WO2015019508A1 - トリベ予熱装置 - Google Patents

トリベ予熱装置 Download PDF

Info

Publication number
WO2015019508A1
WO2015019508A1 PCT/JP2013/077478 JP2013077478W WO2015019508A1 WO 2015019508 A1 WO2015019508 A1 WO 2015019508A1 JP 2013077478 W JP2013077478 W JP 2013077478W WO 2015019508 A1 WO2015019508 A1 WO 2015019508A1
Authority
WO
WIPO (PCT)
Prior art keywords
ladle
peripheral wall
heat radiating
heat
drum
Prior art date
Application number
PCT/JP2013/077478
Other languages
English (en)
French (fr)
Inventor
勝也 谷口
可深 于
茂 福丸
洋介 村山
Original Assignee
日精オーバル株式会社
有明セラコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日精オーバル株式会社, 有明セラコ株式会社 filed Critical 日精オーバル株式会社
Publication of WO2015019508A1 publication Critical patent/WO2015019508A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • B22D41/01Heating means
    • B22D41/015Heating means with external heating, i.e. the heat source not being a part of the ladle

Definitions

  • the present invention relates to a ladle preheating apparatus for preheating a ladle that transports a molten metal melt to a predetermined position.
  • a traverse carriage that moves on a traverse rail laid in a direction perpendicular to the travel carriage is mounted on a traverse carriage that is movably mounted on one or a plurality of traverse rails.
  • the pouring device is provided with a lifting device that supports a bracket for housing the ladle on the carriage and a tilting device that tilts the ladle, and controls the control panel installed in the pouring device to control the traveling cart
  • a ladle pouring device that moves and adjusts the traversing carriage in the front-rear direction by adjusting the movement in the direction and adjusts the elevating and tilting of the ladle (see Patent Document 1).
  • the ladle is used to store a molten metal melted in a melting furnace in a storage space and transport the molten metal to a predetermined position.
  • the top wall and the peripheral wall of the ladle are made of a heat-resistant caster and a heat-insulating caster (irregular refractory), and the top and bottom walls and the peripheral wall are preheated to a predetermined temperature in order to prevent the molten metal from being cooled and solidified.
  • a preheating burner is used to preheat the ladle.
  • the preheating burner has a hatch that is detachably installed in the top opening of the ladle and a combustion nozzle that extends downward from the hatch.
  • To preheat the ladle to a predetermined temperature with a combustion burner insert the combustion nozzle into the ladle storage space, install a hatch in the top opening of the ladle, ignite the fuel, and burn the combustion gas flame from the nozzle crater. Blows out toward and heats the top and bottom walls of the ladle by direct flame.
  • top wall or peripheral wall of the ladle is heated by a direct flame, a temperature gradient is created between the part directly hitting the flame and the other part of the labyrinth wall or peripheral wall, and the entire lava is heated evenly. Can not do it.
  • the temperature of the bottom wall and peripheral wall of the tribe that is directly exposed to the flame rises rapidly and expands, causing cracks and pinholes in the heat-resistant casters at the boundary between the directly exposed flame and the other areas. There is a case.
  • the premise of the present invention to solve the above-mentioned problems is to pre-heat a trough having a storage space of a predetermined volume capable of storing a molten metal, a top opening for pouring the molten metal, and a pouring port for pouring the molten metal in advance.
  • This is a ladle preheating device.
  • the ladle preheating device includes a hatch that is detachably installed at the top opening of the ladle, a burner that is installed at the top of the hatch to produce combustion gas at a predetermined temperature, and a flame of combustion gas.
  • a combustion nozzle having a crater that blows out and extending downward from the lower part of the hatch, and a heat dissipating drum that is connected to the lower part of the hatch and covers the combustion nozzle and is removably inserted into the storage space of the tray.
  • the drum is located radially inward from the inner peripheral surface of the peripheral wall of the ladle, extends from the lower part of the hatch toward the bottom wall of the ladle, and is connected to the lower end edge of the radiant peripheral wall to be connected to the bottom wall side of the ladle Is located on at least one of the heat-dissipating bottom wall and the heat-dissipating peripheral wall and the heat-dissipating bottom wall. Or In that it has a release hole which releases Te.
  • a discharge hole is formed in the heat dissipating peripheral wall to discharge the combustion exhaust gas toward the peripheral wall of the ladle, and a heat dissipating bottom wall is formed in the heat dissipating bottom wall to discharge the combustion exhaust gas to the bottom wall of the ladle. And a plurality of second discharge holes that discharge toward.
  • the peripheral wall of the ladle and the heat radiating peripheral wall of the heat radiating drum are formed into a cylindrical shape, and in the ladle preheating device, when the radiating drum is inserted into the storage space of the ladle, the central axis of the circumferential wall of the ladle And the center axis of the heat radiating peripheral wall of the heat radiating drum substantially coincide with each other, or the center axis of the heat radiating peripheral wall of the heat radiating drum is eccentric in the radial direction with respect to the center axis of the peripheral wall of the ladle.
  • the combustion nozzle is positioned at the center of the heat radiating peripheral wall of the heat radiating drum and extends in the vertical direction, and the crater of the combustion nozzle is spaced apart from the heat radiating bottom wall of the heat radiating drum by a predetermined distance.
  • the heat dissipating drum has a heat dissipating drum wall that is positioned in the lower 1/3 of the heat dissipating peripheral wall when the vertical dimension of the heat dissipating peripheral wall is equally divided into three.
  • the first discharge holes are formed in the heat dissipating peripheral wall extending toward the heat dissipating bottom wall of the heat dissipating drum, and are arranged with a predetermined distance apart in the direction around the heat dissipating peripheral wall.
  • the first discharge holes are formed in the heat dissipating peripheral wall extending toward the hatch side, and are arranged at a predetermined distance in the circumferential direction of the heat dissipating peripheral wall.
  • the second discharge holes are arranged along the peripheral edge of the heat radiating bottom wall so as to be spaced apart from each other by a predetermined dimension in the direction around the heat radiating bottom wall.
  • the radiating bottom wall of the radiating drum accommodates when the vertical dimension of the ladle accommodating space is divided into three equal parts. Located in the lower third of the space.
  • the radiating peripheral wall of the radiating drum is located between the inner peripheral surface of the peripheral wall of the ladle and the central axis of the peripheral wall of the ladle. It is located within a range of 1 ⁇ 2 of the inner peripheral surface side of the peripheral wall of the ladle when the radial dimension is divided into two equal parts.
  • the ladle preheating device has a heat dissipating drum that is removably inserted into a storage space of the ladle, the flame of the combustion gas blown from the crater of the combustion nozzle is blocked by the heat dissipating drum, and during preheating The flame does not directly hit the circumferential wall or top wall of the ladle, and can prevent partial temperature rise and expansion of the labyrinth wall or top wall, and cracks and pinholes in the labyrinth and top wall. Can be prevented.
  • the preheater does not cause cracks or pinholes in the peripheral wall or top wall of the ladle during preheating, so there is no need to renovate the ladle, saving time and money for refurbishment, The tribe can be used continuously for the life of the product.
  • the ladle preheating device releases heat energy from the entire area of the radiating drum heated by the flame of the combustion gas toward the circumferential wall and the top bottom wall of the ladle and is formed on at least one of the radiating circumferential wall and the radiating bottom wall.
  • the thermal energy of the combustion gas can be efficiently transmitted to the ladle via the heat radiating drum, and the entire area of the ladle is preheated to a predetermined temperature. Can do.
  • the ladle preheating device in which the discharge holes are a plurality of first discharge holes formed in the heat radiating peripheral wall and a plurality of second discharge holes formed in the heat radiating bottom wall, is formed from the first discharge hole formed in the heat radiating peripheral wall.
  • Combustion exhaust gas at a predetermined temperature is discharged toward the peripheral wall, and combustion exhaust gas at a predetermined temperature is discharged toward the bottom wall of the ladle from the second discharge hole formed in the heat radiating bottom wall.
  • the thermal energy of the combustion gas can be efficiently transmitted to the ladle via the heat radiating drum, and the entire area of the labyrinth can be heated uniformly and preheated to substantially the same temperature.
  • the circumferential wall of the ladle and the radiating circumferential wall of the radiating drum are formed into a cylindrical shape, and when the radiating drum is inserted into the storage space of the rivet, the central axis of the circumferential wall of the rivet and the central axis of the radiating circumferential wall of the radiating drum are substantially aligned.
  • the central axis of the radiating drum's radiating peripheral wall is eccentric in the radial direction with respect to the central axis of the labyrinth's peripheral wall
  • the central axes substantially coincide
  • the distance between the peripheral wall of the ladle and the heat radiating peripheral wall of the radiating drum is almost the same at all locations on the peripheral wall of the turret, and the same thermal energy is transmitted from the radiating peripheral wall of the radiating drum to all locations on the peripheral wall of the ladle.
  • Heating unevenness is not generated on the peripheral wall of the ladle, the entire peripheral wall of the ladle can be heated uniformly and uniformly, and the entire ladle is preheated to substantially the same temperature. It is possible.
  • the central axis of the heat radiating peripheral wall of the heat radiating drum is eccentric in the radial direction with respect to the central axis of the peripheral wall of the tribe, the distance between the peripheral wall of the rivet and the heat radiating peripheral wall of the heat radiating drum is different.
  • the thermal energy of the combustion gas is efficiently fed to the ladle via the radiating drum.
  • the entire area of the ladle can be preheated to a predetermined temperature.
  • the combustion nozzle is positioned at the center of the heat radiating peripheral wall of the heat radiating drum and extends in the vertical direction.
  • the crater of the combustion nozzle is spaced apart from the heat radiating bottom wall of the heat radiating drum by a predetermined distance and the vertical dimension of the heat radiating peripheral wall of the heat radiating drum is 3
  • the tribe preheating device which is located within the lower 1/3 of the heat dissipating peripheral wall when equally divided, has the heat energy of the combustion gas blown out from the crater of the combustion nozzle in the whole area of the drum from below to above the heat dissipating drum.
  • the ladle preheating device in which the first discharge holes are formed in the heat dissipating peripheral wall extending to the heat dissipating bottom wall side of the heat dissipating drum and are spaced apart by a predetermined dimension around the heat dissipating peripheral wall is on the heat dissipating drum side of the heat dissipating drum.
  • the combustion exhaust gas having a predetermined temperature is discharged from the first discharge holes arranged in a circumferential direction around the heat radiating peripheral wall toward the peripheral wall of the ladle, and the heat of the combustion exhaust gas is reliably transmitted to the entire peripheral wall of the ladle.
  • the heating wall does not cause uneven heating, and the heat energy of the combustion gas can be efficiently transmitted to the entire peripheral wall of the ladle via the heat radiating drum, and the entire peripheral wall of the ladle can be uniformly heated.
  • the ladle preheating device in which the first discharge holes are formed in the heat dissipating peripheral wall extending to the hatch side and are arranged with a predetermined dimension apart in the direction around the heat dissipating peripheral wall is spaced apart by a predetermined dimension in the direction around the heat dissipating peripheral wall.
  • the combustion exhaust gas having a predetermined temperature is discharged from the first discharge holes arranged in a row toward the peripheral wall of the ladle, and the heat of the combustion exhaust gas is reliably transmitted to the entire peripheral wall of the ladle, so that heating unevenness does not occur in the peripheral wall of the ladle.
  • the heat energy of the combustion gas can be efficiently transmitted to the entire circumferential wall of the ladle via the heat radiating drum, and the entire circumferential wall of the ladle can be uniformly heated.
  • the ladle preheating device in which the second discharge holes are arranged along the peripheral edge of the heat radiating bottom wall with a predetermined distance apart in the direction around the heat radiating bottom wall is arranged with a predetermined distance apart in the direction around the peripheral edge of the heat radiating bottom wall. Since the flue gas having a predetermined temperature is discharged from the second discharge holes toward the bottom wall of the ladle, there is no uneven heating on the bottom wall of the ladle, and the thermal energy of the combustion gas is transferred to the ladle via the heat radiating drum. While being able to transmit efficiently to the whole bottom wall, the whole bottom wall of a ladle can be heated uniformly and uniformly.
  • the heat radiating bottom wall of the heat radiating drum When the heat radiating drum is inserted into the storage space of the tray, the heat radiating bottom wall of the heat radiating drum is located within a range of 1/3 below the storage space when the vertical dimension of the storage space of the tray is divided into three equal parts.
