WO2015012578A1 - 부유식 해상구조물의 단열시스템 - Google Patents

부유식 해상구조물의 단열시스템 Download PDF

Info

Publication number
WO2015012578A1
WO2015012578A1 PCT/KR2014/006668 KR2014006668W WO2015012578A1 WO 2015012578 A1 WO2015012578 A1 WO 2015012578A1 KR 2014006668 W KR2014006668 W KR 2014006668W WO 2015012578 A1 WO2015012578 A1 WO 2015012578A1
Authority
WO
WIPO (PCT)
Prior art keywords
cofferdam
temperature
lng
trunk deck
hull
Prior art date
Application number
PCT/KR2014/006668
Other languages
English (en)
French (fr)
Inventor
유병용
문영식
장재호
김지은
신정섭
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130086266A external-priority patent/KR20150011438A/ko
Priority claimed from KR1020130086269A external-priority patent/KR20150011440A/ko
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to US14/907,244 priority Critical patent/US20160159438A1/en
Priority to RU2016105234A priority patent/RU2016105234A/ru
Priority to CN201480049948.4A priority patent/CN105531184A/zh
Priority to JP2016529707A priority patent/JP2016531038A/ja
Publication of WO2015012578A1 publication Critical patent/WO2015012578A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/68Panellings; Linings, e.g. for insulating purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2/14Heating; Cooling of liquid-freight-carrying tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the present invention relates to a thermal insulation system of a floating offshore structure, and more particularly, to reduce heat transfer through at least one of a ballast tank, a trunk deck space and a side passage way in contact with the trunk deck.
  • the present invention relates to an insulation system of floating offshore structures that can reduce the BOR (Boil-off Rate).
  • natural gas is transported in gaseous state through onshore or offshore gas piping, or stored in LNG carriers in the form of liquefied liquefied natural gas (LNG). Is carried.
  • LNG liquefied liquefied natural gas
  • Such LNG is obtained by cooling natural gas to cryogenic temperature, for example, approximately -163 ° C., and its volume is reduced to approximately 1/600 than that of natural gas in gas state, and thus is suitable for long distance transportation through sea.
  • LNG may be transported through the sea in LNG carriers to be unloaded at land requirements, or may be transported through the sea in LNG RV (LNG Regasification Vessel) to reach the land requirements and then regasified to be unloaded as natural gas.
  • LNG carriers and LNG RVs are equipped with LNG storage tanks (also called cargo holds) that can withstand the cryogenic temperatures of LNG.
  • LNG FPSO is a marine structure used to directly liquefy the produced natural gas in the sea to store in the storage tank, and to transport the LNG stored in the storage tank to the LNG carrier if necessary.
  • LNG FSRU is an offshore structure that stores LNG unloaded from LNG carriers in a storage tank at a distance far from the land, and then vaporizes LNG as needed to supply it to land demand.
  • Such LNG storage tanks are classified into independent tank type and membrane type according to whether the insulation material for storing LNG at low temperature directly affects the load of cargo.
  • the tank is divided into MOSS type and IHI-SPB type, and the membrane type storage tank is divided into GT NO 96 type and TGZ Mark III type.
  • GT NO 96 a membrane type of conventional LNG storage tanks, has a primary barrier and a secondary barrier made of Invar steel (36% Ni) 0.5 to 0.7 mm thick. It is installed in two layers on the inner surface, the primary sealing wall is located on the LNG side, the secondary sealing wall is installed so as to be located on the inner surface side of the hull to wrap the LNG double.
  • the primary insulation wall is installed in the space between the primary sealing wall and the secondary sealing wall
  • the secondary insulation wall is installed in the space between the secondary sealing wall and the inner hull. The wall minimizes the transfer of heat from the LNG storage tank to the LNG.
  • LNG stored in the LNG storage tank is stored at about -163 ° C., which is a vaporization temperature at atmospheric pressure, when heat is transferred to LNG, LNG is vaporized to generate boil off gas (hereinafter referred to as 'BOG').
  • a space called a cofferdam is provided between LNG storage tanks to prevent damage caused by low temperature of LNG.
  • the cofferdam can be made of cryogenic materials such as stainless steel or aluminum, but the use of cryogenic materials can dramatically increase the price of ships.
  • the temperature of the cofferdam is controlled to 5 ° C, and the bulkhead of the cofferdam is manufactured from relatively inexpensive steel that withstands the room temperature.
  • the technical problem to be achieved by the present invention is to reduce the heat transfer through at least one of the ballast tank, trunk deck space and side passage way in contact with the trunk deck to reduce the BOR (Boil-off Rate) To provide a thermal insulation system of floating offshore structures that can be reduced.
  • insulation is provided in at least one of a ballast tank, a trunk deck space, and a side passage way in contact with the trunk deck, from the outer area of the hull to the interior of the LNG storage tank.
  • Insulation system of a floating offshore structure characterized in that to reduce the BOR (Boil-off Rate) generated by the heat transfer can be provided.
  • the temperature of the inner hull in contact with at least one of the ballast tank, the trunk deck space and the side passage in contact with the trunk deck may be controlled to -55 ⁇ 30 °C.
  • the temperature of the inner hull in contact with the ballast tank is controlled to 0 ⁇ 20 °C
  • the inner hull can be made of steel grade A prescribed by IGC.
  • the temperature of the inner hull in contact with at least one of the trunk deck space and the side passages in contact with the trunk deck is controlled to 0 ⁇ 30 °C
  • the inner hull can be made of steel grade A prescribed by IGC.
  • the temperature of the inner hull in contact with at least one of the trunk deck space and the side passages in contact with the trunk deck is controlled to -30 ° C or less, and the inner hull may be made of low temperature steel (LT).
  • LT low temperature steel
  • the insulation may be provided on the inner wall of the outer hull forming the ballast tank.
  • the heat insulator may be provided in an area where a ballast tank and a site passage disposed adjacent to the trunk deck space are in contact with each other.
  • the heat insulating material may include at least one of a heat insulating wall for insulating the LNG stored in the LNG storage tank, a panel type heat insulating material, a foam type heat insulating material, a vacuum type heat insulating material, a particle type heat insulating material and a nonwoven fabric type heat insulating material.
  • the floating offshore structure may further include a heating unit for heating the inner hull.
  • the heating unit may heat the inner hull using at least one of a glycol heating coil, an electric heating coil, and a fluid pipe.
  • the floating offshore structure may be any one selected from LNG FPSO, LNG FSRU, LNG transport ship and LNG RV.
  • the copper dam provided between the plurality of LNG storage tanks installed in one or more rows in the longitudinal direction of the hull; And a heat insulating material provided in at least one of a ballast tank, a trunk deck space, and a side passage way in contact with the trunk deck, wherein the cofferdam is controlled to a temperature of 0 ° C.
  • the cofferdam may include: a pair of bulk heads spaced apart from each other between the plurality of LNG storage tanks; And a space portion provided by the pair of bulk heads and the inner wall of the hull, and the pair of bulk heads can be controlled to a sub-zero temperature.
  • the temperature of the inner hull in contact with at least one of the ballast tank, the trunk deck space and the side passage disposed in close proximity to the trunk deck to -55 ⁇ 30 °C.
  • Embodiments of the present invention control the temperature of the cofferdam below zero, provide a heat insulating material in at least one of the ballast tanker, the trunk deck space and the side passage in contact with the trunk deck, from the cofferdam to the interior of the plurality of LNG storage tanks Heat transfer from the ballast tank, the trunk deck space and the side passages in contact with the trunk deck to reduce the heat cut into the interior of the plurality of LNG storage tanks to reduce the BOR (Boil-off Rate) generated by heat transfer. Can be reduced.
  • the present embodiments do not reduce the BOR due to the deformation of the complicated and expensive LNG cargo hold, but reduce the BOR while maintaining the LNG cargo transport efficiency because the thermal inflow into the LNG cargo hold is reduced by reducing the temperature around the LNG cargo hold. You can.
  • FIG. 1 is a side view schematically showing a state in which a cofferdam is installed in a floating offshore structure according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 1.
  • FIG. 4 is a plan sectional view showing a cofferdam provided between two LNG storage tanks arranged in two rows in the floating offshore structure shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line IV-IV of FIG. 4.
  • FIG. 7 is a table showing a calculation result of the BOR generated by the temperature control of the cofferdam in the first embodiment of the present invention.
  • FIG. 8 is a view schematically showing a state in which a heating unit is provided in a floating offshore structure in the first embodiment of the present invention.
  • FIG. 9 is a view schematically illustrating a state in which insulation is provided in a cofferdam in an insulation system of a floating offshore structure according to a second embodiment of the present invention.
  • FIG. 10 is a perspective view schematically illustrating a state in which a heat insulating material is provided in region “A” of FIG. 9.
  • FIG. 11 is a perspective view schematically illustrating a state in which a heat insulating material is provided in region “B” of FIG. 9.
  • FIG. 12 is a view schematically illustrating a heat insulating material damage preventing member provided to prevent damage of the heat insulating material in the region “C” of FIG. 10.
  • FIG. 13 is a table showing a calculation result of BOR generated by controlling the temperature of the cofferdam by the heat insulating material shown in FIG. 9.
  • FIG. 14 is a view schematically showing a state in which the bulkhead of the cofferdam is connected only to the inner hull without extending to the outer hull in the floating offshore structure according to the third embodiment of the present invention.
  • FIG. 15 is a modified embodiment of FIG. 14 in which a cofferdam is provided in place of the bulkhead shown in FIG. 14, and a heat insulating material is provided in the cofferdam.
  • FIG. 16 is a table illustrating a calculation result of BOR generated by manufacturing the bulk head of FIG. 13 from a cryogenic material and controlling the temperature of the cofferdam.
  • FIG. 17 is a view schematically showing a gas supply unit in a floating offshore structure according to a fourth embodiment of the present invention.
  • FIG. 18 is a table showing a calculation result of BOR generated by controlling the temperature of the cofferdam shown in FIG. 17.
  • FIG. 19 is a view schematically illustrating controlling a temperature of a cofferdam in accordance with a pressure change of an LNG storage tank in a floating offshore structure according to a fifth embodiment of the present invention.
  • 20 is a view schematically illustrating a state in which insulation is provided in a trunk deck space and a side passage in an insulation system of a floating offshore structure according to a sixth embodiment of the present invention.
  • FIG. 21 is a table showing a calculation result of BOR generated by controlling the temperature of the inner hull in contact with the trunk deck space and the side passage shown in FIG. 20.
  • FIG. 22 is a view schematically illustrating a state in which a heat insulating material is provided in a ballast tank in a heat insulating system of a floating offshore structure according to a seventh embodiment of the present invention.
  • FIG. 23 is a table showing a calculation result of BOR generated by controlling the temperature of an internal hull in contact with a ballast tank.
  • the floating offshore structure is a concept including both a vessel and various structures used while floating in the sea while having a storage tank for storing LNG, LNG FPSO (Floating, Production, Storage and Offloading), LNG Floating Storage and Regasification Unit (FSRU), LNG Carrier, LNG Regasification Vessel (RV RV).
  • LNG FPSO Floating, Production, Storage and Offloading
  • FSRU LNG Floating Storage and Regasification Unit
  • RV RV LNG Regasification Vessel
  • FIG. 1 is a side view schematically illustrating a cofferdam installed in a floating offshore structure according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1
  • FIG. 3 is FIG. 4 is a cross-sectional view illustrating a state in which a cofferdam is provided between LNG storage tanks arranged in two rows in the floating offshore structure shown in FIG. 1
  • FIG. 5 is a cross-sectional view of FIG. 6 is a cross-sectional view taken along line IV-IV of FIG. 6, and
  • FIG. 6 is a table showing steel grades defined by IGC
  • FIG. 7 is a diagram illustrating BOR generated by temperature control of a cofferdam in a first embodiment of the present invention
  • 8 is a table illustrating a calculation result
  • FIG. 8 schematically illustrates a state in which a heating unit is provided in a floating offshore structure in the first embodiment of the present invention.
  • the cofferdam 10 is controlled to a sub-zero temperature to reduce the BOR (Boil-off Rate) generated by heat transfer from the cofferdam 10 into the LNG storage tank T.
  • the floating offshore structure 1 is provided between a plurality of LNG storage tanks T installed in one or more rows in the longitudinal direction of the hull, but at subzero temperatures. It is provided with a cofferdam 10 to be controlled.
  • the cofferdam 10 is provided in a plurality of LNG storage tanks T installed in one or more rows in the longitudinal direction of the hull, and as shown in FIGS. 1 to 3, arranged in multiple rows in the longitudinal direction of the hull. It may be provided between the plurality of LNG storage tank (T), or as shown in Figure 4 and 5, may be provided between the LNG storage tank (T) arranged in two rows in the width direction and the longitudinal direction of the hull. .
  • the copper dam 10 is controlled to a temperature below zero unlike the conventional to reduce the Boil-off Rate (BOR).
  • the temperature of the cofferdam is always maintained at 5 ° C or higher, which means that the bulkhead of the cofferdam using steel grade A specified by IGC when the temperature of the cofferdam is controlled below 5 ° C. This is because the temperature of (11) is lower than 0 ° C., so that there is a risk of brittle fracture.
  • the temperature of the cofferdam 10 is controlled to a sub-zero temperature as in the present embodiment, the temperature difference between the LNG and the cofferdam 10 is reduced, so that the heat transfer between the LNG and the cofferdam 10 is reduced as compared with the related art. It can be seen that this leads to a decrease in BOR.
  • the cofferdam when the bulk head of the cofferdam is made of a material that can withstand at -30 ⁇ 0 °C, the cofferdam can be varied in the range of -30 ⁇ 70 °C, the bulk head of the cofferdam is -55 When made of low temperature steel (LT) that can withstand temperatures up to -55 ° C, specifically, below -31 ° C, the cofferdam may be altered in the range of -55 to 70 ° C.
  • LT low temperature steel
  • the temperature of the cofferdam 10 when the temperature of the bulkhead 11 of the cofferdam 10 is controlled to ⁇ 25 ° C., the temperature of the cofferdam 10 may be maintained at ⁇ 20.8 ° C., in this case
  • the BOR is 0.1236, which can be seen that the number is reduced by 3.5% compared to the conventional BOR.
  • the temperature of the cofferdam 10 when the temperature of the bulkhead 11 of the cofferdam 10 is controlled at ⁇ 50 ° C., the temperature of the cofferdam 10 may be maintained at ⁇ 46.5 ° C., in which case BOR Is 0.1192, which is 7.0% lower than that of the conventional BOR.
  • BOR Is 0.1192 which is 7.0% lower than that of the conventional BOR.
  • the numerical value of BOR described above is a result of numerical analysis.
  • the bulk head 11 when the temperature of the cofferdam 10 is maintained at a sub-zero temperature, the bulk head 11 must be made of a material prescribed by IGC or low temperature steel (LT), so it can be expected that the cost will be increased. Since the increase is small compared to the benefits of reducing the BOR, the BOR can be effectively reduced at a relatively low cost.
  • the cofferdam 10 is a pair of bulkheads spaced apart from each other between the plurality of LNG storage tanks T, as shown in FIG. 1. And a space portion 12 provided by a pair of bulk heads 11 and an inner hull IH, and by controlling the pair of bulk heads 11 to a sub-zero temperature, a cofferdam ( The temperature of 10) can be controlled to minus zero.
  • the temperature of the cofferdam 10 is, for example, to adjust the set temperature at which the heating system of the cofferdam 10 operates, or to install or insulate the heat insulator 120 (see FIG. 9) in the cofferdam 10. Injected gas into the cofferdam 10 can be adjusted to sub-zero temperatures.
  • the LNG carrier when designing the LNG carrier, the LNG carrier should be designed so that there is no problem even when the outside air temperature is -18 ° C and the seawater temperature is 0 ° C according to USCG conditions. If the cofferdam 10 is not heated at such an external temperature condition, the cofferdam 10 is dropped to -60 ° C by cold heat of LNG stored in the LNG storage tank (T).
  • the cofferdam 10 is heated, and temperature is always controlled to 5 degreeC in the space part 12 of the cofferdam 10, and the bulk head 11 to 0 degreeC or more.
  • the heating device is operated to adjust the temperature of the cofferdam 10 to a specific temperature below zero.
