WO2015010573A1 - 液晶狭缝光栅、立体显示装置及其驱动方法 - Google Patents

液晶狭缝光栅、立体显示装置及其驱动方法 Download PDF

Info

Publication number
WO2015010573A1
WO2015010573A1 PCT/CN2014/082481 CN2014082481W WO2015010573A1 WO 2015010573 A1 WO2015010573 A1 WO 2015010573A1 CN 2014082481 W CN2014082481 W CN 2014082481W WO 2015010573 A1 WO2015010573 A1 WO 2015010573A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
strip
strip electrodes
layer
liquid crystal
Prior art date
Application number
PCT/CN2014/082481
Other languages
English (en)
French (fr)
Inventor
刘美鸿
母林
Original Assignee
深圳市亿思达科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市亿思达科技集团有限公司 filed Critical 深圳市亿思达科技集团有限公司
Publication of WO2015010573A1 publication Critical patent/WO2015010573A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells

Definitions

  • the invention belongs to the field of stereoscopic display, in particular to a liquid crystal slit grating, and to a stereoscopic display device using a liquid crystal slit grating and a driving method thereof.
  • a stereoscopic display device needs to wear stereo glasses when viewing, so that viewers who wear glasses (such as glasses, reading glasses, etc.) originally need to overlap the two glasses in order to obtain a clear viewing effect, so that the stereoscopic display is performed. It is inconvenient to watch. Furthermore, since the width between the two temples of the stereoscopic glasses is generally fixed, this may make viewers of different face types unable to obtain a better experience when wearing the stereoscopic glasses. Therefore, the naked-eye stereoscopic display technology that does not need to wear stereoscopic glasses is more and more concerned.
  • the main principle of the naked-eye stereoscopic display device is to provide a grating, such as a slit grating or a cylindrical grating, in front of the display panel, and the grating provides at least two parallax images displayed by the display panel to the left and right eyes of the viewer, respectively.
  • a grating such as a slit grating or a cylindrical grating
  • the slit grating applied in the stereoscopic display device is generally a fixed grating, that is, the light-transmissive slit and the light-shielding slit of the slit grating are fixed.
  • This kind of fixing is that when the slit grating forms stereoscopic vision, the viewing area thereof is strictly limited. Exceeding the limited area, good stereoscopic vision cannot be formed, which greatly reduces the stereoscopic visual experience of the user, and is disadvantageous to the stereoscopic display technology. Promote the application.
  • the present invention provides a liquid crystal slit grating, a stereoscopic display device, and a driving method thereof.
  • a first upper polarizer a first upper substrate, a first upper electrode structure, a first upper alignment layer, a first liquid crystal layer, a first lower alignment layer, a first lower electrode structure, a first lower substrate, and a first stacked substrate a polarizer, a second upper substrate, a second upper electrode structure, a second upper alignment layer, a second liquid crystal layer, a second lower alignment layer, a second lower electrode structure, a second lower substrate, and a second polarizer;
  • the first lower electrode structure includes at least two electrode layers, and each of the electrode layers includes a plurality of strip electrodes extending in the same direction, and the strip electrodes of the at least two electrode layers are parallel to each other and spaced apart from each other Electrically insulating, the strip electrodes of different electrode layers are alternately arranged corresponding to each other, so that the projections of the plurality of strip electrodes on the first lower substrate are seamlessly projected, and the projection is completely covered a first liquid crystal layer corresponding to the region;
  • the second lower electrode structure includes at least two electrode layers, and each of the electrode layers includes a plurality of strip electrodes extending in the same direction, and the strip electrodes of the at least two electrode layers are parallel to each other and spaced apart from each other Electrically insulating, the strip electrodes of different electrode layers are alternately arranged corresponding to each other, so that the projections of the plurality of strip electrodes on the second lower substrate are seamlessly projected, and the projection is completely covered a second liquid crystal layer corresponding to the region;
  • the extending direction of the strip electrodes included in the first lower electrode structure is perpendicular to the extending direction of the strip electrodes included in the second lower electrode structure.
  • any strip electrode is aligned with the adjacent side of the strip electrode of another layer adjacent thereto.
  • any strip electrode overlaps the adjacent side of the strip electrode of another layer of its neighbor.
  • the overlapping area of any strip electrode and the strip electrode of another layer adjacent thereto is one tenth to one third of the width of the strip electrode.
  • the strip electrodes in the same electrode layer have the same width, and the adjacent strip electrodes in the same electrode layer have the same pitch.
  • the first lower electrode structure comprises two electrode layers, the widths of any strip electrodes are equal, and the spacing between adjacent strip electrodes of the same electrode layer is equal to the width of the strip electrodes, and is in the same electrode layer
  • the strip electrodes are alternately arranged corresponding to each other with a gap between the strip electrodes;
  • the second lower electrode structure comprises two electrode layers, the widths of any strip electrodes are equal, and the spacing between adjacent strip electrodes of the same electrode layer is equal to the width of the strip electrodes, and the strips in the same electrode layer
  • the shaped electrodes are alternately arranged to each other corresponding to the gap between the other strip electrodes.
  • the first lower electrode structure comprises three electrode layers, the widths of any strip electrodes are equal, and the spacing of adjacent strip electrodes of the same electrode layer is equal to twice the width of the strip electrodes, in the same layer
  • the strip electrodes are alternately arranged corresponding to the gaps between the strip electrodes in the other electrode layers;
  • the second lower electrode structure comprises three electrode layers, the widths of any strip electrodes are equal, and the spacing of adjacent strip electrodes of the same electrode layer is equal to twice the width of the strip electrodes, and the strips in the same layer
  • the shaped electrodes are alternately arranged to each other corresponding to the gap between the strip electrodes in the other electrode layers.
  • It is an object of the present invention to provide a stereoscopic display device comprising:
  • a display panel for displaying a left eye image and a right eye image having parallax of the same scene
  • the liquid crystal slit grating including a first upper polarizer, a first upper substrate, a first upper electrode structure, a first upper alignment layer, and a first layer which are sequentially stacked a liquid crystal layer, a first lower alignment layer, a first lower electrode structure, a first lower substrate, a first lower polarizer, a second upper substrate, a second upper electrode structure, a second upper alignment layer, a second liquid crystal layer, and a second a lower alignment layer, a second lower electrode structure, a second lower substrate, and a second polarizer;
  • the first lower electrode structure includes at least two electrode layers, and each electrode layer includes a plurality of strips extending in the same direction An electrode, wherein the strip electrodes of the at least two electrode layers are disposed parallel to each other, spaced apart and electrically insulated, and the strip electrodes of the different electrode layers are alternately arranged corresponding to each other to make the plurality of strips.
  • the electric field and the configuration between the strip electrode included in the first lower electrode structure and the first upper electrode structure are configured for different viewing positions.
  • the left and right eyes correspond to the left eye image and the right eye image displayed on the display panel.
  • any strip electrode is aligned with the adjacent side of the strip electrode of another layer adjacent thereto.
  • any strip electrode overlaps the adjacent side of the strip electrode of another layer of its neighbor.
  • the overlapping area of any strip electrode and the strip electrode of another layer adjacent thereto is one tenth to one third of the width of the strip electrode.
  • the strip electrodes in the same electrode layer have the same width, and the adjacent strip electrodes in the same electrode layer have the same pitch.
  • the first lower electrode structure comprises two electrode layers, the widths of any strip electrodes are equal, and the spacing between adjacent strip electrodes of the same electrode layer is equal to the width of the strip electrodes, and is in the same electrode layer
  • the strip electrodes are alternately arranged corresponding to each other with a gap between the strip electrodes;
  • the second lower electrode structure comprises two electrode layers, the widths of any strip electrodes are equal, and the spacing between adjacent strip electrodes of the same electrode layer is equal to the width of the strip electrodes, and the strips in the same electrode layer
  • the shaped electrodes are alternately arranged to each other corresponding to the gap between the other strip electrodes.
  • the first lower electrode structure comprises three electrode layers, the widths of any strip electrodes are equal, and the spacing of adjacent strip electrodes of the same electrode layer is equal to twice the width of the strip electrodes, in the same layer
  • the strip electrodes are alternately arranged corresponding to the gaps between the strip electrodes in the other electrode layers;
  • the second lower electrode structure comprises three electrode layers, the widths of any strip electrodes are equal, and the spacing of adjacent strip electrodes of the same electrode layer is equal to twice the width of the strip electrodes, and the strips in the same layer
  • the shaped electrodes are alternately arranged to each other corresponding to the gap between the strip electrodes in the other electrode layers.
  • An object of the present invention is to provide a driving method for a stereoscopic display device, and a stereoscopic display device using the driving method includes:
  • a display panel for displaying a left eye image and a right eye image having parallax of the same scene
  • the liquid crystal slit grating including a first upper polarizer, a first upper substrate, a first upper electrode structure, a first upper alignment layer, and a first layer which are sequentially stacked a liquid crystal layer, a first lower alignment layer, a first lower electrode structure, a first lower substrate, a first lower polarizer, a second upper substrate, a second upper electrode structure, a second upper alignment layer, a second liquid crystal layer, and a second a lower alignment layer, a second lower electrode structure, a second lower substrate, and a second polarizer;
  • the first lower electrode structure includes at least two electrode layers, and each electrode layer includes a plurality of strips extending in the same direction An electrode, wherein the strip electrodes of the at least two electrode layers are disposed parallel to each other, spaced apart and electrically insulated, and the strip electrodes of the different electrode layers are alternately arranged corresponding to each other to make the plurality of strips.
  • the driving method includes:
  • the display panel displays a left eye image and a right eye image with parallax of the same scene
  • the parameter of the liquid crystal slit grating includes at least one of a pitch, a width of the transparent slit, and a position of the transparent slit.
  • the moving direction of the position of the light-transmitting slit is adjusted to coincide with the moving direction of the viewing position of the viewer.
  • the method further includes:
  • the display orientation of the display panel is detected, and it is detected that the display panel is located in a horizontal screen or a vertical screen.
  • the first lower electrode structure includes a plurality of electrode layers, each of the electrode layers includes a plurality of strip electrodes arranged in parallel, and the strip electrodes on the different electrode layers can complement each other's gaps,
  • the planar projection of the first lower substrate covers the entire area, so that it is not necessary to provide a light shielding strip between the strip electrodes, and light leakage on the light shielding slit or the light transmission slit can be avoided, and the liquid crystal slit grating is further improved. quality.
  • the second lower electrode structure includes a plurality of electrode layers, each electrode layer includes a plurality of strip electrodes arranged in parallel, and the strip electrodes on the different electrode layers can complement each other's gaps,
  • the planar projection of the second lower substrate covers the entire area, so that it is not necessary to provide a light shielding strip between the strip electrodes, and light leakage on the light shielding slit or the light transmission slit can be avoided, thereby further improving the liquid crystal slit grating. quality.
  • the pitch of the liquid crystal slit grating, the width of the light transmission slit, and the position of the light transmission slit can be adjusted.
  • Such specific parameters can keep the user in the best viewing position, improve the user's stereoscopic viewing experience, and promote the promotion and application of stereoscopic display technology.
  • FIG. 1 is a schematic structural view of an embodiment of a stereoscopic display device according to the present invention.
  • FIG. 2 is a schematic view showing another working state of an embodiment of a stereoscopic display device according to the present invention.
  • FIG. 3 is a schematic diagram of another working state of an embodiment of a stereoscopic display device according to the present invention.
  • FIG. 4 is a schematic structural view of an embodiment of a liquid crystal slit grating provided by the present invention.
  • FIG. 5 is a schematic plan view showing a first upper electrode structure and a first lower electrode structure of the liquid crystal slit grating shown in FIG. 4;