  • the preheating device when the heat radiating drum is inserted into the storage space of the ladle, if the heat radiating bottom wall of the heat radiating drum is largely separated from the bottom wall of the rivet, the thermal energy released from the heat radiating bottom wall of the heat radiating drum Although the heat of the combustion exhaust gas discharged from the discharge hole is difficult to be transmitted to the lower part or bottom wall of the peripheral wall of the ladle, the heat dissipating bottom wall of the heat dissipating drum is located within 1/3 of the lower part of the housing space.
  • the heat energy emitted from the bottom wall and the heat of the combustion exhaust gas emitted from the second discharge hole can be reliably transmitted to the peripheral wall and bottom wall of the ladle, and the entire circumferential wall of the ladle and It can be evenly uniformly heating the walls throughout.
  • the radiating peripheral wall of the radiating drum divides the radial dimension between the inner peripheral surface of the labyrinth peripheral wall and the central axis of the labyrinth circumferential wall into two equal parts.
  • the ladle preheating device located within the range of 1 ⁇ 2 of the inner peripheral surface side of the peripheral wall is designed to dissipate heat when the heat dissipating peripheral wall of the heat dissipating drum is far away from the peripheral wall of the labyrinth when the heat dissipating drum is inserted into the storage space of the trive.
  • the heat energy released from the heat radiating peripheral wall of the drum and the heat of the combustion exhaust gas discharged from the first discharge hole are difficult to be transmitted to the peripheral wall of the ladle, but the heat radiating peripheral wall of the heat radiating drum is 1 / Since it is located within the range of 2, the heat energy released from the heat radiating peripheral wall of the heat radiating drum and the heat of the combustion exhaust gas discharged from the first discharge hole can be reliably transmitted to the peripheral wall of the ladle, via the heat radiating drum. It can be evenly uniformly heat the wall throughout the rebates.
  • the perspective view of the ladle preheating apparatus shown as an example.
  • the figure explaining the preheating of the ladle by the ladle preheating apparatus of FIG. The perspective view of the ladle preheating apparatus 10B shown as another example.
  • FIG. 1 is a perspective view of the ladle preheating apparatus 10A shown as an example.
  • 2 is a plan view of the heat radiating bottom wall of the heat radiating drum 27, and
  • FIG. 3 is a view for explaining insertion of the ladle preheating device 10A into the accommodating space 16 of the ladle 11.
  • FIG. 4 is a diagram for explaining preheating of the ladle 11 by the ladle preheating device 10A.
  • the vertical direction is indicated by an arrow A
  • the surrounding direction is indicated by an arrow B.
  • FIG. 1 is a perspective view of the ladle preheating apparatus 10A shown as an example.
  • FIG. 3 is a view for explaining insertion of the ladle preheating device 10A into the accommodating space 16 of the ladle 11.
  • FIG. 4 is a diagram for explaining preheating of the ladle 11 by the ladle preheating device 10A.
  • the vertical direction is indicated by an arrow A
  • the surrounding direction is indicated by an
  • the ladle preheating device 10 ⁇ / b> A is shown as being lifted by a crane (not shown).
  • 3 and 4 the ladle 11 and the ladle preheating device 10A are shown as cross-sectional views. 3 and 4 show a state in which the lid is removed from the ladle 11.
  • the ladle preheating device 10 ⁇ / b> A is used for preheating the ladle 11.
  • the ladle 11 is an earthen pot type lifting ladle
  • the ladle 11 that can be preheated by the ladle preheating apparatus 10A includes a ladle type, a ladle type ladle, a gear in addition to the earthen pot type lifting ladle. Includes lifted tilting ladle, cylindrical ladle, and stopper ladle.
  • the ladle 11 is used for casting a molten metal into a mold.
  • the ladle 11 is preheated to a predetermined temperature in advance, and then accommodates a molten metal (for example, aluminum or zinc) and conveys the molten metal to a mold.
  • a molten metal for example, aluminum or zinc
  • the ladle 11 includes a circular top wall 12 and a circular bottom wall 13, a cylindrical peripheral wall 14, a circular lid (not shown), and a pouring cylinder 15. Is formed.
  • the ladle 11 is surrounded by the top bottom walls 12, 13 and the peripheral wall 14 and has a predetermined volume accommodating space 16 that can accommodate the molten metal, a circular top opening 17 formed in the top wall 12, and a pouring cylinder 15. It has a pouring port 18 which is made at the tip and pours molten metal into a mold.
  • the top wall 12 and the lid are made of a heat-resistant caster 19 (unshaped refractory) having a predetermined thickness.
  • the bottom wall 13, the peripheral wall 14, and the pouring cylinder 15 are made up of a heat-resistant caster 19 having a predetermined thickness and a heat-insulating caster 20 (indeterminate refractory) having a predetermined thickness. It is a two-layer structure located on the (inner side) and the heat insulating caster 20 located on the outer side.
  • a pedestal 21 made of a heat insulating caster 20 is attached to the bottom wall 13.
  • the pouring gate 18 is provided with a cap 22 made of a heat-resistant caster 19 and capable of opening and closing the pouring port 18. In the ladle 11, after the molten metal is poured into the accommodation space 16 from the top opening 17, the top opening 17 is hermetically sealed by a lid.
  • a of ladle preheating apparatuses are the hatch 23 detachably installed in the top opening 17 (top wall 12) of the ladle 11, the burner 24 attached to the upper part of the hatch 23, and the combustion nozzle attached to the lower part of the hatch 23 25 and a heat insulating sleeve 26, and a heat radiating drum 27 attached to the lower portion of the hatch 23.
  • the hatch 23 is made of a heat-resistant caster 19 having a predetermined thickness, and its planar shape is formed in a circular shape.
  • the burner 24 ignites gaseous fuel (natural gas, petroleum cracked gas, liquefied petroleum gas, hydrogen gas, etc.) or liquid fuel (light oil, kerosene, heavy oil, etc.), burns the fuel, and burns at a predetermined temperature (high temperature) Make gas.
  • gaseous fuel natural gas, petroleum cracked gas, liquefied petroleum gas, hydrogen gas, etc.
  • liquid fuel light oil, kerosene, heavy oil, etc.
  • the combustion nozzle 25 is made of stainless steel, ceramic or heat-resistant alloy and is formed into a cylindrical shape.
  • the combustion nozzle 25 passes through the hatch 23 and is connected to the burner 24, and extends downward from the lower portion of the hatch 23.
  • the combustion nozzle 25 is located at the center of the hatch 23, and the center axis thereof coincides with the center of the hatch 23.
  • the combustion nozzle 25 has a crater 30 that blows out a flame of combustion gas sent from the burner 24.
  • the heat insulating sleeve 26 is made of a heat-resistant caster 19 and is formed into a cylindrical shape.
  • the heat insulating sleeve 26 extends downward from the lower portion of the hatch 23 and covers the entire outer peripheral surface of the combustion nozzle 25.
  • the length of the heat insulating sleeve 26 extending downward from the hatch 23 is longer than that of the combustion nozzle 25 extending downward from the hatch 23.
  • the heat insulation sleeve 26 prevents the heat of the combustion gas discharged from the combustion nozzle 25 from being directly transmitted to the nozzle 25 and prevents the nozzle 25 from being damaged by the heat of the combustion gas.
  • the heat dissipating drum 27 is connected to the lower part of the hatch 24 and covers the entire combustion nozzle 25 and the entire heat insulating sleeve 26.
  • the heat radiating drum 27 is removably inserted into the accommodation space 16 from the top opening 17 of the ladle 11.
  • the heat dissipating drum 27 has a heat dissipating peripheral wall 31 extending from the lower part of the hatch 24 toward the bottom wall 13 of the ladle 11 and a heat dissipating bottom wall 32 spaced apart from the bottom wall 13 of the ladle 11 by a predetermined dimension.
  • the heat radiating peripheral wall 31 is made of stainless steel, ceramic, or heat-resistant alloy, and is formed into a cylindrical shape.
  • a plurality of circular first discharge holes 33 (discharge holes) penetrating the heat radiating peripheral wall 31 are formed.
  • the first discharge holes 33 are formed in the heat radiating peripheral wall 31 extending toward the heat radiating bottom wall 33 of the heat radiating drum 27, and are arranged at substantially equal intervals (predetermined dimensions apart) in the direction around the heat radiating peripheral wall 31.
  • the first discharge hole 33 discharges combustion exhaust gas having a predetermined temperature created by the combustion gas flame to the outside of the heat radiating drum 27.
  • the first discharge hole 33 is formed within a range of a lower half of the heat dissipation peripheral wall 31 when the vertical dimension L1 of the heat dissipation peripheral wall 31 is divided into two equal parts.
  • the heat radiation bottom wall 32 is made of stainless steel, ceramic, or heat-resistant alloy.
  • the heat radiating bottom wall 32 is formed in a circular shape and connected to the lower end edge of the heat radiating peripheral wall 31.
  • the heat radiation bottom wall 32 is formed with a plurality of circular second discharge holes 34 (discharge holes) penetrating therethrough. These second discharge holes 34 are formed along the peripheral edge of the heat radiating bottom wall 31 and are arranged at substantially equal intervals (predetermined dimensions apart) in the circumferential direction of the heat radiating bottom wall 31. So as to surround the heat-dissipating bottom wall 31 so as to be spaced at substantially equal intervals (predetermined dimensions apart). Therefore, the second discharge hole 34 is not formed at the center of the heat radiating bottom wall 31.
  • the crater 30 of the combustion nozzle 25 is spaced apart from the heat radiating bottom wall 32 of the heat radiating drum 27 by a predetermined distance, and the heat radiating peripheral wall 31 when the vertical dimension L1 of the heat radiating peripheral wall 31 of the heat radiating drum 27 is divided into three equal parts. It is located within the range of 1/3 below.
  • a plurality of first discharge holes 33 may be formed in the heat dissipation peripheral wall 31 and the second discharge holes 34 may not be formed in the heat dissipation bottom wall 32.
  • a plurality of second discharge holes 34 are formed in the heat dissipation bottom wall 32, and the first discharge holes 33 are not formed in the heat dissipation peripheral wall 31.
  • An example of a procedure for inserting the ladle preheating device 10A into the accommodation space 16 of the ladle 11 is as follows. While removing the lid from the ladle 11, the lid 22 is turned to open the pouring port 18. Next, the suspension wire 29 is hooked on the hook of the crane, and the ladle preheating device 10A is lifted by the crane. In addition, when the lid is removed from the ladle 11, the top opening 17 of the ladle 11 is opened, but when the lid is attached to the top wall 12 of the ladle 11 via a hinge, the lid is swung. The top opening 17 of the ladle 11 is opened.
  • the preheating device 10A After lifting the ladle preheating device 10A, the preheating device 10A is moved directly above the top opening 17 of the ladle 11 by a crane. Next, as indicated by an arrow X1 in FIG. 3, the preheating device 10A is gradually lowered, and the heat radiating drum 27 is gradually inserted into the accommodation space 16 of the ladle 11. When the hatch 23 of the ladle preheating device 10A comes into contact with the top wall 12 of the ladle 11 in the process of inserting the heat radiating drum 27 into the accommodating space 16, the further lowering of the preheating device 10A stops, and as shown in FIG.
  • the entire heat dissipating drum 27 (the combustion nozzle 25 and the heat insulating sleeve 26) is located in the accommodation space 16.
  • the hatch 23 of the preheating device 10A is firmly fixed to the top wall 12 of the ladle 11 by a fixing means (not shown).
  • the hatch 23 is fixed to the top wall 12, the top opening 17 of the ladle 11 is hermetically sealed.
  • the heat radiating drum 27 When the heat radiating drum 27 is inserted into the housing space 16 of the ladle 11, the heat radiating drum 27 is positioned radially inward from the inner peripheral surface 36 of the peripheral wall 14 of the tribe 11, and the heat radiating peripheral wall 31 extends from the lower part of the hatch to the bottom wall of the tribe 11.
  • the heat radiating bottom wall 32 is positioned in the vicinity of the bottom wall 13 of the ladle 11 and is spaced apart from the bottom wall 13 by a predetermined distance. Further, the central axis of the peripheral wall 14 of the ladle 11 and the central axis of the heat radiating peripheral wall 31 of the heat radiating drum 27 substantially coincide with each other.
  • the central axis of the heat radiating peripheral wall 31 of the heat radiating drum 27 is in the radial direction with respect to the central axis of the peripheral wall 14 of the trowel 11.
  • the center axis of the peripheral wall 14 of the ladle 11 and the center axis of the heat radiating peripheral wall 31 of the heat radiating drum 27 may deviate from each other.
  • the radiating bottom wall 32 of the drum 27 accommodates when the vertical dimension L2 of the accommodating space 16 of the ladle 11 is divided into three equal parts. It is located within the lower third of the space 16.
  • the peripheral wall 14 of the tribe 11 when the radial dimension L3 between the inner peripheral surface 36 of the peripheral wall 14 of the tribe 11 and the central axis of the peripheral wall 14 of the tribe 11 is bisected. It is located within a range of 1/2 on the inner peripheral surface 36 side of the.
  • the preheating of the ladle 11 by the ladle preheating device 10A is as follows. It is assumed that aluminum accommodated as a molten metal is accommodated in the accommodating space 16 of the ladle 11. Although not shown, a temperature sensor is inserted from the pouring port 18 into the accommodation space 16. The temperature sensor and the burner 24 are connected to a controller (not shown). The temperature sensor measures the temperature of the accommodation space 16 during the preheating of the ladle 11 and transmits the measured actual temperature to the controller. The controller compares the measured temperature sent from the temperature sensor with a preset temperature (for example, 700-800 ° C) and determines that preheating is complete when the measured temperature is within the preset temperature range. Then, the switch of the burner 24 is turned off.
