WO2015015230A2 - Assembly for an autoinjector device - Google Patents
Assembly for an autoinjector device Download PDFInfo
- Publication number
- WO2015015230A2 WO2015015230A2 PCT/GB2014/052387 GB2014052387W WO2015015230A2 WO 2015015230 A2 WO2015015230 A2 WO 2015015230A2 GB 2014052387 W GB2014052387 W GB 2014052387W WO 2015015230 A2 WO2015015230 A2 WO 2015015230A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- syringe
- axially
- guard element
- assembly according
- syringe support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/3129—Syringe barrels
- A61M5/3134—Syringe barrels characterised by constructional features of the distal end, i.e. end closest to the tip of the needle cannula
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/3129—Syringe barrels
- A61M5/3135—Syringe barrels characterised by constructional features of the proximal end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/20—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/20—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
- A61M5/2033—Spring-loaded one-shot injectors with or without automatic needle insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/24—Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/24—Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
- A61M2005/2418—Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic comprising means for damping shocks on ampoule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/3129—Syringe barrels
- A61M2005/3142—Modular constructions, e.g. supplied in separate pieces to be assembled by end-user
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/19—Constructional features of carpules, syringes or blisters
Definitions
- This invention relates to an assembly for an autoinjector device, and in particular, to an assembly for an autoinjector device that reduces the risk of syringe damage during use of the autoinjector device.
- pre-filled syringes supplied by pharmaceutical companies are made from glass or similarly hard but brittle materials. Many such pre-filled syringes are manufactured to a recognized industry "standard” and are used in autoinjector devices for delivery of the pre-filled medicament.
- An example of an autoinjector device employing such a standard pre-filled syringe is described in WO-A-2007/083115 (The Medical House pic) where, within the device, a drive element acts on the flange of the syringe to advance it axially forwardly to insert the needle of the syringe into an injection site.
- WO-A-2011/070346 (The Medical House Ltd) describes a syringe flange protector in the form of a spacer element that seeks to reduce the drive load applied to the syringe flange by redirecting it radially inwardly towards the main barrel of the syringe.
- the present invention therefore seeks to minimize the risk of syringe breakage in autoinjector devices.
- an assembly for an autoinjector device including:
- a syringe support for supporting a syringe by limiting forward axial movement of the syringe relative to the syringe support
- a guard element attachable to the syringe support by an attachment so that the guard element is axially restrained both axially forwardly and axially rearwardly relative to the syringe support by the attachment;
- the guard element is attachable to the syringe support such that, when attached, relative axial movement between the guard element and the syringe support is limited by the attachment.
- the very same attachment(s) that limits relative axial movement is responsible for transferring load applied to the guard element to the syringe support.
- a syringe that may be installed in the syringe support (prior to attachment of the guard element) will not experience any loading that is applied to the rear of the guard element, since the guard element acts as a loading "bridge" that transmits load from a driving member to the syringe support without applying axial loading to the syringe.
- the guard element is attachable to a rear end of the syringe support.
- the attachment may include first abutment features on the syringe support and second abutment features on the guard element, and forward axial movement of the guard element relative to the syringe support is limited by the abutment of the first and second abutment features.
- Said second abutment features of said guard element may include a plurality of axially forwardly extending legs, and said first abutment features of said syringe support may include an external flange, and forward axial movement of the guard element relative to the syringe support may be limited by abutment of said plurality of axially forwardly extending legs against said external flange.
- Said plurality of axially forwardly extending legs may form part of at least a pair of clasps, where each clasp includes a pair of said axially forwardly extending legs and a front cross beam extending circumferentially to connect the two legs of each pair of axially forwardly extending legs.
- Each of said front cross beams may form the axially forwardmost portion of each respective clasp.
- each front cross beam may be tapered, the axially forwardly facing surface extending axially rearwardly in a radially outward direction, and an axially rearwardly facing surface of said external flange is also tapered in at least parts, the axially rearwardly facing surface of said parts extending axially rearwardly in a radially outward direction so as to be complementary to the axially forwardly facing surface of each front cross beam.
- the attachment may include third abutment features on the syringe support and fourth abutment features on the guard element and rearward axial movement of the guard element relative to the syringe support is limited by the abutment of the third and fourth abutment features.
- Said third abutment features of said syringe support may include outwardly radially extending elbows and said fourth abutment features of said guard element include said first cross beams and rearward axial movement of the guard element relative to the syringe support is limited by the abutment of the elbows against said first cross beams.
- Axially rearwardly extending legs may extend from said elbows.
- Said first cross beams may have a recessed portion for facilitating assembly of the first cross beams over the axially rearwardly extending legs of said syringe support.
- Said clasps may each include a second cross beam that extends circumferentially to connect the two legs of each pair of axially forwardly extending legs, each second cross beam being axially rearward and axially spaced from the respective first cross beam.
- the attachment may include hooks on the syringe support that are configured to latch onto the guard element and limit rearward axial movement of the guard element relative to the syringe support.
- Each of said hooks may be disposed on an axially rearwardly extending leg of said syringe support.
- each of said pair of axially forwardly extending legs of each clasp may be circumferentially spaced to receive one of said axially rearwardly extending legs of said syringe support.
- Said first cross beams may have a recessed portion for facilitating assembly of the first cross beams over the axially rearwardly extending legs of said syringe support.
- the guard element may define an axially rearward surface for receiving an axial drive (for causing movement of the syringe support, for example).
- the axially rearward surface for receiving axial drive is an axially rearward surface of a flange.
- Said guard element may define a central bore extending in an axial direction and the flange may extend radially outwardly from the bore.
- the axially rearward facing surface of the flange may slope axially forwardly along radial directions away from said bore.
- Said axially rearward facing surface of said flange may correspond to part of the surface of a conic frustum.
- Said guard element may further comprise locating features for co-axially aligning the guard element with the rear end of a syringe.
- Said locating features may comprise an axially forwardly extending spigot extending from the axially forwardly facing surface of the flange, the spigot defining part of said bore.
- the guard element may be assembled on said syringe support.
- the assembly may further comprise a syringe supported by said syringe support, wherein at least part of said guard element is axially rearward of at least part of said syringe.
- Said syringe may comprise a barrel having an outlet at a forward end, a needle fluidly connected to said outlet, an open rear end, a plunger element moveable within said barrel, a plunger rod connected to said plunger element for moving said plunger element within said barrel, and a rear syringe flange extending radially outwardly from a rear end of the barrel.
