WO2015019660A1 - 脊髄腔内血流測定装置 - Google Patents

脊髄腔内血流測定装置 Download PDF

Info

Publication number
WO2015019660A1
WO2015019660A1 PCT/JP2014/058500 JP2014058500W WO2015019660A1 WO 2015019660 A1 WO2015019660 A1 WO 2015019660A1 JP 2014058500 W JP2014058500 W JP 2014058500W WO 2015019660 A1 WO2015019660 A1 WO 2015019660A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
blood flow
catheter
optical fiber
spinal cord
Prior art date
Application number
PCT/JP2014/058500
Other languages
English (en)
French (fr)
Inventor
佳克 齋木
幸弘 早津
芳賀 洋一
忠雄 松永
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2015530722A priority Critical patent/JPWO2015019660A1/ja
Publication of WO2015019660A1 publication Critical patent/WO2015019660A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4566Evaluating the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters

Definitions

  • the present invention relates to an intraspinal blood flow measuring device that measures the blood flow of a blood vessel that supplies blood to the spinal cord in the spinal cavity.
  • an organ ischemia monitor equipped with a Doppler ultrasonic blood flow rate sensor at the tip of a catheter inserted into the spinal cavity (for example, a patent) Reference 1).
  • this organ ischemia monitor it is possible to evaluate in real time whether spinal cord ischemia has occurred by directly measuring the blood flow of blood vessels supplying blood to the spinal cord during surgery.
  • an optical fiber for light emission and an optical fiber for light reception are arranged in parallel, and a prism is arranged at the incident / exit end of each optical fiber so that each light
  • a prism is arranged at the incident / exit end of each optical fiber so that each light
  • laser light can enter and exit in the side surface direction of the fiber.
  • the blood flow can be estimated using the laser Doppler method based on the scattered light emitted from the light-emitting optical fiber and received by the light-receiving optical fiber.
  • JP 2010-284304 A Japanese Patent Laid-Open No. 10-118039
  • the organ ischemia monitor described in Patent Document 1 has a structure in the spinal cavity because the position of the Doppler ultrasonic blood flow rate sensor in the spinal cavity into which the catheter on which the catheter is mounted is limited. There is a problem that it is difficult to measure the blood vessels of the spinal cord while avoiding the above. In addition, since blood flow velocity of blood vessels supplying blood to the spinal cord is slow, there is a problem that measurement with ultrasonic waves is difficult.
  • the probe described in Patent Document 2 has a problem that it is not mounted on a catheter to be inserted into the spinal cavity and is not of a size that can be mounted.
  • the present invention has been made paying attention to such a problem, and can be inserted into the spinal cavity and blood flow in a blood vessel supplying blood to the spinal cord can be easily measured with high accuracy.
  • An object is to provide a flow measuring device.
  • an intraspinal blood flow measuring device for measuring blood flow in a blood vessel that supplies blood to the spinal cord in the spinal cavity, A catheter that can be placed in the spinal cavity, a light emitting part that is provided at the distal end of the catheter so that laser light can be emitted in the spinal cavity, and a light emitting part that enters the spinal cavity from the light emitting part.
  • Blood that estimates the blood flow volume by a laser Doppler method based on the light receiving unit provided at the distal end of the catheter and the scattered light received by the light receiving unit so that the scattered light of the emitted laser light can be received A flow estimation unit.
  • the laser light emitting part and the light receiving part are provided at the distal end of the catheter that can be placed in the spinal cavity, so that the distal end of the catheter is placed in the spinal cavity.
  • the catheter can be configured to be thinner than that equipped with a Doppler ultrasonic blood flow rate sensor. For this reason, even in a spinal cavity in a very narrow space, the tip of the catheter can be placed at a desired position, and measurement can be performed by easily approaching the blood vessel of the spinal cord as a measurement target.
  • blood flow rate can be measured with high accuracy by using laser light even in a blood vessel of the spinal cord where blood flow velocity is slow and it is difficult to measure blood flow rate with ultrasound. Since blood flow can be measured in a non-contact manner using laser light, nerve damage to the spinal cord can be avoided.
  • the spinal cavity in the present invention represents a space in which the spinal cord is housed among the cerebrospinal cavity that houses the brain and spinal cord and is filled with cerebrospinal fluid.
  • the blood vessels that supply blood to the spinal cord are not a single blood vessel but are composed of a plurality of very thin blood vessels, the measured blood flow rate is considered to be an average of the blood flow rates of the plurality of blood vessels. It is done.
  • the light emitting unit is configured to emit the laser light in a direction perpendicular or oblique to the extending direction of the spinal cord.
  • the blood vessel that supplies blood to the spinal cord extends along the extending direction of the spinal cord, it is easy to emit laser light toward the blood vessel, and blood flow can be easily measured. it can.
  • the catheter is a drainage catheter, and the light emitting unit and the light receiving unit are provided so as not to impair the drainage function of the catheter.
  • the catheter it is possible to evaluate in real time whether or not spinal cord ischemia has occurred by measuring the blood flow while preventing spinal cord ischemia using the drainage catheter by the cerebrospinal fluid drainage method. For this reason, the spinal cord disorder during the operation of the thoracoabdominal aortic aneurysm can be effectively prevented.
  • An intraspinal blood flow measuring device includes a light emitting optical fiber provided inside the catheter so as to extend along the extension direction of the catheter, and inside the catheter in the extension direction of the catheter.
  • a light-receiving optical fiber provided to extend along the light-emitting optical fiber, and a light reflecting means disposed on an extension of the distal end of the light-emitting optical fiber and the light-receiving optical fiber.
  • the light-emitting optical fiber is configured such that the tip forms the light-emitting portion and can emit the laser light, and the light-receiving optical fiber is The tip constitutes the light receiving portion, and the scattered light can be received from the tip.
  • the light reflecting means reflects the laser light from the light emitting portion to extend the spinal cord. While emitting vertically or oblique direction and may be provided to received by the light receiving portion by reflecting the scattered light from the vertical direction or an oblique direction with respect to the extending direction of the spinal cord.
  • the catheter can be easily formed thin, and can be easily configured without impairing the function of the catheter itself.
  • MEMS Micro Electro Mechanical Systems
