WO2015014069A1 - 反应腔和mocvd设备 - Google Patents

反应腔和mocvd设备 Download PDF

Info

Publication number
WO2015014069A1
WO2015014069A1 PCT/CN2013/089083 CN2013089083W WO2015014069A1 WO 2015014069 A1 WO2015014069 A1 WO 2015014069A1 CN 2013089083 W CN2013089083 W CN 2013089083W WO 2015014069 A1 WO2015014069 A1 WO 2015014069A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
reaction chamber
small
support
hole
Prior art date
Application number
PCT/CN2013/089083
Other languages
English (en)
French (fr)
Inventor
涂冶
Original Assignee
北京北方微电子基地设备工艺研究中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方微电子基地设备工艺研究中心有限责任公司 filed Critical 北京北方微电子基地设备工艺研究中心有限责任公司
Publication of WO2015014069A1 publication Critical patent/WO2015014069A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor

Definitions

  • the present invention relates to semiconductor technology, and more particularly to a reaction chamber and a reaction chamber including the same
  • the vapor phase epitaxy method includes hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor deposition (MOCVD).
  • the vapor phase epitaxy technique mainly utilizes organic compounds of Group III and Group II elements and hydrides of Group V and VI elements as crystal growth raw materials, and performs vapor phase epitaxy on a substrate by thermal decomposition reaction to grow various III-V groups. Thin-layer single crystal materials of II-VI compound semiconductors and their multiple solid solutions can be used to prepare high-performance compound semiconductor single crystal flakes.
  • Vapor phase epitaxial growth can be used for the growth of epitaxial films, especially high-quality epitaxial films, but has extremely high requirements on the temperature uniformity of the substrate material itself, the distribution of the concentration of the reaction gas, and the uniformity of the reaction field above the substrate. These uniformities also directly determine the quality of the epitaxial wafer grown.
  • the heating methods currently mainly used include a heat transfer method and an induction heating method.
  • the heat transfer method one way is to place the bottom material on the tray, the tray is placed on the base, and the heating member such as the electric resistance wire is heated at the bottom of the base and heats the substrate material through the heat conduction effect of the tray of the graphite material.
  • multi-zone resistance wire heating technology can ensure the temperature uniformity of the susceptor, thereby improving the stability and uniformity of the substrate growth temperature; other methods include heating the substrate around the outer wall of the reaction chamber and then heating the substrate by thermal radiation.
  • the heat transfer method has a slow heating rate and a complicated control process.
  • the method can place the turns on the lower part of the substrate or around the tray. After the high frequency current is passed, the induced eddy current will appear on the surface of the tray and the substrate. Thereby being heated quickly. The heating rate of the induction heating method is remarkably improved. However, the magnetic field generated by the coil is unevenly distributed at the center and the edge of the tray, which causes uneven heating of the tray, thereby affecting the heating uniformity of the bottom of the tray.
  • the uniformity of heating and the uniformity of the concentration distribution of the gas will jointly affect the uniformity of the reaction field distribution within the reaction chamber, which in turn affects the uniformity and quality of the epitaxy.
  • FIG. 1 shows a schematic diagram of a planetary rotating technology of an air-cushion tray.
  • the large tray is provided with a plurality of small trays. During the process, the small tray can also rotate while the large tray drives the small tray to revolve. . Among them, the large tray and the small tray are all rotated by gas suspension, and the small tray on the large tray is rotated by the design of the air cushion and the air passage structure.
  • Axitron's reaction chamber uses a multi-zone temperature control method.
  • the slow heating rate and low equipment capacity are also serious shortcomings.
  • planetary Although the rotation method can meet the requirements of the epitaxial process, the air cushion structure used to realize the rotation of the planetary chamber must be designed into a complicated gas path structure, and complex fluid changes inside the chamber must be taken into consideration during the rotation process. The design, processing and installation of the air cushion air inlet are very complicated.
  • An object of the present invention is to provide a reaction chamber and an MOCVD apparatus including the same, which has a structure of a single cylinder while meeting the requirements of an epitaxial process, and has a low cost.
  • a reaction chamber includes a tray device, a support skeleton, and a conduction unit, wherein:
  • the tray device comprises a plurality of small trays and a plurality of large trays arranged along a height direction of the reaction chamber, and each of the large trays is provided with a plurality of small trays in a circumferential direction;
  • the support skeleton is disposed coaxially with the large tray
  • the conducting unit is disposed between the support frame and the small tray;
  • the small tray is rotated by the conduction unit around the axis of the small tray itself at a predetermined speed.
  • the large tray is provided with a plurality of limiting holes for accommodating a plurality of the small trays.
  • a plurality of the limiting holes are uniformly distributed on the same circumference, and a center of the circumference is located on a longitudinal axis of the reaction chamber.
  • the support frame comprises a plurality of support disks in one-to-one correspondence with the plurality of large trays and a support member connecting the plurality of support disks in series, each of the large trays including a bearing having a limiting hole And a support portion, the limiting hole is disposed on the carrying portion, the supporting portion is disposed on a lower end surface of the carrying portion, and the carrying portion on each of the large trays is large Corresponding support The disc is slidably connected.
  • the support frame includes a rotating shaft disposed at a bottom of the support frame, and the rotating shaft is disposed coaxially with the reaction chamber.
  • the conducting unit includes a plurality of sliding grooves disposed on the support plate, a first through hole penetrating the thickness direction of the support plate, and a plurality of guides fixedly disposed on a lower end surface of the small tray
  • the plurality of sliding grooves are evenly distributed around the first through holes, and the plurality of guiding members are evenly distributed on the same circumference on the lower end surface of the small tray, and each of the sliding concaves a slot extending to an edge of the first through hole, the plurality of the guide members on the small tray being alternately movable from the sliding groove and the first through hole when the support frame is rotated
  • the junction begins to cooperate with the sliding groove to cause the small tray to rotate about its own axis.
  • the sliding groove has a circular arc shape, and the number of the sliding grooves provided on each of the support disks is the same as the number of the guide members provided on each of the small trays.
  • each of the large trays is provided with a second through hole.
  • an MOCVD apparatus comprising a reaction chamber, wherein the reaction chamber is the above-described reaction chamber provided by the present invention.
  • the MOCVD apparatus includes a central intake pipe disposed inside the reaction chamber, the central intake pipe is provided with a plurality of gas injection holes, and the central intake pipe passes through the first passage on the support plate a hole and the second through hole on the large tray.
  • the large tray is disposed coaxially with the support skeleton, allowing a plurality of large trays to be disposed in the reaction chamber provided by the present invention, so that the reaction chamber provided by the present invention can be processed simultaneously.