  • a preset temperature for example, 700-800 ° C
  • the burner 24 After inserting the ladle preheating device 10A (heat dissipating drum 27) into the accommodating space 16 of the ladle 11, the burner 24 is activated by turning on the switch of the burner 24 from the numeric keypad unit of the controller. When the burner 24 is activated, the ignited fuel is burned to produce combustion gas, and the combustion gas is sent to the combustion nozzle 25 by the air supply fan. The combustion gas passes through the combustion nozzle 25 and reaches the crater 30, and the flame 37 blows out from the crater 30 as shown in FIG.
  • the radiating drum 27 is heated by the combustion gas flame 37, and the temperature of the entire radiating drum 27 rises to about 750 to 850 ° C. Thermal energy is released from the entire heat dissipating peripheral wall 31 of the heat dissipating drum 27 heated to a predetermined temperature by the combustion gas flame 37 toward the peripheral wall 14 of the tribe 11, and from the entire heat dissipating bottom wall 32 of the heat dissipating drum 27. Thermal energy is released toward the bottom wall 13. Further, as indicated by an arrow X2 in FIG. 4, the high-temperature combustion exhaust gas produced by the combustion gas flame 37 is discharged toward the peripheral wall 14 of the ladle 11 from the first discharge hole 33 formed in the heat radiating peripheral wall 31.
  • the high-temperature combustion exhaust gas produced by the combustion gas flame 37 is discharged from the second discharge hole 34 formed in the heat radiation bottom wall 32 toward the bottom wall 13 of the ladle 11. Is done.
  • the peripheral wall 14 and the top wall 12 of the ladle 11 are gradually heated by the heat released from the heat radiating peripheral wall 31 of the heat radiating drum 27 and gradually heated by the combustion exhaust gas discharged from the first discharge holes 33.
  • the bottom wall 13 of the ladle 11 is gradually heated by the heat released from the heat radiating bottom wall 32 of the heat radiating drum 27 and gradually heated by the combustion exhaust gas discharged from the second discharge hole 34.
  • the combustion exhaust gas flows through the accommodation space between the heat radiating drum 27 and the bottom wall 13 and the peripheral wall 14 of the ladle 11, and then flows into the pouring cylinder 15 as shown by an arrow X4 in FIG. It is discharged from the pouring spout 18 through the tube 15 to the outside of the ladle 11.
  • the controller turns off the switch of the burner 24 and the preheating of the ladle 11 is completed.
  • the preheating device 10A After preheating the ladle 11 with the ladle preheating device 10A, as shown by an arrow X5 in FIG. 3, the preheating device 10A is gradually raised by a crane, and the heat radiating drum 27 is gradually pulled out from the accommodation space 16 of the ladle 11. After the radiating drum 27 is lifted above the top opening 17 of the ladle 11, the ladle preheating device 10A is moved to the outside of the ladle 11, and molten aluminum (molten metal) is poured into the storage space 16 of the ladle 11, and the top is covered by a lid. The opening 17 is sealed and the ladle 11 is conveyed to the mold.
  • molten aluminum molten metal
  • FIG. 5 is a perspective view of a ladle preheating device 10B shown as another example
  • FIG. 6 is a diagram for explaining preheating of the ladle 11 by the ladle preheating device 10B.
  • the vertical direction is indicated by an arrow A
  • the surrounding direction is indicated by an arrow B.
  • the ladle preheating device 10B is shown in a state of being lifted by a crane (not shown).
  • the ladle 11 and ladle preheating apparatus 10B are shown as sectional views.
  • FIG. 6 shows a state where the lid is removed from the ladle 11.
  • the first discharge hole 33a is not only formed in the heat radiating peripheral wall 31 extending toward the heat radiating bottom wall 32 of the heat radiating drum 27, but also the first discharge hole 33b is formed.
  • the heat dissipating peripheral wall 31 extends to the hatch 23 side. Since the other configuration of the ladle preheating device 10B is the same as that of the ladle preheating device 10A in FIG. 1, the same reference numerals as those in FIG. 1 are attached, and the description of the ladle preheating device 10A in FIG. Thus, detailed description of the other components in the ladle preheating device 10B will be omitted.
  • the ladle preheating device 10 ⁇ / b> B includes a hatch 23 that is detachably installed in the top opening 17 (top wall 12) of the ladle 11, a burner 24 that is attached to the top of the hatch 23, The combustion nozzle 25 and the heat insulation sleeve 26 attached to the lower part, and the heat radiation drum 27 attached to the lower part of the hatch 23 are provided.
  • the heat radiating peripheral wall 31 is formed with a plurality of circular first discharge holes 33a and first discharge holes 33b penetrating therethrough.
  • the first discharge holes 33 a are formed in the heat dissipation peripheral wall 31 extending toward the heat dissipation bottom wall 33 of the heat dissipation drum 27, and are arranged at substantially equal intervals in the circumferential direction of the heat dissipation peripheral wall 31.
  • the heat-dissipating peripheral wall 31 extends to the side of the heat-dissipating side, and is arranged in the circumferential direction of the heat-dissipating peripheral wall 31 at substantially equal intervals.
  • the first discharge holes 33 a and 33 b discharge the combustion exhaust gas having a predetermined temperature generated by the combustion gas flame to the outside of the heat radiating drum 27.
  • the first discharge hole 33a is formed within a range of a lower half of the heat dissipation peripheral wall 31 when the vertical dimension L1 of the heat dissipation peripheral wall 31 is divided into two equal parts, and the first discharge hole 33b is a heat dissipation peripheral wall. It is formed within a range of 1/2 above the heat radiating peripheral wall 31 when the vertical dimension L1 of the 31 is divided into two equal parts. In some cases, a plurality of first discharge holes 33 b are formed in the heat dissipation peripheral wall 31 and the first discharge holes 33 a are not formed in the heat dissipation peripheral wall 31.
  • first discharge holes 33 b are formed in the heat dissipation peripheral wall 31, the first discharge holes 33 a are not formed in the heat dissipation peripheral wall 31, and the second discharge holes 34 are not formed in the heat dissipation bottom wall 32. There is a case.
  • the procedure for inserting the ladle preheating device 10B into the accommodation space 16 of the ladle 11 is the same as that of the ladle preheating device 10A.
  • the heat radiating drum 27 When the heat radiating drum 27 is inserted into the housing space 16 of the ladle 11, the heat radiating drum 27 is positioned radially inward from the inner peripheral surface 36 of the peripheral wall 14 of the tribe 11, and the heat radiating peripheral wall 31 extends from the lower part of the hatch to the bottom wall of the tribe 11.
  • the heat radiating bottom wall 32 is positioned in the vicinity of the bottom wall 13 of the ladle 11 and is spaced apart from the bottom wall 13 by a predetermined distance. Further, the central axis of the peripheral wall 14 of the ladle 11 and the central axis of the heat radiating peripheral wall 31 of the heat radiating drum 27 substantially coincide with each other.
  • the radiating bottom wall 32 of the drum 27 accommodates when the vertical dimension L2 of the accommodating space 16 of the ladle 11 is divided into three equal parts. It is located within the lower third of the space 16.
  • the peripheral wall 14 of the tribe 11 when the radial dimension L3 between the inner peripheral surface 36 of the peripheral wall 14 of the tribe 11 and the central axis of the peripheral wall 14 of the tribe 11 is bisected. It is located within a range of 1/2 on the inner peripheral surface 36 side of the.
  • the ladle preheating device 10B heat radiating drum 27
  • the ignited fuel is burned to produce combustion gas
  • the combustion gas is burned by the air supply fan. It is sent to the nozzle 25.
  • the combustion gas passes through the combustion nozzle 25 and reaches the crater 30, and the flame 37 blows out from the crater 30 as shown in FIG.
  • the heat radiation drum 27 is heated by the flame 37 of the combustion gas, and the temperature of the entire heat radiation drum 27 rises to about 750 to 850 ° C.
  • Thermal energy is released from the entire heat dissipating peripheral wall 31 of the heat dissipating drum 27 heated to a predetermined temperature by the combustion gas flame 37 toward the peripheral wall 14 of the tribe 11, and from the entire heat dissipating bottom wall 32 of the heat dissipating drum 27. Thermal energy is released toward the bottom wall 13.
  • high-temperature combustion exhaust gas produced by the combustion gas flame 37 is discharged from the first discharge holes 33a and 33b formed in the heat radiating peripheral wall 31 toward the peripheral wall 14 of the ladle 11.
  • high-temperature combustion exhaust gas produced by the combustion gas flame 37 travels from the second discharge hole 34 formed in the heat radiation bottom wall 32 toward the bottom wall 13 of the tribe 11. Released.
  • the peripheral wall 14 and the top wall 12 of the ladle 11 are gradually heated by the heat released from the heat radiating peripheral wall 31 of the heat radiating drum 27 and are gradually heated by the combustion exhaust gas discharged from the first discharge holes 33a and 33b.
  • the bottom wall 13 of the ladle 11 is gradually heated by the heat released from the heat radiating bottom wall 32 of the heat radiating drum 27 and gradually heated by the combustion exhaust gas discharged from the second discharge hole 34.
  • the ladle preheating device 10 ⁇ / b> B is gradually raised by a crane in the same manner as the ladle preheating device 10 ⁇ / b> A, and the heat radiating drum 27 is gradually pulled out from the accommodation space 16 of the ladle 11.
  • the ladle preheating devices 10 ⁇ / b> A and 10 ⁇ / b> B have a heat radiating drum 27, which is removably inserted into the storage space 16 of the ladle 11, and a flame 37 of combustion gas blown from the crater 30 of the combustion nozzle 25 blocks the heat radiating drum 27. Therefore, the flame 37 does not directly hit the peripheral wall 14 and the top bottom walls 12 and 13 of the ladle 11 during preheating, so that partial temperature rise and expansion of the peripheral wall 14 and the top bottom walls 12 and 13 of the ladle 11 are prevented. And the generation of cracks and pinholes in the peripheral wall 14 and the top and bottom walls 12 and 13 of the ladle 11 can be prevented.
  • the ladle preheating devices 10 ⁇ / b> A and 10 ⁇ / b> B release thermal energy from the entire area of the heat radiating drum 27 heated by the flame 37 of the combustion gas toward the peripheral wall 14 and the top and bottom walls 12 and 13 of the ladle 11, and to the heat radiating peripheral wall 31.
  • Combustion exhaust gas having a predetermined temperature is discharged from the formed first discharge hole 33 (33a, 33b) toward the peripheral wall 14 of the ladle 11, and the bottom wall of the tribe 11 is discharged from the second discharge hole 34 formed in the heat radiating bottom wall 32.
  • the combustion exhaust gas having a predetermined temperature is released toward the heat source 13, heating unevenness does not occur in the ladle 11, and the thermal energy of the combustion gas can be efficiently transmitted to the ladle 11 through the heat radiating drum 27. It is possible to uniformly heat the entire area 11 and preheat the entire area of the ladle 11 to substantially the same temperature.
  • the ladle preheating devices 10A and 10B are located within a range of 1/3 below the radiating peripheral wall 31 when the crater 30 of the combustion nozzle 25 divides the vertical dimension L1 of the radiating peripheral wall 31 of the radiating drum 27 into three equal parts. Therefore, the thermal energy of the combustion gas blown from the crater 30 of the combustion nozzle 25 is uniformly transmitted to the entire area of the drum 27 from the lower side to the upper side of the heat radiation drum 27, and the entire area of the heat radiation drum 27 is heated substantially uniformly by the combustion gas. Can do.
  • the central axis of the peripheral wall 14 of the ladle 11 and the central axis of the radiant peripheral wall 31 of the radiating drum 27 substantially coincide with each other.
  • the spacing between the peripheral wall 14 of the ladle 11 and the heat dissipating peripheral wall 31 of the heat dissipating drum 27 is substantially the same at all locations on the peripheral wall 14 of the trive 11, and from the heat dissipating peripheral wall 31 of the heat dissipating drum 27 to all the locations of the peripheral wall 14. Can transmit the same heat energy.
  • the thermal energy of the combustion gas can be efficiently transmitted to the ladle 11 through the heat radiating drum 27, and the entire area of the ladle 11 can be preheated to a predetermined temperature.
  • the heat radiating bottom wall 32 of the heat radiating drum 27 divides the vertical dimension L2 of the housing space 16 of the ladle 11 into three equal parts. Since it is located within a range of 1/3 below the storage space 16 at the time, the heat energy released from the heat radiating bottom wall 32 of the heat radiating drum 27 and the heat of the combustion exhaust gas emitted from the second discharge holes 34 are It can be reliably transmitted to the peripheral wall 14 and the bottom wall 13.
  • the radiating peripheral wall 31 of the radiating drum 27 has a diameter between the inner peripheral surface 36 of the peripheral wall 14 of the tribe 11 and the central axis of the peripheral wall 14 of the ladle 11. Since it is located within a range of 1 ⁇ 2 of the inner peripheral surface 36 side of the peripheral wall 14 of the ladle 11 when the direction dimension L3 is divided into two equal parts, the heat energy released from the heat radiating peripheral wall 31 of the heat radiating drum 27 and the The heat of the combustion exhaust gas discharged from the one discharge hole 33 (33a, 33b) can be reliably transmitted to the peripheral wall 14 of the ladle 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

