates as a half mirror layer, and a mirror display including a depolarization layer.
  • the difference from Example 1 is that diffusion is performed instead of the ⁇ / 2 plate 14a. This is that an adhesive layer (depolarization layer) was disposed.
  • FIG. 14 is a schematic cross-sectional view showing the configuration of the mirror display of Example 8.
  • the half mirror plate 7h of Example 8 includes a reflective polarizing plate 13a (direction of transmission axis: 90 °), a diffusion adhesive layer 17, and a reflective type in order from the back side to the viewer side.
  • a polarizing plate 13b (direction of transmission axis: 90 °) and a glass plate 12 are provided.
  • the reflective polarizing plate 13b and the glass plate 12 were bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a, 13b are substantially orthogonal.
  • the transmission axis (azimuth: 90 °) of the absorbing polarizing plate 10b and the transmission axes (azimuth: 90 °) of the reflective polarizing plates 13a and 13b are substantially parallel.
  • an adhesive having a light diffusing function can be used by adding a light diffusing agent such as fine particles in the adhesive.
  • a light diffusing agent such as fine particles in the adhesive.
  • an acrylic pressure-sensitive adhesive containing silica-based transparent uncolored particles having a refractive index of 1.43 and an average particle diameter of 4 ⁇ m and having a haze of 61.8% was used.
  • the glass plate 12, the reflective polarizing plates 13a and 13b, and the diffusion adhesive layer 17 may each be extended to a portion corresponding to the frame region B in FIG.
  • the mirror display 4h of the present embodiment can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in the 90 ° azimuth, and the reflection type polarizing plate 13a has the transmission axis set in the 90 ° azimuth. Can pass through the polarizing plate 13a. Thereafter, the light transmitted through the reflective polarizing plate 13 a passes through the diffusion adhesive layer 17, so that its vibration direction and ellipticity change. That is, the light transmitted through the diffusion adhesive layer 17 is generally elliptically polarized light.
  • the reflection type polarizing plate 13b has a transmission axis set at 90 °.
  • the elliptically polarized light can be considered by being decomposed into a linearly polarized light component that oscillates in the 0 ° azimuth and a linearly polarized light component that oscillates in the direction orthogonal to the azimuth, that is, the 90 ° azimuth. Therefore, when the elliptically polarized light is incident on the reflective polarizing plate 13b having the transmission axis in the 90 ° azimuth, the linearly polarized light component oscillating in the 90 ° azimuth can be transmitted. For this reason, the mirror display 4h according to the present embodiment can perform display with high luminance in spite of the arrangement of the half mirror plate 7h.
  • the linearly polarized light that vibrates in the 0 ° azimuth is a reflection type polarizing plate in which the transmission axis is set to 90 °, that is, the reflection axis is set to the 0 ° azimuth. Almost everything is reflected at 13b.
  • the reflection type polarizing plates 13a and 13b are arranged so that the respective transmission axes are 90 ° azimuth, the area yield of the reflection type polarizing plate is not deteriorated and can be manufactured efficiently. it can.
  • the diffusion adhesive layer 17 is used as the depolarization layer disposed between the two reflective polarizing plates 13a and 13b.
  • the vibration direction and ellipticity of the light transmitted through the reflective polarizing plate 13a are determined.
  • Other types of depolarizing layers may be used instead of the diffusion adhesive layer 17 as long as they can be changed.
  • Example 9 The ninth embodiment relates to a liquid crystal display device and a mirror display including two reflective polarizing plates as a half mirror layer.
  • the difference from the first embodiment is that the ⁇ / 2 plate 14a is not disposed and the reflective polarizing plate 13b is used. Instead of this, a reflective polarizing plate (hereinafter also referred to as a ChLC selective reflection layer) 18 using selective reflection of cholesteric liquid crystal is disposed.
  • FIG. 15 is a schematic cross-sectional view showing the configuration of the mirror display of Example 9.
  • the half mirror plate 7i of Example 9 includes a reflective polarizing plate 13a (transmission axis orientation: 90 °), a ChLC selective reflection layer 18, The glass plate 12 is provided.
  • each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axis (azimuth: 90 °) of the reflective polarizing plate 13a are substantially perpendicular to each other. Further, the transmission axis (azimuth: 90 °) of the absorption polarizing plate 10b and the transmission axis (azimuth: 90 °) of the reflective polarizing plate 13a are substantially parallel.
  • a circularly polarized light separation film using the selective reflection principle of a cholesteric liquid crystal layer can be used.
  • This has a liquid crystal layer with a structure in which the liquid crystalline group of rod-like liquid crystal molecules or side chain type liquid crystalline polymer is twisted in the thickness direction with a helical axis parallel to the layer normal as the rotation axis, and uses its selective reflection characteristics
  • the circularly polarized light rotated left and right is separated into transmitted light and reflected light.
  • a cholesteric liquid crystal layer having a thickness of 4 ⁇ m was produced by the method disclosed in Example 3 of Patent Document 7, and only the liquid crystal layer peeled off from the substrate was used.
  • the ChLC selective reflection layer 18 was designed to reflect left circularly polarized light and transmit right circularly polarized light. Moreover, as a ChLC selective reflection layer, the reflection type polarizing plate (brand name: PCF) by Nitto Denko Corporation is mentioned.
  • the glass plate 12, the ChLC selective reflection layer 18, and the reflective polarizing plate 13a may each be extended to a portion corresponding to the frame region B in FIG.
  • the mirror display 4i of the present embodiment can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in the 90 ° azimuth, and the reflection type polarizing plate 13a has the transmission axis set in the 90 ° azimuth. Can pass through the polarizing plate 13a.
  • the linearly polarized light can be considered by being decomposed into a left circularly polarized light component and a right circularly polarized light component. Therefore, when linearly polarized light is incident on the ChLC selective reflection layer 18, the right circularly polarized component can be transmitted with almost no loss, and the left circularly polarized component is reflected.
  • the left circularly polarized light can be considered by being decomposed into a component of linearly polarized light that oscillates in the 0 ° azimuth and a component of linearly polarized light that oscillates in the direction orthogonal to the azimuth, that is, 90 ° azimuth. Therefore, since the transmission axis of the reflective polarizing plate 13a is set to 90 °, the linearly polarized light component oscillating in the 0 ° direction is reflected by the reflective polarizing plate 13a toward the ChLC selective reflection layer 18. proceed. Thereafter, the above-described process is repeated, and a part of the left circularly polarized light component reflected by the ChLC selective reflection layer 18 can pass through the ChLC selective reflection layer 18. For this reason, the mirror display 4i according to the present embodiment can display with high luminance even though the half mirror plate 7i is disposed.
  • the left circularly polarized component of the light incident on the half mirror plate 7 i from the viewer side is almost entirely reflected by the ChLC selective reflection layer 18.
  • the mirror display 4i of a present Example exhibits a reflectance larger than 50%, and can provide a high performance mirror mode.
  • the area yield of the reflective polarizing plate is not deteriorated, and the number of members constituting the half mirror plate is smaller and the efficiency is reduced. Can be manufactured well.
  • Example 10 relates to a liquid crystal display device, a reflective display as a half mirror layer, and a mirror display including a dielectric multilayer film.
  • the difference from Example 1 is that a ⁇ / 2 plate 14a is arranged.
  • the dielectric multilayer film 19a is disposed instead of the reflective polarizing plate 13a.
  • FIG. 16 is a schematic cross-sectional view showing the configuration of the mirror display of Example 10.
  • the half mirror plate 7j of Example 10 includes a dielectric multilayer film 19a, a reflective polarizing plate 13b (transmission axis orientation: 90 °), in order from the back side to the viewer side.
  • the glass plate 12 is provided.
  • each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axis (azimuth: 90 °) of the reflective polarizing plate 13b are substantially orthogonal to each other. Further, the transmission axis (azimuth: 90 °) of the absorption polarizing plate 10b and the transmission axis (azimuth: 90 °) of the reflective polarizing plate 13b are substantially parallel.
  • the dielectric multilayer film 19a a mirror in which the reflectance is adjusted to an arbitrary value using the principle of optical interference, and a plurality of laminated dielectric thin films having different refractive indexes can be used.
  • Examples thereof include a multilayer film in which low refractive index titanium oxide (TiO 2 ) and high refractive index silicon dioxide (SiO 2 ) are alternately stacked.
  • the glass plate 12, the reflective polarizing plate 13b, and the dielectric multilayer film 19a may each be extended to a portion corresponding to the frame region B in FIG.
  • the mirror display 4j of the present embodiment can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light oscillating in a 90 ° direction, and the dielectric multilayer film 19a is set to have a reflectance of 40% and a transmittance of 60%. 40% is reflected by the multilayer film 19a, and 60% is transmitted through the dielectric multilayer film 19a while maintaining the polarization state. Thereafter, the light transmitted through the dielectric multilayer film 19a can pass through the reflective polarizing plate 13b whose transmission axis is set at 90 ° azimuth with almost no loss.
  • the linearly polarized light oscillating in the 0 ° azimuth among the light incident on the half mirror plate 7j from the observer side is a reflection type polarizing plate in which the transmission axis is set to 90 °, that is, the reflection axis is set to the 0 ° azimuth. Almost everything is reflected at 13b.
  • the linearly polarized light that vibrates in the 90 ° azimuth is transmitted through the reflective polarizing plate 13b whose transmission axis is set in the 90 ° azimuth.
  • the light transmitted through the reflective polarizing plate 13b is reflected by the dielectric multilayer film 19a set to have a reflectance of 40% and a transmittance of 60%, but the polarization state is linearly polarized light that vibrates in a 90 ° azimuth. Since it remains as it is, it can permeate
  • the area yield of the reflective polarizing plate is not deteriorated, and the number of members constituting the half mirror plate is smaller and the efficiency is reduced. Can be manufactured well.
  • Example 11 relates to a liquid crystal display device, one reflective polarizing plate as a half mirror layer, and a mirror display including a dielectric multilayer film.
  • the difference from Example 10 is that the dielectric constituting the half mirror layer That is, the order of stacking the multilayer film and the reflective polarizing plate is reversed.
  • FIG. 17 is a schematic cross-sectional view showing the configuration of the mirror display of Example 11.
  • the half mirror plate 7k of Example 11 includes a reflective polarizing plate 13a (transmission axis orientation: 90 °) and a dielectric multilayer film 19a in order from the back side to the viewer side. Is provided. Each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the dielectric multilayer film 19a used in Examples 10 and 11 was made of glass having a thickness of 6 mm as a base material
  • the glass plate 12 used in Example 10 was omitted in this example.
  • the transmission axis (azimuth: 0 °) of the absorbing polarizing plate 10a and the transmission axis (azimuth: 90 °) of the reflective polarizing plate 13a are substantially perpendicular to each other.
  • the transmission axis (azimuth: 90 °) of the absorption polarizing plate 10b and the transmission axis (azimuth: 90 °) of the reflective polarizing plate 13a are substantially parallel.
  • the dielectric multilayer film 19a and the reflective polarizing plate 13a may each be extended to a portion corresponding to the frame region B in FIG.
  • the mirror display 4k of the present embodiment can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in the 90 ° azimuth, and the reflection type polarizing plate 13a has the transmission axis set in the 90 ° azimuth. Can pass through the polarizing plate 13a. 40% of the light transmitted through the reflective polarizing plate 13a is reflected by the dielectric multilayer film 19a set to have a reflectance of 40% and a transmittance of 60%, and 60% is transmitted through the dielectric multilayer film 19a. For this reason, the mirror display 4k according to the present embodiment can display with high luminance even though the half mirror plate 7k is disposed.
  • the mirror display 4k of a present Example exhibits a reflectance larger than 50%, and can provide a high performance mirror mode.
  • the area yield of the reflective polarizing plate is not deteriorated, and the number of members constituting the half mirror plate is smaller and the efficiency is reduced. Can be manufactured well.
  • the frame area in the mirror mode is larger than the display area in the display mode. Therefore, the frame area can be effectively used to enhance the utility as a mirror. Moreover, the design property at the time of a display mode may improve by providing the function as a mirror to a frame area.
  • Reference Example 1 relates to a liquid crystal display device and a mirror display provided with one reflective polarizing plate as a half mirror layer. The difference from Example 1 is that a ⁇ / 2 plate 14a and a reflective polarizing plate 13a are arranged. Is not to.
  • FIG. 18 is a schematic cross-sectional view showing the configuration of the mirror display of Reference Example 1. As shown in FIG. 18, the half mirror plate 7 l of Reference Example 1 includes a reflective polarizing plate 13 b (direction of transmission axis: 90 °) and a glass plate 12 in order from the back side to the viewer side. . Each member was bonded via an acrylic pressure-sensitive adhesive (not shown).
  • the mirror display 4l of this reference example can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light oscillating in a 90 ° azimuth, and the reflection type polarizing plate 13b has a transmission axis set in a 90 ° azimuth, so that the light is reflected with almost no loss. Can pass through the polarizing plate 13b.
  • the mirror display 4l of the present reference example can display with high luminance even though the half mirror plate 7l is disposed.
  • the linearly polarized light oscillating in the 0 ° azimuth among the light incident on the half mirror plate 7l from the observer side is a reflection type polarizing plate in which the transmission axis is set to 90 °, that is, the reflection axis is set to the 0 ° azimuth. Almost everything is reflected at 13b.
  • the mirror display 4l of this reference example is reflected only by one reflective polarizing plate, the reflectance in the mirror mode is lower than the mirror display of each of the embodiments described above, and the mirror performance is improved. There is room for.
  • Comparative Example 1 relates to a liquid crystal display device and a mirror display provided with a dielectric multilayer film as a half mirror layer.
  • the difference from Example 1 is that glass plate 12, ⁇ / 2 plate 14a, and reflective polarizing plate 13a. , 13b is not disposed, and the dielectric multilayer film 19b is disposed.
  • FIG. 19 is a schematic cross-sectional view showing the configuration of the mirror display of Comparative Example 1. As shown in FIG. 19, the half mirror plate 107a of Comparative Example 1 is a dielectric multilayer film 19b.
  • the dielectric multilayer film 19b As the dielectric multilayer film 19b, a dielectric multilayer film (trade name: H264) manufactured by Shibuya Optical Co., Ltd., adjusted to have a reflectance of 70% and a transmittance of 30% was used. Since the dielectric multilayer film 19b was made of glass having a thickness of 1 mm as a base material, it was not integrated with the glass plate 12 as in the above-described example.
  • a dielectric multilayer film (trade name: H264) manufactured by Shibuya Optical Co., Ltd., adjusted to have a reflectance of 70% and a transmittance of 30% was used. Since the dielectric multilayer film 19b was made of glass having a thickness of 1 mm as a base material, it was not integrated with the glass plate 12 as in the above-described example.
  • the mirror display 104a of this comparative example can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in a 90 ° azimuth, but only a part thereof passes through the dielectric multilayer film 19b. This is because the dielectric multilayer film does not have polarization selectivity like the reflective polarizing plate.
  • the dielectric multilayer film 19b In the mirror mode, a part of light incident on the half mirror plate 107a from the viewer side is reflected by the dielectric multilayer film 19b and functions as a mirror.
  • the mirror display 104a of this comparative example does not use a reflective polarizing plate, the transmittance in the display mode is lower than the mirror display of each of the above-described embodiments, and there is room for improvement in display performance. .
  • Comparative Example 2 relates to a liquid crystal display device and a mirror display provided with a dielectric multilayer film as a half mirror layer.
  • the difference from Comparative Example 1 is that the dielectric multilayer film 19a is arranged instead of the dielectric multilayer film 19b. is there.
  • FIG. 20 is a schematic cross-sectional view showing the configuration of the mirror display of Comparative Example 2. As shown in FIG. 20, the half mirror plate 107b of Comparative Example 2 is a dielectric multilayer film 19a.
  • the dielectric multilayer film 19a As the dielectric multilayer film 19a, SKFC manufactured by Asahi Glass Co., Ltd. adjusted to reflectivity 40% and transmittance 60% was used. Since the dielectric multilayer film 19a was made of glass having a thickness of 6 mm as a base material, it was not integrated with the glass plate 12 as in the above-described example.
  • the mirror display 104b of this comparative example can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in a 90 ° azimuth, but part of the light is transmitted through the dielectric multilayer film 19a.
  • the dielectric multilayer film 19a In the mirror mode, only a part of the light incident on the half mirror plate 107b from the observer side is reflected by the dielectric multilayer film 19a. This is because the dielectric multilayer film does not have polarization selectivity like the reflective polarizing plate.
  • the mirror display 104b of this comparative example does not use a reflective polarizing plate, the reflectance in the mirror mode is lower than the mirror display of each of the above-described embodiments, and there is room for improvement in mirror performance.
  • Comparative Example 3 relates to a liquid crystal display device and a mirror display provided with a metal vapor deposition film as a half mirror layer.
  • the difference from Example 1 is that a glass plate 12, a ⁇ / 2 plate 14a, and a reflective polarizing plate 13a, 13b is not disposed, and the metal vapor deposition film 20a is disposed.
  • FIG. 21 is a schematic cross-sectional view showing the configuration of the mirror display of Comparative Example 3. As shown in FIG. 21, the half mirror plate 107c of the comparative example 3 is a metal vapor deposition film 20a.
  • the metal vapor deposition film 20a for example, a mirror on which a metal such as aluminum or chromium is vapor-deposited can be used.
  • the metal vapor deposition film can be provided with transmission characteristics by making the vapor deposition film very thin.
  • the metal vapor deposition film adjusted to reflectivity 40% and transmittance 20% by chromium vapor deposition was used.
  • the metal vapor deposition film has absorption characteristics, so the sum of the reflectance and the transmittance does not become 100%.
  • membrane 20a used glass with a thickness of 1 mm as a base material, it was not integrated with the glass plate 12 like the Example mentioned above.
  • the mirror display 104c of this comparative example can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in a 90 ° azimuth, but only part of the light is transmitted through the metal deposition film 20a. This is because the metal vapor deposition film does not have the polarization selectivity like the reflective polarizing plate and has a large absorption characteristic.
  • part of the light incident on the half mirror plate 107c from the observer side is reflected by the metal vapor deposition film 20a and functions as a mirror.
  • the mirror display 104c of this comparative example is more transparent in display mode than the mirror display of each example using a reflective polarizing plate and the mirror display of comparative example 1 using a dielectric multilayer film. There is room for improvement in display performance.
  • Comparative Example 4 relates to a liquid crystal display device and a mirror display provided with a metal vapor deposition film as a half mirror layer.
  • the difference from Comparative Example 3 is that a metal vapor deposition film 20b is disposed instead of the metal vapor deposition film 20a.
  • FIG. 22 is a schematic cross-sectional view showing the configuration of the mirror display of Comparative Example 4. As shown in FIG. 22, the half mirror plate 107d of the comparative example 4 is a metal vapor deposition film 20b.
  • the metal vapor deposition film 20b As the metal vapor deposition film 20b, a metal vapor deposition film adjusted to reflectivity 50% and transmittance 10% by chromium vapor deposition was used. In addition, since the metal vapor deposition film
  • the mirror display 104d of this comparative example can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in a 90 ° azimuth, but only part of the light passes through the metal vapor deposition film 20b. This is because the metal vapor deposition film does not have the polarization selectivity like the reflective polarizing plate and has a large absorption characteristic.
  • the metal vapor deposition film 20b In the mirror mode, a part of the light incident on the half mirror plate 107d from the observer side is reflected by the metal vapor deposition film 20b and functions as a mirror.
  • the mirror display 104d of this comparative example has a transmittance in the display mode as compared with the mirror display of each example using a reflective polarizing plate and the mirror display of the comparative example 1 using a dielectric multilayer film. There is room for improvement in display performance.
  • Comparative Example 5 relates to a liquid crystal display device and a mirror display including a metal vapor deposition film as a half mirror layer.
  • the difference from Comparative Example 3 is that a metal vapor deposition film 20c is disposed instead of the metal vapor deposition film 20a.
  • FIG. 23 is a schematic cross-sectional view showing the configuration of the mirror display of Comparative Example 5. As shown in FIG. 23, the half mirror plate 107e of the comparative example 5 is a metal vapor deposition film 20c.
  • the metal vapor deposition film 20c As the metal vapor deposition film 20c, a metal vapor deposition film adjusted to have a reflectance of 55% and a transmittance of 5% by chromium vapor deposition was used. In addition, since the metal vapor deposition film
  • the mirror display 104e of this comparative example can be operated in both the display mode and the mirror mode on the following principle.
  • the light emitted from the liquid crystal display device 5a is linearly polarized light that oscillates in the 90 ° azimuth, but only part of the light is transmitted through the metal deposition film 20c. This is because the metal vapor deposition film does not have the polarization selectivity like the reflective polarizing plate and has a large absorption characteristic.
  • part of the light incident on the half mirror plate 107e from the viewer side is reflected by the metal vapor deposition film 20c and functions as a mirror.
  • the mirror display 104e of this comparative example is more transparent in display mode than the mirror display of each example using a reflective polarizing plate and the mirror display of comparative example 1 using a dielectric multilayer film. There is room for improvement in display performance.
  • the transmittance at the time of the display mode is a liquid crystal display device (manufactured by Sharp Corporation, trade name: LC-20F5) commonly used in each example by measuring the screen brightness when the liquid crystal display device displays white in a dark room. ) was calculated by standardizing the white display luminance to 100%.
  • a spectroradiometer (trade name: SR-UL1) manufactured by Topcon Corporation was used, and the Y value after visual correction was used as the luminance.
  • the reflectivity in the mirror mode is the reflectivity when the liquid crystal display device displays black (power off state), and the measuring instrument is a desktop spectrocolorimeter (product name) manufactured by Konica Minolta. : CM-2600d, measurement wavelength range: 360 nm to 740 nm, integrating sphere method).
  • the reflection measurement mode was an SCI (Special Component Included) mode. In the SCI mode, both diffuse reflection light and regular reflection light are measured, and the reflectance including the regular reflection light is measured.