  • Sheet substrate When one of the support bobbins or the tray device is rotated, the small tray is rotated about its own axis, so that the temperature of the substrate disposed on the small tray is uniform, so that the process requirements can be satisfied.
  • the use of the conducting unit to drive the small tray to rotate about its own axis, the structural unit reduces the overall cost of the MOCVD apparatus including the reaction chamber.
  • Figure 1 is a schematic view of a conventional reaction chamber
  • FIG. 2 is a schematic view of a first embodiment of a reaction chamber provided by the present invention.
  • Figure 3 is a plan view of a second embodiment of the reaction chamber provided by the present invention.
  • Figure 4 is a perspective cross-sectional view of the reaction chamber of Figure 3;
  • Figure 5 is a front cross-sectional view of the small tray of the reaction chamber shown in Figure 3;
  • Figure 6 is a plan view of the support disk of the reaction chamber shown in Figure 3;
  • FIG. 7a and 7b are movement diagrams of a support plate and a small tray of a reaction chamber provided by the present invention.
  • Figure 8 is a plan view of the large tray of the reaction chamber shown in Figure 3;
  • FIG. 10 is a schematic view showing the structure of MOCVD provided by the present invention. Description of the reference signs:
  • Support frame 121 Support plate
  • Support 123 Rotary shaft
  • a reaction chamber 100 is provided, wherein the reaction chamber 100 includes a tray device 110, a support skeleton 120, and a conduction unit 130, wherein: the tray device 110 includes a plurality of a small tray 111 and a plurality of large trays 112 disposed along the height direction of the reaction chamber 100, each of the large trays 112 is provided with a plurality of small trays 111 in the circumferential direction; the large trays 112 are disposed coaxially with the support skeleton 120; the conduction unit 130 Between the support frame 120 and the small tray 111; when the support frame 120 or the tray device 110 is rotated about the longitudinal axis L of the reaction chamber 100, the small tray 111 is driven by the conduction unit 130 to surround the small tray in the radial direction of the large tray 112. 111 its own axis rotates at a predetermined speed.
  • the small tray 111 is used to carry the substrate
  • the support frame 120 is used to support the tray device 110
  • the transfer unit 130 is disposed between the small tray 111 on each large tray 112 and the support frame 120.
  • the predetermined speed at which the small tray 111 rotates can be artificially set according to production needs (e.g., the thickness of the film to be deposited on the substrate, the deposition speed of the film, etc.).
  • the reaction chamber 100 is usually heated by a sensing coil surrounding the reaction chamber 100. Therefore, in the reaction chamber 100, the temperatures on the same circumference are almost equal, and the temperatures on the circumferences having different radii are not the same.
  • the small tray 111 is rotated about its own axis, so that the substrate on the small tray 111 can alternately enter different temperature regions, thereby making the substrate more heated. Uniform, and thus meet the needs of metal organic chemical chemical vapor deposition processes.
  • the longitudinal axis L of the reaction chamber 100 is the longitudinal axis of the support frame 120 and the tray device 110. Line.
  • the structure in which the small tray 111 is rotated by the conduction unit 130 disposed between the small tray 111 and the support frame 120 is relatively simple, so that the overall structure of the reaction chamber 100 provided by the present invention can be collapsed, which is low. The cost of the reaction chamber 100.
  • the small tray 111 is disposed on the large tray 112 as long as the small tray 111 can be rotated about its own axis by the conduction unit 130.
  • a plurality of limiting holes 112a (as shown in Fig. 8) for accommodating the small tray 111 may be disposed on the large tray 112, and the small tray 111 may be rotated in the limiting hole 112a.
  • a plurality of limiting holes 112a are uniformly distributed on the same circumference. And the center of the circumference is located on the longitudinal axis L of the reaction chamber 100.
  • the reaction chamber 100 may be disposed such that each of the small trays 111 can carry a plurality of substrates. As shown in Figs. 4 and 5, a plurality of substrate grooves 111a may be provided on each of the small trays 111. In the embodiment provided by the present invention, each of the small trays 111 is provided with two substrate grooves 111a (as shown in Fig. 5), but the present invention is not limited thereto.
  • the specific structure of the support frame 120 is also not limited as long as the multi-layer large tray 112 can be supported.
  • the support frame 120 may include a plurality of support trays 121 corresponding to the plurality of large trays 112, and a support member 122 connecting the plurality of support trays 121 in series, And each of the large trays 112 and the support trays 121 corresponding to the large trays 112 are slidably coupled.
  • the purpose of arranging the large tray 112 to be slidably coupled to the support tray 121 is that the large tray 112 does not rotate when the support frame 120 is rotated about the axis L. Alternatively, when the large tray 112 is rotated about the axis L, the support frame 120 does not rotate.
  • the reaction chamber 100 is set to a large tray 112 and
  • the advantage that one of the support frames 120 rotates and the other does not rotate is that both the small tray 111 can be rotated about its own axis and the structure of the drive unit can be collapsed. Specifically, in this case, it is only necessary to connect one of the support frame 120 and the large tray 112 to the output shaft of the drive motor, and no other transmission is required.
  • the support skeleton 120 may be disposed to include a rotating shaft 123, which is coaxially disposed with the reaction chamber 100. . That is, the longitudinal axis of the rotating shaft 123 is the longitudinal axis L of the reaction chamber 100.
  • the rotating shaft 123 is connected to the output shaft of the driving motor. When the driving motor rotates, the rotating shaft 123 can be rotated to rotate the supporting frame 120 about the longitudinal axis L of the reaction chamber 100, and the conducting unit 130 transmits the rotation of the supporting frame 120.
  • the small tray 111 is fed so that the small tray 111 rotates about its own axis. It should be understood that the tray unit 110 does not rotate as the support frame 120 rotates.
  • the rotating shaft 123 can be disposed at the bottom of the support frame 120 and connected to the support member 122 through the connecting plate.
  • the large tray 112 may have the following structure: As shown in FIGS. 2, 8, and 9, the large tray 112 includes a carrying portion 112b having a limiting hole 112a and Support portion 112c. The support portion 112c is fixedly connected to the carrying portion 112b, and the other end is slidably coupled to the support tray 121. When the support tray 121 rotates with the support frame 120, the large tray 112 remains stationary under its own weight, and the support portion 112c slides on the upper end surface of the support tray 121.
  • the support frame 120 is held stationary by its own gravity, and the support portion 112c also slides on the upper end surface of the support disk 121.
  • an annular chute concentric with the support disc 121 may be provided on the support disc 121, and the support portion 112c is inserted into the inside of the annular chute.
  • the support skeleton 120 may include a rotating shaft 123 that is coupled to an output shaft of the drive motor.
  • the large tray 112 is kept stationary by its own gravity, and the support portion 112c of the large tray 112 slides on the upper end surface of the support tray 121.
  • the specific form of the conduction unit 130 is not limited as long as the rotation of the support frame 120 can be transmitted to the small tray 111, and the small tray 111 can be rotated about its own axis.
  • the conduction unit 130 may include a gum disposed on the support frame 120, a planetary gear disposed on the small tray 111, and a connection connecting the planetary gear and the small tray 111.
