WO2020208618A1 - Pompe volumetrique avec mécanisme d'entraînement a axe unique - Google Patents

Pompe volumetrique avec mécanisme d'entraînement a axe unique Download PDF

Info

Publication number
WO2020208618A1
WO2020208618A1 PCT/IB2020/053835 IB2020053835W WO2020208618A1 WO 2020208618 A1 WO2020208618 A1 WO 2020208618A1 IB 2020053835 W IB2020053835 W IB 2020053835W WO 2020208618 A1 WO2020208618 A1 WO 2020208618A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
pump according
pump
switching element
valve switching
Prior art date
Application number
PCT/IB2020/053835
Other languages
English (en)
Inventor
Florent Junod
Thierry Navarro
Original Assignee
Swissinnov Product Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swissinnov Product Sarl filed Critical Swissinnov Product Sarl
Publication of WO2020208618A1 publication Critical patent/WO2020208618A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/02Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated
    • F04B7/0291Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated the distribution being realised by moving the cylinder itself, e.g. by sliding or swinging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/047Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being pin-and-slot mechanisms

Definitions

  • the invention relates to a positive displacement pump consisting of a single piston for the precise and variable flow delivery of liquid, medicament, food, detergent, cosmetic product, chemical compound or any other type of fluid, gel or fluid. gas.
  • a positive displacement pump consisting of a single piston for the precise and variable flow delivery of liquid, medicament, food, detergent, cosmetic product, chemical compound or any other type of fluid, gel or fluid. gas.
  • the rotor comprises two axes eccentric and offset by 90 ° with respect to each other, each respectively driving a guide carriage for the piston and a guide carriage for the switching element of valves.
  • the synchronization of the pumping movement and the inlet and outlet ports is ensured mechanically by a phase shift created by the relative position between the two carriages.
  • the first problem is the sealing of the switching element of the valves which is made by sliding joints on a flat surface and the tightening of which is dependent on the tolerances of the parts holding the switching element of the valves against the cylinder and which makes the pump unsuitable for high pumping pressures.
  • the second problem is that the valve switching element moves out and along the cylinder, and moves the inlet and outlet tubes of the pump.
  • the third problem encountered by this system arises from the fact that the drive of the piston and of the switching element of the valves are carried out by guide carriages requiring the use of expensive linear bearings which do not allow the production of a simple drive mechanism.
  • the present invention relates to a high-performance pump composed of a reduced number of parts at very low production cost for pumping and dosing liquids, viscous products or gases with variable flow rates.
  • This invention solves the problems explained above, by combining the movement of the piston and the cylinder directly by a single drive shaft connected to the rotor of the pump, preferably without a guide carriage.
  • the valve switching element is preferably positioned in a preferably cylindrical housing located at the end of the cylinder block and perpendicular to the axis of movement of the piston in the cylinder, thus making it possible to use simple circular seals and / or standards thus easily ensuring better sealing, less sensitivity to manufacturing tolerances and greater resistance to high pumping pressures.
  • the rotation of the drive shaft simultaneously creates a linear movement of the piston in the cylinder ensuring the pumping of the fluid and a perpendicular movement of the cylinder block relative to the switching element of the valves so as to allow the entry of the valve alternately.
  • the production of the pump head is extremely economical because the latter consists of a piston, a cylinder block, a valve switching element and a few gaskets, preferably Orings, ensuring the seal.
  • FIG. 1 is a view of the interchangeable fluidic module and of the drive mechanism decoupled.
  • Figure 2 is a view of the interchangeable fluidics module and the coupled drive mechanism
  • FIG. 3 is an overview of the pump
  • FIG. 4 is an exploded view of the interchangeable fluidic module.
  • Figure 5 is a top view of the drive mechanism.
  • Figure 6 is a side view of the drive mechanism.
  • Figure 7 is sectional view along line A-A of Figure 6 when the pump is at top dead center
  • FIG. 8 is a section along line AA of Figure 6 when the pump sucks the fluid
