WO2015011384A1 - Sous-ensemble oscillo-rotatif et dispositif de pompage volumétrique oscillo-rotatif pour pompage volumétrique d'un fluide - Google Patents

Sous-ensemble oscillo-rotatif et dispositif de pompage volumétrique oscillo-rotatif pour pompage volumétrique d'un fluide Download PDF

Info

Publication number
WO2015011384A1
WO2015011384A1 PCT/FR2014/051869 FR2014051869W WO2015011384A1 WO 2015011384 A1 WO2015011384 A1 WO 2015011384A1 FR 2014051869 W FR2014051869 W FR 2014051869W WO 2015011384 A1 WO2015011384 A1 WO 2015011384A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
groove
sealing
oscillating
working chamber
Prior art date
Application number
PCT/FR2014/051869
Other languages
English (en)
Inventor
Arnaud WATTELLIER
Christophe Dehan
Original Assignee
Eveon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eveon filed Critical Eveon
Priority to CN201480051185.7A priority Critical patent/CN105612346B/zh
Priority to JP2016528584A priority patent/JP2016525647A/ja
Priority to ES14749931.3T priority patent/ES2644817T3/es
Priority to US14/423,935 priority patent/US9726172B2/en
Priority to KR1020167002982A priority patent/KR101882723B1/ko
Priority to AU2014294854A priority patent/AU2014294854B2/en
Priority to EP14749931.3A priority patent/EP3025058B1/fr
Priority to CA2919004A priority patent/CA2919004C/fr
Publication of WO2015011384A1 publication Critical patent/WO2015011384A1/fr
Priority to ZA2016/00463A priority patent/ZA201600463B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/04Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
    • F04B7/06Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports the pistons and cylinders being relatively reciprocated and rotated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/02Packing the free space between cylinders and pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/143Sealing provided on the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/04Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/047Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being pin-and-slot mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C15/064Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C9/00Oscillating-piston machines or pumps
    • F04C9/007Oscillating-piston machines or pumps the points of the moving element describing approximately an alternating movement in axial direction with respect to the other element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/22Other positive-displacement pumps of reciprocating-piston type

