WO2015018284A1 - 电子狭缝光栅、立体显示装置及其驱动方法 - Google Patents

电子狭缝光栅、立体显示装置及其驱动方法 Download PDF

Info

Publication number
WO2015018284A1
WO2015018284A1 PCT/CN2014/082896 CN2014082896W WO2015018284A1 WO 2015018284 A1 WO2015018284 A1 WO 2015018284A1 CN 2014082896 W CN2014082896 W CN 2014082896W WO 2015018284 A1 WO2015018284 A1 WO 2015018284A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
strip
strip electrodes
electrode structure
slit
Prior art date
Application number
PCT/CN2014/082896
Other languages
English (en)
French (fr)
Inventor
刘美鸿
母林
Original Assignee
深圳市亿思达科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市亿思达科技集团有限公司 filed Critical 深圳市亿思达科技集团有限公司
Publication of WO2015018284A1 publication Critical patent/WO2015018284A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/16Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 series; tandem

Definitions

  • the invention belongs to the field of stereoscopic display, in particular to an electronic slit grating, and to a stereoscopic display device using an electronic slit grating and a driving method thereof.
  • a stereoscopic display device needs to wear stereo glasses when viewing, so that viewers who wear glasses (such as glasses, reading glasses, etc.) originally need to overlap the two glasses in order to obtain a clear viewing effect, so that the stereoscopic display is performed. It is inconvenient to watch. Furthermore, since the width between the two temples of the stereoscopic glasses is generally fixed, this may make viewers of different face types unable to obtain a better experience when wearing the stereoscopic glasses. Therefore, the naked-eye stereoscopic display technology that does not need to wear stereoscopic glasses is more and more concerned.
  • the main principle of the naked-eye stereoscopic display device is to provide a grating, such as a slit grating or a cylindrical grating, in front of the display panel, and the grating provides at least two parallax images displayed by the display panel to the left and right eyes of the viewer, respectively.
  • a grating such as a slit grating or a cylindrical grating
  • the slit grating applied in the stereoscopic display device is generally a fixed grating, that is, the light-transmissive slit and the light-shielding slit of the slit grating are fixed.
  • This kind of fixing is that when the slit grating forms stereoscopic vision, the viewing area thereof is strictly limited. Exceeding the limited area, good stereoscopic vision cannot be formed, which greatly reduces the stereoscopic visual experience of the user, and is disadvantageous to the stereoscopic display technology. Promote the application.
  • the present invention provides an electronic slit grating, a stereoscopic display device, and a driving method thereof.
  • a first substrate a first upper electrode structure, a first electrochromic structure, a first lower electrode structure, a second substrate, a second upper electrode structure, a second electrochromic structure, a second lower electrode structure, and the like, which are sequentially stacked a third substrate;
  • the first lower electrode structure includes at least two electrode layers, and each of the electrode layers includes a plurality of strip electrodes extending in the same direction, and the strip electrodes of the at least two electrode layers are parallel to each other and spaced apart from each other Electrically insulating, the strip electrodes of different electrode layers are alternately arranged corresponding to each other, so that the projections of the plurality of strip electrodes on the first lower substrate are seamlessly projected, and the projection is completely covered a first electrochromic structure corresponding to the region;
  • the second lower electrode structure includes at least two electrode layers, and each of the electrode layers includes a plurality of strip electrodes extending in the same direction, and the strip electrodes of the at least two electrode layers are parallel to each other and spaced apart from each other Electrically insulating, the strip electrodes of different electrode layers are alternately arranged corresponding to each other, so that the projections of the plurality of strip electrodes on the second lower substrate are seamlessly projected, and the projection is completely covered a second electrochromic structure corresponding to the region;
  • the extending direction of the strip electrodes included in the first lower electrode structure is perpendicular to the extending direction of the strip electrodes included in the second lower electrode structure.
  • any strip electrode is aligned with the adjacent side of the strip electrode of another layer adjacent thereto.
  • any strip electrode overlaps the adjacent side of the strip electrode of another layer of its neighbor.
  • the overlapping area of any strip electrode and the strip electrode of another layer adjacent thereto is one tenth to one third of the width of the strip electrode.
  • the strip electrodes in the same electrode layer have the same width, and the adjacent strip electrodes in the same electrode layer have the same pitch.