- An axially forwardly facing side of the guard element may be shaped so as to be complementary to the profile of the rear syringe flange.
- the spigot may be shaped so as to be complementary to the profile of the open rear end of the barrel.
- Axially rearward movement of the syringe received in the syringe support may be constrained by the guard element. In certain embodiments, some limited axial movement of the syringe in the syringe support may be permitted. In other embodiments, substantially no axial movement of the syringe in the syringe support is permitted due to the presence of the guard element.
- the syringe may contain a liquid drug formulation, and, in particular embodiments, the barrel of said syringe has a volume corresponding to a single dose of said liquid drug formulation.
- Said liquid drug formulation may be arranged for rest at from 2-8°C and for injected delivery at from 18-30°C.
- the liquid drug formulation may have a viscosity of less than 120 mPa.s at a delivery temperature of 20°C.
- the liquid drug formulation may comprise an aqueous formulation of a therapeutic biologic type drug.
- Said biologic type drug may comprise an immunoglobulin or a fragment thereof.
- Said biologic type drug may comprise a PEGylated or mPEGylated antibody fragment.
- Said aqueous formulation may comprise additional formulation component selected from the group consisting of buffers, NaCI, and pH modifiers.
- the concentration of the drug in the liquid drug formulation may be greater than 100mg/ml.
- an autoinjector device including the assembly according to the first aspect of the present invention.
- a guard element for use with a syringe and configured to be positioned at least partly rearwardly of a flange of the syringe, the guard element defining a central bore extending in an axial direction and having a flange around the bore extending radially outwardly, where the flange has an axially forwardly facing surface and an axially rearward facing surface, and the axially rearward facing surface slopes axially forwardly along radial directions away from said bore and is configured for receiving axial drive.
- the guard element may further comprise locating features for locating the guard element on the rear end of a syringe.
- Said locating features may comprise an axially forwardly extending spigot extending from the axially forwardly facing surface of the flange, the spigot defining part of said bore.
- Said axially rearward facing surface of said flange may correspond to part of the surface of a conic frustum.
- the guard element may further comprise a plurality of axially forwardly extending legs.
- Said plurality of axially forwardly extending legs may form part of at least a pair of clasps, where each clasp includes a pair of said axially forwardly extending legs and a front cross beam extending circumferentially to connect the two legs of each pair of axially forwardly extending legs.
- Each of said front cross beams may form the axially forwardmost portion of each respective clasp.
- An axially forwardly facing surface of each front cross beam may be tapered, the axially forwardly facing surface extending axially rearwardly in a radially outward direction.
- Said first cross beams may have a recessed portion for facilitating assembly of said guard assembly on a syringe support.
- Said clasps may each include a second cross beam that extends circumferentially to connect the two legs of each pair of axially forwardly extending legs and is axially rearward and axially spaced from said first cross beam.
- an assembly including a guard element according to the third aspect of the present invention, and a syringe.
- Said syringe may comprise a barrel having an outlet at a forward end, a needle fluidly connected to said outlet, an open rear end, a plunger element moveable within said barrel, a plunger rod connected to said plunger element for moving said plunger element within said barrel, and a rear syringe flange extending radially outwardly from a rear end of the barrel.
- An axially forwardly facing side of the guard element may be shaped so as to be complementary to the profile of the rear syringe flange.
- the spigot may be shaped so as to be complementary to the profile of the open rear end of the barrel.
- the syringe may contain a liquid drug formulation, and, in particular embodiments, the barrel of said syringe has a volume corresponding to a single dose of said liquid drug formulation.
- Said liquid drug formulation may be arranged for rest at from 2-8°C and for injected delivery at from 18-30°C.
- the liquid drug formulation may have a viscosity of less than 120 mPa.s at a delivery temperature of 20°C.
- the liquid drug formulation may comprise an aqueous formulation of a therapeutic biologic type drug.
- Said biologic type drug may comprise an immunoglobulin or a fragment thereof.
- Said biologic type drug may comprise a PEGylated or mPEGylated antibody fragment.
- Said aqueous formulation may comprise additional formulation component selected from the group consisting of buffers, NaCI, and pH modifiers.
- the concentration of the drug in the liquid drug formulation may be greater than 100mg/ml.
- an autoinjector device including the assembly of the fourth aspect of the present invention.
- a syringe support for supporting a syringe by limiting forward axial movement of the syringe relative to the syringe support, the syringe support having an external flange and hooks, each hook being disposed on an axially rearwardly extending leg of said syringe support.
- a syringe support for supporting a syringe by limiting forward axial movement of the syringe relative to the syringe support, the syringe support having an external flange and outwardly radially extending elbows axially rearward of the external flange.
- the syringe support of the sixth or seventh aspects of the present invention may further comprise at least one radially inward projection for supporting a syringe thereon.
- Figure 1A is a cross-sectional view of an assembly according to an embodiment of the present invention with a syringe installed, Figures 1 B and 1C each show a side view of the assembly of Figure 1A where assembly of Figure 1C is rotated 90° relative to the assembly of Figure 1 B;
- Figure 2A shows an unassembled assembly in accordance with an alternative embodiment of the present invention
- Figure 2B shows a side view of the assembly of Figure 2A assembled with a syringe installed
- Figure 3A shows an unassembled assembly in accordance with a further alternative embodiment of the present invention
- Figure 3B shows a side view of the assembly of Figure 3A assembled with a syringe installed
- Figure 4 shows a section view of an assembly according to an embodiment of the present invention with a syringe installed and a driving element engaging with the assembly;
- Figure 5 shows an autoinjector device according to an embodiment of the present invention.
- Figure 1A is a cross-sectional view of an assembly 10 according to an embodiment of the present invention.
- Figures 1 B and 1C each show a side view of the assembly of Figure 1 A where the assembly of Figure 1C is rotated 90° relative to the assembly of Figure 1 B.
- the assembly 10 includes a syringe support 20 and a guard element 40.
- a syringe 60 is installed within the assembly 10.
- the syringe support 20 supports the syringe 60 so that axial movement of the syringe support 20 results in axial movement of the syringe 60 therein such as during forward axial movement of the syringe support 20 and syringe 60 from a pre-use position to an injection position within an autoinjector device.
- the syringe support 20 may therefore be considered to be a syringe carrier.
