WO2015014277A1 - 单芯片推挽桥式磁场传感器 - Google Patents

单芯片推挽桥式磁场传感器 Download PDF

Info

Publication number
WO2015014277A1
WO2015014277A1 PCT/CN2014/083241 CN2014083241W WO2015014277A1 WO 2015014277 A1 WO2015014277 A1 WO 2015014277A1 CN 2014083241 W CN2014083241 W CN 2014083241W WO 2015014277 A1 WO2015014277 A1 WO 2015014277A1
Authority
WO
WIPO (PCT)
Prior art keywords
push
magnetic field
arm
chip
field sensor
Prior art date
Application number
PCT/CN2014/083241
Other languages
English (en)
French (fr)
Inventor
迪克·詹姆斯·G
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to JP2016530339A priority Critical patent/JP6426178B2/ja
Priority to EP14831740.7A priority patent/EP3029479B1/en
Priority to US14/908,770 priority patent/US9702943B2/en
Publication of WO2015014277A1 publication Critical patent/WO2015014277A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors

Definitions

  • the present invention relates to the field of sensor technologies, and in particular, to a single-chip push-pull bridge type magnetic field sensor.
  • the TMR (Tunnel MagnetoResistance) sensor is a new magnetoresistance effect sensor that has been used in the industrial field in recent years.
  • the sensor utilizes the tunnel magnetoresistance effect of the magnetic multilayer film material to induce the magnetic field, mainly in:
  • the resistance of the magnetic multilayer film changes obviously with the change of the magnitude and direction of the external magnetic field. Variety. It has a larger resistance change rate than the AMR (Anisotropic MagnetoResistance) and P GMR (Giant MagnetoResistance) sensors that have been discovered and applied in practice, and is better than Hall sensors. Temperature stability.
  • TMR or GMR push-pull bridge sensors require that the magnetization of the pinned layers of the magnetoresistive sensing elements in the adjacent two arm resistances be reversed, whereas the TMR or GMR components that are typically deposited on the same substrate, due to their magnetic The magnetic field strength required for the moment reversal is the same, so the magnetization directions of the pinned layers of the magnetoresistive sensing elements on the same substrate are generally the same, which makes it difficult to fabricate the push-pull bridge type sensor.
  • a single-chip bridge sensor is realized by using two film forming processes or laser heating assisted domain local inversion methods to reverse the magnetization directions of the pinned layers of the magnetoresistive sensing elements in the arms.
  • Two film forming processes that is, depositing TMR elements with opposite pinning layers in two directions, which makes the manufacturing process complicated, and affects the first deposited film during the second process annealing, which makes the front and the bottom two times
  • the consistency of the film is poor, which affects the overall performance of the sensor.
  • the laser heating auxiliary magnetic domain local inversion method refers to the local heating of the chip to assist the magnetic moment inversion after annealing in the same strong magnetic field, so that the magnetic moment of the pinning layer of the adjacent arm is opposite, thereby realizing a single chip.
  • Bridge sensor requires the use of dedicated equipment, which is expensive and the entire process takes a long time.
  • a single-chip bridge sensor is realized by tilting the magnetic moment balance direction of the free layer of the magnetoresistive sensing element on the tilt arm. That is, the magnetization directions of the pinned layers of the magnetoresistive sensing elements on the arms are the same, and the magnetization directions of the free layers of the magnetoresistive sensing elements on the adjacent arms are different, but the magnetization direction of the free layer of each of the magnetoresistive sensing elements is The pinning layer has the same angle of magnetization. However, this method causes the dynamic range of the magnetic field that the sensor responds to decrease, resulting in a decrease in sensitivity of the sensor.
  • Multi-chip package technology Take two consistent magnetic resistors from the same wafer or different wafers. The magnetization directions of the pinned layers of the two magnetoresistors are the same, and then one of them is opposite to the other. Flip 180 degrees for multi-chip packaging, Form a push-pull half bridge. The method can realize the function of the push-pull half bridge, that is, the detection sensitivity is improved, and the temperature compensation function is provided, but on the other hand, the multi-chip package has a large package size, high production cost, and can not be strictly rotated by 180 degrees in actual packaging.
  • the sensitivity directions of the two resistors are not strictly 180 degrees apart, which makes the output characteristics of the two resistors vary with the external field, and the sensitivity is different, and there is asymmetry problem such as a large bias voltage, so that in practical applications, Will bring new problems.
  • the push-pull bridge sensor has higher sensitivity than the single-resistor, reference bridge sensor, and has a temperature compensation function that suppresses the effects of temperature drift.
  • the push-pull bridge type magnetic field sensor uses a permanent magnet to bias the magnetization direction of the magnetoresistive element. The sensor is high in cost, large in offset, and is not suitable for a high-intensity magnetic field. Summary of the invention
  • the object of the present invention is to overcome the above problems existing in the prior art, and to provide a single-chip push-pull bridge type magnetic field sensor which is small in size, low in cost, high in sensitivity, good in linearity, and simple in fabrication.
  • a single-chip push-pull bridge type magnetic field sensor comprising: a substrate in an XY plane, at least one push arm composed of one or more magnetoresistive sensing elements, and at least one magnetoresistor a pull arm composed of a sensing element, a plurality of push arm flux concentrators and a arm flux concentrator disposed on the substrate, wherein the plurality of push arm flux concentrators are between two and a plurality of arm passes There are certain gaps between the two concentrators.
  • the XY plane is defined by the coordinate axes X and Y axes.
  • the angle between the push arm flux concentrator and the positive direction of the X axis is positive, and the angle between the pull arm flux concentrator and the positive direction of the X axis is negative, or the push arm flux concentrator and the X axis are positive.
  • the angle between the directions is negative, and the angle between the arm flux concentrator and the positive direction of the X axis is positive.
  • the magnetic pinning layer of the magnetoresistive sensing element has the same magnetization direction; each of the magnetoresistive sensing elements is correspondingly located in two adjacent push arm flux concentrators or two adjacent arm flux concentrators a gap therebetween to detect a difference in a component of the magnetic field between the push arm flux concentrator and the arm flux concentrator in the X-axis direction; the magnetoresistive sensing element is connected by microelectronics and The electronic packaging method forms a push-pull bridge and performs input and output connections.
  • the magnetoresistive sensing element is a GMR or TMR sensing element.
  • the magnetoresistive sensing element magnetizes the magnetization direction of the magnetic free layer and the magnetic pinning layer by permanent magnet biasing, double switching, shape anisotropy or any combination thereof.
  • the direction is vertical.
  • the number of magnetoresistive sensing elements on the push arm and the pull arm are the same and the magnetoresistive sensing elements in the relative positions of the two are parallel to each other.
  • the magneto-resistive elements on the push arm and the arm have the same rotation angle of each other, but the directions are different.
  • the angle between the push arm flux concentrator and the positive direction of the X axis is 5° to 85°, and the angle between the arm flux concentrator and the positive direction of the X axis is ⁇ 5° -85°.
  • the push-pull bridge is a half bridge, a full bridge or a quasi bridge.
  • the push arm flux concentrator and the arm flux concentrator are both elongated strip arrays, and the constituent materials thereof are selected from the group consisting of
  • a soft ferromagnetic alloy composed of one or more elements of Ni, Fe, Co and A1.
  • the number of the push arm flux concentrator and the arm flux concentrator are the same.
  • the microelectronic connection and packaging method comprises a pad lead frame, a flip chip, a ball grid array technology, a wafer level package, and a chip on board direct mount.
  • the present invention has the following beneficial effects:
  • the pinning layer of the magnetoresistive sensing element in the bridge arm has the same magnetization direction, so it can be fabricated on a single chip without using two processes such as film formation or annealing.
  • the push-pull bridge type magnetic field sensor of the present invention uses a flux concentrator instead of a permanent magnet, so the cost is lower, and the design is pushed.
  • the bridge-type magnetic field sensor does not need to be rotated in different directions, so that the bridge arm is easier to match, so that the offset is smaller, and because the size of the magnetoresistive sensing element used is small (for example, 0.1 X 10 rn),
  • the design is more suitable for high-intensity magnetic fields.
  • the push-pull bridge type magnetic field sensor of the present invention has better linearity, stronger detected signal, and wider dynamic range of operation.
  • FIG. 1 is a schematic structural view of a single-chip bridge magnetic field sensor in the prior art.