  • the cofferdam 10 can be controlled to a sub-zero temperature, and the heat insulator 120 will be described in detail in the second embodiment described later. Explain.
  • the above-described method of controlling the temperature of the cofferdam 10 to a sub-zero temperature may be used independently or may be used together with other methods, so the scope of the present invention is limited to applying any one method. It doesn't work.
  • the bulk head 11 of the copper dam 10 is controlled to sub-zero temperatures, the bulk head 11 is made of B, D, E, AH, DH, EH, which are steel grades prescribed by IGC. Can be.
  • the bulk head 11 of the cofferdam 10 when controlled to -30 ⁇ -20 °C, the bulk head 11 can be manufactured by E or EH, which is a steel grade prescribed by IGC, the bulk head 11 When it is controlled to -60 ⁇ -30 °C can be produced the bulk head 11 by low temperature steel (LT).
  • E or EH which is a steel grade prescribed by IGC
  • the low temperature steel when the bulk head 11 is made of low temperature steel, the low temperature steel may be low temperature carbon steel, low temperature alloy steel, nickel steel, aluminum steel, or austenitic stainless steel. It may be made of one or more combinations of at least one of the steels.
  • the space part 12 when arranging the cofferdam 10 in one row in the width direction of the hull, the space part 12 includes a pair of bulkheads spaced apart in the longitudinal direction of the hull ( 11 may form the front wall 7a and the rear wall 9a, and the inner hull IH may form the left and right side walls, the ceiling and the bottom.
  • the cofferdam 10 divides the internal space of the LNG storage tank T in the transverse direction and the cofferdam 10a in the longitudinal direction. It includes a longitudinal copper dam 10b.
  • the front wall and the rear wall of (12) can be formed, the inner hull IH on the right side can form the right wall 3a, and the partition wall on the left side can form the left wall 5a, and the inner hull IH Ceiling walls and floor walls can be formed.
  • a pair of bulk heads 11 spaced apart in the width direction of the hull can form the right side wall and the left side wall of the space part 12, respectively, based on FIG.
  • the wall where the bulkhead 11 of the longitudinal cofferdam 10b and the bulkhead 11 of the lateral cofferdam 10a contact each other may form the front wall 7a and the rear wall 7b
  • the inner hull IH may form a ceiling wall and a bottom wall.
  • the space part 12 of the present embodiment may be provided with the heat insulating material 120 of the second embodiment, which will be described later, and the heat insulating material 120 will be described in detail in the second embodiment.
  • the gas supply unit supplies gas into the cofferdam 10 to prevent the cofferdam 10 from being damaged by frost or change in humidity of the cofferdam 10.
  • the gas supply unit may be configured in the same manner as the gas supply unit 300 (see FIG. 17) of the fourth embodiment to be described later, and the gas supplied from the gas supply line to the cofferdam 10 may be branched from the gas supply line.
  • the supply pipe of the gas supply part may be provided in a number corresponding to the cofferdam 10, and the lower end of the supply pipe may be disposed to be close to the bottom of the cofferdam 10.
  • the discharge pipe of the gas supply part may be provided in a number corresponding to the cofferdam 10 to discharge the gas filled in the respective cofferdam 10, respectively, or may be connected to each other to be discharged.
  • the valve of the gas supply unit 20 may be a proportional control valve opened and closed by an electrical signal.
  • the gas supplied to the gas supply line includes dry air, inert gas, or N2 gas, which is an existing dry air / inner already installed in the LNG carrier. It can be supplied from a gas generator.
  • the present exemplary embodiment may include a heating unit 30 that controls the temperature of the cofferdam 10 dropped to the first sub-zero temperature to a second sub-zero temperature higher than the first temperature.
  • the clevis heating coil 31 is installed inside the cofferdam 10 and the clevis heated to the clevis heating coil 31 (
  • the bulk head 11 may be heated by supplying glycol, or an electric coil may be installed inside the cofferdam 10 to heat the bulk head 11.
  • the bulk head 11 may be heated by providing a coil through which waste heat of exhaust gas or high temperature liquid or steam may be circulated inside the cofferdam 10.
  • glycol water having a freezing point of ⁇ 30 ° C. when the glycol is used as an antifreeze, 45% of glycol water having a freezing point of ⁇ 30 ° C. may be used.
  • the glycol circulated by the glycol circulation pump is heated by a high temperature steam supplied from a boiler or the like in the glycol heater GH before being supplied to the cofferdam 10, and the heated glycol is a glycol provided inside the cofferdam 10. It is supplied to the heating coil 31 and circulated after heating the bulk head 11.
  • the cofferdam 10 may be provided with a temperature sensor TS capable of measuring the temperature inside the cofferdam 10, and is heated when the temperature inside the cofferdam 10 is lower than a set value.
  • the glycol may be supplied to the glycol heating coil 31 attached to the bulk head 11 to increase or maintain the temperature of the bulk head 11 and the space 12.
  • the antifreeze may use glycol water 65% or methyl alcohol. Content described in the embodiment can be applied to other embodiments as described later.
  • FIG. 9 is a view schematically showing a state in which insulation is provided in a cofferdam in an insulation system of a floating offshore structure according to a second embodiment of the present invention
  • FIG. 10 is a state in which insulation is provided in region “A” of FIG. 9.
  • 11 is a perspective view schematically illustrating a state in which insulation is provided in region “B” of FIG. 9, and
  • FIG. 12 is a modified embodiment of the insulation provided in region “C” of FIG. 10.
  • FIG. 13 is a table showing a calculation result of BOR generated by controlling the temperature of the cofferdam by the heat insulating material shown in FIG. 9.
  • the thermal insulation system 100 of the floating marine structure controls the temperature of the cofferdam 10 to subzero temperature regardless of the spatial environment such as the polar region or the tropical region, or the temporal environment such as the season and the day / night.
  • the thermal insulation system 100 of the floating marine structure controls the temperature of the cofferdam 10 to subzero temperature regardless of the spatial environment such as the polar region or the tropical region, or the temporal environment such as the season and the day / night.
  • a heat insulating material 120 provided in the cofferdam (10).
  • the heat insulator 120 is provided in the cofferdam 10 to allow heat to penetrate into the cofferdam 10 when the floating offshore structure is operated in a high temperature region or in summer. It prevents the temperature of the cofferdam 10 to fall to the desired temperature even if the outside temperature is high.
  • seawater temperature is 25 °C when not installing the heat insulator 120, as shown in the table of FIG.
  • the temperature of the cofferdam 10 may only fall to -15.39 ° C., which may limit the reduction of BOR.
  • the cofferdam 10 is sufficiently lowered to a desired temperature, for example, -25 ° C or -50 ° C even under the above-described conditions. BOR reduction can be seen.
  • the heat insulator 120 will be described in detail, in this embodiment, the heat insulator 120, in consideration of the convenience and cost of work, as well as the heat insulation wall used to insulate the LNG stored in the LNG storage tank (T). Other types than the above-described heat insulation walls can be used.
  • the heat insulating material 120 may include at least one of a panel type heat insulating material, a foam type heat insulating material, a vacuum heat insulating or particle type heat insulating material, and a non-woven heat insulating material different from the above-described heat insulating wall. have.
  • the heat insulator 120 may be applied without limitation to the type and shape. In consideration of the working environment and cost, only one of the three types of heat insulating materials described above may be used, or two or more heat insulating materials may be selected and used.
  • an insulating wall for insulating the LNG stored in the LNG storage tank (T) may be used.
  • the heat insulating wall refers to the heat insulating wall of the sealing and heat insulating unit (SI).
  • the panel type insulation includes styrofoam, and the styrofoam may be coupled to the cofferdam 10 by a low temperature adhesive or bolt.
  • Insulation of the foam type includes a polyurethane foam, the polyurethane foam may be sprayed to the copper dam 10 in a foaming (foaming) method to be combined.
  • Non-woven type insulation may be made of polyester fiber material, may be made of a synthetic resin layer, it may be coupled to the copper dam 10 by an adhesive method using a low temperature adhesive or bolts.
  • the heat insulating material 120 may be provided in the space portion 12 of the cofferdam 10 in the region excluding the pair of bulk heads 11.
  • the heat insulating material 120 is provided at the right wall part, the left wall part, the ceiling part and the bottom part of the space part 12 of the cofferdam 10, respectively. Can be.
  • the heat insulating material 120 provided at the ceiling and the bottom may be provided outside the space 12.
  • the heat insulator 120 is provided in the cofferdam 10 in the region excluding the pair of bulk heads 11, the heat outside the region not in contact with the pair of bulk heads 11 is in the cofferdam 10. It is possible to prevent the intrusion into the interior of the, and the cold heat of the LNG stored in the LNG storage tank (T) through the pair of bulk head 11 can be transmitted to the space portion 12, the temperature outside the hull is high Even in this case, the temperature of the cofferdam 10 may be lowered to a desired temperature.
  • the heat insulator 120 is disposed in the foremost front bulkhead 11 and the stern rear of the transverse cofferdam 10a disposed at the foremost front of the plurality of cross cofferdams 10a.
  • the stern rearward bulkhead 11 of the cofferdam 10a may be provided respectively.
  • FIG. 11 illustrates that the insulator 120 is provided on the bulkhead 11 at the forefront of the bow, and the forefront and the stern rear of the bow have different environments from the area between the bow and the stern.
  • the LNG storage tank (T) is in contact with only one direction and the inner wall of the hull, the forefront and stern rear regions are in the region between the bow and the stern to lower the temperature of the cofferdam (10) to the desired temperature. It is more difficult than the copper dam 10.
  • the insulation 120 is also provided to the foremost bulkhead 11 and the foremost rear bulkhead 11 as in the present embodiment, it is possible to prevent external thermal intrusion, thereby lowering the cofferdam 10 to a desired temperature. Can be.
  • the heat insulating material 120 when the heat insulating material 120 is installed inside the cofferdam 10, the heat insulating material 120 provided in the bottom of the cofferdam 10 may be damaged by the source. That is, when the worker enters the inside of the cofferdam 10, the bottom of the cofferdam 10 should be supported by the foot, and the heat insulating material 120 may be damaged.
  • the heat insulating material damage preventing member 130a as shown in (a) of Figure 12, is provided in a grid form (grid) is disposed on the heat insulating material 120, the load is applied to a specific portion of the heat insulating material 120 By preventing concentration, damage to the heat insulating material 120 may be prevented.
  • the insulation damage preventing member 130b may be a separate path provided at the bottom of the cofferdam 10 so that the source can move to a desired place. Since the area mainly approached by the source is the edge of the bottom portion, the heat insulating material damage prevention member (130b), as shown in Figure 12 (b), will be provided with a slight width only on the bottom edge of the cofferdam (10). Can be.
  • Figure 13 shows the effect of reducing the BOR by the installation of the insulation and the temperature control of the cofferdam.
  • the BOR is about 0.1282.
  • the cofferdam may not drop to only -10.87 ° C even at the lowest temperature when the glycol heating is not performed.
  • FIG. 14 is a view schematically showing a state in which the bulkhead of the cofferdam is connected only to the inner hull without extending to the outer hull in the floating offshore structure according to the third embodiment of the present invention
  • the bulk shown in FIG. 14 is a modified embodiment of FIG. 14 in which a cofferdam is provided instead of a head, and a heat insulating material is provided in the cofferdam
  • FIG. 16 is a calculation of BOR generated by fabricating the bulkhead shown in FIG. 13 using a cryogenic material and controlling the temperature of the cofferdam. The table shows the results.
  • the thermal insulation system 200 of the floating offshore structure is provided between the plurality of LNG storage tanks T to provide the plurality of LNG storage tanks T at least one of the longitudinal direction and the width direction of the hull.
  • the bulk head 210 is arranged in a row in a direction but is not extended to the outer hull EH and is connected only to the inner hull IH, and the inner hull IH and the outer hull EH are connected to reinforce both, but the bulk head (
  • the strength member 220 which is not continuous with 210, the heat insulating material 120 provided in the foremost front and the stern rear, and the space part 12 provided by the bulk head 210 in the foremost front and the stern rear, the gas It includes a gas supply unit 20 for supplying the gas to prevent the space is damaged by the change in humidity, and the heating unit 30 for heating the bulk head 210 provided in the foremost front and the stern rear.
  • the bulk head 210 may arrange the LNG storage tanks T in a row in the longitudinal direction of the hull or in a row in the width direction of the hull.
  • the bulk head 210 is a cryogenic temperature of -140 °C The temperature can drop.
  • the bulk head 210 may be made of a cryogenic material including stainless steel or aluminum, and the end of the sealing wall of the sealing and insulating unit (SI) for sealing and insulating the LNG storage tank (T). May be directly welded to the bulk head 210.
  • SI sealing and insulating unit
  • the bulk head 210 of the present embodiment may be provided with a pair of spaced apart from the foremost and the rear of the stern, the space portion 12 in the forefront and the foremost of the stern.
  • the bulk head 210 of the space part 12 may be provided with a heat insulating material 120 and a heating part 30, and the space part 12 may be provided with a gas supply part to prevent damage to the bulk head 210. Gas can be supplied.
  • the bulk head 210 of the present embodiment unlike the prior art, as shown in Figure 14, does not extend to the outer hull (EH). This is because when the bulk head 210 is connected to the outer hull EH, external heat may be transferred through the bulk head 210 to increase the BOR, and the outer hull EH is in contact with the bulk head 210. This is because brittle fracture may be caused by cold heat transmitted from the bulk head 210.
  • the strength member 220 serves to structurally reinforce the hull by connecting the inner hull (IH) and the outer hull (EH) at an intermediate position of the LNG storage tank (T).
  • the strength member 220 of the present embodiment is provided so as not to be continuous with the bulk head 210, the cold heat transmitted through the bulk head 210 is provided at both ends of the bulk head 210 It can be offset by the sealing and insulation unit (SI), it can be seen that the heat transfer from the outside is also reduced because the bulk head 210 is not in direct contact with the outer hull (EH).
  • SI sealing and insulation unit
  • the strength member 220 of the present embodiment may be provided at any position where the bulk head 210 is not continuous, and the number thereof is not limited.
  • the strength member 220 since the strength member 220 is not exposed to cryogenic temperatures, the strength member 220 may be made of steel of steel grade A.
  • the heat insulator 120 As the heat insulator 120, the heat insulator 120 of the above-described second embodiment may be applied as it is. However, there is a difference in that the installation position is provided at the forefront and the stern rear, not between the LNG storage tank (T).
  • the gas supply unit and the heating unit 30 may be applied to the first embodiment as described above. However, there is a difference from the above-described first embodiment in that it is applied to the space 12 provided at the foremost front and the stern rear.
  • the bulkhead 210 is provided between the LNG storage tanks T to directly control the temperature of the bulkhead 210 disposed between the LNG storage tanks T. Since it is not easy, the above-described bulk head 210 is controlled to about -130 °C due to the direct contact of the LNG.
  • the bulk head 210 disposed at the foremost front and rear of the stern can be freely controlled by the heating unit 30, and the bulk head 210 is disposed between the LNG storage tanks T.
  • the temperature of the bulkhead 210 may be controlled by adjusting the insulation wall of the sealing and insulating unit SI or by heating both ends of the bulkhead 210 with an electric coil.
  • two or more bulkheads 210 may be provided, two or more bulkheads 210 may be arranged to be spaced apart from each other, and the inner hull IH may be provided. It is also applicable to the double hull structure consisting of) and the outer hull (EH).
  • this embodiment may not provide a sealing and heat insulation unit (SI) in the area where the bulk head 11 and the LNG storage tank (T) contacted, in this case If the bulk head 11 is made of a cryogenic material and the temperature of the cofferdam 10 is controlled to a sub-zero temperature, a BOR as shown in FIG. 16 can be obtained.
  • SI sealing and heat insulation unit