【課題】予熱時におけるトリベの部分的な温度の急上昇を防ぐことができ、予熱時のトリベにおけるクラックやピンホールの発生を防ぐことができるトリベ予熱装置を提供する。 【解決手段】トリベ予熱装置10Aは、トリベの頂部開口に着脱可能に設置されるハッチ23と、燃焼ガスを作るバーナー24と、燃焼ガスの炎を吹き出す火口を有する燃焼ノズルと、トリベの収容スペースに挿脱可能に挿入される放熱ドラム27とを備えている。放熱ドラム27は、ハッチ23からトリベの底壁に向かって延びる放熱周壁31と、トリベの底壁近傍に位置する放熱底壁32と、放熱周壁31に形成されて所定温度の燃焼排ガスをトリベの周壁に向かって放出する複数の第1放出孔33と、放熱底壁32に形成されて所定温度の燃焼排ガスをトリベの底壁に向かって放出する複数の第2放出孔34とを有する。

Description

トリベ予熱装置
 本発明は、溶解した金属の溶湯を所定の位置に搬送するトリベを事前に予熱するトリベ予熱装置に関する。
 単数または複数条の走行レ-ルに移動可能に載置した走行台車の上に、その走行台車と直角方向に敷設した横行レ-ル上を移動する横行台車を横行移動可能に取り付け、その横行台車上にトリベを収容するブラケットを支持した昇降動装置とトリベを傾動させる傾動装置とを設けた注湯装置を構成し、注湯装置内に設置した制御盤を制御することにより走行台車を左右方向に移動調整して横行台車を前後方向に移動調整するとともに、トリベの昇降動および傾動調整するトリベ注湯装置が開示されている(特許文献1参照)。トリベは、溶解炉で溶解させた金属の溶湯を収容スペースに収容し、その溶湯を所定の位置に搬送するために利用される。トリベは、その頂底壁や周壁が耐熱キャスタおよび断熱キャスタ(不定形耐火物)から作られ、溶湯の冷却固化を防止するため、頂底壁や周壁が事前に所定温度に予熱される。
特開平9-168858号公報
 トリベの予熱には、予熱バーナーが使用される。予熱バーナーは、トリベの頂部開口に着脱可能に設置されるハッチと、ハッチから下方へ延びる燃焼ノズルとを有する。燃焼バーナーでトリベを所定温度に予熱するには、燃焼ノズルをトリベの収容スペースに挿入し、ハッチをトリベの頂部開口に設置した後、燃料に点火して燃焼ガスの炎をノズルの火口からトリベに向かって吹き出し、炎の直火によってトリベの頂底壁や周壁を加熱する。しかし、炎の直火でトリベの頂底壁や周壁を加熱すると、トリベの頂底壁や周壁のうちの炎が直接あたる部分とそれ以外の部分とで温度勾配が生じ、トリベ全域を満遍なく加熱することができない。また、トリベの底壁や周壁のうちの炎が直接あたる部分においてその温度が急上昇して膨張し、炎が直接あたる部分とそれ以外の部分との境界部分の耐熱キャスタにクラックやピンホールが発生する場合がある。トリベの頂底壁や周壁の耐熱キャスタにクラックやピンホールが生じると、トリベの頂底壁や周壁から耐熱キャスタをはつり、新たな耐熱キャスタの層を頂底壁や周壁に形成する改修作業をしなければならず、その間のトリベの使用が不能になるのみならず、トリベの改修作業に時間と費用とを要する。
 本発明の目的は、予熱時におけるトリベの部分的な温度の急上昇を防ぐことができ、予熱時のトリベにおけるクラックやピンホールの発生を防ぐことができるトリベ予熱装置を提供することにある。本発明の他の目的は、トリベ全域を満遍なく加熱することができ、トリベ全域の温度を略同一に予熱することができるトリベ予熱装置を提供することにある。
 前記課題を解決するための本発明の前提は、溶解した金属の溶湯を収容可能な所定容積の収容スペースと溶湯を注入する頂部開口と溶湯を注湯する注湯口とを有するトリベを事前に予熱するトリベ予熱装置である。
 前記前提における本発明の特徴は、トリベ予熱装置が、トリベの頂部開口に着脱可能に設置されるハッチと、ハッチの上部に設置されて所定温度の燃焼ガスを作るバーナーと、燃焼ガスの炎を吹き出す火口を有してハッチの下部から下方へ延びる燃焼ノズルと、ハッチの下部に連接されて燃焼ノズルを包被し、トリベの収容スペースに挿脱可能に挿入される放熱ドラムとを備え、放熱ドラムが、トリベの周壁の内周面から径方向内方に位置し、ハッチの下部からトリベの底壁に向かって延びる放熱周壁と、放熱周壁の下端縁に連接されてトリベの底壁の側に位置し、トリベの底壁から上方へ所定寸法離間する放熱底壁と、放熱周壁と放熱底壁とのうちの少なくとも一方に形成されて炎によって作られた所定温度の燃焼排ガスをトリベに向かって放出する放出孔とを有することにある。
 本発明の一例としては、放出孔が、放熱周壁に形成されて燃焼排ガスをトリベの周壁に向かって放出する複数の第1放出孔と、放熱底壁に形成されて燃焼排ガスをトリベの底壁に向かって放出する複数の第2放出孔とである。
 本発明の他の一例としては、トリベの周壁と放熱ドラムの放熱周壁とが円筒状に成型され、トリベ予熱装置では、トリベの収容スペースに放熱ドラムを挿入したときに、トリベの周壁の中心軸と放熱ドラムの放熱周壁の中心軸とが略一致し、または、トリベの周壁の中心軸に対して放熱ドラムの放熱周壁の中心軸が径方向へ偏心している。
 本発明の他の一例として、トリベ予熱装置では、燃焼ノズルが放熱ドラムの放熱周壁の中央に位置して上下方向へ延び、燃焼ノズルの火口が放熱ドラムの放熱底壁から上方へ所定寸法離間するとともに放熱ドラムの放熱周壁の上下方向の寸法を3等分したときの放熱周壁の下方1/3の範囲内に位置している。
 本発明の他の一例としては、第1放出孔が放熱ドラムの放熱底壁の側に延びる放熱周壁に形成されて放熱周壁の周り方向へ所定寸法離間して並んでいる。
 本発明の他の一例としては、第1放出孔がハッチの側に延びる放熱周壁に形成されて放熱周壁の周り方向へ所定寸法離間して並んでいる。
 本発明の他の一例としては、第2放出孔が放熱底壁の周縁部に沿って放熱底壁の周り方向へ所定寸法離間して並んでいる。
 本発明の他の一例として、トリベ予熱装置では、トリベの収容スペースに放熱ドラムを挿入したときに、放熱ドラムの放熱底壁がトリベの収容スペースの上下方向の寸法を3等分したときの収容スペースの下方1/3の範囲内に位置する。
 本発明の他の一例として、トリベ予熱装置では、トリベの収容スペースに放熱ドラムを挿入したときに、放熱ドラムの放熱周壁がトリベの周壁の内周面とトリベの周壁の中心軸との間の径方向の寸法を二等分したときのトリベの周壁の内周面の側の1/2の範囲内に位置する。
 本発明にかかるトリベ予熱装置によれば、それがトリベの収容スペースに挿脱可能に挿入される放熱ドラムを有し、燃焼ノズルの火口から吹き出す燃焼ガスの炎が放熱ドラムに遮られ、予熱時に炎がトリベの周壁や頂底壁に直接あたることはなく、トリベの周壁や頂底壁の部分的な温度の急上昇および膨張を防ぐことができ、トリベの周壁や頂底壁におけるクラックやピンホールの発生を防ぐことができる。トリベ予熱装置は、予熱時にトリベの周壁や頂底壁にクラックやピンホールが発生することはないから、トリベの改修作業を行う必要はなく、改修作業にかかる時間や費用を省くことができ、耐用年数の期間、トリベを連続して使用することができる。トリベ予熱装置は、燃焼ガスの炎によって加熱された放熱ドラムの全域からトリベの周壁や頂底壁に向かって熱エネルギーが放出されるとともに、放熱周壁と放熱底壁とのうちの少なくとも一方に形成された放出孔からトリベに向かって所定温度の燃焼排ガスが放出されるから、放熱ドラムを介して燃焼ガスの熱エネルギーをトリベに効率よく伝えることができ、トリベ全域を所定の温度に予熱することができる。
 放出孔が放熱周壁に形成された複数の第1放出孔と放熱底壁に形成された複数の第2放出孔とであるトリベ予熱装置は、放熱周壁に形成された第1放出孔からトリベの周壁に向かって所定温度の燃焼排ガスが放出され、放熱底壁に形成された第2放出孔からトリベの底壁に向かって所定温度の燃焼排ガスが放出されるから、トリベに加熱ムラが生じることはなく、放熱ドラムを介して燃焼ガスの熱エネルギーをトリベに効率よく伝えることができるとともに、トリベ全域を満遍なく均一に加熱することができ、トリベ全域を略同一の温度に予熱することができる。
 トリベの周壁と放熱ドラムの放熱周壁とが円筒状に成型され、トリベの収容スペースに放熱ドラムを挿入したときに、トリベの周壁の中心軸と放熱ドラムの放熱周壁の中心軸とが略一致し、または、トリベの周壁の中心軸に対して放熱ドラムの放熱周壁の中心軸が径方向へ偏心しているトリベ予熱装置は、トリベの収容スペースに放熱ドラムを挿入したときに中心軸どうしが略一致する場合、トリベの周壁のすべての箇所においてトリベの周壁と放熱ドラムの放熱周壁との離間寸法が略同一となり、トリベの周壁のすべての箇所に放熱ドラムの放熱周壁から同一の熱エネルギーを伝えることができ、トリベの周壁に加熱ムラが生じることはなく、トリベの周壁全域を満遍なく均一に加熱することができ、トリベ全域を略同一の温度に予熱することができる。また、トリベの周壁の中心軸に対して放熱ドラムの放熱周壁の中心軸が径方向へ偏心する場合、トリベの周壁と放熱ドラムの放熱周壁との離間寸法が異なるが、放熱ドラムの全域からトリベの周壁や頂底壁に向かって熱エネルギーが放出されるとともに、放出孔からトリベに向かって所定温度の燃焼排ガスが放出されるから、放熱ドラムを介して燃焼ガスの熱エネルギーをトリベに効率よく伝えることができ、トリベ全域を所定の温度に予熱することができる。