  • the connecting shaft passes through the drive through hole in the large tray 112 such that the small tray 111 and the planetary gear are respectively located on the upper and lower sides of the large tray 112.
  • the diameter of the drive through hole on the large tray 112 is larger than the diameter of the connecting shaft so that the connecting shaft can be rotated in the drive through hole on the large tray 112.
  • the gums on the support frame 120 mesh with the planet gears disposed on the small tray 111.
  • the main function of the large tray 112 is to support the small tray 111.
  • the support skeleton 120 can be driven to rotate about the longitudinal axis L of the reaction chamber 100, and the large tray 112 remains stationary.
  • the gum rotates around the longitudinal axis L of the reaction chamber 100 with the support frame 120, the gum rotates, and since the large tray 112 does not rotate, the connecting shaft does not shift in the circumferential direction of the large tray 112. Therefore, when the gingival support frame 120 is engaged with the planetary gear, the planetary gear rotates about its own axis, and the planetary gear drives the small tray 111 to rotate about its own axis through the connecting shaft.
  • the conduction unit 130 may include a plurality of sliding grooves 131 disposed on the support disk 121, through the support plate The first through hole 132 in the thickness direction of the 121 and the plurality of guides 133 fixedly disposed on the lower end surface of the small tray 111.
  • a plurality of sliding grooves 131 are evenly distributed around the first through holes 132, and a plurality of guiding members 133 are evenly distributed on the same circumference of the lower end surface of the small tray 111, and each sliding groove 131 extends to The edge of the first through hole 132, when the support frame 120 rotates, the plurality of guides 133 on each of the small trays 111 may alternately open from the intersection of the sliding groove 131 and the first through hole 132 Initially cooperates with the sliding groove 131 to rotate the small tray 111 about its own axis.
  • the plurality of guides 133 on each of the small trays 111 may alternately engage with the sliding groove 131 from the intersection of the sliding groove 131 and the first through hole 132" means, at any time, in a small Only one guiding member 133 of the tray 111 cooperates with the sliding groove 131, and the remaining guiding members 133 are located in the first through hole 132, and the guiding member 133 located in the sliding groove 131 enters the first passage along the sliding groove 131. After the hole 132, another guide member 133 adjacent to the guide member enters the sliding groove 131, and so on. Since the large tray 112 carrying the small tray 111 is stationary, the small tray 111 can be rotated about its own axis.
  • the other guide 133 adjacent to the guide 133 is from the other of the sliding groove 131 and the first through hole 132
  • the junction begins to cooperate with the sliding groove 131 to ensure that the small tray 111 can continuously rotate about its own axis.
  • a plurality of guides 133 on each of the small trays 111 are alternately brought into contact with the sliding grooves 131 provided on the support tray 121 so that the small trays 111 can be continuously rotated about their own axes.
  • reaction chamber 100 For ease of understanding, the specific operation of the reaction chamber 100 will be described below in conjunction with Figs. 7a and 7b.
  • FIG. 7a the support disk 121 is rotated counterclockwise.
  • Fig. 7b shows the state in which the support disk 121 of Fig. 7a is rotated counterclockwise by a certain angle.
  • the guide member 133 which cooperates with the sliding groove 131 on the support disk 121 is driven to rotate counterclockwise about the axis of the small tray 111, so that the small tray 111 rotates clockwise about its own axis.
  • the sliding groove 131 may have a circular arc shape, and the number of the sliding grooves 131 provided on each of the supporting disks 121 is the same as the number of the guiding members 133 provided on each of the small trays 111.
  • the number of the guide members 133 on each of the small trays 111 is also not particularly limited.
  • each of the small trays 111 is provided.
  • Each of the three guide members 133 is evenly distributed on the lower end surface of the small tray 111.
  • each of the support trays 121 is provided with three sliding grooves 131.
  • the rotation speed of the small tray 111 is represented by VI, and the rotation speed of the support tray 121 is indicated by V2.
  • the rotation speed VI of the small tray 111, the rotation speed V2 of the support tray 121, and the circumference of the plurality of guides 133 on the small tray 111 in advance, the arc length of each of the sliding grooves 131 can be determined, thereby determining each The radius of the sliding groove 131. Since the plurality of sliding grooves 131 are evenly distributed around the first through holes 132, the positions of the centers of the plurality of sliding grooves 131 can be determined.
  • a second through hole 112d is provided in the middle of each large tray 112. The specific function of setting the second through hole 112d will be described below, and will not be described here.
  • the present invention enables controlled rotation of a small tray on a multi-layer large tray about its own axis, including controlled speed rotation and non-hook speed rotation of the small tray in the set area.
  • the geometry of the sliding groove corresponding to the small tray can be designed according to different working conditions to meet the curve shape of the working condition.
  • the following two methods can be used: First: using the drawing tool according to the required speed ratio Drawing a mathematical curve on the characteristics of uniform rotation, etc., obtaining the geometric coordinates of a single point on the curve, and then connecting the points into a curve and processing into the sliding groove; Second: using the physical object to simulate the trajectory of the small tray and the large tray And further processed into the sliding groove.
  • the curved shape of the sliding groove of each layer can be the same, or can be designed into different curved shapes according to different requirements.
  • the tray unit can generally be made of graphite coated with SiC, or other materials suitable for high temperature and corrosion resistance, such as boron nitride. Since the guide member is to maintain relative movement in the sliding groove, the guide member may be made of a material resistant to high temperature and abrasion, such as a molybdenum alloy.
  • an MOCVD apparatus including a reaction chamber 100, wherein the reaction chamber 100 is the above-described reaction chamber 100 provided by the present invention. Since the small tray 111 in the reaction chamber 100 can be rotated about its own axis, the substrate disposed on the small tray 111 is heated uniformly. And the rotation of the small tray 111 by the conduction unit 130 is used to make the reaction chamber 100 structurally simple. Therefore, the MOCVD apparatus including the reaction chamber 100 also has the above advantages.
  • the MOCVD apparatus may further include a central intake pipe 200 disposed inside the reaction chamber 100, the central intake pipe 200 is provided with a plurality of gas injection holes, and the central intake pipe 200 passes through the support The first through hole 132 on the disk 121 and the second through hole 112d on the large tray 112.
  • the MOCVD apparatus may include a sensing coil 300 disposed around the reaction chamber 100.
  • the induction coils 300 are disposed around the reaction chamber 100 so that the temperatures on the same circumference are equal everywhere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种反应腔(100),包括托盘装置(110)、支撑骨架(120)和传导单元(130),其中:所述托盘装置(110),包括多个小托盘(111)和沿所述反应腔(100)的高度方向设置的多层大托盘(112),每层所述大托盘(112)在周向上都设置有多个所述小托盘(111);所述支撑骨架(120)与所述大托盘(112)同轴设置;所述传导单元(130)设置在所述支撑骨架(120)与所述小托盘(111)之间;当所述支撑骨架(120)或所述托盘装置(110)绕所述反应腔(100)的纵向轴线转动时,利用所述传导单元(130)带动所述小托盘(111)在所述大托盘(112)的径向上环绕所述小托盘(111)自身的轴线按照预定的速度旋转。以及一种包括所述反应腔(100)的MOCVD设备。