  • the bulk head 11 of the cofferdam 10 may be controlled to a temperature of -163 ⁇ -50 °C, the bulk head 11 is a cryogenic material containing stainless steel or aluminum, not the general material
  • the sealing wall of the sealing and insulating unit (SI) in contact with the bulk head 11 may be coupled to the bulk head 11 in a welded manner.
  • FIG. 17 is a view schematically illustrating a gas supply unit in a floating offshore structure according to a fourth embodiment of the present invention
  • FIG. 18 illustrates a calculation result of BOR generated by controlling a temperature of a cofferdam shown in FIG. 17. Table.
  • the floating offshore structure 300 is provided between the plurality of LNG storage tanks T and the plurality of LNG storage tanks T are arranged in at least one of the longitudinal direction and the width direction of the hull.
  • a cofferdam 10 disposed at a subzero temperature, a gas supply unit 320 for supplying gas to the cofferdam 10, and a cofferdam 10 provided to a worker to the inner space of the cofferdam 10. It is provided with a heating unit 30 for heating the cofferdam 10 to enter, and the heat insulating material 120 provided in the cofferdam 10.
  • This embodiment has a gas supply unit 320 for supplying gas into the interior of the cofferdam 10 to easily find the cold spot formed in the bulk head 11 of the cofferdam 10
  • a gas supply unit 320 for supplying gas into the interior of the cofferdam 10 to easily find the cold spot formed in the bulk head 11 of the cofferdam 10
  • an operator must periodically enter the cofferdam 10 to examine whether the bulkhead 11 of the cofferdam 10 has no cold spots. That is, it is necessary to check whether a cold portion occurs in a specific portion of the bulkhead 11 of the cofferdam 10, which can be seen that the frost is caught in the bulkhead 11 and is visually inspected.
  • the frost is stuck to the entire bulkhead 11 of the cofferdam 10, the presence or absence of the castle Can not find cold spots.
  • a gas for example, dry air
  • the temperature of the bulk head 11 of the cofferdam 10 is controlled to be higher than the dew point of the dry air. This makes it easy to find the cold spot by causing frost only in the bulk head 11 lower than the dew point of the dry air.
  • the temperature of the bulkhead 11 of the cofferdam 10 is controlled to -35 ° C and visually enters into the cofferdam 10.
  • the bulkhead 11 of the cofferdam 10 lower than -40 °C because the frost is caught, it is easy to find the cold spot to the position of the frost.
  • the technical means for supplying dry air having a low dew point temperature to the inside of the cofferdam 10 may include a side in contact with the trunk deck space TS (see FIG. 21) and the trunk deck TD in the sixth embodiment described later. The same may be applied to the passage SP (see FIG. 21).
  • the BOR can be reduced by about 4.9% compared to the control at 5 ° C.
  • the bulk head 11 may be made of low temperature steel (LT).
  • the gas supply unit 320 is provided in the cofferdam 10 to supply gas supplied through the gas supply line AL to the inside of the cofferdam 10.
  • a pipe 321, a gas discharge pipe 322 provided in the cofferdam 10 to discharge the internal gas of the cofferdam 10 to the outside of the cofferdam 10, a gas supply pipe 321, and a gas discharge pipe On and off valve 323 is provided in the (322).
  • the dry air supplied to the gas supply line AL may be supplied from a dry air generator installed in an existing LNG carrier so that no additional cost for this facility is incurred.
  • the dry air supplied to the cofferdam 10 may have a dew point temperature of -45 ⁇ -35 °C, the temperature of the bulk head 11 of the cofferdam 10 is 1 than the dew point temperature of the dry air Can be controlled as high as ⁇ 10 °C. In this case, since the temperature of the bulk head 11 is controlled at about -30 ° C, the BOR can be reduced.
  • FIG. 19 is a view schematically illustrating controlling a temperature of a cofferdam in accordance with a pressure change of an LNG storage tank in a floating offshore structure according to a fifth embodiment of the present invention.
  • the thermal insulation system 400 of the floating offshore structure according to the present embodiment is provided between the plurality of LNG storage tanks T to form a plurality of LNG storage tanks T in at least one of the longitudinal direction and the width direction of the hull.
  • the contents of the remaining first embodiment can be applied to the present embodiment as it is.
  • the present embodiment not only maintains the temperature of the cofferdam 10 to sub-zero temperatures to lower the BOR, but also requires a little more BOG depending on the sailing conditions, so that more BOG is needed for reasons such as ship fuel. Increase the temperature of 10) to increase the BOR so that more BOG is generated, and if the BOG is difficult to process due to too many BOGs depending on the sailing conditions, lower the temperature of the cofferdam 10 to make BOR smaller. You can get a little more BOG.
  • the above-described control temperature may be set manually in consideration of sailing conditions or the like, or may be automatically controlled by receiving a pressure signal from the LNG storage tank T. In other words, if the pressure in the LNG storage tank (T) is high, the BOG is excessively generated. Therefore, the control temperature is controlled to be lowered. If the pressure is low, the BOG is slightly generated. Can be controlled.
  • the present embodiment not only maintains the temperature of the cofferdam 10 to the sub-zero temperature to lower the BOR, but also the temperature of the cofferdam 10 so that an operator can enter the inside of the cofferdam 10 to a specific temperature (eg , The temperature of the image) is different from the above-described first embodiment.
  • the operator needs to enter the inside of the cofferdam 10 to check whether a cold spot or the like has occurred in the cofferdam 10 during operation.
  • the cofferdam 10 may be raised to the heating unit 30 by raising the set value of the control temperature.
  • the cofferdam 10 may be maintained at a specific temperature (eg, the temperature of the image) by heating the 10.
  • the temperature of the cofferdam 10 may be controlled in the range of -30 to 70 ° C.
  • the control temperature of the cofferdam 10 can be controlled to about -30 °C to reduce the BOR as much as possible, and vice versa 10) can be controlled to a specific temperature including the temperature of the image.
  • the temperature of the cofferdam 10 is controlled in the range of -55 to 70 ° C. can do.
  • the temperature of the cofferdam 10 can be controlled to about -50 °C in order to reduce the BOR as much as possible, and vice versa ) Can be controlled to a specific temperature, including the temperature of the image.
  • the temperature of the cofferdam 10 is controlled to a sub-zero temperature, for example, -25 °C or -50 °C to reduce the heat transfer between the copper dam 10 and the LNG stored in the LNG storage tank (T) Getting inside the cofferdam can be dangerous.
  • the cofferdam 10 may be heated by a glycol heating coil 31, an electric coil, steam, or a coil through which fresh water flows, or may be heated by supplying hot air into the cofferdam 30.
  • the operator enters and checks whether a cold spot or the like has occurred in the bulk head 11. At this time, the inside of the cofferdam 10 is continuously maintained at the temperature of the image.
  • the cofferdam 10 when the worker does not need to enter the inside of the cofferdam 10, the cofferdam 10 may be maintained at a sub-zero temperature to reduce the BOR, and vice versa. ) Can be considered as operator's safety while reducing the BOR.
  • the trunk deck space TS (see FIG. 21) and the side passages SP and FIG. 21 in contact with the trunk deck TD are described in the sixth embodiment described later. ) Can be applied as is.
  • the present embodiment is different from the above-described first embodiment in that the temperature of the cofferdam 10 can be controlled according to the change in the internal pressure of the LNG storage tank (T).
  • the pressure sensor PT capable of measuring the internal pressure of the LNG storage tank T is provided in the LNG storage tank T, and then the pressure sensor PT.
  • the temperature of the cofferdam 10 can be controlled based on the pressure measured at.
  • the cofferdam (10) is lowered by lowering the setting temperature of the cofferdam (10) temperature control. Lowering the temperature of) can cause the BOG to decrease.
  • the pressure of the LNG storage tank (T) is lowered, less BOG is generated than the BOG required for the floating offshore structure. Therefore, the temperature of the cofferdam 10 is increased by increasing the setting temperature of the cofferdam 10 temperature control. More BOG can be generated.
  • the temperature of the cofferdam 10 may be controlled by referring to the speed of the floating offshore structure regardless of the pressure sensor PT.
  • control temperature of the cofferdam 10 may be increased to generate more BOG, and the generated BOG may be used as fuel to match the fuel consumption.
  • a floating offshore structure that controls the bulkhead 11 of the cofferdam 10 to a set temperature of -25 ° C has a BOR of 0.1236.
  • the BOR is increased by 3.7% and 3.7% to increase the BOG.
  • the speed of the floating offshore structure is increased to reduce the amount of BOG that is insufficient when the consumption of BOG increases.
  • the fuel consumption may be adjusted by lowering the control temperature of the cofferdam 10 to generate a little BOG.
  • the heating unit 30 since the heat transfer by conduction may take a heating time of the cofferdam 10, the inside of the cofferdam 10 The heating time of the cofferdam 10 may be shortened by supplying warm dry air.
  • gas supply unit and the gas supply unit 320 described in the above-described embodiment may also be applied to the present embodiment.
  • FIG. 20 is a view schematically illustrating a state in which insulation is provided in a trunk deck space TS and a side passage in an insulation system of a floating offshore structure according to a sixth embodiment of the present invention, and FIG. 21 is illustrated in FIG. 20. It is a table showing the calculation result of BOR generated by controlling the temperature of the trunk hull space TS and the inner hull IH in contact with the side passages.
  • the insulation system 500 of the floating offshore structure is provided in at least one of a trunk deck space (TStrunk deck space) and a side passage (SP, side passage way) in contact with the trunk deck (Trunk deck (TD)) It is provided with a heat insulator 120 to reduce the heat cut from the trunk deck space (TS) or side passage (SP) to the interior of the plurality of LNG storage tank (T) to reduce the Boil-off Rate (BOR) generated by heat transfer do.
  • TStrunk deck space trunk deck space
  • SP side passageway
  • T Boil-off Rate
  • the BOR by reducing the temperature of the inner hull IH in contact with the trunk deck space TS and the side passage SP, the BOR can be reduced by reducing the amount of heat intrusion from the outside.
  • the present embodiment lowers the temperature of the inner hull (IH) in contact with the trunk deck space (TS) and the side passage (SP). This can reduce the BOR.
  • the copper dam 10 is lowered by lowering the temperature of the inner hull IH in contact with the trunk deck space TS and the side passage SP by the heat insulator 120.
  • the temperature of the can be maintained at a low temperature to reduce the BOR.
  • trunk deck (TD) and the side passage (SP) in contact with the trunk deck (TD) is a place directly exposed to the sun's heat from the outside, providing a heat insulator 210 in this part can reduce the external heat intrusion to reduce the BOR Can be reduced more effectively.
  • the BOR is 0.1296 as shown in the table of FIG. 21. As a result it was confirmed that the decrease of about 3.7%. It can be seen that the BOR can be reduced by using the insulator 120 having a low cost, and the BOR reduction effect for the price is large.
  • the BOR decreases by about 5.9% to 0.1266. there was.
  • the cost-effectiveness BOR reduction effect when using the low-cost insulation 120.
  • the heat insulating material 120 includes an inner ceiling of the trunk deck TD, a ceiling and sidewalls of the side passage SP in contact with the trunk deck TD, and a side passage in contact with the ballast tank BT. (SP) can be provided in the part.
  • the heat insulating material 20 is not limited to the position of the trunk deck TD described above, but may be installed on the bottom or the outer portion of the trunk deck TD, and the trunk deck space TS and the side passage SP. It may be provided intermittently or continuously.
  • the heat insulating material 120 of the above-described embodiment may be applied as it is. That is, the heat insulating material 120 of the present embodiment may be a heat insulating wall of a sealing and heat insulating unit (SI) for sealing and insulating the LNG storage tank (T), and a panel type heat insulating material and a heat insulating material of a foam type that are different from the heat insulating wall. It may include at least one of a vacuum insulation or a particle-shaped insulation and a nonwoven insulation. Furthermore, this invention does not have a restriction
  • SI sealing and heat insulating unit
  • the present embodiment may include a heating unit 30 for heating the inner hum IH to heat the cofferdam 10 or to maintain the inner hull IH at a desired temperature.
  • the configuration of the heating unit 30 may include the glycol heating coil 31 of the above-described embodiment, an electric coil, a coil through which a liquid such as steam or fresh water flows, and the like.
  • the material and temperature control of the inner hull IH in contact with the trunk deck space TS and the side passages SP may be selectively performed according to the required BOR value.
  • the inner hull (IH) can be controlled to a temperature of -55 ⁇ 30 °C, preferably, to be able to use the material of the inner hull (IH) as steel grade A prescribed by IGC It may be controlled to a temperature of 0 ⁇ 30 °C.
  • the temperature of the inner hull IH is controlled to 0 ° C., as shown in the table of FIG. 21, the BOR is reduced by 3.7% compared to the conventional embodiment in which the inner hull IH is controlled to 35.3 ° C. 0.1296 can be obtained and steel grade A can also be used for the inner hull (IH).
  • the inner hull (IH) can use the steel grade E or EH Can be.
  • the inner hull (IH) can be made of low temperature steel (LT).
  • the contents of the cofferdam 10, the gas supply part 320, and the gas supply part of the above-described embodiment may be applied as it is.
  • FIG. 22 is a view schematically showing a state in which a heat insulating material is provided in a ballast tank in a heat insulation system of a floating offshore structure according to a seventh embodiment of the present invention
  • FIG. 23 shows a temperature of an inner hull IH in contact with a ballast tank. This table shows the calculation result of BOR generated by controlling.
  • the insulation system 600 of the floating offshore structure according to the present embodiment is provided in the ballast tank BT to reduce the heat transfer from the ballast tank BT to the inside of the LNG storage tank T to reduce the BOR ( 120).
  • the BOR can be reduced by lowering the temperature of the inner hull (IH) in contact with the LNG storage tank (T) in the ballast tank (BT) by the heat insulating material (120).
  • the ballast tank BT and the LNG storage tank inner hull IH may be controlled at a temperature of ⁇ 55 to 30 ° C.
  • the material of the inner hull IH is IGC. It can be controlled at temperatures between 0 and 20 ° C in order to be able to use steel grade A as specified in
  • the BOR is 0.1242, as shown in the table of FIG. 23. It can be seen that the decrease of about 7.7%. That is, it can be seen that the BOR reduction effect of the price ratio is large because the BOR can be reduced at a cost of the insulator 120 of low cost.
  • the heat insulator 120 may be provided on the ceiling wall of the ballast tank BT in an area where the inner hull EH and the ballast tank BT and the site passage contact each other.
  • the heat insulating material 120 of the above-described embodiment may be applied as it is. That is, the heat insulating material 120 of the present embodiment may be a heat insulating wall of a sealing and heat insulating unit (SI) for sealing and insulating the LNG storage tank (T), and a panel type heat insulating material and a foam type of a different type from the heat insulating wall. It may include at least one of a heat insulator, a vacuum heat insulator or a particle type insulator, and a nonwoven fabric insulator. Furthermore, the present invention is not limited to the type, form and installation method of the heat insulator.
  • SI sealing and heat insulating unit
  • the present embodiment may include a heating part 30 for heating the cofferdam 10 or heating the inner hull IH to maintain the inner hull IH in contact with the ballast tank BT at a desired temperature.
  • the configuration of the heating unit 30 may include the glycol heating coil 31 of the above-described embodiment, the electric coil, a fluid coil through which steam or fresh water flows, and the like.
  • the material and temperature control of the inner hull IH in contact with the ballast tank BT may be selectively performed according to the required BOR value.
  • the inner hull IH in contact with the ballast tank BT may be controlled at a temperature of -55 to 30 ° C.
  • the temperature of the inner hull IH is controlled to 0 ° C., as shown in the table of FIG. 23, the BOR decreases by 7.7% to 0.1242 compared to the conventional embodiment in which the inner hull IH is controlled to 27.1 to 36.1 ° C.
  • Steel grade A can also be used.
  • the temperature of the inner hull IH is controlled to 5 ° C., as shown in the table of FIG. 23, the BOR is reduced by 6.2% to 0.1262, and the inner hull IH may use steel grade A. .
  • the contents of the cofferdam 10 and the gas supply part 320 of the above-described embodiment may be applied as it is.
  • the gas supply unit 320 may not be applied when the ballast water is filled in the ballast tank BT, and thus may be applied only to the cofferdam 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