  • the first lower electrode structure comprises two electrode layers, the widths of any strip electrodes are equal, and the spacing between adjacent strip electrodes of the same electrode layer is equal to the width of the strip electrodes, at the same electrode
  • the strip electrodes of the layer are alternately arranged corresponding to each other with a gap between the strip electrodes;
  • the second lower electrode structure comprises two electrode layers, the widths of any strip electrodes are equal, and the spacing between adjacent strip electrodes of the same electrode layer is equal to the width of the strip electrodes, and the strips in the same electrode layer
  • the shaped electrodes are alternately arranged to each other corresponding to the gap between the other strip electrodes.
  • the first lower electrode structure comprises three electrode layers, the widths of any strip electrodes are equal, and the spacing of adjacent strip electrodes of the same electrode layer is equal to twice the width of the strip electrodes, in the same
  • the strip electrodes of the layer are alternately arranged corresponding to the gap between the strip electrodes in the other electrode layers;
  • the second lower electrode structure comprises three electrode layers, the widths of any strip electrodes are equal, and the spacing of adjacent strip electrodes of the same electrode layer is equal to twice the width of the strip electrodes, and the strips in the same layer
  • the shaped electrodes are alternately arranged to each other corresponding to the gap between the strip electrodes in the other electrode layers.
  • the stereoscopic display device when detecting that the stereoscopic display device is located on the horizontal screen or the vertical screen, by configuring an electric field between the strip electrode included in the first lower electrode structure and the first upper electrode structure and configuring the second An electric field between the strip electrode included in the lower electrode structure and the second upper electrode structure to adjust parameters of the light-shielding slit and the light-transmitting slit formed by the electron slit grating.
  • It is an object of the present invention to provide a stereoscopic display device comprising:
  • a display panel for displaying a left eye image and a right eye image having parallax of the same scene
  • the first lower electrode structure includes at least two electrode layers, and each electrode layer includes a plurality of the same a strip-shaped electrode extending in a direction, strip electrodes in the at least two electrode layers are arranged parallel to each other, spaced apart and electrically insulated, and strip electrodes in different electrode layers are alternately arranged corresponding to each other with a gap therebetween
  • the projection of the plurality of strip electrodes on the first lower substrate is a seamless projection, completely covering the first electrochromic structure corresponding to the projection area;
  • the second lower electrode structure comprises at least two electrode layers, and Each of the electrode layers includes a plurality of strip electrodes
  • the electric field and the configuration between the strip electrode included in the first lower electrode structure and the first upper electrode structure are configured for different viewing positions.
  • the left and right eyes correspond to the left eye image and the right eye image displayed on the display panel.
  • any strip electrode is aligned with the adjacent side of the strip electrode of another layer adjacent thereto.
  • any strip electrode overlaps the adjacent side of the strip electrode of another layer of its neighbor.
  • the overlapping area of any strip electrode and the strip electrode of another layer adjacent thereto is one tenth to one third of the width of the strip electrode.
  • the strip electrodes in the same electrode layer have the same width, and the adjacent strip electrodes in the same electrode layer have the same pitch.
  • the first lower electrode structure comprises two electrode layers, the widths of any strip electrodes are equal, and the spacing between adjacent strip electrodes of the same electrode layer is equal to the width of the strip electrodes, at the same electrode
  • the strip electrodes of the layer are alternately arranged corresponding to each other with a gap between the strip electrodes;
  • the second lower electrode structure comprises two electrode layers, the widths of any strip electrodes are equal, and the spacing between adjacent strip electrodes of the same electrode layer is equal to the width of the strip electrodes, and the strips in the same electrode layer
  • the shaped electrodes are alternately arranged to each other corresponding to the gap between the other strip electrodes.
  • the first lower electrode structure comprises three electrode layers, the widths of any strip electrodes are equal, and the spacing of adjacent strip electrodes of the same electrode layer is equal to twice the width of the strip electrodes, in the same
  • the strip electrodes of the layer are alternately arranged corresponding to the gap between the strip electrodes in the other electrode layers;
  • the second lower electrode structure comprises three electrode layers, the widths of any strip electrodes are equal, and the spacing of adjacent strip electrodes of the same electrode layer is equal to twice the width of the strip electrodes, and the strips in the same layer
  • the shaped electrodes are alternately arranged to each other corresponding to the gap between the strip electrodes in the other electrode layers.