  • FIG. 6 is a schematic plan view showing a second upper electrode structure and a second lower electrode structure of the liquid crystal slit grating shown in FIG. 4;
  • FIG. 7 is a schematic view showing four working states of the liquid crystal slit grating shown in FIG. 4 when the stereoscopic display device is positioned in the horizontal direction;
  • FIG. 8 is a schematic view showing four working states of the liquid crystal slit grating shown in FIG. 4 when the stereoscopic display device is in the vertical direction;
  • FIG. 9 is a schematic structural view of another embodiment of a liquid crystal slit grating provided by the present invention.
  • FIG. 1 is a schematic structural diagram of an embodiment of a stereoscopic display device according to the present invention.
  • the stereoscopic display device 100 includes a display panel 101 and a controllable slit grating 102 disposed on a display surface of the display panel 101 .
  • the display panel 101 is a flat display device for generating a left-eye image L and a right-eye image R having parallax of the same scene, wherein the left-eye image L and the right-eye image R may be, for example, strip images, respectively, and are horizontally mutually Alternately displayed on the display panel 101.
  • the display panel 101 may be, for example, a liquid crystal display device, a plasma display device, an organic light emitting diode display device, an electroluminescence display device, or the like, which will not be enumerated here.
  • the controllable slit grating 102 is a slit grating which can be controlled to form a light-shielding slit and a light-transmitting slit at a specific position thereof, and generally can form an alternating structure of a light-transmitting slit and a light-shielding slit, thereby allowing viewing
  • the left eye passes through the light transmission slit, only the left eye image L displayed on the display panel 101 can be seen, and the right eye can only see the right eye image R displayed on the display panel 101. Since the left-eye image L and the right-eye image R are images having parallax of the same scene, the viewer generates stereoscopic vision according to different parallax images received by the left and right eyes.
  • the viewer moves a certain distance relative to the stereoscopic display device 100, for example, at the first moment, the viewer is at the position shown in FIG. 1, and at the second moment, the viewer moves a certain distance relative to the display device 100 to the middle thereof, as shown in FIG. 2.
  • the controllable slit grating 102 holds the light-transmitting slit and the light-shielding slit shown in FIG. 1, the left and right eyes will not be able to see the corresponding left-eye image L and right-eye image R, causing visual confusion and failing to form a three-dimensional shape. Vision.
  • the position shown in FIG. 2 is adjusted, that is, the light-transmitting slit of the controllable slit grating 102 is relative to the display panel 101. Move to the middle position. After adjustment, the left eye of the viewer of the current position can still see only the left eye image L displayed on the display panel 101 through the light transmission slit, while the right eye can only see the right eye image displayed on the display panel 101. R.
  • the position of the viewer ie, the position of the eye
  • the position of the light-shielding slit and the light-transmissive slit of the controllable slit grating 102 is changed correspondingly, and the left eye of the viewer with parallax can still be ensured by the viewer.
  • the image L and the right eye image R maintain good stereoscopic vision.
  • the position of the light-transmissive slit of the controllable slit grating 102 can be continuously adjusted to move in the right direction shown in FIG. 2, and the viewing remains.
  • the left eye image L and the right eye image R having parallax are seen by the left and right eyes, which maintains good stereoscopic vision and improves the stereoscopic viewing experience of the viewer.
  • the light-transmitting slits and the light-shielding slits of the controllable slit grating 102 are adjusted.
  • the position can keep the viewer with good stereo vision.
  • the moving direction of the light-transmitting slit is consistent with the direction in which the viewer's eyes move.
  • the left-eye image L and the right-eye image R displayed by the display panel 101 are rearranged, it is also possible to make the light-transmissive narrow.
  • the direction of movement of the slit does not coincide with the direction of movement of the viewer's eye, or even the opposite.
  • the change of the left and right eye images should be taken into consideration, and the position of the light-transmissive slit and the light-shielding slit of the controllable slit grating 102 can be reasonably adjusted, so that the left and right eyes of the viewer can be viewed in real time.
  • the left eye image L and the right eye image R are accurate.
  • controllable slit grating 102 can adjust the positions of the light-transmissive slit and the light-shielding slit, and can also adjust parameters such as the grating section, the pitch, the slit width of the light-transmitting slit and the light-shielding slit, and the viewer The eye can respectively view the left eye image L and the right eye image R in real time.
  • the controllable slit grating 102 may be a liquid crystal slit grating, an electrophoresis slit grating, an electrowetting slit grating, or the like, and is not specifically limited herein.
  • the present invention also provides an electrically controllable liquid crystal slit grating.
  • the liquid crystal slit grating may include two spaced electrode structures and a liquid crystal layer. Wherein, the liquid crystal layer is disposed between the two electrode structures, and the liquid crystal layer includes a plurality of liquid crystal molecules.
  • an electric field is formed between the two electrode structures, and the electric field causes the liquid crystal molecules to be in a predetermined arrangement state to form a liquid crystal slit grating having a slit function.
  • FIG. 4 is a schematic structural diagram of an embodiment of a liquid crystal slit grating provided by the present invention.
  • the liquid crystal slit grating 200 includes, in order from top to bottom, as shown in FIG. 4, a first upper polarizer 21, a first upper substrate 22, a first upper electrode structure 23, and a first layer.
  • the second upper alignment layer 34, the second liquid crystal layer 35, the second lower alignment layer 36, the second lower electrode structure 37, the second lower substrate 38, and the second polarizer 39 are as follows.
  • the specific structure and function are as follows.
  • the first upper substrate 22, the first lower substrate 28, the second upper substrate 32, and the second lower substrate 38 are disposed in parallel with each other, and the first upper electrode structure 23 (also referred to as a first common electrode) is disposed inside the first upper substrate 22,
  • the first lower electrode structure 27 (driving electrode) is disposed on the inner side of the first lower substrate 28 such that the first upper electrode structure 23 is disposed opposite to the first lower electrode structure 27, and an electrically controlled electric field can be formed therebetween;
  • the electrode structure 33 also referred to as a second common electrode
  • the second lower electrode structure 37 is disposed inside the second lower substrate 38, so that the second upper electrode structure 33 and the second The lower electrode structures 37 are oppositely disposed, and an electrically controlled electric field can be formed therebetween.
  • the first liquid crystal layer 25 is disposed between the first upper electrode structure 23 and the first lower electrode structure 27, and includes rod-like liquid crystal molecules 251 therein;
  • the second liquid crystal layer 35 is disposed on the second upper electrode structure 33 and the second lower electrode structure Between 37, a rod-like liquid crystal molecule 351 is included therein.
  • the first upper alignment layer 24 is disposed between the first liquid crystal layer 25 and the first upper electrode structure 23, and the first lower alignment layer 26 is disposed between the first liquid crystal layer 25 and the first lower electrode structure 27.
  • the first upper alignment layer 24 is perpendicular to the alignment direction of the first lower alignment layer 26 or is set to a specific angle (for example, less than 90 degrees or greater than 90 degrees) according to actual needs, so that the liquid crystal molecules 251 in the first liquid crystal layer 25 can be
  • the alignment function is carried out according to actual needs.
  • the second upper alignment layer 34 is disposed between the second liquid crystal layer 35 and the second upper electrode structure 33
  • the second lower alignment layer 36 is disposed between the second liquid crystal layer 35 and the second lower electrode structure 37.
  • the alignment direction of the second upper alignment layer 34 and the second lower alignment layer 36 is perpendicular or a specific angle (for example, less than 90 degrees or greater than 90 degrees) is set according to actual needs, so that the liquid crystal molecules 351 in the second liquid crystal layer 35 can be
  • the alignment function is carried out according to actual needs.
  • the alignment direction of the first lower alignment layer 26 and the second upper alignment layer 34 is perpendicular or the same.
  • FIG. 5 is a schematic plan view showing the first upper electrode structure 23 and the first lower electrode structure 27 of the liquid crystal slit grating 200 shown in FIG.
  • the first upper electrode structure 23 may be a planar electrode, or may be formed into other shapes, a plurality of partitions, and the like according to actual requirements. In the embodiment, the first upper electrode structure 23 is illustrated as a planar electrode.
  • the first lower electrode structure 27 includes at least two electrode layers.
  • the present embodiment is exemplified by including two electrode layers, and the two electrode layers are respectively referred to as a first electrode layer 271 and a second electrode layer 272, wherein the first electrode layer 271 Adjacent to the first liquid crystal layer 25, the second electrode layer 272 is disposed adjacent to the inner side of the first lower substrate 28.
  • the first electrode layer 271 includes a plurality of first strip electrodes 271a arranged in parallel, and the plurality of first strip electrodes 271a are alternately spaced and electrically isolated from each other, and both are along the first extending direction D1 (ie, perpendicular to the paper in FIG. 4) The direction of the face) extends.
  • the second electrode layer 272 includes a plurality of second strip electrodes 272a disposed in parallel, and the plurality of second strip electrodes 272a are alternately spaced and electrically isolated from each other, and both are along the first extending direction D1 (ie, perpendicular to the paper in FIG. 4) The direction of the face) extends. And the position where the second strip electrode 272a is located is in the interval of the plurality of first strip electrodes 271a, so that the plurality of first strip electrodes 271a and the plurality of second strip electrodes 272a form a complementary relationship, Forming a complete gap-free (seamless) projection surface of the first lower substrate 28 can completely cover the first liquid crystal layer 25 in the region.
  • the adjacent side of the first strip electrode 271a and the adjacent second strip electrode 272a are aligned, so as to minimize the electrical signal interference between the two, and the two can completely cover the area in the area.
  • a liquid crystal layer 25 prevents light leakage when a liquid crystal slit is formed.
  • the edge of the first strip electrode 271a adjacent to the adjacent second strip electrode 272a may be overlapped.
  • the overlap region may be the first strip electrode 271a or the second strip.
  • a planarized insulating layer 273 is also provided to fill the space between the first strip electrode 271a and the second strip electrode 272a.
  • the insulating layer 273 may be made of silicon nitride or silicon oxide or other transparent material.
  • the plurality of first strip electrodes 271a and the plurality of second strip electrodes 272a have the same structure, and are rectangular strip electrodes having the same length, width, and pitch, thereby forming a light-shielding slit and a light-transmitting slit.
  • a driving voltage V1 may be periodically applied to the adjacent plurality of strip electrodes 271a/272a for forming a light shielding slit, in other strip shapes.
  • a zero voltage V0 or a reference voltage Vref is applied to the electrodes 271a/272a for forming a light transmissive slit.
  • the ratio and width of the light-shielding slit and the light-transmitting slit can be changed, thereby adjusting the grating pitch and the pitch of the liquid crystal slit grating, An electrically controllable dynamic liquid crystal slit grating is realized, which will be described in detail later.
  • the width and the ratio of the light-shielding slit and the light-transmissive slit need to be adjusted according to the parameter configuration of the specific stereoscopic display device, and will not be described herein.
  • the first upper polarizer 21 is disposed outside the first upper substrate 22, that is, on the side opposite to the first alignment layer 24.
  • the first lower polarizer 29 is disposed outside the first lower substrate 28, that is, on the side opposite to the second alignment layer 26.
  • the first upper polarizer 21 and the first lower polarizer 29 may also be disposed on the inner side of the first upper substrate 22 and the first lower substrate 28, which are not specifically limited herein.
  • the polarization direction of the first upper polarizer 21 is the same as the alignment direction of the first upper alignment layer 24; the polarization direction of the first lower polarizer 29 is the same as the alignment direction of the first lower alignment layer 26.
  • the alignment direction of the first upper alignment layer 24 and the polarization direction of the first upper polarizer 21 both extend in the second extension direction D2; the alignment direction of the first lower alignment layer 26.
  • the polarization directions of the first lower polarizer 29 extend in the first extending direction D1.
  • the first extending direction D1 and the second extending direction D2 are perpendicular to each other.