본 발명은 부유식 해상구조물의 단열시스템에 관한 것으로, 보다 상세하게는, 밸러스트 탱크, 트렁크 데크 공간(trunk deck space) 및 트렁크 데크와 접한 사이드 통로(side passage way) 중 적어도 하나에 단열재를 마련하여 선체의 외부 영역으로부터 LNG 저장탱크의 내부로의 열전달로 발생되는 BOR(Boil-off Rate)을 감소시키는 것을 특징으로 하는 부유식 해상구조물의 단열시스템에 관한 것이다.

Description

부유식 해상구조물의 단열시스템
본 발명은 부유식 해상구조물의 단열시스템에 관한 것으로서, 보다 상세하게는, 밸러스트 탱크, 트렁크 데크 공간(trunk deck space) 및 트렁크 데크와 접한 사이드 통로(side passage way) 중 적어도 하나를 통한 열전달을 저감시켜 BOR(Boil-off Rate)을 감소시킬 수 있는 부유식 해상구조물의 단열시스템에 관한 것이다.
일반적으로, 천연가스는 육상 또는 해상의 가스배관을 통해 가스 상태로 운반되거나, 액화된 액화천연가스(Liquefied Natural Gas, 이하, 'LNG'라 함)의 상태로 LNG 수송선에 저장되어 원거리의 소비처로 운반된다.
이러한 LNG는 천연가스를 극저온, 예컨대 대략 -163℃로 냉각하여 얻어지는 것으로서, 가스 상태의 천연가스일 때보다 그 부피가 대략 1/600로 줄어들므로 해상을 통한 원거리 운반에 적합하다.
이와 같은 LNG는 LNG 수송선에 실려서 바다를 통해 운반되어 육상 소요처에 하역되거나, LNG RV(LNG Regasification Vessel)에 실려서 바다를 통해 운반되어 육상 소요처에 도달한 후 재기화되어 천연가스 상태로 하역될 수 있는데, LNG 수송선과 LNG RV에는 LNG의 극저온에 견딜 수 있는 LNG 저장탱크('화물창'이라고도 함)가 마련된다.
또한, LNG FPSO(Floating, Production, Storage and Offloading), LNG FSRU(Floating Storage and Regasification Unit)와 같은 해상 구조물에 대한 수요가 점차 증가하고 있으며, 이러한 해상 구조물에도 LNG 수송선이나 LNG RV에 설치되는 LNG 저장탱크가 포함된다.
여기서, LNG FPSO는 생산된 천연가스를 해상에서 직접 액화시켜 저장탱크 내에 저장하고, 필요 시 저장탱크 내에 저장된 LNG를 LNG 수송선으로 옮겨싣기 위해 사용되는 해상 구조물이다.
LNG FSRU는 육상으로부터 멀리 떨어진 해상에서 LNG 수송선으로부터 하역되는 LNG를 저장탱크에 저장한 후, 필요에 따라 LNG를 기화시켜 육상 수요처에 공급하는 해상 구조물이다.
이와 같은 LNG 저장탱크는 LNG를 극저온 상태로 저장하기 위한 단열재가 화물의 하중에 직접적으로 작용하는지 여부에 따라 독립탱크형(independent tank type)과 멤브레인형(membrane type)으로 분류되고, 독립탱크형 저장탱크는 MOSS형과 IHI-SPB형으로 나뉘며, 멤브레인형 저장탱크는 GT NO 96형과 TGZ Mark Ⅲ형으로 나뉘어진다.
종래의 LNG 저장탱크 중 멤브레인형인 GT NO 96형은 0.5~0.7㎜ 두께의 인바(Invar) 강(36% Ni)으로 이루어지는 1차 밀봉벽(Primary barrier) 및 2차 밀봉벽(Secondary barrier)이 선체의 내면에 2개의 층으로 설치되되, 1차 밀봉벽이 LNG 측에 위치하고, 2차 밀봉벽이 선체의 내면 측에 위치하도록 설치됨으로써 LNG를 이중으로 감싼다.
또한, 1차 밀봉벽과 2차 밀봉벽 사이의 공간에는 1차 단열벽이 설치되고, 2차 밀봉벽과 내부 선체 사이의 공간에는 2차 단열벽이 설치되는데, 1차 단열벽 및 2차 단열벽은 LNG 저장탱크의 외부의 열이 LNG로 전달되는 것을 최소화한다.
한편, LNG 저장탱크에 저장된 LNG는 상압에서 기화 온도인 대략 -163℃ 에서 저장되기 때문에 LNG로 열이 전달되면 LNG가 기화되어 증발가스(Boil Off Gas, 이하 'BOG'라 함)가 발생 된다.
그리고 멤브레인 타입 LNG 저장탱크의 경우에 차가운 LNG 저장탱크를 연속적으로 설치하면 그 사이에 있는 스틸(steel)의 온도가 급격히 떨어져서 취성 파괴(brittle fracture)가 일어날 수 있다.
이를 방지하기 위해 LNG 저장탱크의 사이에 코퍼댐(cofferdam)이라는 공간을 두어서 LNG의 저온에 의한 손상을 막아준다.
하지만 코퍼댐을 설치하더라도 극저온의 LNG에 의해 LNG 화물창에 접한 코퍼댐 벌크헤드 부재의 스틸의 온도가 -60℃ 이하로 떨어지는 경우가 발생한다. 일반적인 스틸은 -60℃에 노출되면 저온 취성으로 손상된다.
이에 대한 방안으로 코퍼댐을 스테인레스 스틸이나 알루미늄 등의 극저온 재질로 제작할 수 있으나, 극저온 재질을 사용하면 선박의 가격이 급격히 증가 된다.
따라서, 코퍼댐과 LNG 저장탱크가 설치된 경우 코퍼댐의 온도를 5℃로 제어하고, 코퍼댐의 벌크 헤드를 상온에서 견디는 비교적 값이 저렴한 스틸로 제작한다.
기존의 LNG 운반선의 경우 코퍼댐의 온도가 5℃ 이하로 될 경우에는 히팅시스템이 가동해서 항상 5℃ 이상으로 유지한다. 기존의 LNG 운반선은 이를 위해서 글리콜 히팅시스템(glycol heating system)이나 전기 히팅시스템을 갖추고 있다.
따라서, 기존의 LNG 운반선은 항상 코퍼댐의 온도가 최소 5℃ 이상으로 설계/운항되며 BOR도 이러한 온도 조건에서 발생된다.
현재 LNG 운반선 시장에서는 계약을 하는 단계에서 BOR의 수치에 민감하다. 실례로 예전에는 0.15%의 BOR이 계약 조건이었지만 근래에는 0.125%나 0.10% 혹은 0.095%등의 BOR을 계약 조건으로 제시되는 경우가 발생하고 있다.
하지만, 현재 멤브레인 타입 탱크는 단열벽이 화물창 내에 설치된다. LNG 화물창 단열벽은 단열성능과 더불어서 LNG 화물에서 화물창으로 전달되는 하중을 견디고 전달할 수 있어야 하기 때문에, 단열성능을 높이기 위해서 기존 LNG 화물창의 단열벽을 변경하면 많은 연구와 설계 변경 및 비용 증가가 발생한다.
실제로 0.13% 정도의 BOR을 만족하는 LNG 화물창 단열벽이 있다고 하더라도 0.125%가 선주의 BOR 요구치로 나오면 BOR을 4% 정도 감소하기 위해서 많은 연구, 기간, 비용이 발생하고 있다.
또한, 0.103% BOR을 보장하는 LNG 화물창 단열벽이 있다고 하여도 선주가 0.10%의 BOR을 제시할 경우에는 이 LNG 화물창을 적용할 수 없어서 LNG 운반선을 수주할 수 없는 상황이 발생하고 있다. 현재 시장은 1%라도 BOR을 감소하면 선박 수주에서 유리한 상황에서 경쟁할 수 있는 것이 현재 LNG 운반선 시장이다.
한편, 기존의 BOR감소를 위한 기술개발은 LNG 화물창 단열벽의 성능을 개선하는 것이다. 현재 시장에서 1%라도 작은 BOR을 요구하고 있기 때문에 현 시점에서 많이 거론되는 방법은 LNG 화물창의 두께를 늘리는 것이다.
하지만, LNG 화물창의 두께를 늘리면 LNG를 저장할 수 있는 부피가 그만큼 감소한다. 혹은, 같은 화물창 부피를 유지하기 위해서는 선박의 크기가 커지게 된다.
또한, 화물창의 두께가 커지면 화물창이 구조적으로 더 약해지기 때문에 이를 보강하기 위한 연구가 진행되어야 한다.
따라서 본 발명이 이루고자 하는 기술적 과제는, 밸러스트 탱크, 트렁크 데크 공간(trunk deck space) 및 트렁크 데크와 접한 사이드 통로(side passage way) 중 적어도 하나를 통한 열전달을 저감시켜 BOR(Boil-off Rate)을 감소시킬 수 있는 부유식 해상구조물의 단열시스템을 제공하는 것이다.
본 발명의 일 측면에 따르면, 밸러스트 탱크, 트렁크 데크 공간(trunk deck space) 및 트렁크 데크와 접한 사이드 통로(side passage way) 중 적어도 하나에 단열재를 마련하여 선체의 외부 영역으로부터 LNG 저장탱크의 내부로의 열전달로 발생되는 BOR(Boil-off Rate)을 감소시키는 것을 특징으로 하는 부유식 해상구조물의 단열시스템이 제공될 수 있다.
상기 밸러스트 탱크, 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 어느 하나와 접한 내부 선체의 온도는 -55 ~ 30℃로 제어될 수 있다.
상기 밸러스트 탱크와 접한 내부 선체의 온도는 0 ~ 20℃로 제어되며, 상기 내부 선체는 IGC에서 규정하는 스틸 등급인 A로 제작될 수 있다.
상기 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 어느 하나와 접한 내부 선체의 온도는 0 ~ 30℃로 제어되며, 상기 내부 선체는 IGC에서 규정하는 스틸 등급인 A로 제작될 수 있다.
상기 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 어느 하나와 접한 내부 선체의 온도는 -30℃ 이하로 제어되며, 상기 내부 선체는 저온강(LT)로 제작될 수 있다.
상기 단열재는 상기 밸러스트 탱크를 형성하는 외부 선체의 내측벽에 마련될 수 있다.
상기 단열재는 상기 트렁크 데크 스페이스와 근접 배치된 사이트 통로와 밸러스트 탱크가 접하는 영역에 마련될 수 있다.
상기 단열재는 상기 LNG 저장탱크에 저장된 LNG를 단열시키는 단열벽, 패널 타입의 단열재, 발포형 타입의 단열재, 진공 타입의 단열재, 입자 타입의 단열재 및 부직포 타입의 단열재 중 적어도 하나를 포함할 수 있다.
상기 부유식 해상구조물은 내부 선체를 가열시키는 히팅부를 더 포함할 수 있다.
상기 히팅부는 글리콜 히팅 코일, 전기 히팅 코일 및 유체 파이프 중 적어도 하나를 이용하여 상기 내부 선체를 가열시킬 수 있다.
상기 부유식 해상구조물은 LNG FPSO, LNG FSRU, LNG 수송선 및 LNG RV 중 선택된 어느 하나인 것일 수 있다.
본 발명의 다른 일 측면에 따르면, 선체의 길이 방향으로 1열 이상으로 설치되는 복수의 LNG 저장탱크의 사이에 마련되는 코퍼댐; 및 밸러스트 탱크, 트렁크 데크 공간(trunk deck space) 및 트렁크 데크와 접한 사이드 통로(side passage way) 중 적어도 하나에 에 마련되는 단열재를 포함하며, 상기 코퍼댐은 0℃ 이하의 온도로 제어되어, 상기 코퍼댐으로부터 상기 복수의 LNG 저장탱크의 내부로의 열전달을 감소시키고, 밸러스트 탱크, 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 하나의 온도를 선체 외부의 온도 보다 낮게 제어하여, 상기 밸러스트 탱크, 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 하나에서 상기 복수의 LNG 저장탱크 내부로의 열전달에 의해 발생되는 BOR(Boil-off Rate)을 감소시키는 것을 특징으로 하는 부유식 해상구조물의 단열시스템이 제공될 수 있다.
상기 코퍼댐은, 상기 복수의 LNG 저장탱크 사이에 서로 이격 배치되는 한 쌍의 벌크 헤드; 및 상기 한 쌍의 벌크 헤드와 상기 선체의 내벽에 의해 마련되는 공간부를 포함하며, 상기 한 쌍의 벌크 헤드를 영하의 온도로 제어할 수 있다.
본 발명의 다른 일 측면에 따르면, 밸러스트 탱크, 트렁크 데크 공간 및 트렁크 데크와 근접 배치된 사이드 통로 중 적어도 하나와 접하는 내부 선체의 온도를 -55 ~ 30℃로 제어할 수 있다.
본 발명의 실시예들은, 코퍼댐의 온도를 영하로 제어하고, 밸러스트 탱커, 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 한 곳에 단열재를 마련하여, 코퍼댐으로부터 복수의 LNG 저장탱크의 내부로의 열전달을 저감시키고, 밸러스트 탱크, 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 한 곳로부터 복수의 LNG 저장탱크의 내부로의 열절단을 저감시켜 열전달로 발생되는 BOR(Boil-off Rate)을 감소시킬 수 있다.
즉, 본 실시예들은 복잡하고 고가인 LNG 화물창의 변형으로 BOR을 줄이는 것이 아니고 LNG 화물창 주변의 온도를 낮추어서 LNG 화물창으로 유입되는 열침입을 원천적으로 감소시키기 때문에 LNG 화물 운송효율을 유지하면서 BOR을 감소시킬 수 있다.
도 1은 본 발명의 제1 실시예에 따른 부유식 해상구조물에 코퍼댐이 설치된 상태를 개략적으로 도시한 측면도이다.
도 2는 도 1의 II-II선에 따른 단면도이다.
도 3은 도 1의 III-III선에 따른 단면도이다.
도 4는 도 1에 도시된 부유식 해상구조물에서 2열로 배치된 LNG 저장탱크의 사이에 코퍼댐이 마련된 상태를 도시한 평단면도이다.
도 5는 도 4의 IV-IV선에 따른 단면도이다.
도 6는 IGC에서 규정하는 스틸 등급(steel grade)을 나타낸 표이다.
도 7은 본 발명의 제1 실시예에서 코퍼댐의 온도 제어에 의해 발생되는 BOR의 계산 결과를 나타낸 표이다.
도 8은 본 발명의 제1 실시예에서 부유식 해상구조물에 히팅부가 마련된 상태를 개략적으로 도시한 도면이다.
도 9는 본 발명의 제2 실시예에 따른 부유식 해상구조물의 단열시스템에서 코퍼댐에 단열재가 마련된 상태를 개략적으로 도시한 도면이다.
도 10은 도 9의 “A” 영역에 단열재가 마련된 상태를 개략적으로 도시한 사시도이다.
도 11은 도 9의 “B” 영역에 단열재가 마련된 상태를 개략적으로 도시한 사시도이다.
도 12는 도 10의 “C” 영역에 단열재의 손상을 방지하기 위해 마련된 단열재 손상방지부재를 개략적으로 도시한 도면이다.
도 13은 도 9에 도시된 단열재에 의해 코퍼댐의 온도를 제어함으로써 발생되는 BOR의 계산 결과를 나타낸 표이다.
도 14는 본 발명의 제3 실시예에 따른 부유식 해상구조물에서 코퍼댐의 벌크 헤드가 외부 선체까지 연장되지 않고 내부 선체까지만 연결된 상태를 개략적으로 도시한 도면이다.
도 15 도 14에 도시된 벌크헤드 대신 코퍼댐을 마련하고, 코퍼댐에 단열재를 마련한 도 14의 변형 실시예이다.
도 16은 도 13에 도시된 벌크 헤드를 극저온 소재로 제작하고 코퍼댐의 온도를 제어함으로써 발생되는 BOR의 계산 결과를 나타낸 표이다.
도 17은 본 발명의 제4 실시예에 따른 부유식 해상구조물에서 기체 공급부를 개략적으로 도시한 도면이다.
도 18은 도 17에 도시된 코퍼댐의 온도를 제어함으로써 발생되는 BOR의 계산 결과를 나타낸 표이다.
도 19는 본 발명의 제5 실시예에 따른 부유식 해상구조물에서 LNG 저장탱크의 압력 변화에 따라 코퍼댐의 온도를 제어하는 것을 개략적으로 도시한 도면이다.
도 20은 본 발명의 제6 실시예에 따른 부유식 해상구조물의 단열시스템에서 트렁크 데크 공간 및 사이드 통로에 단열재가 마련된 상태를 개략적으로 도시한 도면이다.
도 21은 도 20에 도시된 트렁크 데크 공간 및 사이드 통로와 접한 내부 선체의 온도를 제어함으로써 발생되는 BOR의 계산 결과를 나타낸 표이다.
도 22는 본 발명의 제7 실시예에 따른 부유식 해상구조물의 단열시스템에서 밸러스트 탱크에 단열재가 마련된 상태를 개략적으로 도시한 도면이다.
도 23은 밸러스트 탱크와 접한 내부 선체의 온도를 제어함으로써 발생되는 BOR의 계산 결과를 나타낸 표이다.
<도면 부호의 간단한 설명>
1,200,300,400 : 부유식 해상구조물
100,500,600 : 부유식 해상구조물의 단열시스템
10 : 코퍼댐 30 : 히팅부
120 : 단열재 220 : 강도부재
320 : 기체 공급부
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.
본 명세서에서 부유식 해상 구조물이란, LNG를 저장하기 위한 저장탱크를 구비하면서 해상에서 부유된 채 사용되는 선박 및 각종 구조물을 모두 포함하는 개념으로, LNG FPSO(Floating,Production, Storage and Offloading), LNG FSRU(Floating Storage and Regasification Unit), LNG 수송선, LNG RV(LNG Regasification Vessel) 를 포함한다.