  • An object of the present invention is to provide a driving method of a stereoscopic display device, and the stereoscopic display device using the driving method includes:
  • a display panel for displaying a left eye image and a right eye image having parallax of the same scene
  • the first lower electrode structure includes at least two electrode layers, and each electrode layer includes a plurality of the same a strip-shaped electrode extending in a direction, strip electrodes in the at least two electrode layers are arranged parallel to each other, spaced apart and electrically insulated, and strip electrodes in different electrode layers are alternately arranged corresponding to each other with a gap therebetween
  • the projection of the plurality of strip electrodes on the first lower substrate is a seamless projection, completely covering the first electrochromic structure corresponding to the projection area;
  • the second lower electrode structure comprises at least two electrode layers, and Each of the electrode layers includes a plurality of strip electrodes
  • the driving method includes:
  • the display panel displays a left eye image and a right eye image with parallax of the same scene
  • the parameters of the electronic slit grating include at least one of a pitch, a width of the transparent slit, and a position of the transparent slit.
  • the moving direction of the position at which the light-transmitting slit is adjusted coincides with the moving direction of the viewing position of the viewer.
  • the method further includes:
  • the display orientation of the display panel is detected, and it is detected that the display panel is located in a horizontal screen or a vertical screen.
  • the first lower electrode structure includes a plurality of electrode layers, each of the electrode layers includes a plurality of strip electrodes arranged in parallel, and the strip electrodes on the different electrode layers can complement each other's gaps,
  • the planar projection of the first lower substrate covers the entire area, so that it is not necessary to provide a light shielding strip between the strip electrodes, and light leakage on the light shielding slit or the light transmission slit can be avoided, and the electronic slit grating is further improved. quality.
  • the second lower electrode structure includes a plurality of electrode layers, each electrode layer includes a plurality of strip electrodes arranged in parallel, and the strip electrodes on the different electrode layers can complement each other's gaps,
  • the planar projection of the second lower substrate covers the entire area, so that it is not necessary to provide a light shielding strip between the strip electrodes, and light leakage on the light shielding slit or the light transmission slit can be avoided, and the electronic slit grating can be further improved. quality.
  • the pitch of the electronic slit grating, the width of the light-transmitting slit, and the position of the light-transmitting slit can be adjusted.
  • Such specific parameters can keep the user in the best viewing position, improve the user's stereoscopic viewing experience, and promote the promotion and application of stereoscopic display technology.
  • FIG. 1 is a schematic structural view of an embodiment of a stereoscopic display device according to the present invention.
  • FIG. 2 is a schematic view showing another working state of an embodiment of a stereoscopic display device according to the present invention.
  • FIG. 3 is a schematic diagram of another working state of an embodiment of a stereoscopic display device according to the present invention.
  • FIG. 4 is a perspective exploded view of an embodiment of an electronic slit grating provided by the present invention.
  • FIG. 5 is a schematic plan view showing a first upper electrode structure and a first lower electrode structure of the electronic slit grating shown in FIG. 4;
  • FIG. 6 is a schematic plan view showing a second upper electrode structure and a second lower electrode structure of the electronic slit grating shown in FIG. 4;
  • FIG. 7a-7d are schematic diagrams showing four working states of the electronic slit grating shown in FIG. 4 when the stereoscopic display device is in the horizontal direction;
  • FIG. 8a-8d are schematic diagrams showing four working states of the electronic slit grating shown in FIG. 4 when the stereoscopic display device is in the vertical direction;
  • FIG. 9 is a perspective exploded view of another embodiment of an electronic slit grating provided by the present invention.
  • FIG. 1 is a schematic structural diagram of an embodiment of a stereoscopic display device according to the present invention.
  • the stereoscopic display device 100 includes a display panel 101 and a controllable slit grating 102 disposed on a display surface of the display panel 101 .
  • the display panel 101 is a flat display device for generating a left-eye image L and a right-eye image R having parallax of the same scene, wherein the left-eye image L and the right-eye image R may be, for example, strip images, respectively, and are horizontally mutually Alternately displayed on the display panel 101.
  • the display panel 101 may be, for example, a liquid crystal display device, a plasma display device, an organic light emitting diode display device, an electroluminescence display device, or the like, which will not be enumerated here.
  • the controllable slit grating 102 is a slit grating which can be controlled to form a light-shielding slit and a light-transmitting slit at a specific position thereof, and generally can form an alternating structure of a light-transmitting slit and a light-shielding slit, thereby allowing viewing
  • the left eye passes through the light transmission slit, only the left eye image L displayed on the display panel 101 can be seen, and the right eye can only see the right eye image R displayed on the display panel 101. Since the left-eye image L and the right-eye image R are images having parallax of the same scene, the viewer generates stereoscopic vision according to different parallax images received by the left and right eyes.