  • Figure 9 is sectional view along line AA of Figure 6 when the pump is at bottom dead center
  • Figure 10 is a sectional view along line A-A of Figure 6 as the pump expels the fluid.
  • FIG. 11 is a side view of a variant of the pump.
  • Figure 12 is a sectional view along the line A-A of Figure 11.
  • Figure 13 is a top view of the drive mechanism of the variant of the pump.
  • Figure 14 is a top view of the variant of the pump.
  • FIG. 15 is a sectional view along line B-B of Figure 14.
  • Figure 16 is a sectional view along the line C-C of Figure 14.
  • Figure 17 is a perspective view of a variant of the pump with piston outside the cylinder.
  • Figure 18 is a front view of the cylinder of the variant of the pump of Figure 17 - Figure 19 is a perspective view from below of a variant of the pump comprising pressure sensors
  • Figure 20 is a bottom view of the variant of the pump according to Figure 19
  • Figure 21 is a sectional view along the line B-B of Figure 20.
  • the interchangeable fluidic module (1) consists of a cylinder block (6), a piston (7) and a valve switching element (8) preferably of cylindrical shape and positioned in a housing (28) located at the end of the cylinder block (6), preferably perpendicular to the axis of the piston (7).
  • the switching element of the valves (8) comprises an inlet port (10) and an outlet port (11) each preferably made by an orifice preferably in opposition and in the axis of the cylinder forming the switching element of the valves.
  • valves (8) and in connection respectively with the chamber switching ports (12,12 ') preferably placed in the central part of the valve switching element (8) and perpendicular to its axis.
  • Circular grooves (13,13 ') positioned respectively at the chamber ports (12,12') provide the connection between the two respective holes of the chamber ports (12,12 ') on either side of the valve switching element.
  • Seals 18, 18 ', 18 ”, 18”' are placed parallel to and on either side of the circular grooves (13,13 ') so as to isolate the chamber ports (12 , 12 ') between them and from the outside.
  • Seals (17,17 '), preferably in the form of Orings, are placed at the ends of the piston in order to ensure the sealing of the pumping chamber, the guiding of the piston and the insulation with the outside.
  • the piston (7) comprises an opening (9), preferably placed perpendicular to its axis intended to receive the drive shaft (4) preferably provided with a bearing, not shown, for the pump, located eccentrically on the rotor ( 5) of the pump preferably driven by a motor (3) mounted on a drive support (20).
  • the interchangeable fluidic module (1) is housed on the drive support (20) and is preferably locked by a retaining element (21).
  • Figures 7 to 10 show the pumping steps during a full rotation of the rotor (5).
  • the piston (7) is in the top dead center position and the cylinder port (15) is positioned between the gaskets (18 ', 18 ”- figure 9) so as to be isolated from the inlet (10) and outlet (11) ports.
  • the drive shaft (4) follows the rotation of the rotor (5) which simultaneously moves the piston (7) towards its bottom dead center and the cylinder block (6) laterally along the 'valve switching element (8).
  • the cylinder port (15) composed of one or more contiguous orifices is then connected with the chamber port (12) connected to the inlet port (10) allowing fluid to be drawn into the chamber. pumping (16).
  • the piston is in the bottom dead center position and the cylinder port (15) is positioned again between the seals (18 ', 18 ”) so as to be isolated from the inlet ports (10 ) and output (11).
  • the drive axis (4) follows the rotation of the rotor (5) which simultaneously moves the piston (7) towards its top dead center and the cylinder block (6) laterally along the 'valve switching element (8).
  • the port of the cylinder (15) is then connected with the chamber port (12 ') connected to the outlet port (11) allowing the fluid to be expelled into the pumping chamber (16).
  • Figures 11 to 16 illustrate a variant of the pump in which the movement of the piston (7) and that of the cylinder block (6) are mechanically decoupled by the addition of a drive element (30) placed on the rotor ( 5) next to the drive shaft (4).
  • the principle of operation consists in moving the cylinder block (6) laterally along the switching element of the valves when the piston (7) is at top dead center and bottom dead center without the latter moving up to that the cylinder port (15) is positioned in conjunction with the chamber ports (12, 12 ').
  • Angular movement of the rotor (5) between the two contact positions of the drive shaft (4) in the opening (9 ') is calculated so as to correspond to the displacement of the cylinder block (6) obtained by the element d
