WO2015035912A1 - 一种单芯片z轴线性磁电阻传感器 - Google Patents

一种单芯片z轴线性磁电阻传感器 Download PDF

Info

Publication number
WO2015035912A1
WO2015035912A1 PCT/CN2014/086231 CN2014086231W WO2015035912A1 WO 2015035912 A1 WO2015035912 A1 WO 2015035912A1 CN 2014086231 W CN2014086231 W CN 2014086231W WO 2015035912 A1 WO2015035912 A1 WO 2015035912A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
chip
magnetoresistive
sensor according
magnetoresistive sensor
Prior art date
Application number
PCT/CN2014/086231
Other languages
English (en)
French (fr)
Inventor
迪克·詹姆斯·G
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US14/917,784 priority Critical patent/US10126378B2/en
Priority to JP2016541792A priority patent/JP6438959B2/ja
Priority to EP14844883.0A priority patent/EP3045926B1/en
Publication of WO2015035912A1 publication Critical patent/WO2015035912A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00

Definitions

  • the present invention relates to the field of sensor technologies, and in particular, to a single-chip z-axis magnetoresistive sensor.
  • a discrete single-axis planar magnetoresistive sensor is mounted vertically with respect to a two-axis planar sensor, but this approach has the following deficiencies:
  • the sensitive axis of the Z-axis magnetoresistive sensor is perpendicular to the X, Y two-axis magnetoresistive sensor, the Z-axis of the three-axis magnetoresistive sensor is increased, which increases the device size and packaging difficulty.
  • a flux concentrator is used to convert a magnetic field in the Z-axis direction into a magnetic field component in the X and Y-axis directions.
  • Chinese Patent Application No. 201110098286.8 discloses a single-chip three-axis AMR sensor that passes the level sensor. A flux concentrator is placed above to measure the magnetic field in the z-axis direction.
  • the flux concentrator does not completely cover all of the level sensors, which makes the magnetic field in the z-axis direction not completely converted into components in the X and Y directions.
  • the sensor design disclosed in this application does not intensively package level sensors to reduce noise, and its temperature compensation and offset are not easily controlled.
  • 201310202801.1 discloses a three-axis digital compass which uses a flux concentrator to distort a magnetic field, converts a Z-axis magnetic field component perpendicular to a plane into a magnetic field component in an XY plane, and then adopts a certain The algorithm separates the X, ⁇ , and ⁇ axis magnetic field components from the mixed signal and converts them into digital signal outputs.
  • This design requires a specific algorithm to calculate the digital signal of the magnetic field in the x-axis direction, which makes the sensor design more complicated, and it uses a reference bridge structure.
  • the sensor output of this structure is asymmetrical, resulting in sensor output. The offset.
  • the substrate is micromechanized to form an inclined surface on which a sensor that partially induces a magnetic field in the x-axis direction is deposited.
  • This process is complex and has low space utilization, which also causes some shielding effects in the deposition and layout of the sensor. This should reduce sensor performance.
  • the object of the present invention is to overcome the above problems in the prior art and to provide a single-chip z-axis magnetoresistive sensor which is small in size, low in cost, high in sensitivity, good in linearity, simple in fabrication, and suitable for high-intensity magnetic fields.
  • a single-chip Z-axis magnetoresistive sensor comprising:
  • the bridge is formed by electrically connecting the staggered push arms and the arm;
  • Each of the push arm and the arm includes at least one magnetoresistive sensing element electrically connected to each other to detect a component of the magnetic field in the X-axis direction;
  • At least one flux bow I guide a collection of all of the flux bow I guides covering the entire bridge;
  • the long axis of the flux guide is parallel to the Y axis, and the short axis of the flux guide is parallel to the X axis.
  • the magnetoresistive sensing element is a GMR or TMR sensing element, and the pinning layers of the GMR or TMR sensing element have the same magnetization direction.
  • the ratio of the length to the width of the magnetoresistive sensing element is greater than one.
  • the magnetization direction of the magnetic free layer of the magnetoresistive sensing element is parallel to the Y axis, and the magnetization direction of the pinning layer is parallel to the X axis.
  • the magnetoresistive sensing element has a magnetic free layer by a combination of permanent magnet bias, double exchange action, shape anisotropy or at least two of the permanent magnet bias, double exchange action and shape anisotropy
  • the magnetization direction is parallel to the Y axis.
  • the magnetization direction of the magnetic free layer is parallel to the Y axis by shape anisotropy, and the ratio of the length to the width of the magnetoresistive sensing element is greater than when the magnetization direction of the pinned layer is parallel to the X axis. 3.
  • the number of magnetoresistive sensing elements on the push arm and the arm is the same, and the major axis of the magnetoresistive sensing element is parallel to the Y axis.
  • the bridge is a half bridge, a full bridge or a quasi bridge.
  • the flux guiding member is an elongated array having a length Ly greater than a width Lx and a thickness Lz adjacent to each other.
  • the spacing S between the two flux guides is not less than the width Lx, and the material of the flux guide is a soft ferromagnetic alloy containing one or more of Ni, Fe, Co, and A1.
  • the spacing S between two adjacent flux guides ranges from 2Lx to 3Lx.
  • the bridge is connected to the semiconductor package lead frame by wires, and is packaged in plastic to form a standard semiconductor package.
  • the method of the semiconductor package comprises pad wire bonding, flip chip mounting, ball grid array package (BGA), wafer level package (WLP), and chip on board package (COB).
  • BGA ball grid array package
  • WLP wafer level package
  • COB chip on board package
  • the substrate comprises an integrated circuit, and the integrated circuit is electrically connected to the bridge.
  • the magnetoresistive sensing element is located anywhere between a lower edge of the flux guide and a center of the flux guide.
  • the magnetoresistive sensing element is located on two sides other than below the edge of the flux guide.
  • the magnetoresistive sensing element is located anywhere between 1/3 and 2/3 of the distance from the edge of the flux guide to its centerline and includes the 1/3 and 2 /3.
  • the present invention has the following beneficial effects:
  • the slender strip flux guides can have low hysteresis, good linearity and high sensitivity, and the output of the sensor is not easily saturated, thereby increasing the dynamics of the sensor operation. range;
  • the single-chip Z-axis magnetoresistive sensor of the present invention can have a working magnetic field of 200 gauss or more;
  • the single-chip Z-axis magnetoresistive sensor of the present invention does not require engraving and does not require a tilt package, and is simple to manufacture, easy to package, and fully integrated.
  • FIG. 1 is a schematic view showing the structure of a single-chip z-axis magnetoresistive sensor in the present invention.
  • Figure 2 is a cross-sectional view showing the distribution of the magnetic field in the Z-axis around the flux guide.
  • FIG. 3 is a schematic diagram showing the circuit principle of a single-chip Z-axis magnetoresistive sensor in the present invention.
  • Figure 4 is a cross-sectional view of the magnetic field in the X-axis direction distributed around the flux guide.
  • Figure 5 is a cross-sectional view showing the distribution of the magnetic field in the Y-axis direction around the flux guide.
  • Figure 6 shows the relationship between the output voltage of the sensor and the magnetic field in the X, Y and Z directions.
  • Figure 7 is a graph showing the relationship between the detected magnetic field components in the X and Z directions and the position of the magnetoresistive sensing element when the spacing between adjacent two flux guides is 5 ⁇ m.
  • Figure 8 is a graph showing the relationship between the detected magnetic field components in the X and Z directions and the position of the magnetoresistive sensing element when the spacing between adjacent two flux guides is 15 ⁇ m.