  • the first upper alignment layer 24 and the first lower alignment layer 26 may be aligned by frictional alignment or radiation alignment.
  • the first liquid crystal layer 25 includes liquid crystal molecules 251. Under the alignment of the first upper alignment layer 24 and the first lower alignment layer 26, the liquid crystal molecules 251 form a twisted arrangement as shown in FIG.
  • the first liquid crystal layer 25 may be a polymer dispersed (PDLC) type first liquid crystal layer, or a nematic curve induced phase (NCAP) type first liquid crystal layer, or a non-uniform polymer dispersed (NPD-LCD) type.
  • PDLC polymer dispersed
  • NCAP nematic curve induced phase
  • NPD-LCD non-uniform polymer dispersed
  • the first upper substrate 22 and the first lower substrate 28 may be made of a transparent transparent material such as transparent glass or quartz, or may be made of a soft transparent material such as plastic, as long as light is transmitted. Not listed one by one.
  • the first upper electrode structure 23 and the first lower electrode structure 27 are both made of a transparent conductive material, such as indium tin oxide (Indium). Tin Oxide, ITO) or Indium Zinc Oxide (IZO), not listed here.
  • a transparent conductive material such as indium tin oxide (Indium). Tin Oxide, ITO) or Indium Zinc Oxide (IZO), not listed here.
  • FIG. 6 is a schematic plan view showing the second upper electrode structure 33 and the second lower electrode structure 37 of the liquid crystal slit grating 200 shown in FIG.
  • the second upper electrode structure 33 may be a planar electrode, or may be formed into other shapes, a plurality of partitions, and the like according to actual requirements.
  • the second upper electrode structure 33 is exemplified as a planar electrode.
  • the second lower electrode structure 37 includes at least two electrode layers.
  • the present embodiment is exemplified by including two electrode layers, and the two electrode layers are respectively referred to as a third electrode layer 371 and a fourth electrode layer 372, wherein the third electrode layer 371 Adjacent to the second liquid crystal layer 35, the fourth electrode layer 372 is disposed adjacent to the inner side of the second lower substrate 38.
  • the third electrode layer 371 includes a plurality of third strip electrodes 371a disposed in parallel, and the plurality of third strip electrodes 371a are alternately spaced and electrically isolated from each other, and both are along the first extending direction D1 (ie, perpendicular to the paper in FIG. 4) The direction of the face) extends.
  • the fourth electrode layer 372 includes a plurality of fourth strip electrodes 372a disposed in parallel, and the plurality of fourth strip electrodes 372a are alternately spaced and electrically isolated from each other, and both are along the first extending direction D1 (ie, perpendicular to the paper in FIG. 4) The direction of the face) extends. And the position where the fourth strip electrode 372a is located is in the interval of the plurality of third strip electrodes 371a, so that the plurality of third strip electrodes 371a and the plurality of fourth strip electrodes 372a form a complementary relationship, Forming a complete gap-free (seamless) projection surface of the second lower substrate 38, the second liquid crystal layer 35 in the region can be completely covered.
  • the third strip electrode 371a is aligned with the adjacent side of the adjacent fourth strip electrode 372a, so as to minimize the electrical signal interference between the two, and the two can completely cover the area in the area.
  • the liquid crystal layer 35 prevents the occurrence of light leakage when the liquid crystal slit is formed.
  • the edge of the third strip electrode 371a adjacent to the adjacent fourth strip electrode 372a may be overlapped.
  • the overlapping area may be the third strip electrode 371a or the fourth strip.
  • a planarized insulating layer 373 is also provided to fill the space between the third strip electrode 371a and the fourth strip electrode 372a.
  • the insulating layer 273 may be made of silicon nitride or silicon oxide or other transparent material.
  • the plurality of third strip electrodes 371a have the same structure as the plurality of fourth strip electrodes 372a, and are rectangular strip electrodes having the same length and width and the same pitch, thereby forming the light-shielding slit and the light-transmitting slit.
  • the driving voltage V1 may be periodically applied to the adjacent strip electrodes 371a/372a for forming the light shielding slit, in other strip shapes.
  • a zero voltage V0 or a reference voltage Vref is applied to the electrodes 371a/372a for forming a light transmissive slit.
  • the ratio and width of the light-shielding slit and the light-transmitting slit can be changed, thereby adjusting the grating pitch and the pitch of the liquid crystal slit grating, An electrically controllable dynamic liquid crystal slit grating is realized, which will be described in detail later.
  • the width and the ratio of the light-shielding slit and the light-transmissive slit need to be adjusted according to the parameter configuration of the specific stereoscopic display device, and will not be described herein.
  • the first lower polarizer 29 is disposed outside the second upper substrate 32, that is, on the side opposite to the second upper alignment layer 34.
  • the second polarizer 39 is disposed outside the second lower substrate 38, that is, on the side opposite to the second lower alignment layer 36.
  • the first lower polarizer 29 and the second polarizer 39 may also be disposed on the inner side of the second upper substrate 32 and the second lower substrate 38, which are not specifically limited herein.
  • the alignment direction of the second upper alignment layer 34 and the polarization direction of the first lower polarizer 29 both extend in the second extension direction D2; the alignment direction of the second lower alignment layer 36
  • the polarization directions of the first lower polarizer 29 extend in the first extending direction D1.
  • the first extending direction D1 and the second extending direction D2 are perpendicular to each other.
  • the second upper alignment layer 34 and the second lower alignment layer 36 may be aligned by frictional alignment or radiation alignment.
  • the liquid crystal molecules 351 are included in the second liquid crystal layer 35. Under the alignment of the second upper alignment layer 34 and the second lower alignment layer 36, the liquid crystal molecules 351 form a twisted arrangement as shown in FIG.
  • the second liquid crystal layer 35 may be a polymer dispersed PDLC type first liquid crystal layer, or a nematic curve induced phase NCAP type first liquid crystal layer, or a non-uniform polymer dispersed NPD-LCD type first liquid crystal layer.
  • the first upper substrate 22 and the first lower substrate 28 may be made of a transparent transparent material such as transparent glass or quartz, or may be made of a soft transparent material such as plastic, as long as light is transmitted. Not listed one by one.
  • the second upper electrode structure 33 and the second lower electrode structure 37 are all made of a transparent conductive material, such as indium tin oxide or indium zinc oxide, which are not enumerated here.
  • the extending direction of the first strip electrode 271a is parallel to the extending direction of the second strip electrode 272a; the extending direction of the third strip electrode 371a is parallel to the extending direction of the fourth strip electrode 372a;
  • the extending direction of the shaped electrode 272a is perpendicular to the extending direction of the third strip electrode 371a or is set to a specific angle (for example, less than 90 degrees or greater than 90 degrees) according to actual needs, thereby achieving realization in the stereoscopic display device 100 of the present invention.
  • the liquid crystal slit can also be adjusted according to the user's viewing position, and the three-dimensional stereoscopic display image visible to the naked eye can be displayed, so that the user can always obtain a good stereoscopic visual experience.
  • liquid crystal slit grating 200 when a plurality of strip electrodes are separated one by one, such as all of the first strip electrodes 271a, a driving voltage V1 is simultaneously applied, and a plurality of strip electrodes, such as all the second strip electrodes 272a, which are further separated one by one, and The same zero voltage V0 or reference voltage Vref is simultaneously applied to the first upper electrode structure 23.
  • liquid crystal slit grating 200 when a plurality of strip electrodes are separated one by one, such as all of the third strip electrodes 371a, a driving voltage V1 is simultaneously applied, and a plurality of strip electrodes, such as all the fourth strip electrodes 372a, which are further separated one by one, and The same zero voltage V0 or reference voltage Vref is simultaneously applied to the third upper electrode structure 23.
  • a strong electric field is generated between the plurality of fourth strip electrodes 372a and the second upper electrode structure 33, and the electric field of the region drives the long axis of the liquid crystal molecules 351 corresponding to the regions in the direction of the electric field so that the second liquid crystal layer 35 is All of the long axes of the liquid crystal molecules 351 are arranged in the direction of the electric field, and a strong electric field is generated between the plurality of second strip electrodes 272a and the first upper electrode structure 23 which are separated one by one, and the electric field in the region drives the liquid crystal corresponding to the region.
  • the long axes of the molecules 251 are arranged in the direction of the electric field, and the polarized light sequentially passes through the second lower substrate 38, the second lower electrode structure 37, the second lower alignment layer 36, the second liquid crystal layer 35, the second upper alignment layer 34, and the second
  • the upper electrode structure 33 and the second upper substrate 32 when the polarized light propagates toward the first lower substrate 28, the polarized light may pass through the first lower substrate 28 in a strip-shaped region corresponding to the first strip electrodes 271a which are separated one by one.
  • the polarized light cannot pass through the first upper polarizer 21, and a light-shielding slit is formed outside the first upper substrate 22; corresponding to the plurality of second strip electrodes 272a which are further separated one by one In the strip-shaped region, the polarized light passes through the first lower substrate 28, and under the action of the twisted liquid crystal molecules 251, the polarization direction of the polarized light is gradually changed to the same polarized light as the polarization direction of the first upper polarizer 21, and the polarization is Light may pass through the first upper polarizer 21 to form a light-transmissive slit outside the first upper substrate 22.
  • the light-shielding slits are alternately arranged with the light-transmissive slits, and function similarly to the conventional slit gratings, thereby forming a slit grating having a ratio of a light-shielding slit to a light-transmitting slit as shown in FIG. 7a of 1:1.
  • a method for realizing stereoscopic display by using a liquid crystal slit grating in conjunction with a display panel has been known to the public and will not be described herein.
  • the driving voltage V1 is simultaneously applied to all of the second strip electrodes 272a spaced apart one by one, and the same zero voltage V0 or reference voltage is simultaneously applied to all of the first strip electrodes 271a and the first upper electrode structure 23 which are separated one by one. Vref.
  • a strong electric field is generated between the plurality of second strip electrodes 272a and the first upper electrode structure 23 which are separated one by one, and the electric field of the region drives the long axes of the liquid crystal molecules 251 corresponding to the regions in the direction of the electric field; There is no electric field between the plurality of first strip electrodes 271a and the first upper electrode structure 23, and the liquid crystal molecules 251 are still arranged in a twisted manner.
  • a slit grating having a ratio of a light-shielding slit to a light-transmissive slit as shown in FIG. 7b can be formed, and the slit grating shown in FIG. 7b is equivalent to that shown in FIG. 7a.
  • the illustrated slit grating produces a displacement that moves half a pitch to the right.
  • the light-shielding slit and the light-transmitting slit can be moved to the left or right by any number of pitches, which will not be described herein.
  • the driving voltage V1 may be periodically applied to the adjacent two strip electrodes (ie, a first strip electrode 271a and a neighboring second strip electrode 272a).
  • the other strip electrode i.e., a first strip electrode 271a or a second strip electrode 272a
  • V0 or Vref a reference voltage
  • the ratio is a 2:1 slit grating.
  • the stereoscopic display device 100 When the stereoscopic display device 100 is detected in the vertical screen direction, and when the polarized light having the same polarization direction as the polarization direction of the second polarizer 39 is propagated from the second lower substrate 38 toward the first upper substrate 22, in all the fourth strips
  • the same electrode zero voltage V0 or reference voltage Vref is simultaneously applied to the shape electrode 372a, all of the second strip electrodes 272a, all of the first strip electrodes 271a, and the second upper electrode structure 33 and the first upper electrode structure 23.
  • a strong electric field is generated between the plurality of first strip electrodes 271a and the first upper electrode structure 23 which are separated one by one, and the electric field of the region drives the long axes of the liquid crystal molecules 251 corresponding to the regions in the direction of the electric field, separated one by one.
  • a strong electric field is generated between the plurality of second strip electrodes 272a and the first upper electrode structure 23, and the electric field of the region drives the long axis of the liquid crystal molecules 251 corresponding to the regions in the direction of the electric field so that the first liquid crystal layer 25 is All the long axes of the liquid crystal molecules 251 are arranged in the direction of the electric field.
