WO2015011989A1 - 燃料電池の製造方法および燃料電池 - Google Patents

燃料電池の製造方法および燃料電池 Download PDF

Info

Publication number
WO2015011989A1
WO2015011989A1 PCT/JP2014/064628 JP2014064628W WO2015011989A1 WO 2015011989 A1 WO2015011989 A1 WO 2015011989A1 JP 2014064628 W JP2014064628 W JP 2014064628W WO 2015011989 A1 WO2015011989 A1 WO 2015011989A1
Authority
WO
WIPO (PCT)
Prior art keywords
side separator
separator
anode
cathode
fuel cell
Prior art date
Application number
PCT/JP2014/064628
Other languages
English (en)
French (fr)
Inventor
陽介 福山
岳史 塩見
雄亮 寺田
典拓 田島
Original Assignee
日産自動車株式会社
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 日本発條株式会社 filed Critical 日産自動車株式会社
Priority to JP2015528179A priority Critical patent/JP6143868B2/ja
Priority to CN201480040660.0A priority patent/CN105393391B/zh
Priority to US14/901,136 priority patent/US9960435B2/en
Priority to EP14830320.9A priority patent/EP3026743B1/en
Priority to CA2919060A priority patent/CA2919060C/en
Publication of WO2015011989A1 publication Critical patent/WO2015011989A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell manufacturing method and a fuel cell.
  • a fuel cell is configured by alternately laminating a plurality of separators and membrane electrode assemblies. Since the fuel cell can obtain a high output according to the number of laminated layers of the separator and the membrane electrode assembly, it is desirable to increase the number of laminated layers. By sufficiently adhering a plurality of stacked separators and membrane electrode assemblies to each other, the energization resistance can be lowered, and the desired battery performance is achieved.
  • a fuel gas (hydrogen) and cooling water flow path part of the anode side separator and an oxidant gas (air containing oxygen or pure oxygen) of the cathode side separator are used.
  • the flow path portion of the cooling water are formed from fine irregularities, and have large dimensional tolerances.
  • the load applied from the separator unit is absorbed by deforming the standing piece of the deformation absorbing member disposed inside the separator unit, but the amount of deformation of the standing piece can be optimized and the standing piece can receive.
  • the present invention has been made to solve the above-described problems, and provides a fuel cell manufacturing method and a fuel cell capable of increasing the load that the standing piece of the deformation absorbing member can receive from the separator unit. With the goal.
  • a separator unit In the method of manufacturing a fuel cell according to the present invention that achieves the above object, a separator unit, a deformation absorbing member, and a membrane electrode assembly are used.
  • the separator unit includes an anode side separator and a cathode side separator.
  • the deformation absorbing member is disposed between the anode-side separator and the cathode-side separator, and includes a thin plate-like base material and a plurality of standing pieces provided to stand up in a lattice shape from one surface of the base material.
  • the membrane electrode assembly is formed by adjoining the separator unit and joining the anode and the cathode so as to face the electrolyte membrane.
  • the method for manufacturing a fuel cell includes an arrangement step and a setting step.
  • the extending portion extending from the base end of the upright piece provided on one surface of the substrate is disposed in contact with the cathode separator or the anode separator as a unit.
  • the interval along the stacking direction of the anode side separator and the cathode side separator is set so that the base end that has moved with the deformation is moved to the cathode side, while the deformation of the standing piece enters the plastic deformation region beyond the elastic deformation region. Set in the area that does not contact the separator or anode separator.
  • the fuel cell according to the present invention that achieves the above object has a separator unit, a deformation absorbing member, and a membrane electrode assembly.
  • the separator unit includes an anode side separator and a cathode side separator.
  • the deformation absorbing member is disposed between the anode-side separator and the cathode-side separator, and includes a thin plate-like base material and a plurality of standing pieces provided to stand up in a lattice shape from one surface of the base material. .
  • the deformation absorbing member is in contact with the cathode-side separator or the anode-side separator, with the extended portion extending from the proximal end of the upright piece.
  • the membrane electrode assembly is formed by adjoining the separator unit and joining the anode and the cathode so as to face the electrolyte membrane.
  • a load is applied so that the deformation of the upright piece enters the plastic deformation region beyond the elastic deformation region, but the base end moved with the deformation does not come into contact with the cathode side separator or the anode side separator.
  • An anode side separator and a cathode side separator are disposed.
  • FIG. 1 is a perspective view showing a fuel cell according to an embodiment. It is a disassembled perspective view which decomposes
  • FIG. 1 is a perspective view showing a fuel cell 1 according to an embodiment.
  • FIG. 2 is an exploded perspective view showing a part of the fuel cell 1 exploded for each component.
  • FIG. 3 is a cross-sectional view showing a part of the separator unit 10, the deformation absorbing member 20, and the membrane electrode assembly 30 of the fuel cell 1.
  • FIG. 3 is shown along line 3-3 in FIG.
  • FIG. 4 is a perspective view showing the deformation absorbing member 20 of the fuel cell 1.
  • FIG. 5 is a cross-sectional view schematically showing a main part of the deformation absorbing member 20 of the fuel cell 1.
  • FIG. 5 is shown along line 5-5 in FIG.
  • the fuel cell 1 includes a fuel cell 100 that generates power, a pair of current collecting plates 211 and 212 that extract the power generated by the fuel cell 100 to the outside, and a plurality of stacked fuel cells 100 and a pair.
  • the housing 300 holding the current collector plates 211 and 212 is included.
  • each component of the fuel cell 1 will be described in order.
  • the fuel cell 100 shown in FIGS. 1 to 3 generates electric power from the supplied fuel gas (hydrogen) and oxidant gas (oxygen-containing air or pure oxygen) in a stacked state.
  • the fuel battery cell 100 includes a separator unit 10, a deformation absorbing member 20, and a membrane electrode assembly 30.
  • a separator unit 10 a deformation absorbing member 20
  • a membrane electrode assembly 30 a membrane electrode assembly 30
  • the separator unit 10 is shown in FIG. 2 and FIG. 3, energizes the electric power generated in the membrane electrode assembly 30 while isolating adjacent membrane electrode assemblies 30, and uses a fuel gas (hydrogen) or an oxidant gas ( (Air containing oxygen or pure oxygen) and a cooling water flow path are provided.
  • the separator unit 10 includes an anode side separator 11 and a cathode side separator 12.
  • the anode separator 11 is in contact with the anode 32 of the membrane electrode assembly 30.
  • the anode side separator 11 is made of a metal having a conductive material, and is formed in a thin plate shape larger than the anode 32.
  • a plurality of concave and convex shapes are formed at regular intervals in the center of the anode-side separator 11 so as to constitute a flow passage portion 11g through which fuel gas (hydrogen) and cooling water flow.
  • the anode-side separator 11 uses a closed space formed in contact with the anode 32 among the concavo-convex shape as the anode gas flow path 13 for supplying hydrogen to the anode 32.
  • the anode side separator 11 uses the closed space formed between the cathode side separator 12 via the deformation absorbing member 20 among the concavo-convex shape as the cooling water flow path 14 for supplying cooling water. .
  • the anode separator 11 has a rectangular shape, and has a through hole corresponding to the cathode gas supply port 11a, the cooling fluid supply port 11b, and the anode gas supply port 11c at one end in the longitudinal direction. Similarly, the anode separator 11 has a through hole corresponding to the anode gas discharge port 11d, the cooling fluid discharge port 11e, and the cathode gas discharge port 11f at the other end in the longitudinal direction.
  • the cathode separator 12 is in contact with the cathode 33 of the membrane electrode assembly 30.
  • the cathode separator 12 is made of a metal having a conductive material, and is formed in a thin plate shape larger than the cathode 33.
  • the concavo-convex shape is constant so as to constitute a flow path portion 12g through which the oxidant gas (air containing oxygen or pure oxygen) and cooling water flow.
  • a plurality are formed at intervals of.
  • the uneven shape is formed by alternately combining U shapes or alternately combining semicircular shapes.
  • the cathode-side separator 12 uses the closed space formed in contact with the cathode 33 among the concavo-convex shape as the cathode gas flow path 15 for supplying the oxidizing gas to the cathode 33.
  • the cathode side separator 12 uses the closed space formed between the cathode side separator 12 via the deformation absorbing member 20 among the concavo-convex shape as the cooling water flow path 14 for supplying cooling water. . That is, in the adjacent fuel cell 100, the cooling water channel 14 of the anode side separator 11 of one fuel cell 100 and the cooling water channel 14 provided in the cathode side separator 12 of the other fuel cell 100 are 1 One cooling water flow path is formed.
  • the cathode-side separator 12 has a rectangular shape and has a through hole corresponding to the cathode gas supply port 12a, the cooling fluid supply port 12b, and the anode gas supply port 12c at one end in the longitudinal direction. Similarly, the cathode separator 12 has a through hole corresponding to the anode gas discharge port 12d, the cooling fluid discharge port 12e, and the cathode gas discharge port 12f at the other end in the longitudinal direction.
  • the deformation absorbing member 20 is shown in FIG. 2 to FIG. 5, and the manufacturing error of the concavo-convex shape that forms the flow path of the fuel gas and the cooling water of the anode side separator 11 and the cathode side separator 12 when assembling the fuel cell 1 itself. Deform and absorb. Moreover, the deformation
  • a high pressure can be applied to the stacked fuel battery cells 100 so that they can adhere to each other.
  • the energization resistance between the fuel battery cells 100 is lowered, and the power generation efficiency can be improved.
  • the deformation absorbing member 20 is made of a metal having electric conductivity and is formed in a thin plate shape.
  • the deformation absorbing member 20 is disposed between the anode-side separator 11 and the cathode-side separator 12, and has a thin plate-like base material 21 and a plurality of uprights provided in a lattice shape from one surface 21 a of the base material 21.
  • a piece 22 that is, the deformation absorbing member 20 is formed in a lattice shape with standing pieces 22 raised so as to form a cantilever after being punched into a U-shape from a base material 21 corresponding to one thin plate. Since the standing piece 22 has a cantilever structure with respect to the base material 21, it has a spring function capable of elastic deformation.
  • the upright piece 22 is, for example, along the width of the fixed end portion 22 a on the base end side of the upright piece 22 provided on the one surface 21 a of the base material 21 and the one direction Y from the fixed end portion 22 a.
  • the free end portion 22b on the extending portion side is formed in a rectangular shape having the same width.
  • the plurality of upright pieces 22 are formed, for example, in a plurality of rows along the other direction Z intersecting with one direction Y so that the directions of the free end portions 22b are aligned. As shown in FIG.
  • the upright piece 22 has a free end portion 22 b on the extending portion side extended from a fixed end portion 22 a on the proximal end side of the upright piece 22 provided on the one surface 21 a of the base material 21. It is in contact with the side separator 12.
  • the standing piece 22 has a curved portion 22 c that protrudes in a convex shape in a direction away from the cathode-side separator 12 and is curved in a region between the fixed end portion 22 a and the free end portion 22 b.
  • the upright piece 22 is provided with a load fulcrum 22d that supports the load received from the anode-side separator 11 on the side of the curved portion 22c that faces the anode-side separator 11.
  • the load fulcrum 22d moves to the free end portion 22b side with the deformation of the upright piece 22.
  • the membrane electrode assembly 30 is shown in FIGS. 2 and 3 and generates electric power by chemically reacting the supplied oxygen and hydrogen.
  • the membrane electrode assembly 30 is formed by joining an anode 32 and a cathode 33 so as to face each other with an electrolyte membrane 31 therebetween.
  • the membrane electrode assembly 30 is generally referred to as MEA (membrane electrode assembly).
  • the electrolyte membrane 31 is made of, for example, a solid polymer material and is formed in a thin plate shape.
  • the solid polymer material for example, a fluorine-based resin that conducts hydrogen ions and has good electrical conductivity in a wet state is used.
  • the anode 32 is formed by laminating an electrode catalyst layer, a water repellent layer, and a gas diffusion layer, and is formed in a thin plate shape slightly smaller than the electrolyte membrane 31.
  • the cathode 33 is formed by laminating an electrode catalyst layer, a water repellent layer, and a gas diffusion layer, and is formed in a thin plate shape with the same size as the anode 32.
  • the electrode catalyst layers of the anode 32 and the cathode 33 include an electrode catalyst in which a catalyst component is supported on a conductive carrier and a polymer electrolyte.