  • the sensor comprises a substrate 1, a plurality of magnetoresistive sensing elements 2 and 3, a plurality of flux guides 4, electrical connection conductors 5 and pads 6-9. Pads 6-9 serve as power supply terminals V Bias , ground GND, and voltage output terminals V+, V -, respectively.
  • the magnetoresistive sensing elements 2 and 3 are respectively located on both sides of the long axis below the flux guiding member 4, and the flux guiding member 4 can completely cover all the magnetoresistive sensing elements.
  • the magnetoresistive sensing elements 2 and 3 may also be located outside the side edges of the long axis below the flux guide 4, respectively.
  • the magnetoresistive sensing elements are not placed under the outermost periphery of the left and right sides and the three flux guiding members in the middle, the magnetoresistive sensing elements can be placed under all the flux guiding members if necessary. All the magnetoresistive sensing elements 2 are electrically connected to each other to form a push arm of the bridge, and all the magnetoresistive sensing elements 3 are electrically connected to each other to form a bridge arm of the bridge, and the push arm and the arm are arranged at intervals, and the push arm and the arm are arranged.
  • the pads 6-9 are connected by an electrical connection conductor 5 to form a bridge.
  • a possible embodiment is when the magnetoresistive sensing element is located along the short axis direction of the flux guide, ie, the X-axis direction, at any position between the lower edge of the flux guide and the center of the flux guide , including its center, can increase the linear operating range of a single-chip Z-axis magnetoresistive sensor.
  • the magnetoresistive sensing elements 2 and 3 may be GMR or TMR sensing elements, and in the present embodiment are TMR sensing elements.
  • the magnetoresistive sensing elements 2 and 3 may have a square, rhombic or elliptical shape, but are not limited to the above shapes, and have a length to width ratio of more than 1, in this example, a length of 15 ⁇ m and a width of 1.5 ⁇ m.
  • the number of the magnetoresistive sensing elements 2 and 3 is the same and the long axis direction is parallel to the Y axis, and the pinned layers of these magnetoresistive sensing elements
  • the magnetization directions are the same, both being 110.
  • the magnetoresistive sensing elements 2 and 3 In the absence of an applied magnetic field, the magnetoresistive sensing elements 2 and 3 have a magnetization direction 111 parallel to the Y-axis by a permanent magnet bias, double exchange action, shape anisotropy or any combination thereof, the pinned layer
  • the magnetization direction 110 is parallel to the X axis, and the magnetization directions 110 and 111 are perpendicular to each other for detecting the difference in the component of the applied magnetic field in the Z-axis direction in the X-axis direction.
  • the ratio between the length and the width of the magnetoresistive sensing elements 2, 3 is greater than 3.
  • the flux guide 4 is an elongated array, but is not limited to the above shape, and its length Ly is greater than the width Lx and larger than the thickness Lz, and the spacing S between adjacent two flux guides is not less than the width Lx, preferably, The value of the spacing S is 2Lx ⁇ 3Lx.
  • Their constituent materials are soft ferromagnetic alloys composed of one or several elements selected from the group consisting of Ni, Fe, Co and A1, but are not limited to the above materials.
  • the width Lx is 1 to 20 ⁇ m
  • the length Ly is 10 to 1000 ⁇ m
  • the thickness Lz is 1 to 20 ⁇ m
  • the spacing S between adjacent two flux guides is 1 to 60 ⁇ m.
  • pads are used for input and output connections and electrical connections between the sensor chip and the package terminals, and semiconductor packages such as flip chip, ball grid array package, wafer level package, and chip package are also available.
  • the substrate 1 may further include an integrated circuit electrically connected to the bridge.
  • Fig. 2 is a cross-sectional view showing the distribution of the applied magnetic field 100 in the Z-axis direction around the flux guide 4.
  • the applied magnetic field is distorted near the flux guide 4, thereby generating a magnetic field component in the X-axis direction, and the magnetoresistive sensing elements 2 and 3 located below the flux guide 4 are just right.
  • This component can be detected, but the magnetic field components detected by the two are opposite in direction, 101 and 102, respectively.
  • the magnitude of the applied applied magnetic field can be known by the detected X-axis magnetic field component.
  • the senor can operate normally as long as the working magnetic field of the sensor is within the range of the working magnetic field of the sensor. .
  • the ideal position of the magnetoresistive sensing element depends on the intended application. Specifically, the sensitivity of the sensor provided in the present invention mainly depends on the following factors: the width Lx of the flux guide 4, the thickness Lz, the length Ly, and the magnetoresistive sensing elements 2, 3 are below the flux guide 4 The distance of the edge is L edge .
  • the magnetoresistive sensing element 2, 3 is away from the edge of the flux guide 4 or close to the center of the flux guide 4, the sensitivity of the sensor is reduced, but the saturation magnetic field of the sensor is increased, for example, The sensor works well in magnetic fields above 500 Gauss.
  • FIG. 3 is a schematic diagram of the circuit principle corresponding to FIG. 2.
  • a plurality of magnetoresistive sensing elements 2 are electrically connected to form equivalent magnetoresistances R2 and R2', and a plurality of magnetoresistive sensing elements 3 are electrically connected to form two equivalent magnetoresistors R3 and R3'. bridge.
  • FIG. 4 is a cross-sectional view showing the distribution of the applied magnetic field 104 in the X-axis direction around the flux guide 4.
  • the magnetic fields detected by the magnetoresistive sensing elements 2 and 3 are the same, which causes the resistance values of the magnetoresistors R2, R2' and R3, R3' to be the same, so that a push-pull output cannot be formed. , so the sensor will not respond.
  • the push arm and the arm are spaced apart, which makes the bridge play a very good balance gradiometer, so that the sensor does not respond to the cross magnetic field in the X-axis direction.
  • Fig. 5 is a cross-sectional view showing the distribution of the applied magnetic field 103 in the Y-axis direction around the flux guide 4.
  • the flux guide 4 completely shields the applied magnetic field in the Y-axis direction, and the magnetoresistive sensing element is insensitive to the magnetic field in the Y-axis direction, so the magnetoresistive sensing element does not detect any magnetic field component. Thus the sensor will not produce any response.
  • Figure 6 shows the relationship between the output voltage of the sensor and the magnetic field in the X, Y and Z directions.
  • the data on the curve in the figure is the measured data. It can be seen from Fig. 6 that when the magnetic fields in the X and Y directions are applied, the output voltage of the sensor is 0, which is consistent with the conclusions obtained from Figs. 4 and 5.
  • the output voltage generated by the sensor is approximately linear with the magnitude of the applied magnetic field in the range of -200 to 200 gauss, and the linearity of the sensor is very good.
  • Fig. 7 is a graph showing the relationship between the detected magnetic field components in the X and Z directions and the position of the magnetoresistive sensing element when the spacing between adjacent two flux guiding members is 5 ⁇ m.
  • the applied external magnetic field is 10 Gauss
  • the curve 16 is the relationship between the applied magnetic field in the Z-axis direction and the position of the magnetoresistive sensing element. As can be seen from the curve 16, the external magnetic field entering the flux guiding member is large.
  • Figure 8 shows the detected magnetic field in the ⁇ and X directions when the spacing between adjacent two flux guides is 15 ⁇ m.
  • the gain coefficient ⁇ is related to the spacing between two adjacent flux guides.
  • the amount of guide 4 is twice the width.