 燃焼ノズルが放熱ドラムの放熱周壁の中央に位置して上下方向へ延び、燃焼ノズルの火口が放熱ドラムの放熱底壁から上方へ所定寸法離間するとともに放熱ドラムの放熱周壁の上下方向の寸法を3等分したときの放熱周壁の下方1/3の範囲内に位置しているトリベ予熱装置は、燃焼ノズルの火口から吹き出す燃焼ガスの熱エネルギーが放熱ドラムの下方から上方に向かってドラムの全域に満遍なく伝わり、燃焼ガスによって放熱ドラムの全域が略均一に加熱されるから、トリベの周壁の全域に放熱ドラムの放熱周壁から熱エネルギーを伝えることができるとともに、トリベの底壁の全域に放熱ドラムの放熱底壁から熱エネルギーを伝えることができ、トリベ全域を満遍なく均一に加熱することができる。
 第1放出孔が放熱ドラムの放熱底壁の側に延びる放熱周壁に形成されて放熱周壁の周り方向へ所定寸法離間して並んでいるトリベ予熱装置は、放熱ドラムの放熱底壁の側であって放熱周壁の周り方向へ所定寸法離間して並ぶそれら第1放出孔からトリベの周壁に向かって所定温度の燃焼排ガスが放出され、燃焼排ガスの熱がトリベの周壁全域に確実に伝わるから、トリベの周壁に加熱ムラが生じることはなく、放熱ドラムを介して燃焼ガスの熱エネルギーをトリベの周壁全域に効率よく伝えることができるとともに、トリベの周壁全域を満遍なく均一に加熱することができる。
 第1放出孔がハッチの側に延びる放熱周壁に形成されて放熱周壁の周り方向へ所定寸法離間して並んでいるトリベ予熱装置は、ハッチの側であって放熱周壁の周り方向へ所定寸法離間して並ぶそれら第1放出孔からトリベの周壁に向かって所定温度の燃焼排ガスが放出され、燃焼排ガスの熱がトリベの周壁全域に確実に伝わるから、トリベの周壁に加熱ムラが生じることはなく、放熱ドラムを介して燃焼ガスの熱エネルギーをトリベの周壁全域に効率よく伝えることができるとともに、トリベの周壁全域を満遍なく均一に加熱することができる。
 第2放出孔が放熱底壁の周縁部に沿って放熱底壁の周り方向へ所定寸法離間して並んでいるトリベ予熱装置は、放熱底壁の周縁部の周り方向へ所定寸法離間して並ぶそれら第2放出孔からトリベの底壁に向かって所定温度の燃焼排ガスが放出されるから、トリベの底壁に加熱ムラが生じることはなく、放熱ドラムを介して燃焼ガスの熱エネルギーをトリベの底壁全域に効率よく伝えることができるとともに、トリベの底壁全域を満遍なく均一に加熱することができる。
 トリベの収容スペースに放熱ドラムを挿入したときに、放熱ドラムの放熱底壁がトリベの収容スペースの上下方向の寸法を3等分したときの収容スペースの下方1/3の範囲内に位置するトリベ予熱装置は、トリベの収容スペースに放熱ドラムを挿入したときに、放熱ドラムの放熱底壁がトリベの底壁から上方へ大きく離間すると、放熱ドラムの放熱底壁から放出される熱エネルギーや第2放出孔から放出される燃焼排ガスの熱がトリベの周壁の下部や底壁に伝わり難いが、放熱ドラムの放熱底壁が収容スペースの下方1/3の範囲内に位置するから、放熱ドラムの放熱底壁から放出される熱エネルギーや第2放出孔から放出される燃焼排ガスの熱をトリベの周壁や底壁に確実に伝えることができ、放熱ドラムを介してトリベの周壁全域や底壁全域を満遍なく均一に加熱することができる。
 トリベの収容スペースに放熱ドラムを挿入したときに、放熱ドラムの放熱周壁がトリベの周壁の内周面とトリベの周壁の中心軸との間の径方向の寸法を二等分したときのトリベの周壁の内周面の側の1/2の範囲内に位置するトリベ予熱装置は、トリベの収容スペースに放熱ドラムを挿入したときに、放熱ドラムの放熱周壁がトリベの周壁から大きく離間すると、放熱ドラムの放熱周壁から放出される熱エネルギーや第1放出孔から放出される燃焼排ガスの熱がトリベの周壁に伝わり難いが、放熱ドラムの放熱周壁がトリベの周壁の内周面の側の1/2の範囲内に位置するから、放熱ドラムの放熱周壁から放出される熱エネルギーや第1放出孔から放出される燃焼排ガスの熱をトリベの周壁に確実に伝えることができ、放熱ドラムを介してトリベの周壁全域を満遍なく均一に加熱することができる。
一例として示すトリベ予熱装置の斜視図。 放熱ドラムの放熱底壁の平面図。 トリベの収容スペースへのトリベ予熱装置の挿入を説明する図。 図1のトリベ予熱装置によるトリベの予熱を説明する図。 他の一例として示すトリベ予熱装置10Bの斜視図。 図5のトリベ予熱装置によるトリベの予熱を説明する図。
 一例として示すトリベ予熱装置10Aの斜視図である図1等の添付の図面を参照し、本発明にかかるトリベ予熱装置の詳細を説明すると、以下のとおりである。なお、図2は、放熱ドラム27の放熱底壁の平面図であり、図3は、トリベ11の収容スペース16へのトリベ予熱装置10Aの挿入を説明する図である。図4は、トリベ予熱装置10Aによるトリベ11の予熱を説明する図である。図1では、上下方向を矢印Aで示し、周り方向を矢印Bで示す。図1では、トリベ予熱装置10Aがクレーン(図示せず)で吊り上げられた状態で示す。図3,4では、トリベ11およびトリベ予熱装置10Aを断面図として示す。図3,4は、トリベ11から蓋を取り外した状態で示す。
 トリベ予熱装置10Aは、トリベ11の予熱に使用される。なお、図示のトリベ11は、土瓶式吊り上げ取鍋であるが、このトリベ予熱装置10Aによって予熱可能なトリベ11には、土瓶式吊り上げ取鍋の他に、杓取鍋や連台式取鍋、ギヤー付き吊り上げ傾注取鍋、円筒式取鍋、ストッパー式取鍋が含まれる。
 トリベ11は、鋳型への溶湯の鋳込み作業に使用される。トリベ11は、事前に所定温度に予熱された後、溶解した金属(たとえば、アルミや亜鉛等)の溶湯を収容し、その溶湯を鋳型まで搬送する。トリベ11は、図3に示すように、円形状の頂壁12および円形状の底壁13と、円筒状の周壁14と、円形状の蓋(図示せず)と、注湯筒15とから形成されている。トリベ11は、頂底壁12,13や周壁14に囲繞されて溶湯を収容可能な所定容積の収容スペース16と、頂壁12に作られた円形状の頂部開口17と、注湯筒15の先端に作られて溶湯を鋳型に注湯する注湯口18とを有する。
 頂壁12および蓋は、所定の厚みを有する耐熱キャスタ19(不定形耐火物)から作られている。底壁13や周壁14、注湯筒15は、所定の厚みを有する耐熱キャスタ19と所定の厚みを有する断熱キャスタ20(不定形耐火物)とから作られ、耐熱キャスタ19が収容スペース16の側(内側)に位置し、断熱キャスタ20が外側に位置する2層構造である。底壁13には、断熱キャスタ20から作られた台座21が取り付けられている。注湯口18には、耐熱キャスタ19から作られて注湯口18を開閉可能な口蓋22が設置されている。トリベ11では、溶湯が頂部開口17から収容スペース16に注入された後、蓋によって頂部開口17が気密に密閉される。
 トリベ予熱装置10Aは、トリベ11の頂部開口17(頂壁12)に着脱可能に設置されるハッチ23と、ハッチ23の上部に取り付けられたバーナー24と、ハッチ23の下部に取り付けられた燃焼ノズル25および断熱スリーブ26と、ハッチ23の下部に取り付けられた放熱ドラム27とを備えている。ハッチ23は、所定の厚みを有する耐熱キャスタ19から作られ、その平面形状が円形に成形されている。ハッチ23は、それがトリベ11の頂部開口17(頂壁12)に設置された場合、固定手段(図示せず)を介してトリベ11の頂壁12に強固に固定され、頂部開口17を気密に密閉する。ハッチ23の周縁部にはフック28が固定され、それらフック28に吊りワイヤー29が取り付けられている。
 バーナー24は、気体燃料(天然ガスや石油分解ガス、液化石油ガス、水素ガス等)または液体燃料(軽油や灯油、重油等)に点火し、それら燃料を燃焼させて所定温度(高温)の燃焼ガスを作る。バーナー24には、図示はしていないが、燃焼用空気を給気する給気口と、バーナー24の上流側に設置されてバーナー24に燃焼用空気を給気するとともに燃焼ガスを燃焼ノズル25に送る給気ファンとを備えている。気体燃料を使用する場合、ガス栓に連結されたガス供給ホース(図示せず)からバーナー24に気体燃料(ガス)が供給される。液体燃料を使用する場合、バーナー24に燃料タンク(図示せず)が設置され、燃料タンクからバーナー24に液体燃料(油)が供給される。
 燃焼ノズル25は、ステンレスやセラミック、耐熱合金から作られ、円筒状に成形されている。燃焼ノズル25は、ハッチ23を貫通してバーナー24につながるとともに、ハッチ23の下部から下方へ延びている。燃焼ノズル25は、ハッチ23の中央に位置し、その中心軸がハッチ23の中心に一致している。燃焼ノズル25は、バーナー24から送られた燃焼ガスの炎を吹き出す火口30を有する。
 断熱スリーブ26は、耐熱キャスタ19から作られ、円筒状に成形されている。断熱スリーブ26は、ハッチ23の下部から下方へ延び、燃焼ノズル25の外周面の全域を包被している。ハッチ23から下方へ延びる断熱スリーブ26の長さ寸法は、ハッチ23から下方へ延びる燃焼ノズル25のそれよりも長い。断熱スリーブ26は、燃焼ノズル25から放出される燃焼ガスの熱が直接ノズル25に伝わるのを防ぎ、燃焼ガスの熱によるノズル25の損傷を防ぐ。
