WO2015010643A1 - 一种医用植入多孔材料及其制备方法 - Google Patents

一种医用植入多孔材料及其制备方法 Download PDF

Info

Publication number
WO2015010643A1
WO2015010643A1 PCT/CN2014/082968 CN2014082968W WO2015010643A1 WO 2015010643 A1 WO2015010643 A1 WO 2015010643A1 CN 2014082968 W CN2014082968 W CN 2014082968W WO 2015010643 A1 WO2015010643 A1 WO 2015010643A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
porous material
braid
metal
weaving
Prior art date
Application number
PCT/CN2014/082968
Other languages
English (en)
French (fr)
Inventor
鲁东
陈林
曹伟
郑爱国
李彬
胡图拉麻口·瑞斯窦
王莉
Original Assignee
宁夏东方钽业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁夏东方钽业股份有限公司 filed Critical 宁夏东方钽业股份有限公司
Publication of WO2015010643A1 publication Critical patent/WO2015010643A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32

Definitions

  • the present invention relates to the field of materials, and more particularly to a medical implanted porous material and a method of preparing the same.
  • a porous material is a material which constitutes a network structure by pores which are mutually penetrated or closed, and the boundary or surface of the pore is composed of a pillar or a flat plate.
  • Typical pore structures are: One is a two-dimensional structure formed by a large number of polygonal holes gathered on a plane; it is called a "honeycomb" material because its shape is similar to the hexagonal structure of a honeycomb; more commonly it is made up of a large number of A three-dimensional structure in which polyhedral shaped pores gather in space.
  • the solids constituting the holes exist only at the boundary of the holes (that is, the holes are in communication), they are called openings; if the holes are also solid, that is, each hole is completely separated from the surrounding holes, it is called closed hole. And some holes are semi-open and semi-closed.
  • the medical implanted porous material is used for implanting into the human body, and the bones and muscles of the human body can be grown into a porous material to partially replace the human body to damage the bone.
  • the medical implanted porous material should be close to the human bone, the elastic modulus of the human bone, and can not be degraded or reacted with human tissue in the human body, but also has good fatigue resistance and good reprocessing. performance.
  • As a porous implant material used for the treatment of bone tissue trauma and femoral tissue necrosis it is required that the pores are all connected and uniformly hooked, or the pore portion is connected and the hook is distributed as needed to make the bone tissue grow. As a result, the weight of the material itself is reduced to suit the human body.
  • a method for preparing a plurality of medically implanted porous materials is disclosed in the prior art.
  • a method for preparing a porous tantalum is disclosed in US Pat. No. 005,282,861 A, the main content of which is the use of polyurethane to prepare porous, porous and porous
  • a porous material precursor which is communicated with the pores is then deposited with a layer of base metal on the surface of the porous material by chemical vapor deposition to prepare a porous tantalum.
  • this method uses a polyurethane precursor, and the morphology of the prepared porous material cannot be accurately controlled.
  • a preparation method of porous tantalum with tantalum powder as a precursor is also disclosed in Chinese Patent No. CN 102205144A, which firstly prepares a tantalum powder slurry by using a solution prepared from an organic binder and a dispersing agent and a tantalum powder, and is poured on the powder.
  • the dispersant in the polyurethane foam is then dried to remove the organic binder and the polyurethane foam under the protection of an inert gas, and finally, the porous sintered body is obtained by vacuum sintering.
  • this method also uses polyurethane as a precursor, and there is also the problem that the morphology cannot be accurately controlled and the closed pores of the porous tantalum material cannot be avoided.
  • the present invention provides a medical implanted porous material comprising: a wire or a non-wire braid and a metal layer composited on the braid.
  • the wire or non-wire woven fabric has a porosity of 0. 1-1. 0 ⁇ ; and / 5 ⁇
  • the thickness of the metal layer is 0. 01-0. ⁇ 0-0. 2-0-0.
  • the thickness of the metal layer is 0. 05-0. 3 ⁇ .
  • the wire is one or more of ruthenium, osmium or titanium, and the non-metal wire is graphite, corundum, ceramic, quartz or silicon.
  • the diameter of the wire is 0. 04-0. 15mm.
  • the metal layer is tantalum, niobium or titanium.
  • the present invention also provides a method for preparing a medical implanted porous material, comprising the steps of:
  • the wire or non-wire woven fabric has a porosity of 0. 1-1. 0 ⁇ ; and / 5 ⁇
  • the thickness of the metal layer is 0. 01-0.
  • the thickness of the metal layer is 0. 05-0. 3 ⁇ .
  • the wire is one or more of ruthenium, osmium or titanium, and the non-metal wire is graphite, corundum, ceramic, quartz or silicon.
  • the wire is ruthenium, iridium or titanium, and the non-metal wire is graphite or quartz. 01 ⁇ 2
  • the hidden or non-metallic wire having a diameter of 0. 01-0. 2 hidden.
  • the diameter of the wire or non-wire is 0. 04-0. 15mm.
  • the present invention has no particular limitation on the manner of weaving in the step A), and those skilled in the art A suitable weaving method can be selected according to actual needs to obtain a braid of different wire or non-wire.
  • the manner of the composite in the step B) of the present invention is not particularly limited, and is preferably vapor deposition.
  • the present invention has at least one of the following advantages:
  • the present invention provides, for the first time, a medically implanted porous material comprising a wire or non-wire braid and a metal layer compounded on the braid.
  • a medically implanted porous material comprising a wire or non-wire braid and a metal layer compounded on the braid.
  • the obtained medical implanted porous material has a more regular aperture, a higher porosity, and a controllable morphology, and There is no problem with the hole closing.
  • the experimental results show that the medical implanted porous material prepared by the invention has an adjustable pore size and a porosity of about 85%.
  • the medical implantable porous material provided by the present invention comprises a wire or a non-wire braid.
  • the wire or non-metal woven fabric refers to a woven fabric obtained by a knitting technique using a wire or a non-wire, and the shape, the hole diameter, the degree of closure of the hole, and the like are all controllable. Therefore, a suitable weaving scheme can be selected according to actual needs to obtain different braids of wire or non-wire.
  • different weaving methods can be selected to weave braids of different structures of wire or non-wire.
  • the invention has no particular limitation on the structure of the woven fabric, and is preferably 0. 1-1. 0 ⁇ , more preferably 0. 2-0. 8mm;
  • the restriction is preferably a porous spatial network structure;
  • the method of knitting in the present invention is not particularly limited, and is preferably a knitting method in which the upper and lower sides are interlocked.
  • the diameter of the wire is preferably 0. 01-0. 2mm, more preferably, the diameter of the metal wire is preferably ⁇ , ⁇ or titanium. 01-0.
  • the diameter of the wire is preferably 0. 01-0.
  • the diameter of the wire is preferably 0. 01-0. 2mm, more preferably 0. 04-0. 15mm;
  • the porosity of the wire or non-wire braid is preferably from 80% to 95%, more preferably from 82% to 92%.
  • the medical implantable porous material provided by the present invention further comprises a metal layer composited on the braid.
  • the invention also provides a preparation method of a medical implanted porous material, comprising the following steps:
  • the wire is preferably one or more of ruthenium, osmium or titanium, more preferably ruthenium, osmium or titanium;
  • the non-metal wire is preferably graphite, corundum, ceramic, quartz or silicon, more preferably Graphite or quartz;
  • the wire or non-wire braid is a porous metal wire or a non-wire frame, and the part of the frame may be a diamond-like molecular arrangement, or a space cubic frame structure or a triangular pyramid structure. 0-1.
  • the source of the wire or the non-wire of the present invention is not particularly limited, and may be a conventional standard of a commercially available wire or non-wire; the method of the present invention is not particularly limited, and is preferably a three-dimensional weave.
  • the specific process can be:
  • the wire or the non-metal wire is pressed or processed into a shape of a fold line, and the length of each small fold line is preferably adjusted according to actual conditions; and the wire or non-metal wire of the above-mentioned fold line shape is connected by means of up-and-down interlocking. Braided into a wire or non-wire braid.
  • the condition of the knitting is not particularly limited, and the three-dimensional knitting conditions well known to those skilled in the art may be used;
  • the knitting apparatus of the present invention is not particularly limited, and may be a three-dimensional knitting apparatus well known to those skilled in the art; the present invention has no limitation on the apparatus for pressing the mold, and the pressable metal wire or non-known to those skilled in the art
  • the metal device is optional; the present invention is not limited to the processed device, and may be a wire or non-metal device that is well known to those skilled in the art.
  • a metal is compounded on the wire or non-wire braid obtained in the above step to obtain a medically implanted porous material.
  • the method of the present invention is not particularly limited, and is preferably vapor phase deposition; the method of vapor deposition in the present invention is not particularly limited, and is preferably used.
  • the preferred method of vapor deposition is:
  • the wire or non-wire braid is placed in a vacuum sealed container, and argon gas is introduced and heated; then the low-boiling metal compound and hydrogen are introduced into the closed vessel in the above step for vapor deposition reaction, and the metal is compounded in the chamber.
  • a medically implanted porous material is obtained on a wire or non-wire braid.
  • the molar ratio of the low-boiling metal compound to hydrogen is preferably 1: (1-50), more preferably 1: 5-45; the hydrogen gas is preferably introduced at a rate of 3-20 L/min, more preferably 5_18L/mi n;
  • the heating temperature is preferably 800-1250.
  • C more preferably 1 000-120 (TC; the time of the vapor deposition reaction is preferably 0. 5-3 hours, more preferably 1-2. 5 hours; the low boiling point metal compound is preferably a low boiling point ⁇ The compound is more preferably ruthenium pentachloride.
  • the present invention is not particularly limited, and is preferably a quartz tube; the present invention is not particularly limited in the degree of vacuum, and may be a vacuum degree required for a vapor deposition reaction well known to those skilled in the art;
  • the hydrogen gas is not particularly limited, and may be conventionally known to those skilled in the art;
  • the argon gas is not particularly limited in the present invention, and may be required by those skilled in the art for the vapor deposition reaction shielding gas;