  • the drive (30) in contact with the cylinder block (6) allowing the latter to slide along the switching element of the valves (8) without movement of the piston (7) as previously described.
  • the opening (9 ') but also the opening (9) optionally have a curved profile (19) allowing the piston (7) to fit easily on the drive shaft (4) and to slightly pivot axially inside the cylinder block (6) during the rotation of the drive shaft (4), thus avoiding any blockage of the pump.
  • the rotation of the rotor (5) in the opposite direction allows to obtain a reverse pumping sequence thus making the pump completely reversible.
  • the piston (107) and the cylinder block (106) preferably have a section (126) of oblong shape making it possible to increase the pumping volume of the pump while maintaining a small footprint, which is particularly useful for applications requiring low noise and large pumping volume such as in medical devices.
  • the cylinder block (206) preferably comprises a guide opening (230) having a "double oblong" shape making it possible to reduce the movements of the cylinder for the switching displacement of the valves.
  • the valve switching element (208) preferably includes apertures (294,295) on each side respectively so as to connect with the inlet and outlet ports (210,211) through channels (300,301). Each opening (294,295) is covered by a flexible membrane (290,291) so as to close the openings (294,295).
  • the air contained in the channels (300,301) and the openings (294,295) transmits the pressure variations of the fluid through the membranes (290,291) which thus make it possible in turn to transmit the pressure variations to sensors placed in opposition to the channels (300,301). It is then possible to measure the pressure in the pump without direct contact with the fluid, which is particularly useful, for example in medical pumps, in order to detect any occlusion or leakage.
  • the piston (7, 107) may be of oval, oblong, elliptical, rectangular or square section with or without spokes so as to reduce the size of the pump - the switching element of the valves (8 , 108, 208) can be in the form of a drawer of oval, oblong, elliptical, rectangular or square cross section with or without radii, additional sealing elements can be added to the ends of the openings in order to confine the interior of the pump and avoid contamination by particles, viruses, bacteria or any type of undesirable germ that may come into contact with the fluid.
  • the opening (9) or (9 ') can be placed behind the two seals (17) and (17').
  • the sealing between the moving parts is preferably achieved by means of elastomers, O-rings, shaped gaskets, overmolded gaskets or any other sealing element.
  • the elements constituting the interchangeable fluidic module (1) are preferably made of single-use plastic, preferably by injection or by machining.
  • the pump can be sterilized for dispensing food, medication or body fluids, for example. The choice of materials is not limited to plastics, however.
  • the invention can be integrated in the form of a pump in devices intended for the production of chemical, pharmaceutical, petroleum or any other kind of fluid. It can also be integrated into medical devices intended to inject or draw fluids into the body. These devices can combine several pumps in parallel or in series with external elements such as valves, connectors or any other components making it possible to achieve multiple fluidic circuits.
  • the invention lends itself particularly well to an operation requiring the diffusion or mixing of fluids precisely, under pressure and economically. It can also be used in systems requiring dynamic flow control manually or automatically such as medical pumps / injectors and dosing / filling systems.
  • the pump is also suitable for use in combination with an integrated reservoir allowing the distribution of fluid simply by actuation with a manual or automatic pusher element intended, for example in the food industry, for dosing mustard, ketchup, mayonnaise, etc. or in the sanitary facilities for the dosage of soap, detergent, shampoo, etc.
  • a manual or automatic pusher element intended, for example in the food industry, for dosing mustard, ketchup, mayonnaise, etc. or in the sanitary facilities for the dosage of soap, detergent, shampoo, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Une pompe avec préférablement un module fluidique interchangeable comprenant un piston placé dans une chambre de pompage située dans un bloc-cylindre recevant un élément de commutation de valves comprenant un port d'entrée et un port de sortie par lesquels le fluide est respectivement aspiré et puis expulsé lors de la rotation d'un axe entraînement actionnant simultanément le piston et le bloc-cylindre perpendiculairement à l'axe du piston le long de l'élément de commutation des valves.