  • each of the mirror displays of Examples 1 to 11 and Reference Example 1 were evaluated as exhibiting sufficient screen brightness in the display mode and sufficient display performance. Further, each of the mirror displays of Examples 1 to 11 and Reference Example 1 was evaluated as having practical utility as a mirror. In particular, each of the mirror displays of Examples 1 to 11 was evaluated as a visually bright mirror. In addition, the mirror displays of Examples 3, 3 ′, 3 ′′, 5, 5 ′, 5 ′′, 6, 9, 10, and 11 in which the reflectivity in the mirror mode exceeds 65% are not mirror displays. Even when compared with an ordinary mirror (reflectance: about 80%), it was not visually inferior. In addition, in all of the mirror displays of Examples 1 to 11 and Reference Example 1, the sum of the transmittance in the display mode and the reflectance in the mirror mode greatly exceeds 100%. Although there is a trade-off relationship with performance, the performance was excellent overall.
  • the mirror display of Comparative Example 1 was evaluated as having practicality as a mirror, but it was evaluated that the screen brightness was low in the display mode and the display performance was insufficient.
  • the mirror displays of Comparative Examples 2 to 5 were evaluated as having insufficient display performance and / or mirror performance. In all of the mirror displays of Comparative Examples 1 to 5, the sum of the transmittance in the display mode and the reflectance in the mirror mode is smaller than 100%. The performance was generally poor.
  • FIG. 24 is a graph showing the transmittance in the display mode and the reflectance in the mirror mode in the mirror displays of Examples 1 to 11, Reference Example 1, and Comparative Examples 1 to 5.
  • the mirror displays of Examples 1 to 11 (Reference Example 1) using at least one reflective polarizing plate do not use a reflective polarizing plate, regardless of the reflectance. It can be seen that the transmittance is always higher than that of the mirror displays of Examples 1 to 5.
  • the mirror displays of Examples 1 to 11 (Reference Example 1) using at least one reflective polarizing plate have the same transmittances as those of Comparative Examples 1 to 5 using no reflective polarizing plate, regardless of the transmittance. It can be seen that the reflectance is always higher than that of the mirror display.
  • the limit value of the transmittance in the display mode is theoretical in all of Examples 1 to 11, Reference Example 1, and Comparative Examples 1 to 5. 0%.
  • the limit value of the transmittance in the display mode is theoretically 100%.
  • the reflectance in the mirror mode cannot be made significantly smaller than 50%, and when the reflectance in the mirror mode approaches 50%, the display The limit value of the transmittance in the mode is 100% in principle. From the above, the solid line shown in FIG. 24 is an approximate curve obtained by interpolating each measurement point based on these basic predictions.
  • Example 3 Example 3 ′, and Example 5, all had a reflectance of about 70% and a transmittance of about 60%. There was a difference in color when displayed.
  • Example 3 and Example 3 ' were less colored and Example 5 was slightly yellowish.
  • SR-UL1 spectroradiometer
  • Table 2 the results shown in Table 2 below were obtained, and the displays of Examples 3 and 3 '
  • the mode exhibited the same chromaticity as a liquid crystal display device (trade name: LC-20F5) without a half mirror plate.
  • both chromaticity x and chromaticity y showed an increasing tendency, and it was confirmed that the chromaticity was shifted in the yellow direction.
  • FIG. 25 is a diagram showing the polarization state before and after transmitting through the half mirror plate of Example 3 and Example 3 'on a Poincare sphere.
  • the polarization state immediately after transmission through the reflective polarizing plate 13a is located at the point P0 on the Poincare sphere, and the polarization state at the point P0 is represented by the point R on the Poincare sphere by transmitting through the ⁇ / 2 plate.
  • the slow axis of the ⁇ / 2 plate it receives a rotation of ⁇ / 2, that is, 180 °, and reaches the point P1.
  • the rotation direction is counterclockwise when viewed from the point R toward the origin O.
  • the light passes through the reflective polarizing plate 13b. Since the polarization state that can be transmitted by the reflective polarizing plate 13b is located at the point A (the same place as the point P0) on the Poincare sphere, the transmittance is expressed as ⁇ , where the central angle of the arc connecting the point P1 and the point A is ⁇ . Is determined by the size of ⁇ . Specifically, it is proportional to 1 + cos ⁇ .
  • phase difference of the ⁇ / 2 plate varies depending on the wavelength. Since the ⁇ / 2 plate of Example 3 is made of a cycloolefin polymer film, its phase difference chromatic dispersion is relatively small. However, when the phase difference is adjusted to 275 nm at a wavelength of 550 nm (Green: G), a wavelength of 450 nm ( The phase difference of Blue: B) is 277 nm, and the phase difference of wavelength 650 nm (Red: R) is 273 nm.
  • the ⁇ / 2 plate of this example is not exactly a ⁇ / 2 plate at a wavelength other than the wavelength of 550 nm, and the rotation angle on the Poincare sphere is 219 ° in the order of B, G, R, 180 ° and 151 °, and the points P1_B, P1_G, and P1_R corresponding to the point P1 of each wavelength are slightly shifted from each other.
  • the points P1_B, P1_G, and P1_R corresponding to the point P1 of each wavelength are slightly shifted from each other.
  • the points P1_B, P1_G, and P1_R are arranged vertically with the Poincare sphere to which the point A belongs across the equator, and the wavelength dispersion of ⁇ is not so large. Accordingly, it can be understood that the wavelength dispersion of the transmittance is not so large and the coloring of the transmissive display is small.
  • the retardation wavelength dispersion is relatively large.
  • the phase difference at the wavelength 450 nm (Blue: B) is 288 nm
  • the phase difference at the wavelength 650 nm (Red: R) is 266 nm.
  • they are 0.64, 0.50, and 0.40 in the order of B, G, and R.
  • the ⁇ / 2 plate of this example is not exactly a ⁇ / 2 plate at a wavelength other than the wavelength of 550 nm, and the rotation angle on the Poincare sphere is 230 ° in the order of B, G, R. 180 ° and 144 °, and the points P1_B, P1_G, and P1_R corresponding to the point P1 of each wavelength are slightly shifted from each other.
  • the points P1_B, P1_G, and P1_R are arranged vertically with the Poincare sphere to which the point A belongs across the equator, and the wavelength dispersion of ⁇ is not so large.
  • the wavelength dispersion of the transmittance is not so large and the coloring of the transmissive display is small.
  • the transmissive display of the half mirror plate using the ⁇ / 2 plate is hardly affected by the wavelength dispersion of the phase difference plate material.
  • Example 3 ′′ in which a mirror display was prototyped using a phase difference plate made of polycarbonate resin having a larger wavelength dispersion than that of Example 3 ′ was the same as that of Example 3 and Example 3 ′.
  • the liquid crystal display device without a half mirror plate (trade name: LC-20F5) exhibited the same chromaticity.
  • FIG. 26 is a diagram illustrating the polarization state before and after transmitting the half mirror plate of Example 5 on a Poincare sphere.
  • the polarization state immediately after passing through the reflective polarizing plate 13a is located at the point P0 on the Poincare sphere, and the polarization state at the point P0 is represented by the point R on the Poincare sphere by transmitting through the ⁇ / 4 plate.
  • the slow axis of the ⁇ / 4 plate it receives a rotation of ⁇ / 4, that is, 90 °, and reaches the point P1.
  • the rotation direction is counterclockwise when viewed from the point R toward the origin O. Then, the light passes through the reflective polarizing plate 13b.
  • the transmittance is expressed as ⁇ , where the central angle of the arc connecting the point P1 and the point A is ⁇ . Is determined by the size of ⁇ . Specifically, it is proportional to 1 + cos ⁇ .
  • the point P1 of Example 5 is located at the north pole and is greatly different from that of Example 3 located on the equator, but since ⁇ is about 90 °, the half mirror plates of all examples have substantially the same transmission. It can be understood that the rate is exhibited.
  • the description so far has been related to monochromatic light having a wavelength of 550 nm, but the same applies to light of other wavelengths.
  • the phase difference of the ⁇ / 4 plate varies depending on the wavelength. Since the ⁇ / 4 plate of Example 5 is made of a cycloolefin polymer film, its retardation wavelength dispersion is relatively small. However, when the retardation is adjusted to 140 nm at a wavelength of 550 nm (Green: G), the wavelength of 450 nm ( The phase difference of Blue: B) is 141 nm, and the phase difference of wavelength 650 nm (Red: R) is 139 nm.
  • the ⁇ / 4 plate of this example is not exactly a ⁇ / 4 plate at a wavelength other than 550 nm, and the rotation angle on the Poincare sphere is 111 ° in the order of B, G, R, 90 ° and 76 °, and the points P1_B, P1_G, and P1_R corresponding to the point P1 of each wavelength are slightly shifted from each other.
  • is equal to the rotation angle itself, and the wavelength dispersion of ⁇ is larger than that of the third embodiment. Since the transmittance decreases as ⁇ increases, it can be understood that the transmittance of Blue is relatively lowest and the transmissive display is colored yellow.
  • This problem can be solved by using a so-called reverse wavelength dispersion type retardation plate in which the phase difference increases as the wavelength increases.
  • an inverse wavelength dispersion type phase difference plate for example, a modified polycarbonate (trade name: Pure Ace (registered trademark)) manufactured by Teijin Chemicals Ltd. or two or more phase difference plates are laminated to reduce the apparent wavelength dispersion.
  • a controlled laminated retardation plate can be mentioned.
  • Table 2 above the display modes of Example 5 ′ and Example 5 ′′ in which the mirror display was actually made using these inverse wavelength dispersion type retardation plates were colored as compared with those of Example 5. There were fewer.
  • the configuration using the ⁇ / 2 plate is used from the viewpoint of avoiding coloring of the transmissive display in the display mode. More preferred. According to the configuration using the ⁇ / 2 plate, good display performance with little coloring can be obtained regardless of the wavelength dispersion of the material of the retardation plate ( ⁇ / 2 plate).
  • the mirror displays of Examples 1 to 11 it is possible to provide a mirror mode with sufficiently high reflectance without sacrificing display performance. Moreover, the mirror display which can improve manufacturing efficiency can be provided, without the area yield of a half mirror plate deteriorating. And the mirror displays of Examples 3, 3 ′, 3 ′′, 5, 5 ′, 5 ′′, 6, 9, 10, 11 exhibit a reflectance comparable to that of ordinary mirrors, A mirror mode with sufficient practicality can be provided.
  • Example 12 The electronic device of Example 12 is an electronic device including the mirror display 4a of Example 1 and the display light control device.
  • FIG. 27 is a block diagram for explaining a main configuration of an electronic apparatus according to the twelfth embodiment.
  • the mirror display 4a includes a liquid crystal display device 5a and a half mirror plate 7a.
  • the liquid crystal display device 5a includes a liquid crystal panel 11a and a backlight 9a.
  • the display light control device 22 includes a panel control unit 23, a backlight control unit 24, and a signal control unit 25.
  • the panel control unit 23 includes a controller and a driver for driving the liquid crystal panel 11a, and may or may not be built in the liquid crystal display device 5a in terms of physical configuration.
  • the panel control unit 23 is built in a liquid crystal television (trade name: LC-20F5) manufactured by Sharp Corporation, which is used as the liquid crystal display device 5a.
  • the backlight control unit 24 includes a controller and a driver for driving the backlight 9a, and may or may not be incorporated in the liquid crystal display device 5a.
  • the backlight control unit 24 outputs a switching signal between the display mode and the mirror mode. Further, the backlight control unit 24 provides a function for turning off the backlight 9a according to the presence or absence of a video signal.
  • the signal control unit 25 outputs a signal for linking the panel control unit 23 and the backlight control unit 24.
  • the display light control device 22 transmits a control signal to the panel control unit 23 so as to stop driving the liquid crystal panel 11 a, and the backlight control unit 24 receives the backlight.
  • a control signal is transmitted so that 9a is turned off.
  • the signal control unit 25 transmits a control signal to the backlight control unit 24 so that the backlight 9a is turned off. It is also possible to set to do so.
  • the electronic device 21a of this embodiment may use any one of the mirror displays of Embodiments 2 to 11 instead of the mirror display 4a of Embodiment 1.
  • Example 13 relates to an electronic apparatus including a mirror display and a display light control device.
  • the difference from Example 12 is that a local dimming backlight is used as the backlight of the liquid crystal display device.
  • FIG. 28 is a block diagram for explaining a main configuration of an electronic apparatus according to the thirteenth embodiment.
  • the mirror display 4a ′′ includes a liquid crystal display device 5a ′′ and a half mirror plate 7a.
  • the liquid crystal display device 5a ′′ includes a liquid crystal panel 11a and a local dimming backlight. 9b is included.
  • the display light control device 22 includes a panel control unit 23, a backlight control unit 24, and a signal control unit 25.
  • a local dimming backlight is a backlight unit that divides the light emission area of the backlight into a plurality of blocks (areas), and adjusts the brightness of the backlight for each block according to the input image, or turns off the backlight. That is.
  • the LED light sources are arranged in 16 horizontal blocks ⁇ 9 vertical blocks, and the luminance of the backlight can be controlled for each block in accordance with a control signal from the LED controller.
  • the luminance of the backlight can be controlled for each block, that is, locally, not only the function of temporally switching the display mode and the mirror mode over the entire screen, but also at the same time.
  • a function of operating one area as a mirror mode and the other area as a display mode For example, a mirror region may be formed at the center of the display region. In the region operated as the mirror mode, the backlight is turned off locally or the luminance is lowered.
  • the electronic device 21b of the present embodiment may further include an input device such as a touch panel.
  • an input device such as a touch panel.
  • a function of changing the sizes of the display area and the mirror area may be provided in accordance with a pinch-in and pinch-out operation of the touch panel.
  • the size of the display area is reduced in accordance with the operation, the size of the peripheral area, that is, the size of the mirror area is enlarged, and conversely, when the screen (touch panel) is pinched out.
  • the size of the display area is enlarged, and the size of the peripheral area, that is, the mirror area is reduced.
  • the electronic device 21b of this embodiment uses a mirror display in which the backlight 9a in any one of the mirror displays of Embodiments 2 to 11 is replaced with a local dimming backlight 9b instead of the mirror display 4a ′′. It is good to have.
  • the transmission axis of the polarizing plate in the display device and the transmission axis of the reflective polarizing plate contained in at least two half mirror layers in the half mirror plate are substantially parallel or substantially orthogonal to each other. It becomes. Examples of the configuration having such a relationship include the following. When one polarizing plate is included in the display device (for example, when an anti-reflection polarizing plate is provided in the organic EL display device), or there are a plurality of polarizing plates having transmission axes parallel to each other in the display device. In the case where the liquid crystal display device includes a pair of parallel Nicol polarizing plates, and the at least one reflective polarizing plate includes at least one multilayer reflective polarizing plate.
  • any of the at least one reflective polarizing plate is substantially parallel to the transmission axis of the polarizing plate in the display device.
  • the polarizing plate on the side close to the half mirror plate (usually the front side) is removed, and the function is the multilayer reflective polarizing plate in the half mirror plate.
  • the polarizing plate on the side far from the half mirror plate in the liquid crystal display device and the multilayer reflective polarizing plate are arranged in crossed Nicols, so that the polarizing plate in the liquid crystal display device It is preferable that the at least one reflective polarizing plate is substantially orthogonal to the transmission axis.
  • the display device includes a pair of polarizing plates having transmission axes orthogonal to each other (for example, when the liquid crystal display device is provided with a pair of crossed Nicols polarizing plates), the at least one reflection is performed.
  • the polarizing plate includes at least one multilayer reflective polarizing plate, the at least one multilayer reflective type with respect to the transmission axis of the polarizing plate closer to the half mirror plate (usually the front side)
  • a configuration in which the transmission axes of the polarizing plates are all substantially parallel is preferable.
  • the at least one multilayer reflective polarizing plate is substantially orthogonal with respect to the transmission axis of the polarizing plate far from the half mirror plate (usually the back side).
  • the at least one reflective polarizing plate includes first and second reflective polarizing plates
  • the half mirror plate includes, in order from the display device side, the first reflective polarizing plate, a retardation plate, and The second reflective polarizing plate is provided, and the transmission axis of the first reflective polarizing plate and the transmission axis of the second reflective polarizing plate are substantially parallel. Good. As a result, even when two multilayer reflective polarizers are used as the half mirror layer, the transmission axes of the reflective polarizers can be arranged substantially in parallel, so that the area yield of the reflective polarizer is deteriorated. It can be manufactured efficiently.
  • the retardation plate may be a ⁇ / 2 plate. Accordingly, the at least two half mirror layers can be effectively utilized by utilizing the effect of rotating the polarization axis by the ⁇ / 2 plate. Furthermore, even when a plurality of multilayer reflective polarizing plates are used as the half mirror layer, since the transmission axes can be arranged substantially in parallel, the area yield of the reflective polarizing plate is deteriorated. And can be manufactured efficiently.
  • the retardation plate may be a ⁇ / 4 plate. Accordingly, the at least two half mirror layers can be effectively utilized respectively by utilizing the effect of converting into circularly polarized light by the ⁇ / 4 plate. Furthermore, even when a plurality of multilayer reflective polarizing plates are used as the half mirror layer, since the transmission axes can be arranged substantially in parallel, the area yield of the reflective polarizing plate is deteriorated. And can be manufactured efficiently.
  • the retardation plate may be a polyethylene terephthalate (PET) film. Accordingly, the at least two half mirror layers can be effectively utilized by using the polyethylene terephthalate film as a low-cost retardation plate. Furthermore, even when a plurality of multilayer reflective polarizing plates are used as the half mirror layer, since the transmission axes can be arranged substantially in parallel, the area yield of the reflective polarizing plate is deteriorated. And can be manufactured efficiently.
  • PET polyethylene terephthalate
  • the half mirror plate may further include a depolarization layer between the at least two half mirror layers.
  • the at least two half mirror layers can be effectively utilized by utilizing the effect of depolarizing by the depolarization layer.
  • the transmission axes can be arranged substantially in parallel, the area yield of the reflective polarizing plate is deteriorated. And can be manufactured efficiently.
  • the depolarizing layer may include a diffusion adhesive layer. Accordingly, the at least two half mirror layers can be effectively utilized using the light diffusion function of the diffusion adhesive layer. Furthermore, even when a plurality of multilayer reflective polarizing plates are used as the half mirror layer, since the transmission axes can be arranged substantially in parallel, the area yield of the reflective polarizing plate is deteriorated. And can be manufactured efficiently.
  • the at least one reflective polarizing plate includes a multilayer reflective polarizing plate and a reflective polarizing plate using selective reflection of cholesteric liquid crystal, and the half mirror plate is formed in order from the display device side.
  • a reflective polarizing plate and a reflective polarizing plate using selective reflection of the cholesteric liquid crystal may be used.
  • the half mirror plate can be effectively utilized by utilizing the selective reflection characteristic of the cholesteric liquid crystal.
  • the area yield of the reflective polarizing plate is not deteriorated and can be manufactured efficiently.
  • the at least one reflective polarizing plate includes a multilayer reflective polarizing plate
  • the at least two half mirror layers include a dielectric multilayer film in addition to the multilayer reflective polarizing plate
  • the half mirror plate includes: You may have the said dielectric multilayer film and the said multilayer reflective polarizing plate in order from the display apparatus side. Accordingly, the half mirror plate can be effectively used by utilizing the characteristics of the dielectric multilayer film that controls the transmittance and the reflectance using the principle of optical interference. Furthermore, since only one multilayer reflective polarizing plate is used, the area yield of the reflective polarizing plate is not deteriorated and can be manufactured efficiently.
  • the at least one reflective polarizing plate includes a multilayer reflective polarizing plate
  • the at least two half mirror layers include a dielectric multilayer film in addition to the multilayer reflective polarizing plate
  • the half mirror plate includes: You may have the said multilayer reflective polarizing plate and the said dielectric multilayer film in an order from the display apparatus side. Accordingly, the half mirror plate can be effectively used by utilizing the characteristics of the dielectric multilayer film that controls the transmittance and the reflectance using the principle of optical interference. Furthermore, since only one multilayer reflective polarizing plate is used, the area yield of the reflective polarizing plate is not deteriorated and can be manufactured efficiently.
  • the display device may be a liquid crystal display device.
  • the type of the display device is not particularly limited as long as it emits polarized light.
  • the display device may be an organic electroluminescence display device in which antireflection polarizing plates are stacked.
  • a so-called 3D display capable of observing a stereoscopic (3D) image may be used.
  • 3D-compatible display a natural depth feeling can be provided to the display area as well as the mirror area, the design of the mirror display can be improved, and the mirror display can be used in various applications.
  • the stereoscopic image display method of the 3D-compatible display is not particularly limited, and any method can be used, but a naked-eye method that does not require glasses is more preferable. Examples of the naked-eye 3D display include a lenticular lens method and a parallax barrier method.
  • the liquid crystal display device includes, in order from the half mirror plate side, a first polarizing plate, a liquid crystal layer, and a second polarizing plate, and the at least one reflective polarizing plate is transmitted through the second polarizing plate. It may have a transmission axis substantially perpendicular to the axis and substantially parallel to the transmission axis of the first polarizing plate. Thereby, even when the display device is a liquid crystal display device, the present invention can be suitably used.
  • the electronic device has not only the function of switching the mirror mode and the display mode temporally on the entire screen, but also the function of operating the same area at the same time in the same plane as a mirror mode and other areas as a display mode. You may do it.
  • the mirror area may be formed only in the central portion of the display area by setting the central portion of the display area in the black display state and the peripheral portion in the image display state in the display device.
  • the electronic apparatus further includes a control device that controls the display area by dividing the display area into a plurality of areas, and the control apparatus selects an area for displaying an image from the plurality of areas.
  • the range and position where the image is displayed may be changed. By changing the range and position in which an image is displayed, it is possible to provide various uses that combine a mirror function and an image display function by a display device.
  • the backlight may be locally turned off in the region operated as the mirror mode, and the backlight luminance may be lowered. As a result, leakage light from the liquid crystal display device can be reduced. In these cases, a local dimming backlight may be used.
  • the display range of the image may be changeable by pinch-in and pinch-out. In this case, a user-friendly electronic device can be realized.
  • Mirror display in display mode 2 Mirror display in mirror mode 4a, 4a ′, 4a ′′, 4b, 4c, 4c ′, 4c ′′, 4d, 4e, 4e ′, 4e ′′, 4f, 4g, 4h 4i, 4j, 4k, 4l, 104a, 104b, 104c, 104d, 104e: mirror display 5a, 5a ′′: liquid crystal display device 6a: air layer 7a, 7a ′, 7b, 7c, 7c ′, 7c ′′, 7d, 7e, 7e ′, 7e ′′, 7f, 7g, 7h, 7i, 7j, 7k, 7l, 107a, 107b, 107c, 107d, 107e: half mirror plate 9a: backlight 9b: local dimming backlight 10a, 10b: Absorption type polarizing plate 11a: Liquid crystal panel 12: Glass plate 13a, 13b: Reflective type polarizing plates 14