Definitions

  • Oscillating-rotary sub-assembly and tilt-rotary volumetric pumping device for volumetric pumping of a fluid
  • the invention generally relates to an oscillating-rotational subassembly and an oscillating-rotary pumping device for volumetric pumping of a fluid.
  • volumetric pumping devices for production and / or reconstitution (liquid-solid or liquid-liquid mixtures) and / or administration (injection, infusion, oral, spray, etc.) is known, in particular for medical, aesthetic, veterinary applications.
  • precise quantities of fluid for example to a container, or to be administered directly to a patient via an injection device, must be pumped in a controlled manner, infusion or other suitable device.
  • the devices of the "push syringe" type require the pre-filling of the syringe. This filling is, most of the time done manually, which represents a laborious operation to achieve, especially since this filling requires the respect of specific precautions to ensure the integrity of the liquid and the safety of the personnel.
  • Cartridge type devices require the use of silicone to lubricate the cartridge body and thereby facilitate sliding between the generally elastomeric piston and the cartridge body generally made of glass or plastic.
  • the presence of silicone in direct contact with the fluid generates problems of stability of the molecules during storage in the cartridge before use.
  • Peristaltic pumps are bulky and bulky. Moreover, the operating principle of these peristaltic pumps requires them to have a flexible hose that prevents reaching high pressures. Due to the flexibility of the pipe, the volumetric efficiency (actual flow / demand flow) changes significantly with the pressure variations of the output fluid and quickly degrades the dosing accuracy without the help of auxiliary sensor (eg a flow sensor ). Thus, the operating pressures of such peristaltic pumps are typically less than 5 bar which limits their implementation with viscous liquids. In addition, it is common that this type of pump generates tiny air bubbles in the fluid, which can have an unacceptable effect. Finally, the rapid aging of the mechanical properties of the pipe poses problems of modifying the performances and / or the reliability over time of this type of pump. The same type of disadvantages are encountered with diaphragm pumps.
  • flap pumps It is also possible to use flap pumps. However, the passage of the fluid is then free between the inlet and outlet ducts in the case where the inlet is in overpressure with respect to the outlet. Also, the valve pumps do not offer the possibility of having a neutral position in which any circulation of the fluid is prevented. Finally they are not reversible.
  • the fluid can be sucked by one of the conduits during the intake phase, stored in the working chamber during the switching phase, and then discharged by the other conduit during the discharge phase.
  • this rotary tilt-rotary pumping device imposes a good seal between the piston and the cavity, which requires severe manufacturing tolerances, difficult to meet without significant additional cost of production and / or significant friction penalizing the energy efficiency of the rotary tilt-rotary pumping device.
  • the object of the invention is to overcome these drawbacks by proposing an oscillation-rotary subassembly for volumetric pumping and a volumetric oscillation-rotary pumping device of a moderate manufacturing cost with a limited number of parts, reversible, accurate , allowing the transfer of viscous liquid even at high pressure, and having a good fluid and energy efficiency.
  • the subject of the invention is an oscillating-rotary subassembly for volumetric pumping of a fluid, comprising a hollow body defining a cylindrical cavity of longitudinal axis and having a wall which is traversed by at least two ducts opening radially in said cavity, a piston housed in said cavity with which it defines a working chamber and having, on its cylindrical surface, a kind of longitudinal groove or recess opening longitudinally in said working chamber, said piston being provided with a seal sealing material made of a material having a modulus of elasticity lower than those of said piston and said body and carried by said piston, along said groove to ensure fluid tightness between said piston and said cavity, being angularly movable to put said working chamber in fluid communication with at least l one, then none, then at least the other of said ducts, and alternately in longitudinal translation so as to vary the volume of said working chamber and successively suction and then discharge said fluid by one then the other of said ducts, characterized in that the piston has a first axial
  • first sealing line angularly bordering said groove, said first sealing lines being separated from each other by an angle passing through said groove, greater than each of the angles separating the edges of the same duct, and lower than each of angles separating the adjacent edges of one duct and the other duct,
  • each second sealing line being separated from one of said first sealing lines by an angle not passing through said groove, less than each angle separating the edge of a duct and the adjacent edge of the other conduit, and greater than each angle separating the opposite edges of the same conduit,
  • each first sealing line of at least one of the second sealing lines passing through said groove is greater than the angle between the axially opposite edges of the ducts.
  • the idea underlying the invention is to provide a seal between the piston and the body, this seal having a particular shape to ensure effective sealing while limiting friction to improve energy efficiency. and increase the flow accuracy of the tilt and turn subassembly.
  • the piston comprises a peripheral groove receiving the seal, formed at least of an annular groove receiving the sealing torus, a semi-annular groove receiving the half-torus seal, and a longitudinal groove interconnecting the annular groove and the semi-annular groove and receiving the sealing tongue;
  • At least one of said sealing torus and annular groove is provided longitudinally beyond said groove with respect to said working chamber and beyond said ducts with respect to said working chamber, in that one at least said half-torus seal and half-annular groove is provided longitudinally at said end of said groove opening into said working chamber and between said ducts and said working chamber;
  • the piston comprises, on its periphery, at least one closed recessed area surrounded on all sides by said seal, said recessed area being angularly provided so as to be opposite a conduit when said groove is opposite a another conduit, said longitudinal groove being formed of two arms each provided between said groove and said recessed area, in that each arm receives one of said sealing tongues so as to fluidly isolate said recessed area from said groove in any longitudinal and angular position of said piston in said body;
  • the recessed area extends at an angle less than each angle separating the adjacent edges of one duct and the other duct;
  • the piston comprises at least one balancing pad provided in said groove and extending radially so that its top bears against said cavity while allowing the fluid passage on its sides;
  • said ducts, said seal and said groove being arranged so that said ducts are closed during said second and fourth angular portions.
  • the invention extends to an oscillation-rotating pump device for fluid, characterized in that it comprises drive means and an oscillating-rotary subassembly for pumping a fluid and means for removable mechanical coupling for mechanically connecting said drive means to said piston in a removable manner.
  • the fluidic portion formed by the tilt-and-turn subassembly can be easily separated from the drive means to be sterilized and / or changed.
  • FIGS. 1 to 3 are front views of the piston carrying the seal of the oscillating-rotational subassembly according to a first embodiment of the invention, illustrated in three different orientations;
  • FIG. 4 is a perspective view. the seal of Figures 1 to 3 shown alone;
  • Figure 5 is a perspective view of the end of the piston of Figures 1 to 3 carrying a seal
  • FIGS. 6 to 11 are transparent front views of the oscillating-rotational subassembly according to the first embodiment of the invention, illustrated in six distinct operating positions during a pumping cycle (admission, switching, repression, switching);
  • Figure 12 is a schematic sectional view from above of the piston and the body of the first embodiment of the invention, illustrating the functional angles of the sealing lines of the seal relative to the positioning and sizing of the ducts. Given the symmetry, only one of each of these angles is shown, Figures 13 and 14 are respectively an exploded perspective view and a cutaway perspective view of an oscillating-rotational subassembly according to a second embodiment. of the invention; Figures 15 to 20 are sectional views of the oscillometric subassembly of Figures 13 and 14, illustrated in six different operating positions during a pumping cycle. The guide finger is not shown in these figures;
  • FIG. 21 is a perspective view of the body of the oscillating-rotational subassembly of FIGS. 1 to 1 1 illustrating the 180 ° position of the connection ends;
  • FIG. 22 is a simplified graph illustrating the evolution over time of the pressure (in continuous line) in the working chamber of a single-acting oscillating-rotary device and the flow rate obtained (in line of points) during the rotation on 1 full turn of the piston. This graph does not illustrate the transition phases described below;
  • FIG. 23 is a simplified graph illustrating the evolution over time of the pressure (in continuous and dotted lines) in each of the working chambers of a double-acting rotary-tilt device and the flow rate obtained (in line of points) at during rotation on 1 full turn of the piston. This graph does not illustrate the transition phases described below;
  • FIG. 24 is a perspective view of the body of an oscillating-rotational subassembly, the tips of which are parallel to one another;
  • FIG. 25 is a radial sectional view along a plane passing through the axes of the ducts of the body of the oscillating-rotational subassembly of FIG. 24.
  • the tilt-and-turn subassembly for pumping according to the invention may have a single-stage single-effect configuration, hereinafter described as the first embodiment illustrated in FIGS. 1 to 1 1, and a multi-stage multi-effect configuration, for example the double-acting configuration described below as a second embodiment illustrated in FIGS. 12 to 19.
  • the oscillating-rotary subassembly 1 according to the first embodiment of the invention comprises a body 2 and a piston 3.
  • the body 2 is hollow and formed of two cylindrical portions 4, 5 of different diameters interconnected by a shoulder 6.
  • the body 2 is for example made of plastic material or any other suitable material.
  • the inside of the cylindrical portion 4 of large diameter forms a bore 7 of longitudinal axis A.
  • the free end of this cylindrical portion 4 of large diameter is open and intended to receive the longitudinal engagement of the piston 3.
  • the other end is connected to the cylindrical portion of small diameter 5 by the shoulder 6.
  • the wall of the cylindrical portion 4 of large diameter is traversed by an orifice 8 for receiving a radial guide pin 9 arranged to protrude into the 7.
  • the guide pin 9 is a pin.
  • the guide finger 9 may also be secured to the body by gluing or by any other suitable means.
  • the guide pin 9 has for example a cylindrical section or any other adapted section.
  • the inside of the cylindrical portion 5 of small diameter defines a cavity 10 of longitudinal axis A and of smaller diameter than that of the bore 7.
  • the free end of the cylindrical portion 5 of small diameter is closed and forms the bottom of the body 2.
  • the bore 7 and the cavity 10 are intended to receive the piston 3 housed in the body 2.
  • the wall of the cylindrical portion 5 of small diameter is traversed by two ducts 1 1, 12 opening radially into the cavity 10
  • These ducts January 1, 12 have for example a circular section and have the same diameter and are coaxial with each other, diametrically opposed to one another and located in the same radial plane perpendicular to the longitudinal axis A.
  • the mouths of the ducts January 1, 12 in the cavity 10 are coaxial with each other, diametrically opposed to one another and located in the same radial plane.
  • the body 2 comprises connecting end pieces 13, 14 individually surrounding each of the ducts 11, 12 and able to be connected for example to an inlet pipe or a discharge pipe. or any other suitable fluid connection equipment.
  • the connection ends 13, 14 are offset from each other by an angle of 180 °.
  • each of the ducts 11, 12 may equally be used for admission or for delivery of the fluid.
  • the ducts may be slightly offset longitudinally relative to each other.
  • the mouths of the ducts may be offset from one another by a 180 ° angle while having ducts 11, 12 with delivery allowing the endpieces to have a angle different from 180 °.
  • the connecting tips 13, 14 are parallel to each other which can simplify the fluid connection configuration.
  • the ducts can also be offset from each other by an angle other than 180
  • the piston 3 is formed of two cylindrical portions 15, 16 of different diameters interconnected by a shoulder 17.
  • the piston 3 is for example made of plastic material or any other suitable material.
  • the cylindrical portion 16 of small diameter of the piston 3 has a outer diameter less than the diameter of the cavity 10 in which it can thus be accommodated.
  • the cylindrical portion 16 of small diameter of the piston 3 is made in two parts including an axis 19, integral with the rest of the piston 3 and having a reduction in diameter, and a sleeve 20, attached to the part of reduced diameter of the axis 19, and whose outer diameter corresponds to the outer diameter of the axis 19.
  • This cylindrical portion 16 of small diameter of the piston 3 can also be made in a single part.
  • the sleeve 20 comprises an axial recess 21, and is for example secured to the axis 19 by force-fitting, supplemented or not by gluing or by any other suitable means.
  • This sleeve 20 may alternatively be made by overmolding on the axis 19.
  • the free end of the sleeve 20 defines, with the bottom of the body 2, a working chamber 31 intended to receive the fluid.
  • the sleeve 20 comprises, on its periphery, a groove 22 extending longitudinally between a closed end 23 oriented towards the cylindrical portion 15 of large diameter of the piston 3 and an open end 24 opening into the working chamber 31.
  • the bottom of the groove 22 has a curved curved profile parallel to the longitudinal axis A. This profile may be different, for example flat by means of a flat, curved recessed, or any other adapted profile.
  • the groove 22 is delimited by longitudinal edges substantially parallel to the longitudinal axis A and by transverse edges in an arc of a circle each located in a plane substantially perpendicular to the longitudinal axis A.
  • the groove 22 has thus generally a tubular portion shape.
  • the groove 22 may also have the shape of an inclined line, a cross or any other form adapted to the oscillatory-rotary movement of the piston 3.
  • the sleeve 20 comprises, a balancing stud 25 provided in the groove 22, at its open end 24 and extending radially so that its top bears against the cavity 10 while allowing the passage fluid on its sides.
  • the balancing pad 25 is for example provided in the middle of the groove 22.
  • the sleeve 20 is provided with a peripheral groove having an annular groove 26, a half-annular groove 27 and two longitudinal grooves 28 interconnecting the annular groove 26 and the half-annular groove 27
  • the sleeve has a single longitudinal groove.
  • the annular groove 26 is hollowed in a plane perpendicular to the longitudinal axis A, and provided axially beyond the closed end 23 of the groove 22 relative to the open end 24 of the same groove 22, and beyond beyond the ducts 1 1, 12 relative to the working chamber 31 when the piston 3 is in the body 2, even when the piston 3 is in its low position.
  • the half-annular groove 27 is hollowed parallel to the annular groove 26 in a plane perpendicular to the longitudinal axis A, and provided axially at the open end 24 of the groove 22. Thus, even when the piston 3 is in its high position in the body 2, the half-annular groove 27 is disposed axially between the ducts 1 1, 12 and the working chamber 31.