Abstract

一种单芯片Z轴线性磁阻传感器,该传感器包括基片(1)、磁电阻传感元件(2、3)以及通量引导件(4),磁电阻传感元件相互电连接形成电桥的推臂和挽臂,推臂和挽臂相间隔排列,并且推、挽臂上的磁电阻传感元件分别位于通量引导件下方的两侧,各磁电阻传感元件的钉扎层的磁化方向相同,均沿X轴方向。Z轴方向的外加磁场通过通量引导件转变为X轴方向的磁场分量,位于通量引导件下方的磁电阻传感元件便能检测到此分量。该传感器具有以下优点:体积小、制作简单、便于封装、灵敏度高、线性度好、工作范围宽、低偏移、温度补偿功能好以及适用于高强度磁场等。

Description

一种单芯片 Z轴线性磁电阻传感器 技术领域
本发明涉及传感器技术领域, 特别涉及一种单芯片 z轴线性磁电阻传感器。
背景技术
随着磁传感器技术的发展, 其应用越来越广泛。 目前, 磁传感器被大量应用于手机和其 他用作电子罗盘的移动设备当中, 而此类产品的市场对成本十分敏感, 而且还要求较小 的封装尺寸。 对于 XY平面内的二维磁场, 可以通过将两个传感器正交来实现平面内磁 场 X、 Y分量的测量, 但对于 z轴方向磁场的测量, 目前主要存在以下解决方案:
( 1 )将一个分立单轴平面磁电阻传感器相对于二轴平面传感器垂直安装, 但这种方式存 在以下不足之处:
① X、 Y二轴磁电阻传感器和 z轴磁电阻传感器在安装之前为各自为分立元件, 无法实 现三轴磁电阻传感器的集成制造, 从而增加了制造工艺的复杂程度;
② 相对于集成制造系统, 采用组装方法制造的三轴磁电阻传感器系统内各元件的位置精 度降低, 影响传感器的测量精度;
③ 由于 Z轴磁电阻传感器敏感轴垂直于 X, Y二轴磁电阻传感器, 因此三轴磁电阻传感 器 Z向尺寸增加, 从而增加了器件尺寸和封装难度。
(2) 采用通量集中器将 Z轴方向磁场转变为 X、 Y轴方向的磁场分量, 例如申请号为 201110098286.8的中国专利申请公开了一种单芯片三轴 AMR传感器,该传感器通过在水 平传感器上方放置一个通量集中器来实现 z轴方向磁场的测量。 但通量集中器并未完全 覆盖住所有水平传感器, 这使得 z轴方向的磁场并未完全转化为 X、 Y轴方向上的分量。 此外, 该申请公开的传感器设计不能密集封装水平传感器来减小噪声, 其温度补偿和偏 移量也不容易控制。 另外, 中国专利申请 201310202801.1公开了一种三轴数字指南针, 该指南针利用通量集中器对磁场的扭曲作用, 将垂直于平面的 Z轴磁场分量转变成 XY 平面内磁场分量, 然后通过采用一定的算法将 X、 Υ、 Ζ轴磁场分量从混合信号中分离出 来, 并将其转变成数字信号输出。 此设计需要通过特定的算法计算才能得到 Ζ轴方向磁 场的数字信号, 这使得传感器设计更加复杂化, 并且其采用的是参考桥式结构, 这种结 构的传感器输出不对称, 从而造成传感器输出产生了偏移量。
(3 )基片微机械化来形成一倾斜面, 在此倾斜面上沉积有可部分感应 Ζ轴方向磁场的传 感器。 这一过程很复杂, 空间利用率低, 在传感器的沉积和布局中还会造成一些遮蔽效 应, 这降低了传感器性能。
(4 ) 通过利用磁性材料的垂直磁各向异性来测量 Z 轴方向磁场, 例如美国专利申请 US20130168787A1 公开了一种磁传感器, 该传感器通过利用垂直磁各向异性来测量外磁 场的 Z轴分量, 但垂直磁各向异性材料的矫顽力很高, 这种方法还会降低磁阻。
发明内容
本发明的目的在于克服现有技术存在的以上问题, 提供一种体积小、 成本低、 灵敏度高、 线性度好、 制作简单、 适用于高强度磁场的单芯片 z轴线性磁电阻传感器。
为实现上述技术目的, 达到上述技术效果, 本发明通过以下技术方案实现:
一种单芯片 Z轴线性磁电阻传感器, 该传感器包括:
沉积有电桥的基片;
所述电桥由相交错排列的推臂与挽臂电连接构成;
所述推臂和挽臂各自均包含有至少一个相互电连接的磁电阻传感元件, 以检测磁场在 X 轴方向上的分量;
至少一个通量弓 I导件, 所有所述通量弓 I导件的集合覆盖住整个所述电桥;
所述通量引导件的长轴与 Y轴平行, 所述通量引导件的短轴与 X轴平行。
优选的,所述磁电阻传感元件为 GMR或者 TMR传感元件,所述 GMR或者 TMR传感元 件的钉扎层的磁化方向相同。
优选的, 所述磁电阻传感元件的长度与宽度之间的比值大于 1。
优选的, 在没有外加磁场时, 所述磁电阻传感元件的磁性自由层的磁化方向与 Y轴平行, 钉扎层的磁化方向与 X轴平行。
优选的, 所述磁电阻传感元件通过永磁偏置、 双交换作用、 形状各向异性或者所述永磁 偏置、 双交换作用和形状各向异性中至少两个的结合使磁性自由层的磁化方向与 Y轴平 行。
优选的, 通过形状各向异性来实现磁性自由层的磁化方向与 Y轴平行, 并且钉扎层的磁 化方向与 X轴平行时, 所述磁电阻传感元件的长度与宽度之间的比值大于 3。
优选的, 所述推臂和所述挽臂上的磁电阻传感元件的数量相同, 并且所述磁电阻传感元 件的长轴与 Y轴平行。
优选的, 所述电桥为半桥、 全桥或者准桥。
优选的, 所述通量引导件为长条形阵列, 其长度 Ly大于宽度 Lx, 也大于厚度 Lz, 相邻 两个通量引导件之间的间距 S不小于宽度 Lx,所述通量引导件的材料为软铁磁合金, 其 含有 Ni、 Fe、 Co和 A1中的一种或几种元素。
优选的, 相邻两个通量引导件之间的间距 S取值范围为 2Lx~3Lx。
优选的, 所述电桥用引线连接于半导体封装引线框, 封装在塑料中以形成一标准半导体 封装。
优选的, 所述半导体封装的方法包括焊盘引线键合、 倒装芯片、 球栅阵列封装 (BGA) 、 晶圆级封装 (WLP) 以及板上芯片封装 (COB ) 。