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

本発明は、ミラーモード時の反射率を充分に高めつつ、ディスプレイモード時の画面輝度の低下を充分に防止し、更に製造効率に優れたミラーディスプレイを提供する。本発明のミラーディスプレイは、少なくとも二つのハーフミラー層を有するハーフミラープレートと上記ハーフミラープレートの裏側に配置された表示装置とを有するミラーディスプレイであって、上記表示装置は偏光板を含み、上記少なくとも二つのハーフミラー層は少なくとも一つの反射型偏光板を含み、上記偏光板の透過軸と上記少なくとも一つの反射型偏光板の透過軸とは実質的に平行又は実質的に直交し、上記表示装置から出射された表示光がハーフミラープレートを透過するディスプレイモードと上記表示装置から表示光を出射しないミラーモードとが切り換え可能であり、上記ディスプレイモードの透過率と上記ミラーモードの反射率との和が100%よりも大きいものである。

Description

ミラーディスプレイ、ハーフミラープレート及び電子機器
本発明は、ミラーディスプレイ、ハーフミラープレート及び電子機器に関する。より詳しくは、ミラーとして機能するミラーモード及び画像を表示するディスプレイモードを両立したミラーディスプレイ、上記ミラーディスプレイに用いられるハーフミラープレート、並びに、上記ミラーディスプレイを用いた電子機器に関するものである。
図29は、従来の一般的な表示装置の電源オン時の表示状態及び電源オフ時の表示状態を示す説明図である。図29に示すように、電源オン状態の表示装置101では、表示領域Aに画像が表示され、表示領域Aの外周にある、額縁又はベゼルと呼ばれる領域(額縁領域B)は、表示に寄与しない。一方、電源オフ状態の表示装置102では、表示領域Aに画像は表示されず、額縁領域Bは表示に寄与しないままである。
このような従来の一般的な表示装置は、電源オフ状態等の非表示時には、画面が黒色又は灰色になるだけであるため何ら利用者の役に立たない。そればかりか、特にデジタルサイネージやテレビ受像機のようにサイズが大きく可搬性の低い表示装置の場合、非表示時であっても表示時と同じ設置スペースを占有するため、利用者にとっては単なる障害物ともなり得る。特に、明るい部屋に置かれた大型表示装置の黒画面は、インテリアと調和せずに大きな違和感がある。すなわち、従来の一般的な表示装置は、表示時にしかその存在価値が認められないものであった。
これに対して、表示装置の前面にハーフミラープレートを設けることで、非表示時にはミラーとして利用できるミラーディスプレイが提案されている(例えば、特許文献1~4参照)。ミラーディスプレイによれば、本来の目的である表示以外に、ミラーとしての使用が可能である。すなわち、ミラーディスプレイでは、表示装置から表示光が出射しているとき、及び、表示装置から表示光が出射している領域において、表示光による表示が行われ、一方、表示装置から表示光が出射していないとき、及び、表示装置から表示光が出射していない領域において、外光を反射することによりミラーとして使用される。
なお、反射機能を有する光学部材としては、多層型反射型偏光板、ナノワイヤーグリッド偏光板(例えば、特許文献5及び6参照)、コレステリック液晶の選択反射を用いた円偏光分離シート(例えば、特許文献7参照)が知られている。
特開2003-241175号公報 特開平11-15392号公報 特開2004-085590号公報 特開2004-125885号公報 特開2006-201782号公報 特開2005-195824号公報 特開2007-65314号公報
しかしながら、ハーフミラープレートの構成によっては、ミラーモード時の反射率が充分ではない上に、ディスプレイモード時の画面輝度が低下してしまうことがあった。
例えば、上記特許文献4に記載の発明は、ハーフミラー層として反射型偏光板を用いた場合について開示している。しかしながら、一つの反射型偏光板の反射率は原理的に約50%に制限されるため、ミラーモード時の反射率不足によりミラーとしての機能が充分ではなく、改善の余地があった。
また、金属蒸着膜をハーフミラー層として用いたハーフミラープレートは、入射光の一部だけを透過し、残りは反射及び/又は吸収するものであるため、ディスプレイモード時の画面輝度の点では、反射型偏光板をハーフミラー層として用いたハーフミラープレートよりも不利である。このようなハーフミラープレートを用いた場合は、ディスプレイモード時の透過率とミラーモード時の反射率との和が100%以下に制限されるため、ミラーモード時の反射率を高める場合にディスプレイモード時の画面輝度が低下してしまう問題があり、改善の余地があった。
これに対して、本発明者らは、各々の透過軸が交差するように配置された複数の反射型偏光板によってハーフミラープレートを構成することにより、ディスプレイモード時の画面輝度の低下を充分に防止しつつ、ミラーモード時の反射率を充分に高めることができることに想到した。しかしながら、本発明者らが更に検討したところ、ハーフミラープレートを構成するハーフミラー層の配置の仕方によっては、製造効率が悪化することが分かった。
例えば、ハーフミラー層として二つの反射型偏光板を用いて、各々の反射型偏光板の透過軸を交差させるように配置する場合について考える。同じ大きさの正方形状、長方形状又はロール状で、透過軸が同じ方位に設定された二つの反射型偏光板を用いると、その一方を他方に対して回転させて配置することで各々の透過軸を交差させることができる。しかしながら、この場合、各々の反射型偏光板が重畳する領域が元々の反射型偏光板の面積よりも狭くなるために、面積収率が悪化してしまう。よって、このような構成を大画面の表示装置に用いるためには、元々の反射型偏光板の面積をより大きくする必要があり、製造コストが高くなってしまうことがあった。例えば、このような構成において、反射率が約70%となるように設計する場合は、各々の反射型偏光板の透過軸のなす角度が45°となるが、短辺の長さが1300mmの反射型偏光板を用いると、40インチ以下の表示装置にしか採用することができない。
また、所定の方位に設定された透過軸を有する反射型偏光板を事前に準備する場合も考えられるが、反射率の仕様毎に反射型偏光板も複数の種類を準備する必要があるため、製造コストが高くなってしまうことがあった。更に、多層型反射型偏光板のようにロール状に製造可能な反射型偏光板の多くは、その透過軸の方位がロールの流れ方向に対して平行又は直交な方位に限定されるため、二つの反射型偏光板を用いて、各々の反射型偏光板の透過軸を交差させるように配置する場合、ロールtoロール貼合プロセスに対応することができず、製造コストが高くなってしまうことがあった。
一方、各々の反射型偏光板の透過軸が平行になるように配置すると、反射率が原理的に約50%に制限されるため、ミラーモード時の反射率不足によりミラーとしての機能が充分ではなく、改善の余地があった。
本発明は、上記現状に鑑みてなされたものであり、ミラーモード時の反射率を充分に高めつつ、ディスプレイモード時の画面輝度の低下を充分に防止し、更に製造効率に優れたミラーディスプレイ、そのミラーディスプレイに用いられるハーフミラープレート、及び、そのミラーディスプレイを用いた電子機器を提供することを目的とするものである。
本発明者らは、上述したように、ミラーディスプレイについて種々検討したところ、複数の反射型偏光板を用いてハーフミラープレートを構成し、各々の反射型偏光板の透過軸を交差させるように配置することで、ミラーモード時の反射率を充分に高めつつ、ディスプレイモード時の画面輝度の低下を充分に防止することができることを見出した。
しかしながら、この方法では、50%を大きく超える反射率を得るためには、各々の反射型偏光板の透過軸を交差させるように配置する必要があるため、上述したように、反射型偏光板の面積収率の悪化に伴って製造コストが高くなってしまうことがあった。
そこで、本発明者らは、ミラーモード時の反射率が充分に高く、ディスプレイモード時の画面輝度の低下が充分に防止されることに加えて、製造効率においても優れたミラーディスプレイについて種々検討した。その結果、ハーフミラープレートを、少なくとも一つの反射型偏光板を含む少なくとも二つのハーフミラー層で構成し、ハーフミラープレートの裏側に配置した表示装置が有する偏光板の透過軸に対して、ハーフミラー層が有する少なくとも一つの反射型偏光板の透過軸を、実質的に平行又は実質的に直交させることで、ミラーモード時の反射率を充分に高めつつ、ディスプレイモード時の画面輝度の低下を充分に防止し、更に製造効率を優れたものとすることができることを見出した。これにより、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様は、少なくとも二つのハーフミラー層を有するハーフミラープレートと、上記ハーフミラープレートの裏側に配置された表示装置と、を有するミラーディスプレイであって、上記表示装置は、偏光板を含み、上記少なくとも二つのハーフミラー層は、少なくとも一つの反射型偏光板を含み、上記偏光板の透過軸と上記少なくとも一つの反射型偏光板の透過軸とは、実質的に平行又は実質的に直交し、上記表示装置から表示光が出射され、上記表示光がハーフミラープレートを透過するディスプレイモードと、上記表示装置から表示光を出射しないミラーモードとが切り換え可能であり、上記ディスプレイモードの透過率と上記ミラーモードの反射率との和が100%よりも大きいミラーディスプレイであってもよい。
本発明の別の一態様は、少なくとも二つのハーフミラー層を有するハーフミラープレートであって、上記少なくとも二つのハーフミラー層は、少なくとも一つの反射型偏光板を含み、表示装置が有する偏光板の透過軸と上記少なくとも一つの反射型偏光板の透過軸とは、実質的に平行又は実質的に直交するハーフミラープレートであってもよい。
本発明の更に別の一態様は、上記ミラーディスプレイを有する電子機器であってもよい。
本発明のミラーディスプレイ、ハーフミラープレート及び電子機器によれば、ミラーモード時の反射率を充分に高めつつ、ディスプレイモード時の画面輝度の低下を充分に防止し、更に製造効率を優れたものとすることができる。
実施例1のミラーディスプレイのディスプレイモード及びミラーモードにおける画面を示す説明図である。 実施例1のミラーディスプレイの構成を示す断面模式図である。 実施例1’のミラーディスプレイの構成を示す断面模式図である。 実施例2のミラーディスプレイの構成を示す断面模式図である。 実施例3のミラーディスプレイの構成を示す断面模式図である。 実施例3’のミラーディスプレイの構成を示す断面模式図である。 実施例3’’のミラーディスプレイの構成を示す断面模式図である。 実施例4のミラーディスプレイの構成を示す断面模式図である。 実施例5のミラーディスプレイの構成を示す断面模式図である。 実施例5’のミラーディスプレイの構成を示す断面模式図である。 実施例5’’のミラーディスプレイの構成を示す断面模式図である。 実施例6のミラーディスプレイの構成を示す断面模式図である。 実施例7のミラーディスプレイの構成を示す断面模式図である。 実施例8のミラーディスプレイの構成を示す断面模式図である。 実施例9のミラーディスプレイの構成を示す断面模式図である。 実施例10のミラーディスプレイの構成を示す断面模式図である。 実施例11のミラーディスプレイの構成を示す断面模式図である。 参考例1のミラーディスプレイの構成を示す断面模式図である。 比較例1のミラーディスプレイの構成を示す断面模式図である。 比較例2のミラーディスプレイの構成を示す断面模式図である。 比較例3のミラーディスプレイの構成を示す断面模式図である。 比較例4のミラーディスプレイの構成を示す断面模式図である。 比較例5のミラーディスプレイの構成を示す断面模式図である。 実施例1~11、参考例1、及び、比較例1~5のミラーディスプレイにおける、ディスプレイモード時の透過率、及び、ミラーモード時の反射率を示すグラフである。 実施例3及び実施例3’のハーフミラープレート透過前後の偏光状態をポアンカレ球上で示す図である。 実施例5のハーフミラープレート透過前後の偏光状態をポアンカレ球上で示す図である。 実施例12の電子機器の主要な構成を説明するためのブロック図である。 実施例13の電子機器の主要な構成を説明するためのブロック図である。 従来の一般的な表示装置の電源オン時の表示状態及び電源オフ時の表示状態を示す説明図である。
以下に実施例を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。また、各実施例の構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。
(実施例1)
実施例1は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、λ/2板を備えたミラーディスプレイに関する。なお、本明細書において、「ハーフミラー層」とは、入射光に対する反射性能が付与された透光性の層であり、自然光に対して40%以上の反射率を示すものであることが好ましく、50%以上の反射率を示すものであることがより好ましい。また、本明細書において、「反射率」とは、特に断りがない限り、「視感反射率」を指す。また、ハーフミラー層は、入射光の一部を吸収するものであってもよい。
図1は、実施例1のミラーディスプレイのディスプレイモード及びミラーモードにおける画面を示す説明図である。図1に示すように、ディスプレイモードのミラーディスプレイ1では、表示領域Aは画像を表示し、額縁領域Bはミラーとして機能する。一方で、ミラーモードのミラーディスプレイ2では、表示領域A及び額縁領域Bを一つのミラー面とし、ミラーディスプレイの全面をミラーにする。なお、ディスプレイモード及びミラーモードを併用し、表示領域A中の画像を表示しない領域をミラーとして利用してもよい。
図2は、実施例1のミラーディスプレイの構成を示す断面模式図である。図2は、図1中の表示領域Aの一部の断面を示した図である。図2に示すように、実施例1のミラーディスプレイ4aは、背面側(ハーフミラープレートに対して裏側)から観察者側(ハーフミラープレートに対して表側)に向かって順に、液晶表示装置5a、空気層6a、及び、ハーフミラープレート7aを備える。液晶表示装置5a、及び、ハーフミラープレート7aは、液晶表示装置5aの上端及び下端に枠状に取り付けたアルミニウム製の一対のレールに、ハーフミラープレート7aの上端及び下端を嵌め込んで固定した。空気層6aは、液晶表示装置5aとハーフミラープレート7aとの間のわずかな隙間に形成される空間である。
液晶表示装置5aは、バックライト9a、クロスニコルに配置された二つの吸収型偏光板10a、10b、及び、液晶パネル11aを含む、シャープ社製の液晶テレビ(商品名:LC-20F5)を用いた。液晶表示装置5aの長辺を基準に反時計回りに正(+)と定義したときに、背面側の吸収型偏光板10aの透過軸の方位は0°、観察者側の吸収型偏光板10bの透過軸の方位は90°とした。以下では、上記定義に基づき軸の方位を記載する。観察者側の吸収型偏光板10bの表面には、反射防止処理は施されておらず、ヘイズ3.0%のAG(アンチグレア、防眩)処理が施されていた。液晶パネル11aは、表示モードがUVAであった。なお、液晶表示装置5aは、図1中の額縁領域Bに対応する部分にベゼル等を適宜含んでいてもよい。ベゼルとしては、黒色のプラスチック樹脂製のものが好適である。
なお、液晶表示装置5aの観察者側に設けられた吸収型偏光板10bを省略し、その機能を、ハーフミラープレート7a内に設けたハーフミラー層としての反射型偏光板13aに代替させてもよい。ただし、一般に反射型偏光板の偏光度は吸収型偏光板のそれに比べて低いため、吸収型偏光板10bを省略すると、ディスプレイモード時のコントラストが低下する。逆に言えば、反射型偏光板13aの偏光度が充分であれば、液晶表示装置5aの観察者側に設けられた吸収型偏光板10bは省略できる。吸収型偏光板10bを省略するためには、反射型偏光板13aの偏光度は90%以上(コントラスト比が10以上)であることが好ましく、より好ましい偏光度は99%以上(コントラスト比が100以上)である。
ハーフミラープレート7aは、背面側から観察者側に向かって順に、反射型偏光板13a、λ/2板14a、反射型偏光板13b、及び、厚さ2.5mmのガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ハーフミラープレート7aをミラーとして充分に機能させる観点から、ガラス板12の観察面側には反射防止膜を配置しなかった。なお、ガラス板12の厚みは、上記した2.5mmに限定されず、それよりも薄くても厚くてもよい。また、ガラス板12の材質としては、強化ガラスが好適である。ガラス板12に代えて、例えば、アクリル樹脂製の透明板を用いてもよい。
反射型偏光板13a、13bとしては、例えば、多層型反射型偏光板、ナノワイヤーグリッド偏光板を用いることができる。上記多層型反射型偏光板としては、住友スリーエム社製の反射型偏光板(商品名:DBEF)が挙げられる。上記ナノワイヤーグリッド偏光板としては、上記特許文献5及び6に開示されたものが挙げられる。本実施例では、大面積での量産実績があり、安価な住友スリーエム社製の多層型反射型偏光板(商品名:DBEF)を用いた。反射型偏光板13a、13bは、各々の透過軸が90°方位となるように配置した。したがって、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
λ/2板14aとしては、日本ゼオン社製のシクロオレフィン系ポリマーフィルム(商品名:ゼオノアフィルム)を1軸延伸して、面内位相差を275nmに調整したものを用いて、その遅相軸が5°方位となるように配置した。面内位相差及び遅相軸は、デュアル・リターダー・ローテート方式のポーラリメータ(Axometrics社製、商品名:Axo-scan)を用いて測定した。以下の各実施例についても同様である。特に断りのない限り、波長550nmでの測定結果を示している。
なお、ガラス板12、反射型偏光板13a、13b、及び、λ/2板14aは、各々、図1中の額縁領域Bに対応する部分まで延長されたものであってもよい。
本実施例のミラーディスプレイ4aは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶パネル11aに画像を表示させ、観察者は、ハーフミラープレート7a越しに液晶パネル11aの画像を見る。液晶表示装置5aから出射される光は90°方位に振動する直線偏光であり、反射型偏光板13aは透過軸が90°方位に設定されているため、光はほとんどロスなく反射型偏光板13aを透過できる。その後、反射型偏光板13aを透過した光は、λ/2板14aを透過することで、その振動方位が回転する。相対方位(λ/2板14aの遅相軸と直線偏光の振動方向がなす角)Φの直線偏光がλ/2板14aを透過すると、透過後は相対方位-Φの直線偏光となるため、遅相軸が5°方位に設定されたλ/2板14aを透過した光は、-80°方位に振動する直線偏光となる。一方、反射型偏光板13bは透過軸が90°方位に設定されている。ここで、-80°方位に振動する直線偏光は、0°方位に振動する直線偏光の成分と、それとは直交する方位、すなわち90°方位に振動する直線偏光の成分とに分解して考えることができる。したがって、-80°方位に振動する直線偏光が、90°方位に透過軸を有する反射型偏光板13bに入射すると、90°方位に振動する直線偏光の成分は透過できる。このため、本実施例のミラーディスプレイ4aは、ハーフミラープレート7aを配置しているにも関わらず、高輝度の表示ができる。
ミラーモードでは、液晶パネル11aには画像を表示させず、観察者は、ハーフミラープレート7aで反射した外光のみを見る。具体的には、観察者側からハーフミラープレート7aに入射する光のうち、0°方位に振動する直線偏光は、透過軸が90°、すなわち反射軸が0°方位に設定された反射型偏光板13bでほとんど全てが反射される。
一方、観察者側からハーフミラープレート7aに入射する光のうち、90°方位に振動する直線偏光は、透過軸が90°方位に設定された反射型偏光板13bを透過する。反射型偏光板13bを透過した光は、λ/2板14aでその振動方位が回転した後、反射型偏光板13aでその成分の一部が反射され、その反射光は再度λ/2板14aを透過することで偏光状態を変化させる。その後、λ/2板14aを透過した光の成分の一部は、反射型偏光板13bを透過できる。このため、本実施例のミラーディスプレイ4aは、50%よりも大きい反射率を呈し、高性能なミラーモードを提供できる。
また、反射型偏光板13a、13bは、各々の透過軸が90°方位となるように配置されているため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
なお、本実施例では、日本ゼオン社製のシクロオレフィン系ポリマーフィルム(商品名:ゼオノアフィルム)を1軸延伸して、面内位相差を275nmに調整したλ/2板を使用したが、所望の位相差が発現しさえすれば、延伸方法は特に限定されず、任意の延伸方法を用いることができる。本実施例で使用した住友スリーエム社製の多層型反射型偏光板(商品名:DBEF)は、ロール状フィルムの流れ方向に対して平行に透過軸を有するので、それと平行ではない相対角度をなす遅相軸をもつλ/2板をロールtoロール貼合プロセスを用いて積層するために、ロールフィルムの流れ方向に対して斜め方向に延伸配向させる斜め延伸法を用いることが特に好ましい。また、高分子フィルムの延伸によらず、配向処理を施した基材フィルムの上に液晶性材料を塗布した塗布型位相差板を用いてもよい。更に、配向固定する方法や、基材フィルムに特別な配向処理を行わない方法や、配向固定した後、基材フィルムから剥がして別のフィルムに転写加工する方法等であってもよいし、液晶性材料以外の複屈折材料を塗布する方法であってもよい。これらの方法においても、ロール状の基材フィルムの流れ方向に対して斜め方向に配向処理を行うことで、多層型反射型偏光板とのロールtoロール貼合プロセスに対応が可能であり、製造コストを抑えることが可能となる。
なお、反射型偏光板13aの透過軸の方位(90°)、λ/2板14aの遅相軸の方位(5°)、反射型偏光板13bの透過軸の方位(90°)、吸収型偏光板10aの透過軸の方位(0°)、及び、吸収型偏光板10bの透過軸の方位(90°)は、その相対関係が重要であり、設定した角度からずれると表示品位が低下してしまうが、例えば3°程度のずれであれば実用上許容できる。他の実施例についても同様である。
(実施例1’)
実施例1’は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、λ/2板を備えたミラーディスプレイに関し、実施例1との違いは、λ/2板の遅相軸を95°方位としたことである。図3は、実施例1’のミラーディスプレイの構成を示す断面模式図である。図3に示すように、実施例1’のハーフミラープレート7a’は、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、λ/2板14a’(遅相軸の方位:95°)、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