  • a strong electric field is generated between the plurality of fourth strip electrodes 372a and the second upper electrode structure 33 which are separated one by one, and the electric field of the region drives the long axes of the liquid crystal molecules 351 corresponding to the regions in the direction of the electric field.
  • the polarized light can pass through the second lower substrate 38, and the liquid crystal molecules 351 do not change the polarization direction of the polarized light, and the polarized light cannot pass through the first lower polarizer.
  • a light-shielding slit is formed outside the second upper substrate 32; in a strip-shaped region corresponding to the plurality of fourth strip electrodes 372a separated by one another, the polarized light is transmitted through the second lower substrate 38, and the liquid crystal molecules 351 are arranged in a twisted manner.
  • the polarization direction of the polarized light is gradually changed to the same polarized light as the polarization direction of the first lower polarizer 29, and the polarized light can pass through the first lower polarizer 29 to form a narrow light transmission outside the second upper substrate 32.
  • the slit, the light-shielding slit and the light-transmissive slit are alternately arranged, and the action is similar to the common slit grating.
  • the polarized light transmitted through the first lower polarizer 29 is sequentially transmitted through the first lower substrate 28, the first lower electrode structure 27, the first lower alignment layer 26, the first liquid crystal layer 25, the first upper alignment layer 24, and the first An upper electrode structure 23, a first upper substrate 22, and a first upper polarizer 21, the light-shielding slits and the light-transmissive slits are alternately arranged to form a slit grating, thereby forming a light-shielding slit and a light-transmitting slit as shown in FIG. 8a.
  • a method for realizing stereoscopic display by using a liquid crystal slit grating in conjunction with a display panel has been known to the public and will not be described herein.
  • the driving voltage V1 is simultaneously applied to all of the fourth strip electrodes 372a spaced apart one by one, and the same zero voltage V0 or reference voltage is simultaneously applied to all of the third strip electrodes 371a and the second upper electrode structure 33 which are separated one by one. Vref.
  • a stronger electric field is generated between the plurality of fourth strip electrodes 372a and the second upper electrode structure 33 which are separated one by one, and the electric field of the region drives the long axes of the liquid crystal molecules 351 corresponding to the regions in the direction of the electric field; There is no electric field between the plurality of third strip electrodes 371a and the second upper electrode structure 33, and the liquid crystal molecules 351 are still arranged in a twisted manner.
  • a slit grating having a light-shielding slit and a light-transmissive slit ratio of 1:1 as shown in FIG. 8b can be formed, and the slit grating shown in FIG. 8b is equivalent to that shown in FIG. 8a.
  • the illustrated slit grating produces a displacement that moves half a pitch to the right.
  • the light-shielding slit and the light-transmitting slit can be moved to the left or right by any number of pitches, which will not be described herein.
  • the driving voltage V1 may be periodically applied to the adjacent two strip electrodes (ie, a third strip electrode 371a and a neighboring fourth strip electrode 372a).
  • the other strip electrode i.e., a third strip electrode 371a or a fourth strip electrode 372a
  • V0 or Vref a reference voltage
  • the ratio is a 2:1 slit grating.
  • the shading slit and the light transmission of the controllable slit grating 102 can be adjusted.
  • the specific parameters of the slit enable the user to always be in the best viewing position and improve the user's stereoscopic viewing experience.
  • the dynamic scanning method is used to control the formation of the liquid crystal slit grating 200, and the display driving method with time division and spatial division can improve the resolution of the stereoscopic display, that is, the resolution of the stereoscopic image can be consistent with the resolution of the display. Reduce the resolution loss of stereo images, greatly improve the stereo display quality and user experience.
  • the liquid crystal slit can also be adjusted according to the user's viewing position, and the three-dimensional stereoscopic display image visible to the naked eye can be displayed to better realize the stereoscopic display, so that the user is always in the optimal viewing position, and the stereoscopic visual experience of the user is greatly improved.
  • FIG. 9 is a schematic structural diagram of another embodiment of a liquid crystal slit grating provided by the present invention. Since the liquid crystal slit grating 400 of the present embodiment is similar in structure to the liquid crystal slit grating 200 of the first embodiment shown in FIG. 4, FIG. 9 only indicates and explains the main differences thereof. Compared with the liquid crystal slit grating 200 shown in FIG. 4, the liquid crystal slit grating 400 mainly differs in that:
  • the first lower electrode structure 47 includes three electrode layers stacked in a stack, which are denoted as a first electrode layer 471, a second electrode layer 472, and a third electrode layer 473, respectively.
  • the first electrode layer 471 is disposed adjacent to the first liquid crystal layer 45
  • the third electrode layer 473 is disposed adjacent to the inner side of the first lower substrate 48
  • the second electrode layer 472 is disposed between the first electrode layer 471 and the third electrode layer 473.
  • a planarized first insulating layer is disposed between the first electrode layer 471 and the second electrode layer 472. 474.
  • a planarized second insulating layer 475 is disposed between the second electrode layer 472 and the third electrode layer 473.
  • the first insulating layer 474 and the second insulating layer 475 may be made of silicon nitride or silicon oxide or other transparent material.
  • the second lower electrode structure 57 includes three electrode layers stacked in layers, which are denoted as a fourth electrode layer 571, a fifth electrode layer 572, and a sixth electrode layer 573, respectively.
  • the fourth electrode layer 571 is disposed adjacent to the second liquid crystal layer 55
  • the sixth electrode layer 573 is disposed adjacent to the inner side of the first lower substrate 48
  • the fifth electrode layer 572 is disposed between the fourth electrode layer 571 and the sixth electrode layer 573.
  • a planarized third insulating layer is disposed between the fourth electrode layer 571 and the fifth electrode layer 572. 574.
  • a planarized fourth insulating layer 575 is disposed between the fifth electrode layer 572 and the sixth electrode layer 573.
  • the third insulating layer 574 and the fourth insulating layer 575 may be made of silicon nitride or silicon oxide or other transparent material.
  • the first electrode layer 471 includes a plurality of parallel and spaced first strip electrodes 471a
  • the second electrode layer 472 includes a plurality of parallel and spaced second strip electrodes 472a
  • the third electrode layer 473 includes a plurality of A third strip electrode 473a arranged in parallel and spaced apart.
  • the fourth electrode layer 571 includes a plurality of parallel and spaced fourth strip electrodes 571a
  • the fifth electrode layer 572 includes a plurality of parallel and spaced fifth strip electrodes 572a
  • the sixth electrode layer 573 includes a plurality of A sixth strip electrode 573a arranged in parallel and spaced apart.
  • the first strip electrode 471a, the second strip electrode 472a, and the third strip electrode 473a have the same width and extend in the same direction. And between the adjacent first strip electrodes 471a or between the second strip electrodes 472a or between the third strip electrodes 473a are spaced apart by two strip electrode widths, and the second strip electrodes 472a and the third strip electrodes 473a is respectively moved to the right by a strip electrode width and the distance between the two strip electrodes with respect to the first strip electrode 471a, so that the edges thereof are aligned, thereby mutually complementing the gaps between the electrodes without causing overlap between each other, and avoiding Light leakage phenomenon when forming a light-shielding slit or a light-transmitting slit.
  • the fourth strip electrode 571a, the fifth strip electrode 572a, and the sixth strip electrode 573a have the same width and extend in the same direction. And two strip-shaped electrode widths are spaced between any adjacent fourth strip electrodes 571a or between fifth strip electrodes 572a or sixth strip electrodes 573a, and fifth strip electrodes 572a and sixth strip electrodes 573a is respectively moved to the right by a strip electrode width and a distance between the two strip electrodes with respect to the fourth strip electrode 571a, so that the edges thereof are aligned, thereby mutually complementing each other's gaps without causing overlap between each other, and avoiding Light leakage phenomenon when forming a light-shielding slit or a light-transmitting slit.
  • the extending direction of the first strip electrode 471a is parallel to the extending direction of the second strip electrode 472a and the extending direction of the third strip electrode 473a; the extending direction of the fourth strip electrode 571a and the fifth strip electrode
  • the extending direction of the 572a is parallel to the extending direction of the sixth strip electrode 573a; the extending direction of the third strip electrode 473a is perpendicular to the extending direction of the fourth strip electrode 571a or a specific angle is set according to actual needs (for example, less than 90 degrees or more than 90 degrees), so that when the stereoscopic display device 100 of the present invention is in the horizontal direction and the vertical direction, the liquid crystal slit can be adjusted according to the user's viewing position, and the three-dimensional three-dimensional display can be displayed. Display images so that users always get a good stereoscopic experience.
  • first lower electrode structure 47 can also be divided into four layers, five layers, and the like as needed, similar to the above structure, and is not limited herein; the second lower electrode structure 57 can also be divided into four layers according to needs.
  • the five layers and the like are similar to the above structure and are not limited herein.
  • the driving method of the liquid crystal slit grating 400 is similar to the driving method of the liquid crystal lens 200 described above, and will not be described herein.
  • the first strip electrode 471a, the second strip electrode 472a, and the third strip electrode 473a have the same or similar structures and parameters, and are arranged parallel to each other, and adjacent Edge aligned or partially overlapping.
  • the first strip electrode 471a, the second strip electrode 472a, and the third strip electrode 473a can complement each other's gaps, covering the entire area on the plane projection, so that it is not necessary to be in the first
  • a light shielding strip is disposed between the strip electrode 471a, the second strip electrode 472a, and the third strip electrode 473a, and light leakage on the light shielding slit or the light transmission slit can be avoided, and at the same time, the three are the same or similar.
  • the structure and parameters provide more operation space for adjusting parameters such as the grid pitch and the pitch of the liquid crystal slit grating 400, and further improve the quality of the liquid crystal slit grating and the stereoscopic display device used therewith.
  • the fourth strip electrode 571a, the fifth strip electrode 572a, and the sixth strip electrode 573a have the same or similar structures and parameters, and are arranged parallel to each other, and adjacent thereto. Edge aligned or partially overlapping.
  • the fourth strip electrode 571a, the fifth strip electrode 572a, and the sixth strip electrode 573a can complement each other's gaps and cover the entire area on the plane projection, so that it is not necessary to be in the fourth A light shielding strip is disposed between the strip electrode 571a, the fifth strip electrode 572a, and the sixth strip electrode 573a, and light leakage on the light shielding slit or the light transmission slit can be avoided, and at the same time, the three are the same or similar.
  • the structure and parameters provide more operation space for adjusting parameters such as the grid pitch and the pitch of the liquid crystal slit grating 400, and further improve the quality of the liquid crystal slit grating and the stereoscopic display device used therewith.
  • the first lower electrode first lower electrode structure 27, the second lower electrode structure 37, the first lower electrode structure 47, and the second lower electrode structure 57 of the liquid crystal slit gratings 200, 400 are adopted in the embodiment of the present invention.
  • the plurality of electrodes overlap each other or partially so that the lower electrode completely covers the first liquid crystal layer 25, the second liquid crystal layer 35, the first liquid crystal layer 45, and the second liquid crystal in the region where the lower electrode is completely covered.
  • Layer 55 Provided as a multi-layer structure, and the plurality of electrodes overlap each other or partially so that the lower electrode completely covers the first liquid crystal layer 25, the second liquid crystal layer 35, the first liquid crystal layer 45, and the second liquid crystal in the region where the lower electrode is completely covered.
  • the parameters such as the grating pitch, the pitch, the slit width, and the position of the liquid crystal slit gratings 200, 400 are adjusted according to actual stereoscopic display requirements, thereby achieving
  • the liquid crystal slit can be adjusted according to the user's viewing position, and the three-dimensional stereoscopic display image visible to the naked eye can be displayed, so that the user can always obtain good stereoscopic vision.
  • the liquid crystal slit can be adjusted according to the user's viewing position, and the three-dimensional stereoscopic display image visible to the naked eye can be displayed, so that the user can always obtain good stereoscopic vision.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶狭缝光栅、立体显示装置及其驱动方法,该驱动方法包括显示面板显示同一场景的具有视差的左眼图像和右眼图像,和确定用户的立体观看位置,以及检测出所述显示面板的显示方位,检测出所述显示面板位于横屏或竖屏,最后调节液晶狭缝光栅遮光狭缝和透光狭缝,从而使观看者的左右眼分别对应观看到左眼图像和右眼图像。该显示装置能够根据立体显示需要,调节液晶狭缝光栅如栅节、栅距等参数,使用户始终处于最佳的观看位置,大大提升用户的立体视觉体验。