  • the longitudinal grooves 28 are hollowed parallel to the longitudinal axis A and connect the annular groove 26 and the ends of the half-annular groove 27.
  • the groove 22 is framed on the one hand by the longitudinal grooves 28 and, secondly, by a portion of the annular groove 26.
  • the longitudinal grooves 28 may also have a variable width along the longitudinal axis A and for example have an hourglass shape.
  • the sleeve 20 also comprises, on its periphery, a recessed area 29 closed, angularly opposite the groove 22.
  • Each longitudinal groove 28 is disposed between the groove 22 and the recessed area 29.
  • the recessed area 29 is thus framed, a share by the throats longitudinal 28 and, secondly, by the half-annular groove 27 and a portion of the annular groove 26.
  • This recessed area 29 limits the piston surface 3 in contact with the cavity 10 and therefore to limit friction .
  • the oscillation-rotary displacement of the piston 3 is done with a good energy efficiency.
  • the cylindrical portion 15 of large diameter of the piston 3 has an outer diameter smaller than the diameter of the bore 7 in which it can thus be accommodated.
  • the free end of the cylindrical portion 15 of large diameter has a hollow shape 18 in the form of a cross (visible in Figure 5) for receiving a nozzle (not shown) of complementary shape coupled to the drive means for making turn the piston 3 relative to the body 2.
  • the hollow form 18 may have any other profile adapted to a rotational drive, it may also be provided in relief.
  • a recessed shape has the advantage of being less accessible, the position of the piston 3 can thus be less easily modified manually before use of the oscillating-rotary subassembly 1.
  • the position of the piston is known which ensures the operating phase at startup (suction, switching, discharge) and therefore to know precisely the transferred dose.
  • the recessed form can be provided to require the use of a specific tool to be maneuvered.
  • the cylindrical portion 15 of large diameter of the piston 3 comprises two annular ribs 30 parallel to each other so as to define between them a double guide cam of the guide pin 9.
  • the guide pin 9 may also be provided with a rotating portion intended to roll over the ribs annular 30 and thus reduce friction. The energy efficiency is thus optimized.
  • the annular ribs 30 each comprise a first and a second inclined portion SU, SI2, symmetrical to one another with respect to a median longitudinal plane.
  • the first and second inclined portions SU, SI2 thus have inverted slopes on the periphery of the piston 3.
  • the first and second inclined portions SU, SI2 are separated from each other by first and second planar portions SP1, SP2 substantially parallel to each other and perpendicular to the longitudinal axis A.
  • the piston 3 thus oscillates between a high position (see Figure 8) in which the working chamber 31 has a maximum volume and a low position in which the working chamber 31 has a minimum volume. Between these two positions of the piston 3, the working chamber 31 admits and then represses the fluid.
  • the piston 3 carries a seal housed in the peripheral groove, and made of a material having a modulus of elasticity lower than that of the piston 3 and the body 2. It is for example made of elastomer and is dimensioned so that, when the piston 3 is in the cavity 10, the seal is in contact with the inner wall of the cavity 10.
  • This seal is formed of a sealing core 32 and a half-seal 31 coaxial and parallel to each other, connected to one another by two sealing tongues 34.
  • piston has only one longitudinal groove, the seal has only one sealing tongue.
  • the sealing tongues 34 are arranged at 180 ° to one another.
  • the sealing tabs 34 may be arranged differently provided to meet the geometric constraints detailed below.
  • the sealing tabs 34 may have a constant width along the longitudinal axis A or a variable length to accommodate a variable width of the groove 22.
  • the sealing torus 32 is housed in the annular groove 26, the sealing half-torch 33 is housed in the half-annular groove 27 and each sealing tongue 34 is housed in one of the longitudinal grooves 28.
  • the half-torus 32 is axially located beyond the ducts 1 1, 12 relative to the working chamber 31, the half-torus sealing 33 is axially located between the ducts 1 1, 12 and the working chamber 31.
  • the seal seals around the recessed area 29 and around the groove 22 and working chamber assembly 31 by providing fluid communication between the groove 22 and the working chamber 31.
  • Each sealing tongue 34 defines a first and a second sealing line L1, L2 (visible in Figures 4 and 12) extending longitudinally and angularly offset from one another. As shown in FIG. 12, the groove 22 is thus angularly bordered by the first sealing lines L1 of each of the two sealing tongues 34, and the recessed zone 29 is angularly bordered by the second sealing lines L2. each of the two sealing tongues 34.
  • the recessed zone 29 makes it possible to limit the area of the seal in contact with the cavity 10 and thus to limit the friction.
  • each sealing tongue can be hollowed out.
  • the body 2, the piston 3 and the seal are arranged to respect the following geometrical constraints:
  • the first sealing lines L1 are separated from each other by an angle cc1 passing through the groove 22, greater than each of the angles ⁇ separating the edges of the same duct 1 1, 12, and less than each of the angles ⁇ 2 separating the adjacent edges of a duct 1 1 and the other duct 12,
  • each second sealing line L2 is separated from one of the first sealing lines L1 by an angle cc2 not passing through the groove 22, smaller than each angle ⁇ 2 and greater than each angle ⁇ ,
  • the angle cc3 separating each first sealing line L1 from at least one of the second sealing lines L2 through the groove 22 is greater than the angle ⁇ 3 separating the axially opposite edges of the ducts 11, 12.
  • the single-acting oscillating-rotary subassembly 1 is thus provided with a single stage comprising two ducts 1 1, 12, a working chamber 31, a groove 22 and a recessed area 29.
  • a pair of ducts 1 1 , 12 called intake and discharge, corresponds to a single groove 22.
  • one of the conduits 1 1, 12 is connected to a fluid supply pipe, the other to a discharge pipe of the same fluid, and the piston 3 is mechanically connected, via the hollow form 18, to rotary drive means (not shown) of known type.
  • the operation of the single-acting tilt-rotary subassembly 1 according to the invention is described hereinafter with reference to FIGS. 6 to 11 and to the graph of FIG. 22.
  • the guide pin 9 circulates mainly along the first inclined portion SU of the cam which converts the rotation R of the piston 3 into a first translation T1 according to a first sense of displacement of the piston 3 with respect to the body 2 which moves the piston 3 from a low position (FIG. 1 1) in which the working chamber 31 has a minimum volume, at a high position (FIG. 7) in which the chamber of Work 31 has a maximum volume.
  • the piston 3 rotates relative to the body 2 with the groove 22 flowing in front of the orifice of the conduit 1 1 said admission.
  • the duct 1 1 said admission is in fluid communication with the working chamber 31 through the groove 22, and the fluid is sucked by the increase in the volume of the working chamber 31 caused by the first T1 translation and creating a depression in the working chamber 31 according to the arrow E.
  • the recessed area 29 flows in front of the orifice of the duct 12 said discharge.
  • the seal ensures the sealing of the conduit 12 said discharge which is not in fluid communication with the working chamber 31, which is schematized by a cross.
  • the fluid does not leave the working chamber 31 by the conduit 12, said discharge.
  • the rotation R of the piston 3 with respect to the body 2 is extended until reaching a first switching phase.
  • the guide pin 9 circulates on the end of the second flat portion SP2. Similarly, at the end of the intake phase, during a transition phase, the guide pin 9 flows on the beginning of the first flat portion SP1 of the cam.
  • the transition phases occur at constant volume of the working chamber 31. For the sake of simplification, these transition phases are not represented on the graph of FIG. 22.
  • the guide pin 9 circulates mainly along the second inclined portion SI2 of the cam which converts the rotation R of the piston 3 into a second translation T2 in a second direction of displacement opposite to the first direction of displacement during translation T1.
  • the piston 3 moves from its upper position ( Figure 8) to its lower position ( Figure 1 1).
  • the piston 3 rotates relative to the body 2 with the groove 22 flowing in front of the orifice of the pipe 12 said discharge.
  • the discharge conduit 12 is in fluid communication with the working chamber 31 via the groove 22, and the fluid is discharged, by reducing the volume of the working chamber 31 caused by the second translation T2 and creating an overpressure along the arrow S in the working chamber 31 by the conduit 12 said discharge.
  • the recessed area 29 circulates in front of the orifice of the conduit 1 1 said admission.
  • the seal seals the conduit 1 1 said intake which is not in fluid communication with the working chamber 31.
  • the fluid does not enter the working chamber 31 by the duct 1 1 said intake.
  • the rotation R of the piston 3 with respect to the body 2 is extended until reaching a second switching phase.
  • the guide pin 9 flows on the end of the first planar portion SP1. Similarly, at the end of the discharge phase, during a transition phase, the guide pin 9 flows on the beginning of the second flat portion SP2 of the cam.
  • the transition phases are pass to constant volume of the working chamber 31. For the sake of simplification, these transition phases are not represented on the graph of FIG. 22.
  • This second switching phase is substantially similar to the first switching phase. It differs by the piston 3 in the low position, the working chamber 31 which has a minimum volume and the position of the sealing tongues 34 relative to the ducts 1 1, 12 called intake and discharge, inverted by compared to the first switching phase.
  • the tilt-and-turn cycle can be repeated. It is understood that, according to the direction of rotation of the piston 3 relative to the body 2, the inlet duct may correspond to the discharge duct and vice versa.
  • the contact between the balancing stud 25 and the wall of the cavity 10 prevents the piston 3 from tilting with respect to the longitudinal axis A, which would cause an increase in the friction, the appearance of leaks, or even a blockage of the piston 3 in the body 2.
  • the oscillating-rotary subassembly 101 according to the second embodiment of the invention is illustrated in FIGS. 13 to 20 and has a double-effect configuration. For this purpose, it comprises two stages, a first stage similar to that of the rotary-rotational subassembly 1 and a second stage comprising two ducts 1 1 1, 1 12, a working chamber 131, a groove 122, a recessed area. 129 such as those on the first floor.
  • intake and discharge corresponds to a single groove 22, 122.
  • the so-called intake ducts 1 1, 1 1 1 are superimposed on each other longitudinally, the admission ducts 12, 1 12 are superimposed between them longitudinally, the grooves 22, 122 are located at 180 °. one of the aute and the recessed areas 29, 129 are located 180 ° from each other
  • the fluidic connections by the ducts 1 1, 1 1 1 so-called intake and conduits 12, 1 12 called admission is at 180 °.
  • the body 102 has a cavity 1 10 longitudinally having a higher height to accommodate the two stages.
  • the body 102 also comprises an annular groove 135, coplanar with the shoulder 106 separating the cavity 1 10 and the bore 107, oriented towards the inside of the body 102 and intended to receive for example a complementary seal 36 out any another sealing element ensuring the seal between the piston 103 and the body 102.
  • phase Adm admission phase
  • phase Ref discharge phase
  • the so-called intake ducts 1 1, 1 1 1 of each stage can be fluidly connected to a common inlet of the same fluid and the ducts 12, 1 12 known as discharge pipes of each stage can be connected fluidically. at a common output of the same fluid.
  • the double-acting oscillating-rotary subassembly can advantageously be used to produce mixtures by using a stage for a first fluid and another stage for a second fluid, the pipes 12, 1 12 known as backflow pipes. each floor being by example connected to the same container for receiving the mixture obtained.
  • the dosage of the mixture obtained can be varied.
  • the flow rate of the pumping device incorporating such a double-effect oscillo-rotary subassembly 101 will be increased, with a pulse frequency that is twice as high, relative to a single-acting oscillating-rotary subset 1. .
  • the conduit 12 said delivery of a stage can be fluidly connected to the conduit 1 1, said admission, the other floor.
  • the sucked fluid passes successively through the working chambers 31, 131. It is possible to accumulate in cascade the discharge pressures generated by each stage.
  • the two stages can be identical and simply offset from one another longitudinally.
  • the two phases of admission of the two stages are concomitant with each other, and the two phases of discharge of the two stages are concomitant with each other.
  • the flow rate of the pumping device incorporating such a double-acting oscillating-rotational subassembly 101 will be doubled with an identical pulse frequency with respect to a single-effect oscillating-rotary subassembly.
  • each so-called intake duct is angularly offset from the corresponding intake duct by a predetermined angle
  • the grooves are angularly offset from each other by the same predetermined angle
  • the recessed areas are also angularly offset. the same predetermined angle.
  • the fluidic connections through the so-called intake ducts and the so-called intake ducts are in separate longitudinal planes angularly offset from the predetermined angle. This angle can be chosen to facilitate the spatial organization of the fluidic connections.
  • the oscillating-rotary subassembly 1, 101 according to the invention is simple to manufacture with a limited number of parts.
  • the seal makes it possible to limit the geometrical constraints to be respected and facilitates the manufacture of the oscillating-rotary subassembly 1, 101. It is easier to assemble and the recessed area 29,129 improves its energy efficiency.
  • the oscillating-rotary subassembly 1, 101 makes it possible to ensure a precise flow independent of the user and / or the viscosity of the fluid. It can be coupled to an angular position sensor.
  • the oscillating-rotational subassembly 1, 101 according to the invention is reversible, simply by inverting the direction of rotation of the piston 3, 103.
  • the inlet duct 11, 11 1 1 becomes duct 12, 1 12 called repression and vice versa.
  • the mechanical decoupling between the piston 3, 103 and the drive means makes it possible to obtain a disposable tilt-and-turn subassembly while the driving part is reusable. This ensures, at lower cost, the sterility of the tilt-rotary subassembly 1, 101 by replacing it between two uses.
  • the fluidic portion of the oscillopumping pumping device is to be renewed, the motorization and control parts being kept between two uses.
  • the oscillating-rotational subassembly 1, 101 prohibits any fluid flow with the ducts 1 1, 1 1 1, 12, 1 12 called intake and discharge during the switching phases, without creating any effect of overpressure or depression by hydraulic blockage during these phases. It also allows to limit the dead volume.
  • the contact between the seal and the body makes it possible to angularly wedge the oscillating-rotational subassembly 1, 101 at the factory during its initial assembly. This angular setting will thus be easily preserved until the start of operation of the oscillating-rotational subassembly 1, 101 in the rotary-oscillation device. It is nevertheless possible to provide a visual reference of the angular position of the piston 3, 103 relative to the body 2, 102 or a sensor of any suitable technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Reciprocating Pumps (AREA)
  • Sealing Devices (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