本実施例のミラーディスプレイ4a’は、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶パネル11aに画像を表示させ、観察者は、ハーフミラープレート7a’越しに液晶パネル11aの画像を見る。液晶表示装置5aから出射される光は90°方位に振動する直線偏光であり、反射型偏光板13aは透過軸が90°方位に設定されているため、光はほとんどロスなく反射型偏光板13aを透過できる。その後、反射型偏光板13aを透過した光は、λ/2板14a’を透過することで、その振動方位が回転する。相対方位Φの直線偏光がλ/2板14a’を透過すると、透過後は相対方位-Φの直線偏光となるため、遅相軸が95°方位に設定されたλ/2板14a’を透過した光は、100°方位に振動する直線偏光となるが、軸方位の定義から、100°方位に振動する光と-80°方位に振動する光は全く同一である。したがって、ディスプレイモード及びミラーモードの動作原理は、実施例1のそれと同様であるので、説明を省略する。実施例1’のミラーディスプレイ4a’においても、50%より大きい反射率を呈しつつ、高輝度の表示を行い、更に製造効率を優れたものとすることができる。位相差板の遅相軸が90°異なる実施例1と実施例1’のミラーディスプレイは同じ性能となるので、位相差板の遅相軸の角度を5°に設定するか、95°に設定するかは製造効率の観点から決定しても良い。詳細な説明は省略するが、他の実施例についても同様の事が言える。
(実施例2)
実施例2は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、λ/2板を備えたミラーディスプレイに関し、実施例1との違いは、λ/2板の遅相軸を15°方位としたことである。図4は、実施例2のミラーディスプレイの構成を示す断面模式図である。図4に示すように、実施例2のハーフミラープレート7bは、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、λ/2板14b(遅相軸の方位:15°)、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
ディスプレイモード及びミラーモードの動作原理は、λ/2板14bの遅相軸の方位が異なることによる違いを除いて、実施例1のそれと同様であるので、説明を省略する。実施例2のミラーディスプレイ4bにおいても、50%より大きい反射率を呈しつつ、高輝度の表示を行い、更に製造効率を優れたものとすることができる。
(実施例3)
実施例3は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、λ/2板を備えたミラーディスプレイに関し、実施例1との違いは、λ/2板の遅相軸を22.5°方位としたことである。図5は、実施例3のミラーディスプレイの構成を示す断面模式図である。図5に示すように、実施例3のハーフミラープレート7cは、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、λ/2板14c(遅相軸の方位:22.5°)、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
ディスプレイモード及びミラーモードの動作原理は、λ/2板14cの遅相軸の方位が異なることによる違いを除いて、実施例1のそれと同様であるので、説明を省略する。実施例3のミラーディスプレイ4cにおいても、50%より大きい反射率を呈しつつ、高輝度の表示を行い、更に製造効率を優れたものとすることができる。
(実施例3’)
実施例3’は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、λ/2板を備えたミラーディスプレイに関し、実施例3との違いは、λ/2板として、日本ゼオン社製のシクロオレフィン系ポリマーフィルム(商品名:ゼオノアフィルム)を1軸延伸したものに代えて、未延伸のシクロオレフィン系ポリマーフィルムに、遅相軸が22.5°方位になるようにラビング配向処理を施した後、液晶性材料を塗布した塗布型位相差板を用いたことである。図6は、実施例3’のミラーディスプレイの構成を示す断面模式図である。図6に示すように、実施例3’のハーフミラープレート7c’は、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、λ/2板14c’(遅相軸の方位:22.5°)、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
ディスプレイモード及びミラーモードの動作原理は、λ/2板の材料が異なることによる違いを除いて、実施例3のそれと同様であるので、説明を省略する。実施例3’のミラーディスプレイ4c’においても、50%より大きい反射率を呈しつつ、高輝度の表示を行い、更に製造効率を優れたものとすることができる。
(実施例3’’)
実施例3’’は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、λ/2板を備えたミラーディスプレイに関し、実施例3との違いは、λ/2板として、日本ゼオン社製のシクロオレフィン系ポリマーフィルム(商品名:ゼオノアフィルム)を1軸延伸したものに代えて、遅相軸が22.5°方位に設定されたポリカーボネート樹脂製の位相差板を用いたことである。図7は、実施例3’’のミラーディスプレイの構成を示す断面模式図である。図7に示すように、実施例3’’のハーフミラープレート7c’’は、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、λ/2板14c’’(遅相軸の方位:22.5°)、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
ディスプレイモード及びミラーモードの動作原理は、λ/2板の材料が異なることによる違いを除いて、実施例3のそれと同様であるので、説明を省略する。実施例3’’のミラーディスプレイ4c’’においても、50%より大きい反射率を呈しつつ、高輝度の表示を行い、更に製造効率を優れたものとすることができる。
(実施例4)
実施例4は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、位相差板を備えたミラーディスプレイに関し、実施例1との違いは、λ/2板14aをその遅相軸が5°方位となるように配置する代わりに、λ/2板14aとは異なる位相差を有する位相差板をその遅相軸が5°とは異なる方位となるように配置したことである。図8は、実施例4のミラーディスプレイの構成を示す断面模式図である。図8に示すように、実施例4のハーフミラープレート7dは、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、位相差板15a、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
位相差板15aとしては、日本ゼオン社製のシクロオレフィン系ポリマーフィルム(商品名:ゼオノアフィルム)を1軸延伸して、面内位相差を60nmに調整したものを用いて、その遅相軸が45°方位となるように配置した。
なお、ガラス板12、反射型偏光板13a、13b、及び、位相差板15aは、各々、図1中の額縁領域Bに対応する部分まで延長されたものであってもよい。
本実施例のミラーディスプレイ4dは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であり、反射型偏光板13aは透過軸が90°方位に設定されているため、光はほとんどロスなく反射型偏光板13aを透過できる。その後、反射型偏光板13aを透過した光は、位相差板15aを透過することで、その楕円率や主軸方位が変化する可能性がある。面内位相差が60nm、遅相軸が45°に設定された本実施例の場合、位相差板15aを透過する前は楕円率0の直線偏光であった偏光状態が、位相差板15aを透過した後には楕円率0.35の楕円偏光に変化する。この際、主軸方位は変化しない。一方、反射型偏光板13bは透過軸が90°方位に設定されている。ここで、楕円偏光は、0°方位に振動する直線偏光の成分と、それとは直交する方位、すなわち90°方位に振動する直線偏光の成分とに分解して考えることができる。したがって、楕円偏光が、90°方位に透過軸を有する反射型偏光板13bに入射すると、90°方位に振動する直線偏光の成分は透過できる。このため、本実施例のミラーディスプレイ4dは、ハーフミラープレート7dを配置しているにも関わらず、高輝度の表示ができる。
ミラーモードでは、観察者側からハーフミラープレート7dに入射する光のうち、0°方位に振動する直線偏光は、透過軸が90°、すなわち反射軸が0°方位に設定された反射型偏光板13bでほとんど全てが反射される。
一方、観察者側からハーフミラープレート7dに入射する光のうち、90°方位に振動する直線偏光は、透過軸が90°方位に設定された反射型偏光板13bを透過する。反射型偏光板13bを透過した光は、位相差板15aでその楕円率が変化した後、反射型偏光板13aでその成分の一部が反射され、その反射光は再度位相差板15aを透過することで偏光状態を変化させる。その後、位相差板15aを透過した光の成分の一部は、反射型偏光板13bを透過できる。このため、本実施例のミラーディスプレイ4dは、50%よりも大きい反射率を呈し、高性能なミラーモードを提供できる。
また、反射型偏光板13a、13bは、各々の透過軸が90°方位となるように配置されているため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
なお、本実施例では、日本ゼオン社製のシクロオレフィン系ポリマーフィルム(商品名:ゼオノアフィルム)を1軸延伸して、面内位相差を60nmに調整した位相差板を使用したが、所望の位相差が発現しさえすれば、延伸方法は特に限定されず、任意の延伸方法を用いることができる。本実施例で使用した住友スリーエム社製の多層型反射型偏光板(商品名:DBEF)は、ロール状フィルムの流れ方向に対して平行に透過軸を有するので、それと平行ではない相対角度をなす遅相軸をもつ位相差板をロールtoロール貼合プロセスを用いて積層するために、ロールフィルムの流れ方向に対して斜め方向に延伸配向させる斜め延伸法を用いることが特に好ましい。特に、後述する実施例5のように、位相差板の面内位相差を140nmに調整する場合は、円偏光板を作成されるために実用化されている斜め延伸λ/4板を好適に用いることができる。また、高分子フィルムの延伸によらず、配向処理を施した基材フィルムの上に液晶性材料を塗布した塗布型位相差板を用いてもよい。更に、配向固定する方法や、基材フィルムに特別な配向処理を行わない方法や、配向固定した後、基材フィルムから剥がして別のフィルムに転写加工する方法等であってもよいし、液晶性材料以外の複屈折材料を塗布する方法であってもよい。これらの方法においても、ロール状の基材フィルムの流れ方向に対して斜め方向に配向処理を行うことで、多層型反射型偏光板とのロールtoロール貼合プロセスに対応が可能であり、製造コストを抑えることが可能となる。
(実施例5)
実施例5は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、位相差板を備えたミラーディスプレイに関し、実施例4との違いは、斜め延伸法を用いて、位相差板の面内位相差を140nm(=λ/4)としたことである。図9は、実施例5のミラーディスプレイの構成を示す断面模式図である。図9に示すように、実施例5のハーフミラープレート7eは、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、位相差板15b(遅相軸の方位:45°)、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
ディスプレイモード及びミラーモードの動作原理は、位相差板15bの面内位相差が異なることによる違い、すなわち、位相差板15bを透過した光は円偏光となることを除いて、実施例4のそれと同様であるので、説明を省略する。実施例5のミラーディスプレイ4eにおいても、50%より大きい反射率を呈しつつ、高輝度の表示を行い、更に製造効率を優れたものとすることができる。面内位相差を140nm(λ/4)に調整した本実施例は、円偏光板を作製するために市販されている斜め延伸λ/4板(例えば、日本ゼオン社製のZDフィルム)をそのまま流用することも可能であり、製造効率を特に優れたものとすることができる。
(実施例5’)
実施例5’は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、位相差板を備えたミラーディスプレイに関し、実施例5との違いは、λ/4板として、日本ゼオン社製のシクロオレフィン系ポリマーフィルム(商品名:ゼオノアフィルム)を1軸延伸したものに代えて、遅相軸が45°方位に設定された帝人化成社製の変性ポリカーボネート(商品名:ピュアエース(登録商標))の位相差板(逆波長分散型位相差板)を用いたことである。図10は、実施例5’のミラーディスプレイの構成を示す断面模式図である。図10に示すように、実施例5’のハーフミラープレート7e’は、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、位相差板15b’(遅相軸の方位:45°)、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
ディスプレイモード及びミラーモードの動作原理は、λ/4板の材料が異なることによる違いを除いて、実施例5のそれと同様であるので、説明を省略する。実施例5’のミラーディスプレイ4e’においても、50%より大きい反射率を呈しつつ、高輝度の表示を行い、更に製造効率を優れたものとすることができる。
(実施例5’’)
実施例5’’は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、位相差板を備えたミラーディスプレイに関し、実施例5との違いは、遅相軸の方位が45°の位相差板15bに代えて、未延伸のシクロオレフィン系ポリマーフィルムに、遅相軸が22.5°方位になるようにラビング配向処理を施した後、液晶性材料を塗布した塗布型位相差板(λ/2板14c’)と、未延伸のシクロオレフィン系ポリマーフィルムに、遅相軸が90°方位になるようにラビング配向処理を施した後、液晶性材料を塗布した塗布型位相差板(位相差板15b’’)との積層体を用いたことである。λ/2板14c’の面内位相差は275nm(=λ/2)、位相差板15b’’の面内位相差は140nm(=λ/4)とした。遅相軸が22.5°方位に設定されたλ/2板と、遅相軸が90°方位に設定されたλ/4板との積層体は、遅相軸が45°方位に設定された逆波長分散型λ/4板と同様に、90°方位の直線偏光を円偏光に変換する逆波長分散型λ/4板として機能することが知られており、R、G、B全ての波長の光を実質的に円偏光に変換することが可能である。図11は、実施例5’’のミラーディスプレイの構成を示す断面模式図である。図11に示すように、実施例5’’のハーフミラープレート7e’’は、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、λ/2板14c’(遅相軸の方位:22.5°)、位相差板15b’’(遅相軸の方位:90°)、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
ディスプレイモード及びミラーモードの動作原理は、位相差板の構成が異なることによる違いを除いて、実施例5のそれと同様であるので、説明を省略する。実施例5’’のミラーディスプレイ4e’’においても、50%より大きい反射率を呈しつつ、高輝度の表示を行い、更に製造効率を優れたものとすることができる。
(実施例6)
実施例6は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、位相差板を備えたミラーディスプレイに関し、実施例4との違いは、位相差板の面内位相差を200nmとしたことである。図12は、実施例6のミラーディスプレイの構成を示す断面模式図である。図12に示すように、実施例6のハーフミラープレート7fは、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、位相差板15c(遅相軸の方位:45°)、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
ディスプレイモード及びミラーモードの動作原理は、位相差板15cの面内位相差が異なることによる違いを除いて、実施例4のそれと同様であるので、説明を省略する。実施例6のミラーディスプレイ4fにおいても、50%より大きい反射率を呈しつつ、高輝度の表示を行い、更に製造効率を優れたものとすることができる。
(実施例7)
実施例7は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、位相差板を備えたミラーディスプレイに関し、実施例1との違いは、λ/2板14aの代わりにポリエチレンテレフタレート(PET)フィルムを配置したことである。図13は、実施例7のミラーディスプレイの構成を示す断面模式図である。図13に示すように、実施例7のハーフミラープレート7gは、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、PETフィルム16、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
PETフィルム16としては、三菱樹脂社製の二軸延伸PETフィルム(商品名:ダイアホイルT100-50)を用いた。PETフィルム16の面内位相差は872nmとした。また、二軸延伸のボーイング現象により、フィルムの流れ方向に対する遅相軸は31°方位であり、流れ方向と平行な辺及び直交する辺で長方形に切り出したものをPETフィルム16(遅相軸の方位:31°)として配置した。ボーイング現象とは、テンター式延伸法で二軸延伸する場合に、フィルム端部に近づくほど斜めに延伸される現象のことである。ボーイング現象は、延伸クリップで把持されたフィルム端部と、把持されていないフィルム中央部とで、延伸のされ方が異なるために起きる現象である。
なお、ガラス板12、反射型偏光板13a、13b、及び、PETフィルム16は、各々、図1中の額縁領域Bに対応する部分まで延長されたものであってもよい。
本実施例のミラーディスプレイ4gは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であり、反射型偏光板13aは透過軸が90°方位に設定されているため、光はほとんどロスなく反射型偏光板13aを透過できる。その後、反射型偏光板13aを透過した光は、PETフィルム16を透過することで、その楕円率が変化する。すなわち、PETフィルム16を透過した光は、楕円偏光となる。一方、反射型偏光板13bは透過軸が90°方位に設定されている。ここで、楕円偏光は、0°方位に振動する直線偏光の成分と、それとは直交する方位、すなわち90°方位に振動する直線偏光の成分とに分解して考えることができる。したがって、楕円偏光が、90°方位に透過軸を有する反射型偏光板13bに入射すると、90°方位に振動する直線偏光の成分は透過できる。このため、本実施例のミラーディスプレイ4gは、ハーフミラープレート7gを配置しているにも関わらず、高輝度の表示ができる。
ミラーモードでは、観察者側からハーフミラープレート7gに入射する光のうち、0°方位に振動する直線偏光は、透過軸が90°、すなわち反射軸が0°方位に設定された反射型偏光板13bでほとんど全てが反射される。
一方、観察者側からハーフミラープレート7gに入射する光のうち、90°方位に振動する直線偏光は、透過軸が90°方位に設定された反射型偏光板13bを透過する。反射型偏光板13bを透過した光は、PETフィルム16でその楕円率が変化した後、反射型偏光板13aでその成分の一部が反射され、その反射光は再度PETフィルム16を透過することで偏光状態を変化させる。その後、PETフィルム16を透過した光の成分の一部は、反射型偏光板13bを透過できる。このため、本実施例のミラーディスプレイ4gは、50%よりも大きい反射率を呈し、高性能なミラーモードを提供できる。
また、反射型偏光板13a、13bは、各々の透過軸が90°方位となるように配置されているため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。また、PETフィルムは光学フィルムの保護フィルム用途として大量量産されていることから、他の位相差板と比べて安価に入手可能である。そして、特別に斜め延伸を行わなくても、ボーイング現象により位相差の遅相軸がロール状フィルムの流れ方向に対して平行ではないため、多層型反射型偏光板とのロールtoロール貼合プロセスに対応が可能であり、製造コストを抑えることが可能となる。
(実施例8)
実施例8は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板、及び、偏光解消層を備えたミラーディスプレイに関し、実施例1との違いは、λ/2板14aの代わりに拡散粘着層(偏光解消層)を配置したことである。図14は、実施例8のミラーディスプレイの構成を示す断面模式図である。図14に示すように、実施例8のハーフミラープレート7hは、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、拡散粘着層17、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。反射型偏光板13b、及び、ガラス板12は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13a、13bの透過軸(方位:90°)とは、実質的に平行である。
拡散粘着層17としては、例えば、粘着剤の中に微粒子等の光拡散剤を含有させることで、光拡散機能を持たせた粘着剤を用いることができる。本実施例では、アクリル系粘着剤に、屈折率1.43、平均粒子径が4μmのシリカ系の透明無着色粒子を含有させて、ヘイズが61.8%であるものを用いた。
なお、ガラス板12、反射型偏光板13a、13b、及び、拡散粘着層17は、各々、図1中の額縁領域Bに対応する部分まで延長されたものであってもよい。
本実施例のミラーディスプレイ4hは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であり、反射型偏光板13aは透過軸が90°方位に設定されているため、光はほとんどロスなく反射型偏光板13aを透過できる。その後、反射型偏光板13aを透過した光は、拡散粘着層17を透過することで、その振動方位や楕円率が変化する。すなわち、拡散粘着層17を透過した光は、一般には楕円偏光となる。一方、反射型偏光板13bは透過軸が90°方位に設定されている。ここで、楕円偏光は、0°方位に振動する直線偏光の成分と、それとは直交する方位、すなわち90°方位に振動する直線偏光の成分とに分解して考えることができる。したがって、楕円偏光が、90°方位に透過軸を有する反射型偏光板13bに入射すると、90°方位に振動する直線偏光の成分は透過できる。このため、本実施例のミラーディスプレイ4hは、ハーフミラープレート7hを配置しているにも関わらず、高輝度の表示ができる。
ミラーモードでは、観察者側からハーフミラープレート7hに入射する光のうち、0°方位に振動する直線偏光は、透過軸が90°、すなわち反射軸が0°方位に設定された反射型偏光板13bでほとんど全てが反射される。
一方、観察者側からハーフミラープレート7hに入射する光のうち、90°方位に振動する直線偏光は、透過軸が90°方位に設定された反射型偏光板13bを透過する。反射型偏光板13bを透過した光は、拡散粘着層17でその楕円率が変化した後、反射型偏光板13aでその成分の一部が反射され、その反射光は再度拡散粘着層17を透過することで偏光状態を変化させる。その後、拡散粘着層17を透過した光の成分の一部は、反射型偏光板13bを透過できる。このため、本実施例のミラーディスプレイ4hは、50%よりも大きい反射率を呈し、高性能なミラーモードを提供できる。
また、反射型偏光板13a、13bは、各々の透過軸が90°方位となるように配置されているため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