Description

POMPE VOLUMETRIQUE AVEC MÉCANISME D'ENTRAÎNEMENT A AXE UNIQUE
L’invention concerne une pompe volumétrique constituée d’un seul piston pour la distribution précise et à débit variable de liquide, de médicament, d’aliment, de détergent, de produit cosmétique, de composé chimique ou tout autre type de fluide, gel ou gaz. L’art antérieur
Il existe différentes pompes à piston unique comme décrit dans le brevet PCT/IB2008/054529 dont le principe de fonctionnement consiste à entraîner un piston et un élément de commutation de valves synchronisés mécaniquement et entraîné par l’intermédiaire d’un seul rotor.
Dans le brevet PCT/IB2013/059393, le rotor comprend deux axes excentrés et décalé de 90° l’un par rapport à l’autre entraînant chacun respectivement un chariot de guidage du piston et un chariot de guidage de l’élément de commutation de valves. La synchronisation du mouvement de pompage et des ports d’entrée et sortie est assurée mécaniquement par déphasage créé par la position relative entre les deux chariots.
Le premier problème est l’étanchéité de l’élément de commutation des valves qui se fait par des joints coulissant sur une surface plan et dont le serrage est dépendant des tolérances des pièces de maintien de l’élément de commutation des valves contre le cylindre et qui rend la pompe peu adaptée aux fortes pressions de pompage.
Le second problème réside du fait que l’élément de commutation de valves se déplace à l’extérieur et le long du cylindre, et fait bouger les tubes d’entrée et sortie de la pompe. Le troisième problème rencontré par ce système provient du fait l’entraînement du piston et de l’élément de commutation des valves sont réalisés par des chariots de guidage nécessitant l’utilisation de roulements linéaires onéreux et ne permettant pas la production d’un mécanisme d’entraînement simple.
Description de l’invention
La présente invention concerne une pompe performante composée d’un nombre réduit de pièces à très faible coût de production pour le pompage et le dosage de liquides, produits visqueux ou gaz à débit variable.
Cette invention résout les problèmes exposés précédemment, en combinant le mouvement du piston et du cylindre de manière directe par un axe d’entraînement unique relié au rotor de la pompe préférentiellement sans chariot de guidage. L’élément de commutation des valves, est préférablement positionné dans un logement préférablement cylindrique situé à l’extrémité du bloc-cylindre et perpendiculaire à l’axe de déplacement du piston dans le cylindre permettant ainsi d’utiliser des joints circulaires simples et/ou standards assurant ainsi aisément une meilleure étanchéité, une sensibilité moindre aux tolérances de fabrication et une plus forte résistance aux pressions de pompage élevées. La rotation de l’axe d’entraînement crée simultanément un mouvement linéaire du piston dans le cylindre assurant le pompage du fluide et un déplacement perpendiculaire du bloc-cylindre relativement à l’élément de commutation des valves de manière à permettre alternativement l’entrée du fluide par le port d’entrée et son expulsion par le port de sortie qui restent fixes évitant ainsi le mouvement des tubes d’entrée et sortie de la pompe. Tous les mouvements du mécanisme d’entraînement sont réalisés par des éléments standards de guidage robustes, et précis, assurant un guidage du piston et du cylindre de manière fiable et pouvant supporter de très fortes pressions dans la pompe. Il est ainsi possible de réaliser une pompe à débit variable, à faible coût, très précise, durable et adaptée aux applications nécessitant un entraînement et un assemblage simplifiés.
La production de la tête de pompe est extrêmement économique car cette dernière comprend un piston, un bloc cylindre, un élément de commutation de valves et quelques joints, préférablement des Orings, assurant l’étanchéité.
Description des dessins
La présente invention sera mieux comprise à la lecture de la description des exemples donnés, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels : - La figure 1 est une vue du module fluidique interchangeable et du mécanisme d’entraînement découplé.
La figure 2 est une vue du module fluidique interchangeable et du mécanisme d’entraînement couplé
La figure 3 est une vue d’ensemble de la pompe
- La figure 4 est une vue éclatée du module fluidique interchangeable.
La figure 5 est une vue de dessus du mécanisme d’entraînement.
La figure 6 est une vue de côté du mécanisme d’entraînement.
La figure 7 est vue en coupe selon la ligne A-A de la figure 6 lorsque la pompe est au point mort haut
- La figure 8 est une en coupe selon la ligne A-A de la figure 6 lorsque la pompe aspire le fluide La figure 9 est vue en coupe selon la ligne A-A de la figure 6 lorsque la pompe est au point mort bas
La figure 10 est une en coupe selon la ligne A-A de la figure 6 lorsque la pompe expulse le fluide.
- La figure 11 est une vue de côté d’une variante de la pompe.
La figure 12 est une vue en coupe selon la ligne A-A de la figure 11.
La figure 13 est une vue de dessus du mécanisme d’entraînement de la variante de la pompe.