  • the gas diffusion layers of the anode 32 and the cathode 33 are made of, for example, carbon cloth, carbon paper, or carbon felt woven with yarns made of carbon fibers having sufficient gas diffusibility and conductivity.
  • the membrane electrode assembly 30 includes a frame body 34.
  • the frame 34 integrally holds the outer periphery of the laminated electrolyte membrane 31, anode 32, and cathode 33.
  • the frame body 34 is made of, for example, an electrically insulating resin, and is formed with an outer shape similar to the outer shape of the outer peripheral portion of the separator unit 10.
  • the frame body 34 has a through hole corresponding to the cathode gas supply port 34a, the cooling fluid supply port 34b, and the anode gas supply port 34c at one end in the longitudinal direction.
  • the frame 34 has a through hole corresponding to the anode gas discharge port 34d, the cooling fluid discharge port 34e, and the cathode gas discharge port 34f at the other end in the longitudinal direction.
  • thermosetting resin is used as the sealing member.
  • the thermosetting resin is selected from, for example, phenol resin, epoxy resin, unsaturated polyester, and the like.
  • the pair of current collecting plates 211 and 212 are shown in FIG. 2 and take out the electric power generated by the fuel cell 100 to the outside.
  • a pair of current collecting plates 211 and 212 are respectively disposed at both ends of the stacked fuel battery cells 100.
  • the outer shape of the pair of current collector plates 211 and 212 is the same as the outer shape of the membrane electrode assembly 30 with a slightly increased layer thickness, except for some shapes.
  • the current collector plate 211 has a through hole corresponding to the cathode gas supply port 211a, the cooling fluid supply port 211b, and the anode gas supply port 211c at one end in the longitudinal direction thereof. ing.
  • the pair of current collecting plates 211 and 212 includes a current collecting portion 211h and the like at the center thereof.
  • the current collecting portions 211h and the like of the pair of current collecting plates 211 and 212 are made of, for example, a conductive member such as dense carbon that does not allow gas permeation, and are formed in a thin plate shape slightly smaller than the outer shapes of the anode 32 and the cathode 33. ing.
  • the pair of current collectors 211h and the like are in contact with the anode 32 or the cathode 33 of the membrane electrode assembly 30 provided in the outermost fuel cell 100 that is stacked.
  • the current collector 211h and the like are provided with a cylindrical protrusion 211i and the like having conductivity from one surface thereof.
  • the protrusions 211i and the like face the outside through a pair of end plates 311 and a through-hole 311j of a 312 of the casing 300 described later.
  • the housing 300 shown in FIGS. 1 and 2 holds a plurality of stacked fuel cells 100 and a pair of current collecting plates 211 and 212 in close contact with each other.
  • the housing 300 includes a pair of end plates 311 and 312, a pair of fastening plates 320, a pair of reinforcing plates 330, and screws 340.
  • the pair of end plates 311 and 312 sandwich and bias a pair of current collecting plates 211 and 212 disposed at both ends of the plurality of stacked fuel cells 100.
  • the outer shape of the pair of end plates 311 and 312 is the same as the outer shape of the membrane electrode assembly 30 with an increased layer thickness, except for some shapes.
  • the pair of end plates 311 and 312 are made of, for example, metal, and an insulator is provided at a portion that contacts the pair of current collector plates 211 and 212.
  • the end plate 311 has a through hole corresponding to the cathode gas supply port 311a, the cooling fluid supply port 311b, and the anode gas supply port 311c at one end in the longitudinal direction thereof. .
  • the end plate 311 has through holes corresponding to the anode gas discharge port 311d, the cooling fluid discharge port 311e, and the cathode gas discharge port 311f at the other end in the longitudinal direction.
  • the pair of end plates 311 and 312 open through-holes 311j and the like through which the protrusions 211i and the like of the pair of current collecting plates 211 and 212 described above are inserted.
  • the pair of fastening plates 320 are made of, for example, metal and are formed in a plate shape.
  • the pair of fastening plates 320 hold the pair of end plates 311 and 312 so as to face each other in the longitudinal direction.
  • the pair of reinforcing plates 330 is made of metal, for example, and is formed in a plate shape that is longer than the pair of fastening plates 320.
  • the pair of reinforcing plates 330 holds the pair of end plates 311 and 312 so as to face each other in the lateral direction.
  • the pair of fastening plates 320 and the pair of reinforcing plates 330 are fixed to the pair of end plates 311 and 312 by a plurality of screws 340.
  • FIG. 6 is a schematic diagram showing a change in the shape of the deformation absorbing member 20 when the fuel cell 1 is assembled.
  • FIG. 7 is a view showing a comparison between the load resistance of the deformation absorbing member 20 of the fuel cell 1 and the load resistance of the deformation absorbing member according to the comparison.
  • FIG. 8 is a view showing a state in which the height of the upright piece 22 of the deformation absorbing member 20 of the fuel cell 1 is set in consideration of the expansion of other laminated members.
  • FIG. 9 is a diagram showing a state in which the height of the upright piece 22 of the deformation absorbing member 20 of the fuel cell 1 is set in consideration of manufacturing errors of other laminated members and a deviation amount during operation (power generation).
  • FIG. 6 shows a change in the shape of the deformation absorbing member 20 when the fuel cell 1 is assembled.
  • the separator unit 10 is gradually pressed from the outside. Specifically, the separator unit 10 and the membrane electrode assembly 30 that are alternately stacked are pressed from both ends. In this process, the upright piece 22 undergoes plastic deformation through elastic deformation, and its fixed end portion 22 a is separated from the anode side separator 11 together with the base material 21 and approaches the cathode side separator 12.
  • the load fulcrum 22d of the upright piece 22 moves toward the free end 22b as shown in FIGS. 6 (a) to 6 (e) as the bending portion 22c is deformed.
  • FIG. 6F the pressing of the separator unit 10 is released.
  • the deformation absorbing member 20 is displaced from the state shown in FIG. 6E to FIG. That is, the standing piece 22 that has been greatly curved from the fixed end 22a along the free end 22b is relaxed and extends in a certain range.
  • the fixed end portion 22 a of the upright piece 22 returns from the cathode side separator 12 side to the anode side separator 11 side together with the base material 21.
  • FIG. 7 shows a comparison between the load resistance of the deformation absorbing member 20 of the fuel cell 1 of the embodiment and the load resistance of the deformation absorbing member according to the comparative example.
  • the curved portion 22c becomes the anode. It is manufactured so as to contact the side separator 11. If such a manufacturing method is used, the upright piece 22 can gently receive the load received from the anode-side separator 11 by the curved portion 22c, and can be plastically deformed through elastic deformation.
  • the load received from the anode-side separator 11 is gradually increased with the portion where the curved portion 22c comes into contact with the anode-side separator 11 as a load fulcrum 22d. You can catch it.
  • the load fulcrum 22d of the curved portion 22c moves toward the free end portion 22b, so that a large change does not occur in the state of pressing against the anode side separator 11. Therefore, it is possible to prevent the load received from the separator unit 10 from rapidly increasing when the standing piece 22 exceeds a certain position in the process of being deformed by receiving the load. That is, the deformation absorbing member 20 can make the standing piece 22 stick.
  • the standing piece of the deformation-absorbing member according to the proportionality is different from the standing piece 22 of the deformation-absorbing member 20 described above, and the region excluding the free end portion is linearly formed. That is, the upright piece according to the comparative example does not include a curved portion in a region between the fixed end portion and the free end portion.
  • the upright piece is deformed so as to be refracted with the fixed end as a reference, and accordingly, a large change occurs in the state of pressing against the anode side separator 11 with the deformation. Therefore, the load received from the separator unit 10 increases abruptly when it exceeds a predetermined position in the process in which the proportionally rising piece receives the load and deforms.
  • FIG. 8 shows a state in which the height of the upright piece 22 of the deformation absorbing member 20 of the fuel cell 1 is set in consideration of the expansion of other laminated members.
  • the separator unit 10 has a gap distance along the stacking direction X between the anode side separator 11 and the cathode side separator 12 within the range of the plastic deformation region among the elastic deformation region, the plastic deformation region, and the fixed end side contact deformation region. Is set in.
  • the elastic deformation region is a distance along the stacking direction X of the deformation absorbing member 20 when the upright piece 22 is deformed within the elastic deformation range.
  • the plastic deformation region is a distance along the stacking direction X of the deformation absorbing member 20 when the upright piece 22 is deformed within a range of plastic deformation shorter than the elastic deformation region.
  • the fixed end side contact deformation region is shorter than the plastic deformation region when the fixed end portion 22a of the upright piece 22 moves and contacts the cathode side separator 12 or the anode side separator 11, and the upright piece 22 is deformed. This is the distance along the stacking direction X of the deformation absorbing member 20.
  • the distance of the gap along the stacking direction X between the anode side separator 11 and the cathode side separator 12 is such that the separator unit 10 expands as the membrane electrode assembly 30 generates heat, and the membrane electrode assembly 30 Even if the supplied medium is absorbed and expanded, it is manufactured so as to be within the range of the plastic deformation region.
  • the portion where the separator unit 10 expands as the membrane electrode assembly 30 generates heat is described as “expansion due to heating”.
  • the portion where the membrane electrode assembly 30 expands by absorbing the medium supplied from the outside is described as “expansion due to wetting”.
  • Such a manufacturing method is to allow expansion of the separator unit 10 and the membrane electrode assembly 30 in an actual use state in which the fuel cell 1 is operated, and to allow an amount of plastic deformation of the upright pieces 22.
  • the “expansion due to heating” corresponding to the portion where the separator unit 10 expands with the heat generation of the membrane electrode assembly 30 is the temperature difference between the temperature when the fuel cell 1 is assembled and the operation of the fuel cell 1. It can be calculated from the linear expansion coefficient inherent to each laminated member and the layer thickness.
  • the “expansion due to wetting” corresponding to the portion where the membrane / electrode assembly 30 absorbs the medium supplied from the outside and expands causes the fuel cell 1 to operate to generate electric power, and to change the thickness of the membrane / electrode assembly 30. It can be measured with a displacement sensor or the like. Further, even when the electrolyte membrane 31 alone or the membrane electrode assembly 30 is formed, it is exposed to a humidity atmosphere equivalent to the operating state of the fuel cell 1, and the displacement of the layer thickness is measured by a displacement sensor or the like. Can do.
  • FIG. 9 shows a state in which the height of the upright piece 22 of the deformation absorbing member 20 of the fuel cell 1 is set in consideration of the manufacturing error of other laminated members and the deviation amount during operation (power generation).
  • the dimensional tolerance of the gap along the stacking direction X between the anode side separator 11 and the cathode side separator 12 is that the separator unit 10 expands as the membrane electrode assembly 30 generates heat, and the membrane electrode assembly 30 is supplied from the outside. It is manufactured as a configuration that is larger than the sum of displacements (deviation amounts) along the stacking direction X when the medium is absorbed and expanded.
  • a plurality of dimensional tolerances generated when the members of the fuel cell 1 are stacked and assembled can be absorbed at a time. For example, in the state where a plurality of membrane electrode assemblies 30 and separator units 10 are stacked, dimensional tolerances that differ depending on the stacking position can be absorbed.
  • FIG. 10 is a perspective view schematically showing a state in which the performance test of the fuel cell 1 is performed.
  • FIG. 11 is a diagram showing changes in the layer thickness of the membrane electrode assembly 30 accompanying the performance test of the fuel cell 1.