  • the catheter can be formed more narrowly, and the catheter can be easily inserted into a spinal cavity in a very narrow space. Therefore, the measurement can be performed by easily approaching the blood vessel of the spinal cord as the measurement target.
  • the intramedullary blood flow measuring device is a light shielding device for preventing the laser light emitted from the light emitting unit from directly entering the light receiving unit between the light emitting unit and the light receiving unit. May have a part. In this case, only the scattered light can be received by the light receiving unit, and the measurement accuracy can be improved.
  • an intraspinal blood flow measuring device that can be inserted into the spinal cord cavity and can easily measure the blood flow volume of blood vessels that supply blood to the spinal cord with high accuracy.
  • FIG. 3 shows spinal blood flow (CSBF) when the aorta and the left and right subclavian arteries are blocked, and systolic blood pressure ( It is a graph which shows SBF).
  • 4 is a graph showing spinal blood flow (CSBF) and systolic blood pressure (SBF) when the porcine aorta shown in FIG. 3 is blocked by the intraspinal blood flow measuring device shown in FIG. 1.
  • FIG. 1 shows an intraspinal blood flow measuring device according to an embodiment of the present invention.
  • an intraspinal blood flow measuring device 10 is an intraspinal blood flow measuring device 10 that measures blood flow in a blood vessel that supplies blood to the spinal cord in the spinal cavity, and emits light with a catheter 11.
  • the optical fiber 12, the optical fiber 13 for light reception, the light reflection means 14, and the blood flow estimation part 15 are provided.
  • the catheter 11 is a drainage catheter that is disposed in the spinal cavity and has a drainage function for draining cerebrospinal fluid.
  • the catheter 11 is configured to arrange the distal end portion 11a along the spinal cord in the spinal cord cavity.
  • the catheter 11 has a hollow tubular shape, and has an elliptical opening 11b cut obliquely at the tip.
  • the light-emitting optical fiber 12 and the light-receiving optical fiber 13 are provided inside the catheter 11 so as not to impair the drainage function of the catheter 11.
  • the light emitting optical fiber 12 and the light receiving optical fiber 13 are provided side by side so as to extend along the extending direction of the catheter 11.
  • the light emitting optical fiber 12 and the light receiving optical fiber 13 have a light emitting part 12a and a light receiving part 13a at their tips, respectively, and the light emitting part 12a and the light receiving part 13a are arranged so as to be positioned in the opening 11b at the tip of the catheter 11. .
  • the light emitting optical fiber 12 is configured to be able to emit laser light having an infrared wavelength from the light emitting portion 12a at the tip.
  • the light receiving optical fiber 13 is configured to receive the scattered light of the laser light emitted from the light emitting portion 12a of the light emitting optical fiber 12 from the light receiving portion 13a at the tip.
  • the light reflecting means 14 is composed of a plate-like mirror, and is disposed inside the catheter 11 so as to be positioned at the opening 11b of the catheter 11.
  • the light reflecting means 14 is disposed on the extension of the tips of the light emitting optical fiber 12 and the light receiving optical fiber 13 so as to be in contact with the tips.
  • the light reflecting means 14 has a mirror surface that extends in the direction in which the light-emitting optical fiber 12 and the light-receiving optical fiber 13 are arranged, and is approximately 45 degrees with respect to the extended lines of the light-emitting optical fiber 12 and the light-receiving optical fiber 13. It is provided to cross at.
  • the light reflecting means 14 reflects the laser beam from the light emitting portion 12a substantially vertically so that the laser beam is emitted from the opening 11b of the catheter 11 toward the side of the catheter 11, and light that has come in the opposite direction from the emission direction. Is reflected substantially vertically and is received by the light receiving portion 13a.
  • the light reflection means 14 may consist of one, and may be provided separately with respect to the light-emitting optical fiber 12 and the light-receiving optical fiber 13. Further, the light reflecting means 14 may be arranged away from the tips of the light emitting optical fiber 12 and the light receiving optical fiber 13 as long as the function is not impaired due to the decrease in the reflected light rate. In this case, the light reflecting means 14 and the tips of the light emitting optical fiber 12 and the light receiving optical fiber 13 are preferably arranged at a distance of 5 mm or less, preferably at a distance of 1 to 2 mm. Further preferred.
  • the intraspinal blood flow measuring device 10 reflects the laser light from the light emitting portion 12a of the light emitting optical fiber 12 by the light reflecting means 14 and extends the spinal cord. Light is emitted in a direction substantially perpendicular to the direction. At the same time, the scattered light of the laser light emitted from the light emitting portion 12a coming from a direction substantially perpendicular to the extending direction of the spinal cord is reflected by the light reflecting means 14 and received by the light receiving portion 13a. Yes.
  • the light emitting optical fiber 12, the light receiving optical fiber 13, and the light reflecting means 14 are mounted on the catheter 11 using the MEMS technique.
  • the blood flow estimation unit 15 includes a computer, and a laser Doppler method for obtaining a flow velocity based on the Doppler effect based on the wavelength of the laser light emitted from the light emitting unit 12a and the wavelength of the scattered light received by the light receiving unit 13a. Is configured to estimate the blood flow. In addition, the blood flow estimation unit 15 is configured to be able to execute other various analysis processes.
  • the catheter 11 has an outer diameter of 1.5 mm and an inner diameter of 0.9 mm.
  • the light emitting optical fiber 12 and the light receiving optical fiber 13 have a diameter of 0.25 mm.
  • the light reflecting means 14 has a length of 0.7 mm in the arrangement direction of the light emitting optical fiber 12 and the light receiving optical fiber 13 and is perpendicular to the arrangement direction and the length direction of the optical fibers 12 and 13.
  • the width is 0.52 mm.
  • the intraspinal blood flow measuring device 10 is used with the distal end of the catheter 11 placed in the spinal cavity at the time of surgery for a thoracoabdominal aortic aneurysm or the like.
  • the laser light emitting part 12 a and the light receiving part 13 a are provided at the distal end part 11 a of the catheter 11. Can be measured directly. For this reason, it is possible to evaluate in real time whether spinal cord ischemia is occurring during the operation of the thoracoabdominal aortic aneurysm, and to prevent spinal cord injury.
  • the catheter 11 is composed of a drainage catheter
  • the drainage function is used to prevent spinal cord ischemia by the cerebrospinal fluid drainage method, and blood flow is measured to determine whether spinal cord ischemia has occurred in real time. Can be evaluated. For this reason, the spinal cord disorder during the operation of the thoracoabdominal aortic aneurysm can be prevented more effectively.