La figure 14 est une vue de dessus de la variante de la pompe.
- La figure 15 est une vue en coupe selon la ligne B-B de la figure 14.
La figure 16 est une vue en coupe selon la ligne C-C de la figure 14.
La figure 17 est une vue en perspective d’une variante de la pompe avec piston hors du cylindre.
La figure 18 est une vue de face du cylindre de la variante de la pompe de la figure 17 - La figure 19 est une vue en perspective de dessous d’une variante de la pompe comprenant des capteurs de pression
La figure 20 est une vue de dessous de la variante de la pompe selon la figure 19
La figure 21 est une vue en coupe selon la ligne B-B de la figure 20.
Selon les figures 1 à 4, le module fluidique interchangeable (1) se compose d’un bloc-cylindre (6), d’un piston (7) et d’un élément de commutation des valves (8) préférablement de forme cylindrique et positionné dans un logement (28) situé à l’extrémité du bloc-cylindre (6), préférablement perpendiculaire à l’axe du piston (7). L’élément de commutation des valves (8) comprend un port d’entrée (10) et un port de sortie (11) préférablement réalisé chacun par un orifice préférentiellement en opposition et dans l’axe du cylindre formant l’élément de commutation des valves (8) et en liaison respectivement avec les ports de commutations de chambre (12,12’) placés préférablement dans la partie centrale de l’élément de commutation des valves (8) et perpendiculairement à son axe. Des rainures circulaires (13,13’) positionnées respectivement au niveau des ports de chambre (12,12’) assurent la liaison entre les deux trous respectifs des ports de chambre (12,12’) de part et d’autre de l’élément de commutation des valves.
Des joints d’étanchéité 18, 18’, 18”, 18”’, préférablement sous la forme d’Orings, sont placés parallèlement et de chaque côté des rainures circulaires (13,13’) de manière isoler les ports de chambre (12,12’) entre eux et de l’extérieur.
Des joint d’étanchéité (17,17’), préférablement sous la forme d’Orings, sont placés aux extrémités du piston afin d’assurer l’étanchéité de la chambre de pompage, le guidage du piston et l’isolation avec l’extérieur. Le piston (7) comprend une ouverture (9), préférablement placée perpendiculairement à son axe destinée à recevoir l’axe d’entraînement (4) muni préférentiellement d’un palier, non illustré, de la pompe, situé excentriquement sur le rotor (5) de la pompe préférablement actionné par un moteur (3) monté sur à un support d’entraînement (20).
Selon la figure 3, le module fluidique interchangeable (1) vient se loger sur le support d’entraînement (20) et est préférablement verrouillé par un élément de maintien (21).
Les figures 7 à 10 montrent les étapes de pompage durant une rotation complète du rotor (5). Sur la figure 7, le piston (7) est en position point mort haut et le port du cylindre (15) est positionné entre les joints d’étanchéité (18’, 18” - figure 9) de manière à être isolé des ports d’entrée (10) et de sortie (11). Sur la figure 8, l’axe d’entraînement (4) suit la rotation du rotor (5) qui déplace simultanément le piston (7) en direction de son point mort bas et le bloc-cylindre (6) latéralement le long de l’élément de commutation des valves (8). Le port du cylindre (15) composé d’un ou plusieurs orifices contigu(s) est alors en liaison avec le port de chambre (12) relié au port d’entrée (10) permettant au fluide d’être aspiré dans la chambre de pompage (16). Sur la figure 9, le piston est en position point mort bas et le port du cylindre (15) est positionné à nouveau entre les joints d’étanchéité (18’, 18”) de manière à être isolé des ports d’entrée (10) et de sortie (11). Sur la figure 10, l’axe d’entraînement (4) suit la rotation du rotor (5) qui déplace simultanément le piston (7) en direction de son point mort haut et le bloc-cylindre (6) latéralement le long de l’élément de commutation des valves (8). Le port du cylindre (15) est alors en liaison avec le port de chambre (12’) relié au port de sortie (11) permettant au fluide d’être expulsé dans la chambre de pompage (16).
Les figures 11 à 16 illustrent une variante de la pompe dont le mouvement du piston (7) et celui du bloc-cylindre (6) sont découplé mécaniquement par l’ajout d’un élément d’entraînement (30) placé sur le rotor (5) à côté de l’axe d’entraînement (4). Le principe de fonctionnement consiste à déplacer latéralement le bloc-cylindre (6) le long de l’élément de commutation des valves lorsque le piston (7) se trouve au point mort haut et point mort bas sans que ce dernier ne bouge jusqu’à ce que le port du cylindre (15) vienne se positionner en liaison avec les ports de chambre (12, 12’). Pour cela, l’ouverture (9’) située dans le piston (7), de forme oblongue d’un diamètre supérieur au diamètre de l’axe d’entraînement (4), permettant ainsi à l’axe d’entraînement (4) de se déplacer dans l’ouverture (9’) sans entraîner le piston jusqu’à ce que l’axe d’entraînement (4) vienne toucher la face opposée de l’ouverture de forme oblongue (9’). Le mouvement angulaire du rotor (5) entre les deux positions de contact de l’axe d’entraînement (4) dans l’ouverture (9’) est calculé de manière à correspondre au déplacement du bloc-cylindre (6) obtenu par l’élément d’entraînement (30) en contact avec bloc-cylindre (6) permettant à ce dernier de coulisser le long de l’élément de commutation des valves (8) sans mouvement du piston (7) comme précédemment décrit.