なお、本実施例では、二つの反射型偏光板13a、13bの間に配置する偏光解消層として拡散粘着層17を用いたが、反射型偏光板13aを透過した光の振動方位や楕円率を変化させることができるものであれば、拡散粘着層17に代えて、他の種類の偏光解消層を用いてもよい。
(実施例9)
実施例9は、液晶表示装置、ハーフミラー層としての二つの反射型偏光板を備えたミラーディスプレイに関し、実施例1との違いは、λ/2板14aを配置せず、反射型偏光板13bの代わりにコレステリック液晶の選択反射を用いた反射型偏光板(以下、ChLC選択反射層とも言う。)18を配置したことである。図15は、実施例9のミラーディスプレイの構成を示す断面模式図である。図15に示すように、実施例9のハーフミラープレート7iは、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、ChLC選択反射層18、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13aの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13aの透過軸(方位:90°)とは、実質的に平行である。
ChLC選択反射層18としては、例えば、コレステリック液晶層の選択反射原理を利用した円偏光分離膜を用いることができる。これは、棒状液晶分子又は側鎖型液晶性高分子の液晶性基が層法線と平行な螺旋軸を回転軸として厚み方向に捩れた構造の液晶層を有し、その選択反射特性を利用して、左右回転の円偏光を、透過光及び反射光に分離するものである。本実施例では、上記特許文献7の実施例3に開示された方法で厚さ4μmのコレステリック液晶層を作製し、基材から剥がした液晶層のみを用いた。ChLC選択反射層18は、左円偏光を反射し、右円偏光を透過するように設計された。また、ChLC選択反射層としては、日東電工社製の反射型偏光板(商品名:PCF)が挙げられる。
なお、ガラス板12、ChLC選択反射層18、及び、反射型偏光板13aは、各々、図1中の額縁領域Bに対応する部分まで延長されたものであってもよい。
本実施例のミラーディスプレイ4iは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であり、反射型偏光板13aは透過軸が90°方位に設定されているため、光はほとんどロスなく反射型偏光板13aを透過できる。ここで、直線偏光は、左円偏光の成分と右円偏光の成分とに分解して考えることができる。したがって、直線偏光が、ChLC選択反射層18に入射すると、右円偏光の成分はほとんどロスなく透過でき、左円偏光の成分は反射する。左円偏光は、0°方位に振動する直線偏光の成分と、それとは直交する方位、すなわち90°方位に振動する直線偏光の成分とに分解して考えることができる。したがって、反射型偏光板13aは透過軸が90°方位に設定されているため、0°方位に振動する直線偏光の成分は、反射型偏光板13aで反射され、ChLC選択反射層18に向かって進行する。その後、上述した過程を繰り返し、ChLC選択反射層18で反射された左円偏光の成分の一部は、ChLC選択反射層18を透過できる。このため、本実施例のミラーディスプレイ4iは、ハーフミラープレート7iを配置しているにも関わらず、高輝度の表示ができる。
ミラーモードでは、観察者側からハーフミラープレート7iに入射する光のうち、左円偏光の成分は、ChLC選択反射層18でほとんど全てが反射される。
一方、観察者側からハーフミラープレート7iに入射する光のうち、右円偏光の成分は、ChLC選択反射層18を透過する。ChLC選択反射層18を透過した光は、反射型偏光板13aでその成分の一部が反射され、その反射光の成分の一部は、ChLC選択反射層18を透過できる。このため、本実施例のミラーディスプレイ4iは、50%よりも大きい反射率を呈し、高性能なミラーモードを提供できる。
また、本実施例では多層型反射型偏光板を一つしか用いていないため、反射型偏光板の面積収率が悪化することはなく、更にハーフミラープレートを構成する部材数がより少なく、効率よく製造することができる。
(実施例10)
実施例10は、液晶表示装置、ハーフミラー層としての一つの反射型偏光板、及び、誘電体多層膜を備えたミラーディスプレイに関し、実施例1との違いは、λ/2板14aを配置せず、反射型偏光板13aの代わりに誘電体多層膜19aを配置したことである。図16は、実施例10のミラーディスプレイの構成を示す断面模式図である。図16に示すように、実施例10のハーフミラープレート7jは、背面側から観察者側に向かって順に、誘電体多層膜19a、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13bの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13bの透過軸(方位:90°)とは、実質的に平行である。
誘電体多層膜19aとしては、光干渉の原理を利用して反射率が任意の値に調整されたミラーで、屈折率の異なる誘電体薄膜を多数積層させたものを用いることができ、例えば、低屈折率の酸化チタン(TiO)と高屈折率の二酸化ケイ素(SiO)とを交互に積層させた多層膜等が挙げられる。本実施例では、反射率40%、透過率60%に調整された旭硝子社製のサンカット(登録商標)Σクリア(SKFC)を用いた。
なお、ガラス板12、反射型偏光板13b、及び、誘電体多層膜19aは、各々、図1中の額縁領域Bに対応する部分まで延長されたものであってもよい。
本実施例のミラーディスプレイ4jは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であり、誘電体多層膜19aは反射率40%、透過率60%に設定されているため、光は誘電体多層膜19aで40%が反射され、60%は偏光状態を維持したまま誘電体多層膜19aを透過する。その後、誘電体多層膜19aを透過した光は、透過軸が90°方位に設定された反射型偏光板13bをほとんどロスなく透過できる。
ミラーモードでは、観察者側からハーフミラープレート7jに入射する光のうち、0°方位に振動する直線偏光は、透過軸が90°、すなわち反射軸が0°方位に設定された反射型偏光板13bでほとんど全てが反射される。
一方、観察者側からハーフミラープレート7jに入射する光のうち、90°方位に振動する直線偏光は、透過軸が90°方位に設定された反射型偏光板13bを透過する。反射型偏光板13bを透過した光は、反射率40%、透過率60%に設定された誘電体多層膜19aで40%は反射されるが、偏光状態は90°方位に振動する直線偏光のままであるため、反射型偏光板13bを透過できる。このため、本実施例のミラーディスプレイ4jは、50%よりも大きい反射率を呈し、高性能なミラーモードを提供できる。
また、本実施例では多層型反射型偏光板を一つしか用いていないため、反射型偏光板の面積収率が悪化することはなく、更にハーフミラープレートを構成する部材数がより少なく、効率よく製造することができる。
(実施例11)
実施例11は、液晶表示装置、ハーフミラー層としての一つの反射型偏光板、及び、誘電体多層膜を備えたミラーディスプレイに関し、実施例10との違いは、ハーフミラー層を構成する誘電体多層膜と反射型偏光板の積層順を逆にしたことである。図17は、実施例11のミラーディスプレイの構成を示す断面模式図である。図17に示すように、実施例11のハーフミラープレート7kは、背面側から観察者側に向かって順に、反射型偏光板13a(透過軸の方位:90°)、及び、誘電体多層膜19aを備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。なお、実施例10、11で用いた誘電体多層膜19aは、厚さ6mmのガラスを基材としたものであったため、本実施例では実施例10で用いたガラス板12を省略した。もちろん、表示装置の信頼性や強度を確保するため、ガラス板12を省略せずに残しておいても同様の効果が得られる。ここで、吸収型偏光板10aの透過軸(方位:0°)と反射型偏光板13aの透過軸(方位:90°)とは、実質的に直交している。また、吸収型偏光板10bの透過軸(方位:90°)と反射型偏光板13aの透過軸(方位:90°)とは、実質的に平行である。
なお、誘電体多層膜19a、及び、反射型偏光板13aは、各々、図1中の額縁領域Bに対応する部分まで延長されたものであってもよい。
本実施例のミラーディスプレイ4kは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であり、反射型偏光板13aは透過軸が90°方位に設定されているため、光はほとんどロスなく反射型偏光板13aを透過できる。反射型偏光板13aを透過した光は、反射率40%、透過率60%に設定された誘電体多層膜19aで40%が反射され、60%は誘電体多層膜19aを透過する。このため、本実施例のミラーディスプレイ4kは、ハーフミラープレート7kを配置しているにも関わらず、高輝度の表示ができる。
ミラーモードでは、観察者側からハーフミラープレート7kに入射する光のうち40%は、反射率40%、透過率60%に設定された誘電体多層膜19aで反射され、60%は誘電体多層膜19aを透過する。誘電体多層膜19aを透過した光は、反射型偏光板13aでその成分の約半分が反射され、その反射光の成分は誘電体多層膜19aで60%が透過し、40%は偏光状態を維持したまま反射され、再び反射型偏光板13aに向かって進行する。その後、上述した過程を繰り返し、反射型偏光板13aで反射された光の成分の一部は、誘電体多層膜19aを透過できる。このため、本実施例のミラーディスプレイ4kは、50%よりも大きい反射率を呈し、高性能なミラーモードを提供できる。
また、本実施例では多層型反射型偏光板を一つしか用いていないため、反射型偏光板の面積収率が悪化することはなく、更にハーフミラープレートを構成する部材数がより少なく、効率よく製造することができる。
上述したような各実施例のミラーディスプレイにおいて、ミラーモード時にミラー面として機能する領域であるミラー領域の一部に額縁領域を含めれば、ミラーモードのミラー領域をディスプレイモードの表示領域よりも大面積にすることができるので、額縁領域を有効活用してミラーとしての実用性を高めることができる。また、額縁領域にミラーとしての機能を付与することでディスプレイモード時のデザイン性が高まることがある。
(参考例1)
参考例1は、液晶表示装置、ハーフミラー層としての一つの反射型偏光板を備えたミラーディスプレイに関し、実施例1との違いは、λ/2板14a、及び、反射型偏光板13aを配置しないことである。図18は、参考例1のミラーディスプレイの構成を示す断面模式図である。図18に示すように、参考例1のハーフミラープレート7lは、背面側から観察者側に向かって順に、反射型偏光板13b(透過軸の方位:90°)、及び、ガラス板12を備える。各部材は、アクリル系の粘着剤(図示せず)を介して貼合した。
本参考例のミラーディスプレイ4lは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であり、反射型偏光板13bは透過軸が90°方位に設定されているため、光はほとんどロスなく反射型偏光板13bを透過できる。このため、本参考例のミラーディスプレイ4lは、ハーフミラープレート7lを配置しているにも関わらず、高輝度の表示ができる。
ミラーモードでは、観察者側からハーフミラープレート7lに入射する光のうち、0°方位に振動する直線偏光は、透過軸が90°、すなわち反射軸が0°方位に設定された反射型偏光板13bでほとんど全てが反射される。
しかしながら、本参考例のミラーディスプレイ4lは、一つの反射型偏光板でしか反射が起こらないため、上述した各実施例のミラーディスプレイと比べて、ミラーモード時の反射率が低く、ミラー性能に改善の余地がある。
(比較例1)
比較例1は、液晶表示装置、ハーフミラー層としての誘電体多層膜を備えたミラーディスプレイに関し、実施例1との違いは、ガラス板12、λ/2板14a、及び、反射型偏光板13a、13bを配置せず、誘電体多層膜19bを配置したことである。図19は、比較例1のミラーディスプレイの構成を示す断面模式図である。図19に示すように、比較例1のハーフミラープレート107aは、誘電体多層膜19bである。
誘電体多層膜19bとしては、反射率70%、透過率30%に調整された渋谷光学社製の誘電体多層膜(商品名:H264)を用いた。誘電体多層膜19bは、厚さ1mmのガラスを基材としたものであったため、上述した実施例のように、ガラス板12とは一体化しなかった。
本比較例のミラーディスプレイ104aは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であるが、その一部しか誘電体多層膜19bを透過しない。これは、誘電体多層膜が、反射型偏光板のような偏光選択性を有さないためである。
ミラーモードでは、観察者側からハーフミラープレート107aに入射する光のうちの一部は、誘電体多層膜19bで反射され、ミラーとして機能する。
しかしながら、本比較例のミラーディスプレイ104aは、反射型偏光板を用いていないため、上述した各実施例のミラーディスプレイと比べて、ディスプレイモード時の透過率が低く、ディスプレイ性能に改善の余地がある。
(比較例2)
比較例2は、液晶表示装置、ハーフミラー層としての誘電体多層膜を備えたミラーディスプレイに関し、比較例1との違いは、誘電体多層膜19bの代わりに誘電体多層膜19a配置したことである。図20は、比較例2のミラーディスプレイの構成を示す断面模式図である。図20に示すように、比較例2のハーフミラープレート107bは、誘電体多層膜19aである。
誘電体多層膜19aとしては、反射率40%、透過率60%に調整された旭硝子社製のSKFCを用いた。誘電体多層膜19aは、厚さ6mmのガラスを基材としたものであったため、上述した実施例のように、ガラス板12とは一体化しなかった。
本比較例のミラーディスプレイ104bは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であるが、その一部は誘電体多層膜19aを透過する。
ミラーモードでは、観察者側からハーフミラープレート107bに入射する光のうちの一部しか誘電体多層膜19aで反射されない。これは、誘電体多層膜が、反射型偏光板のような偏光選択性を有さないためである。
本比較例のミラーディスプレイ104bは、反射型偏光板を用いていないため、上述した各実施例のミラーディスプレイと比べて、ミラーモード時の反射率が低く、ミラー性能に改善の余地がある。
(比較例3)
比較例3は、液晶表示装置、ハーフミラー層としての金属蒸着膜を備えたミラーディスプレイに関し、実施例1との違いは、ガラス板12、λ/2板14a、及び、反射型偏光板13a、13bを配置せず、金属蒸着膜20aを配置したことである。図21は、比較例3のミラーディスプレイの構成を示す断面模式図である。図21に示すように、比較例3のハーフミラープレート107cは、金属蒸着膜20aである。
金属蒸着膜20aとしては、例えば、アルミニウムやクロム等の金属を蒸着させたミラーを用いることができる。この場合、蒸着膜の膜厚を非常に薄くすることで、金属蒸着膜に透過特性を持たせることもできる。本比較例では、クロム蒸着により反射率40%、透過率20%に調整された金属蒸着膜を用いた。ここで、誘電体多層膜とは異なり、金属蒸着膜には吸収特性があるため、反射率と透過率との和が100%にならない。なお、金属蒸着膜20aは、厚さ1mmのガラスを基材としたものであったため、上述した実施例のように、ガラス板12とは一体化しなかった。
本比較例のミラーディスプレイ104cは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であるが、その一部しか金属蒸着膜20aを透過しない。これは、金属蒸着膜が、反射型偏光板のような偏光選択性を有さない上に、吸収特性も大きいためである。
ミラーモードでは、観察者側からハーフミラープレート107cに入射する光のうちの一部は、金属蒸着膜20aで反射され、ミラーとして機能する。
しかしながら、本比較例のミラーディスプレイ104cは、反射型偏光板を用いた各実施例のミラーディスプレイ、及び、誘電体多層膜を用いた比較例1のミラーディスプレイと比べて、ディスプレイモード時の透過率が低く、ディスプレイ性能に改善の余地がある。
(比較例4)
比較例4は、液晶表示装置、ハーフミラー層としての金属蒸着膜を備えたミラーディスプレイに関し、比較例3との違いは、金属蒸着膜20aの代わりに金属蒸着膜20bを配置したことである。図22は、比較例4のミラーディスプレイの構成を示す断面模式図である。図22に示すように、比較例4のハーフミラープレート107dは、金属蒸着膜20bである。
金属蒸着膜20bとしては、クロム蒸着により反射率50%、透過率10%に調整された金属蒸着膜を用いた。なお、金属蒸着膜20bは、厚さ1mmのガラスを基材としたものであったため、上述した実施例のように、ガラス板12とは一体化しなかった。
本比較例のミラーディスプレイ104dは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であるが、その一部しか金属蒸着膜20bを透過しない。これは、金属蒸着膜が、反射型偏光板のような偏光選択性を有さない上に、吸収特性も大きいためである。
ミラーモードでは、観察者側からハーフミラープレート107dに入射する光のうちの一部は、金属蒸着膜20bで反射され、ミラーとして機能する。
しかしながら、本比較例のミラーディスプレイ104dは、反射型偏光板を用いた各実施例のミラーディスプレイ、及び、誘電体多層膜を用いた比較例1のミラーディスプレイと比べて、ディスプレイモード時の透過率が低く、ディスプレイ性能に改善の余地がある。
(比較例5)
比較例5は、液晶表示装置、ハーフミラー層としての金属蒸着膜を備えたミラーディスプレイに関し、比較例3との違いは、金属蒸着膜20aの代わりに金属蒸着膜20cを配置したことである。図23は、比較例5のミラーディスプレイの構成を示す断面模式図である。図23に示すように、比較例5のハーフミラープレート107eは、金属蒸着膜20cである。
金属蒸着膜20cとしては、クロム蒸着により反射率55%、透過率5%に調整された金属蒸着膜を用いた。なお、金属蒸着膜20cは、厚さ1mmのガラスを基材としたものであったため、上述した実施例のように、ガラス板12とは一体化しなかった。
本比較例のミラーディスプレイ104eは、以下の原理で、ディスプレイモード及びミラーモードの両方で動作させることができる。
ディスプレイモードでは、液晶表示装置5aから出射される光は90°方位に振動する直線偏光であるが、その一部しか金属蒸着膜20cを透過しない。これは、金属蒸着膜が、反射型偏光板のような偏光選択性を有さない上に、吸収特性も大きいためである。
ミラーモードでは、観察者側からハーフミラープレート107eに入射する光のうちの一部は、金属蒸着膜20cで反射され、ミラーとして機能する。
しかしながら、本比較例のミラーディスプレイ104eは、反射型偏光板を用いた各実施例のミラーディスプレイ、及び、誘電体多層膜を用いた比較例1のミラーディスプレイと比べて、ディスプレイモード時の透過率が低く、ディスプレイ性能に改善の余地がある。
[ミラーディスプレイの評価結果]
実施例1~11、参考例1、及び、比較例1~5のミラーディスプレイについて、(1)ディスプレイモード時の透過率、(2)ミラーモード時の反射率、(3)ディスプレイモード時の透過率とミラーモード時の反射率との和を下記表1にまとめた。
ここで、ディスプレイモード時の透過率は、液晶表示装置を白表示させたときの画面輝度を暗室で測定し、各例で共通に利用した液晶表示装置(シャープ社製、商品名:LC-20F5)の白表示輝度を100%とする規格化を行って算出した。測定器は、トプコン社製の分光放射計(商品名:SR-UL1)を用い、視感補正されたY値を輝度とした。
また、ミラーモード時の反射率は、液晶表示装置が黒表示(電源オフ状態)をしたときの反射率のことであり、測定器は、コニカミノルタ社製の卓上型分光測色計(商品名:CM-2600d、測定波長範囲:360nm~740nm、積分球方式)を用いた。反射測定モードは、SCI(Specular Component Included)モードであった。SCIモードでは、拡散反射光及び正反射光の両方を測定し、正反射光を含む反射率が測定される。
Figure JPOXMLDOC01-appb-T000001
主観評価の結果、実施例1~11、及び、参考例1のミラーディスプレイはいずれも、ディスプレイモードにおいて充分な画面輝度を呈し、ディスプレイ性能が充分であると評価された。また、実施例1~11、及び、参考例1のミラーディスプレイはいずれも、ミラーとしての実用性はあると評価された。特に、実施例1~11のミラーディスプレイはいずれも、視覚上明るいミラーであると評価された。また、ミラーモード時の反射率が65%を超えた実施例3、3’、3’’、5、5’、5’’、6、9、10、11のミラーディスプレイは、ミラーディスプレイではない普通のミラー(反射率:約80%)と比較しても視覚上遜色なかった。また、実施例1~11、及び、参考例1のミラーディスプレイはいずれも、ディスプレイモード時の透過率とミラーモード時の反射率との和が100%を大きく上回っており、ディスプレイ性能と、ミラー性能とがトレードオフ関係にあるものの、それらの性能は総合的に優れていた。
一方、比較例1のミラーディスプレイは、ミラーとしての実用性はあると評価されたが、ディスプレイモードにおいて画面輝度が低く、ディスプレイ性能が不充分であると評価された。比較例2~5のミラーディスプレイは、ディスプレイ性能及びミラー性能のうちのいずれか一方、又は、両方が不充分であると評価された。比較例1~5のミラーディスプレイはいずれも、ディスプレイモード時の透過率とミラーモード時の反射率との和が100%よりも小さくなっており、各実施例のミラーディスプレイと比べて、それらの性能は総合的に劣っていた。
表1の内容をグラフ化したものを図24にまとめた。図24は、実施例1~11、参考例1、及び、比較例1~5のミラーディスプレイにおける、ディスプレイモード時の透過率、及び、ミラーモード時の反射率を示すグラフである。図24に示すように、どの反射率で比べたとしても、少なくとも一つの反射型偏光板を用いた実施例1~11(参考例1)のミラーディスプレイは、反射型偏光板を用いていない比較例1~5のミラーディスプレイと比べて、常により高い透過率を呈することが分かる。また、どの透過率で比べたとしても、少なくとも一つの反射型偏光板を用いた実施例1~11(参考例1)のミラーディスプレイは、反射型偏光板を用いていない比較例1~5のミラーディスプレイと比べて、常により高い反射率を呈することが分かる。
ここで、ミラーモード時の反射率を100%に近づけると、ディスプレイモード時の透過率の極限値は、実施例1~11、参考例1、及び、比較例1~5の全てにおいて、原理的に0%となる。一方、ミラーモード時の反射率を0%に近づけると、ディスプレイモード時の透過率の極限値は原理的に100%となる。しかしながら、実施例1~11、及び、参考例1においては、ミラーモード時の反射率を50%よりも大幅に小さくすることはできず、ミラーモード時の反射率を50%に近づけると、ディスプレイモード時の透過率の極限値は原理的に100%となる。以上より、図24中に示した実線は、これらの原理的な予測に基づいて各実測点を内外挿した近似曲線である。
なお、実施例3、実施例3’、及び、実施例5は、いずれも反射率が約70%、透過率が約60%であったが、主観評価により詳細に観察すると、ディスプレイモード時に白表示をした時の色味に違いがあった。実施例3及び実施例3’は着色が少ない、実施例5はやや黄味がかっていた。トプコン社製の分光放射計(商品名:SR-UL1)を用いて、色度(x,y)を測定したところ、下記表2のような結果となり、実施例3及び実施例3’のディスプレイモードはハーフミラープレートのない液晶表示装置(商品名:LC-20F5)と同様の色度を呈した。一方、実施例5のディスプレイモードは、色度x、色度yともに増加傾向が見られ、黄色方向に色度シフトしていることが確認された。