  • FIG. 2 is a schematic structural view of a single-chip push-pull full-bridge magnetic field sensor in the present invention.
  • FIG 3 is another schematic structural view of a single-chip push-pull full-bridge magnetic field sensor in the present invention.
  • FIG. 4 is a magnetic field distribution diagram of a single-chip push-pull full-bridge magnetic field sensor in a magnetic field in a yaw axis direction according to the present invention.
  • Fig. 5 is a magnetic field distribution diagram of a single-chip push-pull full-bridge magnetic field sensor in a magnetic field in the X-axis direction of the present invention.
  • FIG. 6 is a response curve of a single-chip push-pull full-bridge magnetic field sensor and a single-chip reference bridge magnetic field sensor in the present invention.
  • Figure 7 is a full bridge circuit diagram of the present invention.
  • Figure 8 is a circuit diagram of a half bridge of the present invention.
  • Figure 9 is a schematic diagram of a quasi-bridge circuit of the present invention.
  • FIG. 1 is a schematic structural view of a single-chip bridge magnetic field sensor in the prior art.
  • the structure comprises a substrate 1, two shielding layers 2, an inductive element 3, a reference element 4, and a gap 5 between the two shielding layers 2.
  • Four pads 6-9 for input and output are used as power supply terminals Vbias, ground GND, voltage outputs V+ and V-, respectively, and the sense axis direction is 110.
  • the reference element 4 is located below the shield layer 2, and the inductive element 3 is located at the gap 5 between the two shield layers 2, and the shield layer 2 is square in shape.
  • the connection between the sensing elements 3 constitutes a sensing arm, and the connection between the reference elements 4 constitutes a reference arm.
  • the substrate 1 has a large length along the direction of the sensing axis 110, and the sensing element 3 and the reference element 4 are far apart, that is, the spacing between the sensing arm and the reference arm is relatively large, and there is only one gap between the two. 5, this will cause a waste of space on the chip, but also make the size of the chip is relatively large, the size of the chip is about 2mm X 0.5mm. Moreover, because the spacing between the sensing arm and the reference arm is relatively large, it is difficult to balance the bridge, and the temperature on the two arms is different, resulting in a decrease in temperature compensation function.
  • the sensor is more likely to reach the saturation state of the magnetic field, and a non-uniform saturation magnetic field starts to be generated near the center of the shielding layer 2, and hysteresis is generated in the vicinity of the gap 5. Reduces the linearity of the sensor.
  • the sensor comprises a substrate 1, a pad 6-9 for input and output, a plurality of push arm flux concentrators 12 and a arm flux concentrator 13 disposed obliquely above the substrate 1, and respectively located adjacent to the two The gaps 14 between the push arm flux concentrators and the magnetoresistive sensing elements 10 and 11 at the gap 15 between adjacent two arm arm flux concentrators.
  • the magnetoresistive sensing elements 10 and 11 are GMR or TMR magnetoresistive sensing elements, which may be square, diamond or elliptical in shape, and the number of the magnetoresistive sensing elements 10 and the magnetoresistive sensing elements 11 are the same and corresponding.
  • the magnetoresistive sensing elements 10 and 11 are parallel to each other, and the magnetic pinning layers of these magnetoresistive sensing elements have the same magnetization direction, and are all 110. In the absence of an applied magnetic field, the magnetoresistive sensing elements 10 and 11 are magnetically pinned and magnetically pinned by a permanent magnet bias, double exchange action, shape anisotropy or any combination thereof.
  • the magnetization direction of the layer is vertical and is used to detect the difference in the component of the magnetic field between the push arm flux concentrator and the arm flux concentrator in the X-axis direction.
  • the magnetoresistive sensing elements 10 and 11 are electrically connected to the pads 6-9 to form a full bridge.
  • the full bridge includes two push arms and two pull arms, wherein the bridge arm formed by the magnetoresistive sensing element 10 is a push arm.
  • the bridge arm formed by the magnetoresistive sensing element 11 is an arm.
  • the push arm flux concentrator 12 and the arm flux concentrator 13 are an elongated strip array, and their constituent materials are soft ferromagnetic alloys composed of one or several elements selected from the group consisting of Ni, Fe, Co and A1. , but not limited to the above materials.
  • the angle between the push arm flux concentrator 12 and the X-axis positive direction is 16, preferably, the value ranges from 5° to 85°, in this embodiment is 45°; the arm flux concentrator 13 and X
  • the angle 17 of the positive axis is in the range of -5 ° to - 85 °, which is -45 ° in this embodiment.
  • the chip size of the present invention is 0.5 mm x 0.5 mm.
  • the size of the chip can be less than 0.5mm X 0.5mm depending on the application requirements.
  • the gaps 14 and 15 are 20 ⁇ m in size, and the push arm flux concentrator 12 and the arm flux concentrator 13 each have a width of 20 m and a thickness of ⁇ ⁇ ⁇ , a magnetoresistive sensing element.
  • the size of (10,11) is 15 ⁇ ⁇ X 1.5 ⁇ ⁇ .
  • pads are used for input/output connection, and microelectronic connection and packaging methods such as flip chip, ball grid array technology, wafer level package, and chip-on-board direct mounting are also possible.
  • FIG. 3 is another schematic structural view of the single-chip push-pull full-bridge magnetic field sensor of the present invention.
  • the magnetoresistive elements 10 and 11 in Fig. 2 are rotated by +45 ° and -45 °, respectively, to obtain the structure shown in the figure.
  • the structure shown in Fig. 3 differs from that of Fig. 2 in that the magnetoresistive elements 10 and 11 are respectively The push arm flux concentrator 12 and the arm flux concentrator 13 are parallel.
  • the flux concentrator of the invention adopts a long-shaped structure, more effectively utilizes space, has lower hysteresis, enables the sensor to have good linearity and high sensitivity, and also makes the sensor The output does not easily reach saturation, which increases the dynamic range of the sensor's operation, and more magnetic resistance components can be placed at the gap, reducing noise.
  • FIG. 4 is a magnetic field distribution diagram of a single-chip push-pull full-bridge magnetic field sensor in a z-axis magnetic field according to the present invention.
  • the direction 100 of the applied magnetic field is parallel to the x-axis, and the measurement direction 101 is parallel to the X-axis.
  • the applied magnetic field entering the sensor is biased by the push arm flux concentrator 12 and the arm flux concentrator 13, wherein the gap 14 between the push arm flux concentrators 12
  • the direction of the magnetic field is 102, and the direction of the magnetic field at the gap 15 between the arm flux concentrators 13 is 103.
  • the magnetic field directions 102 and 103 are symmetrical about the ⁇ axis.
  • the applied magnetic field By 100 G
  • the measured X-axis magnetic field size B X+ 90G
  • B x- -90G
  • the size is related to the gap size.
  • FIG. 5 is a magnetic field distribution diagram of the single-chip push-pull full-bridge magnetic field sensor of the present invention in a magnetic field in the X-axis direction. External magnetic The direction of the field and the direction of measurement are all in the direction 101 parallel to the X-axis. The direction of the magnetic field at the gap 14 of the push arm flux concentrator 12 is 104, and the direction of the magnetic field at the gap 15 of the arm flux concentrator 13 is 105. The magnetic field directions 104 and 105 are symmetrical about the X axis.
  • the applied magnetic field Bx 100 G
  • the measured X-axis magnetic field size B X+ 101G
  • B x- - 101G
  • Curve 20 is the response curve of the single-chip push-pull full-bridge magnetic field sensor of the present invention
  • curve 21 is the response curve of the single-chip reference bridge magnetic field sensor.
  • curve 20 is symmetric about the origin and curve 21 is asymmetrical, which limits the linear range of the sensor.
  • the single-chip push-pull full-bridge magnetic field sensor of the present invention has better linearity, stronger signal strength, higher sensitivity, and wider dynamic operating range.
  • FIG. 7 is a circuit diagram of a single-chip push-pull full-bridge magnetic field sensor of the present invention.
  • a plurality of magnetoresistive sensing elements 10 are electrically connected to form equivalent magnetoresistances R18 and R18', and a plurality of magnetoresistive sensing elements 11 are electrically connected to form equivalent magnetoresistances R19 and R19', which are connected to form a full bridge.
  • the push-pull bridge in the present invention may also be a half bridge or a quasi-bridge.
  • the circuit diagrams of the two structures are shown in Figs. 8 and 9, respectively.
  • the two structures work in the same way as the full bridge, where the sensor output voltage of the half-bridge structure
  • the sensor of the quasi-bridge structure also includes two identical current sources II 22 and 12 22', which are equal in size, both of which are I Bias , the sensor output voltage of the structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种单芯片推挽桥式磁场传感器,该传感器包括基片(1)、焊盘(6-9)、磁电阻传感元件(10,11)以及通量集中器(12,13),其中磁电阻传感元件(10,11)位于相邻通量集中器(12,13)的间隙(14,15)处,其钉扎层方向相同,通量集中器(12,13)分为推臂和挽臂两种类型,一种与X轴正向的夹角为正,另一种与X轴正向的夹角为负,该传感器的工作原理是通过检测在通量集中器(12,13)间隙(14,15)处的磁场大小,来获得在X轴方向上的磁场差值。该传感器具有以下优点:体积小、成本低、制作简单、灵敏度高、线性度好、检测的信号强、工作动态范围宽等。