- the arrows labeled A and B in the Figures indicate the "axial" directions where A represents the forward axial direction (i.e. towards the injection site) and B represents the rearward axial direction (i.e. away from the injection site).
- directions and orientations referred to throughout this application are relative to the axial directions A, B.
- the directions A and B may be considered to be parallel to a "longitudinal direction" of the assembly of the present invention, or indeed any larger device incorporating the assembly, or any components of the assembly.
- the syringe support 20 supports the syringe 60 at a forward end of the syringe 60, for example on an internal flange of the syringe support 20.
- the syringe support 20 includes some or all of the features of the syringe support means described in WO-A-2007/083115.
- the syringe 60 may be supported by the syringe support 20 at points of the syringe 60 other than its forward end.
- the syringe 60 may be a standard prefilled syringe and includes a barrel 62 having a rear syringe flange 64 and a stopper 66 disposed within the barrel and moveable therein.
- the stopper 66 is moved by a plunger rod (not shown) or similar element, to pressurize fluid contained in the barrel 62 and expel it from an open front end of the syringe 60.
- the syringe 60 may include a needle (not shown) at its forward end for penetrating an injection site and facilitating the expulsion of fluid form the barrel 62.
- the guard element 40 is a separate component relative to the syringe support 20 and is attachable to a rear end of the syringe support 20.
- the attachability of the guard element 40 permits the syringe 60 to be inserted into the syringe support 20 prior to the attachment of the guard element 40.
- An integral guard element 40 and syringe support 60 would not permit the insertion of the syringe 60 without sacrificing features that give rise to the benefits associated with the present invention.
- the syringe support 20 is generally tubular and has an external flange 22 towards its rear end that acts as an abutment element which the guard element 40 abuts against to prevent further forward axial movement of the guard element 40 relative to the syringe support 20.
- the external flange 22 has a rearwardly facing undercut section 22a for engaging with the guard element 40 and minimizing the risk of inadvertent movement of the guard element 40 relative to the syringe support 20.
- a main body 20a of the syringe support 20 has an internal diameter that is larger than the external diameter of the syringe barrel 62 such that the syringe 60 may be inserted into the syringe support 20 during assembly.
- the annular space between the main body 20a of the syringe support 20 and the syringe barrel 62 (when installed) is small so as to minimize radial movement of the syringe 60 within the syringe support 20 thereby reducing the risk of syringe 60 breakage.
- the internal diameter of the main body 20a of the syringe support 20 is smaller than the outer diameter of the rear syringe flange 64 of the syringe 60 so that the rear syringe flange 64 cannot pass into the main body 20a.
- the syringe 60 is supported in the syringe support 20 (e.g. by an abutment) such that forward axial movement of the syringe 60 is limited relative to the syringe support 20 to a degree where it would not be possible for the rear syringe flange 64 to enter the main body 20a in any event.
- axially rearward movement of the syringe within the syringe support is constrained by the guard element.
- the external flange 22 of the syringe support 20 is located close to the rear end of the main body 20a, however it is not at the actual rear end but axially spaced therefrom.
- the syringe support 20 has a pair of rearwardly axially extending legs 24 extending from the rear end of the main body 20a axially rearward of the external flange 22.
- Each of the pair of legs 24 is diametrically opposite the other of the pair and each extends from the main body 20a via an elbow 24a that extends radially outwardly. Due to the elbows 24a, the internal diameter of the legs 24 (when considered as a pair) is greater than the internal diameter of the main body 20a.
- the internal diameter of the legs 24 is preferably similar to the outer diameter of the rear syringe flange 64 of the syringe 60 such that the rear flange 60 may be
- the outer diameter of the legs 24 (when considered as a pair) is substantially the same as the outer diameter of the external flange 22.
- the legs 24 each have a hook 24b that extends both radially inwardly and axially forwardly so as to be capable of engaging with the guard element 40 and preventing rearward axial movement of the guard element 40 relative to the syringe support 20 (as described in more detail below).
- the hooks 24b are disposed at the extreme rear end of the legs 24, although in alternative embodiments, this need not necessarily be the case.
- the guard element 40 has a conical or otherwise sloped rear surface 42 around a central bore 44.
- the rear surface 42 of the guard element slopes axially forwardly along an outwardly radial direction from the edge of the bore 44.
- the guard element 40 has an axially forwardly extending spigot 45 that is centrally located and has an outer diameter suitable for locating in and forming a close fit with the inside of the barrel 62 of the syringe 60.
- An axially forwardly facing side of the guard element 40 is shaped so as to be complementary to the profile of the syringe flange 64.
- the spigot 45 is shaped so as to be complementary to the profile of the barrel 62 in which it fits. Such complementary features improve the fit of the guard element 40 against the syringe 60.
- the spigot 45 forms a step on the axially forwardly facing side of the guard element 40 so that a surface of the guard element 40 extends radially beyond the bore 44 and prevents the entire guard element 40 from entering the inside of the barrel 62.
- the guard element 40 extends radially beyond the rear syringe flange 64 and has an axially forwardly extending clasp 46 that is positioned radially outward of the rear syringe flange 64 when the spigot 45 is located in the bore 44, as shown in the Figures.
- the clasp 46 includes a pair of circumferentially spaced legs 46a that extend axially forwardly, and a cross beam 46b that extends circumferentially between the two legs 46a, linking them together.
- the forwardmost surface of the clasp 40 is beveled so as to be complementary to the rearwardly facing undercut section 22a of the external flange 22 and be configured to engage therewith with reduced risk of inadvertent axial or radial relative movement therebetween.
- This arrangement provides an abutment that limits forward axial movement of the guard element 40 relative to the syringe support 20 and permits axial load to be transmitted from the guard element 40 to the syringe support 20. Whilst this is a preferable embodiment, less preferable embodiments may feature non-tapered (i.e. no axial variation along a radial direction) interface surfaces between the clasp 46 and the external flange 22. These arrangements would still achieve the desired abutment for limiting forward axial movement of the guard element 40 relative to the syringe support 20 but would be less effective at minimizing the risk of the clasp 46 inadvertently flexing radially outwardly and sliding axially forwardly over the external flange 22.
- the circumferential space between the two legs 46a of the clasp 46 accommodates the rearwardly axially extending legs 24 of the syringe support 20.