도 1은 본 발명의 제1 실시예에 따른 부유식 해상구조물에 코퍼댐이 설치된 상태를 개략적으로 도시한 측면도이고, 도 2는 도 1의 II-II선에 따른 단면도이고, 도 3은 도 1의 III-III선에 따른 단면도이고, 도 4는 도 1에 도시된 부유식 해상구조물에서 2열로 배치된 LNG 저장탱크의 사이에 코퍼댐이 마련된 상태를 도시한 평단면도이고, 도 5는 도 4의 IV-IV선에 따른 단면도이고, 도 6는 IGC에서 규정하는 스틸 등급(steel grade)을 나타낸 표이고, 도 7은 본 발명의 제1 실시예에서 코퍼댐의 온도 제어에 의해 발생되는 BOR의 계산 결과를 나타낸 표이고, 도 8은 본 발명의 제1 실시예에서 부유식 해상구조물에 히팅부가 마련된 상태를 개략적으로 도시한 도면이다.
본 실시 예는 코퍼댐(10)을 영하의 온도로 제어하여 코퍼댐(10)으로부터 LNG 저장탱크(T)의 내부로의 열전달로 발생되는 BOR(Boil-off Rate)을 감소시킨다.
이들 도면에 도시된 바와 같이, 본 실시예에 따른 부유식 해상구조물(1)은, 선체의 길이 방향으로 1열 이상으로 설치되는 복수의 LNG 저장탱크(T)의 사이에 마련되되 영하의 온도로 제어되는 코퍼댐(10)을 구비한다.
코퍼댐(10)은, 선체의 길이 방향으로 1열 이상으로 설치되는 복수의 LNG 저장탱크(T)에 마련되며, 도 1 내지 도 3 에 도시된 바와 같이, 선체의 길이 방향으로 다열로 배치되는 복수의 LNG 저장탱크(T)의 사이에 마련되거나, 도 4 및 도 5에 도시된 바와 같이, 선체의 폭 방향 및 길이 방향으로 2열로 배치되는 LNG 저장탱크(T)의 사이에 마련될 수 있다.
본 실시 예에서 코퍼댐(10)은 BOR(Boil-off Rate)을 줄이기 위해서 종래와 달리 영하의 온도로 제어된다.
구체적으로, 종래에는 코퍼댐의 온도를 항상 5℃ 이상으로 유지하였는데, 이는 코퍼댐의 온도가 5℃보다 낮게 제어될 경우 IGC에서 규정하는 스틸 등급(steel grade) A를 사용하는 코퍼댐의 벌크 헤드(11)의 온도가 0℃보다 낮아져 취성 파괴(brittle fracture) 될 수 있는 위험이 있기 때문이다.
전술한 바와 같이 코퍼댐의 온도를 5℃ 이상으로 유지하는 경우 코퍼댐과 LNG 저장탱크(T)에 저장된 LNG 간의 온도 차이로 인한 열전달로 인해 BOR이 발생되는 데, 일례로 실제 조선소에서 건조한 선박에 대해서, 도 6의 표에 나타난 바와 같이, 0.1282의 BOR이 계산된다.
하지만, 본 실시 예와 같이 코퍼댐(10)의 온도를 영하의 온도로 제어하면 LNG와 코퍼댐(10)과의 온도 차이가 작아져 LNG와 코퍼댐(10) 간의 열전달이 종래에 비해 감소 되고, 이는 BOR의 감소로 이어짐을 알 수 있다.
이에 본 발명에서는 코퍼댐의 벌크 헤드가 -30 ~ 0℃ 에서 견딜 수 있는 재질로 제작된 경우, 상기 코퍼댐은 -30 ~ 70℃의 범위에서 변온될 수 있고, 코퍼댐의 벌크 헤드가 -55℃까지, 구체적으로는 -31℃ 미만에서 -55℃까지 견딜 수 있는 저온강(LT)으로 제작된 경우, 상기 코퍼댐은 -55 ~ 70℃의 범위에서 변온될 수 있다.
구체적으로, 도 7의 표에 나타난 바와 같이, 코퍼댐(10)의 벌크 헤드(11)의 온도를 -25℃로 제어하면 코퍼댐(10)의 온도를 -20.8℃로 유지할 수 있고, 이 경우 BOR은 0.1236이 되며, 이 수치는 종래의 BOR에 비해 3.5% 감소 됨을 알 수 있다.
또한, 도 7의 표에 나타난 바와 같이, 코퍼댐(10)의 벌크 헤드(11)의 온도를 -50℃로 제어하면 코퍼댐(10)의 온도를 -46.5℃로 유지할 수 있고, 이 경우 BOR은 0.1192가 되며, 이 수치는 종래의 BOR에 비해 7.0% 감소 됨을 알 수 있다. 참고로 전술한 BOR의 수치는 수치해석의 결과이다.
다만, 코퍼댐(10)의 온도를 영하의 온도로 유지하는 경우 벌크 헤드(11)를 IGC에서 규정하는 재질이나 저온강(LT)으로 제작해야 되므로 비용이 증가 됨을 예상할 수 있으나, 이러한 비용의 증가는 BOR을 감소시킬 때 발생되는 이익에 비해서 작기 때문에 비교적 적은 비용으로 BOR을 효율적으로 감소시킬 수 있다.
그리고, BOR의 감소로 인해 BOG로 증발되는 LNG의 손실도 막을 수 있으므로 이로 인해 전술한 비용의 증가도 충분히 상쇄될 수 있다.
이제 코퍼댐(10)에 대해 상세히 설명하면, 본 실시 예에서 코퍼댐(10)은, 도 1에 도시된 바와 같이, 복수의 LNG 저장탱크(T) 사이에 서로 이격 배치되는 한 쌍의 벌크 헤드(11)와, 한 쌍의 벌크 헤드(11)와 내부 선체(IH)에 의해 마련되는 공간부(12)를 포함하며, 한 쌍의 벌크 헤드(11)를 영하의 온도로 제어함으로써 코퍼댐(10)의 온도를 영하로 온도로 제어할 수 있다.
본 실시 예에서 코퍼댐(10)의 온도는 일 예로 코퍼댐(10)의 가열 시스템이 작동하는 설정 온도를 조절하거나 코퍼댐(10)에 추가로 단열재(120, 도 9 참조)를 설치하거나 냉각된 가스를 코퍼댐(10)에 주입해서 영하의 온도로 조절될 수 있다.
구체적으로, LNG 운반선을 설계할 때에는 USCG 조건에 따라서 외부 공기 온도가 -18℃ 이고, 해수 온도가 0℃일 때도 LNG 운반선이 문제가 없도록 설계되어야 한다. 이러한 외부 온도 조건에서 코퍼댐(10)을 가열하지 않으면 LNG 저장탱크(T)에 저장된 LNG의 냉열에 의해 코퍼댐(10)은 -60℃까지 떨어지게 된다.
따라서, 종래에는 코퍼댐(10)을 가열해서 코퍼댐(10)의 공간부(12)를 5℃, 벌크 헤드(11)를 0℃ 이상으로 항상 온도를 제어한다.
하지만, 본 실시예에서는 종래의 LNG 운반선과 다르게 본 실시예에서 제안하는 영하의 온도가 되면 가열장치가 가동되도록 하여 코퍼댐(10)의 온도를 영하의 특정 온도로 조절할 수 있다.
또한, 코퍼댐(10)의 내부에 단열재(120, 도 9 참조)를 설치하여 코퍼댐(10)을 영하의 온도로 제어할 수도 있고, 단열재(120)에 대해서는 후술하는 제2 실시예에서 상세히 설명한다.
본 실시 예에서 코퍼댐(10)의 온도를 영하의 온도로 제어하는 전술한 방법은 독립적으로 사용될 수도 있고, 다른 방법과 같이 사용될 수도 있으므로 본 발명의 권리범위는 어느 하나의 방법을 적용하는 것에 제한되지 않는다.
코퍼댐(10)의 벌크 헤드(11)는, 영하의 온도로 제어되므로, 벌크 헤드(11)는 IGC에서 규정하는 스틸 등급(steel grade)인 B, D, E, AH, DH, EH로 제작될 수 있다.
특히, 코퍼댐(10)의 벌크 헤드(11)를 -30 ~ -20℃로 제어하는 경우 IGC에서 규정하는 스틸 등급인 E 또는 EH로 벌크 헤드(11)를 제작할 수 있고, 벌크 헤드(11)를 -60 ~ -30℃로 제어하는 경우 저온강(LT)으로 벌크 헤드(11)를 제작할 수 있다.
본 실시 예에서 벌크 헤드(11)를 저온용 강으로 제작하는 경우 저온용 강은 저온용 탄소강(low temperature carbon steel), 저온용 합금강(low temperature alloy steel), 니켈강, 알루미늄강, 오스테나이트계 스테인리스강 중 하나 또는 상기 군으로부터 적어도 하나 이상의 조합으로 이루어질 수 있다.
또한, 코퍼댐(10)을, 도 1 및 3에 도시된 바와 같이, 선체의 폭 방향으로 하나의 열로 배치하는 경우 공간부(12)는, 선체의 길이 방향으로 이격 된 한 쌍의 벌크 헤드(11)가 전방벽(7a)과 후방벽(9a)을 형성할 수 있고, 내부 선체(IH)가 좌우측벽, 천장부 및 바닥부를 형성할 수 있다.
나아가, 본 실시 예에서 코퍼댐(10)은, 도 4에 도시된 바와 같이, LNG 저장탱크(T)의 내부 공간을 횡방향으로 분할하는 횡방향 코퍼댐(10a)과, 종방향으로 분할하는 종방향 코퍼댐(10b)을 포함한다.
이 경우 코퍼댐(10)의 공간부(12)는, 횡방향 코퍼댐(10a)의 경우, 도 4를 기준으로, 선체의 길이 방향으로 이격 된 한 쌍의 벌크 헤드(11)가 각각 공간부(12)의 전방벽과 후방벽을 형성할 수 있고, 우측의 내부 선체(IH)가 우측벽(3a)을 좌측의 격벽이 좌측벽(5a)을 형성할 수 있고, 내부 선체(IH)가 천장벽 및 바닥벽을 형성할 수 있다.
또한, 종방향 코퍼댐(10b)의 경우, 도 4를 기준으로, 선체의 폭 방향으로 이격 된 한 쌍의 벌크 헤드(11)가 각각 공간부(12)의 우측벽과 좌측벽을 형성할 수 있고, 종방향 코퍼댐(10b)의 벌크 헤드(11)와 횡방향 코퍼댐(10a)의 벌크 헤드(11)가 접하는 벽이 전방벽(7a)과 후방벽(7b)을 형성할 수 있고, 내부 선체(IH)가 천장벽 및 바닥벽을 형성할 수 있다.
본 실시 예의 공간부(12)에는 후술하는 제2 실시예의 단열재(120)가 마련될 수 있고, 단열재(120)에 관해서는 제2 실시예에서 상세히 설명한다.
가스 공급부는, 코퍼댐(10)의 내부로 가스를 공급하여 코퍼댐(10)에 성에가 끼거나 습도 변화 등에 의해서 코퍼댐(10)이 손상되는 것을 방지하는 역할을 한다.
본 실시 예에서 가스 공급부는, 후술하는 제4 실시예의 기체 공급부(300, 도 17 참조)와 동일하게 구성될 수 있고, 가스 공급 라인에서 분기되어 가스 공급 라인을 통해 공급되는 가스를 코퍼댐(10)의 내부로 공급시키는 공급 배관과, 코퍼댐(10)에 마련되어 코퍼댐(10)의 내부에 채워진 가스를 코퍼댐(10)의 외부로 배출시키는 배출 배관과, 공급 배관 및 배출 배관에 마련되는 밸브를 포함한다.
가스 공급부의 공급 배관은, 코퍼댐(10)에 대응되는 개수로 마련될 수 있고, 공급 배관의 하단부는 코퍼댐(10)의 바닥에 근접되게 배치될 수 있다.
가스 공급부의 배출 배관은, 코퍼댐(10)에 대응되는 개수로 마련되어 각각의 코퍼댐(10)의 내부에 채워진 가스를 각각 배출할 수도 있고, 이 서로 연결되어 배출될 수도 있다.
가스 공급부(20)의 밸브는, 전기적 신호에 의해 개폐되는 비례제어밸브일 수 있다.
본 실시 예에서 가스 공급 라인으로 공급되는 가스는 건조 공기(dry air), 이너트 가스(inert gas) 또는 N2 가스를 포함하며, 이 가스는 LNG 운반선에 이미 설치되어 있는 기존의 건조 공기/이너트 가스 제너레이터로부터 공급될 수 있다.
한편, 본 실시예는 영하의 제1 온도로 떨어진 코퍼댐(10)의 온도를 제1 온도 보다 높은 제2의 영하의 온도로 제어하는 히팅부(30)를 구비할 수 있다.
본 실시 예에서 히팅부(30)는, 도 8에 도시된 바와 같이, 코퍼댐(10)의 내부에 클리콜 히팅 코일(31)을 설치하고 클리콜 히팅 코일(31)에 가열된 클리콜(glycol)을 공급하여 벌크 헤드(11)를 가열할 수도 있고, 코퍼댐(10)의 내부에 전기 코일을 설치하여 벌크 헤드(11)를 가열할 수도 있다.
또한, 코퍼댐(10)의 내부에 배기가스의 폐열 또는 고온의 액체 또는 스팀이 순환될 수 있는 코일을 마련하여 벌크 헤드(11)를 가열할 수도 있다.
본 실시 예에서 부동액으로 클리콜을 사용하는 경우 -30℃의 어는점을 갖는 glycol water 45%을 사용할 수 있다.
도 8를 참고하여 코퍼댐(10)으로 공급되는 글리콜을 가열하는 방법을 간단히 설명한다.
글리콜 순환펌프에 의해 순환되는 글리콜은 코퍼댐(10)으로 공급되기 전에 글리콜 히터(GH)에서 보일러 등에서 공급되는 고온의 스팀에 의해 가열되고, 가열된 글리콜은 코퍼댐(10)의 내부에 마련된 글리콜 히팅 코일(31)로 공급되어 벌크 헤드(11)를 가열한 후 순환된다.
본 실시 예에서 코퍼댐(10)에는 코퍼댐(10) 내부의 온도를 측정할 수 있는 온도 센서(TS)가 마련될 수 있고, 코퍼댐(10) 내부의 온도가 설정된 값보다 낮을 경우에 가열된 글리콜을 벌크 헤드(11)에 부착된 글리콜 히팅 코일(31)로 공급해서 벌크 헤드(11)와 공간부(12)의 온도를 높이거나 유지할 수 있다.
한편, 벌크 헤드(11)의 온도를 -50℃ 이하로 제어하는 경우 부동액의 어는점이 -50℃ 이하로 떨어질 수 있기 때문에 부동액은 glycol water 65% 또는 메틸알콜을 사용할 수 있다.본 발명의 제1 실시예에서 설명된 내용은 후술하는 다른 실시예에서도 그대로 적용될 수 있다.
도 9는 본 발명의 제2 실시예에 따른 부유식 해상구조물의 단열시스템에서 코퍼댐에 단열재가 마련된 상태를 개략적으로 도시한 도면이고, 도 10은 도 9의 “A” 영역에 단열재가 마련된 상태를 개략적으로 도시한 사시도이고, 도 11은 도 9의 “B” 영역에 단열재가 마련된 상태를 개략적으로 도시한 사시도이고, 도 12는 도 10의 “C” 영역에 마련된 단열재의 변형 실시예이고, 도 13은 도 9에 도시된 단열재에 의해 코퍼댐의 온도를 제어함으로써 발생되는 BOR의 계산 결과를 나타낸 표이다.
본 실시 예에 따른 부유식 해상구조물의 단열시스템(100)은 극지방이나 열대 지방 등의 공간적 환경이나 계절, 주일/주야 등의 시간적 환경에 관계없이 코퍼댐(10)의 온도를 영하의 온도로 제어하기 위해 코퍼댐(10)에 마련되는 단열재(120)를 구비한다.
단열재(120)는, 도 9에 도시된 바와 같이, 코퍼댐(10)에 마련되어 부유식 해상구조물이 온도가 높은 지역을 운항하거나 여름철에 운항할 경우 코퍼댐(10)의 내부로 열이 침입하는 것을 방지하여 외부의 온도가 높은 경우에도 코퍼댐(10)의 온도를 원하는 온도로 떨어질 수 있도록 하는 역할을 한다.
구체적으로, 외부의 온도가 높은 경우 예를 들어 IGC code에서 제시하는 외부 공기의 온도가 45℃, 해수 온도가 25℃일 때 단열재(120)를 설치하지 않을 경우에는, 도 13의 표에 나타난 바와 같이, 코퍼댐(10)의 온도가 -15.39℃로 밖에 떨어지지 않을 수 있어, BOR의 감소에 한계가 있을 수 있다.
하지만, 본 실시예와 같이 코퍼댐(10)에 단열재(120)를 마련하면 전술한 온도의 조건에서도 코퍼댐(10)의 온도를 원하는 온도 예를 들어, -25℃, -50℃로 낮추어서 충분한 BOR 감소 효과를 볼 수 있다.
이제 단열재(120)에 대해 상세히 설명하면, 본 실시 예에서 단열재(120)는, LNG 저장탱크(T)에 저장된 LNG를 단열시키기 위해 사용되는 단열벽은 물론 작업의 편리성 및 비용 등을 고려하여 전술한 단열벽과 다른 타입을 사용할 수 있다.
즉, 본 실시 예에서 단열재(120)는 전술한 단열벽과 다른 타입인 패널 타입의 단열재, 발포형 타입의 단열재, 진공 단열이나 입자 형태 타입의 단열재 및 부직포 타입의 단열재 중 적어도 하나를 포함할 수 있다.
본 실시예에서 단열재(120)는 종류와 형태에 제한이 없이 적용될 수 있다. 작업 환경 및 비용 등을 고려하여 전술한 세 가지 타입의 단열재 중 어느 하나만을 사용할 수도 있고, 2 이상의 단열재를 선택해서 사용할 수도 있다. 덧붙여 LNG 저장탱크(T)에 저장된 LNG를 단열시키는 단열벽을 사용할 수도 있다. 여기서, 단열벽은 밀봉 및 단열유닛(SI)의 단열벽을 말한다.
패널 타입의 단열재는 스티로폼(styrofoam)을 포함하며, 스티로폼은 코퍼댐(10)에 저온 접착제나 볼트 등을 이용하여 부착 방식으로 결합 될 수 있다.
발포형 타입의 단열재는 폴리우레탄폼을 포함하며, 폴리우레탄폼은 포밍(foaming) 방식으로 코퍼댐(10)에 분사되어 결합 될 수 있다.
부직포 타입의 단열재는 폴리에스텔 화이버 재질로 제작될 수도 있고, 합성수지층으로 제작될 수도 있으며, 코퍼댐(10)에 저온 접착제나 볼트 등을 이용하여 부착 방식으로 결합 될 수 있다.
본 발명에서 단열재(120)의 종류와 설치 방법에 대해서는 제한이 없다.
본 실시 예에서 단열재(120)는, 도 9에 도시된 바와 같이, 한 쌍의 벌크 헤드(11)를 제외한 영역의 코퍼댐(10)의 공간부(12)에 마련될 수 있다.
구체적으로, 도 10에 도시된 바와 같이, 횡방향 코퍼댐(10a)의 경우 단열재(120)는 코퍼댐(10)의 공간부(12)의 우측벽부, 좌측벽부, 천장부 및 바닥부에 각각 마련될 수 있다. 또한 천장부 및 바닥부에 마련되는 단열재(120)는 공간부(12)의 내부가 아닌 외부에 마련될 수도 있다.
이와 같이 한 쌍의 벌크 헤드(11)를 제외한 영역의 코퍼댐(10)에 단열재(120)를 마련하면 한 쌍의 벌크 헤드(11)와 접하지 않은 영역의 외부의 열이 코퍼댐(10)의 내부로 침입하는 것을 방지할 수 있고, 한 쌍의 벌크 헤드(11)를 통해 LNG 저장탱크(T)에 저장된 LNG의 냉열이 공간부(12)로 전달될 수 있어, 선체 외부의 온도가 높은 경우에도 코퍼댐(10)의 온도를 원하는 온도로 낮출 수 있다.