Description

单芯片推挽桥式磁场传感器 技术领域
本发明涉及传感器技术领域, 特别涉及一种单芯片推挽桥式磁场传感器。
背景技术
TMR (隧道磁电阻, Tunnel MagnetoResistance) 传感器是近年来开始应用于工业领域的新型 磁电阻效应传感器。 该传感器利用的是磁性多层膜材料的隧道磁电阻效应对磁场进行感应, 主要表现在: 在磁性多层膜材料中, 随着外磁场大小和方向的变化, 磁性多层膜的电阻发生 明显变化。 它比之前所发现并已实际应用的 AMR (各向异性磁电阻, Anisotropic MagnetoResistance ) 禾 P GMR (巨磁电阻, Giant MagnetoResistance) 传感器具有更大的电 阻变化率, 同时相对于霍尔传感器具有更好的温度稳定性。
传统的 TMR或 GMR推挽桥式传感器要求相邻两个桥臂电阻中的磁电阻传感元件的钉扎层 的磁化方向相反, 而通常沉积在同一基片上的 TMR或 GMR元件, 由于其磁矩翻转所需要 的磁场强度大小相同, 因此在同一基片上的磁电阻传感元件的钉扎层的磁化方向通常都相 同, 这使得制作推挽桥式传感器存在很大困难。 目前主要有以下几种方法来实现在单一芯片 上制备推挽桥式传感器。
( 1 ) 通过采用两次成膜工艺或者激光加热辅助磁畴局部翻转法来使臂中磁电阻传感元件的 钉扎层的磁化方向相反, 从而实现单一芯片的桥式传感器。 两次成膜工艺, 即分两次分别沉 积钉扎层方向相反的 TMR元件, 这使得其制作工艺复杂, 并且第二次工艺退火时会影响第 一次沉积的薄膜, 这使得前后两次成膜的一致性差, 从而影响传感器的整体性能。 激光加热 辅助磁畴局部翻转法, 是指在同一强磁场中退火之后, 采用激光对芯片进行局部加热辅助磁 矩翻转, 来使相邻臂的钉扎层的磁矩方向相反, 从而实现单一芯片的桥式传感器。 但该方法 需要使用专用设备, 设备昂贵, 并且整个过程耗时长。
( 2 ) 通过倾斜臂上磁电阻传感元件的自由层的磁矩平衡方向来实现单一芯片的桥式传感 器。 即各臂上磁电阻传感元件的钉扎层的磁化方向相同, 相邻臂上磁电阻传感元件的自由层 的磁化方向不同, 但每个磁电阻传感元件的自由层的磁化方向与其钉扎层的磁化方向的夹角 相同。 但此种方法会导致传感器响应的磁场动态范围有所减小, 从而导致传感器的灵敏度降 低。
( 3 ) 多芯片封装技术: 从同一晶圆或是不同晶圆取两个一致性好的磁电阻, 这两个磁电阻 的钉扎层的磁化方向相同, 然后将其中一个相对另一个磁电阻翻转 180度进行多芯片封装, 构成推挽式半桥。 该方法能够实现推挽式半桥的功能, 即提高了检测灵敏度, 具有温度补偿 功能, 但是另一方面多芯片封装, 封装尺寸大, 生产成本高, 并且实际封装时不能严格的进 行 180度翻转, 即两个电阻的灵敏度方向不是严格的相差 180度, 这使得两个电阻随外场变 化的输出特性不相同, 出现灵敏度不同, 存在比较大的偏置电压等不对称问题, 这样在实际 应用中就会带来新的问题。
此外, 推挽桥式传感器具有比单电阻、 参考桥式传感器更高的灵敏度, 还具有温度补偿功 能, 能够抑制温度漂移的影响。 而现有技术中的推挽桥式磁场传感器使用的是永磁体对磁电 阻元件的磁化方向进行偏置, 该传感器成本高、 偏移量大, 并且不适用于高强度的磁场。 发明内容
本发明的目的在于克服现有技术存在的以上问题, 提供一种体积小、 成本低、 灵敏度高、 线 性度好、 制作简单的单芯片推挽桥式磁场传感器。
为实现上述技术目的, 达到上述技术效果, 本发明通过以下技术方案实现:
一种单芯片推挽桥式磁场传感器, 该传感器包括: 一位于 XY平面内的基片、 至少一个由一 个或多个磁电阻传感元件组成的推臂和至少一个由一个或多个磁电阻传感元件组成的挽臂、 多个设置在所述基片上的推臂通量集中器和挽臂通量集中器, 其中多个推臂通量集中器两两 之间和多个挽臂通量集中器两两间均设置有一定的间隙。 其中, XY平面由坐标轴 X轴和 Y 轴来定义。 所述推臂通量集中器与 X轴正向的夹角为正, 而所述挽臂通量集中器与 X轴正 向的夹角为负, 或者推臂通量集中器与 X轴正向的夹角为负, 而挽臂通量集中器与 X轴正 向的夹角为正。 所述磁电阻传感元件的磁性钉扎层的磁化方向相同; 各磁电阻传感元件均分 别对应地位于两个相邻推臂通量集中器或两个相邻挽臂通量集中器之间的间隙处, 以检测所 述推臂通量集中器和所述挽臂通量集中器之间的磁场在 X轴方向上分量的差值; 所述磁电 阻传感元件通过微电子连接和电子封装方法形成推挽电桥, 并进行输入输出连接。
优选地, 所述磁电阻传感元件为 GMR或者 TMR传感元件。
优选地, 在没有外加磁场时, 所述磁电阻传感元件通过永磁偏置、 双交换作用、 形状各向异 性或者它们的任意结合来使磁性自由层的磁化方向与磁性钉扎层的磁化方向垂直。
优选地, 所述推臂和所述挽臂上的磁电阻传感元件的数量相同并且两者的相对位置上的磁电 阻传感元件之间相互平行。
优选地, 所述推臂和所述挽臂上的磁电阻元件彼此的旋转角度的幅度相同, 但方向不同。 优选地, 所述推臂通量集中器与 X轴正向的夹角为 5° ~85° , 所述挽臂通量集中器与 X轴 正向的夹角为 -5° -85° 。 优选地, 所述推挽电桥为半桥、 全桥或者准桥。
优选地, 所述推臂通量集中器和所述挽臂通量集中器均为细长条形阵列, 其组成材料为选自
Ni、 Fe、 Co和 A1中的一种或几种元素组成的软铁磁合金。