Description

液晶狭缝光栅、立体显示装置及其驱动方法
【技术领域】
本发明属于立体显示领域,尤其涉及一种液晶狭缝光栅,还涉及一种应用液晶狭缝光栅的立体显示装置及其驱动方法。
【背景技术】
人的左眼和右眼有间距,造成两眼的视角存在细微的差别,这样的差别会让左眼和右眼分别观察的景物有略微的视差,从而在人的大脑中形成立体图像。
一般的立体显示装置在观看时,需要佩戴立体眼镜,使得本来就戴有眼镜(如近视眼镜、老花眼镜等)的观看者,为了获得清晰的观看效果,需要将两付眼镜重叠,使得立体显示观看较为不便。此外,由于立体眼镜的两镜脚之间的宽度通常是固定的,这可能使得不同脸型的观看者,在佩戴立体眼镜时不能获得较佳的体验。因此,不需要佩戴立体眼镜的裸眼立体显示技术越来越为人们所关注。
裸眼式立体显示装置主要原理是在显示面板前设置光栅,例如狭缝光栅或柱面光栅,所述光栅将显示面板显示的至少两幅视差图像分别提供给观看者的左、右眼。
目前立体显示装置中应用的狭缝光栅一般为固定式光栅,即狭缝光栅的透光狭缝和遮光狭缝是固定的。这种固定是狭缝光栅在形成立体视觉时,其观看区域有严格的限定,超过此限定的区域,不能形成良好的立体视觉,极大地降低了用户的立体视觉体验,不利于立体显示技术的推广应用。
【发明内容】
为了至少部分解决以上问题,本发明提出了一种液晶狭缝光栅、立体显示装置及其驱动方法。
本发明的目的在于提供一种液晶狭缝光栅,包括:
依次层叠设置的第一上偏光片、第一上基板、第一上电极结构、第一上配向层、第一液晶层、第一下配向层、第一下电极结构、第一下基板、第一下偏光片、第二上基板、第二上电极结构、第二上配向层、第二液晶层、第二下配向层、第二下电极结构、第二下基板及第二偏光片;
所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一液晶层;
所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二液晶层;
所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直。
其中,任意条形电极与其近邻的另一层的条形电极的邻边对齐。
其中,任意条形电极与其近邻的另一层的条形电极的邻边部分重叠。
其中,任意条形电极与其近邻的另一层的条形电极的重叠区域为条形电极的宽度的十分之一至三分之一。
其中,处于同一电极层的条形电极的宽度相同,其同一电极层中相邻的条形电极的间距相同。
其中,所述第一下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置;
所述第二下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置。
其中,所述第一下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置;
所述第二下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置。
其中,在检测到立体显示装置位于横屏或竖屏时,通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整液晶狭缝光栅所形成的遮光狭缝和透光狭缝的参数。
本发明的目的在于还提供一种立体显示装置,包括:
显示面板,用于显示同一场景的具有视差的左眼图像和右眼图像;
液晶狭缝光栅,设置在显示面板的显示面上,所述液晶狭缝光栅包括依次层叠设置的第一上偏光片、第一上基板、第一上电极结构、第一上配向层、第一液晶层、第一下配向层、第一下电极结构、第一下基板、第一下偏光片、第二上基板、第二上电极结构、第二上配向层、第二液晶层、第二下配向层、第二下电极结构、第二下基板及第二偏光片;所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一液晶层;所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二液晶层;所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直;
在检测到立体显示装置位于横屏或竖屏时,针对不同的观看位置,通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整液晶狭缝光栅所形成的遮光狭缝和透光狭缝的参数,从而使观看者的左右眼对应观看到显示面板显示的左眼图像和右眼图像。
其中,任意条形电极与其近邻的另一层的条形电极的邻边对齐。
其中,任意条形电极与其近邻的另一层的条形电极的邻边部分重叠。
其中,任意条形电极与其近邻的另一层的条形电极的重叠区域为条形电极的宽度的十分之一至三分之一。
其中,处于同一电极层的条形电极的宽度相同,其同一电极层中相邻的条形电极的间距相同。
其中,所述第一下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置;
所述第二下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置。
其中,所述第一下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置;
所述第二下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置。
本发明的目的在于还提供一种上述立体显示装置的驱动方法,采用所述驱动方法的立体显示装置,包括:
显示面板,用于显示同一场景的具有视差的左眼图像和右眼图像;
液晶狭缝光栅,设置在显示面板的显示面上,所述液晶狭缝光栅包括依次层叠设置的第一上偏光片、第一上基板、第一上电极结构、第一上配向层、第一液晶层、第一下配向层、第一下电极结构、第一下基板、第一下偏光片、第二上基板、第二上电极结构、第二上配向层、第二液晶层、第二下配向层、第二下电极结构、第二下基板及第二偏光片;所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一液晶层;所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二液晶层;所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直;
所述驱动方法包括:
显示面板显示同一场景的具有视差的左眼图像和右眼图像;
确定用户的立体观看位置;
通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整液晶狭缝光栅所形成的遮光狭缝和透光狭缝的参数,从而使观看者的左右眼分别对应观看到左眼图像和右眼图像。
其中,所述液晶狭缝光栅的参数至少包括栅距、透光狭缝的宽度、透光狭缝的位置中的一个。
其中,调节所述透光狭缝的位置的移动方向与观看者的观看位置的移动方向一致。
其中,所述显示面板显示同一场景的具有视差的左眼图像和右眼图像的过程之后,所述确定用户的立体观看位置之前,还包括:
检测出所述显示面板的显示方位,检测出所述显示面板位于横屏或竖屏。
相较于现有技术,第一下电极结构包括多个电极层,每个电极层包括多个平行设置的条形电极,不同电极层上的条形电极可互相弥补彼此之间的间隙,在第一下基板的平面投影上覆盖完整的区域,从而不必在条形电极之间设置遮光带,也能避免在遮光狭缝或是透光狭缝上的漏光现象,进一步提升液晶狭缝光栅的品质。
相较于现有技术,第二下电极结构包括多个电极层,每个电极层包括多个平行设置的条形电极,不同电极层上的条形电极可互相弥补彼此之间的间隙,在第二下基板的平面投影上覆盖完整的区域,从而不必在条形电极之间设置遮光带,也能避免在遮光狭缝或是透光狭缝上的漏光现象,进一步提升液晶狭缝光栅的品质。
采用上述的配置和操作的立体显示装置,当立体显示装置的显示图像或用户的位置发生改变时,可以通过调节液晶狭缝光栅的栅距、透光狭缝的宽度、透光狭缝的位置等具体参数,能够使用户始终处于最佳的观看位置,提高用户的立体观看体验,推动立体显示技术的推广及应用。
【附图说明】
图1为本发明提供的立体显示装置的一实施例的结构示意图;
图2为本发明提供的立体显示装置的一实施例另一种工作状态示意图;
图3为本发明提供的立体显示装置的一实施例另一种工作状态示意图;
图4为本发明提供的液晶狭缝光栅的一实施例的结构示意图;
图5为图4所示液晶狭缝光栅的第一上电极结构和第一下电极结构的平面结构示意图;
图6为图4所示液晶狭缝光栅的第二上电极结构和第二下电极结构的平面结构示意图;
图7为图4所示的液晶狭缝光栅在立体显示装置位于横屏方向时所形成的四种工作状态示意图;
图8为图4所示的液晶狭缝光栅在立体显示装置位于竖屏方向时所形成的四种工作状态示意图;
图9为本发明提供的液晶狭缝光栅另一实施例的结构示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
请参见图1,图1为本发明提供的立体显示装置的一实施例的结构示意图,该立体显示装置100包括显示面板101以及设置在显示面板101显示面的可控狭缝光栅102。
显示面板101为平面显示装置,用于产生同一场景的具有视差的左眼图像L和右眼图像R,其中左眼图像L和右眼图像R例如可以分别为条形图像,并在水平方向相互交替的显示在显示面板101上。显示面板101例如可以是液晶显示装置、等离子显示装置、有机发光二极管显示装置、电致发光显示装置等,此处不再一一列举。
可控狭缝光栅102为狭缝式光栅,其可以受控制的在其特定位置形成遮光狭缝和透光狭缝,一般地可形成交替结构的透光狭缝和遮光狭缝,从而使观看者的左眼经过透光狭缝后,只能看到显示面板101上显示的左眼图像L,右眼只能看到显示面板101上显示的右眼图像R。由于左眼图像L和右眼图像R为同一场景的具有视差的图像,观看者根据左右眼接收到的不同的视差图像,产生立体视觉。
当观看者相对立体显示装置100移动一定的距离,例如在第一时刻,观看者在图1所示的位置,在第二时刻,观看者相对显示装置100向其中部移动一定距离,如图2所示的位置。此时,如果可控狭缝光栅102保持图1所示的透光狭缝和遮光狭缝,左右眼将不能看到对应的左眼图像L和右眼图像R,造成视觉混乱,无法形成立体视觉。此时通过调整可控狭缝光栅102的透光狭缝和遮光狭缝的位置,例如调整为图2所示的位置,即,可控狭缝光栅102的透光狭缝相对于显示面板101向其中部位置移动。经过调整,可以使当前位置的观看者的左眼仍然能够通过透光狭缝只看到显示面板101上显示的左眼图像L,同时右眼只能看到显示面板101上显示的右眼图像R。则此时,根据观看者的位置(即眼睛的位置)变化,相应改变可控狭缝光栅102的遮光狭缝和透光狭缝的位置,仍然能够保证观看者左右眼看到具有视差的左眼图像L和右眼图像R,保持较好的立体视觉。
同样的,如果此时观看者的眼睛继续移动的如图3所示的位置,可以继续调整可控狭缝光栅102的透光狭缝的位置向图2所示的右方向移动,仍然保持观看者左右眼看到具有视差的左眼图像L和右眼图像R,保持较好的立体视觉,提高观看者的立体观看体验。
由上述内容可知,一般的,在显示面板101上显示的左眼图像L和右眼图像R的位置未发生变化的时候,经过调整可控狭缝光栅102的透光狭缝和遮光狭缝的位置,能够一直保持观看者具有良好的立体视觉。一般地,透光狭缝的移动方向与观看者眼睛移动的方向是一致的,当然,如果显示面板101显示的左眼图像L和右眼图像R的产生了重新排列,也可能使透光狭缝的移动方向与观看者眼睛移动的移动方向不一致,甚至相反。总而言之,在具体的设计中,应当考虑到左、右眼图像的变化,合理地调整可控狭缝光栅102的透光狭缝和遮光狭缝位置,以观看者左右眼分别能够实时的观看到左眼图像L和右眼图像R为准。
另外,可控狭缝光栅102除了能够调整透光狭缝和遮光狭缝的位置,还可以调整透光狭缝和遮光狭缝的栅节、栅距、狭缝宽度等参数,以观看者左右眼分别能够实时的观看到左眼图像L和右眼图像R为准。
可控狭缝光栅102可以是液晶狭缝光栅、电泳狭缝光栅、电润湿狭缝光栅等,在此不做具体限制。为了能够更好的说明本发明,本发明还提供一种电可控的液晶狭缝光栅。
液晶狭缝光栅可以包括两个间隔设置的电极结构以及液晶层。其中,液晶层设置于两个电极结构之间,液晶层包括多个液晶分子。
在具体实施过程中,通过配置,该两个电极结构之间形成电场,电场使得液晶分子处于预定的排列状态,以形成具有狭缝作用的液晶狭缝光栅。
请参见图4,图4为本发明提供的液晶狭缝光栅的一实施例的结构示意图。在本实施例中,液晶狭缝光栅200按照图4所示的从上到下的顺序依次包括层叠设置的第一上偏光片21、第一上基板22、第一上电极结构23、第一上配向层24、第一液晶层25、第一下配向层26、第一下电极结构27、第一下基板28、第一下偏光片29、第二上基板32、第二上电极结构33、第二上配向层34、第二液晶层35、第二下配向层36、第二下电极结构37、第二下基板38及第二偏光片39,具体结构和功能如下所述。