- the guard element 40 has a pair of axially rearwardly facing receiving surfaces 48 for receiving the hooks 24b of the legs of the syringe support 20 where each of the axially rearwardly facing receiving surfaces tapers axially rearwardly in a radially outwardly direction so as to be complementary to the forward facing surface of each hook 24b.
- the hooks 24b limit rearward axial movement of the guard element 40 relative to the syringe support 20.
- the guard element 40 forms a loading bridge that transmits axial force received from the rear of the guard element axially forwardly into the syringe support 20 via the external flange 22.
- the assembly is configured so that no axial load is transmitted from the guard element 40 to the syringe 60, and the syringe is therefore protected from potentially damaging forces during use.
- One factor that contributes to the syringe avoiding applied axial loading is the relationship between the supporting of the syringe by the syringe support 20 and the respective axial lengths of the clasps 46 and the axially rearwardly extending legs 24 of the syringe support 20.
- the syringe 60 should be "floating" within the assembly 10 of the syringe support 20 and the guard element 40. That is, some limited axial movement of syringe in the syringe support may be permitted.
- Figures 2A and 2B show a modified assembly 10' in accordance with an alternative embodiment of the present invention.
- the modified assembly 10' includes a modified guard element 40' and a modified syringe support 20'.
- the modified guard element 40' and syringe support 20' are each largely the same as the guard element 40 and syringe support 20 described above in relation to Figures 1A to 1 C, however modified components are indicated with a prime/dash (') and new components/features are indicated by a new numeral.
- the modified guard element 40' of Figures 2A and 2B has a modified clasp 46' that differs in two respects in comparison with the clasp 46 of Figures 1A to 1C.
- the modified clasp 46' still includes two pairs of circumferentially spaced legs 46a' that extend axially forwardly, and a cross beam 46b' that extends circumferentially between the two legs 46a' of each pair, linking the respective pair together.
- each cross beam 46b' includes a recessed portion 47 on its radially inward side. Each recessed portion 47 is tapered so as to facilitate assembly of guard element 40' onto the syringe support 20' by assisting the clasps 46' over the modified axially rearwardly extending legs 24' of the modified syringe support 20'.
- the legs 46a' of the clasp 46' are wider in a circumferential direction in comparison with the legs 46a of the guard element 40 of Figures 1A to 1C. This widening is possible since the axially rearwardly extending legs 24' of the modified syringe support 20' are narrower in a circumferential direction in comparison with the legs 24 of Figures 1A to 1C.
- the wider legs 46a' of the clasp 46' improve cross-sectional area strength and reduce the risk of the guard element 40' breaking or deforming under load.
- the axially rearwardly extending legs 24' are tapered in an axial direction, with the legs 24' increasingly widening in a circumferential direction along the axial rearward direction.
- the axially rearwardly extending legs 24' form a close fit with the clasp 46' and reduce "rocking" of the guard element 40' relative to the syringe support 20' along directions indicated by double arrow C in Figure 2B.
- Rocking may alternatively be mitigated where the clasp 46' does not necessarily form a close fit entirely around the legs 24' by lugs located on either of the legs 24' or the clasp 46' for at least forming a close fit at selected locations and minimized relative movement.
- FIGS 3A and 3B show an alternative embodiment of an assembly 10" in accordance with the present invention.
- the modified assembly 10" includes a modified guard element 40" and a modified syringe support 20".
- the modified guard element 40" and syringe support 20" are each largely the same as the guard element 40 and syringe support 20 described above in relation to Figures 1A to 1 C, however modified components are indicated with a double prime/dash (") and new components/features are indicated by a new numeral.
- the modified clasp 46" still includes two pairs of circumferentially spaced legs 46a" that extend axially forwardly, and a cross beam 46b" that extends circumferentially between the two legs 46a" of each pair, linking the respective pair together.
- the clasp 46" has a rear cross beam 46d axially rearward and axially spaced from the cross beam 46b", where the rear cross beam 46d extends circumferentially between the legs 46a".
- the pair of cross-beams 46d, 46b" and the pair of legs 46a" define an aperture for receiving the axially rearwardly extending legs 24".
- the axially rearwardly extending legs 24" of the modified syringe support 20" are axially shorter than the legs 24,24' of Figures 1A-1 C and Figures 2A-2B.
- the legs 24" do not have radially inwardly extending hooks (c.f. hooks
- the elbow 24a" may be tapered, extending axially forwardly in a radially outward direction, to engage with a complementary rearwardly facing surface of the cross beam 46b".
- the clasp 46" engages more firmly with the syringe support 20" when moved axially rearwardly relative thereto, as the risk of the clasp 46" deforming so as to slide over the legs 24" is reduced.
- the rearwardly axially extending legs 24,24' of the embodiments described above in relation to Figures 1A to 1 C and 2A to 2B may also include an elbow, where the cross beam 46b, 46b' abuts the elbow to limit rearward axial movement of the guard element 40,40' in the unlikely event that the hooks 24b,24b' fail.
- the guard element 40" of Figures 3A and 3B is shown with the recessed portion 47 present on each clasp 46". Whilst it is preferable for this feature to be present and assist assembly of the guard element 40" onto the syringe support 20", embodiments within the scope of the present invention may not have this feature, but retain the other described features of the embodiment of Figures 3A and 3B. Indeed, the recessed portion 47 may or may not be present on the clasps 46, 46', 46" within the scope of the present invention. [0055] Similarly, whilst the rear surface 42 of the guard elements 40, 40', 40" is described above as being conical or otherwise sloped, in alternative embodiments within the scope of the present invention, the rear surface 42 may not be sloped (i.e. not varying axially along a radial direction). Such embodiments may still include any of the described features of the
- a conical or otherwise sloped rear surface 42 is preferable in that it facilitates a driving member to cease contact with the guard element 40, 40', 40" once the driving member has acted thereon to move the syringe support 20, 20', 20" (and hence syringe 60 contained therein) to a position suitable for delivery (i.e. when a needle of the syringe 60 has penetrated an injection site to a sufficient depth).
- a conical or otherwise sloped rear surface 42 is particularly suitable for use in autoinjectors having driving elements that have flexible legs or tags that initially engage with the guard element 40, 40', 40" to apply a load to the syringe support 20, 20', 20" to move the syringe 60, and then flex radially outwardly into an aperture of a housing of the autoinjector when a specific axial position is reached.