또한, 본 실시 예에서 단열재(120)는 복수의 횡방향 코퍼댐(10a) 중 선수 최전방에 배치되는 횡방향 코퍼댐(10a)의 선수 최전방 벌크 헤드(11) 및 선미 최후방에 배치되는 횡방향 코퍼댐(10a)의 선미 최후방 벌크 헤드(11)에도 각각 마련될 수 있다.
구체적으로, 도 11은 선수 최전방의 벌크 헤드(11)에 단열재(120)가 마련된 것을 도시한 것으로서 선수 최전방 및 선미 최후방은 선수와 선미 사이의 영역과 다른 환경을 가지고 있다.
즉, 선수 최전방 및 선미 최후방 영역은 LNG 저장탱크(T)가 한 방향에만 접하고 있고, 선체의 내벽에 접하고 있으므로 코퍼댐(10)의 온도를 원하는 온도로 낮추는 것이 선수와 선미 사이 영역에 배치된 코퍼댐(10) 보다 어렵다.
하지만, 본 실시 예와 같이 선수 최전방 벌크 헤드(11) 및 선미 최후방 벌크 헤드(11)에도 단열재(120)를 마련하면 외부의 열침입을 방지할 수 있어 코퍼댐(10)을 원하는 온도로 낮출 수 있다.
한편, 코퍼댐(10)의 내부에 단열재(120)를 설치할 경우 코퍼댐(10)의 바닥부에 마련되는 단열재(120)는 선원에 의해 손상될 수 있다. 즉, 작업자가 코퍼댐(10)의 내부로 들어갔을 때 코퍼댐(10)의 바닥부를 발로 지지하고 서 있어야 하는 데 이때 단열재(120)가 손상될 수 있다.
따라서, 본 실시 예는 전술한 단열재(120)의 손상을 방지하기 위해, 도 12에 도시된 바와 같이, 단열재 손상방지부재를 마련할 수 있다.
본 실시 예에서 단열재 손상방지부재(130a)는, 도 12의 (a)에 도시된 바와 같이, 격자(grid) 형태로 마련되어 단열재(120)의 위에 배치됨으로써 단열재(120)의 특정 부분에 하중이 집중되는 것을 방지하여 단열재(120)의 손상을 방지할 수 있다.
또한, 단열재 손상방지부재(130b)는, 선원이 원하는 곳으로 이동 가능하도록 코퍼댐(10)의 바닥부에 마련되는 별도의 길(path)일 수 있다. 주로 선원이 접근하는 지역은 바닥부의 가장자리이므로, 단열재 손상방지부재(130b)는, 도 12의 (b)에 도시된 바와 같이, 코퍼댐(10)의 바닥부 가장자리에만 약간의 폭을 두고 마련될 수 있다.
도 13은 단열재의 설치 및 코퍼댐의 온도 제어에 의한 BOR의 감소 효과를 나타낸 것이다.
종래와 같이 코퍼댐을 5℃로 제어하면 BOR은 약 0.1282가 나온다. 여기서 코퍼댐의 온도를 제어하기 위해서 글리콜 히팅시스템(glycol heating system)의 제어 온도를 조절한다 하더라도 즉, 글리콜 히팅을 안 할 경우 가장 낮게 떨어지는 온도에도 코퍼댐은 -10.87℃로 밖에 떨어지지 않을 수 있다.
따라서, -25℃까지 적용 가능한 스틸 등급 E로 코퍼댐의 벌크 헤드(11)를 제작하더라도 코퍼댐의 온도는 -15.39℃로 밖에 떨어지지 않으므로 BOR은 약 2.2% 밖에 감소시키지 못한다.
하지만, 본 실시예를 적용하여 코퍼댐(10)이 -26.4℃까지 떨어지도록 단열재(120)를 설치하고, 글리콜 히팅으로 -20.8℃까지 온도를 높여 제어하면 BOR을 약 3.5 감소시킬 수 있다.
그리고 전술한 제1 실시예의 내용은 본 실시예에 그대로 적용될 수 있다.
도 14는 본 발명의 제3 실시예에 따른 부유식 해상구조물에서 코퍼댐의 벌크 헤드가 외부 선체까지 연장되지 않고 내부 선체까지만 연결된 상태를 개략적으로 도시한 도면이고, 도 15 도 14에 도시된 벌크헤드 대신 코퍼댐을 마련하고, 코퍼댐에 단열재를 마련한 도 14의 변형 실시예이고, 도 16은 도 13에 도시된 벌크 헤드를 극저온 소재로 제작하고 코퍼댐의 온도를 제어함으로써 발생되는 BOR의 계산 결과를 나타낸 표이다.
본 실시 예에 따른 부유식 해상구조물의 단열시스템(200)은, 복수의 LNG 저장탱크(T)의 사이에 마련되어 복수의 LNG 저장탱크(T)를 선체의 길이 방향 및 폭 방향 중 적어도 어느 하나의 방향으로 다열 배치시키되 외부 선체(EH)까지 연장되지 않고 내부 선체(IH)까지만 연결되는 벌크 헤드(210)와, 내부 선체(IH)와 외부 선체(EH)를 연결하여 양자를 보강하되 벌크 헤드(210)와 연속되지 않는 강도부재(220)와, 선수 최전방 및 선미 최후방에 마련되는 단열재(120)와, 선수 최전방 및 선미 최후방에 벌크 헤드(210)에 의해 마련된 공간부(12)에 가스를 공급하여 공간이 습도 변화에 의해 손상되는 것을 방지하는 가스 공급부(20)와, 선수 최전방 및 선미 최후방에 마련된 벌크 헤드(210)를 가열시키는 히팅부(30)를 포함한다.
벌크 헤드(210)는, 도 14에 도시된 바와 같이, LNG 저장탱크(T)를 선체의 길이 방향으로 다열 배치시킬 수도 있고, 선체의 폭 방향으로 다열 배치시킬 수도 있다.
또한, 본 실시 예에서 벌크 헤드(210)와 LNG 저장탱크(T)가 접하는 영역에는 밀봉 및 단열유닛(SI)과 단열재(120)가 마련되지 않으므로, 벌크 헤드(210)는 -140℃의 극저온으로 온도가 떨어질 수 있다.
따라서, 본 실시 예에서 벌크 헤드(210)는 스테인리스 스틸이나 알루미늄을 포함하는 극저온 재질로 제작될 수 있고, LNG 저장탱크(T)를 밀봉 및 단열시키는 밀봉 및 단열유닛(SI)의 밀봉벽의 단부는 벌크 헤드(210)에 직접 용접 결합 될 수 있다.
나아가, 본 실시 예의 벌크 헤드(210)는 선수의 최전방 및 선미의 최후방에서 한 쌍이 이격 마련되어 선수의 최전방 및 선미의 최전방에 공간부(12)를 마련할 수 있다. 이 공간부(12)의 벌크 헤드(210)에는 단열재(120)와 히팅부(30)가 마련될 수 있고, 이 공간부(12)로 벌크 헤드(210)의 손상을 방지하기 위해 가스 공급부의 가스가 공급될 수 있다.
한편 본 실시예의 벌크 헤드(210)는 종래와 달리, 도 14에 도시된 바와 같이, 외부 선체(EH)에까지 연장되지 않는다. 이는 벌크 헤드(210)를 외부 선체(EH)에까지 연결하면 외부의 열이 벌크 헤드(210)를 통해 전달되어 BOR이 증가 될 수도 있고, 외부 선체(EH)가 벌크 헤드(210)와 접촉되어 있으므로 벌크 헤드(210)로부터 전달되는 냉열에 의해 취성 파괴될 수 있기 때문이다.
강도부재(220)는, 도 14에 도시된 바와 같이, LNG 저장탱크(T)의 중간 위치에서 내부 선체(IH)와 외부 선체(EH)를 연결하여 선체를 구조적으로 보강하는 역할을 한다.
본 실시 예의 강도부재(220)는, 도 14에 도시된 바와 같이, 벌크 헤드(210)와 연속되지 않도록 마련되므로 벌크 헤드(210)를 통하여 전달되는 냉열은 벌크 헤드(210)의 양단부에 마련되는 밀봉 및 단열유닛(SI)에 의해 상쇄될 수 있고, 벌크 헤드(210)가 외부 선체(EH)와 직접 접촉되지 않으므로 외부로부터의 열전달도 감소 됨을 알 수 있다.
본 실시 예의 강도부재(220)는 벌크 헤드(210)와 연속되지 않는 위치면 어느 위치에도 마련될 수 있고, 그 개수도 제한되지 않는다.
또한, 강도부재(220)는 극저온에 노출되지 않으므로 스틸 등급 A의 스틸로 제작할 수도 있다.
단열재(120)는, 전술한 제2 실시예의 단열재(120)가 그대로 적용될 수 있다. 다만, 그 설치 위치에 있어 LNG 저장탱크(T) 사이가 아닌 선수 최전방 및 선미 최후방에 마련되는 점에서 차이점이 있다.
가스 공급부와 히팅부(30)는 전술한 제1 실시예가 그대로 적용될 수 있다. 다만, 선수 최전방 및 선미 최후방에 마련되는 공간부(12)에 적용되는 점에서 전술한 제1 실시예와 차이점이 있다.
본 실시예는 LNG 저장탱크(T)의 사이에 코퍼댐(10)이 아닌 벌크 헤드(210)가 마련되어 LNG 저장탱크(T)의 사이에 배치된 벌크 헤드(210)의 온도를 직접 제어하는 것이 용이하지 않으므로, 전술한 벌크 헤드(210)는 LNG의 직접 접촉으로 인해 약 -130℃ 정도로 제어된다.
다만, 선수의 최전방 및 선미의 최후방에 배치되는 벌크 헤드(210)는 히팅부(30)에 의해 자유로운 온도 조절이 가능하며, LNG 저장탱크(T)의 사이에 배치되는 벌크 헤드(210)의 경우에도 밀봉 및 단열유닛(SI)의 단열벽을 조절하거나 벌크 헤드(210)의 양단을 전기 코일로 가열하여 벌크 헤드(210)의 온도를 제어할 수 있다.
또한, 본 실시 예는, 도 15에 도시된 바와 같이, 벌크 헤드(210)를 2이상으로 마련할 수도 있고, 2 이상 마련된 벌크 헤드(210)를 서로 이격되게 배치할 수도 있고, 내부 선체(IH)와 외부 선체(EH)로 이루어진 이중 선체 구조에도 적용될 수 있다.
한편, 본 실시예는, 도 14 및 도 15에 도시된 바와 같이, 벌크 헤드(11)와 LNG 저장탱크(T)가 접한 영역에 밀봉 및 단열유닛(SI)을 마련하지 않을 수 있고, 이 경우 벌크 헤드(11)를 극저온 소재로 제작하고 코퍼댐(10)의 온도를 영하의 온도로 제어하면 도 16에 나타난 바와 같은 BOR을 얻을 수 있다.
구체적으로, 도 14에 도시된 바와 같이, 벌크 헤드(11)와 LNG 저장탱크(T)가 접한 영역에 밀봉 및 단열유닛(SI)을 마련하지 않으면 LNG 저장탱크(T)에 저장된 LNG의 냉열이 코퍼댐(10)으로 잘 전달되어 코퍼댐(10)의 온도는, 도 16에 나타난 바와 같이, -125℃로 떨어질 수 있다. 이때 BOR은 코퍼댐(10)을 5℃로 제어할 때보다 17.2% 감소 된 0.1061임을 알 수 있다.
이 경우, 코퍼댐(10)의 벌크 헤드(11)는 -163 ~ -50℃의 온도로 제어되는 것일 수 있으며, 상기 벌크 헤드(11)는 일반 소재가 아닌 스테인리스 스틸이나 알루미늄을 포함하는 극저온 소재로 제작되며, 벌크 헤드(11)와 접하는 밀봉 및 단열유닛(SI)의 밀봉벽은 벌크 헤드(11)에 용접 결합의 방식으로 결합 될 수 있다.
도 17은 본 발명의 제4 실시예에서 따른 부유식 해상구조물에서 기체 공급부를 개략적으로 도시한 도면이고, 도 18은 도 17에 도시된 코퍼댐의 온도를 제어함으로써 발생 되는 BOR의 계산 결과를 나타낸 표이다.
본 실시 예에 따른 부유식 해상구조물(300)은, 복수의 LNG 저장탱크(T)의 사이에 마련되어 복수의 LNG 저장탱크(T)를 선체의 길이 방향 및 폭 방향 중 적어도 어느 하나의 방향으로 다열 배치시키되 영하의 온도로 제어되는 코퍼댐(10)과, 코퍼댐(10)으로 기체를 공급하는 기체 공급부(320)와, 코퍼댐(10)에 마련되어 작업자가 코퍼댐(10)의 내부 공간으로 들어갈 수 있도록 코퍼댐(10)을 가열시키는 히팅부(30)와, 코퍼댐(10)에 마련되는 단열재(120)를 구비한다.
본 실시예는 코퍼댐(10)의 벌크 헤드(11)에 형성되는 냉점(cold spot)을 쉽게 찾을 수 있도록 코퍼댐(10)의 내부로 기체를 공급하는 기체 공급부(320)를 구비한 점에서 전술한 제1, 2 실시예와 차이점이 있다. 전술한 제1,2 실시예에서 설명한 코퍼댐(10), 히팅부(30), 단열재(120)는 본 실시예에서도 그대로 적용될 수 있다.
본 실시 예인 부유식 해상구조물에서는 코퍼댐(10)에도 작업자가 주기적으로 들어가서 코퍼댐(10)의 벌크 헤드(11)에 냉점이 없는지 검토해야 한다. 즉, 코퍼댐(10)의 벌크 헤드(11)의 특정 부분에 온도가 차가운 부분이 발생했는지를 검사해야 하고, 이는 벌크 헤드(11)에 성에가 낀 것으로 알 수 있고 육안검사를 한다.
하지만, 코퍼댐(10)의 온도가 영하의 온도로 낮게 유지되고 코퍼댐(10) 내부가 일반적인 공기로 채워져 있을 경우에 코퍼댐(10)의 벌크 헤드(11) 전체에 성에가 끼기 때문에 성에 유무로 냉점을 찾을 수가 없다.
이에 본 실시 예에서는 코퍼댐(10)에 기체, 예를 들어 건조 공기(dry air)를 채워넣고 코퍼댐(10)의 벌크 헤드(11)의 온도를 건조 공기의 이슬점(dew point)보다 높게 제어함으로써 건조 공기의 이슬점보다 낮은 벌크 헤드(11)에서만 성에가 끼게 하여 냉점을 쉽게 찾을 수 있다.
예를 들어, LNG 운반선에서 생성되는 건조 공기의 이슬점 온도가 -40℃인 경우 코퍼댐(10)의 벌크 헤드(11)의 온도를 -35℃로 제어하고 코퍼댐(10)의 안에 들어가서 육안 검사를 하면 -40℃보다 낮은 코퍼댐(10)의 벌크 헤드(11)에는 성에가 끼기 때문에 성에의 위치로 냉점을 쉽게 찾을 수 있다.
그리고, 전술한 코퍼댐(10)의 내부로 이슬점 온도가 낮은 건조 공기를 공급하는 기술수단은 후술하는 제6 실시예에서 트렁크 데크 공간(TS, 도 21 참조)과 트렁크 데크(TD)와 접한 사이드 통로(SP, 도 21 참조)에도 그대로 적용될 수 있다.
또한, 코퍼댐(10)의 벌크 헤드(11)의 온도를 -35℃로 제어하면, 도 18의 표에 나타난 바와 같이, 5℃로 제어하는 것에 비해 BOR을 약 4.9% 감소할 수 있다. 이 경우 벌크 헤드(11)는 저온강(LT)으로 제작될 수 있다.
본 실시 예에서 기체 공급부(320)는, 도 17에 도시된 바와 같이, 코퍼댐(10)에 마련되어 기체 공급 라인(AL)을 통해 공급되는 기체를 코퍼댐(10)의 내부로 공급시키는 기체 공급 배관(321)과, 코퍼댐(10)에 마련되어 코퍼댐(10)의 내부 기체를 코퍼댐(10)의 외부로 배출시키는 기체 배출 배관(322)과, 기체 공급 배관(321) 및 기체 배출 배관(322)에 마련되는 개폐밸브(323)를 포함한다.
본 실시 예에서 기체 공급 라인(AL)으로 공급되는 건조 공기는 기존의 LNG 운반선에 설치되는 건조 공기 제너레이터에서 공급될 수 있으므로 이 설비를 위한 추가적인 비용이 발생되지 않는다.
본 실시 예에서 코퍼댐(10)으로 공급되는 건조 공기는 -45 ~ -35℃의 이슬점 온도를 가질 수 있고, 코퍼댐(10)의 벌크 헤드(11)의 온도는 건조 공기의 이슬점 온도보다 1 ~ 10℃ 높게 제어될 수 있다. 이 경우 벌크 헤드(11)의 온도는 약 -30℃ 전후로 제어되므로 BOR을 감소시킬 수 있는 이점이 있다.
검사 및 유지 보수의 이유 등으로 인원이 코퍼댐(10) 안으로 들어가야 할 경우에 방한복 등의 복장으로 낮은 온도에 대한 방지를 하고 작업을 수행할 수 있다. 한편으로는 코퍼댐(10)에 전술한 기체를 연속적으로 주입하고 배출(venting)시킴으로써 코퍼댐의 온도를 높여서 인원이 들어가서 작업을 수행할 수도 있는 장점이 있다.
도 19는 본 발명의 제5 실시예에 따른 부유식 해상구조물에서 LNG 저장탱크의 압력 변화에 따라 코퍼댐의 온도를 제어하는 것을 개략적으로 도시한 도면이다.
본 실시예에 따른 부유식 해상구조물의 단열시스템(400)은, 복수의 LNG 저장탱크(T)의 사이에 마련되어 복수의 LNG 저장탱크(T)를 선체의 길이 방향 및 폭 방향 중 적어도 하나의 방향으로 다열 배치시키되 영하의 온도로 제어되는 코퍼댐(10)과, 코퍼댐(10)에 마련되어 코퍼댐(10)을 가열시키는 히팅부(30)를 포함하며, 코퍼댐(10)의 영하의 온도는 히팅부(30)의 가열로 영상의 온도로 제어되고, LNG 저장탱크(T)의 내부 압력의 변화에 따라 코퍼댐(10)의 온도를 제어하는 점에서 전술한 제1 실시예와 차이점이 있고, 나머지 제1 실시예의 내용은 본 실시예에 그대로 적용될 수 있다.
즉, 본 실시예는 BOR을 낮추기 위해 코퍼댐(10)의 온도를 영하의 온도로 유지할 뿐만 아니라 항해 조건에 따라서 BOG가 너무 조금 발생해서 선박 연료 등의 이유로 BOG가 더 많이 필요할 경우에는 코퍼댐(10)의 온도를 높여서 BOR을 더 크게 해서 BOG가 더 많이 발생되도록 하고, 항해 조건에 따라서 BOG가 너무 많이 발생되어서 BOG의 처리가 어려울 경우에는 코퍼댐(10)의 온도를 낮추어서 BOR을 더 작게 해서 BOG가 더 조금 발생되게 할 수 있다.
전술한 제어 온도의 설정은 항해 조건 등을 고려해서 수동으로 할 수도 있고, LNG 저장탱크(T)의 압력 신호를 받아서 자동으로 제어할 수도 이다. 즉, LNG 저장탱크(T)의 압력이 높아진 경우에는 BOG가 과도하게 발생 된 것이므로 제어온도의 설정값을 낮추도록 제어하고, 압력이 낮은 경우에는 BOG가 조금 발생 된 것이므로 제어온도의 설정값을 높이도록 제어할 수 있다.
또한, 본 실시예는 BOR을 낮추기 위해 코퍼댐(10)의 온도를 영하의 온도로 유지할 뿐만 아니라 작업자가 코퍼댐(10)의 내부로 들어갈 수 있도록 코퍼댐(10)의 온도를 특정 온도(예, 영상의 온도)로 제어할 수 있는 점에서 전술한 제1 실시예와 차이점이 있다.