  • the other components of the vapor deposition reaction are not particularly limited, and those skilled in the art are familiar with the conditions of the vapor deposition reaction.
  • the present invention after the above-mentioned metal wire or non-wire wire braid is subjected to vapor deposition reaction, it is preferably subjected to heat treatment to remove hydrogen gas, and finally a medically implanted porous material is obtained, thereby increasing the toughness of the medical implanted porous material.
  • the heat treatment of the present invention is not particularly limited, and it is preferred to carry out the following steps: placing the above-mentioned metal wire or non-wire porous material in a closed container, evacuating and heating, and finally obtaining a medically implanted porous material. 5 ⁇
  • the temperature of the present invention is preferably from 700 to 900 ° C, more preferably from 750 to 850 ° C; the heating time is preferably 0.
  • the closed container is not particularly limited, and may be a sealed container for heat treatment well known to those skilled in the art; the vacuum-treated strip of the present invention
  • the member is not particularly limited, and may be a vacuuming condition well known to those skilled in the art.
  • the medical implanted porous material provided by the invention has a more regular pore size, a higher porosity, and no closed pores of the porous material.
  • the preparation method of the medical implanted porous material provided by the invention can control the morphology of the medical implanted porous material, and avoids the problem of closing the inner hole of the medical implanted porous material.
  • the experimental results show that the medical implanted porous material prepared by the invention has adjustable pore size and regular pore size, and the porosity is about 85%.
  • the twisted wire having a diameter of 0.06 mm was formed into a twisted wire shape.
  • Each of the small fold lines has a length of 0.3 ⁇ , and then the above-mentioned pressed crepe is knitted by a three-dimensional weaving method, and the woven fabric has a three-dimensional porous frame.
  • the porous material precursor obtained in the above step is placed in a closed quartz tube, the quartz tube is evacuated and protected by argon gas, and the above-mentioned quartz tube containing the porous material precursor is heated to a constant temperature of 1000 Torr.
  • the medical implanted porous material obtained in the above steps was tested. The results showed that the thickness of the composite layer of the medical implanted porous material was 0.1 ⁇ and the porosity was 90%.
  • Fig. 1 is a photograph of the medically implanted porous material prepared in Example 1 of the present invention.
  • Fig. 1 is a scanning electron micrograph of the medically implanted porous material prepared in Example 1 of the present invention.
  • Fig. 3 is a partial scanning electron micrograph of the medically implanted porous material prepared in Example 1 of the present invention.
  • a twisted wire having a diameter of 0.04 mm was formed into a twisted wire shape.
  • Each of the small fold lines has a length of 0.4 ⁇ , and then the above-mentioned pressed crepe is knitted by a three-dimensional weaving method of a top and bottom, and a woven fabric having a three-dimensional porous frame.
  • the porous material precursor obtained in the above step was placed in a closed quartz tube, the quartz tube was evacuated and protected by argon gas, and the above-mentioned quartz tube containing the porous material precursor was heated to a constant temperature of 1,100 Torr.
  • the twisted wire having a diameter of 0.04 mm was formed into a twisted wire shape.
  • Each of the small creases has a length of 0. 8 ⁇ , and then the above-mentioned pressed crepe is knitted by a three-dimensional weaving method of up and down, and the woven fabric has a diameter of 1.0 sec.
  • the porous material precursor obtained in the above step is placed in a closed quartz tube, the quartz tube is evacuated and protected by argon gas, and the quartz tube containing the porous material precursor is heated to a constant temperature of 1200 °C.
  • the quartz fiber yarn having a diameter of 0.08 ⁇ was shaped into a quartz fiber of a broken line shape.
  • Each of the small fold lines has a length of 0.5 mm, and then the above-mentioned processed quartz fiber filaments are knitted by a three-dimensional weaving method of up-and-down interlocking, and a quartz fiber woven fabric having a three-dimensional porous frame is woven into a hole diameter of 0.7.
  • the porous material precursor obtained in the above step is placed in a closed quartz tube, the quartz tube is evacuated and protected by argon gas, and the quartz tube containing the porous material precursor is heated to 105 (TC constant temperature).
  • the medical implanted porous material obtained in the above steps was tested. The results showed that the thickness of the composite layer on the surface of the medically implanted porous material was Q. 2 mm and the porosity was 86%.
  • the above is a medical implantable porous material and a preparation method thereof, and the description of the above embodiments is only for helping to understand the method of the present invention and its core idea. It should be noted that those skilled in the art can make various modifications and changes to the present invention without departing from the spirit and scope of the invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种医用植入多孔材料,包括:金属丝或非金属丝编织物和复合在所述编织物上的金属层。该医用植入多孔材料具有较高的孔隙率和规则的孔径,且不存在多孔材料内部孔闭合的问题。一种医用植入多孔材料的制备方法,包括以下步骤:将金属丝或非金属丝编织成金属丝或非金属丝编织物;将金属复合在上述步骤得到的金属丝或非金属丝编织物上,得到医用植入多孔材料。