Figure JPOXMLDOC01-appb-T000002
この着色の違いは、ディスプレイモード時における各実施例のハーフミラープレート透過前後の偏光状態を、ポアンカレ球上で考察することで説明できる。
図25は、実施例3及び実施例3’のハーフミラープレート透過前後の偏光状態をポアンカレ球上で示す図である。なお、説明を分かりやすくするため、偏光状態を表す点は実際とは多少異なるように図示してあるものもあり、正確ではない。反射型偏光板13a透過直後の偏光状態はポアンカレ球上で点P0に位置し、λ/2板を透過することで、点P0にあった偏光状態は、ポアンカレ球上の点Rで表されるλ/2板の遅相軸を中心にして、λ/2、すなわち、180°の回転を受け、点P1に到達する。この時、回転方向は点Rから原点Oを向かうように見て反時計回りである。そして、次に反射型偏光板13bを透過する。反射型偏光板13bが透過させることのできる偏光状態はポアンカレ球上で点A(点P0と同じ場所)に位置するので、透過率は点P1と点Aをつなぐ円弧の張る中心角をαとする時、そのαの大きさで決定される。具体的には1+cosαに比例する。
ここまでの説明は、波長550nmの単色光に関するものであったが、他の波長の光に対しても同様である。ただし、λ/2板の位相差が、波長によって異なる点に注意を要する。実施例3のλ/2板は、シクロオレフィン系ポリマーフィルムからなるので、その位相差波長分散は比較的小さいが、波長550nm(Green:G)で275nmに位相差を調整した場合、波長450nm(Blue:B)の位相差は277nmに、波長650nm(Red:R)の位相差は273nmになる。それぞれの波長で除すると、B、G、Rの順に、0.61、0.50、0.42となる。したがって、本実施例のλ/2板は正確には波長550nm以外の波長でλ/2板になっておらず、ポアンカレ球上での回転角は、B、G、Rの順に、219°、180°、151°となり、各波長の点P1に対応する点P1_B、点P1_G、及び、点P1_Rは各々僅かにずれる。しかしながら、図25で見るように、点P1_B、点P1_G、及び、点P1_Rは点Aが属するポアンカレ球の赤道を挟んで縦に整列したような配置になり、αの波長分散はあまり大きくない。したがって、透過率の波長分散もあまり大きくなく、透過表示の着色が少ないことが理解できる。
実施例3’のλ/2板は、液晶性材料からなるので、その位相差波長分散は比較的大きい。波長550nm(Green:G)で275nmに位相差を調整した場合、波長450nm(Blue:B)の位相差は288nmに、波長650nm(Red:R)の位相差は266nmになる。それぞれの波長で除すると、B、G、Rの順に、0.64、0.50、0.40となる。したがって、本実施例のλ/2板は正確には波長550nm以外の波長でλ/2板になっておらず、ポアンカレ球上での回転角は、B、G、Rの順に、230°、180°、144°となり、各波長の点P1に対応する点P1_B、点P1_G、及び、点P1_Rは各々僅かにずれる。しかしながら、図25で見るように、点P1_B、点P1_G、及び、点P1_Rは点Aが属するポアンカレ球の赤道を挟んで縦に整列したような配置になり、αの波長分散はあまり大きくない。したがって、透過率の波長分散もあまり大きくなく、透過表示の着色が少ないことが理解できる。このように、λ/2板を用いたハーフミラープレートの透過表示は、位相差板材料の波長分散の影響を受けにくいことが確認された。
また、実施例3’よりも更に波長分散の大きいポリカーボネート樹脂製の位相差板を用いてミラーディスプレイを試作した実施例3’’のディスプレイモードは、実施例3及び実施例3’のそれと同様に、ハーフミラープレートのない液晶表示装置(商品名:LC-20F5)と同様の色度を呈した。
図26は、実施例5のハーフミラープレート透過前後の偏光状態をポアンカレ球上で示す図である。反射型偏光板13a透過直後の偏光状態はポアンカレ球上で点P0に位置し、λ/4板を透過することで、点P0にあった偏光状態は、ポアンカレ球上の点Rで表されるλ/4板の遅相軸を中心にして、λ/4、すなわち、90°の回転を受け、点P1に到達する。この時、回転方向は点Rから原点Oを向かうように見て反時計回りである。そして、次に反射型偏光板13bを透過する。反射型偏光板13bが透過させることのできる偏光状態はポアンカレ球上で点A(点P0と同じ場所)に位置するので、透過率は点P1と点Aをつなぐ円弧の張る中心角をαとする時、そのαの大きさで決定される。具体的には1+cosαに比例する。実施例5の点P1は北極に位置し、赤道上に位置した実施例3の場合と大きく異なるが、αはいずれも約90°であるので、いずれの実施例のハーフミラープレートも略同じ透過率を呈することが理解できる。
ここまでの説明は、波長550nmの単色光に関するものであったが、他の波長の光に対しても同様である。ただし、λ/4板の位相差が、波長によって異なる点に注意を要する。実施例5のλ/4板は、シクロオレフィン系ポリマーフィルムからなるので、その位相差波長分散は比較的小さいが、波長550nm(Green:G)で140nmに位相差を調整した場合、波長450nm(Blue:B)の位相差は141nmに、波長650nm(Red:R)の位相差は139nmになる。それぞれの波長で除すると、B、G、Rの順に、0.31、0.25、0.21となる。したがって、本実施例のλ/4板は正確には波長550nm以外の波長でλ/4板になっておらず、ポアンカレ球上での回転角は、B、G、Rの順に、111°、90°、76°となり、各波長の点P1に対応する点P1_B、点P1_G、及び、点P1_Rは各々僅かにずれる。実施例5の場合は、αが前記回転角そのものに等しく、実施例3の場合に比べてαの波長分散が大きくなる。αが大きいほど透過率は低下するので、Blueの透過率が相対的に最も低くなり、透過表示が黄色く着色することが理解できる。
なお、この問題は、波長が大きくなるほど位相差が大きくなる、いわゆる逆波長分散型位相差板を用いることで解決できる。逆波長分散型位相差板としては、例えば、帝人化成社製の変性ポリカーボネート(商品名:ピュアエース(登録商標))や、2枚以上の位相差板を積層することで、見かけの波長分散を制御した積層型位相差板が挙げられる。これらの逆波長分散型位相差板を用いて実際にミラーディスプレイを試作した実施例5’及び実施例5’’のディスプレイモードは、上記表2に示すように、実施例5のそれと比べて着色がより少なかった。
実施例3、3’、3’’、及び、実施例5、5’、5’’の比較から分かるように、ディスプレイモードの透過表示の着色を避ける観点から、λ/2板を用いる構成がより好ましい。λ/2板を用いる構成によれば、位相差板(λ/2板)の材料の波長分散によらず、着色の少ない、良好なディスプレイ性能を得ることができる。
以上のように、実施例1~11のミラーディスプレイによれば、ディスプレイ性能を犠牲にすることなく、反射率が充分に高いミラーモードを提供できる。また、ハーフミラープレートの面積収率が悪化することなく、製造効率を向上することができるミラーディスプレイを提供できる。そして、実施例3、3’、3’’、5、5’、5’’、6、9、10、11のミラーディスプレイは、普通のミラーと比較しても遜色のない反射率を呈し、実用性も充分なミラーモードを提供できる。
(実施例12)
実施例12の電子機器は、実施例1のミラーディスプレイ4aと、表示光制御装置とを備えた電子機器である。図27は、実施例12の電子機器の主要な構成を説明するためのブロック図である。図27に示すように、ミラーディスプレイ4aは、液晶表示装置5a、及び、ハーフミラープレート7aを備え、液晶表示装置5a内には、液晶パネル11a、及び、バックライト9aが含まれる。表示光制御装置22は、パネル制御部23、バックライト制御部24、及び、信号制御部25を含む。
パネル制御部23は、液晶パネル11aを駆動するコントローラー及びドライバーを含み、物理的な構成上は、液晶表示装置5aに内蔵されていてもよいし、内蔵されていなくてもよい。本実施例では、パネル制御部23は、液晶表示装置5aとして用いた、シャープ社製液晶テレビ(商品名:LC-20F5)に内蔵されている。
バックライト制御部24は、バックライト9aを駆動するためのコントローラーやドライバーを含み、液晶表示装置5aに内蔵されていてもよいし、内蔵されていなくてもよい。バックライト制御部24により、ディスプレイモードとミラーモードとの切換信号が出力される。また、バックライト制御部24は、映像信号の有無に応じて、バックライト9aの消灯機能を付与する。
信号制御部25は、パネル制御部23とバックライト制御部24とを連動させるための信号を出力する。
利用者がミラーモードを選択したとき、表示光制御装置22は、パネル制御部23に対して液晶パネル11aの駆動を停止するように制御信号を送信し、バックライト制御部24に対してバックライト9aを消灯するように制御信号を送信する。このようにして、ミラーモード時にミラー面の背面側に不要な漏れ光が存在することを防止し、ミラーモードのミラー性能を最大限に高めると同時に、液晶表示装置5aの消費電力を抑えることができる。また、映像信号がゼロ、すなわち、液晶表示装置5aが黒画面を表示しているときに、信号制御部25は、バックライト制御部24に対してバックライト9aを消灯するように制御信号を送信する設定とすることも可能である。
なお、本実施例の電子機器21aは、実施例1のミラーディスプレイ4aの代わりに、実施例2~11のミラーディスプレイのいずれか一つを用いたものとしてもよい。
(実施例13)
実施例13は、ミラーディスプレイ及び表示光制御装置を備えた電子機器に関し、実施例12との違いは、液晶表示装置のバックライトとしてローカルディミングバックライトを採用したことである。図28は、実施例13の電子機器の主要な構成を説明するためのブロック図である。図28に示すように、ミラーディスプレイ4a’’は、液晶表示装置5a’’、及び、ハーフミラープレート7aを備え、液晶表示装置5a’’内には、液晶パネル11a、及び、ローカルディミングバックライト9bが含まれる。表示光制御装置22は、パネル制御部23、バックライト制御部24、及び、信号制御部25を含む。
ローカルディミングバックライトとは、バックライトの発光領域を複数のブロック(領域)に分割し、入力画像に応じてバックライトの輝度をブロック毎に調節したり、消灯したりする機能を備えるバックライトユニットのことである。本実施例では、横16個×縦9個のブロックに分けてLED光源を配列し、LEDコントローラーからの制御信号に応じて、ブロック毎にバックライトの輝度を制御可能とした。
ローカルディミングバックライト9bによれば、ブロック毎に、すなわち、局所的にバックライトの輝度を制御できるため、ディスプレイモードとミラーモードとを画面全体で時間的に切り替える機能だけではなく、同時刻、同一面内で、ある領域はミラーモード、その他の領域はディスプレイモードとして動作させる機能を提供できる。例えば、表示領域の中心にミラー領域を形成してもよい。ミラーモードとして動作させる領域は、バックライトを局所的に消灯させるか、あるいは輝度を低くする。
また、本実施例の電子機器21bは、タッチパネル等の入力機器を更に備えてもよい。この場合、例えば、タッチパネルのピンチイン、ピンチアウトの操作に応じて、ディスプレイ領域及びミラー領域のサイズを変更する機能を付与してもよい。これにより、画面(タッチパネル)をピンチインすると、その操作に合わせてディスプレイ領域のサイズが縮小し、その周辺部、すなわち、ミラー領域のサイズが拡大し、その逆に、画面(タッチパネル)をピンチアウトすると、その操作に合わせてディスプレイ領域のサイズが拡大し、その周辺部、すなわち、ミラー領域のサイズが縮小する。このような操作感を提供することにより、電子機器の利便性を高め、商品価値を向上することができる場合がある。なお、この機能は、ミラー領域としたい領域に黒表示を行うことで、ローカルディミングバックライト9bを設けない実施例12の電子機器21aにおいても実現可能である。ただし、液晶表示装置5aからの漏れ光がミラー領域のミラー性能を劣化させると、利用者が違和感を感じる可能性があるため、本実施例のように、ローカルディミングバックライト9bを用いる形態において特に好適である。
なお、本実施例の電子機器21bは、ミラーディスプレイ4a’’の代わりに、実施例2~11のミラーディスプレイのいずれか一つにおけるバックライト9aをローカルディミングバックライト9bに置き換えたミラーディスプレイを用いたものとしてもよい。
[付記]
以下に、本発明に係るミラーディスプレイの好適な態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
本発明において、表示装置中の偏光板の透過軸と、ハーフミラープレート中の少なくとも二つのハーフミラー層に含まれる反射型偏光板の透過軸とは、実質的に平行又は実質的に直交する関係となる。このような関係となる構成の例としては次のようなものが挙げられる。
表示装置中に1枚の偏光板が含まれる場合(例:有機EL表示装置に反射防止用の偏光板が設けられる場合)や、表示装置中に互いに平行な透過軸を有する複数の偏光板が含まれる場合(例:液晶表示装置にパラレルニコルの一対の偏光板が設けられる場合)であって、かつ上記少なくとも一つの反射型偏光板が少なくとも一つの多層型反射型偏光板を含むものである場合には、表示装置中の偏光板の透過軸に対して、上記少なくとも一つの反射型偏光板がいずれも実質的に平行である構成が好適である。一方、クロスニコルの一対の偏光板を用いる方式の液晶表示装置において、ハーフミラープレートに近い側(通常は、表側)の偏光板を取り除き、その機能をハーフミラープレート中の多層型反射型偏光板に代替させるような場合には、液晶表示装置中のハーフミラープレートから遠い側の偏光板と上記多層型反射型偏光板とをクロスニコルに配置することになるので、液晶表示装置中の偏光板の透過軸に対して、上記少なくとも一つの反射型偏光板がいずれも実質的に直交する構成が好適である。
また、表示装置中に互いに直交する透過軸を有する一対の偏光板が含まれる場合(例:液晶表示装置にクロスニコルの一対の偏光板が設けられる場合)であって、かつ上記少なくとも一つの反射型偏光板が少なくとも一つの多層型反射型偏光板を含むものである場合には、ハーフミラープレートに近い側(通常は、表側)の偏光板の透過軸に対して、上記少なくとも一つの多層型反射型偏光板の透過軸がいずれも実質的に平行である構成が好適である。この構成では、ハーフミラープレートから遠い側(通常は、裏側)の偏光板の透過軸との関係では、上記少なくとも一つの多層型反射型偏光板は実質的に直交することになる。
上記少なくとも一つの反射型偏光板は、第一及び第二の反射型偏光板を含み、上記ハーフミラープレートは、上記表示装置側から順に、上記第一の反射型偏光板、位相差板、及び、上記第二の反射型偏光板を有し、上記第一の反射型偏光板の透過軸と上記第二の反射型偏光板の透過軸とは、実質的に平行であるものであってもよい。これにより、ハーフミラー層として二つの多層型反射型偏光板を用いる場合においても、各々の透過軸を実質的に平行に配置することができるため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
上記位相差板は、λ/2板であってもよい。これにより、λ/2板で偏光軸を回転させる効果を利用して、上記少なくとも二つのハーフミラー層をそれぞれ効果的に活用することができる。更に、ハーフミラー層として複数の多層型反射型偏光板を用いる場合においても、各々の透過軸を実質的に平行に配置することができるため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
上記位相差板は、λ/4板であってもよい。これにより、λ/4板で円偏光に変換させる効果を利用して、上記少なくとも二つのハーフミラー層をそれぞれ効果的に活用することができる。更に、ハーフミラー層として複数の多層型反射型偏光板を用いる場合においても、各々の透過軸を実質的に平行に配置することができるため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
上記位相差板は、ポリエチレンテレフタレート(PET)フィルムであってもよい。これにより、ポリエチレンテレフタレートフィルムを低コストの位相差板として利用して、上記少なくとも二つのハーフミラー層をそれぞれ効果的に活用することができる。更に、ハーフミラー層として複数の多層型反射型偏光板を用いる場合においても、各々の透過軸を実質的に平行に配置することができるため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
上記ハーフミラープレートは、上記少なくとも二つのハーフミラー層の間に、更に偏光解消層を含むものであってもよい。これにより、偏光解消層で偏光解消させる効果を利用して、上記少なくとも二つのハーフミラー層をそれぞれ効果的に活用することができる。更に、ハーフミラー層として複数の多層型反射型偏光板を用いる場合においても、各々の透過軸を実質的に平行に配置することができるため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
上記偏光解消層は、拡散粘着層を含むものであってもよい。これにより、拡散粘着層の光拡散機能を利用して、上記少なくとも二つのハーフミラー層をそれぞれ効果的に活用することができる。更に、ハーフミラー層として複数の多層型反射型偏光板を用いる場合においても、各々の透過軸を実質的に平行に配置することができるため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
上記少なくとも一つの反射型偏光板は、多層型反射型偏光板、及び、コレステリック液晶の選択反射を用いた反射型偏光板を含み、上記ハーフミラープレートは、上記表示装置側から順に、上記多層型反射型偏光板、及び、上記コレステリック液晶の選択反射を用いた反射型偏光板を有するものであってもよい。これにより、コレステリック液晶の選択反射特性を利用して、上記ハーフミラープレートを効果的に活用することができる。更に、多層型反射型偏光板を一つしか用いていないため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
上記少なくとも一つの反射型偏光板は、多層型反射偏光板を含み、上記少なくとも二つのハーフミラー層は、上記多層型反射型偏光板以外に誘電体多層膜を含み、上記ハーフミラープレートは、上記表示装置側から順に、上記誘電体多層膜、及び、上記多層型反射型偏光板を有するものであってもよい。これにより、光干渉の原理を用いて透過率及び反射率を制御する誘電体多層膜の特性を利用して、上記ハーフミラープレートを効果的に活用することができる。更に、多層型反射型偏光板を一つしか用いていないため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
上記少なくとも一つの反射型偏光板は、多層型反射偏光板を含み、上記少なくとも二つのハーフミラー層は、上記多層型反射型偏光板以外に誘電体多層膜を含み、上記ハーフミラープレートは、上記表示装置側から順に、上記多層型反射型偏光板、及び、上記誘電体多層膜を有するものであってもよい。これにより、光干渉の原理を用いて透過率及び反射率を制御する誘電体多層膜の特性を利用して、上記ハーフミラープレートを効果的に活用することができる。更に、多層型反射型偏光板を一つしか用いていないため、反射型偏光板の面積収率が悪化することはなく、効率よく製造することができる。
上記表示装置は、液晶表示装置であってもよい。また、上記表示装置の種類は、偏光が出射するものであれば特に限定されず、例えば、反射防止用の偏光板が積層された有機エレクトロルミネセンス表示装置であってもよい。また、立体(3D)映像を観察することができる、いわゆる3D対応ディスプレイであってもよい。3D対応ディスプレイによれば、ミラー領域と同様にディスプレイ領域にも自然な奥行感を提供することができ、ミラーディスプレイのデザイン性を向上し、多様な用途においてミラーディスプレイを活用できる。3D対応ディスプレイの立体映像表示方式は特に限定されず、任意の方式が利用できるが、メガネを必要としない裸眼方式がより好ましい。裸眼方式の3D対応ディスプレイとしては、例えば、レンチキュラーレンズ方式、視差バリア方式が挙げられる。
上記液晶表示装置は、上記ハーフミラープレート側から順に、第一の偏光板、液晶層、第二の偏光板を有し、上記少なくとも一つの反射型偏光板は、上記第二の偏光板の透過軸と実質的に直交し、上記第一の偏光板の透過軸と実質的に平行な透過軸を有するものであってもよい。これにより、上記表示装置が液晶表示装置である場合においても、本発明を好適に用いることができる。
以上に、本発明に係るミラーディスプレイの好適な態様の例を挙げたが、それらの例の中でハーフミラープレートの特徴に関係するものは、本発明に係るハーフミラープレートの好適な態様の例でもある。
以下に、本発明に係る電子機器の好適な態様の例を挙げる。
上記電子機器は、ミラーモードとディスプレイモードとを画面全体で時間的に切り替える機能だけではなく、同時刻、同一面内で、ある領域はミラーモード、その他の領域はディスプレイモードとして動作させる機能を有していてもよい。例えば、表示装置において表示領域の中心部分を黒表示状態とし、周辺部分を画像表示状態とすることで、表示領域の中心部分のみにミラー領域を形成してもよい。すなわち、上記電子機器は、更に、上記表示領域を複数の領域に分割して制御する制御装置を有し、上記制御装置は、上記複数の領域の中から、画像を表示する領域を選択することにより、画像が表示される範囲及び位置を変更できるものであってもよい。画像が表示される範囲及び位置を変更できることにより、ミラーの機能と表示装置による画像表示機能とを組み合わせた多様な用途を提供することができる。
上記電子機器は、ミラーモードとして動作させる領域では、バックライトを局所的に消灯させてもよく、バックライトの輝度を低くしてもよい。これらにより、液晶表示装置からの漏れ光を低減できる。これらの場合においては、ローカルディミングバックライトを用いてもよい。
上記画像の表示範囲は、ピンチイン及びピンチアウトにより変更できるものであってもよい。この場合、使い勝手のよい電子機器を実現できる。
1:ディスプレイモードのミラーディスプレイ
2:ミラーモードのミラーディスプレイ
4a、4a’、4a’’、4b、4c、4c’、4c’’、4d、4e、4e’、4e’’、4f、4g、4h、4i、4j、4k、4l、104a、104b、104c、104d、104e:ミラーディスプレイ
5a、5a’’:液晶表示装置
6a:空気層
7a、7a’、7b、7c、7c’、7c’’、7d、7e、7e’、7e’’、7f、7g、7h、7i、7j、7k、7l、107a、107b、107c、107d、107e:ハーフミラープレート
9a:バックライト
9b:ローカルディミングバックライト
10a、10b:吸収型偏光板
11a:液晶パネル
12:ガラス板
13a、13b:反射型偏光板
14a、14a’、14b、14c、14c’、14c’’:λ/2板
15a、15b、15b’、15b’’、15c:位相差板
16:ポリエチレンテレフタレート(PET)フィルム
17:拡散粘着層
18:コレステリック液晶の選択反射を用いた反射型偏光板(ChLC選択反射層)
19a、19b:誘電体多層膜
20a、20b、20c:金属蒸着膜
21a、21b:電子機器
22:表示光制御装置
23:パネル制御部
24:バックライト制御部
25:信号制御部
101:電源オン状態の表示装置
102:電源オフ状態の表示装置