优选地, 所述推臂通量集中器和所述挽臂通量集中器的数量相同。
优选地, 所述微电子连接和封装方法包括焊盘引线框、 倒装芯片、 球栅阵列技术、 圆片级封 装以及板上芯片直装式。
与现有技术相比, 本发明具有以下有益效果:
( 1 ) 电桥桥臂中的磁电阻传感元件的钉扎层的磁化方向相同, 所以无需采用两次成膜或退 火等工艺, 就可以实现在单一芯片上制备。
(2) 采用多个细长条形通量集中器, 能使传感器具有良好的线性度和高灵敏度, 也使得传 感器的输出不容易达到饱和状态, 从而增大了传感器工作的动态范围, 此外在长条形通量集 中器的间隙处能放置更多的磁电阻元件, 从而降低了噪声;
(3 ) 与现有技术中的推挽桥式磁传感器相比, 本发明中的推挽桥式磁场传感器使用的是通 量集中器而不是永磁体, 所以成本更低, 并且本设计的推挽桥式磁场传感器不需要在不同方 向旋转, 因而更易于桥臂匹配, 从而偏移量更小, 此外由于所使用的磁电阻传感元件的尺寸 很小 (例如 0.1 X 10 rn), 使得该设计更适用于高强度的磁场。
(4) 相对于现有的参考桥式磁场传感器而言, 本发明中的推挽桥式磁场传感器的线性度更 好、 所检测的信号更强、 工作的动态范围更宽。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案, 下面将对实施例技术描述中所需要使用 的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本 领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为现有技术中单芯片桥式磁场传感器的结构示意图。
图 2为本发明中的单芯片推挽全桥磁场传感器的结构示意图。
图 3为本发明中的单芯片推挽全桥磁场传感器的另一种结构示意图。
图 4为本发明中的单芯片推挽全桥磁场传感器在 Υ轴方向磁场中的磁场分布图。
图 5为本发明中的单芯片推挽全桥磁场传感器在 X轴方向磁场中的磁场分布图。
图 6为本发明中的单芯片推挽全桥磁场传感器和单芯片参考桥式磁场传感器的响应曲线。 图 7为本发明的全桥电路图。 图 8为本发明的半桥电路图。
图 9为本发明的准桥电路图。
具体实施方式
图 1所示为现有技术中的一种单芯片桥式磁场传感器的结构示意图。 该结构包括基片 1、 两 个屏蔽层 2、 感应元件 3、 参考元件 4, 两个屏蔽层 2之间具有间隙 5。 4个用于输入输出的 焊盘 6-9, 依次分别作为电源供应端 Vbias、 接地端 GND、 电压输出端 V+和 V-, 其感应轴 方向为 110。 参考元件 4位于屏蔽层 2的下方, 感应元件 3位于两个屏蔽层 2之间的间隙 5 处, 屏蔽层 2的形状为方形。 感应元件 3之间连接构成感应臂, 参考元件 4之间连接构成参 考臂。 基片 1在沿着感应轴方向 110具有很大的长度, 并且感应元件 3和参考元件 4相距较 远, 也就是感应臂和参考臂之间的间距比较大, 并且二者之间只有一个间隙 5, 这会造成芯 片上的空间浪费, 也使得芯片的尺寸比较大, 此种设计而成的芯片尺寸大小约为 2mm X 0.5mm。 并且, 由于感应臂和参考臂之间的间距比较大, 会使得电桥难以平衡, 并且会导致 这两臂上的温度不同, 从而导致其温度补偿功能降低。 此外, 由于采用了方形的屏蔽层 2, 会致使传感器更容易达到磁场的饱和状态, 在屏蔽层 2的中心附近就会开始产生非均匀的饱 和磁场, 并且在间隙 5附近会产生磁滞, 从而降低了传感器的线性度。
现有技术中也出现了解决上述问题的方法, 但并不是很完善。 例如, 中国专利申请 201310203311.3 公开了一种单芯片参考桥式磁场传感器, 该传感器包括相互交错排放的参考 元件串和感应元件串、 长条形的屏蔽结构, 参考元件串位于屏蔽结构的下方, 感应元件串位 于两个屏蔽结构之间的间隙处。 这种结构的传感器虽然能解决上述问题, 但与本发明相比, 其线性度不够好, 所检测的信号也不够强, 并且很难控制其偏移量。
下面结合附图及实施例对本发明的发明内容作进一步的描述。
实施例 1
图 2为本发明的单芯片推挽全桥磁场传感器的结构示意图。 该传感器包括基片 1、 用于输入 输出的焊盘 6-9、 多个倾斜设置在基片 1上面的推臂通量集中器 12和挽臂通量集中器 13、 以及分别位于相邻两个推臂通量集中器之间的间隙 14 和相邻两个挽臂通量集中器之间的间 隙 15处的磁电阻传感元件 10和 11。 磁电阻传感元件 10和 11为 GMR或者 TMR磁电阻传 感元件, 其形状可以为方形、 菱形或者椭圆形, 磁电阻传感元件 10和磁电阻传感元件 11的 个数相同并且相对应的磁电阻传感元件 10与 11相互平行, 这些磁电阻传感元件的磁性钉扎 层的磁化方向相同, 均为 110。 在没有外加磁场时, 磁电阻传感元件 10和 11 通过永磁偏 置、 双交换作用、 形状各向异性或者它们的任意结合来使磁性自由层的磁化方向与磁性钉扎 层的磁化方向垂直, 用于检测推臂通量集中器和挽臂通量集中器之间的磁场在 X 轴方向上 分量的差值。 磁电阻传感元件 10和 11与焊盘 6-9电连接形成一个全桥, 该全桥包括两个推 臂和两个挽臂, 其中, 磁电阻传感元件 10构成的桥臂为推臂, 磁电阻传感元件 11构成的桥 臂为挽臂。 推臂通量集中器 12和挽臂通量集中器 13为细长条形阵列, 它们的组成材料为选 自 Ni、 Fe、 Co和 A1 中的一种或几种元素组成的软铁磁合金, 但不限于以上材料。 推臂通 量集中器 12与 X轴正向的夹角为 16, 优选的, 其取值范围为 5° ~85° , 在本实施例中为 45° ; 挽臂通量集中器 13 与 X轴正向的夹角 17 的取值范围为 -5 ° 〜- 85° , 在本实施例中 为 -45 ° 。 优选地, 本发明的芯片尺寸大小为 0.5mmX 0.5mm,。 此外, 根据应用需求的不 同, 芯片的尺寸还可以小于 0.5mm X 0.5mm。 在本实施例中, 间隙 14和 15的大小为 20 μ m, 推臂通量集中器 12和挽臂通量集中器 13的宽度均为 20 m, 厚度为 ΙΟ μ ηι, 磁电阻传 感元件 (10,11 ) 的尺寸大小为 15 μ ηι X 1.5 μ ηι。