优选的, 所述基片包含有一集成电路, 所述集成电路与所述电桥相电连接。
优选的, 所述磁电阻传感元件, 位于所述通量引导件的下方边缘至所述通量引导件的中 心处之间的任意位置。
优选的, 所述磁电阻传感元件位于相对于所述通量引导件的边缘的下方的以外的两侧。 优选的,所述磁电阻传感元件位于从所述通量引导件的边缘到其中心线的距离的 1/3处至 2/3处之间的任意位置并包括所述 1/3和 2/3处。
优选的, 移动所述磁电阻传感元件靠近所述通量引导件的下方边缘, 或者增大所述通量 引导件的厚度 Lz, 或者减小所述通量引导件的宽度 Lx处均, 以增加所述单芯片 Z轴线 性磁电阻传感器的灵敏度。
与现有技术相比, 本发明具有以下有益效果:
( 1 ) 采用多个细长条形通量引导件, 能使传感器具有低磁滞、 良好的线性度和高灵敏 度, 也使得传感器的输出不容易达到饱和状态, 从而增大了传感器工作的动态范围;
(2) 所有的磁电阻传感元件均位于通量引导件的下方,这有利于屏蔽面内的磁场分量, 直接检测到的便是所需测的 Z轴方向磁场, 无需通过算法计算;
(3 ) 本发明中的单芯片 Z轴线性磁电阻传感器的工作磁场能达到 200高斯以上;
(4) 本发明中的单芯片 Z轴线性磁电阻传感器无需刻槽, 也无需倾斜封装, 其制作简 单, 便于封装, 还能实现完全集成制造。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案, 下面将对实施例技术描述中所需要 使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获 得其他的附图。 图 1为本发明中的单芯片 z轴线性磁电阻传感器的结构示意图。
图 2为 Z轴方向磁场在通量引导件周围分布的剖面图。
图 3为本发明中的单芯片 Z轴线性磁电阻传感器的电路原理示意图。
图 4为 X轴方向磁场在通量引导件周围分布的剖面图。
图 5为 Y轴方向磁场在通量引导件周围分布的剖面图。
图 6为传感器的输出电压与 X、 Y和 Z轴方向磁场的关系曲线。
图 7为相邻两个通量引导件之间的间距为 5微米时,所检测到的 X、 Z轴方向的磁场分量 与磁电阻传感元件所在位置的关系曲线。
图 8为相邻两个通量引导件之间的间距为 15微米时, 所检测到的 X、 Z轴方向的磁场分 量与磁电阻传感元件所在位置的关系曲线。
具体实施方式
下面将参考附图并结合实施例, 来详细说明本发明。
实施例
图 1为本发明中的单芯片 Z轴线性磁电阻传感器的结构示意图。 从图 1中可以看出, 该 传感器包括基片 1, 多个磁电阻传感元件 2和 3, 多个通量引导件 4, 电连接导体 5以及 焊盘 6-9。 焊盘 6-9分别作为电源供应端 VBias, 接地端 GND, 电压输出端 V+, V -。 磁电 阻传感元件 2和 3分别位于通量引导件 4下方的长轴两侧, 通量引导件 4能将所有磁电 阻传感元件完全覆盖。 当然, 磁电阻传感元件 2和 3也可以分别位于通量引导件 4下方 的长轴两侧边缘的外侧 。 在本实施例中, 虽然左右两侧最外围以及中间的三个通量引导 件下方没有放置磁电阻传感元件, 但如有需要, 所有通量引导件下方都可以放置磁电阻 传感元件。所有磁电阻传感元件 2相互电连接构成了电桥的推臂, 所有磁电阻传感元件 3 相互电连接构成了电桥的挽臂, 推臂与挽臂相间隔排列, 推臂、挽臂以及焊盘 6-9之间通 过电连接导体 5连接形成电桥。 一种可能的实施例是, 当磁电阻传感元件沿通量引导件 的短轴方向即 X轴方向, 位于通量引导件的下方边缘至通量引导件的中心处之间的任意 位置时, 包括其中心处, 均能增加单芯片 Z轴线性磁电阻传感器的线性工作范围。
磁电阻传感元件 2和 3可以为 GMR或者 TMR传感元件, 在本实施例中采用的是 TMR 传感元件。 磁电阻传感元件 2和 3的形状可以为方形、 菱形或者椭圆形, 但不限于以上 形状, 其长、 宽比值大于 1, 在本实例中, 长度为 15微米, 宽度为 1.5微米。 磁电阻传 感元件 2和 3的个数相同并且其长轴方向与 Y轴平行, 这些磁电阻传感元件的钉扎层的 磁化方向相同, 均为 110。 在没有外加磁场时, 磁电阻传感元件 2和 3通过永磁偏置、 双 交换作用、 形状各向异性或者它们的任意结合来使磁性自由层的磁化方向 111与 Y轴平 行, 钉扎层的磁化方向 110与 X轴平行, 磁化方向 110与 111相互垂直, 用于检测 Z轴 方向的外加磁场在 X轴方向上分量的差值。 当选择通过形状各向异性来实现磁性自由层 的磁化方向与钉扎层的磁化方向垂直时, 磁电阻传感元件 2、 3的长度与宽度之间的比值 均大于 3。
通量引导件 4为长条形阵列, 但不限于以上形状, 其长度 Ly大于宽度 Lx, 也大于厚度 Lz,相邻两个通量引导件之间的间距 S不小于宽度 Lx,优选地,间距 S的取值为 2Lx~3Lx。 它们的组成材料为选自 Ni、 Fe、 Co和 A1中的一种或几种元素组成的软铁磁合金, 但不 限于以上材料。 优选地, 其宽度 Lx为 1~20微米, 长度 Ly为 10~1000微米, 厚度 Lz为 1-20微米, 相邻两个通量引导件之间的间距 S为 1~60微米。
本实施例中是采用焊盘来进行输入输出连接以及传感器芯片与封装引出端之间的电连 接, 也可以采用倒装芯片、 球栅阵列封装、 晶圆级封装以及板上芯片封装等半导体封装 方法。 此外, 基片 1上也还可以包含一集成电路, 该集成电路与电桥相互电连接。