Claims (15)

  1. 少なくとも二つのハーフミラー層を有するハーフミラープレートと、
    前記ハーフミラープレートの裏側に配置された表示装置と、を有するミラーディスプレイであって、
    前記表示装置は、偏光板を含み、
    前記少なくとも二つのハーフミラー層は、少なくとも一つの反射型偏光板を含み、
    前記偏光板の透過軸と前記少なくとも一つの反射型偏光板の透過軸とは、実質的に平行又は実質的に直交し、
    前記表示装置から表示光が出射され、前記表示光がハーフミラープレートを透過するディスプレイモードと、前記表示装置から表示光を出射しないミラーモードとが切り換え可能であり、
    前記ディスプレイモードの透過率と前記ミラーモードの反射率との和が100%よりも大きいことを特徴とするミラーディスプレイ。
  2. 前記少なくとも一つの反射型偏光板は、第一及び第二の反射型偏光板を含み、
    前記ハーフミラープレートは、前記表示装置側から順に、前記第一の反射型偏光板、位相差板、及び、前記第二の反射型偏光板を有し、
    前記第一の反射型偏光板の透過軸と前記第二の反射型偏光板の透過軸とは、実質的に平行であることを特徴とする請求項1に記載のミラーディスプレイ。
  3. 前記位相差板は、λ/2板であることを特徴とする請求項2に記載のミラーディスプレイ。
  4. 前記位相差板は、λ/4板であることを特徴とする請求項2に記載のミラーディスプレイ。
  5. 前記位相差板は、ポリエチレンテレフタレートフィルムであることを特徴とする請求項2に記載のミラーディスプレイ。
  6. 前記ハーフミラープレートは、前記少なくとも二つのハーフミラー層の間に、更に偏光解消層を含むことを特徴とする請求項1に記載のミラーディスプレイ。
  7. 前記偏光解消層は、拡散粘着層を含むことを特徴とする請求項6に記載のミラーディスプレイ。
  8. 前記少なくとも一つの反射型偏光板は、多層型反射型偏光板、及び、コレステリック液晶の選択反射を用いた反射型偏光板を含み、
    前記ハーフミラープレートは、前記表示装置側から順に、前記多層型反射型偏光板、及び、前記コレステリック液晶の選択反射を用いた反射型偏光板を有することを特徴とする請求項1に記載のミラーディスプレイ。
  9. 前記少なくとも一つの反射型偏光板は、多層型反射偏光板を含み、
    前記少なくとも二つのハーフミラー層は、前記多層型反射型偏光板以外に誘電体多層膜を含み、
    前記ハーフミラープレートは、前記表示装置側から順に、前記誘電体多層膜、及び、前記多層型反射型偏光板を有することを特徴とする請求項1に記載のミラーディスプレイ。
  10. 前記少なくとも一つの反射型偏光板は、多層型反射偏光板を含み、
    前記少なくとも二つのハーフミラー層は、前記多層型反射型偏光板以外に誘電体多層膜を含み、
    前記ハーフミラープレートは、前記表示装置側から順に、前記多層型反射型偏光板、及び、前記誘電体多層膜を有することを特徴とする請求項1に記載のミラーディスプレイ。
  11. 前記表示装置は、液晶表示装置であることを特徴とする請求項1~10のいずれかに記載のミラーディスプレイ。
  12. 前記液晶表示装置は、前記ハーフミラープレート側から順に、第一の偏光板、液晶層、第二の偏光板を有し、
    前記少なくとも一つの反射型偏光板は、前記第二の偏光板の透過軸と実質的に直交し、前記第一の偏光板の透過軸と実質的に平行な透過軸を有することを特徴とする請求項11に記載のミラーディスプレイ。
  13. 少なくとも二つのハーフミラー層を有するハーフミラープレートであって、
    前記少なくとも二つのハーフミラー層は、少なくとも一つの反射型偏光板を含み、
    表示装置が有する偏光板の透過軸と前記少なくとも一つの反射型偏光板の透過軸とは、実質的に平行又は実質的に直交することを特徴とするハーフミラープレート。
  14. 請求項1~12のいずれかに記載のミラーディスプレイと、前記表示装置が対向する表示領域を複数の領域に分割して制御する制御装置と、を有する電子機器であって、
    前記制御装置は、前記複数の領域の中から、画像を表示する領域を選択することにより、画像の表示範囲及び位置を変更できることを特徴とする電子機器。
  15. 前記画像の表示範囲は、ピンチイン及びピンチアウトにより変更できることを特徴とする請求項14に記載の電子機器。
PCT/JP2014/069530 2013-08-05 2014-07-24 ミラーディスプレイ、ハーフミラープレート及び電子機器 WO2015019858A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/909,545 US10146086B2 (en) 2013-08-05 2014-07-24 Mirror display, half mirror plate, and electronic device
CN201480042909.1A CN105474291B (zh) 2013-08-05 2014-07-24 反射镜显示器、半反射镜板和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-162422 2013-08-05
JP2013162422 2013-08-05