  • various knowledge about the blood of the spinal cord that has many unknown parts can be obtained.
  • the intraspinal blood flow measuring device 10 emits laser light in a direction substantially perpendicular to the direction of spinal cord extension and receives scattered light from a direction substantially perpendicular to the direction of spinal cord extension by the light reflecting means 14. be able to. For this reason, laser light can be emitted toward a blood vessel extending along the extension direction of the spinal cord, and blood flow can be easily measured. As long as laser light can be emitted in a direction substantially perpendicular to the direction of blood vessel extension and scattered light from a direction substantially perpendicular to the direction of blood vessel extension can be received, blood flow in any direction of the blood vessel can be obtained. Can be easily measured.
  • the intraspinal blood flow measurement device 10 uses the MEMS technology to mount the light emitting optical fiber 12, the light receiving optical fiber 13 and the light reflecting means 14 on the catheter 11, so that a Doppler ultrasonic blood flow rate sensor is provided.
  • the catheter 11 is thinner than the one equipped with Moreover, it is comprised so that the drainage function of catheter 11 itself may not be impaired. For this reason, even in a spinal cavity in a very narrow space, the tip of the catheter 11 can be disposed at a desired position, and measurement can be performed by easily approaching the blood vessel of the spinal cord as a measurement target. .
  • the intraspinal blood flow measuring device 10 uses a laser beam to measure the blood flow with high accuracy even for a blood vessel in the spinal cord where the blood flow velocity is slow and it is difficult to measure the blood flow with ultrasound. Can do. In addition, since blood flow can be measured in a non-contact manner using laser light, spinal nerve damage can be avoided.
  • the intraspinal blood flow measuring device 10 includes a light shielding unit for preventing laser light emitted from the light emitting unit 12a from directly entering the light receiving unit 13a between the light emitting unit 12a and the light receiving unit 13a. You may have. In this case, only the scattered light can be received by the light receiving unit 13a, and the measurement accuracy can be improved.
  • the light emitting optical fiber 12 and the light receiving optical fiber 13 have a light emitting portion 12a and a light receiving portion 13a at the distal ends thereof separated from the opening 11b. 11, and the light reflecting means 14 may be disposed inside the catheter 11 on the extension of the distal ends of the light emitting unit 12 a and the light receiving unit 13 a so as to be in contact with the distal end thereof or away from the distal end thereof. Good.
  • the light reflecting means 14 since the light reflecting means 14, the light emitting unit 12a, and the light receiving unit 13a are disposed inside the catheter 11 apart from the opening 11b, they may contact the spinal cord and cause nerve damage (spinal cord injury). It can be avoided.
  • the distance from the distal end portion 11a of the catheter 11 to the light reflecting means 14 is about 10 mm.
  • the light reflecting means 14 is provided such that the mirror surface of the surface intersects at an obtuse angle with respect to the extended lines of the light emitting optical fiber 12 and the light receiving optical fiber 13.
  • the laser beam from the light emitting portion 12a is reflected obliquely so as to emit light from the opening 11b of the catheter 11 toward the oblique side of the catheter 11, and the light coming in the opposite direction from the emission direction is reflected obliquely.
  • the light receiving unit 13a may receive light.
  • the laser light from the light emitting portion 12a of the light emitting optical fiber 12 is reflected by the light reflecting means 14 and is oblique to the extending direction of the spinal cord.
  • the scattered light of the laser light emitted from the light emitting portion 12a coming from an oblique direction with respect to the extending direction of the spinal cord can be reflected by the light reflecting means 14 and received by the light receiving portion 13a.
  • the light reflecting means 14 reflects the laser light from the light emitting portion 12a in the vertical direction, and on the side of the catheter 11 on the path of the reflected light, You may have the light passage hole 21 which reflected light can pass.
  • the laser light from the light emitting portion 12a of the light emitting optical fiber 12 is reflected by the light reflecting means 14 and passes through the light passage hole 21 to pass through the spinal cord.
  • Light can be emitted in a direction perpendicular to the extending direction.
  • the scattered light of the laser light emitted from the light emitting portion 12a coming from the direction perpendicular to the spinal cord extension direction is incident from the light passage hole 21 and reflected by the light reflecting means 14, and the light receiving portion 13a.
  • the light passage hole 21 preferably has a diameter of about 1 mm.
  • the blood flow rate of blood vessels supplying blood to the spinal cord in the spinal cavity of the pig was measured.
  • blood that has exited the heart and entered the aorta passes through the right subclavian artery to the right hand (right forelimb), passes through both carotid arteries to the brain, and passes through the left subclavian artery to the left hand (left forelimb).
  • the carotid artery branches directly from the aorta, so there are three branches. In pigs, there are two branches for anatomy.
  • the aorta After bifurcating the left subclavian artery, the aorta goes to the abdomen and descends to the back of the trunk in an arc shape. At that time, a thin branch (intercostal artery) is branched for each intercostal space. This intercostal artery is the main source of spinal blood flow.
  • the distal end portion 11a of the catheter 11 of the intraspinal blood flow measuring device 10 was inserted into the spinal cavity near the height where the ninth rib of the pig emerged, and blood flow was measured.
  • the measurement was performed after blocking for 30 minutes.
  • the measurement result of the blood flow (CSBF) is shown in FIG. In FIG. 4, the aorta is blocked from 0 to 30 minutes indicated by a thick arrow.
  • cardiac output (CCO) and systolic blood pressure (sBF) were also measured.
  • the sBP is measured with the right forelimb.
  • a bypass is provided in the aorta so as to jump over the blocking positions indicated by arrows A and B in FIG. 3, the aorta is blocked at the positions indicated by arrows A and B in FIG. 3, and solid lines C and D in FIG.
  • the measurement was performed with the left and right subclavian arteries blocked at the position. This measurement was performed to confirm the collateral circulation that supplies blood supplied to the abdomen via the bypass to the spinal cord via the artery branching from the abdomen (lumbar artery).
  • the measurement result of this blood flow (CSBF) is shown in FIG. In FIG. 5, the aorta and the left and right subclavian arteries are blocked from 0 to 30 minutes indicated by thick arrows.
  • systolic blood pressure systolic blood pressure (sBF) was also measured.
  • CSBF blood flow