图 2为 Z轴方向的外加磁场 100在通量引导件 4周围分布的剖面图。 从图中磁力线的分 布情况可以看出, 外加磁场在通量引导件 4附近产生扭曲, 从而产生了 X轴方向的磁场 分量, 位于通量引导件 4下方的磁电阻传感元件 2和 3正好能检测到此分量, 但二者所 检测到的磁场分量的方向相反, 分别为 101和 102。 通过所检测到的 X轴磁场分量, 便 能得知所施加的外加磁场的大小。 由于通过通量引导件 4 的外加磁场, 其磁场强度的幅 度会大幅衰减, 所以即使施加高强度的外加磁场 (例如 200高斯) , 只要在该传感器工 作磁场的范围内, 该传感器都能正常工作。
磁电阻传感元件的理想位置取决于预期的应用。 明确来说, 本发明中提供的传感器的灵 敏度主要取决于以下几个因素: 通量引导件 4的宽度 Lx、 厚度 Lz、 长度 Ly以及磁电阻 传感元件 2、 3距离通量引导件 4下方边缘的距离 Ledge。 当磁电阻传感元件 2、 3远离通 量引导件 4的边缘或者接近通量引导件 4的中心时, 传感器的灵敏度就会降低, 但是该 传感器的饱和磁场却会增大, 例如, 此时传感器能在 500高斯以上的磁场中正常工作。 磁电阻传感元件 2、 3越靠近通量引导件 4下方的边缘处, 或者增大通量引导件 4的厚度 Lz或者减小宽度 Lx, 均能提高传感器的灵敏度。本发明提供的传感器无需修改整个光刻 掩膜组, 就能很容易应用于各种应用中。 图 3为对应图 2的电路原理示意图。 若干个磁电阻传感元件 2电连接构成等效磁电阻 R2 和 R2' , 若干个磁电阻传感元件 3电连接构成两个等效磁电阻 R3和 R3 ' , 这四个磁电 阻连接构成全桥。 当施加 Z轴方向的外磁场时, 磁电阻 R2、 R2' 和 R3、 R3 ' 的阻值变 化情况会相反, 从而构成推挽输出。 一般来说, R2' =R2, R3 ' =R3。 从图 3中可以得到, 该电路的输出电压:
V out = v + - v― = R2 _~|_R3 V Bias 图 4为 X轴方向的外加磁场 104在通量引导件 4周围分布的剖面图。 从图中可以看出, 磁电阻传感元件 2和 3所检测到的磁场相同, 这样就会导致磁电阻 R2、 R2' 和 R3、 R3 ' 的阻值变化情况相同, 从而不能形成推挽输出, 这样传感器就不会产生响应。 从传感器 本身结构上解释来说, 推臂和挽臂相间隔排列, 这使得电桥起到了一个十分良好的平衡 梯度仪的作用, 从而使得传感器对 X轴方向的交叉磁场不会产生响应。
图 5为 Y轴方向的外加磁场 103在通量引导件 4周围分布的剖面图。 从图中可以看出, 通量引导件 4将 Y轴方向的外加磁场完全屏蔽, 并且磁电阻传感元件对 Y轴方向的磁场 不敏感, 所以磁电阻传感元件没有检测到任何磁场分量, 从而传感器也不会产生任何响 应。
图 6为传感器的输出电压与 X、 Y和 Z轴方向磁场的关系曲线。 图中曲线上的数据为实 测数据。 从图 6中可以看出, 当施加 X、 Y轴方向的磁场时, 传感器的输出电压均为 0, 这与从图 4、 图 5中所得到的结论一致。 当施加 Z轴方向的磁场时, 在 -200~200高斯的 磁场范围内, 传感器所产生的输出电压与外加磁场的大小近似成线性关系, 可见该传感 器的线性度十分良好。
图 7为相邻两个通量引导件之间的间距为 5微米时,所检测到的 X、 Z轴方向的磁场分量 与磁电阻传感元件所在位置的关系曲线。所施加的外磁场大小均为 10高斯, 曲线 16为 Z 轴方向的外加磁场与磁电阻传感元件所在位置的关系曲线, 从曲线 16可以看出, 进入通 量引导件的外磁场会很大幅度衰减, 位于通量引导件下方的磁电阻元件 2和 3所检测到 的磁场分别为 BX+=2.5G, Bx =-2.5G, 则增益系数 ΑχΖΧ/Βζ=( Βχ+-
Figure imgf000008_0001
曲线 17 对应于 X 轴方向的外加磁场, 通过曲线 17 可以得到增益系数 Αχχ= ( Βχ+- Βχ-)/Βχ=(-6+6)/10=0。
图 8为相邻两个通量引导件之间的间距为 15微米时, 所检测到的 Ζ、 X轴方向的磁场分 量与磁电阻传感元件所在位置的关系曲线 18、 19。所施加的外磁场仍为 10高斯。 从曲线 18、 19 上可以得到增益系数 Axz=( Bx+- Βχ-)/Βζ=(4+4)/10=0.8, Αχχ=( Βχ+- Βχ-)/Βχ=(-2.5+2.5)/10=0。
通过对比图 7和图 8所得到的结果可知, 增益系数 Αχζ与相邻两个通量引导件之间的间 距有关, 间距越大, Αχζ的值越大, 所以设计中, 间距一般要大于通量引导件 4宽度的 两倍。
以上讨论的是电桥为全桥的情形, 由于半桥和准桥的工作原理与全桥相同, 在此就不再 赘述,上述所得到的结论也同样适用于半桥和准桥结构的单芯片 Ζ轴线性磁电阻传感器。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人员 来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求:
1. 一种单芯片 z轴线性磁电阻传感器, 其特征在于, 该磁电阻传感器包括: 沉积有电桥的基片;
所述电桥由相交错排列的推臂与挽臂电连接构成;
所述推臂和挽臂各自均包含有至少一个相互电连接的磁电阻传感元件, 以检测磁场在 X 轴方向上的分量;
至少一个通量弓 I导件, 所有所述通量弓 I导件的集合覆盖住整个所述电桥;
所述通量引导件的长轴与 Y轴平行, 所述通量引导件的短轴与 X轴平行。
2. 根据权利要求 1所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 所述磁电阻传 感元件为 GMR或者 TMR传感元件, 所述 GMR或者 TMR传感元件的钉扎层的磁化方 向相同。