  • the upright piece 22 is further plastically deformed by using the pressure increase caused by heating or humidification performed after the fuel cell 1 is assembled. Specifically, as shown in FIG. 10, a heated medium is supplied to the separator unit 10 to expand the separator unit 10. By expanding the separator unit 10, the standing piece 22 is further plastically deformed while the distance of the gap along the stacking direction X between the anode side separator 11 and the cathode side separator 12 is reduced within the plastic deformation region. Specifically, hot water heated by the heater 401 is supplied from the cooling fluid supply port 311 b of the end plate 311, and a plurality of separator units 10 and membrane electrode assemblies 30 that are alternately stacked via the current collector plate 211. And then drained from the cooling fluid discharge port 311e.
  • a medium is supplied to the membrane electrode assembly 30 and the membrane electrode assembly 30 is humidified and expanded.
  • the distance between the gaps in the stacking direction X between the anode side separator 11 and the cathode side separator 12 is reduced within the range of the plastic deformation region, and the upright piece 22 is further plastically deformed.
  • the medium humidified by the humidifier 402 is injected from the anode gas supply port 311 c of the end plate 311, and a plurality of separator units 10 and membrane electrode assemblies 30 that are alternately stacked via the current collector plate 211. And then exhausted from the anode gas discharge port 311d.
  • the medium humidified by the humidifier 402 is injected from the cathode gas supply port 311 a of the end plate 311, and the separator unit 10 and the membrane electrode assembly 30 are alternately stacked via the current collector plate 211. After being circulated, the gas is exhausted from the cathode gas discharge port 311f.
  • the membrane electrode assembly 30 is expanded by being humidified by the fuel gas. That is, the membrane electrode assembly 30 is supplied with heating and humidified gas in order to simulate the thickness during power generation when assembled.
  • the separator unit 10 includes an anode side separator 11 and a cathode side separator 12.
  • the deformation absorbing member 20 is disposed between the anode-side separator 11 and the cathode-side separator 12, and has a thin plate-like base material 21 and a plurality of uprights provided in a lattice shape from one surface 21 a of the base material 21. And a piece 22.
  • the membrane electrode assembly 30 is adjacent to the separator unit 10 and is formed by joining an anode 32 and a cathode 33 so as to face the electrolyte membrane 31.
  • the manufacturing method of the fuel cell 1 includes an arrangement process and a setting process.
  • the disposing step the extended portion (free end portion 22b) extended from the base end (fixed end portion 22a) of the upright piece 22 provided on the one surface 21a of the base material 21 is replaced with the cathode side separator 12 or the anode side separator. 11 is arranged in contact with.
  • the setting step the distance along the stacking direction X between the anode-side separator 11 and the cathode-side separator 12 is set so that the deformation of the upright piece 22 exceeds the elastic deformation region and enters the plastic deformation region, and moves with the deformation.
  • the end (fixed end 22a) is set in a region where the cathode side separator 12 or the anode side separator 11 is not contacted.
  • the fuel cell 1 includes a separator unit 10, a deformation absorbing member 20, and a membrane electrode assembly 30.
  • the separator unit 10 includes an anode side separator 11 and a cathode side separator 12.
  • the deformation absorbing member 20 is disposed between the anode-side separator 11 and the cathode-side separator 12, and has a thin plate-like base material 21 and a plurality of uprights provided in a lattice shape from one surface 21 a of the base material 21. And a piece 22.
  • the deformation absorbing member 20 has an extended portion (free end portion 22b) extending from the base end (fixed end portion 22a) of the upright piece 22 provided on the one surface 21a of the base member 21 as the cathode side separator 12 or the anode side. It is made to contact
  • the membrane electrode assembly 30 is adjacent to the separator unit 10 and is formed by joining an anode 32 and a cathode 33 so as to face the electrolyte membrane 31.
  • the region in which the base end (fixed end portion 22a) that has moved along with the deformation does not come into contact with the cathode-side separator 12 or the anode-side separator 11 while the deformation of the standing piece 22 exceeds the elastic deformation region and enters the plastic deformation region.
  • the anode-side separator 11 and the cathode-side separator 12 are disposed with a load applied so that
  • transformation absorption member 20 can receive from the separator unit 10 can be increased.
  • the setting step can be configured to deform the standing piece 22 via the sandwiched cathode separator 12 and anode separator 11.
  • the manufacturing errors are reduced. It can absorb effectively by the standing piece 22. If the upright piece 22 is uniformly deformed using a jig, various manufacturing errors actually occurring in the laminated member cannot be sufficiently absorbed.
  • the setting step can be configured to plastically deform the upright pieces 22 simultaneously with the assembly.
  • the step of assembling the fuel cell 1 and the step of plastically deforming the upright pieces 22 can be performed simultaneously without being separated. That is, it is possible to prevent the cost and man-hours required for manufacturing the fuel cell 1 from increasing.
  • the setting step can be configured to further plastically deform the standing piece 22 by the pressure increase accompanying the heating or humidification performed after the assembly.
  • the environment in which the fuel cell 1 is actually operated can be reproduced, and the standing piece 22 can be plastically deformed in advance in the environment. That is, the upright piece 22 can be preliminarily plastically deformed assuming the actual use state of the fuel cell 1 rather than the state at the time of assembly of the fuel cell 1. Therefore, even after the fuel cell 1 is assembled and in use, even if the standing piece 22 is further urged, the fixed end portion 22a side of the standing piece 22 comes into contact with the cathode-side separator 12 and is in a state of supporting beams at both ends. Can be prevented. That is, since the fuel cell 1 can suppress an excessive load increase and prevent damage to the member after use and during use, the contact resistance can be prevented from increasing.
  • the heated medium is supplied to the separator unit 10, and the separator unit 10 is expanded so that the gap distance along the stacking direction X between the anode-side separator 11 and the cathode-side separator 12.
  • the upright piece 22 can be configured to be further plastically deformed while being reduced within the range of the plastic deformation region.
  • the medium is supplied to the membrane electrode assembly 30 and the membrane electrode assembly 30 is humidified and expanded to expand the anode side separator 11 and the cathode side separator 12 in the stacking direction X.
  • the standing piece 22 can be further plastically deformed while reducing the distance of the gap along the range of the plastic deformation region.
  • the membrane electrode assembly 30 in the actual use state of the fuel cell 1, it is assumed that the membrane electrode assembly 30 is humidified and expanded by the supplied medium, and the upright pieces 22 are plastically deformed in advance. it can. Therefore, even when the upright piece 22 is urged from the expanded membrane electrode assembly 30 during use of the fuel cell 1, the fixed end portion 22 a side contacts the cathode-side separator 12 and becomes a state of both-end support beams. This can prevent the contact resistance from increasing.
  • the medium that humidifies and expands the membrane electrode assembly 30 can be configured to be humidified and supplied to a dew point higher than the temperature in use.
  • thermoplastic or thermosetting sealing member that seals and seals at least the outer peripheral edge of the separator unit 10 and the membrane electrode assembly 30 can be used.
  • the distance of the gap along the stacking direction X between the anode side separator 11 and the cathode side separator 12 is reduced within the range of the plastic deformation region.
  • the upright piece 22 is further plastically deformed.
  • the separator unit 10 and the like are thermally expanded with heating when the sealing member is cured at the time of sealing using the sealing member performed after the respective members of the fuel cell 1 are laminated.
  • the upright pieces 22 can be plastically deformed in advance. Therefore, after laminating each member at the time of assembly of the fuel cell 1, the upright piece 22 is energized from the separator unit 10 that is heated and thermally expanded together with the sealing member, and the fixed end portion 22a side is the cathode side separator 12. It is possible to prevent the contact resistance from increasing due to contact.
  • the pressure applied to the gap between the anode side separator 11 and one membrane electrode assembly 30 and the pressure applied to the gap between the cathode side separator 12 and the other membrane electrode assembly 30 are:
  • the pressure applied to the gap between the anode-side separator 11 and the cathode-side separator 12 provided with the deformation absorbing member 20 can be set higher.
  • the upright piece 22 extends from the base end (fixed end portion 22 a) to a curved portion 22 c that protrudes in a convex shape toward the direction away from the cathode side separator 12 or the anode side separator 11. It can be set as the structure provided in the area
  • the standing piece 22 of the deformation absorbing member 20 disposed between the anode side separator 11 and the cathode side separator 12 is deformed by receiving a load
  • the curved portion 22c becomes the anode side separator. 11 abuts. Therefore, the standing piece 22 can be plastically deformed through elastic deformation by gently receiving the load received from the anode-side separator 11 at the curved portion 22c.
  • the curved portion 22 c is provided with a load fulcrum 22 d that supports the load received from the anode side separator 11 or the cathode side separator 12 on the side facing the anode side separator 11 or the cathode side separator 12. It can be.
  • the load fulcrum 22d moves to the extended portion (free end portion 22b) side with the deformation of the upright piece 22.
  • the portion where the curved portion 22c comes into contact with the anode separator 11 is received from the anode separator 11 as the load fulcrum 22d. It can be received while gradually increasing the load.
  • the load fulcrum 22d of the curved portion 22c moves toward the free end portion 22b, so that a large change does not occur in the state of pressing against the anode separator 11. Therefore, it is possible to prevent the load received from the separator unit 10 from rapidly increasing when the standing piece 22 exceeds a certain position in the process of being deformed by receiving the load.
  • the gap distance along the stacking direction X between the anode side separator 11 and the cathode side separator 12 is such that the separator unit 10 expands as the membrane electrode assembly 30 generates heat, and the membrane electrode junction Even if the body 30 absorbs the medium supplied from the outside and expands, it can be configured to be within the range of the plastic deformation region.
  • the separator unit 10 and the membrane electrode assembly 30 are expanded in the actual use state in which the fuel cell 1 is operated, and the plastic deformation amount of the upright pieces 22 is allowed to have a margin. it can. Therefore, even when the standing piece 22 is urged from the expanded separator unit 10 and the membrane electrode assembly 30 during use of the fuel cell 1, the stationary end 22 a side of the standing piece 22 contacts the cathode separator 12. Thus, it can be prevented that the both ends support beam. That is, the fuel cell 1 can prevent the contact resistance from increasing after assembly and during use.
  • the dimensional tolerance of the gap along the stacking direction X between the anode side separator 11 and the cathode side separator 12 is at least that the separator unit 10 expands as the membrane electrode assembly 30 generates heat
  • the membrane electrode assembly 30 may be configured to be larger than the sum of the dimensional tolerances along the stacking direction X when the membrane electrode assembly 30 expands by absorbing the medium supplied from the outside.
  • a plurality of dimensional tolerances generated when the members of the fuel cell 1 are stacked and assembled can be absorbed at a time.
  • dimensional tolerances that differ depending on the stacking position can be absorbed.
  • the shape of the standing piece 22 has been described as a rectangular shape in which the width of the extending portion (free end portion 22b) and the base end (fixed end portion 22a) are equal.
  • the standing piece 22 is not limited to such a shape, and may be a trapezoid, a triangle, a semicircle, a polygon, and a combination thereof.
  • the plurality of standing pieces 22 have been described with a configuration in which the orientation of the free end portions 22b is aligned in a plurality of rows along the other direction Z intersecting with the one direction Y.
  • the plurality of upright pieces 22 are not limited to such a shape, and in a plurality of rows along the other direction Z intersecting with the one direction Y, the direction of the free end portion 22b is set for each row. It can be set as the structure formed alternately.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】変形吸収部材の起立片がセパレータユニットから受けることが可能な荷重を増加させる燃料電池の製造方法を提供する。 【解決手段】燃料電池1の製造方法で用いる変形吸収部材20は、アノード側セパレータ11とカソード側セパレータ12との間に配設し、薄板状の基材21と、基材の一面21aから格子状に起立して設けた複数の起立片22と、を備える。配設工程では、基材の一面に設けた起立片の基端(固定端部22a)から延在させた延在部(自由端部22b)を、カソード側セパレータまたはアノード側セパレータに対して当接させて配設する。設定工程では、アノード側セパレータとカソード側セパレータとの積層方向Xに沿った間隔を、起立片の変形が、弾性変形領域を超えて塑性変形領域に入りつつ、変形に伴い移動した基端をカソード側セパレータまたはアノード側セパレータに接触させない領域で設定する。