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】脊髄腔内に挿入して、脊髄に血液を供給する血管の血流量を高精度で容易に測定することができる脊髄腔内血流測定装置を提供する。 【解決手段】発光用光ファイバ12および受光用光ファイバ13が、先端部11aを脊髄腔内に配置可能に設けられたカテーテル11の内部に、カテーテル11の伸長方向に沿って伸びるよう設けられている。発光用光ファイバ12は、先端の発光部12aからレーザー光を発光可能に、受光用光ファイバ13は、先端の受光部13aから、散乱光を受光可能に構成されている。光反射手段14が、発光用光ファイバ12および受光用光ファイバ13の先端の延長上に配置されている。光反射手段14は、発光部12aからのレーザー光を反射して脊髄の伸長方向に対してほぼ垂直方向に発光するとともに、脊髄の伸長方向に対してほぼ垂直方向からの散乱光を反射して受光部13aで受光するよう設けられている。

Description

脊髄腔内血流測定装置
 本発明は、脊髄腔内の脊髄に血液を供給する血管の血流量を測定する脊髄腔内血流測定装置に関する。
 近年、大動脈瘤の手術症例が増加傾向にあるが、その中でも最も重篤で、最も手術侵襲度が大きいものが、胸腹部大動脈瘤である。この胸腹部大動脈瘤の手術を行う際には、この手術に特有な合併症である脊髄虚血が生じ、術後に脊髄神経障害による対麻痺が発症する恐れがある。そこで、脊髄虚血を予防するために、全身低体温法や脳脊髄液ドレナージ法が一般的に行われているが、脊髄虚血を完全に防ぐことはできない。
 本発明者等は、不可逆的な脊髄障害を予防するために、脊髄腔内に挿入されるカテーテル先端にドップラ超音波血流速センサを搭載した臓器虚血モニタを開発している(例えば、特許文献1参照)。この臓器虚血モニタを利用して、脊髄に血液を供給する血管の血流量を手術中に直接測定することにより、脊髄虚血が起きているかどうかをリアルタイムで評価することができる。
 なお、従来、血管の血流を測定するためのプローブとして、発光用の光ファイバと受光用の光ファイバとを平行に並べ、各光ファイバ先端の入出射端にプリズムを配置して、各光ファイバの側面方向にレーザー光を入出射可能に設けられたものがある(例えば、特許文献2参照)。このプローブによれば、発光用の光ファイバから発光され、受光用の光ファイバで受光された散乱光に基づいて、レーザードップラー法を用いて血流を推定することができる。
特開2010-284304号公報 特開平10-118039号公報
 脊髄が存在する脊髄腔内では、脊髄の周囲を脊柱起立筋、椎体、硬膜などの様々な構造物が覆っているため、脊髄に血液を供給する血管の血流量を測定するためには、これらの構造物を避けて測定を行わなければならない。特許文献1に記載の臓器虚血モニタは、ドップラ超音波血流速センサの大きさにより、それを搭載したカテーテルを挿入する脊髄腔内の位置が限定されてしまうため、脊髄腔内の構造物を避けつつ、脊髄の血管に対して測定を行うのは困難であるという課題があった。また、脊髄に血液を供給する血管の血流速度が遅いため、超音波では測定が困難であるという課題もあった。
 また、特許文献2に記載のプローブは、脊髄腔内に挿入するカテーテルに搭載するものではなく、搭載できる大きさでもないという課題があった。
 本発明は、このような課題に着目してなされたもので、脊髄腔内に挿入して、脊髄に血液を供給する血管の血流量を高精度で容易に測定することができる脊髄腔内血流測定装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る脊髄腔内血流測定装置は、脊髄腔内の脊髄に血液を供給する血管の血流量を測定する脊髄腔内血流測定装置であって、先端部を前記脊髄腔内に配置可能に設けられたカテーテルと、前記脊髄腔内でレーザー光を発光可能に、前記カテーテルの先端部に設けられた発光部と、前記発光部から前記脊髄腔内に発光されたレーザー光の散乱光を受光可能に、前記カテーテルの先端部に設けられた受光部と、前記受光部で受光された散乱光に基づいて、レーザードップラー法により前記血流量を推定する血流推定部とを、有することを特徴とする。
 本発明に係る脊髄腔内血流測定装置は、レーザー光の発光部と受光部とを、脊髄腔内に配置可能なカテーテルの先端部に設けて成るため、カテーテルの先端部を脊髄腔内に挿入して、脊髄に血液を供給する血管の血流量を直接測定することができる。このため、胸腹部大動脈瘤の手術中に測定を行うことにより、脊髄虚血が起きているかどうかをリアルタイムで評価することができ、脊髄障害を予防することができる。また、未知の部分が多かった脊髄の血液に関して、様々な知見を得ることもできる。
 本発明に係る脊髄腔内血流測定装置は、レーザー光を利用するため、ドップラ超音波血流速センサを搭載するものと比べて、カテーテルを細く構成することができる。このため、非常に狭いスペースの脊髄腔内であっても、カテーテルの先端を所望の位置に配置することができ、測定対象である脊髄の血管に容易にアプローチして測定を行うことができる。また、血流速度が遅く、超音波では血流量の測定が困難な脊髄の血管であっても、レーザー光を利用して、血流量を高精度で測定することができる。レーザー光を利用して非接触で血流量を測定できるため、脊髄の神経損傷を避けることができる。
 なお、本発明における脊髄腔とは、脳や脊髄を収納し、脳脊髄液で満たされている脳脊髄腔のうち、脊髄を収納している空間のことを表している。また、脊髄に血液を供給する血管は、1本ではなく、非常に細い複数の血管から成っているため、測定される血流量は、それらの複数の血管の血流量を平均したものになると考えられる。