Un sous-ensemble oscillo-rotatif (1) pour pompage volumétrique d'un fluide comporte un corps (2) creux définissant une cavité (10) dont la paroi est traversée par deux conduits (11,12), un piston (3) définissant avec ladite cavité (10) une chambre de travail (31) et comportant une rainure (22) débouchant longitudinalement dans ladite chambre de travail (31), ledit piston (3) étant mobile angulairement pour mettre ladite chambre de travail (31; 131) en communication fluidique avec l'un puis aucun puis l'autre desdits conduits (11,12; 111,112), et alternativement en translation longitudinale de sorte à faire varier le volume de ladite chambre de travail (31) et successivement puis refouler ledit fluide, ledit piston (3) portant un joint d'étanchéité (32,33,34) formé d'au moins un tore d'étanchéité (32), un demi-tore d'étanchéité (33) et au moins une languette d'étanchéité (34) reliant longitudinalement ledit tore d'étanchéité (32) audit demi-tore d'étanchéité (33).

Description

Sous-ensemble oscillo-rotatif et dispositif de pompage volumétrique oscillo-rotatif pour pompage volumétrique d'un fluide
Domaine technique
L'invention concerne de façon générale un sous-ensemble oscillo-rotatif et un dispositif de pompage oscillo-rotatif pour pompage volumétrique d'un fluide.
Technique antérieure
L'utilisation de dispositifs de pompage volumétrique pour la production et/ou la reconstitution (mélanges liquide-solide ou liquide-liquide) et/ou l'administration (injection, infusion, oral, spray, ...), est connue, notamment pour des applications médicales, esthétiques, vétérinaires, Pour ce type d'applications, il convient de pomper de manière contrôlée des quantités précises de fluide, par exemple vers un contenant, ou pour les administrer directement à un patient via un dispositif d'injection, d'infusion ou tout autre dispositif adapté.
En particulier dans le domaine médical, dans un contexte hospitalier, en centre de soins ou à domicile, il est connu d'utiliser des dispositifs de type « pousse seringue », « pousses dispositifs cartouches » et des pompes péristaltiques.
Les dispositifs de type « pousse seringue » nécessitent le remplissage préalable de la seringue. Ce remplissage est, la plupart du temps réalisé manuellement, ce qui représente une opération laborieuse à réaliser, d'autant plus que ce remplissage nécessite le respect de précautions spécifiques pour garantir l'intégrité du liquide et la sécurité du personnel.
Les dispositifs de type « pousse cartouche » requièrent l'utilisation de silicone pour lubrifier le corps de la cartouche et ainsi faciliter le glissement entre le piston généralement en élastomère et le corps de la cartouche généralement en verre ou en plastique. La présence de silicone en contact direct avec le fluide génère des problèmes de stabilité des molécules pendant leur stockage dans la cartouche avant usage.
Les pompes péristaltiques sont encombrantes et volumineuses. Par ailleurs, le principe de fonctionnement de ces pompes péristaltiques leur impose d'avoir un tuyau souple qui empêche d'atteindre des pressions élevées. Du fait de la souplesse du tuyau, le rendement volumétrique (débit réel/ débit demandé) évolue fortement avec les variations de pression du fluide en sortie et dégrade rapidement la précision de dosage sans l'aide de capteur annexe (par exemple un capteur de débit). Ainsi, les pressions d'utilisation de telles pompes péristaltiques sont typiquement inférieures à 5 bars ce qui limite leur mise en œuvre avec des liquides visqueux. De plus, il est fréquent que ce type de pompes génère de minuscules bulles d'air dans le fluide, qui peuvent avoir un effet inacceptable. Enfin, le vieillissement rapide des propriétés mécaniques du tuyau pose des problèmes de modification des performances et/ou de la fiabilité dans le temps de ce type de pompes. Le même type d'inconvénients est rencontré avec les pompes à membranes.
Il est également possible d'utiliser des pompes à clapet. Toutefois, le passage du fluide est alors libre entre les conduits d'entrée et de sortie au cas où l'entrée est en surpression par rapport à la sortie. Aussi, les pompes à clapet n'offrent pas la possibilité d'avoir une position neutre dans laquelle toute circulation du fluide est empêchée. Enfin elles ne sont pas réversibles.
Il est également possible d'utiliser des pompes à engrenages ou à lobes. Toutefois, ce type de pompes présente une faible capacité d'autoamorçage ainsi qu'un volume interne de fluide retenu important qui les rend difficiles à utiliser pour de telles applications médicales, esthétiques ou vétérinaires.
Les publications GB 122 629, DE 36 30 528 et US 3,168,872 décrivent un dispositif de pompage volumétrique oscillo-rotatif comportant un corps creux définissant une cavité et dont la paroi est traversée par deux conduits débouchant dans la cavité, un piston logé dans la cavité dans laquelle il est mobile angulairement et en translation axiale alternative pour faire varier le volume de la chambre de travail qu'il définit avec la cavité. US 3,168,872 décrit particulièrement que le piston comporte un méplat apte à être successivement en communication avec l'un des conduits pendant une phase d'admission, puis aucun des conduits pendant une phase de commutation, puis l'autre des conduits pendant une phase de refoulement, puis de nouveau aucun des conduits pendant une nouvelle phase de commutation, et ainsi de suite. Ainsi, le fluide peut être aspiré par l'un des conduits pendant la phase d'admission, stocké dans la chambre de travail pendant la phase de commutation, puis refoulé par l'autre conduit pendant la phase de refoulement. Toutefois, le bon fonctionnement de ce dispositif de pompage volumétrique oscillo-rotatif impose une bonne étanchéité entre le piston et la cavité, ce qui nécessite des tolérances de fabrication sévères, difficiles à respecter sans un surcoût de production notable et/ou des frottements importants pénalisant le rendement énergétique du dispositif de pompage volumétrique oscillo-rotatif.
Exposé de l'invention
Le but de l'invention est de remédier à ces inconvénients en proposant un sous-ensemble oscillo-rotatif pour pompage volumétrique et un dispositif de pompage volumétrique oscillo-rotatif d'un coût de fabrication modéré avec un nombre de pièces limité, réversible, précis, permettant le transfert de liquide visqueux même à haute pression, et ayant un bon rendement fluidique et énergétique.
A cet effet, l'invention a pour objet un sous-ensemble oscillo-rotatif pour pompage volumétrique d'un fluide, comportant un corps creux définissant une cavité cylindrique d'axe longitudinal et ayant une paroi qui est traversée par au moins deux conduits débouchant radialement dans ladite cavité, un piston logé dans ladite cavité avec laquelle il définit une chambre de travail et comportant, sur sa surface cylindrique, une sorte de rainure longitudinale ou évidement débouchant longitudinalement dans ladite chambre de travail, ledit piston étant muni d'un joint d'étanchéité réalisé dans un matériau ayant un module d'élasticité inférieure à ceux dudit piston et dudit corps et porté par ledit piston, longeant ladite rainure pour assurer l'étanchéité fluidique entre ledit piston et ladite cavité, étant mobile angulairement pour mettre ladite chambre de travail en communication fluidique avec au moins l'un, puis aucun, puis au moins l'autre desdits conduits, et alternativement en translation longitudinale de sorte à faire varier le volume de ladite chambre de travail et successivement aspirer puis refouler ledit fluide par l'un puis l'autre desdits conduits, caractérisé en ce que le piston comporte une première extrémité axiale opposée à une seconde extrémité axiale, ladite seconde extrémité axiale étant en contact de la chambre de travail, ledit joint d'étanchéité se présente en plusieurs parties comprenant une première partie d'étanchéité en forme de tore qui s'étend autour de la surface cylindrique du piston du côté de sa première extrémité axiale, une seconde partie d'étanchéité en forme de demi tore qui s'étend autour de la surface cylindrique du piston du côté de sa deuxième extrémité axiale, le demi tore ayant deux extrémités espacées l'une de l'autre sur la périphérie cylindrique du piston, et une troisième partie d'étanchéité formée par deux languettes d'étanchéité qui s'étendent respectivement axialement sur la surface extérieure du piston entre une première extrémité du demi tore et le tore et une deuxième extrémité du demi tore et le tore,
en ce que les deux languettes sont angulairement distinctes l'une de l'autre et définissent chacune :
- une première ligne d'étanchéité bordant angulairement ladite rainure, lesdites premières lignes d'étanchéité étant séparées entre elles d'un angle passant par ladite rainure, supérieur à chacun des angles séparant les bords d'un même conduit, et inférieur à chacun des angles séparant les bords adjacents d'un conduit et de l'autre conduit,
- et une seconde ligne d'étanchéité, chaque seconde ligne d'étanchéité étant séparée d'une desdites premières lignes d'étanchéité d'un angle ne passant pas par ladite rainure, inférieur à chaque angle séparant le bord d'un conduit et le bord adjacent de l'autre conduit, et supérieur à chaque angle séparant les bords opposés d'un même conduit,
et en ce que l'angle séparant chaque première ligne d'étanchéité d'au moins une des secondes lignes d'étanchéité en passant par ladite rainure est supérieur à l'angle séparant les bords axialement opposés des conduits.
L'idée à la base de l'invention est de prévoir un joint d'étanchéité entre le piston et le corps, ce joint d'étanchéité ayant une forme particulière permettant de garantir une étanchéité efficace tout en limitant les frottements pour améliorer le rendement énergétique et augmenter la précision de débit du sous-ensemble oscillo-rotatif.
Le sous-ensemble oscillo-rotatif selon l'invention peut avantageusement présenter les particularités suivantes :
le piston comporte une gorge périphérique recevant le joint d'étanchéité, formée au moins d'une gorge annulaire recevant le tore d'étanchéité, d'une gorge demi-annulaire recevant le demi-tore d'étanchéité, et d'une gorge longitudinale reliant entre elles la gorge annulaire et la gorge demi-annulaire et recevant la languette d'étanchéité ;
- l'un au moins desdits tore d'étanchéité et gorge annulaire est prévu longitudinalement au-delà de ladite rainure par rapport à ladite chambre de travail et au-delà desdits conduits par rapport à ladite chambre de travail, en ce que l'un au moins desdites demi-tore d'étanchéité et gorge demi-annulaire est prévu longitudinalement au niveau de ladite extrémité de ladite rainure débouchant dans ladite chambre de travail et entre lesdits conduits et ladite chambre de travail ;
le piston comporte, sur sa périphérie, au moins une zone évidée fermée entourée de toute part par ledit joint d'étanchéité, ladite zone évidée étant prévue angulairement de sorte à être en regard d'un conduit lorsque ladite rainure est en regard d'un autre conduit, ladite gorge longitudinale étant formée de deux bras prévus chacun entre ladite rainure et ladite zone évidée, en ce que chaque bras reçoit l'une desdites languettes d'étanchéité de sorte à isoler fluidiquement ladite zone évidée de ladite rainure en toute position longitudinale et angulaire dudit piston dans ledit corps ;
la zone évidée s'étend sur un angle inférieur à chaque angle séparant les bords adjacents d'un conduit et de l'autre conduit ;
le piston comporte au moins un plot d'équilibrage prévu dans ladite rainure et s'étendant radialement de sorte que son sommet soit en appui contre ladite cavité tout en autorisant le passage fluidique sur ses cotés ;
il comporte au moins un premier et un second étage à chacun desquels correspond de manière distincte un ensemble de deux conduits, une chambre de travail, une rainure et un joint d'étanchéité.
il comporte au moins une came et un doigt de guidage, portés l'un par ledit piston, l'autre par ledit corps, et agencés pour coopérer réciproquement de sorte que la rotation dudit piston par rapport audit corps provoque :
sur une première portion angulaire, la translation axiale dans un premier sens dudit piston par rapport audit corps,
sur une seconde portion angulaire, l'immobilisation axiale dudit piston par rapport audit corps,
sur une troisième portion angulaire, la translation axiale dans un second sens dudit piston par rapport audit corps,
sur une quatrième portion angulaire, l'immobilisation axiale dudit piston par rapport audit corps,
lesdits conduits, ledit joint d'étanchéité et ladite rainure étant agencés pour que lesdits conduits soient obturés pendant lesdites seconde et quatrième portions angulaires.
L'invention s'étend à un dispositif de pompage oscillo-rotatif pour fluide, caractérisé en ce qu'il comporte des moyens d'entraînement et un sous- ensemble oscillo-rotatif pour pompage d'un fluide et des moyens de couplage mécanique amovibles pour raccorder mécaniquement lesdits moyens d'entraînement audit piston de manière démontable. Ainsi, pour des applications ou le contrôle microbiologique est important, la partie fluidique formée par le sous-ensemble oscillo-rotatif peut être facilement séparé des moyens d'entraînement pour être stérilisé et/ou changé.
Présentation sommaire des dessins
La présente invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée de deux modes de réalisation pris à titre d'exemples nullement limitatifs et illustrés par les dessins annexés, dans lesquels :
les figures 1 à 3 sont des vues frontales du piston portant le joint d'étanchéité du sous-ensemble oscillo-rotatif selon un premier mode de réalisation de l'invention, illustré selon trois orientations différentes ;- la figure 4 est une vue en perspective du joint d'étanchéité des figures 1 à 3 illustré seul ;
la figure 5 est une vue en perspective de l'extrémité du piston des figures 1 à 3 portant un joint d'étanchéité ;
les figures 6 à 1 1 sont des vues de face en transparence du sous- ensemble oscillo-rotatif selon le premier mode de réalisation de l'invention, illustré en six positions de fonctionnement distinctes lors d'un cycle de pompage (admission, commutation, refoulement, commutation) ;
la figure 12 est une vue schématique en coupe de dessus du piston et du corps du premier mode de réalisation de l'invention, illustrant les angles fonctionnels des lignes d'étanchéité du joint d'étanchéité par rapport au positionnement et au dimensionnement des conduits. Etant donné la symétrie, seul l'un de chacun de ces angles est représenté, les figures 13 et 14 sont respectivement une vue en perspective éclatée et une vue en perspective coupée d'un sous-ensemble oscillo-rotatif selon un second mode de réalisation de l'invention ; les figures 15 à 20 sont des vues en coupe du sous-ensemble oscillo- rotatif des figures 13 et 14, illustré en six positions de fonctionnement distinctes lors d'un cycle de pompage. Le doigt de guidage n'est pas représenté sur ces figures ;
- la figure 21 est une vue en perspective du corps du sous-ensemble oscillo-rotatif des figures 1 à 1 1 illustrant la position à 180° des embouts de raccordement ;
la figure 22 est un graphe simplifié illustrant l'évolution dans le temps de la pression (en ligne continue) dans la chambre de travail d'un dispositif oscillo-rotatif simple effet et le débit obtenu (en ligne de points) au cours de la rotation sur 1 tour complet du piston. Ce graphe n'illustre pas les phases de transition décrites plus loin ;