Description

燃料電池の製造方法および燃料電池
 本発明は、燃料電池の製造方法および燃料電池に関する。
 従来から、燃料電池は、セパレータと膜電極接合体とを交互に複数積層して構成している。燃料電池は、セパレータと膜電極接合体との積層数に応じて高出力を得られることから、その積層数を増加させることが望ましい。複数積層したセパレータと膜電極接合体とを互いに十分に密着させることによって、通電抵抗を低下させることができ、所期の電池性能が達成される。
 ところで、アノード側セパレータおよびカソード側セパレータからなるセパレータユニットにおいて、アノード側セパレータの燃料ガス(水素)や冷却水の流路の部分、およびカソード側セパレータの酸化剤ガス(酸素を含有した空気または純酸素)や冷却水の流路の部分は、微細な凹凸形状から形成しており、寸法公差も大きい。
 このため、セパレータユニットのアノード側セパレータの流路の部分と、カソード側セパレータの流路の部分との間に、バネ機能を備えた変形吸収部材に相当する与圧プレートを配設する構成がある。このような変形吸収部材を用いれば、セパレータユニットに高い押圧力を掛けても、流路となる凹凸形状の部分を破損させることなく、均一に押圧することが可能である(たとえば、特許文献1参照。)。
特許第4432518号公報
 ここで、セパレータユニットの内部に配設した変形吸収部材の起立片を変形させることによってセパレータユニットから掛る荷重を吸収しているが、その起立片の変形量を最適化し、起立片が受けることが可能な荷重を増加させることができる技術が要請されていた。
 本発明は、上記の課題を解決するためになされたものであり、変形吸収部材の起立片がセパレータユニットから受けることが可能な荷重を増加させることができる燃料電池の製造方法および燃料電池の提供を目的とする。
 上記目的を達成する本発明に係る燃料電池の製造方法では、セパレータユニット、変形吸収部材、および膜電極接合体を用いる。セパレータユニットは、アノード側セパレータとカソード側セパレータとを備えている。変形吸収部材は、アノード側セパレータとカソード側セパレータとの間に配設し、薄板状の基材と、基材の一面から格子状にそれぞれ起立して設けた複数の起立片とを備えている。膜電極接合体は、セパレータユニットに隣接し、アノードとカソードとを電解質膜に対向するように接合して形成している。燃料電池の製造方法は、配設工程および設定工程を有している。配設工程は、基材の一面に設けた起立片の基端から延在させた延在部を、カソード側セパレータまたはアノード側セパレータにユニットして当接させて配設する。設定工程は、アノード側セパレータとカソード側セパレータとの積層方向に沿った間隔を、起立片の変形が、弾性変形領域を超えて塑性変形領域に入りつつ、変形に伴い移動した基端をカソード側セパレータまたはアノード側セパレータに接触させない領域で設定する。
 上記目的を達成する本発明に係る燃料電池は、セパレータユニット、変形吸収部材、および膜電極接合体を有している。セパレータユニットは、アノード側セパレータとカソード側セパレータとを備えている。変形吸収部材は、アノード側セパレータとカソード側セパレータとの間に配設し、薄板状の基材と、基材の一面から格子状にそれぞれ起立して設けた複数の起立片とを備えている。変形吸収部材は、起立片の基端から延在させた延在部を、カソード側セパレータまたはアノード側セパレータに対して当接させている。膜電極接合体は、セパレータユニットに隣接し、アノードとカソードとを電解質膜に対向するように接合して形成している。ここで、起立片の変形が、弾性変形領域を超えて塑性変形領域に入りつつ、変形に伴い移動した基端をカソード側セパレータまたはアノード側セパレータに接触させない領域となるように荷重を付加してアノード側セパレータとカソード側セパレータとを配設している。
実施形態に係る燃料電池を示す斜視図である。 実施形態に係る燃料電池の一部を構成部材毎に分解して示す分解斜視図である。 実施形態に係る燃料電池のセパレータユニットと変形吸収部材および膜電極接合体の一部を示す断面図である。 実施形態に係る燃料電池の変形吸収部材を示す斜視図である。 実施形態に係る燃料電池の変形吸収部材の要部を模式的に示す断面図である。 実施形態に係る燃料電池の組み付け時における変形吸収部材の形状の変化を示す模式図である。 実施形態に係る燃料電池の変形吸収部材の耐荷重と対比例に係る変形吸収部材の耐荷重とを比較して示す図である。 実施形態に係る燃料電池の変形吸収部材の起立片の高さを他の積層部材の膨張を考慮して設定する状態を示す図である。 実施形態に係る燃料電池の変形吸収部材の起立片の高さを他の積層部材の製造誤差および運転時(発電時)のずれ量を考慮して設定する状態を示す図である。 実施形態に係る燃料電池の性能試験を行う状態を模式的に示す斜視図である。 実施形態に係る燃料電池の性能試験に伴う膜電極接合体の層厚の変化を示す図である。
 以下、添付した図面を参照しながら、本発明に係る実施形態について説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面における部材の大きさや比率は、説明の都合上誇張され実際の大きさや比率とは異なる場合がある。
 (実施形態)
 実施形態に係る燃料電池1の製造方法および燃料電池1について、図1~図11を参照しながら説明する。
 まず、燃料電池1の構成について、図1~図5を参照しながら説明する。
 図1は、実施形態に係る燃料電池1を示す斜視図である。図2は、燃料電池1の一部を構成部材毎に分解して示す分解斜視図である。図3は、燃料電池1のセパレータユニット10と変形吸収部材20および膜電極接合体30の一部を示す断面図である。図3は、図2の3-3線に沿って示している。図4は、燃料電池1の変形吸収部材20を示す斜視図である。図5は、燃料電池1の変形吸収部材20の要部を模式的に示す断面図である。図5は、図4の5-5線に沿って示している。
 実施形態に係る燃料電池1は、電力を生成する燃料電池セル100、燃料電池セル100で生成された電力を外部に取り出す一対の集電板211および212、および複数積層した燃料電池セル100および一対の集電板211および212を保持する筺体300を含んでいる。以下、燃料電池1の各構成について、順に説明する。
 燃料電池セル100は、図1~図3に示し、複数積層された状態において、供給された燃料ガス(水素)と酸化剤ガス(酸素を含有した空気または純酸素)から電力を生成する。
 燃料電池セル100は、セパレータユニット10、変形吸収部材20、および膜電極接合体30を含んでいる。以下、燃料電池セル100に含まれた各部材について説明する。
 セパレータユニット10は、図2および図3に示し、隣り合う膜電極接合体30を隔離しつつ、膜電極接合体30で発生した電力を通電させ、かつ、燃料ガス(水素)または酸化剤ガス(酸素を含有した空気または純酸素)と冷却水との流路を備えている。セパレータユニット10は、アノード側セパレータ11とカソード側セパレータ12とを備えている。アノード側セパレータ11は、膜電極接合体30のアノード32に当接させている。アノード側セパレータ11は、導電性材料を有する金属からなり、アノード32よりも大きい薄板状に形成している。
 アノード側セパレータ11の中央には、図3に示すように、燃料ガス(水素)と冷却水とを隔てて流す流路部11gを構成するように凹凸形状を一定の間隔で複数形成している。アノード側セパレータ11は、凹凸形状のうち、アノード32と接触して形成された閉空間を、アノード32に対して水素を供給するアノードガス流路13として用いている。一方、アノード側セパレータ11は、凹凸状の形状のうち、変形吸収部材20を介してカソード側セパレータ12との間に形成された閉空間を、冷却水を供給する冷却水流路14として用いている。
 アノード側セパレータ11は、長方形状からなり、その長手方向の一端に、カソードガス供給口11a、冷却流体供給口11b、およびアノードガス供給口11cに相当する貫通孔を開口している。同様に、アノード側セパレータ11は、その長手方向の他端に、アノードガス排出口11d、冷却流体排出口11e、およびカソードガス排出口11fに相当する貫通孔を開口している。
 カソード側セパレータ12は、膜電極接合体30のカソード33に当接させている。カソード側セパレータ12は、導電性材料を有する金属からなり、カソード33よりも大きい薄板状に形成している。
 カソード側セパレータ12の中央には、図3に示すように、酸化剤ガス(酸素を含有した空気または純酸素)と冷却水とを隔てて流す流路部12gを構成するように凹凸形状を一定の間隔で複数形成している。凹凸形状の形状は、U字状を交互に組み合わせたり、半円形状を交互に組み合わせてなる。カソード側セパレータ12は、凹凸状の形状のうち、カソード33と接触して形成された閉空間を、カソード33に対して酸化剤ガスを供給するカソードガス流路15として用いている。一方、カソード側セパレータ12は、凹凸状の形状のうち、変形吸収部材20を介してカソード側セパレータ12との間に形成された閉空間を、冷却水を供給する冷却水流路14として用いている。すなわち、隣接する燃料電池セル100において、一の燃料電池セル100のアノード側セパレータ11の冷却水流路14と、他の燃料電池セル100のカソード側セパレータ12に設けられた冷却水流路14は、1つの冷却水用の流路を形成する。
 カソード側セパレータ12は、長方形状からなり、その長手方向の一端に、カソードガス供給口12a、冷却流体供給口12b、およびアノードガス供給口12cに相当する貫通孔を開口している。同様に、カソード側セパレータ12は、その長手方向の他端に、アノードガス排出口12d、冷却流体排出口12e、およびカソードガス排出口12fに相当する貫通孔を開口している。
 変形吸収部材20は、図2~図5に示し、燃料電池1の組み付け時において、アノード側セパレータ11およびカソード側セパレータ12の燃料ガスと冷却水の流路をなす凹凸形状の製造誤差を、自ら変形して吸収する。また、変形吸収部材20は、膜電極接合体30が供給された媒体を吸収して膨張することに起因した積層方向Xの変位を、自ら変形して吸収する。さらに、変形吸収部材20は、燃料電池セル100の運転中において、隣接する膜電極接合体30によって加熱されたセパレータユニット10が熱膨張することに起因した積層方向Xの変位を、自ら変形して吸収する。したがって、複数積層した燃料電池セル100に高い圧力を掛けて互いに密着できる。複数積層した燃料電池セル100が互いに密着する程、燃料電池セル100間の通電抵抗が低下して、発電効率を向上させることができる。
 変形吸収部材20は、図4に示すように、通電性を備えた金属からなり、薄板状に形成している。変形吸収部材20は、アノード側セパレータ11とカソード側セパレータ12との間に配設し、薄板状の基材21と、基材21の一面21aから格子状にそれぞれ起立して設けた複数の起立片22と、を備えている。すなわち、変形吸収部材20は、一枚の薄板に相当する基材21からコの字形状に打ち抜いた後に片持ち梁となるように起ち上げた起立片22を、格子状に形成している。起立片22は、基材21に対して片持ち梁の構造を有していることから、弾性変形可能なバネの機能を備えている。
 起立片22は、図4に示すように、たとえば、基材21の一面21aに設けた起立片22の基端側の固定端部22aの幅と、固定端部22aから一の方向Yに沿って延在させた延在部側の自由端部22bの幅とが等しい矩形状に形成している。複数の起立片22は、たとえば、一の方向Yと交差する他の方向Zに沿った複数の行において、自由端部22bの向きを揃えて形成している。起立片22は、図3に示すように、基材21の一面21aに設けた起立片22の基端側の固定端部22aから延在させた延在部側の自由端部22bを、カソード側セパレータ12に対して当接させている。
 起立片22は、図5に示すように、カソード側セパレータ12から離間する方向に向かって凸状に突出して湾曲した湾曲部22cを、固定端部22aと自由端部22bとの間の領域に備えている。起立片22は、湾曲部22cのアノード側セパレータ11と対向する側に、アノード側セパレータ11から受けた荷重を支持する荷重支点22dを設けている。荷重支点22dは、起立片22の変形と共に自由端部22bの側に移動する。
 膜電極接合体30は、図2および図3に示し、供給された酸素と水素を化学反応させて電力を生成する。膜電極接合体30は、電解質膜31を介して対向するようにアノード32とカソード33とを接合して形成している。膜電極接合体30は、一般的にMEA(membrane electrode assembly)と称している。電解質膜31は、たとえば、固体の高分子材料からなり、薄板状に形成している。固体高分子材料には、たとえば、水素イオンを伝導し、湿潤状態で良好な電気伝導性を有するフッ素系樹脂を用いている。アノード32は、電極触媒層、撥水層、およびガス拡散層を積層して構成し、電解質膜31よりも若干小さい薄板状に形成している。カソード33は、電極触媒層、撥水層、およびガス拡散層を積層して構成し、アノード32と同様の大きさで薄板状に形成している。アノード32およびカソード33の電極触媒層は、導電性の担体に触媒成分が担持された電極触媒と高分子電解質を含んでいる。アノード32およびカソード33のガス拡散層は、たとえば、充分なガス拡散性および導電性を有する炭素繊維からなる糸で織成したカーボンクロス、カーボンペーパ、またはカーボンフェルトから形成している。
 膜電極接合体30は、枠体34を備えている。枠体34は、積層した電解質膜31、アノード32、およびカソード33の外周を一体に保持している。枠体34は、たとえば、電気絶縁性を有する樹脂からなり、セパレータユニット10の外周部分の外形形状と同様の外形形状で形成している。枠体34は、その長手方向の一端に、カソードガス供給口34a、冷却流体供給口34b、およびアノードガス供給口34cに相当する貫通孔を開口している。同様に、枠体34は、その長手方向の他端に、アノードガス排出口34d、冷却流体排出口34e、およびカソードガス排出口34fに相当する貫通孔を開口している。