本实施例中是采用焊盘来进行输入输出连接, 也可以采用倒装芯片、 球栅阵列技术、 圆片级 封装以及板上芯片直装式等微电子连接和封装方法。
图 3 为本发明的单芯片推挽全桥磁场传感器的另一种结构示意图。 图 2 中的磁电阻元件 10 和 11 分别旋转 +45 ° 和 -45 ° 便得到了本图所示的结构, 图 3 所示的结构与图 2 的区别在 于, 磁电阻元件 10和 11分别与推臂通量集中器 12和挽臂通量集中器 13平行。
与现有技术中的方形结构相比, 本发明采用长条形结构的通量集中器更有效的利用了空间, 磁滞更低, 能使传感器具有良好的线性度和高灵敏度, 也使得传感器的输出不容易达到饱和 状态, 从而增大了传感器工作的动态范围, 此外在其间隙处能放置更多的磁电阻元件, 从而 降低了噪声。
实施例 2
图 4 为本发明的单芯片推挽全桥磁场传感器在 Υ轴方向磁场中的磁场分布图。 图中外加磁 场的方向 100与 Υ轴平行, 测量方向 101与 X轴平行。 从图中可以看出, 进入到传感器里 面的外加磁场被推臂通量集中器 12和挽臂通量集中器 13进行了偏置, 其中, 在推臂通量集 中器 12之间的间隙 14处的磁场方向为 102, 在挽臂通量集中器 13之间的间隙 15处的磁场 方向为 103。 磁场方向 102与 103关于 Υ轴对称。 在本实施例中, 外加磁场 By=100 G, 所 测得的 X 轴磁场大小 BX+=90G, Bx-=-90G , 则增益系数 Axy=Bx/By=( Bx+- Bx- )/By=180/100=1.8 , 这比现有技术中单芯片参考桥式磁场传感器的增益系数要大, 所得到的 增益系数与推臂通量集中器 12和挽臂通量集中器 13的尺寸大小和间隙大小有关。
图 5 为本发明的单芯片推挽全桥磁场传感器在 X轴方向磁场中的磁场分布图。 图中外加磁 场的方向以及测量方向均为与 X轴平行的方向 101。 在推臂通量集中器 12间隙 14处的磁场 方向为 104, 在挽臂通量集中器 13间隙 15处的磁场方向为 105。 磁场方向 104与 105关于 X轴对称。 在本实施例中, 外加磁场 Bx=100 G, 所测得的 X轴磁场大小 BX+=101G, Bx-=- 101G, 则增益系数 Axx=( Bx+- Βχ-)/Βχ=(101-101)/100=0, 由此可见两个桥臂上的磁场在 X 轴分量相互抵消, 将不能检测到 X轴磁场信号。
图 6为本发明的单芯片推挽全桥磁场传感器和单芯片参考桥式磁场传感器的响应曲线。 曲线 20为本发明的单芯片推挽全桥磁场传感器的响应曲线, 曲线 21为单芯片参考桥式磁场传感 器的响应曲线。 从图中可以看出, 曲线 20关于原点对称, 而曲线 21不对称, 这限制了传感 器的线性范围。 此外, 本发明的单芯片推挽全桥磁场传感器的线性度要更好, 检测的信号强 度也更强, 灵敏度也更高, 动态工作范围更宽。
实施例 3
图 7为本发明的单芯片推挽全桥磁场传感器的电路示意图。 若干个磁电阻传感元件 10 电连 接构成等效磁电阻 R18和 R18', 若干个磁电阻传感元件 11 电连接构成等效磁电阻 R19和 R19', 这四个磁电阻连接构成全桥。 它们的磁性钉扎层的磁化方向相同, 相对位置的磁电 阻 (R18和 R18', R19和 R19' ) 的磁性自由层的磁化方向相同, 相邻位置的磁电阻 (R18 和 R19, R18和 R19', R18' 和 R19, R18' 和 R19' ) 的磁性自由层的磁化方向不同。 当 沿着磁电阻传感元件 10和 11的敏感方向施加外磁场时, 磁电阻 R18和 R18' 的阻值变化情 况会与磁电阻 R19和 R19' 的阻值变化相反, 从而构成推挽输出。 该全桥的输出电压
Figure imgf000008_0001
一般情况下, R18=R18 ', R19=R19', 则上式可简化为: ■ ■ :崖碰 ■■
本发明中的推挽电桥也还可以是半桥或者准桥, 这两种结构的电路示意图, 分别如图 8、 图 9所示。 这两种结构的工作原理与全桥相同, 其中, 半桥结构的传感器输出电压
Figure imgf000008_0002
准桥结构的传感器还包括两个相同的电流源 II 22和 12 22', 这两个电流源的大小相等, 均 为 IBias, 该种结构的传感器输出电压
: = - —二(¾:9--母 ffi¾。5 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人员来 说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