la figure 23 est un graphe simplifié illustrant l'évolution dans le temps de la pression (en lignes continue et pointillée) dans chacune des chambres de travail d'un dispositif oscillo-rotatif double effet et le débit obtenu (en ligne de points) au cours de la rotation sur 1 tour complet du piston. Ce graphe n'illustre pas les phases de transition décrites plus loin ;
la figure 24 est une vue en perspective du corps d'un sous-ensemble oscillo-rotatif dont les embouts sont parallèles entre eux ;
la figure 25 est une vue en coupe radiale selon un plan passant par les axes des conduits du corps du sous-ensemble oscillo-rotatif de la figure 24.
Sur les figures 13 à 20, les éléments analogues à ceux des figures précédentes y sont affectés des mêmes numéros de référence, augmentés de 100.
Description des modes de réalisation
Le sous-ensemble oscillo-rotatif pour pompage selon l'invention peut présenter une configuration simple-effet à étage unique, décrite ci-après en tant que premier mode de réalisation illustré par les figures 1 à 1 1 , et une configuration multi-effet à plusieurs étages, par exemple la configuration double-effet décrite plus loin en tant que second mode de réalisation illustré par les figures 12 à 19. En référence aux figures 6 à 1 1 , le sous-ensemble oscillo-rotatif 1 selon le premier mode de réalisation de l'invention comprend un corps 2 et un piston 3.
Comme détaillé sur la figure 7, le corps 2 est creux et formé de deux portions cylindriques 4, 5 de diamètres différents reliées entre elles par un épaulement 6. Le corps 2 est par exemple réalisé en matériau plastique ou en tout autre matériau adapté.
L'intérieur de la portion cylindrique 4 de grand diamètre forme un alésage 7 d'axe longitudinal A. L'extrémité libre de cette portion cylindrique 4 de grand diamètre est ouverte et destinée à recevoir l'engagement longitudinal du piston 3. L'autre extrémité est raccordée à la portion cylindrique de petit diamètre 5 par l'épaulement 6. La paroi de la portion cylindrique 4 de grand diamètre est traversée par un orifice 8 destiné à recevoir un doigt de guidage 9 radial disposé de sorte à dépasser dans l'alésage 7. Dans l'exemple illustré, le doigt de guidage 9 est une goupille. Le doigt de guidage 9 peut également être solidarisé au corps par collage ou par tout autre moyen adapté. Le doigt de guidage 9 présente par exemple une section cylindrique ou toute autre section adaptée.
L'intérieur de la portion cylindrique 5 de petit diamètre définit une cavité 10 d'axe longitudinal A et de diamètre inférieur à celui de l'alésage 7. L'extrémité libre de la portion cylindrique 5 de petit diamètre est fermée et forme le fond du corps 2. L'alésage 7 et la cavité 10 sont destinés à recevoir le piston 3 logé dans le corps 2. La paroi de la portion cylindrique 5 de petit diamètre est traversée par deux conduits 1 1 , 12 débouchant radialement dans la cavité 10. Ces conduits 1 1 , 12 ont par exemple une section circulaire et présentent un même diamètre et sont coaxiaux entre eux, diamétralement opposés l'un à l'autre et situés dans un même plan radial perpendiculaire à l'axe longitudinal A. Ainsi, dans ce mode de réalisation, les embouchures des conduits 1 1 , 12 dans la cavité 10 sont coaxiales entre elles, diamétralement opposées l'une à l'autre et situées dans un même plan radial. Tel qu'illustré en particulier par la figure 21 , le corps 2 comporte des embouts de raccordement 13, 14 entourant individuellement chacun des conduits 1 1 , 12 et aptes à être raccordés par exemple à un tuyau d'admission ou à un tuyau de refoulement ou à tout autre matériel de raccordement fluidique adapté. Ainsi, les embouts de raccordement 13, 14 sont décalés entre eux d'un angle de 180° . Comme décrit plus loin, selon la configurâion de fonctionnement choisie, chacun des conduits 1 1 , 12 peut indifféremment servir pour l'admission ou pour le refoulement du fluide.
Selon un autre mode de réalisation non représenté, les conduits peuvent être légèrement décalés longitudinalement l'un par rapport à l'autre.
Selon le mode de réalisation illustré par les figures 24 et 25, les embouchures des conduits peuvent être décalées l'une de l'autre d'un angle 180° tout en ayant des conduits 1 1 , 12 avec envoi permettant que les embouts présentent un angle différent de 180° . Dans cet exemple, les embouts de raccordement 13, 14 sont parallèles entre eux ce qui peut simplifier la configuration de raccordement fluidique. Sur le même principe, tout en ayant les embouchures des conduits décalées l'une de l'autre d'un angle 180° , on peut avoir des embouts de raccordement 13, 14 présentant entre eux tout autre angle adapté. Il en va de même pour des embouchures de conduits décalées d'un angle autre que 180 ° .
Selon un autre mode de réalisation, les conduits peuvent également être décalés l'un de l'autre d'un angle différent de 180
En référence en particulier aux figures 1 à 5, le piston 3 est formé de deux portions cylindriques 15, 16 de diamètres différents reliées entre elles par un épaulement 17. Le piston 3 est par exemple réalisé en matériau plastique ou en tout autre matériau adapté.
La portion cylindrique 16 de petit diamètre du piston 3 présente un diamètre extérieur inférieur au diamètre de la cavité 10 dans laquelle elle peut ainsi être logée. Dans l'exemple illustré, la portion cylindrique 16 de petit diamètre du piston 3 est réalisée en deux parties dont un axe 19, monobloc avec le reste du piston 3 et présentant une réduction de diamètre, et un manchon 20, rapporté sur la partie de diamètre réduit de l'axe 19, et dont le diamètre extérieur correspond au diamètre extérieur de l'axe 19. Cette portion cylindrique 16 de petit diamètre du piston 3 peut également être réalisée en une partie unique.
En référence à la figure 4, le manchon 20 comporte un évidement axial 21 , et est par exemple solidarisé à l'axe 19 par emmanchement en force, complété ou non par un collage ou par tout autre moyen adapté. Ce manchon 20 peut alternativement être réalisé par surmoulage sur l'axe 19. En référence en particulier aux figures 6 à 10, l'extrémité libre du manchon 20 définit, avec le fond du corps 2, une chambre de travail 31 destinée à recevoir le fluide.
Le manchon 20 comporte, sur sa périphérie, une rainure 22 s'étendant longitudinalement entre une extrémité fermée 23 orientée vers la portion cylindrique 15 de grand diamètre du piston 3 et une extrémité ouverte 24 débouchant dans la chambre de travail 31 . Dans l'exemple illustré, le fond de la rainure 22 présente un profil incurvé bombé parallèle à l'axe longitudinal A. Ce profil peut être différent, par exemple plat par l'intermédiaire d'un méplat, incurvé en creux, ou tout autre profil adapté. Dans l'exemple illustré, la rainure 22 est délimitée par des bords longitudinaux sensiblement parallèles à l'axe longitudinal A et par des bords transversaux en arc de cercle situés chacun dans un plan sensiblement perpendiculaire à l'axe longitudinal A. La rainure 22 présente ainsi globalement une forme de portion tubulaire. La rainure 22 peut également présenter la forme d'une ligne inclinée, d'une croix ou de toute autre forme adaptée au mouvement oscillo-rotatif du piston 3. Le manchon 20 comporte, un plot d'équilibrage 25 prévu dans la rainure 22, au niveau de son extrémité ouverte 24 et s'étendant radialement de sorte que son sommet soit en appui contre la cavité 10 tout en autorisant le passage du fluide sur ses cotés. Le plot d'équilibrage 25 est par exemple prévu au milieu de la rainure 22.
En référence en particulier à la figure 4, le manchon 20 est pourvu d'une gorge périphérique comportant une gorge annulaire 26, une gorge demi-annulaire 27 et deux gorges longitudinales 28 reliant entre elles la gorge annulaire 26 et la gorge demi-annulaire 27. Selon une variante de réalisation non représentée, le manchon comporte une gorge longitudinale unique.
La gorge annulaire 26 est creusée selon un plan perpendiculaire à l'axe longitudinal A, et prévue axialement au-delà de l'extrémité fermée 23 de la rainure 22 par rapport à l'extrémité ouverte 24 de la même rainure 22, et au- delà des conduit 1 1 , 12 par rapport à la chambre de travail 31 lorsque le piston 3 est dans le corps 2, même lorsque le piston 3 est dans sa position basse.
La gorge demi-annulaire 27 est creusée parallèlement à la gorge annulaire 26 selon un plan perpendiculaire à l'axe longitudinal A, et prévue axialement au niveau de l'extrémité ouverte 24 de la rainure 22. Ainsi, même lorsque le piston 3 est dans sa position haute dans le corps 2, la gorge demi- annulaire 27 est disposée axialement entre les conduits 1 1 , 12 et la chambre de travail 31 .
Dans l'exemple illustré, les gorges longitudinales 28 sont creusées parallèlement à l'axe longitudinal A et relient entre elles la gorge annulaire 26 et les extrémités de la gorge demi-annulaire 27. Ainsi, la rainure 22 est encadrée d'une part par les gorges longitudinales 28 et, d'autre part, par une partie de la gorge annulaire 26. Les gorges longitudinales 28 peuvent également avoir une largeur variable le long de l'axe longitudinal A et par exemple présenter une forme de sablier.
Le manchon 20 comporte également, sur sa périphérie, une zone évidée 29 fermée, angulairement opposée à la rainure 22. Chaque gorge longitudinale 28 est disposée entre la rainure 22 et la zone évidée 29. La zone évidée 29 est ainsi encadrée, d'une part par les gorges longitudinales 28 et, d'autre part, par la gorge demi-annulaire 27 et par une partie de la gorge annulaire 26. Cette zone évidée 29 permet de limiter la surface de piston 3 en contact avec la cavité 10 et donc de limiter les frottements. Ainsi, le déplacement oscillo-rotatif du piston 3 se fait avec un bon rendement énergétique.
L'extrémité de la portion cylindrique 16 de petit diamètre du piston 3 opposée à la chambre de travail 31 est raccordée à la portion cylindrique 15 de grand diamètre du même piston 3.
La portion cylindrique 15 de grand diamètre du piston 3 présente un diamètre extérieur inférieur au diamètre de l'alésage 7 dans lequel elle peut ainsi être logée. L'extrémité libre de la portion cylindrique 15 de grand diamètre présente une forme en creux 18 en forme de croix (visible sur la figure 5) destinée à recevoir un embout (non représenté) de forme complémentaire couplé aux moyens d'entraînement destinés à faire tourner le piston 3 par rapport au corps 2. La forme en creux 18 peut avoir tout autre profil adapté à un entraînement en rotation, elle peut également être prévue en relief. Toutefois, une forme en creux présente l'avantage d'être moins accessible, la position du piston 3 pouvant ainsi moins facilement être modifiée manuellement avant utilisation du sous-ensemble oscillo-rotatif 1 . Ainsi, lors dès la première utilisation, la position du piston est connue ce qui permet de garantir la phase de fonctionnement au démarrage (aspiration, commutation, refoulement) et donc de connaître avec précision la dose transférée. Dans le même objectif, la forme en creux peut être prévue pour nécessiter l'utilisation d'un outil spécifique pour être manœuvrée. La portion cylindrique 15 de grand diamètre du piston 3 comporte deux nervures annulaires 30, parallèles entre elles de sorte à définir entre elles une double came de guidage du doigt de guidage 9. Ainsi, l'écartement longitudinal entre les nervures annulaires 30, en tout point de la rotation au droit du doigt de guidage 9, est ajusté aux dimensions du doigt de guidage 9 pour autoriser ce guidage sans jeu ou sans jeu excessif. Le doigt de guidage 9 peut également être muni d'une portion tournante destinée à rouler sur les nervures annulaires 30 et ainsi réduire le frottement. Le rendement énergétique est ainsi optimisé. Les nervures annulaires 30 comportent chacune une première et une seconde portion inclinée SU , SI2, symétriques l'une de l'autre par rapport à un plan longitudinal médian. Les première et seconde portions inclinées SU , SI2 présentent ainsi des pentes inversée sur la périphérie du piston 3. La première et la seconde portion inclinée SU , SI2 sont séparées l'une de l'autre par des première et seconde portions planes SP1 , SP2 sensiblement parallèles entre elles et perpendiculaires à l'axe longitudinal A. Ainsi, par l'intermédiaire du doigt de guidage 9 et des nervures annulaires 30, la rotation dans un premier sens de rotation R du piston 3 par rapport au corps 2, provoque successivement la translation axiale du piston 3 par rapport au corps 2 dans un premier sens de translation T1 le long de la première portion inclinée SU , puis l'immobilité axiale du piston 3 par rapport au corps 2 le long de la première portion plane SP1 , puis la translation axiale du piston 3 par rapport au corps 2 dans un second sens de translation T2 le long de la seconde portion inclinée SI2, puis enfin l'immobilité axiale du piston 3 par rapport au corps 2 le long de la seconde portion plane SP2, et ainsi de suite. Le piston 3 oscille ainsi entre une position haute (Cf. figure 8) dans laquelle la chambre de travail 31 présente un volume maximal et une position basse dans laquelle la chambre de travail 31 présente un volume minimal. Entre ces deux positions du piston 3, la chambre de travail 31 admet puis refoule le fluide.
Le piston 3 porte un joint d'étanchéité logé dans la gorge périphérique, et réalisé dans un matériau ayant un module d'élasticité inférieure à ceux du piston 3 et du corps 2. Il est par exemple réalisé en élastomère et est dimensionné pour que, lorsque le piston 3 est dans la cavité 10, le joint d'étanchéité soit en contact avec la paroi intérieure de la cavité 10.
Ce joint d'étanchéité est formé d'un tore d'étanchéité 32 et d'un demi- tore d'étanchéité 33 coaxiaux et parallèles entre eux, reliés l'un à l'autre par deux languettes d'étanchéité 34. Lorsque le piston ne comporte qu'une seule gorge longitudinale, le joint d'étanchéité ne comporte qu'une unique languette d'étanchéité.
Dans l'exemple illustré, les languettes d'étanchéité 34 sont disposées à 180° l'une de l'autre. Toutefois, les languettes détanchéité 34 peuvent être disposées autrement à condition de respecter les contraintes géométriques détaillées plus loin. Les languettes d'étanchéité 34 peuvent avoir une largeur constante le long de l'axe longitudinal A ou une longueur variable pour s'adapter à une largeur variable de la rainure 22.
Le tore d'étanchéité 32 est logé dans la gorge annulaire 26, le demi- tore d'étanchéité 33 est logé dans la gorge demi-annulaire 27 et chaque languette d'étanchéité 34 est logée dans une des gorges longitudinales 28. Ainsi, en toute position angulaire et axiale du piston 3 dans le corps 2, le demi-tore d'étanchéité 32 est axialement situé au-delà des conduits 1 1 , 12 par rapport à la chambre de travail 31 , le demi-tore d'étanchéité 33 est axialement situé entre les conduits 1 1 , 12 et la chambre de travail 31 . Le joint d'étanchéité assure l'étanchéité autour de la zone évidée 29 et autour de l'ensemble rainure 22 et chambre de travail 31 en assurant la communication fluidique entre la rainure 22 et la chambre de travail 31 .
Chaque languette d'étanchéité 34 définit une première et une seconde ligne d'étanchéité L1 , L2 (visibles sur les figures 4 et 12) s'étendant longitudinalement et décalées angulairement l'une de l'autre. Tel qu'illustré par la figure 12, la rainure 22 est ainsi bordée angulairement par les premières lignes d'étanchéité L1 de chacune des deux languettes d'étanchéité 34, et la zone évidée 29 est bordée angulairement par les secondes lignes d'étanchéité L2 de chacune des deux languettes d'étanchéité 34. La zone évidée 29 permet de limiter la surface de joint d'étanchéité en contact avec la cavité 10 et donc de limiter les frottements. Dans le même objectif, selon une variante de réalisation non représentée, chaque languette d'étanchéité peut être évidée.