 本発明に係る脊髄腔内血流測定装置で、前記発光部は、前記脊髄の伸長方向に対して垂直方向または斜め方向に前記レーザー光を発光するよう構成されていることが好ましい。この場合、脊髄に血液を供給する血管は、脊髄の伸長方向に沿って伸びているため、その血管に向けてレーザー光を発光するのが容易になり、血流量の測定を容易に行うことができる。
 本発明に係る脊髄腔内血流測定装置で、前記カテーテルは、ドレナージカテーテルから成り、前記発光部および前記受光部は、前記カテーテルの排液機能を損なわないよう設けられていることが好ましい。この場合、ドレナージカテーテルを利用して、脳脊髄液ドレナージ法で脊髄虚血を予防しつつ、血流量の測定を行って脊髄虚血が起きているかどうかをリアルタイムで評価することができる。このため、胸腹部大動脈瘤の手術中の脊髄障害を効果的に防ぐことができる。
 本発明に係る脊髄腔内血流測定装置は、前記カテーテルの内部に、前記カテーテルの伸長方向に沿って伸びるよう設けられた発光用光ファイバと、前記カテーテルの内部に、前記カテーテルの伸長方向に沿って伸びるよう設けられた受光用光ファイバと、前記発光用光ファイバおよび前記受光用光ファイバの先端の延長上に配置された光反射手段とを有し、前記カテーテルは、前記先端部を前記脊髄腔内の前記脊髄に沿って配置するよう設けられ、前記発光用光ファイバは、先端が前記発光部を成し、前記レーザー光を発光可能に構成されており、前記受光用光ファイバは、先端が前記受光部を成し、先端から前記散乱光を受光可能に構成されており、前記光反射手段は、前記発光部からの前記レーザー光を反射して前記脊髄の伸長方向に対して垂直方向または斜め方向に発光するとともに、前記脊髄の伸長方向に対して垂直方向または斜め方向からの前記散乱光を反射して前記受光部で受光するよう設けられていてもよい。
 この光ファイバと光反射手段とを有する場合、カテーテルを容易に細く形成することができ、カテーテル自体の機能を損なわないよう容易に構成することもできる。特に、MEMS(Micro Electro Mechanical Systems)技術を利用することにより、カテーテルをより細く形成することができ、非常に狭いスペースの脊髄腔内にも容易にカテーテルを挿入することができる。このため、測定対象である脊髄の血管に容易にアプローチして測定を行うことができる。
 本発明に係る脊髄腔内血流測定装置は、前記発光部と前記受光部との間に、前記発光部から発光された前記レーザー光が、前記受光部に直接入射するのを防ぐための遮光部を有していてもよい。この場合、受光部で散乱光のみを受光することができ、測定精度を高めることができる。
 本発明によれば、脊髄腔内に挿入して、脊髄に血液を供給する血管の血流量を高精度で容易に測定することができる脊髄腔内血流測定装置を提供することができる。
本発明の実施の形態の脊髄腔内血流測定装置を示す(a)平面図、(b)カテーテル内部の側面図である。 図1に示す脊髄腔内血流測定装置の変形例を示す平面図である。 図1に示す脊髄腔内血流測定装置を用いて脊髄の血流量の測定を行った、ブタの大動脈を示す模式図である。 図1に示す脊髄腔内血流測定装置による、図3に示すブタの大動脈を遮断したときの脊髄の血流量(CSBF)、並びに、心拍出量(CCO)および収縮期血圧(SBF)を示すグラフである。 図1に示す脊髄腔内血流測定装置による、図3に示すブタの大動脈にバイパスを設け、大動脈および左右鎖骨下動脈を遮断したときの脊髄の血流量(CSBF)、および、収縮期血圧(SBF)を示すグラフである。 図1に示す脊髄腔内血流測定装置による、図3に示すブタの大動脈を遮断したときの脊髄の血流量(CSBF)、および、収縮期血圧(SBF)を示すグラフである。
 以下、図面に基づき、本発明の実施の形態について説明する。
 図1は、本発明の実施の形態の脊髄腔内血流測定装置を示している。
 図1に示すように、脊髄腔内血流測定装置10は、脊髄腔内の脊髄に血液を供給する血管の血流量を測定する脊髄腔内血流測定装置10であって、カテーテル11と発光用光ファイバ12と受光用光ファイバ13と光反射手段14と血流推定部15とを有している。
 カテーテル11は、脊髄腔内に配置されて、脳脊髄液を排出するための排液機能を有するドレナージカテーテルから成っている。カテーテル11は、先端部11aを脊髄腔内の脊髄に沿って配置するよう構成されている。カテーテル11は、中空の管状を成しており、先端に斜めに切断された楕円状の開口11bを有している。
 発光用光ファイバ12および受光用光ファイバ13は、カテーテル11の排液機能を損なわないよう、カテーテル11の内部に設けられている。発光用光ファイバ12および受光用光ファイバ13は、カテーテル11の伸長方向に沿って伸びるよう、互いに並んで設けられている。発光用光ファイバ12および受光用光ファイバ13は、それぞれ先端に発光部12aおよび受光部13aを有し、発光部12aおよび受光部13aがカテーテル11の先端の開口11bに位置するよう配置されている。発光用光ファイバ12は、先端の発光部12aから赤外線波長のレーザー光を発光可能に構成されている。また、受光用光ファイバ13は、発光用光ファイバ12の発光部12aから発光されたレーザー光の散乱光を、先端の受光部13aから受光可能に構成されている。