Selon la figure 16, l’ouverture (9’) mais également l’ouverture (9) ont optionnellement un profil (19) courbé permettant au piston (7) se loger facilement sur l’axe d’entraînement (4) et de légèrement pivoter axial ement à l’intérieur du bloc-cylindre (6) durant la rotation de l’axe d’entraînement (4), évitant ainsi tout blocage de la pompe. La rotation du rotor (5) en sens inverse permet d’obtenir une séquence de pompage inverse rendant ainsi la pompe complètement réversible.
Selon les figures 17 et 18, le piston (107) et le bloc-cylindre (106) ont préférablement une section (126) de forme oblongue permettant d’augmenter le volume de pompage de la pompe tout en maintenant un encombrement réduit, ce qui est particulièrement utile pour des applications nécessitant un faible bruit et grand volume de pompage comme par exemple dans des appareils médicaux.
Selon les figures 19 à 21, le bloc-cylindre (206) comprend préférablement une ouverture de guidage (230) ayant une forme en « double oblong » permettant de réduire les mouvements du cylindre pour le déplacement de commutation des valves. L’élément de commutation des valves (208) comprend préférablement des ouvertures (294,295) respectivement de chaque côté de manière à être en lien avec les ports d’entrée et sortie (210,211) par le biais de canaux (300,301). Chaque ouverture (294,295) est recouverte par une membrane (290,291) flexible de manière à fermer les ouvertures (294,295). L’air contenu dans les canaux (300,301) et les ouvertures (294,295) transmet les variations de pression du fluide par l’intermédiaire des membranes (290,291) qui permettent ainsi de transmettre à leur tour les variations de pression à des capteurs placés en opposition aux canaux (300,301). Il est alors possible de mesurer la pression dans la pompe sans contact direct avec le fluide, ce qui s’avère particulièrement utile comme par exemple dans les pompes médicales afin de détecter d’éventuelles occlusion ou fuite.
Dans des variantes non illustrée, le piston (7, 107) peut être de section ovale, oblongue, elliptique, rectangulaire ou carrée avec ou sans rayons de manière à réduire l’encombrement de la pompe - l’élément de commutation des valves (8, 108, 208) peut être sous forme d’un tiroir de section ovale, oblongue, elliptique, rectangulaire ou carrée avec ou sans rayons des éléments d’étanchéité supplémentaires peuvent être ajoutés aux extrémités des ouvertures afin de confiner l’intérieur de la pompe et éviter des contaminations par des particules, virus, bactéries ou tout type de germes indésirables pouvant entrer en contact avec le fluide.
L’ouverture (9) ou (9’) peut être placée derrière les deux joints d’étanchéité (17) et (17’). L’étanchéité entre les parties mobiles est préférablement réalisée grâce à des élastomères, O- rings, joints de forme, joints surmoulés ou tout autre élément d’étanchéité. Toutefois, il est possible de réaliser la pompe sans joints d’étanchéité préférentiellement par ajustement entre pièces. Les éléments constituant le module fluidique interchangeable (1) sont préférablement réalisés en plastique à usage unique, préférentiellement par injection ou par usinage. La pompe peut être stérilisée pour la distribution d’aliment, médicament ou liquides corporelles par exemple. Le choix des matériaux n’est cependant pas limité aux plastiques.
L’invention peut être intégrée sous forme de pompe dans des appareils destinés à la production de produit chimique, pharmaceutique, pétrolier ou de toute autre sorte de fluide. Elle peut également être intégrée dans les dispositifs médicaux destinés à injecter ou aspirer des fluides dans le/du corps. Ces dispositifs peuvent combiner plusieurs pompes en parallèle ou en série avec des éléments externes tels que des valves, connecteurs ou tout autres composants permettant de réaliser des circuits fluidiques multiples. L’invention se prête particulièrement bien à une exploitation nécessitant la diffusion ou le mélange de fluides de manière précise, sous pression et de manière économique. Elle peut également être utilisée dans des systèmes nécessitant un contrôle dynamique du débit de manière manuelle ou automatique tel que les pompes/injecteurs médicaux et systèmes de dosage/remplissage.
La pompe se prête également à un usage en combinaison avec un réservoir intégré permettant la distribution de fluide simplement par actionnement avec un élément poussoir manuel ou automatique destiné comme par exemple dans l’alimentaire au dosage de moutarde, ketchup, mayonnaise, etc. ou dans le sanitaire pour le dosage de savon, détergent, shampoing, etc. Bien que l’invention soit décrite selon un mode de réalisation, il existe d’autres variantes, comme par exemple avec plusieurs chambres de pompage, qui ne sont pas présentées. La portée de l’invention n’est donc pas limitée à ce mode de réalisation décrit précédemment.