 上記の燃料電池セル100は、互いに密封した状態で複数積層する必要がある。このため、隣り合う燃料電池セル100の外周を封止部材によって封止する。封止部材は、たとえば、熱硬化性樹脂を用いる。熱硬化性樹脂は、たとえば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル等から選択する。
 一対の集電板211および212は、図2に示し、燃料電池セル100で生成された電力を外部に取り出す。
 一対の集電板211および212は、複数積層された燃料電池セル100の両端に、それぞれ配設している。一対の集電板211および212の外形形状は、一部の形状を除いて、層厚を少し厚くした膜電極接合体30の外形形状と同様である。一対の集電板211および212のうち、集電板211のみ、その長手方向の一端に、カソードガス供給口211a、冷却流体供給口211b、およびアノードガス供給口211cに相当する貫通孔を開口している。同様に、集電板211のみ、その長手方向の他端に、アノードガス排出口211d、冷却流体排出口211e、およびカソードガス排出口211fに相当する貫通孔を開口している。一対の集電板211および212は、その中央に集電部211h等を備えている。
 一対の集電板211および212の集電部211h等は、たとえば、ガスを透過させない緻密質カーボンのような導電性部材からなり、アノード32およびカソード33の外形よりも若干小さい薄板状に形成している。一対の集電部211h等は、複数積層した最外層の燃料電池セル100に設けた膜電極接合体30のアノード32またはカソード33に当接している。集電部211h等は、その一面から導電性を備えた円柱形状の突起部211i等を突出して設けている。突起部211i等は、後述する筺体300の一対のエンドプレート311および312の貫通孔311j等を挿通して、外部に臨んでいる。
 筺体300は、図1および図2に示し、複数積層した燃料電池セル100および一対の集電板211および212を互いに密着させた状態で保持している。
 筺体300は、一対のエンドプレート311および312、一対の締結板320、一対の補強板330、およびネジ340を含んでいる。以下、筺体300に含まれた各部材について説明する。一対のエンドプレート311および312は、複数積層された燃料電池セル100の両端に配設した一対の集電板211および212を挟持して付勢している。一対のエンドプレート311および312の外形形状は、一部の形状を除いて、層厚を増した膜電極接合体30の外形形状と同様である。一対のエンドプレート311および312は、たとえば、金属からなり、一対の集電板211および212と当接する部分に絶縁体を設けている。一対のエンドプレート311および312のうち、エンドプレート311のみ、その長手方向の一端に、カソードガス供給口311a、冷却流体供給口311b、およびアノードガス供給口311cに相当する貫通孔を開口している。同様に、エンドプレート311のみ、その長手方向の他端に、アノードガス排出口311d、冷却流体排出口311e、およびカソードガス排出口311fに相当する貫通孔を開口している。一対のエンドプレート311および312は、前述した一対の集電板211および212の突起部211i等を挿通させる貫通孔311j等を開口している。
 一対の締結板320は、たとえば、金属からなり、板状に形成している。一対の締結板320は、一対のエンドプレート311および312を、その長手方向の両側から対向するように保持している。一対の補強板330は、たとえば、金属からなり、一対の締結板320よりも細長い板状に形成している。一対の補強板330は、一対のエンドプレート311および312を、その短手方向の両側から対向するように保持している。一対の締結板320および一対の補強板330は、複数のネジ340によって、一対のエンドプレート311および312に固定している。
 つぎに、燃料電池1の製造方法について、図6~図9を参照しながら説明する。
 図6は、燃料電池1の組み付け時における変形吸収部材20の形状の変化を示す模式図である。図7は、燃料電池1の変形吸収部材20の耐荷重と対比例に係る変形吸収部材の耐荷重とを比較して示す図である。図8は、燃料電池1の変形吸収部材20の起立片22の高さを他の積層部材の膨張を考慮して設定する状態を示す図である。図9は、燃料電池1の変形吸収部材20の起立片22の高さを他の積層部材の製造誤差および運転時(発電時)のずれ量を考慮して設定する状態を示す図である。
 図6に、燃料電池1の組み付け時における変形吸収部材20の形状の変化を示している。
 図6(a)に示すように、アノード側セパレータ11とカソード側セパレータ12との間に配設した変形吸収部材20において、起立片22の自由端部22bをカソード側セパレータ12に当接させ、かつ、基材21をアノード側セパレータ11に当接させている。図6(b)~図6(e)に示すように、セパレータユニット10を外方から徐々に押圧する。具体的には、交互に複数積層したセパレータユニット10と膜電極接合体30を両端から押圧する。この過程で、起立片22は、弾性変形を経て塑性変形し、その固定端部22aが基材21と共にアノード側セパレータ11から離間してカソード側セパレータ12に接近する。起立片22の荷重支点22dは、湾曲部22cの変形に伴い、図6(a)~図6(e)に示すように自由端部22bの側に移動する。図6(f)に示すように、セパレータユニット10の押圧を解除する。このとき、変形吸収部材20は、図6(e)に示す状態から図6(f)に変位する。すなわち、起立片22は、固定端部22aから自由端部22bに沿って大きく湾曲していたものが緩和されて、一定の範囲で伸長する。同時に、起立片22の固定端部22aが、基材21と共に、カソード側セパレータ12の側からアノード側セパレータ11の側に戻る。
 図7に、実施形態の燃料電池1の変形吸収部材20の耐荷重と、対比例に係る変形吸収部材の耐荷重と、を比較して示している。
 実施形態の燃料電池1によれば、アノード側セパレータ11とカソード側セパレータ12との間に配設した変形吸収部材20の起立片22が、荷重を受けて変形した場合、その湾曲部22cがアノード側セパレータ11に当接するように製造する。このような製造方法を用いれば、起立片22は、アノード側セパレータ11から受けた荷重を湾曲部22cで緩やかに受け止めて、弾性変形を経て塑性変形することができる。ここで、起立片22が荷重を受けて徐々に変形しても、その湾曲部22cがアノード側セパレータ11に対して当接する部分を荷重支点22dとして、アノード側セパレータ11から受ける荷重を徐々に増加させながら受け止めることができる。起立片22は、その変形と共に湾曲部22cの荷重支点22dが自由端部22bの側に移動することから、アノード側セパレータ11と互いに押圧する状態に大きな変化が発生しない。したがって、起立片22が、荷重を受けて変形する過程で、ある位置を超えるとセパレータユニット10から受ける荷重が急激に増加するようなことを防止できる。すなわち、変形吸収部材20は、起立片22をねばらせることができる。
 一方、対比例に係る変形吸収部材の起立片は、前述した変形吸収部材20の起立片22と異なり、自由端部を除いた領域を直線状に形成している。すなわち、対比例に係る起立片は、固定端部と自由端部との間の領域に、湾曲した部分を備えていない。このような対比例の構成の場合、起立片は、固定端部を基準として屈折するように変形することから、その変形と共にアノード側セパレータ11と互いに押圧する状態に大きな変化が発生する。したがって、対比例に係る起立片が、荷重を受けて変形する過程で、所定の位置を超えるとセパレータユニット10から受ける荷重が急激に増加する。すなわち、比例に係る起立片は、所定の位置を超えると、固定端部側が浮き上がり、自由端部と共に、カソード側セパレータ12を支持する両端支持梁の状態になって、起立片の長さが実質的に短縮される。この様な構成の場合、対比例に係る起立片がセパレータユニット10から受けることができる荷重が大幅に低下する。
 図8に、燃料電池1の変形吸収部材20の起立片22の高さを他の積層部材の膨張を考慮して設定する状態を示している。
 セパレータユニット10は、アノード側セパレータ11とカソード側セパレータ12との積層方向Xに沿った隙間の距離を、弾性変形領域、塑性変形領域、固定端部側接触変形領域のうち、塑性変形領域の範囲内に設定している。弾性変形領域は、弾性変形の範囲で起立片22を変形させた場合における変形吸収部材20の積層方向Xに沿った距離である。塑性変形領域は、弾性変形領域よりも短く塑性変形の範囲で起立片22を変形させた場合における変形吸収部材20の積層方向Xに沿った距離である。固定端部側接触変形領域は、塑性変形領域よりも短く起立片22の固定端部22aが移動してカソード側セパレータ12またはアノード側セパレータ11に接触する範囲で起立片22を変形させた場合における変形吸収部材20の積層方向Xに沿った距離である。
 また、アノード側セパレータ11とカソード側セパレータ12との積層方向Xに沿った隙間の距離は、セパレータユニット10が膜電極接合体30の発熱に伴い膨張し、かつ、膜電極接合体30が外部から供給された媒体を吸収して膨張しても、塑性変形領域の範囲に収まる構成として製造する。図8において、セパレータユニット10が膜電極接合体30の発熱に伴い膨張する部分を、「加熱による膨張分」と記載している。同様に、図8において、膜電極接合体30が外部から供給された媒体を吸収して膨張する部分を、「湿潤による膨張分」と記載している。このような製造方法は、燃料電池1を運転させた実使用状態におけるセパレータユニット10および膜電極接合体30の膨張を想定し、起立片22の塑性変形量に余裕を持たせるものである。燃料電池1の使用中に、起立片22が、膨張したセパレータユニット10および膜電極接合体30から付勢されても、起立片22の固定端部22aの側がカソード側セパレータ12に接触して両端支持梁の状態になることを防止できる。このため、燃料電池1は、組み付け後であって使用中に、荷重が過度に上昇することを防止することができる。この結果、部材の破損等を防止できるため、接触抵抗が上昇することを抑制することができる。
 ここで、セパレータユニット10が膜電極接合体30の発熱に伴い膨張する部分に相当する「加熱による膨張分」は、燃料電池1の組み付け時の温度と燃料電池1の運転時との温度差、各積層部材に固有の線膨張係数、および層厚から算出することができる。膜電極接合体30が外部から供給された媒体を吸収して膨張する部分に相当する「湿潤による膨張分」は、燃料電池1を運転して発電させ膜電極接合体30の層厚の変位を変位センサ等で計測することができる。また、電解質膜31単体や、膜電極接合体30に形成した状態においても、それらを燃料電池1の運転状態と同等の湿度雰囲気化に晒して、層厚の変位を変位センサ等で計測することができる。
 図9に、燃料電池1の変形吸収部材20の起立片22の高さを他の積層部材の製造誤差および運転時(発電時)のずれ量を考慮して設定する状態を示している。
 アノード側セパレータ11とカソード側セパレータ12との積層方向Xに沿った隙間の寸法公差は、セパレータユニット10が膜電極接合体30の発熱に伴い膨張し、かつ、膜電極接合体30が外部から供給された媒体を吸収して膨張した場合の積層方向Xに沿った変位(ずれ量)の和よりも大きい構成として製造する。このような製造方法を用いれば、燃料電池1の各部材を積層して組み付けるときに生じる複数の寸法公差を一度に吸収することができる。たとえば、膜電極接合体30とセパレータユニット10とを複数積層した状態において、その積層位置によって異なる寸法公差を吸収することができる。
 つぎに、燃料電池1の製造時の検査について、図10および図11を参照しながら説明する。
 図10は、燃料電池1の性能試験を行う状態を模式的に示す斜視図である。図11は、燃料電池1の性能試験に伴う膜電極接合体30の層厚の変化を示す図である。
 燃料電池1の製造時の検査において、燃料電池1を組み付けた後に実施する加温または加湿に伴う圧力上昇を用いて、起立片22をさらに塑性変形させる。具体的には、図10に示すように、セパレータユニット10に加熱した媒体を供給し、セパレータユニット10を膨張させる。セパレータユニット10を膨張させることによって、アノード側セパレータ11とカソード側セパレータ12との積層方向Xに沿った隙間の距離を塑性変形領域の範囲内で縮小させつつ、起立片22をさらに塑性変形させる。具体的には、加熱器401によって加熱した温水を、エンドプレート311の冷却流体供給口311bから給水し、集電板211を介して、交互に複数積層されたセパレータユニット10と膜電極接合体30とに循環させた後、冷却流体排出口311eから排水する。
 さらに、図10に示すように、膜電極接合体30に媒体を供給し、膜電極接合体30を加湿させて膨張させる。膜電極接合体30を膨張させることによって、アノード側セパレータ11とカソード側セパレータ12との積層方向Xに沿った隙間の距離を塑性変形領域の範囲内で縮小させつつ、起立片22をさらに塑性変形させる。具体的には、加湿器402によって加湿した媒体を、エンドプレート311のアノードガス供給口311cから注入し、集電板211を介して、交互に複数積層されたセパレータユニット10と膜電極接合体30とに循環させた後、アノードガス排出口311dから排気する。同様に、加湿器402によって加湿した媒体を、エンドプレート311のカソードガス供給口311aから注入し、集電板211を介して、交互に複数積層されたセパレータユニット10と膜電極接合体30とに循環させた後、カソードガス排出口311fから排気する。
 ここで、図11に示すように、膜電極接合体30は、燃料電池1の運転時(発電時)に媒体が供給されることから、組み付け時と比較して相対湿度が上昇する。したがって、膜電極接合体30は、燃料ガスによって加湿されて膨張する。すなわち、膜電極接合体30は、組み付け時に、発電中の厚さを模擬するために、加熱、加湿ガスが供給される。
 上述した実施形態に係る燃料電池1の製造方法および燃料電池1によれば、以下の作用効果を奏する。