第一上基板22、第一下基板28、第二上基板32和第二下基板38相对平行设置,第一上电极结构23(也称第一公共电极)设置于第一上基板22内侧,第一下电极结构27(驱动电极)设置于第一下基板28内侧,从而使第一上电极结构23与第一下电极结构27相对设置,二者之间可形成电控电场;第二上电极结构33(也称第二公共电极)设置于第二上基板32内侧,第二下电极结构37(驱动电极)设置于第二下基板38内侧,从而使第二上电极结构33与第二下电极结构37相对设置,二者之间可形成电控电场。
第一液晶层25设置于第一上电极结构23和第一下电极结构27之间,其内包括棒状液晶分子251;第二液晶层35设置于第二上电极结构33和第二下电极结构37之间,其内包括棒状液晶分子351。
第一上配向层24设置于第一液晶层25与第一上电极结构23之间,第一下配向层26设置于第一液晶层25与第一下电极结构27之间。第一上配向层24与第一下配向层26的配向方向垂直或根据实际需要设定特定的角度(例如小于90度或大于90度),从而可以对第一液晶层25内的液晶分子251按照实际需要进行配向作用。
第二上配向层34设置于第二液晶层35与第二上电极结构33之间,第二下配向层36设置于第二液晶层35与第二下电极结构37之间。第二上配向层34与第二下配向层36的配向方向垂直或根据实际需要设定特定的角度(例如小于90度或大于90度),从而可以对第二液晶层35内的液晶分子351按照实际需要进行配向作用。第一下配向层26与第二上配向层34的配向方向垂直或相同。
请同时参见图5,图5为图4所示液晶狭缝光栅200的第一上电极结构23和第一下电极结构27的平面结构示意图。其中,第一上电极结构23可以是面状电极,也可以根据实际需求制作成其他形状、多个分区设置等,本实施例以第一上电极结构23为面状电极举例说明。
第一下电极结构27包括至少两层电极层,本实施例以包含两个电极层举例说明,且两电极层分别记为第一电极层271和第二电极层272,其中第一电极层271临近第一液晶层25设置,第二电极层272临近第一下基板28内侧设置。
第一电极层271包括多个平行设置的第一条形电极271a,多个第一条形电极271a交替间隔设置且相互电气隔离,并均沿第一延伸方向D1(即图4中垂直于纸面的方向)延伸。
第二电极层272包括多个平行设置的第二条形电极272a,多个第二条形电极272a交替间隔设置且相互电气隔离,并均沿第一延伸方向D1(即图4中垂直于纸面的方向)延伸。且第二条形电极272a所在的位置处于多个第一条形电极271a的间隔区间内,从而使多个第一条形电极271a和多个第二条形电极272a形成互补的关系,二者在第一下基板28的形成一个完整的无间隙(无缝)的投影面,可以完整覆盖该区域内的第一液晶层25。
一般的,第一条形电极271a与相邻的第二条形电极272a的邻边为对齐结构,这样尽量减少二者之间的电信号干扰,又可以使二者完整覆盖该区域内的第一液晶层25,避免形成液晶狭缝时的漏光现象发生。同时由于制作工艺的限制,还可以使第一条形电极271a与相邻的第二条形电极272a相邻的边缘产生一定的重叠,例如重叠区域可以为第一条形电极271a或第二条形电极272a宽度的十分之一至三分之一。
进一步地,为使第一电极层271的第一条形电极271a之间和第二电极层272的第二条形电极272a彼此保持电气绝缘,第一电极层271和第二电极层272之间还设置有平坦化的绝缘层273,填充第一条形电极271a和第二条形电极272a之间的空间。绝缘层273可以由氮化硅或氧化硅或其他透明材料制成。
一般的,多个第一条形电极271a与多个第二条形电极272a具有相同的结构,为长、宽相同、间距相等的矩形条形电极,从而在形成遮光狭缝和透光狭缝的过程中具有更多的灵活性。例如在第一上电极结构23施加零电压V0或参考电压Vref,可以周期性的在相邻的若干条形电极271a/272a上施加驱动电压V1,用于形成遮光狭缝,在其它的条形电极271a/272a上施加零电压V0或参考电压Vref,用于形成透光狭缝。通过改变形成遮光狭缝和透光狭缝的条形电极271a/272a的个数,可以改变遮光狭缝和透光狭缝的比例和宽度,从而调节液晶狭缝光栅的栅节和栅距,实现电可控的动态液晶狭缝光栅,此方法后文做详细描述。遮光狭缝与透光狭缝的宽度和比例需要根据具体的立体显示装置的参数配置来调整,在此不做赘述。
第一上偏光片21设置在第一上基板22的外侧,即与第一配向层24相对的一侧。第一下偏光片29设置在第一下基板28的外侧,即与第二配向层26相对的一侧。当然,在某些改进型的设计中,第一上偏光片21与第一下偏光片29也可设置在第一上基板22和第一下基板28的内侧,在此不做具体限定。一般的,第一上偏光片21的偏振方向与第一上配向层24的配向方向相同;第一下偏光片29的偏振方向与第一下配向层26的配向方向相同。
在图4、图5所示的实施例中,第一上配向层24的配向方向、第一上偏光片21的偏振方向均沿第二延伸方向D2延伸;第一下配向层26的配向方向、第一下偏光片29的偏振方向均沿第一延伸方向D1延伸。优选的,第一延伸方向D1和第二延伸方向D2相互垂直。第一上配向层24和第一下配向层26可以通过摩擦配向或辐射配向等方式进行配向。
第一液晶层25内包括有液晶分子251,在第一上配向层24和第一下配向层26的配向作用下,液晶分子251形成如图4所示的扭曲排列结构.
优选的,第一液晶层25可以是聚合物分散(PDLC)型第一液晶层,或向列曲线诱导相(NCAP)型第一液晶层,或非均匀高分子分散(NPD-LCD)型第一液晶层。
优选的,第一上基板22和第一下基板28可以是由透明玻璃、石英等硬质透明材料,也可以是由塑料等软质透明材料制成,只要使得光线能够透过即可,此处不一一列举。
优选的,第一上电极结构23和第一下电极结构27均为透明导电材料制成,譬如可为铟锡氧化物(Indium Tin Oxide, ITO)或铟锌氧化物(Indium Zinc Oxide, IZO),此处不一一列举。
请同时参见图6,图6是图4所示液晶狭缝光栅200的第二上电极结构33和第二下电极结构37的平面结构示意图。其中,第二上电极结构33可以是面状电极,也可以根据实际需求制作成其他形状、多个分区设置等,本实施例以第二上电极结构33为面状电极举例说明。
第二下电极结构37包括至少两层电极层,本实施例以包含两个电极层举例说明,且两电极层分别记为第三电极层371和第四电极层372,其中第三电极层371临近第二液晶层35设置,第四电极层372临近第二下基板38内侧设置。
第三电极层371包括多个平行设置的第三条形电极371a,多个第三条形电极371a交替间隔设置且相互电气隔离,并均沿第一延伸方向D1(即图4中垂直于纸面的方向)延伸。
第四电极层372包括多个平行设置的第四条形电极372a,多个第四条形电极372a交替间隔设置且相互电气隔离,并均沿第一延伸方向D1(即图4中垂直于纸面的方向)延伸。且第四条形电极372a所在的位置处于多个第三条形电极371a的间隔区间内,从而使多个第三条形电极371a和多个第四条形电极372a形成互补的关系,二者在第二下基板38的形成一个完整的无间隙(无缝)的投影面,可以完整覆盖该区域内的第二液晶层35。
一般的,第三条形电极371a与相邻的第四条形电极372a的邻边为对齐结构,这样尽量减少二者之间的电信号干扰,又可以使二者完整覆盖该区域内的第二液晶层35,避免形成液晶狭缝时的漏光现象发生。同时由于制作工艺的限制,还可以使第三条形电极371a与相邻的第四条形电极372a相邻的边缘产生一定的重叠,例如重叠区域可以为第三条形电极371a或第四条形电极372a宽度的十分之一至三分之一。
进一步地,为使第三电极层371的第三条形电极371a之间和第四电极层372的第四条形电极372a彼此保持电气绝缘,第三电极层371和第四电极层372之间还设置有平坦化的绝缘层373,填充第三条形电极371a和第四条形电极372a之间的空间。绝缘层273可以由氮化硅或氧化硅或其他透明材料制成。
一般的,多个第三条形电极371a与多个第四条形电极372a具有相同的结构,为长、宽相同、间距相等的矩形条形电极,从而在形成遮光狭缝和透光狭缝的过程中具有更多的灵活性。例如在第二上电极结构33施加零电压V0或参考电压Vref,可以周期性的在相邻的若干条形电极371a/372a上施加驱动电压V1,用于形成遮光狭缝,在其它的条形电极371a/372a上施加零电压V0或参考电压Vref,用于形成透光狭缝。通过改变形成遮光狭缝和透光狭缝的条形电极371a/372a的个数,可以改变遮光狭缝和透光狭缝的比例和宽度,从而调节液晶狭缝光栅的栅节和栅距,实现电可控的动态液晶狭缝光栅,此方法后文做详细描述。遮光狭缝与透光狭缝的宽度和比例需要根据具体的立体显示装置的参数配置来调整,在此不做赘述。
第一下偏光片29设置在第二上基板32的外侧,即与第二上配向层34相对的一侧。第二偏光片39设置在第二下基板38的外侧,即与第二下配向层36相对的一侧。当然,在某些改进型的设计中,第一下偏光片29与第二偏光片39也可设置在第二上基板32和第二下基板38的内侧,在此不做具体限定。一般的,第一下偏光片29的偏振方向与第二上配向层34的配向方向相同;第二偏光片39的偏振方向与第二下配向层36的配向方向相同。
在图4、图6所示的实施例中,第二上配向层34的配向方向、第一下偏光片29的偏振方向均沿第二延伸方向D2延伸;第二下配向层36的配向方向、第一下偏光片29的偏振方向均沿第一延伸方向D1延伸。优选的,第一延伸方向D1和第二延伸方向D2相互垂直。第二上配向层34和第二下配向层36可以通过摩擦配向或辐射配向等方式进行配向。
第二液晶层35内包括有液晶分子351,在第二上配向层34和第二下配向层36的配向作用下,液晶分子351形成如图4所示的扭曲排列结构.
优选的,第二液晶层35可以是聚合物分散PDLC型第一液晶层,或向列曲线诱导相NCAP型第一液晶层,或非均匀高分子分散NPD-LCD型第一液晶层。
优选的,第一上基板22和第一下基板28可以是由透明玻璃、石英等硬质透明材料,也可以是由塑料等软质透明材料制成,只要使得光线能够透过即可,此处不一一列举。
优选的,第二上电极结构33和第二下电极结构37均为透明导电材料制成,譬如可为铟锡氧化物或铟锌氧化物,此处不一一列举。
优选的,第一条形电极271a的延伸方向与第二条形电极272a的延伸方向相平行;第三条形电极371a的延伸方向与第四条形电极372a的延伸方向相平行;第二条形电极272a的延伸方向与第三条形电极371a的延伸方向相垂直或根据实际需要设定特定的角度(例如小于90度或大于90度),从而达到实现在本发明的立体显示装置100在横屏方向和竖屏方向上时,也能够根据用户观看位置的不同调整液晶狭缝,显示裸眼可视的三维立体显示图像,使用户始终能够得到良好的立体视觉体验。
以下具体介绍动态液晶狭缝光栅功能的实现方法。
对于液晶狭缝光栅200,当逐一相隔的多个条形电极如全部第一条形电极271a上同时施加驱动电压V1,在另外逐一相隔的多个条形电极如全部第二条形电极272a以及第一上电极结构23上同时施加相同的零电压V0或参考电压Vref。这样在逐一相隔的多个第一条形电极271a与第一上电极结构23之间产生一较强电场,该区域的电场驱动对应该区域的液晶分子251长轴按照电场方向排列;另外逐一相隔的多个第二条形电极272a与第一上电极结构23之间无电场,液晶分子251仍然按照扭曲方式排列。
对于液晶狭缝光栅200,当逐一相隔的多个条形电极如全部第三条形电极371a上同时施加驱动电压V1,在另外逐一相隔的多个条形电极如全部第四条形电极372a以及第三上电极结构23上同时施加相同的零电压V0或参考电压Vref。这样在逐一相隔的多个第三条形电极371a与第三上电极结构23之间产生一较强电场,该区域的电场驱动对应该区域的液晶分子351长轴按照电场方向排列;另外逐一相隔的多个第四条形电极372a与第三上电极结构23之间无电场,液晶分子351仍然按照扭曲方式排列。
检测到立体显示装置100位于横屏方向时,且当偏振方向与第二偏光片39的偏振方向相同的偏振光由第二下基板38向第一上基板22方向传播时,在全部第四条形电极372a、全部第三条形电极371a、全部第二条形电极272a上同时施加驱动电压V1以及在第二上电极结构33、第一上电极结构23上同时施加相同的零电压V0或参考电压Vref。这样在逐一相隔的多个第三条形电极371a与第二上电极结构33之间产生一较强电场,该区域的电场驱动对应该区域的液晶分子351长轴按照电场方向排列,在逐一相隔的多个第四条形电极372a与第二上电极结构33之间产生一较强电场,该区域的电场驱动对应该区域的液晶分子351长轴按照电场方向排列,使得第二液晶层35中所有的液晶分子351长轴都按照电场方向排列,在逐一相隔的多个第二条形电极272a与第一上电极结构23之间产生一较强电场,该区域的电场驱动对应该区域的液晶分子251长轴按照电场方向排列,该偏振光依次透过第二下基板38、第二下电极结构37、第二下配向层36、第二液晶层35、第二上配向层34、第二上电极结构33、第二上基板32,在偏振光向第一下基板28传播时,在逐一相隔的第一条形电极271a对应的条形区域,偏振光可以穿过第一下基板28,同时液晶分子251不改变偏振光的偏振方向,则偏振光无法通过第一上偏光片21,在第一上基板22外形成遮光狭缝;在另外逐一相隔的多个第二条形电极272a对应的条形区域,偏振光穿过第一下基板28,在扭曲排列的液晶分子251的作用下,偏振光的偏振方向逐渐改变为与第一上偏光片21偏振方向相同的偏振光,则偏振光可以通过第一上偏光片21,在第一上基板22外形成透光狭缝。遮光狭缝与透光狭缝交替排列,作用与常见的狭缝光栅相似,从而形成如图7a所示的遮光狭缝与透光狭缝比例为1:1的狭缝光栅。