Claims

Revendications
1. Une pompe avec préférablement un module fluidique interchangeable (1) comprenant au moins un piston (7) placé dans au moins une chambre de pompage (16) située dans un bloc-cylindres (6) comprenant un logement (28) recevant un élément de commutation de valves (8) comprenant un port d’entrée (10) et un port de sortie (11) par lesquels le fluide est respectivement aspiré dans la chambre de pompage (16) lors du mouvement de remplissage du piston (7), puis expulsé de chambre de pompage (16) lors du mouvement de vidange du piston (7) caractérisée par un axe d’entraînement (4), logé dans une ouverture (9) située sur le piston (7), déplaçant de manière simultanée le piston (4) dans la chambre de pompage (16) et le bloc-cylindre (6) perpendiculairement à l’axe du piston (7) le long de l’élément de commutation des valves (8).
2. Pompe selon la revendication 1, dont l’élément de commutation des valves (8) est fixe par rapport au support d’entraînement (20) de la pompe.
3. Pompe selon la revendication 1, dont le port de chambre (15) se déplace alternativement entre les ports de chambre (12,12’), situés sur l’élément de commutation de valves (8), en liaison respectivement avec les ports d’entrée (10) et sortie (11).
4. Pompe selon la revendication 1, dont l’axe d’entraînement (4) est situé de manière excentrique sur le rotor (5).
5. Pompe selon la revendication 1, dont l’ouverture (9’) située sur le piston (7) est de forme oblong incurvé.
6. Pompe selon la revendication 1, dont l’ouverture (9,9’) située sur le piston (7) a un profil oblong.
7. Pompe selon la revendication 1, dont un élément d’entraînement (30) est situé de manière excentrique sur le rotor (5).
8. Pompe selon la revendication 1, dont les pièces du module fluidique interchangeable (1) sont en plastique et jetables.
9. Pompe selon la revendication 1, dont l’étanchéité entre les parties mobiles et fixes du module fluidique interchangeable (1) est réalisée avec au moins un élastomère.
10. Pompe selon la revendication 1, dont l’étanchéité entre les parties mobiles et fixes du module fluidique interchangeable (1) est réalisée par ajustement des pièces.
11. Pompe selon la revendication 1 dont le logement (28) recevant un élément de commutation de valves (8) est orienté perpendiculairement par rapport à la/aux chambre(s) de pompage
12. Pompe selon la revendication 1 dont le logement (28) recevant un élément de commutation de valves (8) a un profil cylindrique.
13. Pompe selon la revendication 1 dont le piston (7,107) et le bloc-cylindre (6, 106) ont une section de forme oblongue ou elliptique.
14. Pompe selon la revendication 1 dont l’élément de commutation de valve (208) comprend au moins une ouverture (294,295) en lien avec les ports d’entrée ou sortie (210,211) par le biais d’un canal (300,301) afin de transmettre la pression sur une membrane (290,291).
PCT/IB2020/053835 2019-04-10 2020-04-23 Pompe volumetrique avec mécanisme d'entraînement a axe unique WO2020208618A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP2019059170 2019-04-10
IBPCT/IB2019/059170 2019-04-10