Description

一种医用植入多孔材料及其制备方法 技术领域 本发明属于材料领域,尤其涉及一种医用植入多孔材料及其制备 方法。
背景技术 多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料, 孔洞的边界或表面由支柱或平板构成。 典型的孔结构有: 一种是由大 量多边形孔在平面上聚集形成的二维结构; 由于其形状类似于蜂房的 六边形结构而被称为"蜂窝"材料; 更为普遍的是由大量多面体形状的 孔洞在空间聚集形成的三维结构。如果构成孔洞的固体只存在于孔洞 的边界(即孔洞之间是相通的), 则称为开孔; 如果孔洞表面也是实 心的, 即每个孔洞与周围孔洞完全隔开, 则称为闭孔; 而有些孔洞则 是半开孔半闭孔的。
医用植入多孔材料是一种用于植入人体内,并且人体的骨骼和肌 肉等组织可以生长入多孔材料, 达到部分替代人体损坏骨骼的目的。 医用植入多孔材料要与人体骨骼相接近的形貌,与人体骨 目应的弹 性模量, 并且在人体中不能降解或者不能与人体组织反应,还要有良 好抗疲劳性能和良好的再加工性能。作为骨组织创伤和股骨组织坏死 治疗使用的多孔植入材料,要求孔隙最好全部连通与均勾分布, 或根 据需要孔隙部分连通与均勾分布, 使之既与人体的骨组织生长相一 致, 又减轻了材料本身的重量, 以适合人体植入使用。
现有技术中公开了多种医用植入多孔材料的制备方法,如美国专 利 US 005282861 A中公布了一种多孔钽的制备方法, 其主要内容是采 用聚亚安酯制备出具有多孔, 孔与孔相通的多孔材料前体, 然后采用 化学气相沉积的方法在多孔材料的表面沉积上一层钽金属,制备出具 有多孔钽。 但是这种方法采用聚亚安酯前体, 制备出的多孔材料形貌 无法准确控制。
中国专利 CN 102205144A中也公开了一种以钽粉为前体的多孔钽 的制备方法,其首先采用有机粘结剂与分散剂配制成的溶液和钽粉制 成钽粉浆料, 并浇注于聚氨酯泡沫体中, 然后干燥除去聚氨酯泡沫体 中的分散剂,在惰性气体保护下对有机粘结剂和聚氨酯泡沫体进行脱 脂处理, 最后真空烧结制得多孔烧结体。 但是这种方法同样也用到了 聚亚安酯作为前体,同样存在着无法准确控制形貌和无法避免多孔钽 材料内部孔的闭合的问题。 发明内容 有鉴于此, 本发明要解决的技术问题在于如何提供一种形貌可 控, 且不存在内部孔闭合问题的医用植入多孔材料。
为了解决上述技术问题,一方面, 本发明提供了一种医用植入多 孔材料, 包括: 金属丝或非金属丝编织物和复合在所述编织物上的金 属层。
在一个实施方案中, 所述金属丝或非金属丝编织物的孔隙率为 75%"95%, 所述金属丝或非金属丝编织物的孔径为 0. 1-1. 0匪; 和 /或 所述金属层的厚度为 0. 01-0. 5匪。 优选的, 所述金属丝或非金属丝编织物的孔隙率为 80%-95%、 更 优选为 82%-92%;所述金属丝或非金属丝编织物的孔径为 0. 2-0. 8mm; 和 /或所述金属层的厚度为 0. 05-0. 3匪。
在另一个实施方案中, 所述金属丝为钽、铌或钛中的一种或更多 种, 所述非金属丝为石墨、 刚玉、 陶瓷、 石英或硅。
优选的, 所述金属丝或非金属丝的直径为 0. 01-0. 2隱。
进一步优选的, 所述金属丝或非金属丝的直径为 0. 04-0. 15mm。 在另一个实施方案中, 所述金属层为钽、 铌或钛。
另一方面, 本发明还提供了一种医用植入多孔材料的制备方法, 包括以下步骤:
A )将金属丝或非金属丝编织金属丝或非金属丝编织物;
B )将金属复合在所述步骤 A )得到的金属丝或非金属丝编织物 上, 得到医用植入多孔材料。
在一个实施方案中, 所述金属丝或非金属丝编织物的孔隙率为 75%-95%, 所述金属丝或非金属丝编织物的孔径为 0. 1-1. 0匪; 和 /或 所述金属层的厚度为 0. 01-0. 5匪。
优选的, 所述金属丝或非金属丝编织物的孔隙率为 80%-95%、 更 优选为 82%-92%;所述金属丝或非金属丝编织物的孔径为 0. 2-0. 8mm; 和 /或所述金属层的厚度为 0. 05-0. 3匪。
在另一个实施方案中, 所述金属丝为钽、铌或钛中的一种或更多 种, 所述非金属丝为石墨、 刚玉、 陶瓷、 石英或硅。
优选的,所述金属丝为钽、铌或钛,所述非金属丝为石墨或石英。 优选的, 所述金属丝或非金属丝的直径为 0. 01-0. 2隱。
进一步优选的, 所述金属丝或非金属丝的直径为 0. 04-0. 15mm。 本发明对步骤 A ) 中编织的方式没有特别限制, 本领域技术人员 可以根据实际需要选择合适的编织方法,得到不同的金属丝或非金属 丝的编织物。