液晶狭缝光栅配合显示面板实现立体显示的方法已为共公众所知,在此不做赘述。
另外,在逐一相隔的全部第二条形电极272a上同时施加驱动电压V1,在另外逐一相隔的全部第一条形电极271a以及第一上电极结构23上同时施加相同的零电压V0或参考电压Vref。这样在逐一相隔的多个第二条形电极272a与第一上电极结构23之间产生一较强电场,该区域的电场驱动对应该区域的液晶分子251长轴按照电场方向排列;另外逐一相隔的多个第一条形电极271a与第一上电极结构23之间无电场,液晶分子251仍然按照扭曲方式排列。
根据上述相同的光学原理,可以形成如图7b所示的遮光狭缝与透光狭缝比例为1:1的狭缝光栅,其特点在于,图7b所示的狭缝光栅相当于图7a所示的狭缝光栅产生了向右移动半个栅距的位移。通过类似方法,调节施加驱动电压的条形电极的位置,还可以使遮光狭缝和透光狭缝向左或向右移动任意多个栅距,在此不做赘述。
进一步地,如图7c所示,可以周期性的选择在相邻的两条条形电极(即一条第一条形电极271a和近邻的一条第二条形电极272a)施加驱动电压V1,在相邻的另一条条形电极(即一条第一条形电极271a或一条第二条形电极272a)施加参考电压V0或Vref,这样形成的图7c所示的遮光狭缝和透光狭缝的宽度比为2:1的狭缝光栅。
采用同样的方法,通过施加调整驱动电压V1的条形电极的数量,还可以产生如图图7d所示的遮光狭缝和透光狭缝的宽度比为3:1或其他任意比例的狭缝光栅,在此不做赘述。
检测到立体显示装置100位于竖屏方向时,且当偏振方向与第二偏光片39的偏振方向相同的偏振光由第二下基板38向第一上基板22方向传播时,在全部第四条形电极372a、全部第二条形电极272a、全部第一条形电极271a以及在第二上电极结构33、第一上电极结构23上同时施加相同的零电压V0或参考电压Vref。
这样在逐一相隔的多个第一条形电极271a与第一上电极结构23之间产生一较强电场,该区域的电场驱动对应该区域的液晶分子251长轴按照电场方向排列,在逐一相隔的多个第二条形电极272a与第一上电极结构23之间产生一较强电场,该区域的电场驱动对应该区域的液晶分子251长轴按照电场方向排列,使得第一液晶层25中所有的液晶分子251长轴都按照电场方向排列,
在逐一相隔的多个第四条形电极372a与第二上电极结构33之间产生一较强电场,该区域的电场驱动对应该区域的液晶分子351长轴按照电场方向排列,
在逐一相隔的第三条形电极371a对应的条形区域,偏振光可以穿过第二下基板38,同时液晶分子351不改变偏振光的偏振方向,则偏振光无法透过第一下偏光片29,在第二上基板32外形成遮光狭缝;在另外逐一相隔的多个第四条形电极372a对应的条形区域,偏振光透过第二下基板38,在扭曲排列的液晶分子351的作用下,偏振光的偏振方向逐渐改变为与第一下偏光片29偏振方向相同的偏振光,则偏振光可以透过第一下偏光片29,在第二上基板32外形成透光狭缝,遮光狭缝与透光狭缝交替排列,作用与常见的狭缝光栅相似,
该透过第一下偏光片29的偏振光接着依次透过第一下基板28、第一下电极结构27、第一下配向层26、第一液晶层25、第一上配向层24、第一上电极结构23、第一上基板22、第一上偏光片21,遮光狭缝与透光狭缝交替排列,形成狭缝光栅,从而形成如图8a所示的遮光狭缝与透光狭缝比例为1:1的狭缝光栅。
液晶狭缝光栅配合显示面板实现立体显示的方法已为共公众所知,在此不做赘述。
另外,在逐一相隔的全部第四条形电极372a上同时施加驱动电压V1,在另外逐一相隔的全部第三条形电极371a以及第二上电极结构33上同时施加相同的零电压V0或参考电压Vref。这样在逐一相隔的多个第四条形电极372a与第二上电极结构33之间产生一较强电场,该区域的电场驱动对应该区域的液晶分子351长轴按照电场方向排列;另外逐一相隔的多个第三条形电极371a与第二上电极结构33之间无电场,液晶分子351仍然按照扭曲方式排列。
根据上述相同的光学原理,可以形成如图8b所示的遮光狭缝与透光狭缝比例为1:1的狭缝光栅,其特点在于,图8b所示的狭缝光栅相当于图8a所示的狭缝光栅产生了向右移动半个栅距的位移。通过类似方法,调节施加驱动电压的条形电极的位置,还可以使遮光狭缝和透光狭缝向左或向右移动任意多个栅距,在此不做赘述。
进一步地,如图8c所示,可以周期性的选择在相邻的两条条形电极(即一条第三条形电极371a和近邻的一条第四条形电极372a)施加驱动电压V1,在相邻的另一条条形电极(即一条第三条形电极371a或一条第四条形电极372a)施加参考电压V0或Vref,这样形成的图8c所示的遮光狭缝和透光狭缝的宽度比为2:1的狭缝光栅。
采用同样的方法,通过施加调整驱动电压V1的条形电极的数量,还可以产生如图图8d所示的遮光狭缝和透光狭缝的宽度比为3:1或其他任意比例的狭缝光栅,在此不做赘述。
采用上述的配置和操作,在立体显示中具有很重要的应用,即,当立体显示装置的显示图像或用户的位置发生改变时,可以通过调节可控狭缝光栅102的遮光狭缝和透光狭缝的具体参数,能够使用户始终处于最佳的观看位置,提高用户的立体观看体验。
同时,采用动态扫描的方法控制液晶狭缝光栅200的形成,配合时间分割和空间分割的显示驱动方法,可以提高立体显示的分辨率,即,立体图像的分辨率可以和显示器的分辨率一致,减少立体图像的分辨率损失,大大提升立体显示品质和用户体验。
综上所述,通过调节施加驱动电压V1和参考电压Vref的第一条形电极271a、第二条形电极272a、第三条形电极371a和第四条形电极372a的个数和位置,可以根据实际的立体显示需要,调节液晶狭缝光栅200如栅节、栅距、周期、狭缝宽度等参数,从而达到实现在本发明的立体显示装置100在横屏方向和竖屏方向上时,也能够根据用户观看位置的不同调整液晶狭缝,显示裸眼可视的三维立体显示图像,更好的实现立体显示,使用户始终处于最佳的观看位置,大大提升了用户的立体视觉体验。
请参见图9,图9为本发明提供的液晶狭缝光栅另一实施例的结构示意图。由于本实施例的液晶狭缝光栅400与图4所示的第一实施例中的液晶狭缝光栅200结构类似,图9仅对其主要不同之处进行标示和说明。与图4所示的液晶狭缝光栅200相比,液晶狭缝光栅400主要不同之处在于:
第一下电极结构47包括层叠设置的三层电极层,分别记为第一电极层471、第二电极层472和第三电极层473。其中第一电极层471临近第一液晶层45设置,第三电极层473临近第一下基板48内侧设置,第二电极层472设置于第一电极层471和第三电极层473之间。进一步的,为使第一电极层471、第二电极层472和第三电极层473之间保持电气绝缘,第一电极层471和第二电极层472之间设置有平坦化的第一绝缘层474,第二电极层472和第三电极层473之间设置有平坦化的第二绝缘层475。第一绝缘层474和第二绝缘层475可以由氮化硅或氧化硅或其他透明材料制成。
第二下电极结构57包括层叠设置的三层电极层,分别记为第四电极层571、第五电极层572和第六电极层573。其中第四电极层571临近第二液晶层55设置,第六电极层573临近第一下基板48内侧设置,第五电极层572设置于第四电极层571和第六电极层573之间。进一步的,为使第四电极层571、第五电极层572和第六电极层573之间保持电气绝缘,第四电极层571和第五电极层572之间设置有平坦化的第三绝缘层574,第五电极层572和第六电极层573之间设置有平坦化的第四绝缘层575。第三绝缘层574和第四绝缘层575可以由氮化硅或氧化硅或其他透明材料制成。
同样的,第一电极层471包括多个平行且间隔设置的第一条形电极471a,第二电极层472包括多个平行且间隔设置的第二条形电极472a,第三电极层473包括多个平行且间隔设置的第三条形电极473a。
同样的,第四电极层571包括多个平行且间隔设置的第四条形电极571a,第五电极层572包括多个平行且间隔设置的第五条形电极572a,第六电极层573包括多个平行且间隔设置的第六条形电极573a。
一般的,第一条形电极471a、第二条形电极472a、第三条形电极473a具有相同的宽度,且沿同一方向延伸。且任意相邻的第一条形电极471a之间或第二条形电极472a之间或第三条形电极473a之间间距两个条形电极宽度,且第二条形电极472a和第三条形电极473a分别相对第一条形电极471a向右移动一个条形电极宽度和两个条形电极的距离,使其边缘对齐,从而彼此互相弥补电极之间的间隙同时不造成彼此之间的重叠,避免在形成遮光狭缝或透光狭缝时的漏光现象。
一般的,第四条形电极571a、第五条形电极572a、第六条形电极573a具有相同的宽度,且沿同一方向延伸。且任意相邻的第四条形电极571a之间或第五条形电极572a之间或第六条形电极573a之间间距两个条形电极宽度,且第五条形电极572a和第六条形电极573a分别相对第四条形电极571a向右移动一个条形电极宽度和两个条形电极的距离,使其边缘对齐,从而彼此互相弥补电极之间的间隙同时不造成彼此之间的重叠,避免在形成遮光狭缝或透光狭缝时的漏光现象。
优选的,第一条形电极471a的延伸方向与第二条形电极472a的延伸方向与第三条形电极473a的延伸方向相平行;第四条形电极571a的延伸方向与第五条形电极572a的延伸方向与第六条形电极573a的延伸方向相平行;第三条形电极473a的延伸方向与第四条形电极571a的延伸方向相垂直或根据实际需要设定特定的角度(例如小于90度或大于90度),从而达到实现在本发明的立体显示装置100在横屏方向和竖屏方向上时,也能够根据用户观看位置的不同调整液晶狭缝,显示裸眼可视的三维立体显示图像,使用户始终能够得到良好的立体视觉体验。
可以理解的是,第一下电极结构47还可以根据需要分为四层、五层等多层类似上述结构,在此不受限制;第二下电极结构57也可以根据需要分为四层、五层等多层类似上述结构,在此不受限制。
液晶狭缝光栅400的驱动方法与上述液晶透镜200的驱动方法相似,在此不再赘述。
与图4所示的液晶狭缝光栅200功能类似,第一条形电极471a、第二条形电极472a、第三条形电极473a具有相同或相似的结构和参数,彼此相互平行设置,且邻边对齐或有部分重叠。由于处于不同的层上,第一条形电极471a、第二条形电极472a、第三条形电极473a可互相弥补彼此之间的间隙,在平面投影上覆盖完整的区域,从而不必在第一条形电极471a、第二条形电极472a、第三条形电极473a之间设置遮光带,也能避免在遮光狭缝或是透光狭缝上的漏光现象,同时,三者相同或相似的结构和参数为调节液晶狭缝光栅400的栅节和栅距等参数提供更多的操作空间,进一步提升液晶狭缝光栅以及与其配合使用的立体显示装置的品质。
与图4所示的液晶狭缝光栅200功能类似,第四条形电极571a、第五条形电极572a、第六条形电极573a具有相同或相似的结构和参数,彼此相互平行设置,且邻边对齐或有部分重叠。由于处于不同的层上,第四条形电极571a、第五条形电极572a、第六条形电极573a可互相弥补彼此之间的间隙,在平面投影上覆盖完整的区域,从而不必在第四条形电极571a、第五条形电极572a、第六条形电极573a之间设置遮光带,也能避免在遮光狭缝或是透光狭缝上的漏光现象,同时,三者相同或相似的结构和参数为调节液晶狭缝光栅400的栅节和栅距等参数提供更多的操作空间,进一步提升液晶狭缝光栅以及与其配合使用的立体显示装置的品质。
综上所述,本发明实施例通过将液晶狭缝光栅200、400的第一下电极第一下电极结构27、第二下电极结构37、第一下电极结构47、第二下电极结构57设置为多层结构,且多层电极之间相互对其或部分重叠,从而使下电极完整的覆盖所在区域的第一液晶层25、第二液晶层35、第一液晶层45、第二液晶层55。通过调节驱动电压V1和参考电压Vref的条形电极数量和位置,根据实际的立体显示需要,调节液晶狭缝光栅200、400的栅节、栅距、缝宽、位置等参数,从而达到实现在本发明的立体显示装置100在横屏方向和竖屏方向上时,也能够根据用户观看位置的不同调整液晶狭缝,显示裸眼可视的三维立体显示图像,使用户始终能够得到良好的立体视觉体验。