 放熱ドラム27は、ハッチ24の下部に連接されて燃焼ノズル25の全体および断熱スリーブ26の全体を包被している。放熱ドラム27は、トリベ11の頂部開口17から収容スペース16に挿脱可能に挿入される。放熱ドラム27は、ハッチ24の下部からトリベ11の底壁13に向かって延びる放熱周壁31と、トリベ11の底壁13から上方へ所定寸法離間する放熱底壁32とを有する。
 放熱周壁31は、ステンレスやセラミック、耐熱合金から作られ、円筒状に成形されている。放熱周壁31には、それを貫通する円形の複数の第1放出孔33(放出孔)が作られている。それら第1放出孔33は、放熱ドラム27の放熱底壁33の側に延びる放熱周壁31に形成され、放熱周壁31の周り方向へ略等間隔離間(所定寸法離間)して並んでいる。第1放出孔33は、燃焼ガスの炎によって作られた所定温度の燃焼排ガスを放熱ドラム27の外側に放出する。第1放出孔33は、放熱周壁31の上下方向の寸法L1を2等分したときの放熱周壁31の下方1/2の範囲内に形成されている。
 放熱底壁32は、ステンレスやセラミック、耐熱合金から作られている。放熱底壁32は、円形に成形され、放熱周壁31の下端縁に連接されている。放熱底壁32には、それを貫通する円形の複数の第2放出孔34(放出孔)が作られている。それら第2放出孔34は、放熱底壁31の周縁部に沿って形成され、放熱底壁の周り方向へ略等間隔離間(所定寸法離間)して並んでいるとともに、放熱底壁31の中心を取り囲むように放熱底壁31の周り方向へ略等間隔離間(所定寸法離間)して並んでいる。したがって、第2放出孔34は放熱底壁31の中心部に形成されていない。なお、燃焼ノズル25の火口30は、放熱ドラム27の放熱底壁32から上方へ所定寸法離間するとともに、放熱ドラム27の放熱周壁31の上下方向の寸法L1を3等分したときの放熱周壁31の下方1/3の範囲内に位置している。なお、放熱周壁31に複数の第1放出孔33が作られ、放熱底壁32に第2放出孔34が作られていない場合がある。また、放熱底壁32に複数の第2放出孔34が作られ、放熱周壁31に第1放出孔33が作られていない場合がある。
 トリベ予熱装置10Aをトリベ11の収容スペース16に挿入する手順の一例は、以下のとおりである。トリベ11から蓋を取り外すとともに、口蓋22を旋回させて注湯口18を開放する。次に、クレーンのフックに吊りワイヤー29を引っ掛け、クレーンによってトリベ予熱装置10Aを吊り上げる。なお、トリベ11から蓋が取り外されることで、トリベ11の頂部開口17が開放されているが、蓋が蝶番を介してトリベ11の頂壁12に取り付けられている場合は、蓋を旋回させてトリベ11の頂部開口17を開放する。
 トリベ予熱装置10Aを吊り上げた後、クレーンによって予熱装置10Aをトリベ11の頂部開口17の直上に移動させる。次に、図3に矢印X1で示すように、予熱装置10Aを次第に下降させ、トリベ11の収容スペース16に放熱ドラム27を徐々に挿入する。放熱ドラム27を収容スペース16に挿入する過程において、トリベ予熱装置10Aのハッチ23がトリベ11の頂壁12に当接すると、予熱装置10Aのそれ以上の下降が停止するとともに、図4に示しように、放熱ドラム27全体(燃焼ノズル25および断熱スリーブ26)が収容スペース16に位置する。この状態で固定手段(図示せず)によって予熱装置10Aのハッチ23をトリベ11の頂壁12に強固に固定する。ハッチ23を頂壁12に固定すると、トリベ11の頂部開口17が気密に密閉される。
 トリベ11の収容スペース16に放熱ドラム27を挿入すると、放熱ドラム27がトリベ11の周壁14の内周面36から径方向内方に位置し、放熱周壁31がハッチの下部からトリベ11の底壁13に向かって上下方向へ垂直に延びるとともに、放熱底壁32がトリベ11の底壁13の近傍に位置して底壁13から上方へ所定寸法離間する。また、トリベ11の周壁14の中心軸と放熱ドラム27の放熱周壁31の中心軸とが略一致する。
 なお、図示はしていないが、トリベ11の収容スペース16に放熱ドラム27を挿入したときに、トリベ11の周壁14の中心軸に対して放熱ドラム27の放熱周壁31の中心軸が径方向へ偏心し、トリベ11の周壁14の中心軸と放熱ドラム27の放熱周壁31の中心軸とがずれる場合がある。
 トリベ予熱装置10Aでは、トリベ11の収容スペース16に放熱ドラム27を挿入したときに、ドラム27の放熱底壁32がトリベ11の収容スペース16の上下方向の寸法L2を3等分したときの収容スペース16の下方1/3の範囲内に位置する。また、放熱ドラム27の放熱周壁32がトリベ11の周壁14の内周面36とトリベ11の周壁14の中心軸との間の径方向の寸法L3を二等分したときのトリベ11の周壁14の内周面36の側の1/2の範囲内に位置する。
 このトリベ予熱装置10Aによるトリベ11の予熱は、以下のとおりである。なお、トリベ11の収容スペース16には、溶湯として溶解したアルミが収容されるものとする。また、図示はしていないが、注湯口18から収容スペース16に温度センサが挿入されている。温度センサやバーナー24は、コントローラ(図示せず)に接続されている。温度センサは、トリベ11の予熱中に収容スペース16の温度を計測し、計測した実測温度をコントローラに送信する。コントローラは、温度センサから送信された実測温度とあらかじめ設定された設定温度(たとえば、700~800℃)とを比較し、実測温度が設定温度の範囲内に入った場合、予熱が完了したと判断し、バーナー24のスイッチをOFFにする。
 トリベ予熱装置10A(放熱ドラム27)をトリベ11の収容スペース16に挿入した後、コントローラのテンキーユニットからバーナー24のスイッチをONして、バーナー24を起動させる。バーナー24が起動すると、点火された燃料が燃焼して燃焼ガスが作られ、その燃焼ガスが給気ファンによって燃焼ノズル25に送られる。燃焼ガスが燃焼ノズル25を通って火口30に達し、図4に示すように、火口30から炎37が吹き出す。
 トリベ予熱装置10Aでは、燃焼ガスの炎37によって放熱ドラム27が加熱され、放熱ドラム27全体の温度が約750~850℃に上昇する。燃焼ガスの炎37によって所定温度に加熱された放熱ドラム27の放熱周壁31全域からトリベ11の周壁14に向かって熱エネルギーが放出されるとともに、放熱ドラム27の放熱底壁32全域からトリベ11の底壁13に向かって熱エネルギーが放出される。さらに、図4に矢印X2で示すように、燃焼ガスの炎37によって作られた高温の燃焼排ガスが放熱周壁31に形成された第1放出孔33からトリベ11の周壁14に向かって放出されるとともに、図4に矢印X3で示すように、燃焼ガスの炎37によって作られた高温の燃焼排ガスが放熱底壁32に形成された第2放出孔34からトリベ11の底壁13に向かって放出される。
 トリベ11の周壁14や頂壁12は、放熱ドラム27の放熱周壁31から放出された熱によって次第に加熱されるとともに、第1放出孔33から放出された燃焼排ガスによって次第に加熱される。トリベ11の底壁13は、放熱ドラム27の放熱底壁32から放出された熱によって次第に加熱されるとともに、第2放出孔34から放出された燃焼排ガスによって次第に加熱される。なお、燃焼排ガスは、放熱ドラム27とトリベ11の底壁13や周壁14との間の収容スペースを流動した後、図4に矢印X4で示すように、注湯筒15に流入し、注湯筒15を通って注湯口18からトリベ11の外部に放出される。実測温度が設定温度の範囲内に入ると、コントローラがバーナー24のスイッチをOFFにし、トリベ11の予熱が完了する。
 トリベ予熱装置10Aによって、トリベ11を予熱した後、図3に矢印X5で示すように、クレーンによって予熱装置10Aを次第に上昇させ、放熱ドラム27をトリベ11の収容スペース16から徐々に引き抜く。放熱ドラム27をトリベ11の頂部開口17の上方へ吊り上げた後、トリベ予熱装置10Aをトリベ11の外側に移動させ、トリベ11の収容スペース16に溶解したアルミ(溶湯)を注入し、蓋によって頂部開口17を密閉し、トリベ11を鋳型まで搬送する。
 図5は、他の一例として示すトリベ予熱装置10Bの斜視図であり、図6は、トリベ予熱装置10Bによるトリベ11の予熱を説明する図である。図5では、上下方向を矢印Aで示し、周り方向を矢印Bで示す。図5では、トリベ予熱装置10Bがクレーン(図示せず)で吊り上げられた状態で示す。図6では、トリベ11およびトリベ予熱装置10Bを断面図として示す。図6は、トリベ11から蓋を取り外した状態で示す。
 このトリベ予熱装置10Bが図1のそれと異なるところは、第1放出孔33aが放熱ドラム27の放熱底壁32の側に延びる放熱周壁31に形成されているのみならず、第1放出孔33bがハッチ23の側に延びる放熱周壁31に形成されている点にある。なお、トリベ予熱装置10Bのその他の構成は、図1のトリベ予熱装置10Aのそれらと同一であるから、図1と同一の符号を付すとともに、図1のトリベ予熱装置10Aの説明を援用することで、このトリベ予熱装置10Bにおけるその他の構成の詳細な説明は省略する。