Publications (1)

Publication Number Publication Date
WO2020208618A1 true WO2020208618A1 (fr) 2020-10-15

Family

ID=72752233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/053835 WO2020208618A1 (fr) 2019-04-10 2020-04-23 Pompe volumetrique avec mécanisme d'entraînement a axe unique

Country Status (1)

Country Link
WO (1) WO2020208618A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023280621A1 (fr) * 2021-07-08 2023-01-12 Universite De Lorraine Respirateur compact

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260634A1 (en) * 2004-11-29 2010-10-14 Thierry Navarro Volumetric Pump With Reciprocated and Rotated Piston
US20130092020A1 (en) * 2011-10-18 2013-04-18 Hydro-Industries Tynat Ltd. Fluid Pressure Driven Motor with Pressure Compensation Chamber
US20160333870A1 (en) * 2014-01-16 2016-11-17 Kawasaki Jukogyo Kabushiki Kaisha Liquid supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260634A1 (en) * 2004-11-29 2010-10-14 Thierry Navarro Volumetric Pump With Reciprocated and Rotated Piston
US20130092020A1 (en) * 2011-10-18 2013-04-18 Hydro-Industries Tynat Ltd. Fluid Pressure Driven Motor with Pressure Compensation Chamber
US20160333870A1 (en) * 2014-01-16 2016-11-17 Kawasaki Jukogyo Kabushiki Kaisha Liquid supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023280621A1 (fr) * 2021-07-08 2023-01-12 Universite De Lorraine Respirateur compact

Similar Documents

Publication Publication Date Title
CA2919004C (fr) Sous-ensemble oscillo-rotatif et dispositif de pompage volumetrique oscillo-rotatif pour pompage volumetrique d'un fluide
EP3025056B1 (fr) Sous-ensemble oscillo-rotatif pour pompage d'un fluide et dispositif de pompage oscillo-rotatif
EP0632732B1 (fr) Pompe de perfusion de liquides medicaux
FI100735B (fi) Pumppu moniaukkoisella ulostulolla
FR2985790A1 (fr) Pompe microdoseuse et son procede de fabrication
EP2877763B1 (fr) Distributeur fluidique et dispositif de reconstitution in situ et d'administration
CA2637364C (fr) Machine hydraulique, en particulier moteur hydraulique, et doseur comportant un tel moteur
JP6114405B2 (ja) 液体クロマトグラフィー用のポンプ及びインジェクションバルブ
EP2852760B1 (fr) Pompe rotative volumétrique sans pulsation
EP0885357B1 (fr) Pompe doseuse
WO2020208618A1 (fr) Pompe volumetrique avec mécanisme d'entraînement a axe unique
FR3008745A1 (fr) Sous-ensemble oscillo-rotatif et dispositif pour multiplexage fluidique et pompage volumetrique co-integres d'un fluide
WO2021156574A1 (fr) Dispositif de distribution de liquide oscillo-rotatif avec ressort et sa méthode
WO2017134737A1 (fr) Appareil d'alimentation en fluide
EP3824183A1 (fr) Pompe de précision alternative a débit continu
FR3085729A1 (fr) Pompe avec systeme de va-et-vient a pignon et cremaillere et utilisation d'une telle pompe
WO2015132645A1 (fr) Pompe volumetrique avec mecanisme de purge
EP1952021B1 (fr) Dispositif de pompage volumetrique comportant un organe de distribution sans joint
FR3099805A1 (fr) Bloc modulaire pour pompe électrique à encombrement limité et pompe associée
BE1026404A1 (fr) Vanne à pincement pneumatique
WO2015009623A1 (fr) Pompe à piston à actionnement par came à chambres multiples
FR2806328A1 (fr) Melangeur de securite pour pulverisateur a deux sources de fluides sous pression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20721315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20721315

Country of ref document: EP

Kind code of ref document: A1