  • the viewer moves a certain distance relative to the stereoscopic display device 100, for example, at the first moment, the viewer is at the position shown in FIG. 1, and at the second moment, the viewer moves a certain distance relative to the display device 100 to the middle thereof, as shown in FIG. 2.
  • the controllable slit grating 102 holds the light-transmitting slit and the light-shielding slit shown in FIG. 1, the left and right eyes will not be able to see the corresponding left-eye image L and right-eye image R, causing visual confusion and failing to form a three-dimensional shape. Vision.
  • the position shown in FIG. 2 is adjusted, that is, the light-transmitting slit of the controllable slit grating 102 is relative to the display panel 101. Move to the middle position. After adjustment, the left eye of the viewer of the current position can still see only the left eye image L displayed on the display panel 101 through the light transmission slit, while the right eye can only see the right eye image displayed on the display panel 101. R.
  • the position of the viewer ie, the position of the eye
  • the position of the light-shielding slit and the light-transmissive slit of the controllable slit grating 102 is changed correspondingly, and the left eye of the viewer with parallax can still be ensured by the viewer.
  • the image L and the right eye image R maintain good stereoscopic vision.
  • the position of the light-transmissive slit of the controllable slit grating 102 can be continuously adjusted to move in the right direction shown in FIG. 2, and the viewing remains.
  • the left eye image L and the right eye image R having parallax are seen by the left and right eyes, which maintains good stereoscopic vision and improves the stereoscopic viewing experience of the viewer.
  • the light-transmitting slits and the light-shielding slits of the controllable slit grating 102 are adjusted.
  • the position can keep the viewer with good stereo vision.
  • the moving direction of the light-transmitting slit is consistent with the direction in which the viewer's eyes move.
  • the left-eye image L and the right-eye image R displayed by the display panel 101 are rearranged, it is also possible to make the light-transmissive narrow.
  • the direction of movement of the slit does not coincide with the direction of movement of the viewer's eye, or even the opposite.
  • the change of the left and right eye images should be taken into consideration, and the position of the light-transmissive slit and the light-shielding slit of the controllable slit grating 102 can be reasonably adjusted, so that the left and right eyes of the viewer can be viewed in real time.
  • the left eye image L and the right eye image R are accurate.
  • controllable slit grating 102 can adjust the positions of the light-transmissive slit and the light-shielding slit, and can also adjust parameters such as the grating section, the pitch, the slit width of the light-transmitting slit and the light-shielding slit, and the viewer The eye can respectively view the left eye image L and the right eye image R in real time.
  • the controllable slit grating 102 may be an electron slit grating, an electrophoresis slit grating, an electrowetting slit grating, or the like, and is not specifically limited herein. In order to better illustrate the invention, the invention also provides an electrically controllable electronic slit grating.
  • the electron slit grating may comprise two spaced apart electrode structures and an electrochromic structure. Wherein the electrochromic structure is disposed between two electrode structures, and the electrochromic structure comprises an electrochromic material.
  • an electric field is formed between the two electrode structures by an electric field, and the electric field causes the electrochromic material to be colored into an opaque state, and does not transmit light, forming a light-shielding slit; the two electrode structures are not formed.
  • the electrochromic material is decolored to a transparent state, and the light is passed through to form a light-transmissive slit, thereby forming an electron slit grating having a slit function.
  • FIG. 4 is a perspective exploded view of the first embodiment of the electronic slit grating provided by the present invention.
  • the electronic slit grating 200 includes a first substrate 21, a first upper electrode structure 22, a first electrochromic structure 23, and a first layer, which are stacked in order from top to bottom as shown in FIG.
  • the lower electrode structure 24, the second substrate 25, the second upper electrode structure 32, the second electrochromic structure 33, the second lower electrode structure 34, and the third substrate 35 have specific structures and functions as described below.
  • the first substrate 22 and the second substrate 25 are disposed in parallel with each other.
  • the first upper electrode structure 22 (also referred to as a common electrode) is disposed inside the first substrate 22, and the first lower electrode structure 24 (driving electrode) is disposed inside the second substrate 25. Therefore, the first upper electrode structure 22 is disposed opposite to the first lower electrode structure 24, and an electrically controlled electric field can be formed therebetween.