Description

反应腔和 MOCVD设备 技术领域
本发明涉及半导体技术, 特别涉及一种反应腔和一种包括该反应腔的
MOCVD设备。 背景技术
气相外延生长方法(VPE ) 包括氢化物气相外延技术(HVPE )和金属 有机化合物化学气相沉积方法(MOCVD )等。 气相外延技术主要是利用 III 族、 II族元素的有机化合物和 V、 VI族元素的氢化物等作为晶体生长原材料, 以热分解反应方式在衬底上进行气相外延, 生长各种 III-V族、 II-VI族化合 物半导体以及它们的多元固溶体的薄层单晶材料,可用于制备高性能的化合 物半导体单晶薄片。气相外延生长可用于外延薄膜特别是高质量的外延薄膜 的生长, 但对衬底材料本身的温度均匀性、反应气体浓度分布状况、 衬底上 方反应场的均匀性等都有着极高的要求,这些均匀性也直接决定生长出的外 延片的质量好坏。
如上所述,加热的均匀性将影响外延均匀性。 目前主要使用的加热方法 包括热传递方法和感应加热方法。对于热传递方法, 一种方式是将 ^"底材料 放置于托盘上, 托盘置于基座上, 加热部件如电阻丝在基座底部加热并通过 石墨材料的托盘的热传导效应来加热衬底材料, 同时利用多区电阻丝加热技 术, 可以保证基座的温度均匀性, 进而改善衬底生长温度的稳定和均匀; 其 它的方式包括部分采用加热反应腔室四周外壁,然后通过热辐射加热衬底材 料。 热传递方法加热速度较慢, 控制过程复杂, 热传导过程中热量除了往衬 底表面传导外, 还会往其他方向传导, 热量利用效率低, 并且对反应腔室水 冷的设计要求较高。对于感应加热方法, 该方法可以将线圏置于衬底下部或 置于托盘四周。 线圏在通高频电流后, 托盘和衬底表面将会出现感生涡流, 从而被迅速加热。 这种感应加热方法加热速度显著提升, 但是, 线圏产生的 磁场在托盘中心和边缘分布不均匀, 将造成托盘的加热不均匀, 进而影响托 盘上的^ "底的加热均匀性。
另外一个影响外延均匀性的因素是气体的浓度分布。目前的进气技术主 要有喷淋头技术和中央进气技术。 另外, 对于小产量的 2至 8片机器, 直接 从托盘或机台的一侧吹至另一侧。在这些技术中, 不可避免的就是气体进入 腔室之后,在输运过程中,随着内部温度的提升,气体相互之间会发生反应。 这将导致衬底表面近气体入口端和远气体入口端的反应气体浓度不同,从而 影响衬底上部的反应场均匀性, 进而导致外延片生长不均匀, 同时外延片生 长的不均匀将加剧在后续外延生长过程中衬底表面出现的裂纹分布、位错密 度等缺陷, 最终严重地影响生长盾量。
加热的均匀性和气体的浓度分布的均匀性将共同影响反应腔室内的反 应场分布的均匀性, 进而影响外延均匀性和质量。
为了改善受到上述因素影响的外延生长的均匀性, 出现了很多改进措 施,比如说 Veeco公司和 Thomas Swan公司的进气系统的喷淋头设计和托盘 高速旋转的解决方法, 再比如 Axitron公司采用的中央分层进气系统和气垫 托盘行星旋转技术。 然而, 这些技术都对机械结构精度和加工要求很高, 同 时设备的安装维护困难。
以 Axitron公司的气垫托盘行星旋转技术为例, 该公司针对反应腔室采 用了中央分层进气系统和气垫托盘行星旋转技术。 请参阅图 1 , 其示出了气 垫托盘行星旋转技术的示意图, 其中, 大托盘上设置有多个小托盘, 工艺过 程中,在大托盘带动小托盘进行公转的同时,小托盘还可以进行自转。其中, 大托盘和小托盘均采用气体悬浮旋转, 通过气垫的设计以及气路结构, 使得 大托盘上的小托盘产生自转。
然而, Axitron公司的上述反应腔室中采用了电阻多区控温方法, 除加 热程序复杂外, 升温速度慢, 设备产能较低也是严重的缺点。 另外, 行星式 旋转方法虽然能满足外延工艺的要求,但为实现行星式腔室的旋转所采用的 气垫结构则必须设计成复杂的气路结构,并且在旋转过程中必须考虑到腔室 内部复杂的流体变化。 气垫进气口的设计、 加工安装、 设备维护使用都非常 复杂。
因此, 如何在满足外延工艺要求的同时降低 MOCVD设备的成本成为 本领域亟待解决的技术问题。 发明内容
本发明的目的在于提供一种反应腔和一种包括该反应腔的 MOCVD设 备,该 MOCVD在可以满足外延工艺要求的同时具有筒单的结构,成本较低。
为了实现上述目的, 作为本发明的一个方面, 提供一种反应腔, 其中, 该反应腔包括托盘装置、 支撑骨架和传导单元, 其中:
所述托盘装置,包括多个小托盘和沿所述反应腔的高度方向设置的多层 大托盘, 每层所述大托盘在周向上都设置有多个小托盘;
所述支撑骨架与所述大托盘同轴设置;
所述传导单元设置在所述支撑骨架与所述小托盘之间;
当所述支撑骨架或所述托盘装置绕所述反应腔的纵向轴线转动时,利用 所述传导单元带动所述小托盘环绕所述小托盘自身的轴线按照预定的速度 旋转。
优选地, 所述大托盘上设置有用于容置多个所述小托盘的多个限位孔。 优选地,在每层所述大托盘中, 多个所述限位孔均勾地分布在同一圆周 上, 且该圆周的圆心位于所述反应腔的纵向轴线上。
优选地,所述支撑骨架包括与多个所述大托盘一一对应的多个支撑盘和 将该多个支撑盘串连的支撑件,每个所述大托盘都包括具有限位孔的承载部 和支撑部, 所述限位孔设置在所述承载部上, 所述支撑部设置在所述承载部 的下端面上,且每个所述大托盘上的所述承载部和与该大托盘相对应的支撑 盘可滑动地连接。
优选地,所述支撑骨架包括旋转轴,该旋转轴设置在所述支撑骨架的底 部, 并且所述旋转轴与所述反应腔同轴设置。
优选地,所述传导单元包括设置在所述支撑盘上的多条滑动凹槽、贯穿 所述支撑盘厚度方向的第一通孔和固定设置在所述小托盘的下端面上的多 个引导件, 所述多条滑动凹槽环绕所述第一通孔均勾分布, 多个所述引导件 均匀地分布在所述小托盘的下端面上的同一圆周上,且每条所述滑动凹槽都 延伸至所述第一通孔的边缘, 当所述支撑骨架转动时, 所述小托盘上的多个 所述引导件能够交替地从所述滑动凹槽与所述第一通孔的交汇处开始与所 述滑动凹槽配合, 以使得所述小托盘绕自身轴线转动。
优选地,所述滑动凹槽为圆弧形,且每个所述支撑盘上设置的所述滑动 凹槽的数量与每个所述小托盘上设置的所述引导件的数量相同。
优选地, 每个所述大托盘的中部都设置有第二通孔。
作为本发明的另一个方面, 提供一种 MOCVD设备, 该 MOCVD设备 包括反应腔, 其中, 该反应腔为本发明所提供的上述反应腔。
优选地, 所述 MOCVD设备包括设置在所述反应腔内部的中央进气管, 该中央进气管上设置有多个喷气孔,所述中央进气管穿过所述支撑盘上的所 述第一通孔和所述大托盘上的所述第二通孔。
在本发明所提供的反应腔中,所述大托盘与所述支撑骨架同轴设置,允 许本发明所提供的反应腔中设置多层大托盘,使得本发明所提供的反应腔可 以同时处理多片衬底。 当支撑骨架或托盘装置中的一个旋转时, 小托盘绕自 身轴线转动, 从而使得设置在小托盘上的衬底温度均匀, 从而可以满足夕卜延 工艺要求。 并且, 利用传导单元带动小托盘绕自身轴线转动, 结构筒单, 降 低了包括所述反应腔的 MOCVD设备的总体成本。 附图说明 附图是用来提供对本发明的进一步理解,并且构成说明书的一部分, 与 下面的具体实施方式一起用于解释本发明, 但并不构成对本发明的限制。在 附图中:
图 1是现有的反应腔的示意图;
图 2是本发明所提供的反应腔的第一种实施方式的示意图;
图 3是本发明所提供的反应腔第二种实施方式的俯视图;
图 4是图 3中的反应腔的立体剖视示意图;
图 5是图 3中所示的反应腔的小托盘的主剖视图;
图 6是图 3中所示的反应腔的支撑盘的俯视图;