Claims (20)

  1. 一种液晶狭缝光栅,其特征在于,包括:
    依次层叠设置的第一上偏光片、第一上基板、第一上电极结构、第一上配向层、第一液晶层、第一下配向层、第一下电极结构、第一下基板、第一下偏光片、第二上基板、第二上电极结构、第二上配向层、第二液晶层、第二下配向层、第二下电极结构、第二下基板及第二偏光片;
    所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一液晶层;
    所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二液晶层;
    所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直。
  2. 如权利要求1所述的液晶狭缝光栅,其特征在于,任意条形电极与其近邻的另一层的条形电极的邻边对齐。
  3. 如权利要求1所述的液晶狭缝光栅,其特征在于,任意条形电极与其近邻的另一层的条形电极的邻边部分重叠。
  4. 如权利要求3所述的液晶狭缝光栅,其特征在于,任意条形电极与其近邻的另一层的条形电极的重叠区域为条形电极的宽度的十分之一至三分之一。
  5. 如权利要求1所述的液晶狭缝光栅,其特征在于,处于同一电极层的条形电极的宽度相同,其同一电极层中相邻的条形电极的间距相同。
  6. 如权利要求1所述的液晶狭缝光栅,其特征在于,所述第一下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置;
    所述第二下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置。
  7. 如权利要求1所述的液晶狭缝光栅,其特征在于,所述第一下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置;
    所述第二下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置。
  8. 如权利要求1所述的液晶狭缝光栅,其特征在于,在检测到立体显示装置位于横屏或竖屏时,通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整液晶狭缝光栅所形成的遮光狭缝和透光狭缝的参数。
  9. 一种立体显示装置,其特征在于,包括:
    显示面板,用于显示同一场景的具有视差的左眼图像和右眼图像;
    液晶狭缝光栅,设置在显示面板的显示面上,所述液晶狭缝光栅包括依次层叠设置的第一上偏光片、第一上基板、第一上电极结构、第一上配向层、第一液晶层、第一下配向层、第一下电极结构、第一下基板、第一下偏光片、第二上基板、第二上电极结构、第二上配向层、第二液晶层、第二下配向层、第二下电极结构、第二下基板及第二偏光片;所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一液晶层;所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二液晶层;所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直;
    在检测到立体显示装置位于横屏或竖屏时,针对不同的观看位置,通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整液晶狭缝光栅所形成的遮光狭缝和透光狭缝的参数,从而使观看者的左右眼对应观看到显示面板显示的左眼图像和右眼图像。
  10. 如权利要求9所述的立体显示装置,其特征在于,所述液晶狭缝光栅的参数至少包括栅距、透光狭缝的宽度、透光狭缝的位置中的一个。
  11. 如权利要求9所述的立体显示装置,其特征在于,任意条形电极与其近邻的另一层的条形电极的邻边对齐。
  12. 如权利要求9所述的立体显示装置,其特征在于,任意条形电极与其近邻的另一层的条形电极的邻边部分重叠。
  13. 如权利要求12所述的立体显示装置,其特征在于,任意条形电极与其近邻的另一层的条形电极的重叠区域为条形电极的宽度的十分之一至三分之一。
  14. 如权利要求9所述的立体显示装置,其特征在于,处于同一电极层的条形电极的宽度相同,其同一电极层中相邻的条形电极的间距相同。
  15. 如权利要求9所述的立体显示装置,其特征在于,所述第一下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置;
    所述第二下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置。
  16. 如权利要求9所述的立体显示装置,其特征在于,所述第一下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置;
    所述第二下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置。
  17. 一种立体显示装置的驱动方法,其特征在于,采用所述驱动方法的立体显示装置包括:
    显示面板,用于显示同一场景的具有视差的左眼图像和右眼图像;
    液晶狭缝光栅,设置在显示面板的显示面上,所述液晶狭缝光栅包括依次层叠设置的第一上偏光片、第一上基板、第一上电极结构、第一上配向层、第一液晶层、第一下配向层、第一下电极结构、第一下基板、第一下偏光片、第二上基板、第二上电极结构、第二上配向层、第二液晶层、第二下配向层、第二下电极结构、第二下基板及第二偏光片;所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一液晶层;所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二液晶层;所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直;
    所述驱动方法包括:
    显示面板显示同一场景的具有视差的左眼图像和右眼图像;
    确定用户的立体观看位置;
    通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整液晶狭缝光栅所形成的遮光狭缝和透光狭缝的参数,从而使观看者的左右眼分别对应观看到左眼图像和右眼图像。
  18. 如权利要求17所述的立体显示装置的驱动方法,其特征在于,所述液晶狭缝光栅的参数至少包括栅距、透光狭缝的宽度、透光狭缝的位置中的一个。
  19. 如权利要求17所述的立体显示装置的驱动方法,其特征在于,调节所述透光狭缝的位置的移动方向与观看者的观看位置的移动方向一致。
  20. 如权利要求19所述的立体显示装置的驱动方法,其特征在于,所述显示面板显示同一场景的具有视差的左眼图像和右眼图像的过程之后,所述确定用户的立体观看位置之前,还包括:
    检测出所述显示面板的显示方位,检测出所述显示面板位于横屏或竖屏。
PCT/CN2014/082481 2013-07-22 2014-07-18 液晶狭缝光栅、立体显示装置及其驱动方法 WO2015010573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310309658.6A CN103995403A (zh) 2013-07-22 2013-07-22 液晶狭缝光栅、立体显示装置及其驱动方法
CN201310309658.6 2013-07-22

Publications (1)

Publication Number Publication Date
WO2015010573A1 true WO2015010573A1 (zh) 2015-01-29

Family

ID=51309612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082481 WO2015010573A1 (zh) 2013-07-22 2014-07-18 液晶狭缝光栅、立体显示装置及其驱动方法

Country Status (2)

Country Link
CN (1) CN103995403A (zh)
WO (1) WO2015010573A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190041716A1 (en) * 2017-08-01 2019-02-07 Boe Technology Group Co., Ltd. Display device and control method thereof
CN113260913A (zh) * 2019-12-12 2021-08-13 京东方科技集团股份有限公司 显示面板及其制作方法和显示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223704B (zh) * 2015-11-02 2016-11-16 京东方科技集团股份有限公司 一种三维显示系统及显示方法
CN107544156A (zh) * 2016-06-29 2018-01-05 畅丽萍 显示装置及其制作方法
CN106405852B (zh) * 2016-11-22 2018-11-13 宁波视睿迪光电有限公司 裸眼3d显示装置及控制方法
CN107065378A (zh) 2017-01-04 2017-08-18 京东方科技集团股份有限公司 一种液晶光栅、显示装置及其显示方法
CN106707533A (zh) * 2017-03-24 2017-05-24 京东方科技集团股份有限公司 一种三维显示装置
CN111123544A (zh) * 2018-10-15 2020-05-08 青海荟源工贸有限公司 基于电子光栅的地面3d广告机
CN110012286B (zh) * 2019-05-07 2023-04-25 成都工业学院 一种高视点密度的人眼追踪立体显示装置
CN110401829B (zh) * 2019-08-26 2022-05-13 京东方科技集团股份有限公司 一种裸眼3d显示设备及其显示方法
CN111258146A (zh) * 2020-02-25 2020-06-09 京东方科技集团股份有限公司 光栅及其驱动方法、和光场显示装置
CN112882265A (zh) * 2021-01-21 2021-06-01 维沃移动通信有限公司 显示面板、电子设备、显示方法及系统
CN114488373B (zh) * 2022-02-28 2024-01-12 合肥京东方光电科技有限公司 一种光栅调节装置、3d显示装置及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090002267A1 (en) * 2007-06-27 2009-01-01 Hui Nam Electronic display
US20110170026A1 (en) * 2010-01-08 2011-07-14 Unique Instruments Co.Ltd Multi-functional liquid crystal parallax barrier device
JP2011145697A (ja) * 2004-06-29 2011-07-28 Sharp Corp 縦または横に表示することのできる3dディスプレイ
CN202306062U (zh) * 2011-09-14 2012-07-04 天马微电子股份有限公司 液晶狭缝光栅及立体显示装置
CN203433240U (zh) * 2013-07-02 2014-02-12 深圳市亿思达显示科技有限公司 液晶狭缝光栅、立体显示装置
CN203433242U (zh) * 2013-07-22 2014-02-12 深圳市亿思达显示科技有限公司 液晶狭缝光栅、立体显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100922355B1 (ko) * 2008-03-07 2009-10-21 삼성모바일디스플레이주식회사 전자 영상 기기
KR101015846B1 (ko) * 2009-01-16 2011-02-23 삼성모바일디스플레이주식회사 전자 영상 기기
CN101533169B (zh) * 2009-04-21 2011-03-09 华映光电股份有限公司 视差屏障及采用该视差屏障制成的立体显示装置
CN102243402B (zh) * 2011-07-13 2014-09-24 深圳超多维光电子有限公司 一种液晶透镜光栅及其立体显示装置
CN103024407B (zh) * 2011-09-22 2014-12-31 乐金显示有限公司 立体图像显示设备及其驱动方法
CN202631856U (zh) * 2012-04-19 2012-12-26 深圳市亿思达显示科技有限公司 立体显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145697A (ja) * 2004-06-29 2011-07-28 Sharp Corp 縦または横に表示することのできる3dディスプレイ
US20090002267A1 (en) * 2007-06-27 2009-01-01 Hui Nam Electronic display
US20110170026A1 (en) * 2010-01-08 2011-07-14 Unique Instruments Co.Ltd Multi-functional liquid crystal parallax barrier device
CN202306062U (zh) * 2011-09-14 2012-07-04 天马微电子股份有限公司 液晶狭缝光栅及立体显示装置
CN203433240U (zh) * 2013-07-02 2014-02-12 深圳市亿思达显示科技有限公司 液晶狭缝光栅、立体显示装置
CN203433242U (zh) * 2013-07-22 2014-02-12 深圳市亿思达显示科技有限公司 液晶狭缝光栅、立体显示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190041716A1 (en) * 2017-08-01 2019-02-07 Boe Technology Group Co., Ltd. Display device and control method thereof
US10754220B2 (en) * 2017-08-01 2020-08-25 Boe Technology Group Co., Ltd. Display device and control method thereof
CN113260913A (zh) * 2019-12-12 2021-08-13 京东方科技集团股份有限公司 显示面板及其制作方法和显示装置
CN113260913B (zh) * 2019-12-12 2023-09-29 京东方科技集团股份有限公司 显示面板及其制作方法和显示装置

Also Published As

Publication number Publication date
CN103995403A (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
WO2015010573A1 (zh) 液晶狭缝光栅、立体显示装置及其驱动方法
WO2015000448A1 (zh) 液晶狭缝光栅、立体显示装置及其驱动方法
WO2015018284A1 (zh) 电子狭缝光栅、立体显示装置及其驱动方法
WO2012044130A2 (ko) 배리어를 이용하는 3d 디스플레이 장치 및 그 구동 방법
KR101476884B1 (ko) 패럴랙스 배리어 타입의 입체영상 표시장치
TWI414846B (zh) 可切換二維顯示模式與三維顯示模式之顯示裝置及其液晶透鏡
JP4607089B2 (ja) 液晶レンズ及びこれを含む映像表示装置
US20110170026A1 (en) Multi-functional liquid crystal parallax barrier device
CN202306062U (zh) 液晶狭缝光栅及立体显示装置
WO2015018283A1 (zh) 电子狭缝光栅、立体显示装置及其驱动方法
CN203433240U (zh) 液晶狭缝光栅、立体显示装置
JP6258233B2 (ja) 3d表示方法及び表示装置
WO2011147162A1 (zh) 液晶光栅模组及平面/立体可切换型液晶显示装置
WO2013185360A1 (zh) 一种液晶显示面板及其阵列基板
CN203433242U (zh) 液晶狭缝光栅、立体显示装置
CN103676166A (zh) 三维图像显示装置
CN102436100B (zh) 立体显示装置
WO2013174248A1 (zh) 立体显示装置
EP3225025A1 (en) Display device and method of controlling the same
KR20130064325A (ko) 입체 영상 표시용 패럴랙스 배리어 및 이를 이용한 표시 장치
WO2016163783A1 (en) Display device and method of controlling the same
JPWO2014136610A1 (ja) 立体表示装置
WO2015192543A1 (zh) 偏光控制面板及其制作方法和显示装置
US10725319B2 (en) Display device and liquid crystal panel driving method
US9983445B2 (en) Liquid crystal lens panel and display device including liquid crystal lens panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/06/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14828808

Country of ref document: EP

Kind code of ref document: A1