  • the second substrate 25 and the third substrate 35 are disposed in parallel with each other.
  • the second upper electrode structure 32 also referred to as a common electrode
  • the second lower electrode structure 34 driving electrode
  • the second upper electrode structure 32 and the second lower electrode structure 34 are disposed opposite to each other, and an electrically controlled electric field can be formed therebetween.
  • the first electrochromic structure 23 is disposed between the first upper electrode structure 22 and the first lower electrode structure 24, and includes an electrochromic material 234 (not shown) therein.
  • the second electrochromic structure 33 is disposed between the second upper electrode structure 32 and the second lower electrode structure 34, and includes an electrochromic material 334 therein.
  • FIG. 5 is a schematic plan view showing the first upper electrode structure 22 and the first lower electrode structure 24 of the electronic slit grating 200 shown in FIG.
  • the first upper electrode structure 22 may be a planar electrode, or may be formed into other shapes, a plurality of partitions, and the like according to actual requirements.
  • the first upper electrode structure 22 is exemplified as a planar electrode.
  • the first lower electrode structure 24 includes at least two electrode layers.
  • the present embodiment is exemplified by including two electrode layers, and the two electrode layers are respectively referred to as a first electrode layer 241 and a second electrode layer 242, wherein the first electrode layer 241 Adjacent to the first electrochromic structure 23, the second electrode layer 242 is disposed adjacent to the inner side of the second substrate 25.
  • the first electrode layer 241 includes a plurality of first strip electrodes 241a disposed in parallel, and the plurality of first strip electrodes 241a are alternately spaced and electrically isolated from each other, and both are along the first extending direction D1 (ie, perpendicular to the paper in FIG. 4) The direction of the face) extends.
  • the second electrode layer 242 includes a plurality of second strip electrodes 242a disposed in parallel, and the plurality of second strip electrodes 242a are alternately spaced and electrically isolated from each other, and both are along the first extending direction D1 (ie, perpendicular to the paper in FIG. 4) The direction of the face) extends. And the position where the second strip electrode 242a is located is in the interval of the plurality of first strip electrodes 241a, so that the plurality of first strip electrodes 241a and the plurality of second strip electrodes 242a form a complementary relationship, Forming a complete gap-free (seamless) projection surface on the second substrate 25 completely covers the first electrochromic structure 23 in the region.
  • the adjacent side of the first strip electrode 241a and the adjacent second strip electrode 242a are aligned, so as to minimize the electrical signal interference between the two, and the two can completely cover the area in the area.
  • An electrochromic structure 23 avoids the occurrence of light leakage when forming an electronic slit.
  • the edge of the first strip electrode 241a adjacent to the adjacent second strip electrode 242a may be overlapped.
  • the overlap region may be the first strip electrode 241a or the second strip.
  • a planarized insulating layer 243 (not shown) is also provided to fill the space between the first strip electrode 241a and the second strip electrode 242a.
  • the insulating layer 243 may be made of silicon nitride or silicon oxide or other transparent material.
  • the plurality of first strip electrodes 241a and the plurality of second strip electrodes 242a have the same structure, and are rectangular strip electrodes having the same length and width and the same pitch, thereby forming the light-shielding slit and the light-transmitting slit.
  • a driving voltage V1 may be periodically applied to the adjacent plurality of strip electrodes 241a/242a for forming a light shielding slit or a light transmitting slit.
  • a zero voltage V0 or a reference voltage Vref is applied to the other strip electrodes 241a/242a for forming a light transmissive slit or a light blocking slit.
  • the electrochromic material 234 therein is decolored to become a transparent state, and in a transparent state, the light is transmitted.
  • the first electrochromic structure 23 includes: a first electrochromic layer 231 (not shown) stacked in sequence, a first electrolyte layer 232 (not shown), and a first ion storage layer 233 (Fig.
  • the first electrochromic layer 231 is disposed inside the first upper electrode structure 22, and the first ion storage layer 233 is disposed inside the first lower electrode structure 24.
  • the first electrochromic structure 23 applies the first electrolyte layer 232 to supply ions stored in the first ion storage layer 233 to the first electrochromic layer 231, so that the first electrochromic layer 231 generates a reversible reaction of oxidation or reduction.
  • the color change occurs, including decoloration to a transparent state, transmission of light in a transparent state, or coloration to an opaque state, and no transmission of light in an opaque state.