- the conical or otherwise sloped surface 42 will reduce the risk of the flexible legs or tags failing to flex into the aperture and thus disengaging with the guard element 40, 40', 40" which may cause the device to jam and the dose of medicament to not be delivered.
- Guard elements 40,40', 40" having a conical or otherwise sloped rear surface 42 are particularly suited for use in devices where the drive element is equivalent to the inner housing component described in the publication WO-A-2005/070481.
- FIG 4 shows an example of an assembly 10 with a syringe 60 installed. Also shown is a drive element 80 having flexible legs 82 towards a forward end thereof. Each flexible leg 82 has a foot 82a at a forward end for engaging with the guard element 40. In the configuration shown in Figure 4, the flexible legs 82 are flexed radially inwardly and are engaged with the guard element 40 so as to be capable of transmitting axial force thereto. Typically, the flexible legs 82 will be biased into their radially inward position due to interference with an outer sleeve or housing whose surface prevents radial outward flexing.
- Apertures or other suitable recesses or formations at predetermined axial locations on the outer sleeve or housing permit the flexible legs 82 to flex radially outwardly at a particular axial position.
- the conical or otherwise sloped surface 42 allow an adequate engagement between the drive element 80 and the guard element 40, but facilitate easy and reliable disengagement when the flexible legs 82 reach the predetermined axial location.
- the relationship and engagement/disengagement shown in and described in relation to Figure 4 is not exclusive to the guard element described above using reference numeral 40. Indeed, the described relationship and engagement/disengagement may apply to any of guard elements 40', 40" or any other guard element within the scope of the present invention.
- the guard element of the present invention Whilst it is preferable for the guard element of the present invention to act as a loading bridge that transmits axial force received from the rear of the guard element axially forwardly into the syringe support 20, the conical or otherwise sloped surface provides advantages that are independent of the preferable bridging feature. Therefore, according to some embodiments of the present invention, the guard element may have a conical or otherwise suitably sloped rearward facing surface but not have features that permit the guard element to behave as a loading bridge. Without the loading bridge features, axial forces received from axially rearward of the guard element will be transmitted directly through the guard element to the syringe on which the guard element is disposed and located.
- these embodiments will not mitigate the potential impact damage noted above to the same extent as the embodiments with the bridging features, however, it will provide a suitable rear surface for receiving the flexible legs of a driving element and facilitating easy and reliable disengagement. The risk of jamming is therefore reduced when used in an autoinjector device.
- the assembly of the invention may form part of an autoinjector device.
- Figure 5 shows an example of an autoinjector device 100 that may incorporate the assembly.
- the autoinjector device 100 shown in Figure 5 includes a main body 102, a cap 104 removably attached to a front end of the main body 102, and a button 106 for actuating the autoinjector device 100.
- the assembly and autoinjector of the invention is suitable for the injected delivery of drug, particularly for the treatment and/or prophylaxis of a number of diseases, disorders or conditions, including infections (viral, e.g. HIV infection, bacterial, fungal and parasitic);
- endotoxic shock associated with infection inflammatory diseases/autoimmunity such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus (SLE), ankylosing spondilitis, COPD, asthma, Alzheimer's Disease, Crohn's disease, ulcerative colitis, irritable bowel syndrome and psoriasis; immune mediated inflammatory disorders of the central and peripheral nervous system such as multiple sclerosis and Guillain-Barr syndrome; graft- versus-host disease; organ transplant rejection; pain; cancer (including solid tumours such as melanomas, hepatoblastomas, sarcomas, squamous cell carcinomas, transitional cell cancers, ovarian cancers and hematologic malignancies, acute myelogenous leukaemia, chronic myelogenous leukemia, gastric cancer and colon cancer); congenital disorders, e.g.
- cystic fibrosis and sickle cell anaemia growth disorders; epilepsy; treatment of infertility; heart disease including ischaemic diseases such as myocardial infarction as well as atherosclerosis and intravascular coagulation; bone disorders such as osteopenia and osteoporosis; and metabolic/idiopathic disease, e.g. diabetes.
- the syringe of the assembly and autoinjector herein contains a liquid drug formulation, which is designed for refrigerated rest (e.g. at from 2-8°C) and for injected delivery at room temperature (e.g. at or about 18-30°C).
- the viscosity of the liquid drug formulation is less than 120 mPa.s (120 centipoise), in embodiments less than 100 mPa.s (100 centipoise) at a delivery temperature of 20°C.
- Appropriate drugs may thus be selected from biologically active agents, including chemical entities, polysaccharides, steroids and, especially, naturally occurring and
- proteins including glycoproteins, polypeptides and oligopeptides and polymeric derivatives thereof.
- Particular proteins, polypeptides and oligopeptides include hormones, such as insulin, epinephrine, norepinephrine, adrenocorticotrophin, somatotropin, erythropoietin and oxytocin; cytokines, such as lymphokines, chemokines and interleukins and receptors therefor, e.g.
- interleukin (IL)-1a I L- 1 ⁇ , IL-1 R, IL-2, IL-3, IL-4, IL-5, IL-6, IL-13, IL17, interferon (IFN)-a, IFN- ⁇ , IFN- ⁇ , granulocyte monocyte colony stimulating factor, tumour necrosis factor-a;
- IFN interferon
- Immunoglobulins include whole antibodies and functionally active fragments and/or derivatives thereof, for example polyclonal, monoclonal, recombinant, multi-valent, mono- or multi-specific, humanised or chimeric antibodies, single chain antibodies, Fab fragments, Fab' and F(ab')2 fragments.
- Polymeric derivatives of such proteins, polypeptides and oligopeptides include derivatives formed between the protein, polypeptide or oligopeptide and a naturally occurring or synthetic polymer, e.g. a polysaccharide or a polyalylklene polymer such as a poly(ethyleneglycol) [PEG] or derivative thereof, e.g. methoxypoly(ethyleneglycol) [mPEG].
- a naturally occurring or synthetic polymer e.g. a polysaccharide or a polyalylklene polymer such as a poly(ethyleneglycol) [PEG] or derivative thereof, e.g. methoxypoly(ethyleneglycol) [mPEG].
- Particular agents include growth hormones and hormones for the treatment of infertility.
- Other particular agents are for the treatment of epilepsy such as brivaracetam and seletracetam.
- the autoinjector device herein has been found to be of particular utility where the drug is an immunoglobulin or a fragment thereof, especially a PEGylated or mPEGylated antibody fragment.