图 7a和图 7b是本发明所提供的反应腔的一层支撑盘及小托盘的运动关 系图;
图 8是图 3中所示的反应腔的大托盘的俯视图;
图 示大托盘与支撑盘的连接关系的示意图;
图 10是本发明所提供的 MOCVD的结构示意图。 附图标记说明:
100: 反应腔 110: 托盘装置
111 : 小托盘 112: 大托盘
120: 支撑骨架 121 : 支撑盘
122: 支撑件 123: 旋转轴
130: 传导单元 131 : 滑动凹槽
132: 第一通孔 133: 引导件
200: 中央进气管 300: 感应线圏
111a: 衬底槽 112a: 限位孔
112b: 承载部 112c: 支撑部
112d: 第二通孔 具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。 应当理解的是, 此处所描述的具体实施方式仅用于说明和解释本发明, 并不用于限制本发 明。
如图 2至图 4所示, 作为本发明的一个方面, 提供一种反应腔 100, 其 中, 该反应腔 100包括托盘装置 110、 支撑骨架 120和传导单元 130, 其中: 托盘装置 110包括多个小托盘 111和沿反应腔 100的高度方向设置的多 层大托盘 112, 每层大托盘 112在周向上都设置有多个小托盘 111; 大托盘 112与支撑骨架 120同轴设置; 传导单元 130设置在支撑骨架 120与小托盘 111之间; 当支撑骨架 120或托盘装置 110绕反应腔 100的纵向轴线 L转动 时, 利用传导单元 130带动小托盘 111在大托盘 112的径向上环绕该小托盘 111 自身的轴线按照预定的速度旋转。
应当理解的是, 小托盘 111用于承载衬底, 支撑骨架 120用于支撑托盘 装置 110, 每层大托盘 112上的小托盘 111和支撑骨架 120之间都设置有传 导单元 130。 可以根据生产需要(例如, 需要在衬底上沉积的薄膜的厚度、 薄膜的沉积速度等)人为地设定小托盘 111 自转的预定速度。
在利用本发明所提供的反应腔 100进行金属有机化合物化学气相淀积 工艺时,通常利用环绕反应腔 100的感应线圏对反应腔 100进行加热。因此, 在反应腔 100中, 同一圆周上的温度几乎是相等的, 而半径不同的圆周上的 温度是不相同的。在利用反应腔 100进行金属有机化合物化学气相淀积工艺 时, 小托盘 111绕自身轴线转动, 可以使得小托盘 111上的衬底交替地进入 不同的温度区域, 从而使所述衬底的受热更加均匀, 进而满足金属有机化合 物化学气相淀积工艺的需求。
在本发明中,由于支撑骨架 120、托盘装置 110和反应腔 100同轴设置, 因此,反应腔 100的纵向轴线 L即为支撑骨架 120与托盘装置 110的纵向轴 线。 将支撑骨架 120和托盘装置 110同轴设置的优点在于, 可以使支撑骨架 120能够稳定地支撑托盘装置 110的多层大托盘 112, 尤其是在多层大托盘 112同时相对于支撑骨架 120转动时。
并且, 这种利用设置在小托盘 111和支撑骨架 120之间的传导单元 130 使小托盘 111发生自转的结构相对较筒单,从而可以筒化本发明所提供的反 应腔 100的总体结构, 低反应腔 100的成本。
在本发明中,对小托盘 111如何设置在大托盘 112上并没有特殊的限制, 只要使得小托盘 111可以在传导单元 130的带动下绕自身的轴线旋转即可。 通常, 可以在大托盘 112上设置多个用于容置小托盘 111的限位孔 112a (如 图 8所示), 小托盘 111可以在限位孔 112a中旋转。 为了便于设置并且使小 托盘 111上的衬底处于相同的反应条件(即, 反应温度) 中, 优选地, 在每 层大托盘 112中, 多个限位孔 112a均勾地分布在同一圆周上, 且该圆周的 圆心位于反应腔 100的纵向轴线 L上。
为了提高金属有机化合物化学气相淀积工艺的生产效率,可以将反应腔 100设置为每个小托盘 111上均可以承载多个衬底。 如图 4和图 5所示, 可 以在每个小托盘 111上都设置多个衬底槽 llla。在本发明所提供的实施方式 中, 每个小托盘 111上都设置有两个衬底槽 111a (如图 5所示), 但是, 本 发明并不限于此。
在本发明中,对支撑骨架 120的具体结构也没有限制,只要可以支撑多 层大托盘 112即可。作为本发明的一种实施方式,如图 4所示,支撑骨架 120 可以包括与多个大托盘 112——对应的多个支撑盘 121 和将该多个支撑盘 121 串连的支撑件 122, 且每个大托盘 112和与该大托盘 112相对应的支撑 盘 121可滑动地连接。
将大托盘 112设置为与支撑盘 121可滑动地连接的目的在于,当支撑骨 架 120绕轴线 L旋转时, 大托盘 112不发生转动。 或者, 当大托盘 112绕轴 线 L旋转时, 支撑骨架 120不发生转动。将反应腔 100设置为大托盘 112和 支撑骨架 120中的一个发生旋转, 另一个静止不转的优点在于, 既可以确保 小托盘 111绕自身轴线转动, 又可以筒化驱动装置的结构。 具体地讲, 在这 种情况下,只需要将支撑骨架 120和大托盘 112中的一者与驱动电机的输出 轴相连即可, 无需其他的传动装置。
在本发明中, 为了便于设置并使反应腔 100的结构更加筒单, 优选地, 如图 4所示, 可以将支撑骨架 120设置为包括旋转轴 123, 该旋转轴与反应 腔 100同轴设置。 即, 旋转轴 123的纵向轴线为反应腔 100的纵向轴线 L。 将旋转轴 123与驱动电机的输出轴相连, 当驱动电机转动时, 可以带动旋转 轴 123旋转,从而使得支撑骨架 120绕反应腔 100的纵向轴线 L转动,传导 单元 130将支撑骨架 120的转动传递给小托盘 111 , 使小托盘 111绕自身轴 线自转。应当理解的是,在支撑骨架 120旋转时,托盘装置 110是不转动的。
如图 4中所示, 通常, 可以将旋转轴 123设置在支撑骨架 120的底部, 并且通过连接板与支撑件 122相连。
为了实现大托盘 112与支撑盘 121之间的可滑动连接,大托盘 112可以 具有以下结构: 如图 2、 图 8和图 9所示, 大托盘 112包括具有限位孔 112a 的承载部 112b和支撑部 112c。该支撑部 112c—端与承载部 112b固定连接, 另一端与支撑盘 121可滑动地连接。 当支撑盘 121随支撑骨架 120旋转时, 大托盘 112在自身的重力作用下保持静止, 支撑部 112c在支撑盘 121的上 端面上滑动。 或者, 当大托盘 112转动时, 支撑骨架 120在自身的重力作用 下保持静止, 支撑部 112c同样在支撑盘 121的上端面上滑动。 为了确保大 托盘 112与支撑盘 121同轴, 优选地, 可以在支撑盘 121上设置与该支撑盘 121同心的环形滑槽, 支撑部 112c插入环形滑槽内部。
为了筒化结构, 支撑骨架 120可以包括旋转轴 123, 该旋转轴 123与驱 动电机的输出轴相连。 如上所述, 支撑骨架 120旋转时, 大托盘 112在自身 的重力作用下保持静止, 大托盘 112的支撑部 112c在支撑盘 121的上端面 上滑动。 在本发明中,对传导单元 130的具体形式并不作限定,只要可以将支撑 骨架 120的转动传递给小托盘 111 , 并使小托盘 111绕自身轴线转动即可。
上文中详细介绍了支撑骨架 120和托盘装置 110的具体结构,下文中将 详细介绍传导单元 130的具体结构。