En référence en particulier à la figure 12, le corps 2, le piston 3 et le joint d'étanchéité sont agencés pour respecter les contraintes géométriques suivantes :
les premières lignes d'étanchéité L1 sont séparées entre elles d'un angle cc1 passant par la rainure 22, supérieur à chacun des angles βΐ séparant les bords d'un même conduit 1 1 , 12, et inférieur à chacun des angles β2 séparant les bords adjacents d'un conduit 1 1 et de l'autre conduit 12,
chaque seconde ligne d'étanchéité L2 est séparée d'une des premières lignes d'étanchéité L1 d'un angle cc2 ne passant pas par la rainure 22, inférieur à chaque angle β2 et supérieur à chaque angles βΐ,
l'angle cc3 séparant chaque première ligne d'étanchéité L1 d'au moins une des secondes lignes d'étanchéité L2 en passant par la rainure 22 est supérieur à l'angle β3 séparant les bords axialement opposés des conduits 1 1 , 12.
Le sous-ensemble oscillo-rotatif 1 simple effet est ainsi pourvu d'un étage unique comportant deux conduits 1 1 , 12, une chambre de travail 31 , une rainure 22 et une zone évidée 29. Ainsi, à une paire de conduits 1 1 , 12 dits d'admission et de refoulement, correspond une rainure 22 unique. Pour faire fonctionner le sous-ensemble oscillo-rotatif 1 simple effet, l'un des conduits 1 1 , 12 est raccordé à un tuyau d'alimentation en fluide, l'autre à un tuyau de refoulement de ce même fluide, et le piston 3 est mécaniquement raccordé, par l'intermédiaire de la forme en creux 18, à des moyens d'entraînement en rotation (non représentés) de type connu. Le fonctionnement du sous-ensemble oscillo-rotatif 1 simple-effet selon l'invention est décrit ci-après en référence aux figures 6 à 1 1 et au graphe de la figure 22.
En phase d'admission illustrée par les figures 6 et 7 et la « phase Adm » de la figure 22, le doigt de guidage 9 circule principalement le long de la première portion inclinée SU de la came qui transforme la rotation R du piston 3 en une première translation T1 selon un premier sens de déplacement du piston 3 par rapport au corps 2 qui fait passer le piston 3 d'une position basse (figure 1 1 ) dans laquelle la chambre de travail 31 présente un volume minimal, à une position haute (figure 7) dans laquelle la chambre de travail 31 présente un volume maximal. Pendant la phase d'admission, le piston 3 tourne par rapport au corps 2 avec la rainure 22 circulant devant l'orifice du conduit 1 1 dit d'admission. Ainsi le conduit 1 1 dit d'admission est en communication fluidique avec la chambre de travail 31 par l'intermédiaire de la rainure 22, et le fluide est aspiré, par l'augmentation du volume de la chambre de travail 31 provoquée par la première translation T1 et créant une dépression dans la chambre de travail 31 selon la flèche E. Pendant cette phase d'admission, la zone évidée 29 circule devant l'orifice du conduit 12 dit de refoulement. Le joint d'étanchéité assure l'étanchéité du conduit 12 dit de refoulement qui n'est pas en communication fluidique avec la chambre de travail 31 , ce qui est schématisé par une croix. Ainsi, pendant la phase d'admission par le conduit 1 1 dit d'admission, le fluide ne sort pas de la chambre de travail 31 par le conduit 12, dit de refoulement. La rotation R du piston 3 par rapport au corps 2 est prolongée jusqu'à atteindre une première phase de commutation. De manière avantageuse, en début de phase d'admission, pendant une phase de transition, le doigt de guidage 9 circule sur la fin de la seconde portion plane SP2. De même, en fin de phase d'admission, pendant une phase de transition, le doigt de guidage 9 circule sur le début de la première portion plane SP1 de la came. Ainsi les phases de transition, se passent à volume constant de la chambre de travail 31 . Par souci de simplification, ces phases de transition ne sont pas représentées sur le graphe de la figure 22.
Dans cette première phase de commutation illustrée par la figure 8 et l'une des « phase Comm » de la figure 22, le doigt de guidage 9 circule le long de la première portion plane SP1 de la came. La rotation R du piston 3 ne provoque alors pas sa translation et le piston 3 est axialement immobile dans sa position haute. Ainsi, le volume de la chambre de travail 31 ne varie pas et reste maximal. Lors de cette phase de commutation, l'orifice du conduit 1 1 dit d'admission et l'orifice du conduit 12 dit de refoulement sont chacun en regard d'une des languettes d'étanchéité 34 qui empêchent toute communication fluidique avec l'un ou l'autre des conduits 1 1 , 12 dit d'admission ou de refoulement. Ainsi la chambre de travail 31 est fluidiquement fermée de manière étanche. La rotation R du piston 3 par rapport au corps 2 est prolongée jusqu'à atteindre la phase de refoulement.
Dans cette phase de refoulement illustrée par les figures 9 et 10 et la « phase Ref » de la figure 22, le doigt de guidage 9 circule principalement le long de la seconde portion inclinée SI2 de la came qui transforme la rotation R du piston 3 en une second translation T2 selon un second sens de déplacement opposé au premier sens de déplacement lors de translation T1 . Ainsi, le piston 3 passe de sa position haute (figure 8) à sa position basse (figure 1 1 ). Pendant la phase de refoulement, le piston 3 tourne par rapport au corps 2 avec la rainure 22 circulant devant l'orifice du conduit 12 dit de refoulement. Ainsi le conduit 12 dit de refoulement est en communication fluidique avec la chambre de travail 31 par l'intermédiaire de la rainure 22, et le fluide est refoulé, par la réduction du volume de la chambre de travail 31 provoquée par la second translation T2 et créant une surpression selon la flèche S dans la chambre de travail 31 par le conduit 12 dit de refoulement. Pendant cette phase de refoulement, la zone évidée 29 circule devant l'orifice du conduit 1 1 dit d'admission. Le joint d'étanchéité assure l'étanchéité du conduit 1 1 dit d'admission qui n'est pas en communication fluidique avec la chambre de travail 31 . Ainsi, pendant la phase de refoulement par le conduit 12 dit de refoulement, le fluide n'entre pas dans la chambre de travail 31 par le conduit 1 1 dit d'admission. La rotation R du piston 3 par rapport au corps 2 est prolongée jusqu'à atteindre une seconde phase de commutation. De manière avantageuse, en début de refoulement, pendant une phase de transition, le doigt de guidage 9 circule sur la fin de la première portion plane SP1 . De même, en fin de phase de refoulement, pendant une phase de transition, le doigt de guidage 9 circule sur le début de la seconde portion plane SP2 de la came. Ainsi les phases de transition se passent à volume constant de la chambre de travail 31 . Par souci de simplification, ces phases de transition ne sont pas représentées sur le graphe de la figure 22.
Cette seconde phase de commutation, illustrée par la figure 1 1 et l'autre « phase Comm » de la figure 22, est sensiblement similaire à la première phase de commutation. Elle s'en différencie par le piston 3 en position basse, la chambre de travail 31 qui présente un volume minimal et la position des languettes d'étanchéité 34 par rapport aux conduits 1 1 , 12 dits d'admission et de refoulement, inversée par rapport à la première phase de commutation.
Le cycle oscillo-rotatif peut être répété. Il est bien entendu que, selon le sens de rotation du piston 3 par rapport au corps 2, le conduit dit d'admission peut correspondre au conduit de refoulement et inversement. Lors des déplacements du piston 3 dans la cavité 10, le contact entre le plot d'équilibrage 25 et la paroi de la cavité 10 empêche que le piston 3 ne s'incline par rapport à l'axe longitudinal A ce qui provoquerait une augmentation des frottements, l'apparition de fuites, voire même un blocage du piston 3 dans le corps 2.
En modifiant les profils des première et seconde portions inclinées SU , SI2 ainsi que le positionnement des premières et secondes lignes d'étanchéité L1 , L2, le ratio entre la phase d'admission et la phase de refoulement peut être ajusté. On peut ainsi allonger la durée de l'une ou l'autre de ces phases d'admission et de refoulement par rapport à l'autre. Le sous-ensemble oscillo-rotatif 101 selon le second mode de réalisation de l'invention est illustré par les figures 13 à 20 et présente une configuration double-effet. A cet effet, il comporte deux étages, un premier étage similaire à celui du sous-ensemble oscillo-rotatif 1 et un second étage comportant deux conduits 1 1 1 , 1 12, une chambre de travail 131 , une rainure 122, une zone évidée 129 tels que ceux du premier étage. Ainsi, à chaque paire de conduits 1 1 , 12 dits d'admission et de refoulement, correspond une rainure 22, 122 unique.
Dans l'exemple illustré, les conduits 1 1 , 1 1 1 dits d'admission sont superposés entre eux longitudinalement, les conduits 12, 1 12 dits d'admission sont superposés entre eux longitudinalement, les rainures 22, 122 sont situés à 180° l'une de l'aute et les zones évidées 29, 129 sont situés à 180° l'une de l'autre Les raccordements fluidiques par les conduits 1 1 , 1 1 1 dits d'admission et les conduits 12, 1 12 dits d'admission se font à 180° . Le corps 102 comporte une cavité 1 10 présentant longitudinalement une hauteur supérieure permettant de loger les deux étages. Le corps 102 comporte également un sillon annulaire 135, coplanaire à l'épaulement 106 séparant la cavité 1 10 et l'alésage 107, orienté vers l'intérieur du corps 102 et destiné à recevoir par exemple un joint d'étanchéité complémentaire 36 out tout autre élément d'étanchéité assurant l'étanchéité entre le piston 103 et le corps 102. Ainsi, tel qu'illustré par le graphe de la figure 23, lorsqu'un étage est en phase d'admission (« phase Adm ») avec la rainure 22, 122 en regard du conduit 1 1 , 1 1 1 dit d'admission, l'autre étage est en phase de refoulement (« phase Ref ») avec la rainure 22, 122 en regard du conduit 12, 1 12 dit de refoulement (figures 16, 17, 19 et 20). Comme pour le sous-ensemble oscillo-rotatif 1 , pendant les phases de commutation, les conduits 1 1 , 1 1 1 dits d'admission et les conduits 12, 1 12 dits de refoulement sont fermés de manière étanche (figures 15 et 18).
Selon une première configuration, les conduits 1 1 , 1 1 1 dits d'admission de chaque étage peuvent être reliés fluidiquement à une arrivée commune d'un même fluide et les conduits 12, 1 12 dits de refoulement de chaque étage peuvent être reliés flluidiquement à une sortie commune du même fluide.
Selon une seconde configuration, le sous-ensemble oscillo-rotatif double-effet peut avantageusement être utilisé pour réaliser des mélanges en utilisant un étage pour un premier fluide et un autre étage pour un second fluide, les conduits 12, 1 12 dits de refoulement de chaque étage étant par exemple raccordés à un même contenant destiné à recevoir le mélange obtenu. En modifiant le ratio entre les chambres de travail 31 , 131 et éventuellement les sections des conduits 1 1 , 1 1 1 , 12, 1 12, on peut faire varier le dosage du mélange obtenu.
Dans ces deux configurations, le débit du dispositif de pompage intégrant un tel sous-ensemble oscillo-rotatif 101 double-effet sera augmenté, avec une fréquence de pulsation deux fois supérieure, par rapport à un sous-ensemble oscillo-rotatif 1 simple-effet.
Selon une troisième configuration le conduit 12 dit de refoulement d'un étage peut être raccordé fluidiquement au conduit 1 1 , dit d'admission, de l'autre étage. Dans cette troisième configuration, le fluide aspiré passe successivement par les chambres de travail 31 , 131 . Il est possible de cumuler en cascade les pressions de refoulement générées par chaque étage.
Selon une quatrième configuration, les deux étages peuvent être identiques et simplement décalés l'un de l'autre longitudinalement. Ainsi, les deux phases d'admission des deux étages sont concomitantes entre elles, et les deux phases de refoulement des deux étages sont concomitantes entre elles. Dans ce cas, le débit du dispositif de pompage intégrant un tel sous- ensemble oscillo-rotatif 101 double-effet sera doublé avec une fréquence de pulsation identique par rapport à un sous-ensemble oscillo-rotatif 1 simple- effet.
Selon un autre mode de réalisation non représenté, chaque conduit dits d'admission est décalé angulairement du conduit dit d'admission correspondant d'un angle prédéterminé, les rainures sont décalées angulairement entre elles du même angle prédéterminé et les zones évidées sont également décalées angulairement du même angle prédéterminé. Les raccordements fluidiques par les conduits dits d'admission et les conduits dits d'admission se font dans des plans longitudinaux distincts angulairement décalés de l'angle prédéterminé. Cet angle peut être choisi pour faciliter l'organisation spatiale des raccordements fluidiques. Ce mode de réalisation peut être combiné avec les différentes configurations détaillées précédemment.
L'invention permet d'atteindre les objectifs précédemment mentionnés. En effet, le sous-ensemble oscillo-rotatif 1 , 101 selon l'invention est simple à fabriquer avec un nombre de pièces limité. Le joint d'étanchéité permet de limiter les contraintes géométriques à respecter et facilite la fabrication du sous-ensemble oscillo-rotatif 1 , 101 . Il est de plus facile à assembler et la zone évidée 29,129 permet d'améliorer son rendement énergétique.
Le sous-ensemble oscillo-rotatif 1 , 101 permet d'assurer un débit précis indépendant de l'utilisateur et/ou de la viscosité du fluide. Il peut être couplé à un capteur de position angulaire.
Par ailleurs, le sous-ensemble oscillo-rotatif 1 , 101 selon l'invention est réversible, par simple inversion du sens de rotation du piston 3, 103. Ainsi le conduit 1 1 , 1 1 1 dit d'admission devient conduit 12, 1 12 dit de refoulement et inversement. Le découplage mécanique entre le piston 3, 103 et les moyens d'entraînement permettent d'obtenir un sous-ensemble oscillo-rotatif jetable alors que la partie motrice est réutilisable. On assure ainsi, à moindre coût, la stérilité du sous-ensemble oscillo-rotatif 1 , 101 en le remplaçant entre deux utilisations. Ainsi, seule la partie fluidique du dispositif de pompage oscillo- rotatif est à renouveler, les parties motorisation et commande étant conservées entre deux usages. Le fait que les efforts axiaux soient transmis par la came, permet d'utiliser des moyens d'entraînement limités à la rotation, et des moyens de couplage mécanique entre le piston 3 et ces moyens d'entraînement limités à la simple transmission d'un couple. La came permet par ailleurs de s'assurer que la translation alternative du piston 3 est synchrone avec la rotation du même piston 3.
Le sous-ensemble oscillo-rotatif 1 , 101 selon l'invention interdit toute circulation fluidique avec les conduits 1 1 , 1 1 1 , 12, 1 12 dit d'admission et de refoulement pendant les phases de commutation, sans pour autant créer d'effet de surpression ou de dépression par blocage hydraulique pendant ces phases. Il permet de plus de limiter le volume mort. Le contact entre le joint d'étanchéité et le corps permet de caler angulairement le sous-ensemble oscillo-rotatif 1 , 101 en usine lors de son montage initial. Ce calage angulaire sera ainsi facilement conservé jusqu'à la mise en service du sous-ensemble oscillo-rotatif 1 , 101 dans le dispositif oscillo-rotatif. Il est néanmoins possible de prévoir un repère visuel de la position angulaire du piston 3, 103 par rapport au corps 2, 102 ou un capteur de toute technologie adaptée.
Il va de soi que la présente invention ne saurait être limitée à la description qui précède d'un de ses modes de réalisation, susceptibles de subir quelques modifications sans pour autant sortir du cadre de l'invention.