1. 一种单芯片推挽桥式磁场传感器, 其特征在于包括:
一位于 XY平面内的基片, 其中 XY平面由坐标轴 X轴和 Y轴来定义;
至少一个由一个或多个磁电阻传感元件组成的推臂;
至少一个由一个或多个磁电阻传感元件组成的挽臂; 多个设置在所述基片上的推臂通量集中器和挽臂通量集中器, 多个所述推臂通量集中器两两 之间和多个挽臂通量集中器两两间均设置有一定的间隙, 其中, 所述推臂通量集中器与 X 轴正向的夹角为正而所述挽臂通量集中器与 X 轴正向的夹角为负, 或者所述推臂通量集中 器与 X轴正向的夹角为负,而所述挽臂通量集中器与 X轴正向的夹角为正;
所述磁电阻传感元件的磁性钉扎层的磁化方向相同;
各磁电阻传感元件均分别对应地位于两个相邻推臂通量集中器或两个相邻挽臂通量集中器之 间的间隙处, 以检测所述推臂通量集中器和所述挽臂通量集中器之间的磁场在 X 轴方向上 分量的差值;
所述磁电阻传感元件通过微电子连接和电子封装方法形成推挽电桥, 并进行输入输出连接。
2. 根据权利要求 1 所述的单芯片推挽桥式磁场传感器, 其特征在于, 所述磁电阻传感元件 为 GMR或者 TMR传感元件。
3. 根据权利要求 1 或 2所述的单芯片推挽桥式磁场传感器, 其特征在于, 在没有外加磁场 时, 所述磁电阻传感元件通过永磁偏置、 双交换作用、 形状各向异性或者它们的任意结合来 使磁性自由层的磁化方向与磁性钉扎层的磁化方向垂直。
4. 根据权利要求 1 所述的单芯片推挽桥式磁场传感器, 其特征在于, 所述推臂和所述挽臂 上的磁电阻传感元件的数量相同并且两者的相对位置上的磁电阻传感元件之间相互平行。
5. 根据权利要求 1 所述的单芯片推挽桥式磁场传感器, 其特征在于, 所述推臂和所述挽臂 上的磁电阻元件彼此的旋转角度的幅度相同, 但方向不同。
6. 根据权利要求 1 所述的单芯片推挽桥式磁场传感器, 其特征在于, 所述推臂通量集中器 与 X轴正向的夹角为 5 ° ~85 ° , 所述挽臂通量集中器与 X轴正向的夹角为 -5 ° 〜- 85 ° 。
7. 根据权利要求 1 所述的单芯片推挽桥式磁场传感器, 其特征在于, 所述推挽电桥为半 桥、 全桥或者准桥。
8. 根据权利要求 1 所述的单芯片推挽桥式磁场传感器, 其特征在于, 所述推臂通量集中器 和所述挽臂通量集中器均为细长条形阵列, 其组成材料为选自 Ni、 Fe、 Co和 A1 中的一种 或几种元素组成的软铁磁合金。
9. 根据权利要求 1, 4及 8中任一项所述的单芯片推挽桥式磁场传感器, 其特征在于, 所述 推臂通量集中器和所述挽臂通量集中器的数量相同。
10. 根据权利要求 1 所述的单芯片推挽桥式磁场传感器, 其特征在于, 所述微电子连接和封 装方法包括焊盘引线框、 倒装芯片、 球栅阵列技术、 圆片级封装以及板上芯片直装式。
PCT/CN2014/083241 2013-07-30 2014-07-29 单芯片推挽桥式磁场传感器 WO2015014277A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016530339A JP6426178B2 (ja) 2013-07-30 2014-07-29 シングルチップ・プッシュプルブリッジ型磁界センサ
EP14831740.7A EP3029479B1 (en) 2013-07-30 2014-07-29 Singlechip push-pull bridge type magnetic field sensor
US14/908,770 US9702943B2 (en) 2013-07-30 2014-07-29 Single chip push-pull bridge-type magnetic field sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310325337.5 2013-07-30
CN201310325337.5A CN103412269B (zh) 2013-07-30 2013-07-30 单芯片推挽桥式磁场传感器