作为本发明的一种实施方式,如图 2所示,传导单元 130可以包括设置 在支撑骨架 120上的齿圏、设置在小托盘 111上的行星齿轮、 连接该行星齿 轮和小托盘 111的连接轴以及设置在大托盘 112上的传动通孔。连接轴穿过 大托盘 112上的传动通孔,使得小托盘 111和所述行星齿轮分别位于大托盘 112的上下两侧。 与此处, 大托盘 112上的传动通孔的直径大于所述连接轴 的直径, 以使得所述连接轴可以在大托盘 112上的传动通孔中转动。 支撑骨 架 120上的齿圏与设置在小托盘 111上的行星齿轮相啮合。在图 2中所示的 结构中, 大托盘 112的主要作用为用于支撑小托盘 111。
利用图 2中所示的反应腔 100进行沉积工艺时, 可以驱动支撑骨架 120 绕反应腔 100的纵向轴线 L转动, 大托盘 112保持静止。 当所述齿圏随支撑 骨架 120绕反应腔 100的纵向轴线 L转动时, 所述齿圏转动, 由于大托盘 112不转动, 因此, 所述连接轴在大托盘 112的周向上并无位移, 因此, 支 撑骨架 120上的齿圏与所述行星齿轮啮合时, 该行星齿轮绕自身的轴线自 转, 该行星齿轮通过连接轴带动小托盘 111绕自身轴线自转。
为了筒化反应腔 100的结构并且为了便于加工支撑盘 121 , 优选地, 如 图 5和图 6所示,传导单元 130可以包括设置在支撑盘 121上的多条滑动凹 槽 131、 贯穿支撑盘 121厚度方向的第一通孔 132和固定设置在小托盘 111 的下端面上的多个引导件 133。
具体地, 多条滑动凹槽 131环绕所述第一通孔 132均匀分布, 多个引导 件 133均匀地分布在小托盘 111的下端面的同一圆周上,且每条滑动凹槽 131 都延伸至所述第一通孔 132的边缘,当支撑骨架 120转动时,每个小托盘 111 上的多个引导件 133可以交替地从滑动凹槽 131与第一通孔 132的交汇处开 始与滑动凹槽 131配合, 以使得小托盘 111绕自身轴线转动。
"每个小托盘 111上的多个引导件 133可以交替地从滑动凹槽 131与第 一通孔 132的交汇处开始与滑动凹槽 131配合" 指的是, 无论在任何时刻, 在一个小托盘 111中只有一个引导件 133与滑动凹槽 131相配合,其余的引 导件 133则位于第一通孔 132中, 当位于滑动凹槽 131中的引导件 133沿滑 动凹槽 131进入第一通孔 132中之后, 与该引导件相邻的另一个引导件 133 进入滑动凹槽 131中, 依次类推。 由于承载小托盘 111的大托盘 112是固定 不动的, 因此, 小托盘 111可以绕自身轴线转动。
当一个引导件 133到达滑动凹槽 131的一端与第一通孔 132的交汇处 时, 与该引导件 133相邻的另一个引导件 133从滑动凹槽 131与第一通孔 132的另一个交汇处开始与滑动凹槽 131配合, 从而确保小托盘 111可以持 续地绕自身轴线转动。每个小托盘 111上的多个引导件 133交替地与设置在 支撑盘 121上的滑动凹槽 131接触, 以使小托盘 111可以持续地绕自身的轴 线转动。
为了便于理解,下面将结合图 7a和图 7b来描述反应腔 100的具体操作 过程。
在图 7a中, 支撑盘 121作逆时针转动。 图 7b为图 7a中的支撑盘 121 逆时针转过一定角度后的状态。 支撑盘 121逆时针转动时, 会带动与支撑盘 121上的滑动凹槽 131相配合的引导件 133绕小托盘 111的轴线逆时针滑动, 从而使得小托盘 111绕自身的轴线作顺时针转动。
为了便于实现,滑动凹槽 131可以为圆弧形,且每个支撑盘 121上设置 的滑动凹槽 131的数量与每个小托盘 111上设置的引导件 133的数量相同。
在本发明中,对每个小托盘 111上的引导件 133的个数也没有特殊限制, 例如, 在图 5、 图 7a和图 7b中所示的具体实施方式中, 每个小托盘 111上 均设置有三个引导件 133 , 该三个引导件 133在小托盘 111的下端面上均匀 分布。 同样地, 每个支撑盘 121上都设置有三条滑动凹槽 131。 利用 VI表示小托盘 111的自转速度, 利用 V2表示支撑盘 121的自转 速度, 因此, 多条滑动凹槽 131的总弧长 L131、 多个引导件 133所在的圆 周的周长 L133、 小托盘 111的自转速度 VI和支撑盘 121的自转速度 V2满 足以下关系:
Figure imgf000013_0001
因此, 通过预先设定小托盘 111的自转速度 VI、 支撑盘 121的自转速 度 V2以及多个引导件 133在小托盘 111上的圆周, 可以确定每条滑动凹槽 131的弧长, 进而确定每条滑动凹槽 131的半径。 由于多条滑动凹槽 131环 绕第一通孔 132均匀分布, 因此可以确定多条滑动凹槽 131的圆心的位置。
如图 8中所示, 每个大托盘 112的中部都设置有第二通孔 112d。 下文 中将介绍设置第二通孔 112d的具体作用, 这里先不赘述。
综上所述,本发明能够实现多层大托盘上的小托盘绕其自身的轴线的可 控旋转, 该可控旋转包括小托盘在设定区域内的勾速旋转和非勾速旋转。
小托盘对应的滑动凹槽的几何形状可以根据不同的工况要求而设计成 满足该工况要求的曲线形状, 例如, 可以采用以下两种方式实现: 第一: 利 用画图工具根据需要的转速比、是否匀速转动等特点画出数学曲线, 得到曲 线上单点的几何坐标,进而将各点连接成曲线并加工成所述滑动凹槽;第二: 利用实物来模拟小托盘、 大托盘的轨迹, 进而加工成所述滑动凹槽。 并且, 可以理解的是, 每一层的滑动凹槽的曲线形状可以是一样的, 也可以根据不 同的要求, 设计成不同的曲线形状。
托盘装置一般可用包覆 SiC的石墨制成,也可选择其他适合耐高温耐腐 蚀的材料, 如氮化硼。 由于引导件要在滑动凹槽中保持相对运动, 引导件可 选用耐高温耐磨损的材料, 比如钼合金。
作为本发明的另外一个方面, 如图 10所示, 提供一种 MOCVD设备, 该 MOCVD设备包括反应腔 100, 其中, 该反应腔 100为本发明所提供的上 述反应腔 100。 由于反应腔 100内的小托盘 111可以绕自身轴线旋转,因此设置在小托 盘 111上的衬底受热均匀。 并且利用通过传导单元 130带动小托盘 111旋转 使得反应腔 100结构筒单, 成^交低。 因此, 包括反应腔 100的 MOCVD设 备也具有上述优点。
为了进一步筒化 MOCVD设备的结构, 优选地, 该 MOCVD设备还可 以包括设置在反应腔 100内部的中央进气管 200, 该中央进气管 200上设置 有多个喷气孔, 中央进气管 200穿过支撑盘 121上的第一通孔 132和大托盘 112上的第二通孔 112d。
同样为了筒化 MOCVD设备的结构, 优选地, 该 MOCVD设备可以包 括环绕反应腔 100设置的感应线圏 300。 感应线圈 300环绕反应腔 100设置 可使得同一圆周上的温度处处相等。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限 于上述实施方式中的具体细节, 在本发明的技术构思范围内, 可以对本发明 的技术方案进行多种筒单变型, 这些筒单变型均属于本发明的保护范围。
另外需要说明的是, 在上述具体实施方式中所描述的各个具体技术特 征, 在不矛盾的情况下, 可以通过任何合适的方式进行组合。 为了避免不必 要的重复, 本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其 不违背本发明的思想, 其同样应当视为本发明所公开的内容。