本发明对步骤 B )中复合的方式没有特别限制,优选为气相沉积。 本发明至少具有下述优势之一:
与现有技术相比,本发明首次提供了包括金属丝或非金属丝编织 物以及复合在上述编织物上的金属层的医用植入多孔材料。 其中, 由 于金属丝或非金属丝编织物的形貌可控, 孔的闭合程度可控, 因此得 到的医用植入多孔材料的孔径更加规则、 具有较高的孔隙率、 形貌可 控, 且不存在孔闭合的问题。 实验结果表明, 本发明所制备的医用植 入多孔材料孔径可调, 孔隙率约为 85%。 附图说明 图 1为本发明实施例 1中制备的医用植入多孔材料的照片; 图 2为本发明实施例 1中制备的医用植入多孔材料扫描电子显微 镜图;
图 3为本发明实施例 1中制备的医用植入多孔材料的局部扫描电 子显微镜图。 具体实施方式 为了进一步理解本发明,下面结合实施例对本发明优选实施方案 进行描述, 但是应当理解, 这些描述只是为了进一步说明本发明的特 征和优点, 而不是对发明权利要求的限制。 本发明所有原料,对其来源没有特别限制,在市场上购买的即可。 本发明提供的医用植入多孔材料, 包括金属丝或非金属丝编织 物。所述金属丝或非金属编织物是指以金属丝或非金属丝通过编织技 术得到的编织物, 其形貌、 孔径、 孔的闭合程度等均是可控的。 因此 可以根据实际需要选择合适的编织方案,得到不同的金属丝或非金属 丝的编织物。 同样, 也可以选择不同的编织方法, 编织不同结构的金 属丝或非金属丝的编织物。 本发明对所述编织物的孔径没有特别限 制, 在实际应用中优选为 0. 1-1. 0誦, 更优选为 0. 2-0. 8mm; 本发明 对所述编织物的结构没有特别限制, 优选为多孔的空间网状结构; 本 发明对编织的方法没有特别限制, 优选为上下相扣的编织方法。
本发明所述金属丝的材质优选为钽、铌或钛中的一种或几种, 更 优选为钽、 铌或钛; 所述金属丝的直径优选为 0. 01-0. 2mm, 更优选 为 0. 04-0. 15匪; 所述非金属丝的材质优选为石墨、 刚玉、 陶瓷、 石 英或硅,更优选为石墨或石英;所述金属丝的直径优选为 0. 01-0. 2mm, 更优选为 0. 04-0. 15mm; 所述金属丝或非金属丝编织物的孔隙率优选 为 80%- 95%, 更优选为 82%_92%。
本发明所提供的医用植入多孔材料,还包括复合在所述编织物上 的金属层。本发明所述金属层的材质优选为钽、铌或钛,更优选为钽; 所述金属层的厚度优选为 0. 01-0. 5隱, 更优选为 0. 05-0. 3匪; 本发 明对金属层没有其他特别的限制,以本领域技术人员熟知的用于复合 的金属层即可。
本发明还提供了一种医用植入多孔材料的制备方法,包括以下步 骤:
A )将金属丝或非金属丝编织成金属丝或非金属丝编织物; B )将金属复合在所述步骤 A )得到的金属丝或非金属丝编织物 上, 得到医用植入多孔材料。
本发明首先将金属丝或非金属丝编织成金属丝或非金属丝编织 物, 所述金属丝或非金属丝直径优选为 0. 01-0. 2誦, 更优选为 0. 04-0. 15mm; 所述金属丝优选为钽、 铌或钛中的一种或几种, 更优 选为钽、铌或钛; 所述非金属丝优选为石墨、 刚玉、 陶瓷、石英或硅, 更优选为石墨或石英;所述金属丝或非金属丝编织物为多孔金属丝或 非金属丝框架, 所述框架的局部可以为类似金刚石分子排布结构, 也 可以为空间的立方体框架结构或者三棱锥结构;所述编织物的孔径优 选为 0. 1-1. Omrn, 更优选为 0. 2-0. 9mm0
本发明对所述金属丝或非金属丝的来源没有特别限制,以市售的 金属丝或非金属丝的常规标准即可;本发明对编织的方式没有特别限 制, 优选为三维立体编织, 其具体过程可以为:
先将所述金属丝或非金属丝用模具压制或加工成折线形状,每个 小折线的长度优选根据实际情况进行调整;再将上述折线形状的金属 丝或非金属丝采用上下相扣的方式编织成金属丝或非金属丝编织物。 所述单个折线长度优选为 0. 1-2隱, 更优选为 0. 5-1. 5mm; 本发明对 所述编织的条件没有特别限制,以本领域技术人员熟知的立体编织条 件即可; 本发明对所述编织的设备没有特别限制, 以本领域技术人员 熟知的立体编织设备即可; 本发明对所述压制模具的设备没有限制, 以本领域技术人员熟知的可压制金属丝或非金属的设备即可;本发明 对所述加工的设备没有限制,以本领域技术人员熟知的可加工金属丝 或非金属的设备即可。
本发明将金属复合在上述步骤得到的金属丝或非金属丝编织物 上, 得到医用植入多孔材料。 本发明对复合的方式没有特别限制, 优 选为气相沉积; 本发明对气相沉积的方式没有特别限制, 优选采用化 学的气相沉积方式, 具体过程优选为:
先将金属丝或非金属丝编织物置于真空密闭容器中,通入氩气并 加热;再将低沸点金属化合物与氢气通入上述步骤中的密闭容器中进 行气相沉积反应, 将金属复合在所述金属丝或非金属丝编织物上, 得 到医用植入多孔材料。所述低沸点金属化合物与氢气的摩尔比优选为 1: ( 1-50 ), 更优选为 1 : ( 5-45 ) ; 所述氢气的通入速度优选为 3-20L/min, 更优选为 5_18L/mi n; 所述加热的温度优选为 800-1250 。C, 更优选为 1 000-120 (TC ; 所述气相沉积反应的时间优选为 0. 5-3 小时, 更优选为 1-2. 5小时; 所述低沸点金属化合物优选为低沸点的 钽化合物, 更优选为五氯化钽。
本发明对所述密闭容器没有特别限制, 优选为石英管; 本发明对 所述真空度没有特别限制,以本领域技术人员熟知的气相沉积反应所 要求的真空度即可; 本发明对所述氢气没有特别限制, 以本领域技术 人员熟知的常规要求即可; 本发明对所述氩气没有特别限制, 以本领 域技术人员熟知的用于气相沉积反应保护气的要求即可;本发明对所 述气相沉积反应的其他奈件没有特别限制,以本领域技术人员熟知气 相沉积反应的条件即可。
本发明将上述金属丝或非金属丝编织物进行气相沉积反应后,优 选对其进行热处理, 脱除氢气, 最后得到医用植入多孔材料, 从而增 加医用植入多孔材料的韧性。 本发明对所述热处理没有特别限制, 优 选按以下步骤进行,将上述金属丝或非金属丝多孔材料置于密闭容器 中, 抽真空并加热, 最后得到医用植入多孔材料。 所述加热的温度优 选为 700-900 °C,更优选为 750-850 °C ;所述加热的时间优选为 0. 5-2 小时, 更优选为 0. 8-1. 7小时; 本发明对密闭容器没有特别限制, 以 本领域技术人员熟知的热处理用密闭容器即可;本发明对抽真空的条 件没有特别限制, 以本领域技术人员熟知的抽真空的条件即可。 本发明提供的医用植入多孔材料孔径更加规则,具有较高的孔隙 率, 不存在多孔材料内部孔的闭合问题。 本发明所提供的医用植入多 孔材料的制备方法能够控制医用植入多孔材料的形貌,避免了医用植 入多孔材料内部孔的闭合的问题。 实验结果表明, 本发明所制备的医 用植入多孔材料孔径可调且孔径规则, 孔隙率约为 85%。 实施例 1
将直径为 0. 06mm的钽丝压制定型为折线形状的钽丝。 每一个小 的折线长度为 0. 3誦, 然后将上述压制好的钽丝采用上下相扣的立体 编织方式, 编织成孔径为 Q. 4隱, 具有三维立体多孔框架的金属丝编 织物。 然后将上述步骤得到的多孔材料前体置于密闭的石英管中, 将 上述石英管抽真空并通入氩气保护,再将上述装有多孔材料前体的石 英管加热至 1000 Γ恒温。 最后向上述石英管内通入摩尔比为 1: 20的 五氯化钽和氢气进行气相沉积反应, 氢气的通入速度为 10L/min。 反 应 0. 5小时后, 对经过上述步骤处理过的多孔材料在真空条件下, 加 热至 800 °C进行热处理 0. 5小时, 最终得到医用植入多孔材料。
对上述步骤得到的医用植入多孔材料进行测试, 结果表明, 医用 植入多孔材料表面复合的钽层厚度为 0. 1匪, 孔隙率为 90%。
对上述步骤得到的医用植入多孔材料进行观察, 结果参见图 1, 图 1为本发明实施例 1中制备的医用植入多孔材料的照片。
对上述步骤得到的医用植入多孔材料进行扫描电子显微镜观察, 结果参见图 2, 图 1为本发明实施例 1中制备的医用植入多孔材料扫 描电子显微镜图。
对上述步骤得到的医用植入多孔材料进行局部扫描电子显微镜 观察, 结果参见图 3, 图 3为本发明实施例 1中制备的医用植入多孔 材料的局部扫描电子显微镜图。 实施例 2
将直径为 0. 04mm的钽丝压制定型为折线形状的钽丝。 每一个小 的折线长度为 0. 4誦, 然后将上述压制好的钽丝采用上下相扣的立体 编织方式, 编织成孔径为 Q. 6隱, 具有三维立体多孔框架的金属丝编 织物。 然后将上述步骤得到的多孔材料前体置于密闭的石英管中, 将 上述石英管抽真空并通入氩气保护,再将上述装有多孔材料前体的石 英管加热至 1100Γ恒温。 最后向上述石英管内通入摩尔比为 1: 40的 五氯化钽和氢气进行气相沉积反应, 氢气的通入速度为 5L/mi n。 反 应 2小时后, 对经过上述步骤处理过的多孔材料在真空条件下, 加热 至 800°C进行热处理 1小时, 最终得到医用植入多孔材料。
对上述步骤得到的医用植入多孔材料进行测试, 结果表明, 医用 植入多孔材料表面复合的钽层厚度为 Q. 2匪, 孔隙率为 82%。 实施例 3