Claims

REVENDICATIONS
1 . Sous-ensemble oscillo-rotatif (1 ; 101 ) pour pompage volumétrique d'un fluide, comportant un corps (2 ; 102) creux définissant une cavité (10 ; 1 10) cylindrique d'axe longitudinal (A) et ayant une paroi qui est traversée par au moins deux conduits (1 1 , 12 ; 1 1 1 , 1 12) débouchant radialement dans ladite cavité (10 ; 1 10), un piston (3 ; 103) logé dans ladite cavité (10 ; 1 10) avec laquelle il définit une chambre de travail (31 ; 131 ) et comportant, sur sa surface cylindrique, une sorte de rainure longitudinale (22 ; 122) ou évidement débouchant longitudinalement dans ladite chambre de travail (31 ; 131 ), ledit piston (3 ; 103) étant muni d'un joint d'étanchéité (32, 33, 34) réalisé dans un matériau ayant un module d'élasticité inférieure à ceux dudit piston (3) et dudit corps (2) et porté par ledit piston (3 ; 103), longeant ladite rainure pour assurer l'étanchéité fluidique entre ledit piston (3 ; 103) et ladite cavité (10 ; 1 10), étant mobile angulairement pour mettre ladite chambre de travail (31 ; 131 ) en communication fluidique avec au moins l'un, puis aucun, puis au moins l'autre desdits conduits (1 1 , 12 ; 1 1 1 , 1 12), et alternativement en translation longitudinale de sorte à faire varier le volume de ladite chambre de travail (31 ; 131 ) et successivement aspirer puis refouler ledit fluide par l'un puis l'autre desdits conduits (1 1 , 12 ; 1 1 1 , 1 12), caractérisé en ce que le piston comporte une première extrémité axiale opposée à une seconde extrémité axiale, ladite seconde extrémité axiale étant en contact de la chambre de travail, ledit joint d'étanchéité se présente en plusieurs parties comprenant une première partie d'étanchéité en forme de tore qui s'étend autour de la surface cylindrique du piston du côté de sa première extrémité axiale, une seconde partie d'étanchéité en forme de demi tore qui s'étend autour de la surface cylindrique du piston du côté de sa deuxième extrémité axiale, le demi tore ayant deux extrémités espacées l'une de l'autre sur la périphérie cylindrique du piston, et une troisième partie d'étanchéité formée par deux languettes d'étanchéité qui s'étendent respectivement axialement sur la surface extérieure du piston entre une première extrémité du demi tore et le tore et une deuxième extrémité du demi tore et le tore,
en ce que les deux languettes sont angulairement distinctes l'une de l'autre et définissent chacune :
- une première ligne d'étanchéité (L1 ) bordant angulairement ladite rainure (22 ; 122), lesdites premières lignes d'étanchéité (L1 ) étant séparées entre elles d'un angle (cc1 ) passant par ladite rainure (22 ; 122), supérieur à chacun des angles (βΐ) séparant les bords d'un même conduit (1 1 , 12 ; 1 1 1 , 1 12), et inférieur à chacun des angles (β2) séparant les bords adjacents d'un conduit (1 1 ; 1 1 1 ) et de l'autre conduit (12 ; 1 12),
- et une seconde ligne d'étanchéité (L2), chaque seconde ligne d'étanchéité (L2) étant séparée d'une desdites premières lignes d'étanchéité (L1 ) d'un angle (cc2) ne passant pas par ladite rainure (22 ; 122), inférieur à chaque angle (β2) séparant le bord d'un conduit (1 1 ; 1 1 1 ) et le bord adjacent de l'autre conduit (12 ; 1 12), et supérieur à chaque angle (βΐ) séparant les bords opposés d'un même conduit (1 1 , 12 ; 1 1 1 , 1 12),
et en ce que l'angle (cc3) séparant chaque première ligne d'étanchéité (L1 ) d'au moins une des secondes lignes d'étanchéité (L2) en passant par ladite rainure (22 ; 122) est supérieur à l'angle (β3) séparant les bords axialement opposés des conduits (1 1 , 12 ; 1 1 1 , 1 12).
2. Sous-ensemble oscillo-rotatif (1 ; 101 ) selon la revendication 1 , caractérisé en ce que ledit piston (3 ; 103) comporte une gorge périphérique recevant ledit joint d'étanchéité (32, 33, 34), formée au moins d'une gorge annulaire (26) recevant ledit tore d'étanchéité (32), d'une gorge demi- annulaire (27) recevant ledit demi-tore d'étanchéité (33), et d'une gorge longitudinale (28) reliant entre elles ladite gorge annulaire (26) et ladite gorge demi-annulaire (27) et recevant ladite languette d'étanchéité (34).
3. Sous-ensemble oscillo-rotatif (1 ; 101 ) selon la revendication 2, caractérisé en ce que l'un au moins desdits tore d'étanchéité (32) et gorge annulaire (26) est prévu longitudinalement au-delà de ladite rainure (22 ; 122) par rapport à ladite chambre de travail (31 ; 131 ) et au-delà desdits conduits (1 1 , 12 ; 1 1 1 , 1 12) par rapport à ladite chambre de travail (31 ; 131 ), en ce que l'un au moins desdites demi-tore d'étanchéité (33) et gorge demi-annulaire (27) est prévu longitudinalement au niveau de ladite extrémité de ladite rainure (22 ; 122) débouchant dans ladite chambre de travail (31 ; 131 ) et entre lesdits conduits (1 1 , 12 ; 1 1 1 , 1 12) et ladite chambre de travail (31 ; 131 ).
4. Sous-ensemble oscillo-rotatif (1 ; 101 ) selon la revendication 2, caractérisé en ce que ledit piston (3 ; 103) comporte, sur sa périphérie, au moins une zone évidée (29 ;129) fermée entourée de toute part par ledit joint d'étanchéité (32, 33, 34), ladite zone évidée (29 ;129) étant prévue angulairement de sorte à être en regard d'un conduit (1 1 , 12 ; 1 1 1 , 1 12) lorsque ladite rainure (22 ; 122) est en regard d'un autre conduit (12, 1 1 ; 1 12, 1 1 1 ), ladite gorge longitudinale (28) étant formée de deux bras prévus chacun entre ladite rainure (22 ; 122) et ladite zone évidée (29 ;129), en ce que chaque bras reçoit l'une desdites languettes d'étanchéité (34) de sorte à isoler fluidiquement ladite zone évidée (29 ;129) de ladite rainure (22 ; 122) en toute position longitudinale et angulaire dudit piston (3 ; 103) dans ledit corps (2 ; 102).
5. Sous-ensemble oscillo-rotatif selon la revendication 4, caractérisé en ce que ladite zone évidée (29 ; 129) s'étend sur un angle inférieur à chaque angle (β2) séparant les bords adjacents d'un conduit (1 1 ; 1 1 1 ) et de l'autre conduit (12 ; 1 12).
6. Sous-ensemble oscillo-rotatif (1 ) selon la revendication 1 , caractérisé en ce que ledit piston (3) comporte au moins un plot d'équilibrage (25) prévu dans ladite rainure (22) et s'étendant radialement de sorte que son sommet soit en appui contre ladite cavité (10) tout en autorisant le passage fluidique sur ses cotés.
7. Sous-ensemble oscillo-rotatif (101 ) selon la revendication 1 , caractérisé en ce qu'il comporte au moins un premier et un second étage à chacun desquels correspond de manière distincte un ensemble de deux conduits (1 1 , 12, 1 1 1 , 1 12), une chambre de travail (31 ; 131 ), une rainure (22 ; 122) et un joint d'étanchéité (32, 33, 34).
8. Sous-ensemble oscillo-rotatif (1 ; 101 ) selon la revendication 1 , caractérisé en ce qu'il comporte au moins une came (30) et un doigt de guidage (9), portés l'un par ledit piston (3 ; 103), l'autre par ledit corps (2 ; 102), et agencés pour coopérer réciproquement de sorte que la rotation dudit piston (3 ; 103) par rapport audit corps (2 ; 102) provoque : sur une première portion angulaire, la translation axiale (T1 ) dans un premier sens dudit piston (3 ; 103) par rapport audit corps (2 ; 102), sur une seconde portion angulaire, l'immobilisation axiale dudit piston (3 ; 103) par rapport audit corps (2 ; 102),
- sur une troisième portion angulaire, la translation axiale dans un second sens dudit piston (3 ; 103) par rapport audit corps (2 ; 102),
sur une quatrième portion angulaire, l'immobilisation axiale dudit piston (3 ; 103) par rapport audit corps (2 ; 102),
lesdits conduits (1 1 , 12 ; 1 1 1 , 1 12), ledit joint d'étanchéité (32, 33, 34) et ladite rainure (22 ; 122) étant agencés pour que lesdits conduits (1 1 , 12 ; 1 1 1 , 1 12) soient obturés pendant lesdites seconde et quatrième portions angulaires.
9. Dispositif de pompage volumétrique oscillo-rotatif pour fluide, caractérisé en ce qu'il comporte des moyens d'entraînement et un sous- ensemble oscillo-rotatif (1 ; 101 ) pour pompage volumétrique d'un fluide selon l'une quelconque des revendications précédentes et des moyens de couplage mécanique amovibles pour raccorder mécaniquement lesdits moyens d'entraînement audit piston (3 ; 103) de manière démontable.
PCT/FR2014/051869 2013-07-22 2014-07-21 Sous-ensemble oscillo-rotatif et dispositif de pompage volumétrique oscillo-rotatif pour pompage volumétrique d'un fluide WO2015011384A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201480051185.7A CN105612346B (zh) 2013-07-22 2014-07-21 用于流体的体积泵送的旋转振荡子组件和旋转振荡体积泵送设备
JP2016528584A JP2016525647A (ja) 2013-07-22 2014-07-21 流体を容積式に圧送するための回転振動式副組立体および回転振動式容積式圧送装置
ES14749931.3T ES2644817T3 (es) 2013-07-22 2014-07-21 Subconjunto oscilorrotatorio y dispositivo de bombeo volumétrico oscilorrotatorio para bombeo volumétrico de un fluído
US14/423,935 US9726172B2 (en) 2013-07-22 2014-07-21 Rotary-oscillating subassembly and rotary-oscillating volumetric pumping device for volumetrically pumping a fluid
KR1020167002982A KR101882723B1 (ko) 2013-07-22 2014-07-21 유체의 용적형 펌핑을 위한 회전-진동 서브어셈블리 및 회전-진동 용적형 펌핑 장치
AU2014294854A AU2014294854B2 (en) 2013-07-22 2014-07-21 Rotary-oscillating subassembly and rotary-oscillating volumetric pumping device for volumetrically pumping a fluid
EP14749931.3A EP3025058B1 (fr) 2013-07-22 2014-07-21 Sous-ensemble oscillo-rotatif et dispositif de pompage volumétrique oscillo-rotatif pour pompage volumétrique d'un fluide
CA2919004A CA2919004C (fr) 2013-07-22 2014-07-21 Sous-ensemble oscillo-rotatif et dispositif de pompage volumetrique oscillo-rotatif pour pompage volumetrique d'un fluide
ZA2016/00463A ZA201600463B (en) 2013-07-22 2016-01-20 Rotary-oscillating subassembly and rotary-oscillating volumetric pumping device for volumetrically pumping a fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1357185A FR3008744A1 (fr) 2013-07-22 2013-07-22 Sous-ensemble oscillo-rotatif et dispositif de pompage volumetrique oscillo-rotatif pour pompage volumetrique d'un fluide
FR1357185 2013-07-22