구체적으로 운항 중에도 코퍼댐(10)에 냉점(cold spot) 등이 발생 되었는지 여부를 검사하기 위해 작업자가 코퍼댐(10)의 내부로 들어갈 필요가 있다.
이때에도 코퍼댐(10)을 영하의 온도로 유지하면 코퍼댐(10)에 들어가서 작업하는 작업자가 낮은 온도에 노출되어 위험해질 수 있으므로, 제어 온도의 설정값을 높여서 히팅부(30)로 코퍼댐(10)을 가열시켜 코퍼댐(10)을 특정 온도(예, 영상의 온도)로 유지할 수 있다.
본 실시 예에서 코퍼댐(10)의 벌크 헤드(11)가 -30 ~ 0℃까지 견디는 재질로 제작된 경우 코퍼댐(10)의 온도를 -30 ~70℃ 사이의 범위에서 제어할 수 있다. 일 예로 작업자가 코퍼댐(10)의 내부로 들어갈 필요가 없는 경우에는 BOR을 최대한 줄이기 위해 코퍼댐(10)의 제어 온도를 약 -30℃로 제어할 수 있고, 그 반대의 경우에는 코퍼댐(10)을 영상의 온도를 비롯한 특정 온도로 제어할 수 있다.
본 실시 예에서 코퍼댐(10)의 벌크 헤드(11)가 -55℃까지 견딜 수 있는 저온강(LT)으로 제작되는 경우 코퍼댐(10)의 온도를 -55 ~ 70℃ 사이의 범위에서 제어할 수 있다. 일 예로 작업자가 코퍼댐(10)의 내부로 들어갈 필요가 없는 경우에는 BOR을 최대한 줄이기 위해 코퍼댐(10)의 온도를 약 -50℃로 제어할 수 있고, 그 반대의 경우에는 코퍼댐(10)을 영상의 온도를 비롯한 특정 온도로 제어할 수 있다.
이하에서 작업자가 코퍼댐(10)의 내부로 들어가기 위해 코퍼댐의 온도를 제어하는 방법을 설명한다.
먼저, 코퍼댐(10)의 온도는 코퍼댐(10)과 LNG 저장탱크(T)에 저장된 LNG 간의 열전달을 감소시키기 위해 영하의 온도 예를 들어, -25℃ 또는 -50℃로 제어되므로 작업자가 바로 코퍼댐의 내부로 들어가는 것은 위험할 수 있다.
따라서, 히팅부(30)로 코퍼댐(10)을 영상의 온도로 가열하는 단계가 이루어진다. 이때 코퍼댐(10)은 글리콜 히팅 코일(31), 전기 코일, 스팀 또는 청수가 흐르는 코일로 가열될 수도 있고, 코퍼댐(30)의 내부로 고온의 공기를 공급하여 가열할 수도 있다.
다음으로, 코퍼댐(10)의 내부 온도가 영상의 온도로 되면 작업자가 들어가서 벌크 헤드(11)에 냉점 등이 발생 되었는지 여부를 확인한다. 이때 코퍼댐(10)의 내부는 계속 영상의 온도로 유지된다.
작업자가 코퍼댐(10)의 내부 검사를 완료하여 코퍼댐(10)의 외부로 나오면 코퍼댐(10)의 가열을 중단하여 다시 코퍼댐(10)을 영하의 온도로 유지한다.
이상과 같이 본 실시 예는 코퍼댐(10)의 내부로 작업자가 들어갈 필요가 없는 경우 코퍼댐(10)을 영하의 온도로 유지하여 BOR을 감소시킬 수 있고, 그 반대의 경우에는 코퍼댐(10)을 영상의 온도로 유지하여 작업자가 작업을 할 수 있는 등 BOR을 감소시키면서 작업자의 안전도 고려할 수 있는 점에서 이점이 있다.
그리고, 전술한 코퍼댐(10)의 온도를 제어하는 기술수단은 후술하는 제6 실시예에서 트렁크 데크 공간(TS, 도 21 참조)과 트렁크 데크(TD)와 접한 사이드 통로(SP, 도 21 참조)에도 그대로 적용될 수 있다.
또한, 본 실시 예는 LNG 저장탱크(T)의 내부 압력 변화에 따라 코퍼댐(10)의 온도를 제어할 수 있는 점에서 전술한 제1 실시예와 차이점이 있다.
구체적으로, 본 실시 예는 LNG 저장탱크(T)의 내부 압력을 측정할 수 있는 압력 센서(PT)를, 도 19에 도시된 바와 같이, LNG 저장탱크(T)에 마련한 후 압력 센서(PT)에서 측정되는 압력을 기초로 하여 코퍼댐(10)의 온도를 제어할 수 있다.
즉, LNG 저장탱크(T)의 압력이 높아지면 부유식 해상구조물이 필요로 하는 BOG 보다 더 많은 BOG가 발생하는 것이므로 코퍼댐(10) 온도 제어의 세팅 온도(setting temperature)를 낮추어서 코퍼댐(10)의 온도를 낮추어 BOG가 감소하게 할 수 있다. LNG 저장탱크(T)의 압력이 낮아지면 부유식 해상구조물이 필요로 하는 BOG 보다 더 적은 BOG가 발생되는 것이므로 코퍼댐(10) 온도 제어의 세팅 온도를 높여 코퍼댐(10)의 온도를 높임으로써 BOG가 더 발생되게 할 수 있다.
또한, 압력 센서(PT)와 무관하게 부유식 해상구조물의 속도를 참고하여 코퍼댐(10)의 온도를 제어할 수도 있다.
구체적으로, 부유식 해상구조물의 속도가 높아서 연료 소모량이 클 경우 코퍼댐(10)의 제어 온도를 높여서 BOG를 더 많이 발생시킬 수 있고, 발생 된 BOG를 연료로 사용하여 연료소모량을 맞출 수도 있다.
예를 들어, 코퍼댐(10)의 벌크 헤드(11)를 -25℃의 세팅 온도로 제어하는 부유식 해상구조물은 BOR이 0.1236이 나온다. 이 부유식 해상구조물이 속도를 높여서 연료를 더 많이 소모하고자 할 경우에 코퍼댐(10) 벌크 헤드(11)의 온도를 0℃로 제어하면 BOR이 0.1282가 나와서 3.7% 증가 되어 BOG가 증가 된다. 따라서, 부유식 해상구조물의 속도가 높아져서 BOG의 소비량이 많아졌을 때 부족한 BOG의 양을 줄일 수 있다.
반대로 부유식 해상구조물의 속도가 낮아서 연료 소모량이 적은 경우 코퍼댐(10)의 제어 온도를 낮춰서 BOG를 조금 발생시킴으로써 연료소모량을 맞출 수도 있다.
한편, 히팅부(30)로 코퍼댐(10)의 벌크 헤드(11)를 가열하는 경우 전도에 의해 열전달이 이루어져 코퍼댐(10)의 가열 시간이 걸릴 수 있으므로, 코퍼댐(10)의 내부에 따뜻한 건조 공기를 공급하여 코퍼댐(10)의 가열 시간을 단축할 수도 있다.
덧붙여 전술한 실시예에서 설명한 가스 공급부와 기체 공급부(320)도 본 실시예에 그대로 적용될 수 있다.
도 20은 본 발명의 제6 실시예에 따른 부유식 해상구조물의 단열시스템에서 트렁크 데크 공간(TS) 및 사이드 통로에 단열재가 마련된 상태를 개략적으로 도시한 도면이고, 도 21은 도 20에 도시된 트렁크 데크 공간(TS) 및 사이드 통로와 접한 내부 선체(IH)의 온도를 제어함으로써 발생되는 BOR의 계산 결과를 나타낸 표이다.
본 실시 예에 따른 부유식 해상구조물의 단열시스템(500)은, 트렁크 데크 공간(TStrunk deck space) 및 트렁크 데크(trunk deck, TD)와 접한 사이드 통로(SP, side passage way) 중 적어도 하나에 마련되어 트렁크 데크 공간(TS) 또는 사이드 통로(SP)로부터 복수의 LNG 저장탱크(T)의 내부로의 열절단을 저감시켜 열전달로 발생되는 BOR(Boil-off Rate)을 감소시키는 단열재(120)를 구비한다.
본 실시 예는 트렁크 데크 공간(TS) 및 사이드 통로(SP)와 접한 내부 선체(IH)의 온도를 낮춤으로써 외부에서의 열침입량을 줄여 BOR를 낮출 수 있다.
특히, 북극 항로 등 주변의 온도가 매우 낮은 항로를 운항하거나 겨울철 운항을 할 경우에 본 실시예를 적용하면 트렁크 데크 공간(TS) 및 사이드 통로(SP)와 접한 내부 선체(IH)의 온도를 낮춤으로써 BOR을 감소할 수 있다.
반대로 온도가 높은 곳으로 항해하거나, 여름철에 항해할 경우에도 단열재(120)에 의해서 트렁크 데크 공간(TS) 및 사이드 통로(SP)와 접한 내부 선체(IH)의 온도를 낮춤으로써 코퍼댐(10)의 온도를 낮은 온도로 유지할 수 있어 BOR을 감소시킬 수 있다.
특히, 트렁크 데크(TD) 및 트렁크 데크(TD)와 접한 사이드 통로(SP)는 외부의 태양열에 직접 노출되는 곳이므로 이 부분에 단열재(210)를 마련하면 외부의 열침입을 줄일 수 있어 BOR을 더욱 효과적으로 줄일 수 있다.
실제 LNG 운반선에 대해서 수치해석으로 BOR을 계산한 결과, 도 21의 표에 나타난 바와 같이, 트렁크 데크 공간(TS) 및 사이드 통로(SP)와 접한 내부 선체(IH)의 온도를 제어하지 않을 경우에 내부 선체(IH)의 온도가 35.3℃ 정도의 온도가 나오고, 이때 BOR은 0.1346으로 계산된다.
하지만, 본 실시예를 적용해서 트렁크 데크 공간(TS) 및 사이드 통로(SP)와 접한 내부 선체(IH)의 온도를 0℃로 제어할 경우에는, 도 21의 표에 나타난 바와 같이, BOR이 0.1296으로 약 3.7% 감소하는 것을 확인할 수 있었다. 저가의 단열재(120)를 이용하여 BOR을 감소시킬 수 있고, 가격 대비 BOR 감소 효과가 큰 것을 알 수 있다.
다른 예로 본 실시 예를 적용해서 트렁크 데크 공간(TS) 및 사이드 통로(SP)와 접한 내부 선체(IH)의 온도를 -25℃로 제어할 경우에는 BOR이 0.1266으로 약 5.9% 감소하는 것을 확인할 수 있었다. 이 또한 저가의 단열재(120)를 사용 시 가격대비 BOR 감소 효과가 큰 것을 알 수 있다.
단열재(120)는, 도 20에 도시된 바와 같이, 트렁크 데크(TD)의 내측 천장부, 트렁크 데크(TD)와 접한 사이드 통로(SP)의 천장부 및 측벽부, 밸러스트 탱크(BT)와 접한 사이드 통로(SP)의 부분에 마련될 수 있다.
본 실시 예에서 단열재(20)는 전술한 트렁크 데크(TD)의 위치에 한정되지 않고 트렁크 데크(TD)의 바닥부나 외측부 등에 설치될 수 있고, 트렁크 데크 공간(TS)과 사이드 통로(SP)에 단속 또는 연속적으로 마련될 수도 있다.
또한, 본 실시예는 전술한 실시예의 단열재(120)가 그대로 적용될 수 있다. 즉 본 실시예의 단열재(120)는 LNG 저장탱크(T)를 밀봉 및 단열시키는 밀봉 및 단열유닛(SI)의 단열벽일 수도 있고, 단열벽과는 다른 타입인 패널 타입의 단열재, 발포형 타입의 단열재, 진공 단열이나 입자 형태 타입의 단열재 및 부직포 타입의 단열재 중 적어도 하나를 포함할 수 있다. 나아가, 본 발명은 단열재의 종류, 형태, 설치 방법에 대해서 제한이 없다.
본 실시 예는 코퍼댐(10)을 가열하거나내부 선체(IH)를 원하는 온도로 유지하기 위해 내부 선체(IH)를 가열하는 히팅부(30)를 구비할수 있다. 히팅부(30)의 구성은 전술한 실시예의 클리콜 히팅 코일(31), 전기 코일, 스팀 또는 청수 등의 액체가 흐르는 코일 등을 포함할 수 있다.
본 실시 예에서 트렁크 데크 공간(TS) 및 사이드 통로(SP)와 접한 내부 선체(IH)의 재질 및 온도 조절은 요구되는 BOR의 값에 따라 선택적으로 이루어질 수 있다.
구체적으로, 본 실시 예에서 내부 선체(IH)는 -55 ~ 30℃의 온도로 제어될 수 있으며, 바람직하게는, 내부 선체(IH)의 재질을 IGC에서 규정하는 스틸 등급 A로 사용할 수 있도록 하기 위하여 0 ~ 30℃의 온도로 제어될 수 있다. 예를 들어, 내부 선체(IH)의 온도를 0℃로 제어하면, 도 21의 표에 나타난 바와 같이, 내부 선체(IH)를 35.3℃로 제어한 종래의 실시예에 비해 BOR이 3.7% 감소 된 0.1296을 얻을 수 있고, 내부 선체(IH)도 스틸 등급 A를 사용할 수 있다.
또한 내부 선체(IH)의 온도를 -25℃로 제어하면, 도 21의 표에 나타난 바와 같이, BOR이 5.9% 감소 된 0.1266을 얻을 수 있고, 내부 선체(IH)는 스틸 등급 E 또는 EH를 사용할 수 있다. 추가로 내부 선체(IH)의 온도를 -30℃ 이하로 제어하는 경우 내부 선체(IH)를 저온강(LT)으로 제작할 수 있다.
한편 본 실시예는 전술한 실시예의 코퍼댐(10), 기체 공급부(320), 가스 공급부에 대한 내용이 그대로 적용될 수 있다.
도 22는 본 발명의 제7 실시예에 따른 부유식 해상구조물의 단열시스템에서 밸러스트 탱크에 단열재가 마련된 상태를 개략적으로 도시한 도면이고, 도 23은 밸러스트 탱크와 접한 내부 선체(IH)의 온도를 제어함으로써 발생되는 BOR의 계산 결과를 나타낸 표이다.
본 실시 예에 따른 부유식 해상구조물의 단열시스템(600)은, 밸러스트 탱크(BT)에 마련되어 밸러스트 탱크(BT)로부터 LNG 저장탱크(T)의 내부로의 열전달을 저감시켜 BOR을 감소시키는 단열재(120)를 구비한다.
본 실시 예는 밸러스트 탱크(BT)에서 LNG 저장탱크(T)와 접한 내부 선체(IH)의 온도를 낮춤으로써 외부에서의 열침입량을 줄여 BOR를 낮출 수 있다.
온도가 높은 곳으로 항해하거나 여름철에 항해할 경우에도 단열재(120)에 의해서 밸러스트 탱크(BT)에서 LNG 저장탱크(T)와 접한 내부 선체(IH)의 온도를 낮춤으로써 BOR을 감소시킬 수 있다.
구체적으로, 본 실시 예에서 상기 밸러스트 탱크(BT)와 상기 LNG 저장탱크 내부 선체(IH)는 -55 ~ 30℃의 온도로 제어될 수 있으며, 바람직하게는, 내부 선체(IH)의 재질을 IGC에서 규정하는 스틸 등급 A로 사용할 수 있도록 하기 위하여 0 ~ 20℃의 온도로 제어될 수 있다.
실제 LNG 운반선에 대해서 수치해석으로 BOR을 계산한 결과, 밸러스트 탱크(BT)에서 LNG 저장탱크(T)와 접한 내부 선체(IH)의 온도를 제어하지 않을 경우에, 도 23의 표에 나타난 바와 같이, 이 부분의 온도가 27.2 ~ 36.13℃ 정도로 나오고, 이때 BOR은 0.1346으로 계산된다.
하지만, 본 실시예를 적용해서 밸러스트 탱크(BT)에서 LNG 저장탱크(T)와 접한 내부 선체(IH)의 온도를 0℃로 제어할 경우에는, 도 23의 표에 나타난 바와 같이, BOR이 0.1242로 약 7.7% 감소하는 것을 확인할 수 있다. 즉, 저가의 단열재(120)의 비용을 들여서 BOR을 감소시킬 수 있으므로 가격대비 BOR 감소 효과가 큰 것을 알 수 있다.
또한, 다른 예로 밸러스트 탱크(BT)에서 LNG 저장탱크(T)와 접한 내부 선체(IH)의 온도를 5℃로 제어할 경우에도 BOR이 0.1262으로 약 6.2% 감소하는 것을 확인할 수 있다. 이 또한 저가의 단열재(120)를 사용 시 가격대비 BOR 감소 효과가 큰 것을 알 수 있다.
단열재(120)는, 도 22에 도시된 바와 같이, 외부 선체(EH)의 내측과 밸러스트 탱크(BT)와 사이트 통로가 접하는 영역의 밸러스트 탱크(BT) 천장벽에 마련될 수 있다.
또한, 본 실시예는 전술한 실시예의 단열재(120)가 그대로 적용될 수 있다. 즉, 본 실시예의 단열재(120)는 LNG 저장탱크(T)를 밀봉 및 단열시키는 밀봉 및 단열유닛(SI)의 단열벽일 수도 있고, 단열벽과는 다른 타입인 패널 타입의 단열재, 발포형 타입의 단열재, 진공 단열이나 입자 형태 타입의 단열재 및 부직포 타입의 단열재 중 적어도 하나를 포함할 수 있다. 나아가, 본 발명은 단열재의 종류, 형태와 설치 방법에 대해서 제한이 없다.
본 실시 예는 코퍼댐(10)을 가열하거나, 밸러스트 탱크(BT)와 접한 내부 선체(IH)를 원하는 온도로 유지하기 위해 내부 선체(IH)를 가열하는 히팅부(30)를 구비할수 있다. 히팅부(30)의 구성은 전술한 실시예의 클리콜 히팅 코일(31), 전기 코일, 스팀 또는 청수가 흐르는 유체 코일 등을 포함할 수 있다.
본 실시 예에서 밸러스트 탱크(BT)와 접한 내부 선체(IH)의 재질 및 온도 조절은 요구되는 BOR의 값에 따라 선택적으로 이루어질 수 있다.
구체적으로, 본 실시 예에서 밸러스트 탱크(BT)와 접한 내부 선체(IH)는 -55 ~ 30℃의 온도로 제어될 수 있다. 내부 선체(IH)의 온도를 0℃로 제어하면, 도 23의 표에 나타난 바와 같이, 내부 선체(IH)를 27.1 ~ 36.1℃로 제어한 종래의 실시예에 비해 BOR이 7.7% 감소 된 0.1242를 얻을 수 있고, 내부 선체(IH)도 스틸 등급 A를 사용할 수 있다.
또한, 내부 선체(IH)의 온도를 5℃로 제어하면, 도 23의 표에 나타난 바와 같이, BOR이 6.2% 감소 된 0.1262를 얻을 수 있고, 내부 선체(IH)는 스틸 등급 A를 사용할 수 있다.
한편 본 실시예는 전술한 실시예의 코퍼댐(10), 기체 공급부(320)에 대한 내용이 그대로 적용될 수 있다. 다만, 기체 공급부(320)는 밸러스트 탱크(BT)에 밸러스트수가 채워진 상태에서는 적용될 수 없으므로 코퍼댐(10)에 대해서만 적용될 수 있다.
이와 같이 본 발명은 기재된 실시 예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정 예 또는 변형 예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.