 実施形態に係る燃料電池1の製造方法では、セパレータユニット10、変形吸収部材20、および膜電極接合体30を用いる。セパレータユニット10は、アノード側セパレータ11とカソード側セパレータ12とを備えている。変形吸収部材20は、アノード側セパレータ11とカソード側セパレータ12との間に配設し、薄板状の基材21と、基材21の一面21aから格子状にそれぞれ起立して設けた複数の起立片22と、を備えている。膜電極接合体30は、セパレータユニット10に隣接し、アノード32とカソード33とを電解質膜31に対向するように接合して形成している。燃料電池1の製造方法は、配設工程および設定工程を有している。配設工程は、基材21の一面21aに設けた起立片22の基端(固定端部22a)から延在させた延在部(自由端部22b)を、カソード側セパレータ12またはアノード側セパレータ11に対して当接させて配設する。設定工程は、アノード側セパレータ11とカソード側セパレータ12との積層方向Xに沿った間隔を、起立片22の変形が、弾性変形領域を超えて塑性変形領域に入りつつ、変形に伴い移動した基端(固定端部22a)をカソード側セパレータ12またはアノード側セパレータ11に接触させない領域で設定する。
 実施形態に係る燃料電池1は、セパレータユニット10、変形吸収部材20、および膜電極接合体30を有している。セパレータユニット10は、アノード側セパレータ11とカソード側セパレータ12とを備えている。変形吸収部材20は、アノード側セパレータ11とカソード側セパレータ12との間に配設し、薄板状の基材21と、基材21の一面21aから格子状にそれぞれ起立して設けた複数の起立片22と、を備えている。変形吸収部材20は、基材21の一面21aに設けた起立片22の基端(固定端部22a)から延在させた延在部(自由端部22b)を、カソード側セパレータ12またはアノード側セパレータ11に対して当接させている。膜電極接合体30は、セパレータユニット10に隣接し、アノード32とカソード33とを電解質膜31に対向するように接合して形成している。ここで、起立片22の変形が、弾性変形領域を超えて塑性変形領域に入りつつ、変形に伴い移動した基端(固定端部22a)をカソード側セパレータ12またはアノード側セパレータ11に接触させない領域となるように荷重を付加してアノード側セパレータ11とカソード側セパレータ12とを配設している。
 このように構成した燃料電池1の製造方法および燃料電池1によれば、起立片22の変形を、弾性変形領域を超えて塑性変形領域に入りつつ、変形に伴い移動した基端(固定端部22a)をカソード側セパレータ12またはアノード側セパレータ11に接触させない領域で設定しているこのような構成によれば、起立片22を塑性変形させてセパレータユニット10から受けることが可能な荷重を増加させつつ、起立片22の固定端部22aの側が変形してカソード側セパレータ12に接触することによって起立片22に掛る荷重が急峻に上昇して過負荷となることを防止できる。このため、変形吸収部材20の起立片22がセパレータユニット10から受けることが可能な荷重を増加させることができる。
 さらに、燃料電池1の製造方法において、設定工程は、挟持するカソード側セパレータ12およびアノード側セパレータ11を介して、起立片22を変形させる構成とすることができる。
 このような構成によれば、燃料電池1の内部に実際に組み付けて積層する部材を用い、その積層部材に実際に生じている製造誤差に合わせて起立片22を変形させることから、製造誤差を起立片22によって効果的に吸収することができる。仮に、治具を用いて起立片22を一律に変形させた場合には、積層部材に実際に生じている様々な製造誤差を十分に吸収することができない。
 さらに、燃料電池1の製造方法において、設定工程は、組み付けと同時に起立片22を塑性変形させる構成とすることができる。
 このような構成によれば、燃料電池1を組み付ける工程と、起立片22を塑性変形させる工程とを、別個にすることなく同時に行うことができる。すなわち、燃料電池1の製造に要するコストや工数が増大することを防止できる。
 さらに、燃料電池1の製造方法において、設定工程は、組み付けた後に実施する加温または加湿に伴う圧力上昇によって、起立片22をさらに塑性変形させる構成とすることができる。
 このような構成によれば、燃料電池1を実際に運転させている環境を再現し、その環境化において、起立片22を予め塑性変形させておくことができる。すなわち、燃料電池1の組み付け時の状態ではなく、燃料電池1の実使用状態を想定して、起立片22を予め塑性変形させておくことができる。したがって、燃料電池1の組み付け後であって使用中に、起立片22がさらに付勢されても、起立片22の固定端部22aの側がカソード側セパレータ12に接触して両端支持梁の状態になることを防止できる。すなわち、燃料電池1は、組み付け後であって使用中に、過度な荷重上昇を抑制し、部材の破損等を防止できるため、接触抵抗が上昇することを防止できる。
 さらに、燃料電池1の製造方法において、セパレータユニット10に加熱した媒体を供給し、セパレータユニット10を膨張させることによって、アノード側セパレータ11とカソード側セパレータ12との積層方向Xに沿った隙間の距離を塑性変形領域の範囲内で縮小させつつ、起立片22をさらに塑性変形させる構成とすることができる。
 このような構成によれば、燃料電池1の実使用状態において、膜電極接合体30の発熱等に伴いセパレータユニット10が熱膨張することを想定し、起立片22を予め塑性変形させておくことができる。したがって、燃料電池1の使用中に、起立片22が、熱膨張したセパレータユニット10から付勢されても、その固定端部22aの側がカソード側セパレータ12に接触して両端支持梁の状態となることを防止し、接触抵抗が上昇することを防止できる。
 さらに、燃料電池1の製造方法において、膜電極接合体30に媒体を供給し、膜電極接合体30を加湿させて膨張させることによって、アノード側セパレータ11とカソード側セパレータ12との積層方向Xに沿った隙間の距離を塑性変形領域の範囲内で縮小させつつ、起立片22をさらに塑性変形させる構成とすることができる。
 このような構成によれば、燃料電池1の実使用状態において、膜電極接合体30が供給された媒体によって加湿されて膨張することを想定し、起立片22を予め塑性変形させておくことができる。したがって、燃料電池1の使用中に、起立片22が、膨張した膜電極接合体30から付勢されも、その固定端部22aの側がカソード側セパレータ12に接触して両端支持梁の状態になることを防止し、接触抵抗が上昇することを防止できる。
 さらに、燃料電池1の製造方法において、膜電極接合体30を加湿させて膨張させる媒体は、使用状態の温度よりも高い露点まで加湿させて供給する構成とすることができる。
 このような構成によれば、仮に膜電極接合体30が過飽和の状態で膨張した場合でも、起立片22の固定端部22aの側がカソード側セパレータ12に接触して両端支持梁の状態になることを防止できる。
 さらに、燃料電池1の製造方法において、少なくともセパレータユニット10と膜電極接合体30との外周縁を密閉して封止する熱可塑性または熱硬化性の封止部材を用いる構成とすることができる。封止部材を硬化させるときの加熱に伴い少なくともセパレータユニット10を膨張させることによって、アノード側セパレータ11とカソード側セパレータ12との積層方向Xに沿った隙間の距離を塑性変形領域の範囲内で縮小させつつ、起立片22をさらに塑性変形させる。
 このような構成によれば、燃料電池1の各部材を積層した後に行う封止部材を用いた封止の際に、封止部材を硬化させるときの加熱に伴いセパレータユニット10等が熱膨張することを想定し、起立片22を予め塑性変形させておくことができる。したがって、燃料電池1の組み付け時において各部材を積層した後に、起立片22が、封止部材と共に加熱されて熱膨張したセパレータユニット10から付勢され、その固定端部22aの側がカソード側セパレータ12に接触して、接触抵抗が上昇することを防止できる。
 さらに、燃料電池1の製造方法において、アノード側セパレータ11と一の膜電極接合体30との隙間に掛る圧力、およびカソード側セパレータ12と他の膜電極接合体30との隙間に掛る圧力は、変形吸収部材20を配設したアノード側セパレータ11とカソード側セパレータ12との隙間に掛る圧力よりも高くする構成とすることができる。
 このような構成によれば、燃料電池1の内部で積層された部材に差圧が生じた場合でも、変形吸収部材20によってセパレータユニット10から印加される荷重を十分に受けることができる。
 さらに、燃料電池1において、起立片22は、カソード側セパレータ12またはアノード側セパレータ11から離間する方向に向かって凸状に突出して湾曲した湾曲部22cを、基端(固定端部22a)と延在部(自由端部22b)との間の領域に備えた構成とすることができる。
 このような構成によれば、アノード側セパレータ11とカソード側セパレータ12との間に配設した変形吸収部材20の起立片22が、荷重を受けて変形した場合、その湾曲部22cがアノード側セパレータ11に当接する。したがって、起立片22は、アノード側セパレータ11から受けた荷重を湾曲部22cで緩やかに受け止めて、弾性変形を経て塑性変形することができる。
 さらに、燃料電池1において、湾曲部22cは、アノード側セパレータ11またはカソード側セパレータ12と対向する側に、アノード側セパレータ11またはカソード側セパレータ12から受けた荷重を支持する荷重支点22dを設けた構成とすることができる。荷重支点22dは、起立片22の変形と共に延在部(自由端部22b)の側に移動する。
 このような構成によれば、起立片22が荷重を受けて徐々に変形しても、その湾曲部22cがアノード側セパレータ11に対して当接する部分を荷重支点22dとして、アノード側セパレータ11から受ける荷重を徐々に増加させながら受け止めることができる。すなわち、起立片22は、その変形と共に湾曲部22cの荷重支点22dが自由端部22bの側に移動することから、アノード側セパレータ11と互いに押圧する状態に大きな変化が発生しない。したがって、起立片22が、荷重を受けて変形する過程で、ある位置を超えるとセパレータユニット10から受ける荷重が急激に増加するようなことを防止できる。
 さらに、燃料電池1において、アノード側セパレータ11とカソード側セパレータ12との積層方向Xに沿った隙間の距離は、セパレータユニット10が膜電極接合体30の発熱に伴い膨張し、かつ、膜電極接合体30が外部から供給された媒体を吸収して膨張しても、塑性変形領域の範囲に収まる構成とすることができる。
 このような構成によれば、燃料電池1を運転させた実使用状態におけるセパレータユニット10および膜電極接合体30の膨張を想定し、起立片22の塑性変形量に余裕を持たせておくことができる。したがって、燃料電池1の使用中に、起立片22が、膨張したセパレータユニット10および膜電極接合体30から付勢されても、起立片22の固定端部22aの側がカソード側セパレータ12に接触して両端支持梁の状態になることを防止できる。すなわち、燃料電池1は、組み付け後であって使用中に、接触抵抗が上昇することを防止できる。
 さらに、燃料電池1において、アノード側セパレータ11とカソード側セパレータ12との積層方向Xに沿った隙間の寸法公差は、少なくとも、セパレータユニット10が膜電極接合体30の発熱に伴い膨張し、かつ、膜電極接合体30が外部から供給された媒体を吸収して膨張した場合の積層方向Xに沿った寸法公差の和よりも大きい構成とすることができる。
 このような構成によれば、燃料電池1の各部材を積層して組み付けるときに生じる複数の寸法公差を一度に吸収することができる。たとえば、膜電極接合体30とセパレータユニット10とを複数積層した状態において、その積層位置によって異なる寸法公差を吸収することができる。
 そのほか、本発明は、特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。
 たとえば、起立片22の形状は、延在部(自由端部22b)と基端(固定端部22a)の幅が同等の矩形状として説明した。しかしながら、起立片22は、このような形状に限定されることはなく、台形、三角形、半円形、多角形、およびそれらを組み合わせた形状とすることができる。
 また、複数の起立片22は、一の方向Yと交差する他の方向Zに沿った複数の行において、自由端部22bの向きを揃えて形成した構成で説明した。しかしながら、複数の起立片22は、このような形状に限定されることはなく、一の方向Yと交差する他の方向Zに沿った複数の行において、自由端部22bの向きを一行毎に互い違いに形成する構成とすることができる。
 本出願は、2013年7月22日に出願された日本特許出願番号2013-152012号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
1 燃料電池、
10 セパレータユニット、
11 アノード側セパレータ、
12 カソード側セパレータ、
11g,12g 流路部、
13 アノードガス流路、
14 冷却水流路、
15 カソードガス流路、
20 変形吸収部材、
21 基材、
21a 一面、
22 起立片、
22a 固定端部、
22b 自由端部、
22c 湾曲部、
22d 荷重支点、
30 膜電極接合体、
31 電解質膜、
32 アノード、
33 カソード、
34 枠体、
100 燃料電池セル、
211,212 集電板、
211h 集電部、
211i 突起部、
300 筺体、
311,312 エンドプレート、
311j 貫通孔、
320 締結板、
330 補強板、
340 ネジ、
11a,12a,34a,211a,311a カソードガス供給口、
11b,12b,34b,211b,311b 冷却流体供給口、
11c,12c,34c,211c,311c アノードガス供給口、
11d,12d,34d,211d,311d アノードガス排出口、
11e,12e,34e,211e,311e 冷却流体排出口、
11f,12f,34f,211f,311f カソードガス排出口、
401 加熱器、
402 加湿器、
X 積層方向、
Y 一の方向、
Z 他の方向。