Publications (1)

Publication Number Publication Date
WO2015011384A1 true WO2015011384A1 (fr) 2015-01-29

Family

ID=50023638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051869 WO2015011384A1 (fr) 2013-07-22 2014-07-21 Sous-ensemble oscillo-rotatif et dispositif de pompage volumétrique oscillo-rotatif pour pompage volumétrique d'un fluide

Country Status (11)

Country Link
US (1) US9726172B2 (fr)
EP (1) EP3025058B1 (fr)
JP (1) JP2016525647A (fr)
KR (1) KR101882723B1 (fr)
CN (1) CN105612346B (fr)
AU (1) AU2014294854B2 (fr)
CA (1) CA2919004C (fr)
ES (1) ES2644817T3 (fr)
FR (1) FR3008744A1 (fr)
WO (1) WO2015011384A1 (fr)
ZA (1) ZA201600463B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106865A1 (fr) * 2020-02-04 2021-08-06 Eveon Dispositif de distribution de liquide oscillo-rotatif avec ressort et sa méthode
US11771841B2 (en) 2020-12-23 2023-10-03 Tolmar International Limited Systems and methods for mixing syringe valve assemblies
USD1029245S1 (en) 2022-06-22 2024-05-28 Tolmar International Limited Syringe connector

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060724B2 (en) 2012-05-30 2015-06-23 Magnolia Medical Technologies, Inc. Fluid diversion mechanism for bodily-fluid sampling
US9022950B2 (en) 2012-05-30 2015-05-05 Magnolia Medical Technologies, Inc. Fluid diversion mechanism for bodily-fluid sampling
EP3318295B1 (fr) 2012-10-11 2021-04-14 Magnolia Medical Technologies, Inc. Système d'administration d'un fluide à un patient à contamination réduite
EP3884865B1 (fr) 2012-11-30 2024-01-31 Magnolia Medical Technologies, Inc. Mécanisme de diversion de fluide à base de seringue pour l'échantillonnage de fluides corporels
US10772548B2 (en) 2012-12-04 2020-09-15 Magnolia Medical Technologies, Inc. Sterile bodily-fluid collection device and methods
CN104391403A (zh) * 2014-12-05 2015-03-04 京东方科技集团股份有限公司 一种液晶泵及应用该液晶泵的滴下方法
EP3045724A1 (fr) * 2015-01-13 2016-07-20 Neoceram S.A. Pompe en céramique et carter correspondant
WO2017041087A1 (fr) 2015-09-03 2017-03-09 Bullington Gregory J Appareil et procédés de maintien de la stérilité d'un récipient d'échantillon
US11076787B2 (en) 2017-09-12 2021-08-03 Magnolia Medical Technologies, Inc. Fluid control devices and methods of using the same
JP6905442B2 (ja) * 2017-09-29 2021-07-21 株式会社イワキ プランジャポンプ
EP3721086A4 (fr) 2017-12-07 2021-11-10 Magnolia Medical Technologies, Inc. Dispositifs de régulation de fluide et leurs procédés d'utilisation
EP3499034B1 (fr) * 2017-12-12 2021-06-23 Sensile Medical AG Micropompe comportant un mécanisme à cames pour le déplacement axial d'un rotor
EP3502469A1 (fr) * 2017-12-20 2019-06-26 Sensile Medical AG Micropompe
US11174852B2 (en) 2018-07-20 2021-11-16 Becton, Dickinson And Company Reciprocating pump
CA3129065A1 (fr) 2019-02-08 2020-08-13 Magnolia Medical Technologies, Inc. Dispositifs et procedes pour la collecte et la distribution de fluide corporel
EP3938108B1 (fr) 2019-03-11 2023-08-02 Magnolia Medical Technologies, Inc. Dispositifs de régulation de fluide
EP3833413B1 (fr) * 2019-08-26 2022-02-02 Eli Lilly and Company Sous-systèmes de pompe à piston rotatif
CN112761839B (zh) * 2021-01-28 2021-11-23 长江武汉航道工程局 一种高压油泵钝角油槽的柱塞耦件
CN116123051B (zh) * 2022-12-29 2024-08-06 北京空天技术研究所 大流量双运动自由度水液压活塞泵
CN116292261B (zh) * 2022-12-29 2024-10-15 北京空天技术研究所 活塞结构及活塞泵
CN116123076A (zh) * 2022-12-29 2023-05-16 北京空天技术研究所 活塞结构及具有其的水液压活塞泵

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB122629A (en) * 1918-01-21 1919-07-24 Arthur Andersen Improvements in Valveless Pumps.
DE3630528A1 (de) * 1986-09-08 1988-03-10 Klaus Hirsch Kolbenpumpe

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168872A (en) 1963-01-23 1965-02-09 Harry E Pinkerton Positive displacement piston pump
JPS56146081A (en) * 1980-04-14 1981-11-13 Yoshinobu Sakashita Fluid pump
US4575317A (en) * 1985-06-26 1986-03-11 M&T Chemicals Inc. Constant clearance positive displacement piston pump
US5032067A (en) * 1988-05-31 1991-07-16 Textron Inc. Lubricating - oil pump control
FI94164C (fi) * 1991-03-21 1995-07-25 Borealis Polymers Oy Menetelmä juoksevaksi saatetun polymerointikatalyytin annostelemiseksi polymerointireaktoriin
US5158441A (en) * 1991-04-15 1992-10-27 Baxter International Inc. Proportioning pump
DE4409994A1 (de) * 1994-03-23 1995-09-28 Prominent Dosiertechnik Gmbh Verdrängerkolbenpumpe
US5494420A (en) * 1994-05-31 1996-02-27 Diba Industries, Inc. Rotary and reciprocating pump with self-aligning connection
JPH0996275A (ja) * 1995-10-03 1997-04-08 Kayseven Co Ltd ポンプ
US5601421A (en) * 1996-02-26 1997-02-11 Lee; W. Ken Valveless double acting positive displacement fluid transfer device
US5961303A (en) * 1997-11-18 1999-10-05 King; Kenyon M. Positive displacement dispensing pump system
US20080187449A1 (en) * 2007-02-02 2008-08-07 Tetra Laval Holdings & Finance Sa Pump system with integrated piston-valve actuation
CN201103536Y (zh) * 2007-09-25 2008-08-20 上海麦东电器有限公司 高压水泵压力机构
WO2011057345A1 (fr) * 2009-11-12 2011-05-19 Exodus R & D Pty Ltd Compresseur de fluide ou appareil à pompe
EP2547908B1 (fr) 2010-03-17 2019-10-16 Sensile Medical AG Micropompe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB122629A (en) * 1918-01-21 1919-07-24 Arthur Andersen Improvements in Valveless Pumps.
DE3630528A1 (de) * 1986-09-08 1988-03-10 Klaus Hirsch Kolbenpumpe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106865A1 (fr) * 2020-02-04 2021-08-06 Eveon Dispositif de distribution de liquide oscillo-rotatif avec ressort et sa méthode
WO2021156574A1 (fr) 2020-02-04 2021-08-12 Eveon Dispositif de distribution de liquide oscillo-rotatif avec ressort et sa méthode
US11771841B2 (en) 2020-12-23 2023-10-03 Tolmar International Limited Systems and methods for mixing syringe valve assemblies
US11931559B2 (en) 2020-12-23 2024-03-19 Tolmar International Limited Systems and methods for mixing syringe valve assemblies
USD1029245S1 (en) 2022-06-22 2024-05-28 Tolmar International Limited Syringe connector

Also Published As

Publication number Publication date
CN105612346A (zh) 2016-05-25
JP2016525647A (ja) 2016-08-25
ZA201600463B (en) 2017-05-31
US20150219099A1 (en) 2015-08-06
KR20160033131A (ko) 2016-03-25
AU2014294854A1 (en) 2016-02-11
CA2919004A1 (fr) 2015-01-29
CN105612346B (zh) 2017-06-13
AU2014294854B2 (en) 2017-09-28
ES2644817T3 (es) 2017-11-30
KR101882723B1 (ko) 2018-07-27
EP3025058A1 (fr) 2016-06-01
EP3025058B1 (fr) 2017-09-06
US9726172B2 (en) 2017-08-08
FR3008744A1 (fr) 2015-01-23
CA2919004C (fr) 2018-08-21

Similar Documents

Publication Publication Date Title
EP3025058B1 (fr) Sous-ensemble oscillo-rotatif et dispositif de pompage volumétrique oscillo-rotatif pour pompage volumétrique d'un fluide
EP3025056B1 (fr) Sous-ensemble oscillo-rotatif pour pompage d'un fluide et dispositif de pompage oscillo-rotatif
CA2578296C (fr) Pompe rotative a joint deforme elastiquement
CA2918995C (fr) Sous-ensemble oscillo-rotatif et dispositif pour multiplexage fluidique et pompage volumetrique co-integres d'un fluide
CA1317576C (fr) Pompe a vide integralement seche et etanche a mouvement rectiligne de compression alternative
FR2985790A1 (fr) Pompe microdoseuse et son procede de fabrication
EP2852760B1 (fr) Pompe rotative volumétrique sans pulsation
EP4100650A1 (fr) Dispositif de distribution de liquide oscillo-rotatif avec ressort et sa méthode
FR2908844A1 (fr) Pompe a palettes a deplacement variable
CA2876056A1 (fr) Distributeur fluidique et dispositif de reconstitution in situ et d'administration
EP0834016B1 (fr) Dispositif d'entrainement rotatif etanche a excentricite, notamment pour pompe volumetrique
EP3623618B1 (fr) Pompe avec système de va-et-vient à pignon et crémaillère et utilisation d'une telle pompe
WO2020208618A1 (fr) Pompe volumetrique avec mécanisme d'entraînement a axe unique
WO2020078825A1 (fr) Pompe de precision alternative a debit continu
FR3005106A1 (fr) Machine volumique rotative a trois pistons
FR2844593A1 (fr) Dispositif de dosage volumetrique differentiel
WO2014162083A1 (fr) Pompe hydraulique a double sens de rotation
WO2010122268A1 (fr) Pompe volumetrique comprenant un absorbeur de pression
FR2775501A1 (fr) Machine fluidique a piston
CH627823A5 (en) Rotary pump with differential pistons

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14423935

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749931

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014749931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014749931

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2919004

Country of ref document: CA

Ref document number: 2016528584

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167002982

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016001301

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014294854

Country of ref document: AU

Date of ref document: 20140721

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016001301

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160121