 光反射手段14は、板状の鏡から成り、カテーテル11の内部で、カテーテル11の開口11bに位置するよう配置されている。また、光反射手段14は、発光用光ファイバ12および受光用光ファイバ13の先端の延長上に、その先端に接するよう配置されている。光反射手段14は、表面の鏡面が、発光用光ファイバ12と受光用光ファイバ13との並び方向に伸びるとともに、発光用光ファイバ12および受光用光ファイバ13の延長線に対して約45度で交わるよう設けられている。光反射手段14は、発光部12aからのレーザー光を、カテーテル11の開口11bからカテーテル11の側方に向かって発光させるよう、ほぼ垂直に反射するとともに、その発光方向から逆向きに来た光をほぼ垂直に反射して、受光部13aで受光するよう設けられている。なお、光反射手段14は、1つから成っていてもよく、発光用光ファイバ12と受光用光ファイバ13とに対して個々に設けられていてもよい。また、光反射手段14は、反射光率の低下により機能が損なわれない限り、発光用光ファイバ12および受光用光ファイバ13の先端から離れて配置されていてもよい。この場合、光反射手段14と発光用光ファイバ12および受光用光ファイバ13の先端とは、5mm以内の距離に配置されていることが好ましく、1~2mm以内の距離に配置されていることがさらに好ましい。
 脊髄腔内血流測定装置10は、カテーテル11の先端部11aを脊髄腔内に配置したとき、発光用光ファイバ12の発光部12aからのレーザー光を光反射手段14で反射して脊髄の伸長方向に対してほぼ垂直方向に発光するようになっている。また、それとともに、脊髄の伸長方向に対してほぼ垂直方向から来る、発光部12aから発光されたレーザー光の散乱光を、光反射手段14で反射して受光部13aで受光するようになっている。なお、発光用光ファイバ12、受光用光ファイバ13および光反射手段14は、MEMS技術を利用してカテーテル11に搭載されている。
 血流推定部15は、コンピュータから成り、発光部12aから発光したレーザー光の波長と、受光部13aで受光された散乱光の波長とに基づいて、ドップラー効果に基づいて流速を求めるレーザードップラー法により血流量を推定するよう構成されている。また、血流推定部15は、その他の様々な解析処理も実行可能に構成されている。
 なお、図1に示す具体的な一例では、カテーテル11は、外径が1.5mm、内径が0.9mmである。発光用光ファイバ12および受光用光ファイバ13は、直径が0.25mmである。光反射手段14は、発光用光ファイバ12と受光用光ファイバ13との並び方向の長さが0.7mm、その並び方向および各光ファイバ12,13の長さ方向に対して垂直な方向の幅が0.52mmである。
 次に、作用について説明する。
 脊髄腔内血流測定装置10は、胸腹部大動脈瘤の手術時などに、カテーテル11の先端を脊髄腔内に配置して使用される。脊髄腔内血流測定装置10は、レーザー光の発光部12aおよび受光部13aがカテーテル11の先端部11aに設けられているため、脊髄腔内で、脊髄に血液を供給する血管の血流量を直接測定することができる。このため、胸腹部大動脈瘤の手術中に、脊髄虚血が起きているかどうかをリアルタイムで評価することができ、脊髄障害を予防することができる。特に、カテーテル11がドレナージカテーテルから成るため、その排液機能を利用して脳脊髄液ドレナージ法で脊髄虚血を予防しつつ、血流量の測定を行って脊髄虚血が起きているかどうかをリアルタイムで評価することができる。このため、胸腹部大動脈瘤の手術中の脊髄障害をより効果的に防ぐことができる。また、未知の部分が多かった脊髄の血液に関して、様々な知見を得ることもできる。
 脊髄腔内血流測定装置10は、光反射手段14により、脊髄の伸長方向に対してほぼ垂直方向にレーザー光を発光するとともに脊髄の伸長方向に対してほぼ垂直方向からの散乱光を受光することができる。このため、脊髄に伸長方向に沿って伸びる血管に向けてレーザー光を発光することができ、血流量の測定を容易に行うことができる。なお、血管の伸長方向に対してほぼ垂直方向にレーザー光を発光するとともに、血管の伸長方向に対してほぼ垂直方向からの散乱光を受光することができれば、どの方向を向いた血管でも血流量の測定を容易に行うことができる。
 脊髄腔内血流測定装置10は、MEMS技術を利用して、発光用光ファイバ12、受光用光ファイバ13および光反射手段14をカテーテル11に搭載しているため、ドップラ超音波血流速センサを搭載するものと比べて、カテーテル11が細い。また、カテーテル11自体の排液機能を損なわないようにも構成されている。このため、非常に狭いスペースの脊髄腔内であっても、カテーテル11の先端を所望の位置に配置することができ、測定対象である脊髄の血管に容易にアプローチして測定を行うことができる。
 脊髄腔内血流測定装置10は、血流速度が遅く、超音波では血流量の測定が困難な脊髄の血管であっても、レーザー光を利用して、血流量を高精度で測定することができる。また、レーザー光を利用して非接触で血流量を測定できるため、脊髄の神経損傷を避けることができる。
 なお、脊髄腔内血流測定装置10は、発光部12aと受光部13aとの間に、発光部12aから発光されたレーザー光が、受光部13aに直接入射するのを防ぐための遮光部を有していてもよい。この場合、受光部13aで散乱光のみを受光することができ、測定精度を高めることができる。
 また、図2に示すように、脊髄腔内血流測定装置10で、発光用光ファイバ12および受光用光ファイバ13は、それぞれの先端の発光部12aおよび受光部13aが開口11bから離れてカテーテル11の内部に配置され、光反射手段14は、カテーテル11の内部で、発光部12aおよび受光部13aの先端の延長上に、その先端に接するよう、またはその先端から離れて配置されていてもよい。この場合、光反射手段14や発光部12a、受光部13aが、開口11bから離れてカテーテル11の内部に配置されているため、これらが脊髄に接触して神経損傷(脊髄障害)を引き起こす恐れを回避することができる。なお、図2に示す具体的な一例では、カテーテル11の先端部11aから光反射手段14までの距離は、約10mmである。