- the liquid drug formulations herein are typically aqueous formulations, which comprise the drug in solution and additionally other optional formulation components, which may include buffers (e.g. lactate, acetate), NaCI, and pH modifiers (e.g. NaOH).
- buffers e.g. lactate, acetate
- NaCI e.g. NaCI
- pH modifiers e.g. NaOH
- the assembly and autoinjector device herein has been found to be of particular utility wherein the concentration of the drug (e.g. a therapeutic biologic type drug) in the liquid drug formulation is quite high.
- the drug e.g. a therapeutic biologic type drug
- the auto-injector device has been found to be of particular utility wherein the concentration of the drug is greater than 100mg/ml, particularly greater than 150mg/ml such as 200mg/ml.
Landscapes
- Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Priority Applications (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201480043365.0A CN105555337B (zh) | 2013-08-02 | 2014-08-04 | 用于自动注射装置的组件 |
| ES14749996T ES2861348T3 (es) | 2013-08-02 | 2014-08-04 | Ensamblaje para un dispositivo autoinyector |
| US14/909,689 US10500341B2 (en) | 2013-08-02 | 2014-08-04 | Assembly for an autoinjector device |
| EP14749996.6A EP3027248B1 (en) | 2013-08-02 | 2014-08-04 | Assembly for an autoinjector device |
| CA2919195A CA2919195C (en) | 2013-08-02 | 2014-08-04 | Assembly for an autoinjector device |
| JP2016530615A JP6667165B2 (ja) | 2013-08-02 | 2014-08-04 | 自動注入装置用のアセンブリ |
| BR112016002188-6A BR112016002188B1 (pt) | 2013-08-02 | 2014-08-04 | Conjunto para um dispositivo autoinjetor |
| AU2014298151A AU2014298151B2 (en) | 2013-08-02 | 2014-08-04 | Assembly for an autoinjector device |
| US16/679,661 US11517676B2 (en) | 2013-08-02 | 2019-11-11 | Assembly for an autoinjector device |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB1313888.8 | 2013-08-02 | ||
| GBGB1313888.8A GB201313888D0 (en) | 2013-08-02 | 2013-08-02 | Assembly for an autoinjector device |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/909,689 A-371-Of-International US10500341B2 (en) | 2013-08-02 | 2014-08-04 | Assembly for an autoinjector device |
| US16/679,661 Division US11517676B2 (en) | 2013-08-02 | 2019-11-11 | Assembly for an autoinjector device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2015015230A2 true WO2015015230A2 (en) | 2015-02-05 |
| WO2015015230A3 WO2015015230A3 (en) | 2015-06-11 |
Family
ID=49224085
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2014/052387 Ceased WO2015015230A2 (en) | 2013-08-02 | 2014-08-04 | Assembly for an autoinjector device |
Country Status (10)
| Country | Link |
|---|---|
| US (2) | US10500341B2 (enExample) |
| EP (1) | EP3027248B1 (enExample) |
| JP (1) | JP6667165B2 (enExample) |
| CN (1) | CN105555337B (enExample) |
| AU (1) | AU2014298151B2 (enExample) |
| BR (1) | BR112016002188B1 (enExample) |
| CA (1) | CA2919195C (enExample) |
| ES (1) | ES2861348T3 (enExample) |
| GB (2) | GB201313888D0 (enExample) |
| WO (1) | WO2015015230A2 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016193355A1 (en) * | 2015-06-03 | 2016-12-08 | Sanofi-Aventis Deutschland Gmbh | Syringe support and autoinjector |
| WO2019224784A1 (en) | 2018-05-24 | 2019-11-28 | Novartis Ag | Automatic drug delivery device |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3824906A1 (en) | 2016-12-21 | 2021-05-26 | Amgen Inc. | Anti-tnf alpha antibody formulations |
| EP3626291A1 (en) | 2018-09-21 | 2020-03-25 | Regeneron Pharmaceuticals, Inc. | Needle shield grip device |
| USD1029238S1 (en) * | 2022-04-27 | 2024-05-28 | Bespak Europe Limited | Inhaler |
| USD1028220S1 (en) * | 2022-11-30 | 2024-05-21 | SYNERGY LIFE SCIENCE, Inc. | Portable nebulizer |
Family Cites Families (61)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4333456A (en) * | 1981-02-09 | 1982-06-08 | Sterling Drug Inc. | Self-aspirating hypodermic syringe and self-aspirating assembly therefor |
| US4985000A (en) | 1986-09-30 | 1991-01-15 | Minnesota Mining And Manufacturing Co. | Shielded cable termination assembly |
| US6506195B2 (en) | 1992-09-30 | 2003-01-14 | Staar Surgical Company, Inc. | Deformable intraocular lens insertion system |
| US6454746B1 (en) | 1997-06-04 | 2002-09-24 | Eli Lilly And Company | Medication delivery apparatus |
| US6223733B1 (en) | 1997-07-08 | 2001-05-01 | Siemens Canada Limited | Exhaust gas recirculation valve |
| JP3052991U (ja) | 1998-04-02 | 1998-10-13 | オージーケー技研株式会社 | ハンドルグリップ構造 |
| US7455661B2 (en) * | 1998-04-17 | 2008-11-25 | Becton, Dickinson And Company | Safety shield system for prefilled syringe |
| US6305908B1 (en) | 1998-06-19 | 2001-10-23 | Abbott Laboratories | Infusion pump extruded metal housing with elastomeric end caps |
| US6884493B2 (en) | 2000-06-13 | 2005-04-26 | Milliken & Company | Patterned carpet and method |
| US7195623B2 (en) * | 2001-03-27 | 2007-03-27 | Eli Lilly And Company | Kit including side firing syringe needle for preparing a drug in an injection pen cartridge |
| US6669664B2 (en) | 2001-09-07 | 2003-12-30 | Avant Drug Delivery Systems, Inc. | Vacuum control cycle for jet injector |