Publications (1)

Publication Number Publication Date
WO2015019858A1 true WO2015019858A1 (ja) 2015-02-12

Family

ID=52461197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069530 WO2015019858A1 (ja) 2013-08-05 2014-07-24 ミラーディスプレイ、ハーフミラープレート及び電子機器

Country Status (3)

Country Link
US (1) US10146086B2 (ja)
CN (1) CN105474291B (ja)
WO (1) WO2015019858A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184118A (ja) * 2015-03-26 2016-10-20 エイブル株式会社 合わせガラス
CN106154622A (zh) * 2015-04-22 2016-11-23 群创光电股份有限公司 镜面显示设备
WO2017033929A1 (ja) * 2015-08-26 2017-03-02 日本ゼオン株式会社 可搬表示装置及び半鏡面フィルム

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2807615C (en) 2012-03-08 2020-06-30 Simplehuman, Llc Vanity mirror
JP6571935B2 (ja) * 2015-01-14 2019-09-04 日東電工株式会社 車両用映像表示ミラー
CN104570463B (zh) * 2015-01-22 2017-12-08 京东方科技集团股份有限公司 带镜子功能的显示装置及其制造方法
US10076176B2 (en) 2015-03-06 2018-09-18 Simplehuman, Llc Vanity mirror comprising light sources and methods of manufacture thereof
JP6483811B2 (ja) * 2015-04-13 2019-03-13 富士フイルム株式会社 透明基材フィルム積層体、タッチパネル用センサーフィルム、タッチパネル、画像表示装置および画像表示装置の視認性改善方法
CN104990001B (zh) * 2015-07-27 2017-11-17 京东方科技集团股份有限公司 背光模组及其制作方法、双面显示装置
JP6744415B2 (ja) 2016-09-01 2020-08-19 富士フイルム株式会社 加飾シート、液晶表示装置および自動車車内用内装
KR20180058363A (ko) * 2016-11-24 2018-06-01 삼성전자주식회사 디스플레이 장치 및 그 제어 방법
US10869537B2 (en) 2017-03-17 2020-12-22 Simplehuman, Llc Vanity mirror
JP2019095591A (ja) * 2017-11-22 2019-06-20 シャープ株式会社 表示装置
JP2019120874A (ja) * 2018-01-10 2019-07-22 シャープ株式会社 表示装置
CA3033689A1 (en) 2018-02-14 2019-08-14 Simplehuman, Llc Compact mirror
US11708031B2 (en) 2018-03-22 2023-07-25 Simplehuman, Llc Voice-activated vanity mirror
USD925928S1 (en) 2019-03-01 2021-07-27 Simplehuman, Llc Vanity mirror
JP2022522791A (ja) 2019-03-01 2022-04-20 シンプルヒューマン・エルエルシー バニティミラー
USD927863S1 (en) 2019-05-02 2021-08-17 Simplehuman, Llc Vanity mirror cover
US11235706B2 (en) * 2019-10-30 2022-02-01 Panasonic Intellectual Property Management Co., Ltd. Display system
CN113140162A (zh) * 2020-01-17 2021-07-20 群创光电股份有限公司 拼接透明显示装置及用于拼接的透明显示装置
CN115698782A (zh) * 2020-03-25 2023-02-03 奇跃公司 具有单路镜的光学设备
TWI797915B (zh) * 2021-12-27 2023-04-01 友達光電股份有限公司 鏡面顯示器
CN114236855A (zh) * 2022-02-14 2022-03-25 北京瑞波科技术有限公司 光学系统和ar设备
CN114942543B (zh) * 2022-05-25 2023-05-30 Tcl华星光电技术有限公司 显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125886A (ja) * 2002-09-30 2004-04-22 Seiko Epson Corp 表示装置及びこれを備えた電子機器
JP2007025228A (ja) * 2005-07-15 2007-02-01 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
JP2009008710A (ja) * 2007-06-26 2009-01-15 Citizen Holdings Co Ltd 液晶表示装置
JP2009103817A (ja) * 2007-10-22 2009-05-14 Citizen Holdings Co Ltd 液晶表示装置
JP2013114558A (ja) * 2011-11-30 2013-06-10 Canon Inc 情報処理装置、表示制御方法、及びプログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1115392A (ja) 1997-06-26 1999-01-22 Sony Corp バックライト式画像表示装置、画像表示部材及びハーフミラー部材
US7495719B2 (en) * 2001-02-28 2009-02-24 Hitachi Displays, Ltd. Device capable of switching between an image display status and a mirror status, and an instrument disposed therewith
JP2003241175A (ja) 2002-02-18 2003-08-27 Matsushita Electric Ind Co Ltd 液晶表示素子
KR100763291B1 (ko) * 2002-04-24 2007-10-04 닛토덴코 가부시키가이샤 시야각 확대 액정표시장치
JP3726900B2 (ja) 2002-06-24 2005-12-14 セイコーエプソン株式会社 表示装置及びこれを備えた電子機器
JP4211344B2 (ja) 2002-09-30 2009-01-21 セイコーエプソン株式会社 表示装置及びこれを備えた電子機器
JP4233431B2 (ja) * 2003-04-01 2009-03-04 日東電工株式会社 光学素子、偏光素子、照明装置および液晶表示装置
KR101132344B1 (ko) * 2003-11-24 2012-04-05 코닌클리케 필립스 일렉트로닉스 엔.브이. 시청용 편광 거울
JP4527986B2 (ja) 2004-01-07 2010-08-18 旭化成イーマテリアルズ株式会社 ワイヤグリッド型偏光子
KR100656999B1 (ko) 2005-01-19 2006-12-13 엘지전자 주식회사 선 격자 편광필름 및 선 격자 편광필름의 격자제조용 몰드제작방법
JP2007065314A (ja) 2005-08-31 2007-03-15 Nippon Zeon Co Ltd 円偏光分離シート
JP2009510513A (ja) * 2005-10-03 2009-03-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像表示装置
JP2010221899A (ja) * 2009-03-24 2010-10-07 Murakami Corp モニター付車両用ミラー
CN103376589B (zh) * 2012-04-17 2016-06-01 扬升照明股份有限公司 显示装置
CN104919364B (zh) * 2013-01-16 2017-11-14 夏普株式会社 反射镜显示器、半反射镜板和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125886A (ja) * 2002-09-30 2004-04-22 Seiko Epson Corp 表示装置及びこれを備えた電子機器
JP2007025228A (ja) * 2005-07-15 2007-02-01 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
JP2009008710A (ja) * 2007-06-26 2009-01-15 Citizen Holdings Co Ltd 液晶表示装置
JP2009103817A (ja) * 2007-10-22 2009-05-14 Citizen Holdings Co Ltd 液晶表示装置
JP2013114558A (ja) * 2011-11-30 2013-06-10 Canon Inc 情報処理装置、表示制御方法、及びプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184118A (ja) * 2015-03-26 2016-10-20 エイブル株式会社 合わせガラス
CN106154622A (zh) * 2015-04-22 2016-11-23 群创光电股份有限公司 镜面显示设备
CN106154622B (zh) * 2015-04-22 2019-12-10 群创光电股份有限公司 镜面显示设备
WO2017033929A1 (ja) * 2015-08-26 2017-03-02 日本ゼオン株式会社 可搬表示装置及び半鏡面フィルム

Also Published As

Publication number Publication date
CN105474291B (zh) 2018-06-22
US20160178964A1 (en) 2016-06-23
CN105474291A (zh) 2016-04-06
US10146086B2 (en) 2018-12-04

Similar Documents

Publication Publication Date Title
WO2015019858A1 (ja) ミラーディスプレイ、ハーフミラープレート及び電子機器
CN107407833B (zh) 镜面显示器
JP6122450B2 (ja) ミラーディスプレイ及び電子機器
CN106133587B (zh) 反射镜显示器和电子设备
US7379243B2 (en) Mirror with built-in display
CA2107952C (en) High efficiency chiral nematic liquid crystal rear polarizer for liquid crystal displays
JP6538298B2 (ja) 偏光板及びこれを備える液晶表示装置
WO2010087058A1 (ja) 液晶表示装置
JP6245572B2 (ja) 表示パネル及び表示装置
JP6571935B2 (ja) 車両用映像表示ミラー
TW200411250A (en) Optical film and liquid crystal display
US20150219961A1 (en) High light transmittance and color adjusting circular polarizing plate and reflective liquid crystal displays comprising the same
WO2012133137A1 (ja) 液晶表示装置
JP6263860B2 (ja) 光学積層体及び画像表示装置の表示品質改善方法
WO2017073498A1 (ja) スイッチングミラーパネル、及び、スイッチングミラーデバイス
JP2016141257A (ja) 映像表示装置付のミラーを備える車両
JP2015096874A (ja) 液晶表示装置
WO2010001920A1 (ja) 液晶表示装置
WO2013111867A1 (ja) 液晶表示装置
JP6441098B2 (ja) 車両用映像表示ミラー
JP2011242538A (ja) 液晶パネル
JP2002116435A (ja) 表示装置
KR20130048829A (ko) 편광필름 및 이를 포함하는 액정표시장치
WO2012133140A1 (ja) 液晶表示装置
JP2004109424A (ja) 積層偏光フィルム、偏光光源装置及び液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042909.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14909545

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14834978

Country of ref document: EP

Kind code of ref document: A1