Claims

UP- 132318-98 权 利 要 求 书
1、 一种反应腔, 其特征在于, 该反应腔包括托盘装置、 支撑骨架和传 导单元, 其中:
所述托盘装置, 包括沿所述反应腔的高度方向设置的多层大托盘,每层 所述大托盘在周向上都设置有多个小托盘;
所述支撑骨架与所述大托盘同轴设置;
所述传导单元设置在所述支撑骨架与所述小托盘之间;
当所述支撑骨架或所述大托盘绕所述反应腔的纵向轴线转动时,利用所 述传导单元带动所述小托盘环绕所述小托盘自身的轴线按照预定的速度旋 转。
2、 根据权利要求 1所述的反应腔, 其特征在于, 所述支撑骨架包括与 多个所述大托盘一一对应的多个支撑盘和将该多个支撑盘串连的支撑件,每 个所述大托盘都包括具有限位孔的承载部和支撑部,所述限位孔设置在所述 承载部上, 所述支撑部设置在所述承载部的下端面上, 且每个所述大托盘上 的所述承载部借助所述支撑部而与同该大托盘相对应的支撑盘可滑动地连 接。
3、 根据权利要求 2所述的反应腔, 其特征在于, 所述传导单元包括设 置在所述支撑盘上的多条滑动凹槽、贯穿所述支撑盘厚度方向的第一通孔和 固定设置在所述小托盘的下端面上的多个引导件,所述多条滑动凹槽环绕所 述第一通孔均勾分布,多个所述引导件均勾地分布在所述小托盘的下端面上 的同一圆周上, 且每条所述滑动凹槽都延伸至所述第一通孔的边缘, 当所述 支撑骨架转动时,所述小托盘上的多个所述引导件能够交替地从所述滑动凹 槽与所述第一通孔的交汇处开始与所述滑动凹槽配合,以使得所述小托盘绕 自身轴线转动。
4、 根据权利要求 3所述的反应腔, 其特征在于, 所述滑动凹槽为圆弧 形,且每个所述支撑盘上设置的所述滑动凹槽的数量与每个所述小托盘上设 置的所述引导件的数量相同。
5、 根据权利要求 4所述的反应腔, 其特征在于, 所述支撑骨架包括旋 转轴, 该旋转轴设置在所述支撑骨架的底部, 并且所述旋转轴与所述反应腔 同轴设置。
6、 根据权利要求 1所述的反应腔, 其特征在于, 所述大托盘上设置有 多个用于容置所述小托盘的限位孔。
7、根据权利要求 6所述的反应腔, 其特征在于, 在每层所述大托盘中, 多个所述限位孔均勾地分布在同一圆周上,且该圆周的圆心位于所述反应腔 的纵向轴线上。
8、 根据权利要求 1至 7中任意一项所述的反应腔, 其特征在于, 每个 所述大托盘的中部都设置有第二通孔。
9、 一种 MOCVD设备, 该 MOCVD设备包括反应腔, 其特征在于, 该 反应腔为权利要求 1至 8中任意一项所述的反应腔。
10、 根据权利要求 9所述的 MOCVD设备, 其特征在于, 该 MOCVD 设备包括设置在所述反应腔内部的中央进气管,该中央进气管上设置有多个 喷气孔,所述中央进气管穿过所述支撑盘上的所述第一通孔和所述大托盘上 的所述第二通孔。
PCT/CN2013/089083 2013-08-02 2013-12-11 反应腔和mocvd设备 WO2015014069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310335774.5 2013-08-02
CN201310335774.5A CN104342751B (zh) 2013-08-02 2013-08-02 反应腔和mocvd设备

Publications (1)

Publication Number Publication Date
WO2015014069A1 true WO2015014069A1 (zh) 2015-02-05

Family

ID=52430928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089083 WO2015014069A1 (zh) 2013-08-02 2013-12-11 反应腔和mocvd设备

Country Status (3)