将直径为 0. 04mm的铌丝压制定型为折线形状的铌丝。 每一个小 的折线长度为 0. 8誦, 然后将上述压制好的铌丝采用上下相扣的立体 编织方式, 编织成孔径为 1. 0隱, 具有三维立体多孔框架的金属丝编 织物。 然后将上述步骤得到的多孔材料前体置于密闭的石英管中, 将 上述石英管抽真空并通入氩气保护,再将上述装有多孔材料前体的石 英管加热至 1200°C恒温。 最后向上述石英管内通入摩尔比为 1: 40的 五氯化钽和氢气进行气相沉积反应, 氢气的通入速度为 5L/mi n。 反 应 1. 5小时后, 对经过上述步骤处理过的多孔材料在真空条件下, 加 热至 800°C进行热处理 1小时, 最终得到医用植入多孔材料。
对上述步骤得到的医用植入多孔材料进行测试, 结果表明, 医用 植入多孔材料表面复合的钽层厚度为 0. 15隱, 孔隙率为 92%。 实施例 4
将直径为 0. 08誦的石英纤维丝加工定型为折线形状的石英纤维 丝。 每一个小的折线长度为 0. 5mm, 然后将上述加工好的石英纤维丝 采用上下相扣的立体编织方式, 编织成孔径为 0. 7隱, 具有三维立体 多孔框架的石英纤维丝编织物。然后将上述步骤得到的多孔材料前体 置于密闭的石英管中, 将上述石英管抽真空并通入氩气保护, 再将上 述装有多孔材料前体的石英管加热至 105 (TC恒温。 最后向上述石英 管内通入摩尔比为 1: 50的五氯化钽和氢气进行气相沉积反应, 氢气 的通入速度为 lL/inin。 反应 2小时后, 对经过上述步骤处理过的多 孔材料在真空条件下, 加热至 800°C进行热处理 1小时, 最终得到医 用植入多孔材料。
对上述步骤得到的医用植入多孔材料进行测试, 结果表明, 医用 植入多孔材料表面复合的钽层厚度为 Q. 2mm, 孔隙率为 86%。 以上对本发明所提供的一种医用植入多孔材料及其制备方法进 式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及 其核心思想。 应当指出, 对于本技术领域的普通技术人员来说, 在不 脱离本发明原理的前提下, 还可以对本发明进行若干改进和修饰, 这 些改进和修饰也落入本发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种医用植入多孔材料, 包括: 纤维编织物和复合在所述编 织物上的金属层。
1、 根据权利要求 1所述的医用植入多孔材料, 其特征在于, 所 述纤维编织物为金属丝或非金属丝编织物。
3、 根据权利要求 1所述的医用植入多孔材料, 其特征在于, 所 述金属丝或非金属丝编织物的孔隙率为 75%-95%, 所述金属丝或非金 属丝编织物的孔径为 0. 1-1. 0mmo
4、 根据权利要求 1所述的医用植入多孔材料, 其特征在于, 所 述金属层的厚度为 0. 01-0. 5隱。
5、 根据权利要求 1所述的医用植入多孔材料, 其特征在于, 所 述金属丝为钽、 铌或钛中的一种或更多种, 所述非金属丝为石墨、 刚 玉、 陶瓷、 石英或硅。 6、 根据权利要求 1所述的医用植入多孔材料, 其特征在于, 所 述金属丝或非金属丝的直径为 0. 01-0. 2mm。
7、 根据权利要求 1所述的医用植入多孔材料, 其特征在于, 所 述金属层为钽、 铌或钛。
8、 一种医用植入多孔材料的制备方法, 包括以下步骤:
A )将金属丝或非金属丝编织成金属丝或非金属丝编织物;
B )将金属复合在所述步骤 A )得到的金属丝或非金属丝编织物 上, 得到医用植入多孔材料。 9、 根据权利要求 8所述的制备方法, 其特征在于, 所述编织为 三维立体编织。
10、 根据权利要求 9所述的制备方法, 其特征在于, 所述编织为 局部呈现出金刚石立方晶体结构的编织方式。
11、 根据权利要求 8所述的制备方法, 其特征在于, 所述金属丝 或非金属丝编织物的孔径为 0. 1-1. 0匪, 所述金属丝或非金属丝编织 物的孔隙率为 75%-95%„
12、 根据权利要求 8所述的制备方法, 其特征在于, 所述复合为 气相沉积。
PCT/CN2014/082968 2013-07-26 2014-07-25 一种医用植入多孔材料及其制备方法 WO2015010643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310319922.4A CN104338184B (zh) 2013-07-26 2013-07-26 一种医用植入多孔材料及其制备方法
CN201310319922.4 2013-07-26