 また、図2に示す脊髄腔内血流測定装置10で、光反射手段14は、表面の鏡面が、発光用光ファイバ12および受光用光ファイバ13の延長線に対して鈍角に交わるよう設けられ、発光部12aからのレーザー光を、カテーテル11の開口11bからカテーテル11の斜め側方に向かって発光させるよう、斜めに反射するとともに、その発光方向から逆向きに来た光を斜めに反射して、受光部13aで受光するようになっていてもよい。これにより、カテーテル11の先端部11aを脊髄腔内に配置したとき、発光用光ファイバ12の発光部12aからのレーザー光を光反射手段14で反射して脊髄の伸長方向に対して斜め方向に発光することができる。また、それとともに、脊髄の伸長方向に対して斜め方向から来る、発光部12aから発光されたレーザー光の散乱光を、光反射手段14で反射して受光部13aで受光することができる。
 また、図2に示す脊髄腔内血流測定装置10で、光反射手段14は、発光部12aからのレーザー光を垂直方向に反射し、その反射光の進路上のカテーテル11の側面に、その反射光が通過可能な光通過孔21を有していてもよい。これにより、カテーテル11の先端部11aを脊髄腔内に配置したとき、発光用光ファイバ12の発光部12aからのレーザー光を光反射手段14で反射し、光通過孔21を通過させて脊髄の伸長方向に対して垂直方向に発光することができる。また、それとともに、脊髄の伸長方向に対して垂直方向から来る、発光部12aから発光されたレーザー光の散乱光を、光通過孔21から入射させて光反射手段14で反射し、受光部13aで受光することができる。なお、光通過孔21は、直径1mm程度が好ましい。
 図1に示す脊髄腔内血流測定装置10を用いて、ブタの脊髄腔内の脊髄に血液を供給する血管の血流量の測定を行った。図3に示すように、心臓から出て大動脈に入った血液は、右鎖骨下動脈を通り右手(右前肢)へ、両頸動脈を通り脳へ、左鎖骨下動脈を通り左手(左前肢)へ供給される。人間では頸動脈が直接大動脈から分岐するため、分岐は3本であるが、ブタでは解剖上、分岐は2本である。左鎖骨下動脈を分岐した後、大動脈は腹部へ向かい、円弧状に体幹背側を下行する。その際、肋間毎に細い枝(肋間動脈)を分岐させている。この肋間動脈が、脊髄血流の主な供給源となっている。
 脊髄腔内血流測定装置10のカテーテル11の先端部11aを、ブタの第9肋骨が出る高さ付近の脊髄腔内に挿入して、血流量の測定を行った。まず、大動脈を、ブタの心臓付近の第4肋骨が出る高さ(図3中の矢印Aの位置)と、横隔膜よりやや頭側の第10肋骨が出る高さ(図3中の矢印Bの位置)で、30分間遮断して測定を行った。その血流量(CSBF)の測定結果を、図4に示す。図4では、大動脈を、太矢印で示す0分から30分までの間、遮断している。また、脊髄の血流量は心拍出量や血圧などに依存していると考えられるため、心拍出量(CCO)および収縮期血圧(sBF)の測定も行った。sBPの測定は、右前肢で行っている。
 図4に示すように、大動脈を遮断すると同時に、脊髄の血流は低下し、遮断前の35%程度まで落ちたことが確認された。また、大動脈を遮断したことにより、心臓から出た血液が行き場を失うため、血圧が上昇するのも確認された。大動脈の遮断を解除すると、反応性充血により脊髄の血流が一時的に上昇することも確認された。その後、血流が徐々に時間をかけて元のレベルまで戻ることも確認された(図示せず)。
 次に、図3中の矢印A,Bの遮断位置を飛び越えるように、大動脈にバイパスを設け、図3中の矢印A,Bの位置で大動脈を遮断するとともに、図3中の実線C,Dの位置で左右の鎖骨下動脈も遮断して、測定を行った。この測定は、バイパスを介して腹部へ供給された血液を、腹部から分岐する動脈(腰動脈)を介して脊髄へ供給する、側副血行路を確認するために行ったものです。この血流量(CSBF)の測定結果を、図5に示す。図5では、大動脈および左右の鎖骨下動脈を、太矢印で示す0分から30分までの間、遮断している。また、血流量の測定とともに、収縮期血圧(sBF)の測定も行った。
 図5に示すように、大動脈および左右の鎖骨下動脈の遮断中でも、脊髄の血流が保たれていることが確認された。これは、バイパスを介して腹部へ供給された血液が、側副血行路により脊髄に供給されているためであると考えられる。また、大動脈および左右の鎖骨下動脈を遮断すると同時に、血圧が一時的に上昇するが、その後バイパスを血液が流れることにより通常の血圧に復帰することが確認された。
 次に、図3中の矢印Aの位置のみで、大動脈を30分間遮断して測定を行った。バイパスは設置しておらず、左右の鎖骨下動脈の遮断も行っていない。この血流量(CSBF)の測定結果を、図6に示す。図6では、大動脈を、太矢印で示す0分から30分までの間、遮断している。また、血流量の測定とともに、収縮期血圧(sBF)の測定も行った。
 図6に示すように、大動脈を遮断すると同時に、脊髄の血流は一時的に低下したが、その後すぐに回復することが確認された。これは、おそらく内胸動脈という側副血行路(両側の鎖骨下動脈から分岐したもの)を介して血流が維持されたためであると考えられる。また、図4と同様に、大動脈を遮断したことにより、血圧が上昇するのが確認された。
 ほぼ同じ条件の図4の結果と図6の結果とを比較すると、脊髄の血流に、個体差による違いが反映されていることが確認された。このことから、脊髄腔内血流測定装置10を用いることにより、効果的な脊髄血流の測定を行うことができるといえる。
 10 脊髄腔内血流測定装置
 11 カテーテル
  11a 先端部
  11b 開口
 12 発光用光ファイバ
  12a 発光部
 13 受光用光ファイバ
  13a 受光部
 14 光反射手段
 15 血流推定部
 