Claims (14)

  1. 밸러스트 탱크, 트렁크 데크 공간(trunk deck space) 및 트렁크 데크와 접한 사이드 통로(side passage way) 중 적어도 하나에 단열재를 마련하여 선체의 외부 영역으로부터 LNG 저장탱크의 내부로의 열전달로 발생되는 BOR(Boil-off Rate)을 감소시키는 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
  2. 청구항 1에 있어서,
    상기 밸러스트 탱크, 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 어느 하나와 접한 내부 선체의 온도는 -55 ~ 30℃로 제어되는 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
  3. 청구항 2에 있어서,
    상기 밸러스트 탱크와 접한 내부 선체의 온도는 0 ~ 20℃로 제어되며, 상기 내부 선체는 IGC에서 규정하는 스틸 등급인 A로 제작되는 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
  4. 청구항 2에 있어서,
    상기 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 어느 하나와 접한 내부 선체의 온도는 0 ~ 30℃로 제어되며, 상기 내부 선체는 IGC에서 규정하는 스틸 등급인 A로 제작되는 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
  5. 청구항 2에 있어서,
    상기 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 어느 하나와 접한 내부 선체의 온도는 -30℃ 이하로 제어되며, 상기 내부 선체는 저온강(LT)로 제작되는 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
  6. 청구항 1에 있어서,
    상기 단열재는 상기 밸러스트 탱크를 형성하는 외부 선체의 내측벽에 마련되는 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
  7. 청구항 1에 있어서,
    상기 단열재는 상기 트렁크 데크 스페이스와 근접 배치된 사이트 통로와 밸러스트 탱크가 접하는 영역에 마련되는 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
  8. 청구항 1에 있어서,
    상기 단열재는 상기 LNG 저장탱크에 저장된 LNG를 단열시키는 단열벽, 패널 타입의 단열재, 발포형 타입의 단열재, 진공 타입의 단열재, 입자 타입의 단열재 및 부직포 타입의 단열재 중 적어도 하나를 포함하는 부유식 해상구조물의 단열시스템.
  9. 청구항 2에 있어서,
    상기 내부 선체를 가열시키는 히팅부를 더 포함하는 부유식 해상구조물의 단열시스템.
  10. 청구항 7에 있어서,
    상기 히팅부는 글리콜 히팅 코일, 전기 히팅 코일 및 유체 파이프 중 적어도 하나를 이용하여 상기 내부 선체를 가열시키는 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
  11. 청구항 1에 있어서,
    상기 부유식 해상구조물은 LNG FPSO, LNG FSRU, LNG 수송선 및 LNG RV 중 선택된 어느 하나인 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
  12. 선체의 길이 방향으로 1열 이상으로 설치되는 복수의 LNG 저장탱크의 사이에 마련되는 코퍼댐; 및
    밸러스트 탱크, 트렁크 데크 공간(trunk deck space) 및 트렁크 데크와 접한 사이드 통로(side passage way) 중 적어도 하나에 에 마련되는 단열재를 포함하며,
    상기 코퍼댐은 0℃ 이하의 온도로 제어되어, 상기 코퍼댐으로부터 상기 복수의 LNG 저장탱크의 내부로의 열전달을 감소시키고, 밸러스트 탱크, 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 하나의 온도를 선체 외부의 온도 보다 낮게 제어하여, 상기 밸러스트 탱크, 트렁크 데크 공간 및 트렁크 데크와 접한 사이드 통로 중 적어도 하나에서 상기 복수의 LNG 저장탱크 내부로의 열전달에 의해 발생되는 BOR(Boil-off Rate)을 감소시키는 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
  13. 청구항 12에 있어서,
    상기 코퍼댐은,
    상기 복수의 LNG 저장탱크 사이에 서로 이격 배치되는 한 쌍의 벌크 헤드; 및
    상기 한 쌍의 벌크 헤드와 상기 선체의 내벽에 의해 마련되는 공간부를 포함하며,
    상기 한 쌍의 벌크 헤드를 영하의 온도로 제어하는 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
  14. 밸러스트 탱크, 트렁크 데크 공간 및 트렁크 데크와 근접 배치된 사이드 통로 중 적어도 하나와 접하는 내부 선체의 온도를 -55 ~ 30℃로 제어하는 것을 특징으로 하는 부유식 해상구조물의 단열시스템.
PCT/KR2014/006668 2013-07-22 2014-07-22 부유식 해상구조물의 단열시스템 WO2015012578A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/907,244 US20160159438A1 (en) 2013-07-22 2014-07-22 Insulation system for floating marine structure
RU2016105234A RU2016105234A (ru) 2013-07-22 2014-07-22 Теплоизолирующая система плавучего сооружения
CN201480049948.4A CN105531184A (zh) 2013-07-22 2014-07-22 用于漂浮船结构的绝热系统
JP2016529707A JP2016531038A (ja) 2013-07-22 2014-07-22 浮遊式海上構造物の断熱システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130086266A KR20150011438A (ko) 2013-07-22 2013-07-22 부유식 해상구조물의 단열시스템
KR10-2013-0086266 2013-07-22
KR1020130086269A KR20150011440A (ko) 2013-07-22 2013-07-22 부유식 해상구조물의 단열시스템
KR10-2013-0086269 2013-07-22

Publications (1)

Publication Number Publication Date
WO2015012578A1 true WO2015012578A1 (ko) 2015-01-29

Family

ID=52393538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006668 WO2015012578A1 (ko) 2013-07-22 2014-07-22 부유식 해상구조물의 단열시스템

Country Status (5)

Country Link
US (1) US20160159438A1 (ko)
JP (1) JP2016531038A (ko)
CN (1) CN105531184A (ko)
RU (1) RU2016105234A (ko)
WO (1) WO2015012578A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106364655B (zh) * 2016-09-08 2018-07-27 中海油能源发展股份有限公司 一种船舯隔离空舱钢板保护方法
KR101891707B1 (ko) 2017-08-08 2018-08-24 (주)마이텍 Lngc 화물창 취성파괴 방지용 글리콜워터히터 제어방법
FR3090872B1 (fr) * 2018-12-21 2021-04-23 Gaztransport Et Technigaz Procédé de contrôle de l’étanchéité d’une cuve étanche et thermiquement isolante de stockage d’un fluide
FR3112838B1 (fr) * 2020-07-24 2022-07-22 Gaztransport Et Technigaz Système et procédé de chauffage d’une cuve de stockage pour gaz liquéfié
FR3123305A1 (fr) * 2021-05-31 2022-12-02 Gaztransport Et Technigaz Navire pour le transport d’un fluide froid
CN114487222B (zh) * 2021-12-31 2022-11-18 西安圆方环境卫生检测技术有限公司 一种土壤中总石油烃多级萃取检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060109110A (ko) * 2005-04-15 2006-10-19 한국가스공사 액화천연가스 저장탱크 및 그 제조용 모듈
KR20060124860A (ko) * 2005-05-26 2006-12-06 삼성중공업 주식회사 액화 천연가스 운반선의 코퍼댐 히팅 수단
KR20120050789A (ko) * 2010-11-11 2012-05-21 삼성중공업 주식회사 액화천연가스 저장탱크
KR20130022926A (ko) * 2011-08-26 2013-03-07 대우조선해양 주식회사 밸러스팅 시스템 및 상기 밸러스팅 시스템을 갖춘 부유식 해상 구조물
KR20130032169A (ko) * 2011-09-22 2013-04-01 대우조선해양 주식회사 단열 이중 선체 구조를 적용한 저온 액화가스 화물창

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL301569A (ko) * 1956-05-07
US3136135A (en) * 1961-08-22 1964-06-09 Shell Oil Co Shipping liquefied gases
US3659543A (en) * 1969-04-04 1972-05-02 Mcmullen Ass John J Ship for transporting cryogenic material
JPS5931596U (ja) * 1982-08-25 1984-02-27 日立造船株式会社 バラストタンクの防熱構造
JPS6076491A (ja) * 1983-10-01 1985-04-30 Utsumi Zosen Kk 低温液化ガス運搬船
JPS60100290U (ja) * 1983-12-15 1985-07-08 日立造船株式会社 バラストタンク内の凍結防止装置
CN85104342B (zh) * 1984-11-28 1987-09-02 三菱重工业株式会社 运输低温或高温货物用的船舶
FR2798358B1 (fr) * 1999-09-14 2001-11-02 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
JP4727212B2 (ja) * 2004-11-19 2011-07-20 三菱重工業株式会社 液化ガス運搬船
JP2008222184A (ja) * 2007-03-16 2008-09-25 Mitsui Eng & Shipbuild Co Ltd 貨物油輸送用船舶
CN102159451B (zh) * 2008-08-21 2014-08-06 大宇造船海洋株式会社 液化气储罐和包含液化气储罐的海运结构
FR2938498B1 (fr) * 2008-11-17 2012-02-03 Gaztransp Et Technigaz Navire ou support flottant equipe d'un dispositif d'attenuation des mouvements de carenes liquides
AU2011217243B2 (en) * 2010-02-22 2014-02-27 Shell Internationale Research Maatschappij B.V. Hydrocarbon processing vessel and method
JP2012056429A (ja) * 2010-09-08 2012-03-22 Mitsubishi Heavy Ind Ltd 液化ガス運搬船

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060109110A (ko) * 2005-04-15 2006-10-19 한국가스공사 액화천연가스 저장탱크 및 그 제조용 모듈
KR20060124860A (ko) * 2005-05-26 2006-12-06 삼성중공업 주식회사 액화 천연가스 운반선의 코퍼댐 히팅 수단
KR20120050789A (ko) * 2010-11-11 2012-05-21 삼성중공업 주식회사 액화천연가스 저장탱크
KR20130022926A (ko) * 2011-08-26 2013-03-07 대우조선해양 주식회사 밸러스팅 시스템 및 상기 밸러스팅 시스템을 갖춘 부유식 해상 구조물
KR20130032169A (ko) * 2011-09-22 2013-04-01 대우조선해양 주식회사 단열 이중 선체 구조를 적용한 저온 액화가스 화물창

Also Published As

Publication number Publication date
US20160159438A1 (en) 2016-06-09
JP2016531038A (ja) 2016-10-06
CN105531184A (zh) 2016-04-27
RU2016105234A (ru) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2015012578A1 (ko) 부유식 해상구조물의 단열시스템
WO2015012577A1 (ko) 부유식 해상구조물 및 부유식 해상구조물의 온도 제어 방법
WO2010021503A2 (ko) 액화가스 저장탱크 및 상기 저장탱크를 갖춘 해양 구조물
WO2014209029A1 (ko) 선박의 증발가스 처리 시스템 및 방법
WO2012161493A2 (ko) 액화물 저장탱크 및 이를 포함하는 선박
WO2014092369A1 (ko) 선박의 액화가스 처리 시스템
WO2009102136A2 (ko) 탄화수소 액화가스를 처리하기 위한 처리장치 및 방법
WO2014065618A1 (ko) 선박의 액화가스 처리 시스템
WO2018124732A1 (ko) 가스연료 추진 컨테이너 운반선
WO2014038734A1 (ko) 하이드레이트 펠릿의 저장, 운송, 해리 용기 및 이를 이용한 하이드레이트 펠릿의 저장, 운송, 해리 방법
WO2018062601A1 (ko) 선박의 증발가스 재액화 장치 및 방법
WO2017171164A1 (ko) 선박용 증발가스 재액화 장치 및 방법
WO2012053705A1 (ko) 액화천연가스 저장 용기 운반선
WO2013172644A1 (ko) 액화가스 처리 시스템 및 방법
WO2017030221A1 (ko) 열전발전모듈, 이를 포함하는 열전발전장치와 결빙방지 기화장치 및 기화연료가스 액화공정 장치
WO2012053704A1 (ko) 액화천연가스의 저장 용기
WO2012050273A1 (ko) 가압액화천연가스 생산 방법 및 이에 사용되는 생산 시스템
WO2012148154A9 (en) Prismatic pressure tank having lattice structure
WO2018124733A1 (ko) 가스연료 추진 컨테이너 운반선
WO2016018038A1 (ko) 액화가스 화물창에 사용되는 방벽시트와 이를 이용하는 액화가스 화물창과 그 제조방법
WO2016195232A1 (ko) 선박
WO2013089345A1 (ko) 보조 2차 방벽, 이를 포함하는 액화 천연 가스 저장 탱크 및 그 제조 방법
WO2021132955A1 (ko) 선박의 액화가스 공급 시스템 및 방법 그리고 선박의 액화가스 연료 공급 시스템
WO2018139848A1 (ko) Lng 선의 증발가스 재액화 방법 및 시스템
WO2018124815A1 (ko) 연료가스 공급 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480049948.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2016529707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14907244

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016105234

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14830361

Country of ref document: EP

Kind code of ref document: A1