 トリベ予熱装置10Bは、図1のそれと同様に、トリベ11の頂部開口17(頂壁12)に着脱可能に設置されるハッチ23と、ハッチ23の上部に取り付けられたバーナー24と、ハッチ23の下部に取り付けられた燃焼ノズル25および断熱スリーブ26と、ハッチ23の下部に取り付けられた放熱ドラム27とを備えている。放熱周壁31には、それを貫通する円形の複数の第1放出孔33aと第1放出孔33bとが作られている。
 第1放出孔33aは、放熱ドラム27の放熱底壁33の側に延びる放熱周壁31に形成され、放熱周壁31の周り方向へ略等間隔離間して並び、第1放出孔33bは、ハッチ23の側に延びる放熱周壁31に形成され、放熱周壁31の周り方向へ略等間隔離間して並んでいる。第1放出孔33a,33bは、燃焼ガスの炎によって作られた所定温度の燃焼排ガスを放熱ドラム27の外側に放出する。第1放出孔33aは、放熱周壁31の上下方向の寸法L1を2等分したときの放熱周壁31の下方1/2の範囲内に形成されているとともに、第1放出孔33bは、放熱周壁31の上下方向の寸法L1を2等分したときの放熱周壁31の上方1/2の範囲内に形成されている。なお、放熱周壁31に複数の第1放出孔33bが作られ、放熱周壁31に第1放出孔33aが作られていない場合がある。また、放熱周壁31に複数の第1放出孔33bが作られ、放熱周壁31に第1放出孔33aが作られておらず、さらに、放熱底壁32に第2放出孔34が作られていない場合がある。
 トリベ予熱装置10Bをトリベ11の収容スペース16に挿入する手順は、トリベ予熱装置10Aのそれと同一である。トリベ11の収容スペース16に放熱ドラム27を挿入すると、放熱ドラム27がトリベ11の周壁14の内周面36から径方向内方に位置し、放熱周壁31がハッチの下部からトリベ11の底壁13に向かって上下方向へ垂直に延びるとともに、放熱底壁32がトリベ11の底壁13の近傍に位置して底壁13から上方へ所定寸法離間する。また、トリベ11の周壁14の中心軸と放熱ドラム27の放熱周壁31の中心軸とが略一致する。
 トリベ予熱装置10Bでは、トリベ11の収容スペース16に放熱ドラム27を挿入したときに、ドラム27の放熱底壁32がトリベ11の収容スペース16の上下方向の寸法L2を3等分したときの収容スペース16の下方1/3の範囲内に位置する。また、放熱ドラム27の放熱周壁32がトリベ11の周壁14の内周面36とトリベ11の周壁14の中心軸との間の径方向の寸法L3を二等分したときのトリベ11の周壁14の内周面36の側の1/2の範囲内に位置する。
 トリベ予熱装置10B(放熱ドラム27)をトリベ11の収容スペース16に挿入した後、バーナー24が起動すると、点火された燃料が燃焼して燃焼ガスが作られ、その燃焼ガスが給気ファンによって燃焼ノズル25に送られる。燃焼ガスが燃焼ノズル25を通って火口30に達し、図6に示すように、火口30から炎37が吹き出す。燃焼ガスの炎37によって放熱ドラム27が加熱され、放熱ドラム27全体の温度が約750~850℃に上昇する。
 燃焼ガスの炎37によって所定温度に加熱された放熱ドラム27の放熱周壁31全域からトリベ11の周壁14に向かって熱エネルギーが放出されるとともに、放熱ドラム27の放熱底壁32全域からトリベ11の底壁13に向かって熱エネルギーが放出される。さらに、図6に矢印X2で示すように、燃焼ガスの炎37によって作られた高温の燃焼排ガスが放熱周壁31に形成された第1放出孔33a,33bからトリベ11の周壁14に向かって放出されるとともに、図6に矢印X3で示すように、燃焼ガスの炎37によって作られた高温の燃焼排ガスが放熱底壁32に形成された第2放出孔34からトリベ11の底壁13に向かって放出される。
 トリベ11の周壁14や頂壁12は、放熱ドラム27の放熱周壁31から放出された熱によって次第に加熱されるとともに、第1放出孔33a,33bから放出された燃焼排ガスによって次第に加熱される。トリベ11の底壁13は、放熱ドラム27の放熱底壁32から放出された熱によって次第に加熱されるとともに、第2放出孔34から放出された燃焼排ガスによって次第に加熱される。実測温度が設定温度の範囲内に入ると、コントローラがバーナー24のスイッチをOFFにし、トリベ11の予熱が完了する。トリベ11を予熱した後、トリベ予熱装置10Aと同様に、クレーンによってトリベ予熱装置10Bを次第に上昇させ、放熱ドラム27をトリベ11の収容スペース16から徐々に引き抜く。
 トリベ予熱装置10A,10Bは、それらがトリベ11の収容スペース16に挿脱可能に挿入される放熱ドラム27を有し、燃焼ノズル25の火口30から吹き出す燃焼ガスの炎37が放熱ドラム27に遮られ、予熱時に炎37がトリベ11の周壁14や頂底壁12,13に直接あたることはなく、トリベ11の周壁14や頂底壁12,13の部分的な温度の急上昇および膨張を防ぐことができ、トリベ11の周壁14や頂底壁12,13におけるクラックやピンホールの発生を防ぐことができる。トリベ予熱装置10A,10Bは、予熱時にトリベ11の周壁14や頂底壁12,13にクラックやピンホールが発生することはないから、トリベ11の改修作業を行う必要はなく、改修作業にかかる時間や費用を省くことができ、耐用年数の期間、トリベ11を連続して使用することができる。
 トリベ予熱装置10A,10Bは、燃焼ガスの炎37によって加熱された放熱ドラム27の全域からトリベ11の周壁14や頂底壁12,13に向かって熱エネルギーが放出されるとともに、放熱周壁31に形成された第1放出孔33(33a,33b)からトリベ11の周壁14に向かって所定温度の燃焼排ガスが放出され、放熱底壁32に形成された第2放出孔34からトリベ11の底壁13に向かって所定温度の燃焼排ガスが放出されるから、トリベ11に加熱ムラが生じることはなく、放熱ドラム27を介して燃焼ガスの熱エネルギーをトリベ11に効率よく伝えることができるとともに、トリベ11全域を満遍なく均一に加熱することができ、トリベ11全域を略同一の温度に予熱することができる。
 トリベ予熱装置10A,10Bは、燃焼ノズル25の火口30が放熱ドラム27の放熱周壁31の上下方向の寸法L1を3等分したときの放熱周壁31の下方1/3の範囲内に位置しているから、燃焼ノズル25の火口30から吹き出す燃焼ガスの熱エネルギーが放熱ドラム27の下方から上方に向かってドラム27の全域に満遍なく伝わり、燃焼ガスによって放熱ドラム27の全域を略均一に加熱することができる。
 トリベ予熱装置10A,10Bは、トリベ11の収容スペース16に放熱ドラム27を挿入したときに、トリベ11の周壁14の中心軸と放熱ドラム27の放熱周壁31の中心軸とが略一致するから、トリベ11の周壁14のすべての箇所においてトリベ11の周壁14と放熱ドラム27の放熱周壁31との離間寸法が略同一となり、トリベ11の周壁14のすべての箇所に放熱ドラム27の放熱周壁31から同一の熱エネルギーを伝えることができる。
 なお、トリベ11の周壁14の中心軸に対して放熱ドラム27の放熱周壁31の中心軸が径方向へ偏心する場合、トリベ11の周壁14と放熱ドラム27の放熱周壁31との離間寸法が異なるが、放熱ドラム27の全域からトリベ11の周壁14や頂底壁12,13に向かって熱エネルギーが放出されるとともに、第1および第2放出孔33(33a,33b),34からトリベ11に向かって所定温度の燃焼排ガスが放出されるから、放熱ドラム27を介して燃焼ガスの熱エネルギーをトリベ11に効率よく伝えることができ、トリベ11全域を所定の温度に予熱することができる。
 トリベ予熱装置10A,10Bは、トリベ11の収容スペース16に放熱ドラム27を挿入したときに、放熱ドラム27の放熱底壁32がトリベ11の収容スペース16の上下方向の寸法L2を3等分したときの収容スペース16の下方1/3の範囲内に位置するから、放熱ドラム27の放熱底壁32から放出される熱エネルギーや第2放出孔34から放出される燃焼排ガスの熱をトリベ11の周壁14や底壁13に確実に伝えることができる。また、トリベ11の収容スペース16に放熱ドラム27を挿入したときに、放熱ドラム27の放熱周壁31がトリベ11の周壁14の内周面36とトリベ11の周壁14の中心軸との間の径方向の寸法L3を二等分したときのトリベ11の周壁14の内周面36の側の1/2の範囲内に位置するから、放熱ドラム27の放熱周壁31から放出される熱エネルギーや第1放出孔33(33a,33b)から放出される燃焼排ガスの熱をトリベ11の周壁14に確実に伝えることができる。
 10A トリベ予熱装置
 10B トリベ予熱装置
 11  トリベ
 12  頂壁
 13  底壁
 14  周壁
 15  注湯筒
 16  収容スペース
 17  頂部開口
 18  注湯口
 19  耐熱キャスタ
 20  断熱キャスタ
 23  ハッチ
 24  バーナー
 25  燃焼ノズル
 26  断熱スリーブ
 27  放熱ドラム
 30  火口
 31  放熱周壁
 32  放熱底壁
 33  第1放出孔(放出孔)
 33a 第1放出孔(放出孔)
 33b 第1放出孔(放出孔)
 34  第2放出孔(放出孔)
 35  周縁部
 36  内周面
 37  炎