Publications (1)

Publication Number Publication Date
WO2015010643A1 true WO2015010643A1 (zh) 2015-01-29

Family

ID=52392749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082968 WO2015010643A1 (zh) 2013-07-26 2014-07-25 一种医用植入多孔材料及其制备方法

Country Status (2)

Country Link
CN (1) CN104338184B (zh)
WO (1) WO2015010643A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177523B (zh) * 2015-10-28 2016-08-31 赵德伟 一种医用多孔钽金属材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1685861A2 (en) * 2005-01-28 2006-08-02 Greatbatch, Inc. Stent coating for eluting medication
CN201150579Y (zh) * 2007-12-26 2008-11-19 上海康德莱企业发展集团有限公司 一种带外层舌状结构的编织血管支架
CN102091349A (zh) * 2011-01-27 2011-06-15 苏州大学 一种高强度生物支架材料及其制备方法
CN103083120A (zh) * 2011-10-28 2013-05-08 宛新建 抗胆管良恶性狭窄的生物可降解聚合物编织支架及制备方法
CN103088310A (zh) * 2013-01-10 2013-05-08 青岛高泰新材料有限公司 以三维网状石墨泡沫或网状玻璃碳制作医用多孔钽的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1685861A2 (en) * 2005-01-28 2006-08-02 Greatbatch, Inc. Stent coating for eluting medication
CN201150579Y (zh) * 2007-12-26 2008-11-19 上海康德莱企业发展集团有限公司 一种带外层舌状结构的编织血管支架
CN102091349A (zh) * 2011-01-27 2011-06-15 苏州大学 一种高强度生物支架材料及其制备方法
CN103083120A (zh) * 2011-10-28 2013-05-08 宛新建 抗胆管良恶性狭窄的生物可降解聚合物编织支架及制备方法
CN103088310A (zh) * 2013-01-10 2013-05-08 青岛高泰新材料有限公司 以三维网状石墨泡沫或网状玻璃碳制作医用多孔钽的方法

Also Published As

Publication number Publication date
CN104338184A (zh) 2015-02-11
CN104338184B (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
CN105452543B (zh) 金刚石涂层及沉积该涂层的方法
TWI287533B (en) A three-dimensional fiber structure of refractory fibers, a method of making it, and an application to thermostructural composite materials
JP5703017B2 (ja) 炭化タンタル被覆炭素材料の製造方法
WO2012142952A1 (zh) 多孔钽棒
CN207391600U (zh) 一种碳化硅晶体的生长设备
EP3222748B1 (en) Medical porous tantalum metal material and preparation method therefor
WO2009024045A1 (fr) Creuset composite c/c et son procédé de fabrication
CN109402731A (zh) 一种高纯半绝缘碳化硅晶体生长装置及其方法
KR102163489B1 (ko) 탄화규소(SiC) 단결정 성장 장치
CN109477237A (zh) 单晶金属箔及其制造方法
JP2003514760A (ja) 熱構造複合材の容器を製造する方法、その方法により得られた容器、およびその容器のるつぼ支持体としての使用
WO2015010643A1 (zh) 一种医用植入多孔材料及其制备方法
WO2014137072A1 (en) Apparatus and method for growing silicon carbide single crystals
CN109896515A (zh) 覆碳化钽的碳材料和其制造方法、半导体单晶制造装置用构件
US20140202389A1 (en) Apparatus for fabricating ingot
US9702058B2 (en) Apparatus for fabricating ingot
CN113622016A (zh) 碳化硅晶体生长装置和晶体生长方法
JP7242978B2 (ja) SiC単結晶インゴットの製造方法
US9540744B2 (en) Apparatus for fabricating silicon carbide single crystal ingot and method for fabricating ingot
CN111925226B (zh) 一种碳纤维复合材料颅骨补片及其制备方法
KR101657741B1 (ko) 유사골 다공성 금속 구조체 및 이의 제조방법
JP6895496B2 (ja) インゴットの製造方法、インゴット成長用原料物質及びその製造方法
CN109056117B (zh) 石墨烯纤维的制备方法
CN114585777A (zh) 用于制备碳化硅粉末和单晶碳化硅的方法
JP5599647B2 (ja) 丸編みされた結晶性炭化ケイ素系繊維構造物で強化された炭化ケイ素系複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14830192

Country of ref document: EP

Kind code of ref document: A1