 21 光通過孔
 

Claims (5)

  1.  脊髄腔内の脊髄に血液を供給する血管の血流量を測定する脊髄腔内血流測定装置であって、
     先端部を前記脊髄腔内に配置可能に設けられたカテーテルと、
     前記脊髄腔内でレーザー光を発光可能に、前記カテーテルの先端部に設けられた発光部と、
     前記発光部から前記脊髄腔内に発光されたレーザー光の散乱光を受光可能に、前記カテーテルの先端部に設けられた受光部と、
     前記受光部で受光された散乱光に基づいて、レーザードップラー法により前記血流量を推定する血流推定部とを、
     有することを特徴とする脊髄腔内血流測定装置。
  2.  前記発光部は、前記脊髄の伸長方向に対して垂直方向または斜め方向に前記レーザー光を発光するよう構成されていることを特徴とする請求項1記載の脊髄腔内血流測定装置。
  3.  前記カテーテルは、ドレナージカテーテルから成り、
     前記発光部および前記受光部は、前記カテーテルの排液機能を損なわないよう設けられていることを
     特徴とする請求項1または2記載の脊髄腔内血流測定装置。
  4.  前記カテーテルの内部に、前記カテーテルの伸長方向に沿って伸びるよう設けられた発光用光ファイバと、
     前記カテーテルの内部に、前記カテーテルの伸長方向に沿って伸びるよう設けられた受光用光ファイバと、
     前記発光用光ファイバおよび前記受光用光ファイバの先端の延長上に配置された光反射手段とを有し、
     前記カテーテルは、前記先端部を前記脊髄腔内の前記脊髄に沿って配置するよう設けられ、
     前記発光用光ファイバは、先端が前記発光部を成し、前記レーザー光を発光可能に構成されており、
     前記受光用光ファイバは、先端が前記受光部を成し、先端から前記散乱光を受光可能に構成されており、
     前記光反射手段は、前記発光部からの前記レーザー光を反射して前記脊髄の伸長方向に対して垂直方向または斜め方向に発光するとともに、前記脊髄の伸長方向に対して垂直方向または斜め方向からの前記散乱光を反射して前記受光部で受光するよう設けられていることを
     特徴とする請求項1乃至3のいずれか1項に記載の脊髄腔内血流測定装置。
  5.  前記発光部と前記受光部との間に、前記発光部から発光された前記レーザー光が、前記受光部に直接入射するのを防ぐための遮光部を有していることを特徴とする請求項1乃至4のいずれか1項に記載の脊髄腔内血流測定装置。
     
PCT/JP2014/058500 2013-08-09 2014-03-26 脊髄腔内血流測定装置 WO2015019660A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015530722A JPWO2015019660A1 (ja) 2013-08-09 2014-03-26 脊髄腔内血流測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-166843 2013-08-09
JP2013166843 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015019660A1 true WO2015019660A1 (ja) 2015-02-12

Family

ID=52461009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058500 WO2015019660A1 (ja) 2013-08-09 2014-03-26 脊髄腔内血流測定装置

Country Status (2)

Country Link
JP (1) JPWO2015019660A1 (ja)
WO (1) WO2015019660A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053242A1 (ja) * 2022-09-07 2024-03-14 国立大学法人東北大学 血流測定用光プローブ、および内視鏡

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118039A (ja) * 1996-10-21 1998-05-12 Omega Wave Kk レーザー血流計の光ファイバープローブ
JP2006317319A (ja) * 2005-05-13 2006-11-24 Institute Of Physical & Chemical Research 血管診断用分光プローブ
JP2010284304A (ja) * 2009-06-11 2010-12-24 Tohoku Univ 臓器虚血モニタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012210A1 (en) * 1995-09-29 1997-04-03 Swee Chuan Tjin Fiber optic catheter for accurate flow measurements
WO2002083229A2 (en) * 2001-04-16 2002-10-24 Medtronic Percusurge, Inc. Aspiration catheters and method of use
US20050027236A1 (en) * 2003-07-30 2005-02-03 Medtronic Ave, Inc. Aspiration catheter having a variable over-the-wire length and methods of use
US9380966B2 (en) * 2007-06-22 2016-07-05 Vioptix, Inc. Tissue retractor oximeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118039A (ja) * 1996-10-21 1998-05-12 Omega Wave Kk レーザー血流計の光ファイバープローブ
JP2006317319A (ja) * 2005-05-13 2006-11-24 Institute Of Physical & Chemical Research 血管診断用分光プローブ
JP2010284304A (ja) * 2009-06-11 2010-12-24 Tohoku Univ 臓器虚血モニタ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TADAO MATSUNAGA ET AL.: "A Drainage Catheter with Ultrasound sensor for Monitoring of Spinal Cord Ischemia", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN KENKYUKAI SHIRYO BIO .MICRO SYSTEM KENKYUKAI, vol. BMS-09, 23 July 2009 (2009-07-23), pages 79 - 82 *
YOSHIKATSU SAIKI: "Shinzo Kekkan Geka Ryoiki ni Okeru Last Frontier", TOHOKU IGAKU ZASSHI, vol. 123, no. 2, 25 December 2011 (2011-12-25), pages 185 - 187 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053242A1 (ja) * 2022-09-07 2024-03-14 国立大学法人東北大学 血流測定用光プローブ、および内視鏡

Also Published As

Publication number Publication date
JPWO2015019660A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
US20220039658A1 (en) Optical pressure sensor assembly
US7242832B2 (en) Device for tissue characterization
US10772490B2 (en) Monitoring device and method of operating the same
US20180199914A1 (en) Fiber-optic realshape sensor for enhanced dopper measurement display
RU2527160C2 (ru) Устройство для измерения тока крови в ткани тела
US10646274B2 (en) Laser catheter with use of reflected light and force indication to determine material type in vascular system
ES2874099T3 (es) Sistemas multimodales de formación de imágenes
JP5819823B2 (ja) 血管の内部の流れおよび圧力を測定する装置および装置の作動方法
US11666307B2 (en) Devices, systems, and methods for real-time monitoring of fluid flow in an anuerysm
US20070292090A1 (en) Low Reflection Lateral Output Fiber Probe
JP2019508128A (ja) 血液ポンプシステム
US10786159B2 (en) Photoacoustic image generation apparatus and insert
US9173572B2 (en) System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
JP2014525761A (ja) 光コヒーレンス断層撮影法及び圧力に基づくシステム及び方法
JP2006317319A (ja) 血管診断用分光プローブ
US20150099942A1 (en) Vascular securement catheter with imaging
US10646118B2 (en) Laser catheter with use of reflected light to determine material type in vascular system
US10646275B2 (en) Laser catheter with use of determined material type in vascular system in ablation of material
WO2016101280A1 (zh) 一种血管内成像系统及方法
US20200367750A1 (en) Photoacoustic system for accurate localization of laser ablation catheter tip position and temperature monitoring during ablation procedures
WO2015019660A1 (ja) 脊髄腔内血流測定装置
US20220003634A1 (en) Optical fiber state detection system
US20230173250A1 (en) Cardiac pump with optical fiber for laser doppler
WO2015177750A1 (en) Catheter for sub-surface ablation in biological tissue
CN105310720A (zh) 被检体信息获取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834866

Country of ref document: EP

Kind code of ref document: A1