3. 根据权利要求 1或 2所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 所述磁电 阻传感元件的长度与宽度之间的比值大于 1。
4. 根据权利要求 1或 2所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 在没有外 加磁场时, 所述磁电阻传感元件的磁性自由层的磁化方向与 Y轴平行, 钉扎层的磁化方 向与 X轴平行。
5. 根据权利要求 4 所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 所述磁电阻传 感元件通过永磁偏置、 双交换作用、 形状各向异性或者所述永磁偏置、 双交换作用和形 状各向异性中至少两个的结合使磁性自由层的磁化方向与 Y轴平行。
6. 根据权利要求 5 所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 通过形状各向 异性来实现磁性自由层的磁化方向与 Y轴平行, 并且钉扎层的磁化方向与 X轴平行 时, 所述磁电阻传感元件的长度与宽度之间的比值大于 3。
7. 根据权利要求 1所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 所述推臂和所 述挽臂上的磁电阻传感元件的数量相同, 并且所述磁电阻传感元件的长轴与 Y轴平行。
8. 根据权利要求 1所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 所述电桥为半 桥、 全桥或者准桥。
9. 根据权利要求 1所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 所述通量引导 件为长条形阵列, 其长度 Ly大于宽度 Lx, 也大于厚度 Lz, 相邻两个通量引导件之间的 间距 S不小于宽度 Lx, 所述通量引导件的材料为软铁磁合金, 其含有 Ni、 Fe、 Co和 A1中的一种或几种元素。
10. 根据权利要求 8所述的单芯片 Z轴线性磁阻电传感器, 其特征在于, 相邻两个通量 引导件之间的间距 S取值范围为 2Lx~3Lx。
11. 根据权利要求 1所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 所述电桥用引 线连接于半导体封装引线框, 封装在塑料中以形成一标准半导体封装。
12. 根据权利要求 11所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 所述半导体 封装的方法包括焊盘引线键合、 倒装芯片、 球栅阵列封装 (BGA)、 晶圆级封装
(WLP) 以及板上芯片封装 (COB )。
13. 根据权利要求 1所述的单芯片 Z轴线性磁阻传感器, 其特征在于, 所述基片包含有 一集成电路, 所述集成电路与所述电桥相电连接。
14. 根据权利要求 1所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 所述磁电阻传 感元件, 位于所述通量引导件的下方边缘至所述通量引导件的中心处之间的任意位置。
15. 根据权利要求 1所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 所述磁电阻传 感元件位于相对于所述通量引导件的边缘的下方的以外的两侧。
16. 根据权利要求 1所述的单芯片 Z轴线性磁电阻传感器, 其特征在于, 所述磁电阻传 感元件位于从所述通量引导件的边缘到其中心线的距离的 1/3处至 2/3处之间的任意位 置并包括所述 1/3和 2/3处。
17. 根据权利要求 1所述的单芯片 Z轴线性磁阻传感器, 其特征在于, 移动所述磁电阻 传感元件靠近所述通量引导件的下方边缘, 或者增大所述通量引导件的厚度 Lz, 或者减 小所述通量引导件的宽度 Lx处均, 以增加所述单芯片 Z轴线性磁阻传感器的灵敏度。
PCT/CN2014/086231 2013-09-10 2014-09-10 一种单芯片z轴线性磁电阻传感器 WO2015035912A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/917,784 US10126378B2 (en) 2013-09-10 2014-09-10 Single-chip Z-axis linear magnetic resistance sensor
JP2016541792A JP6438959B2 (ja) 2013-09-10 2014-09-10 単一チップz軸線形磁気抵抗センサ
EP14844883.0A EP3045926B1 (en) 2013-09-10 2014-09-10 Single-chip z-axis linear magnetoresistive sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310409446.5A CN103901363B (zh) 2013-09-10 2013-09-10 一种单芯片z轴线性磁电阻传感器
CN201310409446.5 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015035912A1 true WO2015035912A1 (zh) 2015-03-19