Publications (1)

Publication Number Publication Date
WO2015014277A1 true WO2015014277A1 (zh) 2015-02-05

Family

ID=49605295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083241 WO2015014277A1 (zh) 2013-07-30 2014-07-29 单芯片推挽桥式磁场传感器

Country Status (5)

Country Link
US (1) US9702943B2 (zh)
EP (1) EP3029479B1 (zh)
JP (1) JP6426178B2 (zh)
CN (1) CN103412269B (zh)
WO (1) WO2015014277A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702943B2 (en) 2013-07-30 2017-07-11 MultiDimension Technology Co., Ltd. Single chip push-pull bridge-type magnetic field sensor
JP2018518678A (ja) * 2015-06-09 2018-07-12 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 櫛形y軸磁気抵抗センサ
JP2018518677A (ja) * 2015-06-09 2018-07-12 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. プッシュ−プルx軸磁気抵抗センサ
CN113030804A (zh) * 2021-03-01 2021-06-25 歌尔微电子股份有限公司 传感器和电子设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630855B (zh) * 2013-12-24 2016-04-13 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN103913709B (zh) * 2014-03-28 2017-05-17 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN103954920B (zh) * 2014-04-17 2016-09-14 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN104197827B (zh) * 2014-08-18 2017-05-10 江苏多维科技有限公司 一种双z轴磁电阻角度传感器
CN104280700B (zh) * 2014-09-28 2017-09-08 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
CN104900801A (zh) * 2015-04-23 2015-09-09 美新半导体(无锡)有限公司 一种反铁磁钉扎各向异性磁电阻(amr)传感器
CN105259518A (zh) * 2015-11-03 2016-01-20 江苏多维科技有限公司 一种高灵敏度单芯片推挽式tmr磁场传感器
DE102016112008A1 (de) 2016-06-30 2018-01-04 Infineon Technologies Ag Magnetsensorbauelement und magneterfassungsverfahren
CN106324534B (zh) * 2016-09-13 2023-10-31 江苏多维科技有限公司 用于激光写入系统的磁电阻传感器晶元版图及激光扫描方法
CN107015171B (zh) 2017-03-24 2023-10-24 江苏多维科技有限公司 一种具有磁滞线圈的磁传感器封装结构
CN110081813A (zh) * 2018-12-18 2019-08-02 贵州雅光电子科技股份有限公司 一种二倍角正弦波输出的amr传感器芯片的制作方法
CN109633496A (zh) * 2018-12-27 2019-04-16 北京航空航天大学青岛研究院 单、双轴磁场传感器与其制备方法以及设备
US11170806B2 (en) * 2019-12-27 2021-11-09 Western Digital Technologies, Inc. Magnetic sensor array with single TMR film plus laser annealing and characterization