| US20050131355A1 (en) | 2002-06-12 | 2005-06-16 | Fritz Kirchhofer | Injection or infusion device with refined surface |
| CA2495238A1 (en) | 2002-08-26 | 2004-03-04 | Penjet Corporation | Apparatus for needle-less injection with a degassed fluid |
| DE10351598A1 (de) * | 2003-11-05 | 2005-06-16 | Tecpharma Licensing Ag | Autoinjektionsvorrichtung |
| WO2005070481A1 (en) | 2004-01-23 | 2005-08-04 | The Medical House Plc | Injection device |
| IL162854A (en) * | 2004-07-04 | 2011-08-31 | Igal Sharon | Syringe assembly |
| WO2006077466A2 (en) | 2005-01-18 | 2006-07-27 | Wockhardt Americas Inc | Pen shaped medication injection devices |
| JP2008543500A (ja) | 2005-06-21 | 2008-12-04 | イーライ リリー アンド カンパニー | 医薬品注射用の器具及び方法 |
| US7647929B2 (en) * | 2005-09-28 | 2010-01-19 | Nellcor Puritan Bennett Llc | Medical device tube having a flange with opposing support ears for improved alignment and retention of an inner cannula in an outer cannula |
| EA013338B1 (ru) * | 2005-12-05 | 2010-04-30 | Чжуншань Ботай Фармасьютик Инструментс Ко., Лтд. | Автоматический шприц |
| GB0601309D0 (en) * | 2006-01-23 | 2006-03-01 | Medical House The Plc | Injection device |
| GB0625169D0 (en) | 2006-12-18 | 2007-01-24 | Medical House Plc The | Improved autoinjector |
| US20080183133A1 (en) | 2007-01-30 | 2008-07-31 | Animas Corporation | Infusion pump keypad assembly and method for making the same |
| US20080249927A1 (en) | 2007-04-06 | 2008-10-09 | Rethorn Michael L | Remittance recipient/sender name on sender/recipient monthly statement |
| US8043075B2 (en) | 2007-06-19 | 2011-10-25 | Smiths Medical Asd, Inc. | Progressive cavity propagation pump |
| EP2080532B1 (de) * | 2008-01-17 | 2010-12-01 | Peter Loos und Arnold Neuhold Gewerbliche Schutzrechte GbR | Kartusche für ein Autoinjektor und System bestehend aus einer solchen Kartusche und einem Autoinjektor |
| US20090209883A1 (en) | 2008-01-17 | 2009-08-20 | Michael Higgins | Tissue penetrating apparatus |
| MX2010012691A (es) * | 2008-05-20 | 2011-03-30 | Avant Medical Corp Star | Sistema auto-inyector. |
| US8048029B2 (en) * | 2008-06-20 | 2011-11-01 | West Pharmaceutical Services, Inc. | Injector apparatus |
| LT2326371T (lt) | 2008-07-18 | 2019-12-10 | Ucb Biopharma Sprl | Sistemos, skirtos įvedimui vaisto, skirto pacientams sergantiems reumatoidiniu artritu |
| GB2463034B (en) * | 2008-08-28 | 2012-11-07 | Owen Mumford Ltd | Autoinjection devices |
| GB2463071A (en) * | 2008-09-02 | 2010-03-03 | Owen Mumford Ltd | Auto-injector syringe with safety shield |
| GB0823066D0 (en) * | 2008-12-18 | 2009-01-28 | Medical House Plc The | Safety syringe for autoinjector |
| GB0900930D0 (en) * | 2009-01-20 | 2009-03-04 | Future Injection Technologies Ltd | Injection device |
| USD660958S1 (en) | 2009-07-20 | 2012-05-29 | Ucb Pharma, S.A. | Device for administering medication |
| CN102470217B (zh) * | 2009-07-31 | 2014-09-17 | Shl集团有限责任公司 | 药物容器保持器装置 |
| JP5856966B2 (ja) * | 2009-10-30 | 2016-02-10 | サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 薬物送達デバイス |
| GB2475917B (en) | 2009-12-07 | 2015-12-16 | Medical House Ltd | Syringe flange protector |
| WO2011101376A1 (en) | 2010-02-18 | 2011-08-25 | Sanofi-Aventis Deutschland Gmbh | Clutch mechanism |
| EP2536451B1 (en) | 2010-02-18 | 2018-03-28 | Sanofi-Aventis Deutschland GmbH | Auto-injector with a torsion spring |
| DK2536452T3 (da) | 2010-02-18 | 2019-01-02 | Sanofi Aventis Deutschland | Autoinjektor |
| EP2364740A1 (en) | 2010-03-09 | 2011-09-14 | Sanofi-Aventis Deutschland GmbH | Arrangement for transferring a translation of a drive means to a plunger |
| EP2364739A1 (en) | 2010-03-09 | 2011-09-14 | Sanofi-Aventis Deutschland GmbH | Re-usable autoinjector |
| CN102791917B (zh) | 2010-03-12 | 2014-11-05 | 埃克森美孚化学专利公司 | 制备耐热无纺织物的方法 |
| CN103153367A (zh) * | 2010-08-13 | 2013-06-12 | 赛诺菲-安万特德国有限公司 | 用于药物输送装置贮液器的连接器 |
| JP5620777B2 (ja) | 2010-10-07 | 2014-11-05 | 株式会社カネカ | 熱可塑性樹脂組成物および成形体 |
| EP2438939A1 (en) | 2010-10-08 | 2012-04-11 | Sanofi-Aventis Deutschland GmbH | Arrangement for coupling a plunger to either a syringe or a stopper |
| TWI459986B (zh) * | 2010-11-08 | 2014-11-11 | Shl Group Ab | 容器支撐總成 |
| GB201021777D0 (en) | 2010-12-22 | 2011-02-02 | Owen Mumford Ltd | Autoinjectors |
| EP2474332A1 (en) * | 2011-01-07 | 2012-07-11 | Sanofi-Aventis Deutschland GmbH | Cartridge holder for an injection device |
| MY166835A (en) | 2011-01-24 | 2018-07-23 | Abbvie Biotechnology Ltd | Automatic injection devices having overmolded gripping surfaces |
| CA2833748C (en) | 2011-04-20 | 2019-07-16 | Amgen Inc. | Autoinjector apparatus |
| CA2832729A1 (en) | 2011-04-21 | 2012-10-26 | Abbvie Inc. | Wearable automatic injection device for controlled administration of therapeutic agents |
| AU2012269770B2 (en) | 2011-06-17 | 2015-04-16 | Shl Medical Ag | Injection device |
| KR101664632B1 (ko) | 2011-09-27 | 2016-10-24 | 에스에이치엘 그룹 에이비 | 최초 로크된 상태, 중간 프라이밍 상태, 및 약물 주입 상태를 갖는 약물 주입 장치 |
| BR112014012611A8 (pt) * | 2011-11-25 | 2017-06-20 | Shl Group Ab | dispositivo de administração de medicamento |