Country Link
CN (1) CN104342751B (zh)
TW (1) TWI486484B (zh)
WO (1) WO2015014069A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786502A (zh) * 2021-02-19 2021-05-11 厦门乾照光电股份有限公司 一种石墨载盘装置
CN113913927A (zh) * 2021-08-25 2022-01-11 华灿光电(苏州)有限公司 金属有机化学气相沉积设备及其使用方法
CN114836826A (zh) * 2022-04-15 2022-08-02 江西兆驰半导体有限公司 一种石墨基座
CN115323339A (zh) * 2022-08-01 2022-11-11 厦门金鹭特种合金有限公司 一种工装及物理气相沉积设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111088526B (zh) * 2019-12-27 2021-05-11 季华实验室 一种多片装载的碳化硅外延生长设备
CN114250433A (zh) * 2020-09-22 2022-03-29 东莞令特电子有限公司 用于电弧喷涂应用的掩蔽托盘组件
CN113088934A (zh) * 2020-12-14 2021-07-09 芯三代半导体科技(苏州)有限公司 旋转装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201406469Y (zh) * 2009-04-10 2010-02-17 广东昭信半导体装备制造有限公司 气相沉积设备反应腔的加热装置
CN102719808A (zh) * 2011-03-30 2012-10-10 北京北方微电子基地设备工艺研究中心有限责任公司 托盘及具有其的基片加工设备
CN102953046A (zh) * 2011-08-26 2013-03-06 北京北方微电子基地设备工艺研究中心有限责任公司 Cvd反应腔及cvd设备
US20130171350A1 (en) * 2011-12-29 2013-07-04 Intermolecular Inc. High Throughput Processing Using Metal Organic Chemical Vapor Deposition
US20130174781A1 (en) * 2010-12-16 2013-07-11 Mingwei Zhu Gallium nitride-based led fabrication with pvd-formed aluminum nitride buffer layer
CN103205731A (zh) * 2012-03-21 2013-07-17 江苏汉莱科技有限公司 一种mocvd新反应系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM241433U (en) * 2003-12-08 2004-08-21 Jian-An Jang Metallic organic chemical vapor deposition device
KR100587688B1 (ko) * 2004-07-28 2006-06-08 삼성전자주식회사 화학 기상 증착 장치
DE102004056170A1 (de) * 2004-08-06 2006-03-16 Aixtron Ag Vorrichtung und Verfahren zur chemischen Gasphasenabscheidung mit hohem Durchsatz
US7967911B2 (en) * 2006-04-11 2011-06-28 Applied Materials, Inc. Apparatus and methods for chemical vapor deposition
TWI388688B (zh) * 2006-04-11 2013-03-11 Applied Materials Inc 化學氣相沈積法及設備
TWI398545B (zh) * 2010-04-29 2013-06-11 Chi Mei Lighting Tech Corp 有機金屬化學氣相沉積機台
CN102485953B (zh) * 2010-12-01 2014-07-30 北京北方微电子基地设备工艺研究中心有限责任公司 托盘装置及结晶膜生长设备
CN102560434B (zh) * 2010-12-13 2014-10-22 北京北方微电子基地设备工艺研究中心有限责任公司 金属有机化合物化学气相沉积设备
CN102560636B (zh) * 2010-12-14 2016-03-30 北京北方微电子基地设备工艺研究中心有限责任公司 一种基片承载装置及应用该装置的基片处理设备
CN102560431B (zh) * 2010-12-21 2015-02-25 北京北方微电子基地设备工艺研究中心有限责任公司 金属有机化学气相沉积设备及其腔室组件
KR101306315B1 (ko) * 2011-01-11 2013-09-09 주식회사 디엠에스 화학기상증착 장치
JP2012195565A (ja) * 2011-02-28 2012-10-11 Hitachi Kokusai Electric Inc 基板処理装置、基板処理方法及び半導体装置の製造方法
CN102691100B (zh) * 2011-03-22 2015-01-14 北京北方微电子基地设备工艺研究中心有限责任公司 工艺腔室装置和具有该工艺腔室装置的外延设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201406469Y (zh) * 2009-04-10 2010-02-17 广东昭信半导体装备制造有限公司 气相沉积设备反应腔的加热装置
US20130174781A1 (en) * 2010-12-16 2013-07-11 Mingwei Zhu Gallium nitride-based led fabrication with pvd-formed aluminum nitride buffer layer
CN102719808A (zh) * 2011-03-30 2012-10-10 北京北方微电子基地设备工艺研究中心有限责任公司 托盘及具有其的基片加工设备
CN102953046A (zh) * 2011-08-26 2013-03-06 北京北方微电子基地设备工艺研究中心有限责任公司 Cvd反应腔及cvd设备
US20130171350A1 (en) * 2011-12-29 2013-07-04 Intermolecular Inc. High Throughput Processing Using Metal Organic Chemical Vapor Deposition
CN103205731A (zh) * 2012-03-21 2013-07-17 江苏汉莱科技有限公司 一种mocvd新反应系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786502A (zh) * 2021-02-19 2021-05-11 厦门乾照光电股份有限公司 一种石墨载盘装置
CN113913927A (zh) * 2021-08-25 2022-01-11 华灿光电(苏州)有限公司 金属有机化学气相沉积设备及其使用方法
CN114836826A (zh) * 2022-04-15 2022-08-02 江西兆驰半导体有限公司 一种石墨基座
CN114836826B (zh) * 2022-04-15 2023-08-18 江西兆驰半导体有限公司 一种石墨基座
CN115323339A (zh) * 2022-08-01 2022-11-11 厦门金鹭特种合金有限公司 一种工装及物理气相沉积设备
CN115323339B (zh) * 2022-08-01 2023-12-05 厦门金鹭特种合金有限公司 一种工装及物理气相沉积设备

Also Published As

Publication number Publication date
CN104342751A (zh) 2015-02-11
CN104342751B (zh) 2017-07-21
TWI486484B (zh) 2015-06-01
TW201506197A (zh) 2015-02-16

Similar Documents

Publication Publication Date Title
TWI486484B (zh) Reaction chamber and MOCVD device
TWI486480B (zh) Pallet devices, reaction chambers and metal organic compounds Chemical vapor deposition (MOCVD) equipment
US6837940B2 (en) Film-forming device with a substrate rotating mechanism
KR101313524B1 (ko) 성막 장치와 성막 방법
WO2020244357A1 (zh) 加热装置、包括该加热装置的cvd设备
CN110512192B (zh) 一种化学气相沉积行星托盘装置及进气方法
TW201145447A (en) Semiconductor thin-film manufacturing method, seminconductor thin-film manufacturing apparatus, susceptor, and susceptor holding tool
CN103726103A (zh) 一种反应腔室
CN202347096U (zh) 一种气相沉积设备
KR100943090B1 (ko) 대면적 화학기상증착기용 유도가열장치
CN218321744U (zh) 外延沉积设备
TWI490367B (zh) 金屬有機化合物化學氣相沉積方法及其裝置
CN109423623B (zh) 气相沉积炉的均匀供气装置及气相沉积炉
CN220079184U (zh) 一种多通道化学气相沉积炉
CN103603038B (zh) 具有水平式多孔喷淋装置的光辅助mocvd反应器
CN114855268B (zh) 一种用于多片生长氮化镓及其合金的hvpe设备
US20120321790A1 (en) Rotation system for thin film formation
CN212375420U (zh) 一种新型园桶形对称多片碳化硅外延生长反应管结构
CN109487239B (zh) 旋转托盘固定装置
CN117926208A (zh) 径向热传导的mocvd设备
CN117821928A (zh) 一种mocvd半导体外延设备的喷淋匀气结构
CN117926209A (zh) 回转式mocvd设备
CN118086862A (zh) 相对旋转式mocvd设备
JP2018082041A (ja) 有機金属化学気相成長装置
JP2011171589A (ja) 気相成長装置および化合物半導体基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890373

Country of ref document: EP

Kind code of ref document: A1