Claims (14)

  1.  アノード側セパレータとカソード側セパレータとを備えたセパレータユニットと、
     前記アノード側セパレータと前記カソード側セパレータとの間に配設し、薄板状の基材と、前記基材の一面から格子状にそれぞれ起立して設けた複数の起立片と、を備えた変形吸収部材と、
     前記セパレータユニットに隣接し、アノードとカソードとを電解質膜に対向するように接合して形成した膜電極接合体と、を用いる燃料電池の製造方法であって、
     前記基材の前記一面に設けた前記起立片の基端から延在させた延在部を、前記カソード側セパレータまたは前記アノード側セパレータに対して当接させて配設する配設工程と、
     前記アノード側セパレータと前記カソード側セパレータとの積層方向に沿った間隔を、前記起立片の変形が、弾性変形領域を超えて塑性変形領域に入りつつ、変形に伴い移動した前記基端を前記カソード側セパレータまたは前記アノード側セパレータに接触させない領域で設定する設定工程と、を有する燃料電池の製造方法。
  2.  前記設定工程は、挟持する前記カソード側セパレータおよび前記アノード側セパレータを介して、前記起立片を変形させる請求項1に記載の燃料電池の製造方法。
  3.  前記設定工程は、組み付けと同時に前記起立片を塑性変形させる請求項2に記載の燃料電池の製造方法。
  4.  前記設定工程は、組み付けた後に実施する加温または加湿に伴う圧力上昇によって、前記起立片をさらに塑性変形させる請求項1~3のいずれか1項に記載の燃料電池の製造方法。
  5.  前記セパレータユニットに加熱した媒体を供給し、前記セパレータユニットを膨張させることによって、前記アノード側セパレータと前記カソード側セパレータとの積層方向に沿った隙間の距離を前記塑性変形領域の範囲内で縮小させつつ、前記起立片をさらに塑性変形させる請求項4に記載の燃料電池の製造方法。
  6.  前記膜電極接合体に媒体を供給し、前記膜電極接合体を加湿させて膨張させることによって、前記アノード側セパレータと前記カソード側セパレータとの積層方向に沿った隙間の距離を前記塑性変形領域の範囲内で縮小させつつ、前記起立片をさらに塑性変形させる請求項4または5に記載の燃料電池の製造方法。
  7.  前記媒体は、使用状態の温度よりも高い露点まで加湿させて供給する請求項6に記載の燃料電池の製造方法。
  8.  少なくとも前記セパレータユニットと前記膜電極接合体との外周縁を密閉して封止する熱可塑性または熱硬化性の封止部材を用い、
     前記封止部材を硬化させるときの加熱に伴い少なくとも前記セパレータユニットを膨張させることによって、前記アノード側セパレータと前記カソード側セパレータとの積層方向に沿った隙間の距離を前記塑性変形領域の範囲内で縮小させつつ、前記起立片をさらに塑性変形させる請求項4~7のいずれか1項に記載の燃料電池の製造方法。
  9.  前記アノード側セパレータと一の前記膜電極接合体との隙間に掛る圧力、および前記カソード側セパレータと他の前記膜電極接合体との隙間に掛る圧力は、前記変形吸収部材を配設した前記アノード側セパレータと前記カソード側セパレータとの隙間に掛る圧力よりも高くする請求項4~8のいずれか1項に記載の燃料電池の製造方法。
     