Claims (9)

  1.  溶解した金属の溶湯を収容可能な所定容積の収容スペースと前記溶湯を注入する頂部開口と該溶湯を注湯する注湯口とを有するトリベを事前に予熱するトリベ予熱装置において、
     前記トリベ予熱装置が、前記トリベの頂部開口に着脱可能に設置されるハッチと、前記ハッチの上部に設置されて所定温度の燃焼ガスを作るバーナーと、前記燃焼ガスの炎を吹き出す火口を有して前記ハッチの下部から下方へ延びる燃焼ノズルと、前記ハッチの下部に連接されて前記燃焼ノズルを包被し、前記トリベの収容スペースに挿脱可能に挿入される放熱ドラムとを備え、
     前記放熱ドラムが、前記トリベの周壁の内周面から径方向内方に位置し、前記ハッチの下部から前記トリベの底壁に向かって延びる放熱周壁と、前記放熱周壁の下端縁に連接されて前記トリベの底壁の側に位置し、前記トリベの底壁から上方へ所定寸法離間する放熱底壁と、前記放熱周壁と前記放熱底壁とのうちの少なくとも一方に形成されて前記炎によって作られた所定温度の燃焼排ガスを前記トリベに向かって放出する放出孔とを有することを特徴とするトリベ予熱装置。
  2.  前記放出孔が、前記放熱周壁に形成されて前記燃焼排ガスを前記トリベの周壁に向かって放出する複数の第1放出孔と、前記放熱底壁に形成されて前記燃焼排ガスを前記トリベの底壁に向かって放出する複数の第2放出孔とである請求項1に記載のトリベ予熱装置。
  3.  前記トリベの周壁と前記放熱ドラムの放熱周壁とが、円筒状に成型され、前記トリベ予熱装置では、前記トリベの収容スペースに前記放熱ドラムを挿入したときに、前記トリベの周壁の中心軸と前記放熱ドラムの放熱周壁の中心軸とが略一致し、または、前記トリベの周壁の中心軸に対して前記放熱ドラムの放熱周壁の中心軸が径方向へ偏心している請求項1または請求項2に記載のトリベ予熱装置。
  4.  前記トリベ予熱装置では、前記燃焼ノズルが前記放熱ドラムの放熱周壁の中央に位置して上下方向へ延び、前記燃焼ノズルの火口が前記放熱ドラムの放熱底壁から上方へ所定寸法離間するとともに該放熱ドラムの放熱周壁の上下方向の寸法を3等分したときの該放熱周壁の下方1/3の範囲内に位置している請求項1ないし請求項3いずれかに記載のトリベ予熱装置。
  5.  前記第1放出孔が、前記放熱ドラムの放熱底壁の側に延びる放熱周壁に形成され、前記放熱周壁の周り方向へ所定寸法離間して並んでいる請求項2ないし請求項4いずれかに記載のトリベ予熱装置。
  6.  前記第1放出孔が、前記ハッチの側に延びる放熱周壁に形成され、前記放熱周壁の周り方向へ所定寸法離間して並んでいる請求項2ないし請求項5いずれかに記載のトリベ予熱装置。
  7.  前記第2放出孔が、前記放熱底壁の周縁部に沿って該放熱底壁の周り方向へ所定寸法離間して並んでいる請求項2ないし請求項6いずれかに記載のトリベ予熱装置。
  8.  前記トリベ予熱装置では、前記トリベの収容スペースに前記放熱ドラムを挿入したときに、該放熱ドラムの放熱底壁が前記トリベの収容スペースの上下方向の寸法を3等分したときの該収容スペースの下方1/3の範囲内に位置する請求項1ないし請求項7いずれかに記載のトリベ予熱装置。
  9.  前記トリベ予熱装置では、前記トリベの収容スペースに前記放熱ドラムを挿入したときに、該放熱ドラムの放熱周壁が前記トリベの周壁の内周面と該トリベの周壁の中心軸との間の径方向の寸法を二等分したときの該トリベの周壁の内周面の側の1/2の範囲内に位置する請求項1ないし請求項8いずれかに記載のトリベ予熱装置。
PCT/JP2013/077478 2013-08-07 2013-10-09 トリベ予熱装置 WO2015019508A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013163957A JP6218487B2 (ja) 2013-08-07 2013-08-07 トリベ予熱装置
JP2013-163957 2013-08-07

Publications (1)

Publication Number Publication Date
WO2015019508A1 true WO2015019508A1 (ja) 2015-02-12

Family

ID=52460874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077478 WO2015019508A1 (ja) 2013-08-07 2013-10-09 トリベ予熱装置

Country Status (2)

Country Link
JP (1) JP6218487B2 (ja)
WO (1) WO2015019508A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015056287A1 (ja) * 2013-10-18 2017-03-09 株式会社大紀アルミニウム工業所 アルミニウム溶湯用取鍋の予熱方法及び予熱装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219121A (en) * 1975-08-07 1977-02-14 Sumitomo Metal Ind Control device for drying * heating * and keeping warm of ladle
JPS60247463A (ja) * 1984-05-24 1985-12-07 Nippon Kokan Kk <Nkk> 冶金鍋内張の加熱装置
JP2004160523A (ja) * 2002-11-15 2004-06-10 Teruo Kaminari 容器の加熱装置及び加熱方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2247274C3 (de) * 1972-09-27 1975-10-09 Eisenwerk-Gesellschaft Maximilianshuette Mbh, 8458 Sulzbach-Rosenberg Verfahren und Vorrichtung zum Eingießen von Stahl beim Stranggießen
US8357327B2 (en) * 2006-05-16 2013-01-22 Sms Siemag Aktiengesellschaft Heating device for preheating a liquid-metal transfer container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219121A (en) * 1975-08-07 1977-02-14 Sumitomo Metal Ind Control device for drying * heating * and keeping warm of ladle
JPS60247463A (ja) * 1984-05-24 1985-12-07 Nippon Kokan Kk <Nkk> 冶金鍋内張の加熱装置
JP2004160523A (ja) * 2002-11-15 2004-06-10 Teruo Kaminari 容器の加熱装置及び加熱方法

Also Published As

Publication number Publication date
JP2015030036A (ja) 2015-02-16
JP6218487B2 (ja) 2017-10-25

Similar Documents

Publication Publication Date Title
US10059620B2 (en) Electric furnace for processing glass
KR20090007361A (ko) 액상 금속 이송 용기를 예열하기 위한 가열 장치
JP6218487B2 (ja) トリベ予熱装置
JP2011002199A (ja) 移動式傾動坩堝炉
JP5832588B2 (ja) 取鍋加熱装置
JP5065108B2 (ja) 加熱炉
KR101249052B1 (ko) 연속주조설비 침지노즐 예열 장치
KR20120006255A (ko) 연속 주조용 노즐 예열 장치
US4455014A (en) Production of refractory linings or walls
US4070147A (en) Method and apparatus for post-weld heat treating a tank
KR102231026B1 (ko) 개선된 덮개장치와 히팅장치를 갖는 금속용해로
JP3523908B2 (ja) 投げ込みタイプの浸漬ヒーターチューブ
JP5415096B2 (ja) メッキ用ポットの乾燥加熱設備及びその乾燥加熱方法
KR200263303Y1 (ko) 도가니형 저항전기로
RU2791751C1 (ru) Транспортный желоб жидкого металла c электрическим нагревом
JP4464789B2 (ja) 使用前に予熱される製鋼用耐火れんがとその保温方法
KR102098955B1 (ko) 래들 예열장치
KR100446695B1 (ko) 도가니형 저항전기로
US2207102A (en) Igniting device
KR101389548B1 (ko) 레들 예열수단 및 이를 이용한 레들 예열장치
KR20050114398A (ko) 턴디쉬 침적노즐의 예열장치
JP4165064B2 (ja) 金属溶解装置
JP2004068038A (ja) 溶融金属めっき用浴中ロールの予熱装置及び方法
KR20000008489U (ko) 가스 전기 겸용 용해 보온로
JPH0886432A (ja) 溶融金属加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891263

Country of ref document: EP

Kind code of ref document: A1