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050280411A1 (en) * 2004-06-16 2005-12-22 Bicking Robert E GMR sensor with flux concentrators
CN103116144A (zh) * 2013-01-22 2013-05-22 中国人民解放军国防科学技术大学 一种采用磁变轨结构的z向磁场传感器
US20130141090A1 (en) * 2011-12-05 2013-06-06 Alan L. Sidman Magnetic field sensing apparatus and methods
CN103412269A (zh) * 2013-07-30 2013-11-27 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN103592608A (zh) * 2013-10-21 2014-02-19 江苏多维科技有限公司 一种用于高强度磁场的推挽桥式磁传感器
CN103630855A (zh) * 2013-12-24 2014-03-12 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN203587785U (zh) * 2013-07-30 2014-05-07 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN203587786U (zh) * 2013-10-21 2014-05-07 江苏多维科技有限公司 一种用于高强度磁场的推挽桥式磁传感器
CN203658562U (zh) * 2013-12-24 2014-06-18 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN103954920A (zh) * 2014-04-17 2014-07-30 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN203811787U (zh) * 2014-04-17 2014-09-03 江苏多维科技有限公司 一种单芯片三轴线性磁传感器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252796B1 (en) * 1998-08-14 2001-06-26 U.S. Philips Corporation Device comprising a first and a second ferromagnetic layer separated by a non-magnetic spacer layer
TWI273266B (en) * 2001-11-01 2007-02-11 Asahi Kasei Emd Corp Current sensor and current sensor manufacturing method
JP2006054319A (ja) * 2004-08-11 2006-02-23 Amosense Co Ltd 半導体チップ埋蔵型樹脂パッケージおよび半導体チップ埋蔵型樹脂パッケージの製造方法並びに半導体チップ埋蔵型樹脂パッケージを用いた磁気センサ
US7635974B2 (en) * 2007-05-02 2009-12-22 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) based magnetic field angle sensor
US7898247B2 (en) * 2009-02-04 2011-03-01 The United States Of America As Represented By The Secretary Of The Army Magnetic sensor method and apparatus
CN202433514U (zh) * 2011-01-17 2012-09-12 江苏多维科技有限公司 独立封装的桥式磁场传感器
CN202149936U (zh) * 2011-02-14 2012-02-22 美新半导体(无锡)有限公司 单芯片三轴amr传感器
CN202230192U (zh) * 2011-03-03 2012-05-23 江苏多维科技有限公司 推挽桥式磁电阻传感器
CN202305777U (zh) * 2011-04-06 2012-07-04 江苏多维科技有限公司 单片双轴桥式磁场传感器
CN202013413U (zh) * 2011-04-06 2011-10-19 江苏多维科技有限公司 单一芯片桥式磁场传感器
CN102621504B (zh) * 2011-04-21 2013-09-04 江苏多维科技有限公司 单片参考全桥磁场传感器
CN102419393B (zh) * 2011-12-30 2013-09-04 江苏多维科技有限公司 一种电流传感器
DE102012202179B4 (de) * 2012-02-14 2021-09-23 Robert Bosch Gmbh Magnetfeldsensor und Verfahren zum Herstellen eines Magnetfeldsensors
US9000760B2 (en) * 2012-02-27 2015-04-07 Everspin Technologies, Inc. Apparatus and method for resetting a Z-axis sensor flux guide
US20130253864A1 (en) * 2012-03-22 2013-09-26 Asahi Kasei Microdevices Corporation Magnetic-Field Direction Measuring Apparatus, Rotation Angle Measuring Apparatus, and Magnetic-Field Measuring Apparatus
EP2878966B1 (en) * 2013-03-26 2017-07-26 Asahi Kasei Microdevices Corporation Magnetic sensor and magnetic detecting method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050280411A1 (en) * 2004-06-16 2005-12-22 Bicking Robert E GMR sensor with flux concentrators
US20130141090A1 (en) * 2011-12-05 2013-06-06 Alan L. Sidman Magnetic field sensing apparatus and methods
CN103116144A (zh) * 2013-01-22 2013-05-22 中国人民解放军国防科学技术大学 一种采用磁变轨结构的z向磁场传感器
CN103412269A (zh) * 2013-07-30 2013-11-27 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN203587785U (zh) * 2013-07-30 2014-05-07 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN103592608A (zh) * 2013-10-21 2014-02-19 江苏多维科技有限公司 一种用于高强度磁场的推挽桥式磁传感器
CN203587786U (zh) * 2013-10-21 2014-05-07 江苏多维科技有限公司 一种用于高强度磁场的推挽桥式磁传感器
CN103630855A (zh) * 2013-12-24 2014-03-12 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN203658562U (zh) * 2013-12-24 2014-06-18 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN103954920A (zh) * 2014-04-17 2014-07-30 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN203811787U (zh) * 2014-04-17 2014-09-03 江苏多维科技有限公司 一种单芯片三轴线性磁传感器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702943B2 (en) 2013-07-30 2017-07-11 MultiDimension Technology Co., Ltd. Single chip push-pull bridge-type magnetic field sensor
JP2018518678A (ja) * 2015-06-09 2018-07-12 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 櫛形y軸磁気抵抗センサ
JP2018518677A (ja) * 2015-06-09 2018-07-12 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. プッシュ−プルx軸磁気抵抗センサ
EP3309571A4 (en) * 2015-06-09 2019-03-13 Multidimension Technology Co., Ltd. MAGNETORESISTIVE PUSH-PULL SENSOR ON THE X-AXIS
EP3309572A4 (en) * 2015-06-09 2019-03-27 Multidimension Technology Co., Ltd. MAGNETORESISTIVE SENSOR WITH Y AXIS INTERDIGITAL
JP6991862B2 (ja) 2015-06-09 2022-01-13 江▲蘇▼多▲維▼科技有限公司 プッシュ-プルx軸磁気抵抗センサ
CN113030804A (zh) * 2021-03-01 2021-06-25 歌尔微电子股份有限公司 传感器和电子设备
CN113030804B (zh) * 2021-03-01 2022-12-23 歌尔微电子股份有限公司 传感器和电子设备

Also Published As

Publication number Publication date
JP6426178B2 (ja) 2018-11-21
EP3029479A1 (en) 2016-06-08
JP2016525689A (ja) 2016-08-25
EP3029479A4 (en) 2017-03-15
EP3029479B1 (en) 2021-01-06
CN103412269B (zh) 2016-01-20
CN103412269A (zh) 2013-11-27
US20160169982A1 (en) 2016-06-16
US9702943B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2015014277A1 (zh) 单芯片推挽桥式磁场传感器
JP6474822B2 (ja) 高感度プッシュプルブリッジ磁気センサ
US9722175B2 (en) Single-chip bridge-type magnetic field sensor and preparation method thereof
JP6076346B2 (ja) Mtj三軸磁場センサおよびそのパッケージ方法
JP5152495B2 (ja) 磁気センサーおよび携帯情報端末装置
US10060941B2 (en) Magnetoresistive gear tooth sensor
JP6193212B2 (ja) シングルチップ2軸ブリッジ型磁界センサ
WO2015058632A1 (zh) 一种用于高强度磁场的推挽桥式磁传感器
CN203587785U (zh) 单芯片推挽桥式磁场传感器
WO2015144073A1 (zh) 一种单芯片三轴磁场传感器及其制备方法
WO2015035912A1 (zh) 一种单芯片z轴线性磁电阻传感器
JP2014512003A (ja) シングルチッププッシュプルブリッジ型磁界センサ
US10024930B2 (en) Single chip referenced bridge magnetic sensor for high-intensity magnetic field
CN203587786U (zh) 一种用于高强度磁场的推挽桥式磁传感器
US20180321334A1 (en) Tmr high-sensitivity single-chip push-pull bridge magnetic filed sensor
CN203811787U (zh) 一种单芯片三轴线性磁传感器
CN202210145U (zh) Mtj三轴磁场传感器
CN117177654B (zh) 一种磁阻元件及其制备方法、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016530339

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14908770

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014831740

Country of ref document: EP