Family

ID=50992816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086231 WO2015035912A1 (zh) 2013-09-10 2014-09-10 一种单芯片z轴线性磁电阻传感器

Country Status (5)

Country Link
US (1) US10126378B2 (zh)
EP (1) EP3045926B1 (zh)
JP (1) JP6438959B2 (zh)
CN (1) CN103901363B (zh)
WO (1) WO2015035912A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209169A1 (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 磁気センサ
US10126378B2 (en) 2013-09-10 2018-11-13 Multidimension Technology Co., Ltd Single-chip Z-axis linear magnetic resistance sensor
EP3309572A4 (en) * 2015-06-09 2019-03-27 Multidimension Technology Co., Ltd. MAGNETORESISTIVE SENSOR WITH Y AXIS INTERDIGITAL

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267520B (zh) * 2013-05-21 2016-09-14 江苏多维科技有限公司 一种三轴数字指南针
CN103592608B (zh) * 2013-10-21 2015-12-23 江苏多维科技有限公司 一种用于高强度磁场的推挽桥式磁传感器
CN103954920B (zh) * 2014-04-17 2016-09-14 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN103995240B (zh) 2014-05-30 2017-11-10 江苏多维科技有限公司 一种磁电阻z轴梯度传感器芯片
CN104197827B (zh) * 2014-08-18 2017-05-10 江苏多维科技有限公司 一种双z轴磁电阻角度传感器
DE102014119531B4 (de) * 2014-12-23 2019-06-27 Infineon Technologies Ag Sensorschaltung
CN104483638B (zh) * 2014-12-31 2017-11-17 上海矽睿科技有限公司 可提高z轴方向磁感应强度的磁传感装置及其制备方法
CN104569870B (zh) * 2015-01-07 2017-07-21 江苏多维科技有限公司 一种单芯片具有校准/重置线圈的z轴线性磁电阻传感器
CN104596605B (zh) 2015-02-04 2019-04-26 江苏多维科技有限公司 一种磁自动化流量记录器
CN105158711B (zh) * 2015-07-31 2018-05-11 瑞声光电科技(常州)有限公司 一种z轴磁场加载装置
JP6724459B2 (ja) * 2016-03-23 2020-07-15 Tdk株式会社 磁気センサ
WO2019111780A1 (ja) * 2017-12-04 2019-06-13 株式会社村田製作所 磁気センサ
CN108413992A (zh) * 2018-01-30 2018-08-17 江苏多维科技有限公司 一种三轴预调制低噪声磁电阻传感器
US10859643B2 (en) * 2018-01-30 2020-12-08 Allegro Microsystems, Llc Magnetic field sensor having sensing element placement for reducing stray field sensitivity
JP6658823B2 (ja) 2018-08-24 2020-03-04 Tdk株式会社 磁気センサおよび磁気センサシステム
JP7058630B2 (ja) * 2019-10-01 2022-04-22 Tdk株式会社 磁気センサ装置
CN111596239B (zh) * 2020-06-15 2021-07-20 北京航空航天大学 一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法
CN112014778B (zh) * 2020-08-24 2023-11-07 歌尔微电子有限公司 微机电系统磁阻传感器、传感器单体及电子设备
WO2023217356A1 (en) 2022-05-10 2023-11-16 Sensitec Gmbh Vectorial magnetic field sensor and manufacturing method of a vectorial magnetic field sensor
CN115728681B (zh) * 2022-11-15 2023-09-12 南方电网数字电网研究院有限公司 磁场传感器及其测试方法、装置、制备方法和计算机设备
CN116224189B (zh) * 2023-05-06 2023-09-05 江苏多维科技有限公司 一种磁传感器中磁通聚集元件位置误差的校正方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127788A (ja) * 2010-12-15 2012-07-05 Alps Electric Co Ltd 磁気センサ
US20120200292A1 (en) * 2009-12-02 2012-08-09 Alps Electric Co., Ltd. Magnetic sensor
US20130168787A1 (en) 2011-12-28 2013-07-04 Industrial Technology Research Institute Magnetic sensor
CN103267955A (zh) * 2013-05-28 2013-08-28 江苏多维科技有限公司 单芯片桥式磁场传感器
EP2639594A2 (en) * 2012-03-14 2013-09-18 Alps Electric Co., Ltd. Magnetic sensor
CN203480009U (zh) * 2013-09-10 2014-03-12 江苏多维科技有限公司 一种单芯片z轴线性磁电阻传感器
CN103901363A (zh) * 2013-09-10 2014-07-02 江苏多维科技有限公司 一种单芯片z轴线性磁阻传感器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403048C (zh) * 2000-10-26 2008-07-16 财团法人电气磁气材料研究所 薄膜磁传感器
EP2006700B1 (en) * 2006-04-13 2015-12-30 Asahi Kasei EMD Corporation Magnetic sensor and method for fabricating the same