  10.  アノード側セパレータとカソード側セパレータとを備えたセパレータユニットと、
     前記アノード側セパレータと前記カソード側セパレータとの間に配設し、薄板状の基材と、前記基材の一面から格子状にそれぞれ起立して設けた複数の起立片と、を備え、前記起立片の基端から延在させた延在部を、前記カソード側セパレータまたは前記アノード側セパレータに対して当接させた変形吸収部材と、
     前記セパレータユニットに隣接し、アノードとカソードとを電解質膜に対向するように接合して形成した膜電極接合体と、を有し、
     前記起立片の変形が、弾性変形領域を超えて塑性変形領域に入りつつ、変形に伴い移動した前記基端を前記カソード側セパレータまたは前記アノード側セパレータに接触させない領域となるように荷重を付加して前記アノード側セパレータと前記カソード側セパレータとを配設した燃料電池。
  11.  前記起立片は、前記カソード側セパレータまたは前記アノード側セパレータから離間する方向に向かって凸状に突出して湾曲した湾曲部を、前記基端と前記延在部との間の領域に備えている請求項10に記載の燃料電池。
  12.  前記湾曲部は、前記アノード側セパレータまたは前記カソード側セパレータと対向する側に、前記アノード側セパレータまたは前記カソード側セパレータから受けた荷重を支持する荷重支点を設け、
     前記荷重支点は、前記起立片の変形と共に前記延在部側に移動する請求項11に記載の燃料電池。
  13.  前記アノード側セパレータと前記カソード側セパレータとの積層方向に沿った隙間の距離は、前記セパレータユニットが前記膜電極接合体の発熱に伴い膨張し、かつ、前記膜電極接合体が外部から供給された媒体を吸収して膨張しても、前記塑性変形領域の範囲に収まる請求項10~12のいずれか1項に記載の燃料電池。
  14.  前記アノード側セパレータと前記カソード側セパレータとの積層方向に沿った隙間の寸法公差は、少なくとも、前記セパレータユニットが前記膜電極接合体の発熱に伴い膨張し、かつ、前記膜電極接合体が外部から供給された媒体を吸収して膨張した場合の積層方向に沿った寸法公差の和よりも大きい請求項10~13のいずれか1項に記載の燃料電池。
PCT/JP2014/064628 2013-07-22 2014-06-02 燃料電池の製造方法および燃料電池 WO2015011989A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015528179A JP6143868B2 (ja) 2013-07-22 2014-06-02 燃料電池の製造方法および燃料電池
CN201480040660.0A CN105393391B (zh) 2013-07-22 2014-06-02 燃料电池的制造方法和燃料电池
US14/901,136 US9960435B2 (en) 2013-07-22 2014-06-02 Fuel-cell-stack manufacturing method and fuel-cell-stack
EP14830320.9A EP3026743B1 (en) 2013-07-22 2014-06-02 Fuel cell production method and fuel cell
CA2919060A CA2919060C (en) 2013-07-22 2014-06-02 Fuel-cell-stack manufacturing method and fuel-cell-stack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013152012 2013-07-22
JP2013-152012 2013-07-22

Publications (1)

Publication Number Publication Date
WO2015011989A1 true WO2015011989A1 (ja) 2015-01-29

Family

ID=52393043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064628 WO2015011989A1 (ja) 2013-07-22 2014-06-02 燃料電池の製造方法および燃料電池

Country Status (6)

Country Link
US (1) US9960435B2 (ja)
EP (1) EP3026743B1 (ja)
JP (1) JP6143868B2 (ja)
CN (1) CN105393391B (ja)
CA (1) CA2919060C (ja)
WO (1) WO2015011989A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106558710A (zh) * 2015-09-24 2017-04-05 现代自动车株式会社 具有多层型集电板的燃料电池堆
JP7421582B2 (ja) 2022-03-10 2024-01-24 本田技研工業株式会社 燃料電池スタックの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180056219A (ko) * 2016-11-18 2018-05-28 삼성전자주식회사 스페이서 및 이를 포함하는 배터리 어셈블리
JP6854355B2 (ja) * 2017-09-22 2021-04-07 日産自動車株式会社 バネ部材、燃料電池ユニット、燃料電池スタックおよび燃料電池スタックの製造方法
JP6992420B2 (ja) * 2017-11-09 2022-02-04 トヨタ自動車株式会社 燃料電池システム及びその制御方法
KR20200129912A (ko) * 2019-05-10 2020-11-18 현대자동차주식회사 연료전지 장치
DE102019125382A1 (de) * 2019-09-20 2021-03-25 Audi Ag Batterie mit einer Druckbegrenzungsvorrichtung, Funktionsvorrichtung mit einer Batterie und Verfahren zur Druckbegrenzung
DE102019219228A1 (de) * 2019-12-10 2021-06-10 Robert Bosch Gmbh Brennstoffzelleneinheit
CN112968200B (zh) * 2021-04-09 2024-06-25 肇庆学院 一种智能燃料电池组装机及组装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335024A (ja) * 1992-03-31 1993-12-17 Toshiba Corp 燃料電池
JP2001068132A (ja) * 1999-08-25 2001-03-16 Tokyo Gas Co Ltd 集電板およびそれを用いた固体電解質燃料電池
JP2006318863A (ja) * 2005-05-16 2006-11-24 Toyota Motor Corp 燃料電池のセパレータ
JP4432518B2 (ja) 2003-10-27 2010-03-17 トヨタ自動車株式会社 燃料電池システム
JP2012129108A (ja) * 2010-12-16 2012-07-05 Nissan Motor Co Ltd 燃料電池スタック
JP2013097982A (ja) * 2011-10-31 2013-05-20 Nissan Motor Co Ltd 燃料電池スタック

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050042494A1 (en) * 2003-08-19 2005-02-24 Chao-Yi Yuh Compliant member for wet seal
US20050164077A1 (en) * 2004-01-28 2005-07-28 Bruno Bacon Pressure producing apparatus for an electrochemical generator
JP5811439B2 (ja) 2011-05-30 2015-11-11 日産自動車株式会社 燃料電池ユニット及び燃料電池スタック
EP2811564B1 (en) * 2012-01-30 2017-06-07 NGK Spark Plug Co., Ltd. Fuel battery
JP6366086B2 (ja) 2012-03-15 2018-08-01 日産自動車株式会社 燃料電池スタック
CA2869840C (en) * 2012-04-25 2019-07-16 Nissan Motor Co., Ltd. Fuel cell stack with spring plate in cooling channel
EP2846685A4 (en) 2012-05-11 2016-01-06 Univ Virginia Patent Found CHANGING VENTRICULAR ACTIVATION ENTROPY (RR) AS A FACTOR FOR PREDICTING HEART SUFFERING IN PATIENTS WITH CARDIAC RESYNCHRONIZATION THERAPY
JP6066279B2 (ja) * 2012-05-23 2017-01-25 日産自動車株式会社 燃料電池スタック
JP6115633B2 (ja) 2013-05-23 2017-04-19 日産自動車株式会社 燃料電池用セパレータの製造方法及び製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335024A (ja) * 1992-03-31 1993-12-17 Toshiba Corp 燃料電池
JP2001068132A (ja) * 1999-08-25 2001-03-16 Tokyo Gas Co Ltd 集電板およびそれを用いた固体電解質燃料電池
JP4432518B2 (ja) 2003-10-27 2010-03-17 トヨタ自動車株式会社 燃料電池システム
JP2006318863A (ja) * 2005-05-16 2006-11-24 Toyota Motor Corp 燃料電池のセパレータ
JP2012129108A (ja) * 2010-12-16 2012-07-05 Nissan Motor Co Ltd 燃料電池スタック
JP2013097982A (ja) * 2011-10-31 2013-05-20 Nissan Motor Co Ltd 燃料電池スタック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3026743A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106558710A (zh) * 2015-09-24 2017-04-05 现代自动车株式会社 具有多层型集电板的燃料电池堆
CN106558710B (zh) * 2015-09-24 2021-07-30 现代自动车株式会社 具有多层型集电板的燃料电池堆
JP7421582B2 (ja) 2022-03-10 2024-01-24 本田技研工業株式会社 燃料電池スタックの製造方法
US12009561B2 (en) 2022-03-10 2024-06-11 Honda Motor Co., Ltd. Method of producing fuel cell stack

Also Published As

Publication number Publication date
CN105393391A (zh) 2016-03-09
JPWO2015011989A1 (ja) 2017-03-02
US20160133948A1 (en) 2016-05-12
CA2919060C (en) 2019-04-02
US9960435B2 (en) 2018-05-01
JP6143868B2 (ja) 2017-06-07
CA2919060A1 (en) 2015-01-29
EP3026743A4 (en) 2017-01-04
EP3026743A1 (en) 2016-06-01
EP3026743B1 (en) 2018-02-21
CN105393391B (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP6143868B2 (ja) 燃料電池の製造方法および燃料電池
JP6140289B2 (ja) 変形吸収部材および燃料電池
JP5796879B2 (ja) 燃料電池スタック及び燃料電池スタックに用いる変形吸収部材
US8293425B2 (en) Fuel cell and gasket
JP5648378B2 (ja) 燃料電池スタック
JP5721019B2 (ja) 燃料電池スタック及び燃料電池スタックに用いる変形吸収部材
JP6137320B2 (ja) 変形吸収部材および燃料電池
JP2010003470A (ja) 燃料電池
JP6140288B2 (ja) 変形吸収部材の取付構造および取付方法
JP2010021025A (ja) 燃料電池
JP5286896B2 (ja) 燃料電池の製造方法、燃料電池、および、セパレータ
JP2015032435A (ja) 燃料電池用の単セル、燃料電池、燃料電池用の単セルの積層方法、および燃料電池用の単セルの積層装置
KR20140099701A (ko) 고체산화물 연료 전지
JP2015022970A (ja) 変形吸収部材および燃料電池
KR20240083930A (ko) 연료전지용 기체확산층 및 이를 포함한 연료전지용 단위셀
JP2009252668A (ja) 燃料電池
JP2009104854A (ja) 膜電極接合体
JP2007103151A (ja) 燃料電池スタック

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040660.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830320

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14901136

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015528179

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2919060

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014830320

Country of ref document: EP