| EP2789357B1 (en) | 2011-12-09 | 2017-04-26 | Panasonic Healthcare Holdings Co., Ltd. | Pharmaceutical syringe unit and pharmaceutical injection device |
| KR101924310B1 (ko) | 2011-12-15 | 2018-11-30 | 에스에이치엘 그룹 에이비 | 자동 주입 장치 |
| US10973981B2 (en) | 2012-08-31 | 2021-04-13 | Sanofi-Aventis Deutschland Gmbh | Medical device with impact resistant housing |
| US8591463B1 (en) | 2013-03-08 | 2013-11-26 | Teva Pharmaceutical Industries Ltd. | Re-useable injector device for syringe |
| US10898646B2 (en) | 2016-04-29 | 2021-01-26 | Shl Medical Ag | Container holder assembly |
-
2013
- 2013-08-02 GB GBGB1313888.8A patent/GB201313888D0/en not_active Ceased
-
2014
- 2014-08-04 GB GB1413766.5A patent/GB2519196B/en active Active
- 2014-08-04 CA CA2919195A patent/CA2919195C/en active Active
- 2014-08-04 WO PCT/GB2014/052387 patent/WO2015015230A2/en not_active Ceased
- 2014-08-04 AU AU2014298151A patent/AU2014298151B2/en active Active
- 2014-08-04 JP JP2016530615A patent/JP6667165B2/ja active Active
- 2014-08-04 BR BR112016002188-6A patent/BR112016002188B1/pt active IP Right Grant
- 2014-08-04 US US14/909,689 patent/US10500341B2/en active Active
- 2014-08-04 CN CN201480043365.0A patent/CN105555337B/zh active Active
- 2014-08-04 ES ES14749996T patent/ES2861348T3/es active Active
- 2014-08-04 EP EP14749996.6A patent/EP3027248B1/en active Active
-
2019
- 2019-11-11 US US16/679,661 patent/US11517676B2/en active Active
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107683154B (zh) * | 2015-06-03 | 2023-08-04 | 赛诺菲-安万特德国有限公司 | 注射筒支架和自动注射器 |
| CN107683154A (zh) * | 2015-06-03 | 2018-02-09 | 赛诺菲-安万特德国有限公司 | 注射筒支架和自动注射器 |
| AU2016269707B2 (en) * | 2015-06-03 | 2020-12-10 | Sanofi-Aventis Deutschland Gmbh | Syringe support and autoinjector |
| US11266782B2 (en) | 2015-06-03 | 2022-03-08 | Sanofi-Aventis Deutschland Gmbh | Syringe support and autoinjector |
| US11400216B2 (en) | 2015-06-03 | 2022-08-02 | Sanofi-Aventis Deutschland Gmbh | Syringe support and autoinjector |
| WO2016193355A1 (en) * | 2015-06-03 | 2016-12-08 | Sanofi-Aventis Deutschland Gmbh | Syringe support and autoinjector |
| US11752266B2 (en) | 2015-06-03 | 2023-09-12 | Sanofi-Aventis Deutschland Gmbh | Syringe support and autoinjector |
| US12042636B2 (en) | 2015-06-03 | 2024-07-23 | Sanofi-Aventis Deutschland Gmbh | Syringe support and autoinjector |
| EP4647096A3 (en) * | 2015-06-03 | 2025-12-17 | Sanofi-Aventis Deutschland GmbH | Syringe support and autoinjector |
| WO2019224784A1 (en) | 2018-05-24 | 2019-11-28 | Novartis Ag | Automatic drug delivery device |
| WO2019224782A1 (en) | 2018-05-24 | 2019-11-28 | Novartis Ag | Automatic drug delivery device |
| WO2019224785A1 (en) | 2018-05-24 | 2019-11-28 | Novartis Ag | Automatic drug delivery device |
| WO2019224783A1 (en) | 2018-05-24 | 2019-11-28 | Novartis Ag | Automatic drug delivery device |
Also Published As
| Publication number | Publication date |
|---|---|
| GB201313888D0 (en) | 2013-09-18 |
| JP6667165B2 (ja) | 2020-03-18 |
| CN105555337B (zh) | 2020-08-21 |
| AU2014298151A1 (en) | 2016-02-11 |
| EP3027248B1 (en) | 2021-03-17 |
| US11517676B2 (en) | 2022-12-06 |
| EP3027248A2 (en) | 2016-06-08 |
| CN105555337A (zh) | 2016-05-04 |
| GB2519196A (en) | 2015-04-15 |
| GB2519196B (en) | 2020-05-13 |
| US20160175531A1 (en) | 2016-06-23 |
| CA2919195C (en) | 2022-04-12 |
| ES2861348T3 (es) | 2021-10-06 |
| US20200069878A1 (en) | 2020-03-05 |
| AU2014298151B2 (en) | 2019-07-25 |
| US10500341B2 (en) | 2019-12-10 |
| WO2015015230A3 (en) | 2015-06-11 |
| CA2919195A1 (en) | 2015-02-05 |
| BR112016002188A2 (pt) | 2017-08-01 |
| BR112016002188B1 (pt) | 2021-12-14 |
| GB201413766D0 (en) | 2014-09-17 |
| JP2016525425A (ja) | 2016-08-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11517676B2 (en) | Assembly for an autoinjector device | |
| EP3380140B1 (en) | Auto-injector | |
| CN112789074B (zh) | 帽 | |
| CN104470560B (zh) | 用于药剂输送装置的制动机构 | |
| US10272234B2 (en) | Devices for targeted delivery of therapeutic implants | |
| CN105579083A (zh) | 自动注射器 | |
| CA2980714A1 (en) | Devices for targeted delivery of therapeutic implants | |
| US10874800B2 (en) | Medicament injection device | |
| US12485231B2 (en) | Cap | |
| US12420017B1 (en) | Damping device for a medicament delivery device | |
| CN119522115A (zh) | 用于药剂递送装置的盖 | |
| HK40059450A (en) | A cap | |
| HK40059450B (en) | A cap |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201480043365.0 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14749996 Country of ref document: EP Kind code of ref document: A2 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014749996 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2919195 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 2016530615 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14909689 Country of ref document: US |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016002188 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 2014298151 Country of ref document: AU Date of ref document: 20140804 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 112016002188 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160129 |