JP5500785B2 (ja) * 2008-05-14 2014-05-21 新科實業有限公司 磁気センサ
JP5186645B2 (ja) * 2008-08-06 2013-04-17 アイチ・マイクロ・インテリジェント株式会社 電子コンパス
US8390283B2 (en) * 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
IT1403421B1 (it) * 2010-12-23 2013-10-17 St Microelectronics Srl Sensore magnetoresistivo integrato, in particolare sensore magnetoresistivo triassiale e suo procedimento di fabbricazione
CN102298126B (zh) * 2011-01-17 2013-03-13 江苏多维科技有限公司 独立封装的桥式磁场传感器
CN202149936U (zh) 2011-02-14 2012-02-22 美新半导体(无锡)有限公司 单芯片三轴amr传感器
CN103033771A (zh) * 2011-09-29 2013-04-10 宇能电科技股份有限公司 磁阻感测元件与磁阻传感器
US9411025B2 (en) * 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
CN103267520B (zh) * 2013-05-21 2016-09-14 江苏多维科技有限公司 一种三轴数字指南针

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120200292A1 (en) * 2009-12-02 2012-08-09 Alps Electric Co., Ltd. Magnetic sensor
JP2012127788A (ja) * 2010-12-15 2012-07-05 Alps Electric Co Ltd 磁気センサ
US20130168787A1 (en) 2011-12-28 2013-07-04 Industrial Technology Research Institute Magnetic sensor
EP2639594A2 (en) * 2012-03-14 2013-09-18 Alps Electric Co., Ltd. Magnetic sensor
CN103267955A (zh) * 2013-05-28 2013-08-28 江苏多维科技有限公司 单芯片桥式磁场传感器
CN203480009U (zh) * 2013-09-10 2014-03-12 江苏多维科技有限公司 一种单芯片z轴线性磁电阻传感器
CN103901363A (zh) * 2013-09-10 2014-07-02 江苏多维科技有限公司 一种单芯片z轴线性磁阻传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3045926A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10126378B2 (en) 2013-09-10 2018-11-13 Multidimension Technology Co., Ltd Single-chip Z-axis linear magnetic resistance sensor
EP3309572A4 (en) * 2015-06-09 2019-03-27 Multidimension Technology Co., Ltd. MAGNETORESISTIVE SENSOR WITH Y AXIS INTERDIGITAL
WO2017209169A1 (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 磁気センサ

Also Published As

Publication number Publication date
CN103901363B (zh) 2017-03-15
JP2016531300A (ja) 2016-10-06
EP3045926A1 (en) 2016-07-20
US10126378B2 (en) 2018-11-13
US20160223623A1 (en) 2016-08-04
JP6438959B2 (ja) 2018-12-19
CN103901363A (zh) 2014-07-02
EP3045926A4 (en) 2017-07-05
EP3045926B1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2015035912A1 (zh) 一种单芯片z轴线性磁电阻传感器
US9891292B2 (en) Monolithic three-axis linear magnetic sensor and manufacturing method thereof
CN202433514U (zh) 独立封装的桥式磁场传感器
JP6018093B2 (ja) 単一パッケージブリッジ型磁界角度センサ
CN103412269B (zh) 单芯片推挽桥式磁场传感器
US9664754B2 (en) Single chip push-pull bridge-type magnetic field sensor
WO2015144073A1 (zh) 一种单芯片三轴磁场传感器及其制备方法
JP6509231B2 (ja) 強磁場用のシングルチップ基準ブリッジ磁気センサ
EP3062119B1 (en) Push-pull bridge-type magnetic sensor for high-intensity magnetic fields
US20150145504A1 (en) Magnetoresistive Gear Tooth Sensor
US20150130455A1 (en) Magnetoresistive magnetic field gradient sensor
US20140225605A1 (en) Mtj three-axis magnetic field sensor and encapsulation method thereof
WO2012116660A1 (zh) 独立封装的磁电阻角度传感器
CN203587785U (zh) 单芯片推挽桥式磁场传感器
CN203480009U (zh) 一种单芯片z轴线性磁电阻传感器
CN203811786U (zh) 一种单芯片三轴磁场传感器
JP2017502298A5 (zh)
CN203811787U (zh) 一种单芯片三轴线性磁传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016541792

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14917784

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014844883

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844883

Country of ref document: EP