  • the first electrochromic structure 23 further includes: a first ion storage layer 233 (not shown) stacked in sequence, a first electrolyte layer 232 (not shown), and a first electrochromic layer 231 (
  • the first ion storage layer 233 is disposed inside the first upper electrode structure 22, and the first electrochromic layer 231 is disposed inside the first lower electrode structure 24.
  • the first electrochromic structure 23 applies the first electrolyte layer 232 to supply ions stored in the first ion storage layer 233 to the first electrochromic layer 231, so that the first electrochromic layer 231 generates a reversible reaction of oxidation or reduction.
  • the color change occurs, including decoloration to a transparent state, transmission of light in a transparent state, or coloration to an opaque state, and no transmission of light in an opaque state.
  • an electrochromic material 234 is included in the first electrochromic layer 231.
  • the first substrate 21 and the second substrate 25 may be made of a hard transparent material such as transparent glass or quartz, or may be made of a soft transparent material such as plastic, as long as the light is transmitted, List one by one.
  • the first upper electrode structure 22 and the first lower electrode structure 24 are made of a transparent conductive material, such as indium tin oxide (Indium). Tin Oxide, ITO) or Indium Zinc Oxide (IZO), not listed here.
  • a transparent conductive material such as indium tin oxide (Indium). Tin Oxide, ITO) or Indium Zinc Oxide (IZO), not listed here.
  • the first electrochromic layer 231 may comprise: a printable electrochromic ink, or an electrochromic film, or an electrochromic glass, or an electrically controlled light transmissive film.
  • the first electrolyte layer 232 may include: a printable electrolyte ink.
  • FIG. 6 is a schematic plan view showing the second upper electrode structure 32 and the second lower electrode structure 34 of the electronic slit grating 200 shown in FIG.
  • the second upper electrode structure 32 may be a planar electrode, or may be formed into other shapes, a plurality of partitions, and the like according to actual requirements.
  • the second upper electrode structure 32 is exemplified as a planar electrode.
  • the second lower electrode structure 34 includes at least two electrode layers.
  • the embodiment is exemplified by including two electrode layers, and the two electrode layers are respectively referred to as a third electrode layer 341 and a fourth electrode layer 342, wherein the third electrode layer 341 Adjacent to the second electrochromic structure 33, the fourth electrode layer 342 is disposed adjacent to the inner side of the third substrate 35.
  • the third electrode layer 341 includes a plurality of third strip electrodes 341a disposed in parallel, and the plurality of third strip electrodes 341a are alternately spaced and electrically isolated from each other and both extend in the second extending direction D2.
  • the fourth electrode layer 342 includes a plurality of fourth strip electrodes 342a disposed in parallel, and the plurality of fourth strip electrodes 342a are alternately spaced and electrically isolated from each other and both extend in the second extending direction D2. And the position where the fourth strip electrode 342a is located is in the interval of the plurality of third strip electrodes 341a, so that the plurality of third strip electrodes 341a and the plurality of fourth strip electrodes 342a form a complementary relationship, Forming a complete gap-free (seamless) projection surface of the third substrate 35, the second electrochromic structure 33 in the region can be completely covered.
  • the third strip electrode 341a is aligned with the adjacent side of the adjacent fourth strip electrode 342a, so as to minimize the electrical signal interference between the two, and the two can completely cover the area in the area.
  • the second electrochromic structure 33 avoids the occurrence of light leakage when forming an electronic slit.
  • the edge of the third strip electrode 341a adjacent to the adjacent fourth strip electrode 342a may be overlapped.
  • the overlapping area may be the third strip electrode 341a or the fourth strip.
  • a planarized insulating layer 343 (not shown) is also provided to fill the space between the third strip electrode 341a and the fourth strip electrode 342a.
  • the insulating layer 343 may be made of silicon nitride or silicon oxide or other transparent material.
  • the plurality of third strip electrodes 341a and the plurality of fourth strip electrodes 342a have the same structure, and are rectangular strip electrodes having the same length and width and the same pitch, thereby forming the light-shielding slit and the light-transmitting slit.
  • a driving voltage V1 may be periodically applied to the adjacent strip electrodes 341a/342a for forming a light-shielding slit or a light-transmitting slit.
  • a zero voltage V0 or a reference voltage Vref is applied to the other strip electrodes 341a/342a for forming a light transmissive slit or a light blocking slit.
  • the ratio and width of the light-shielding slit and the light-transmitting slit can be changed, thereby adjusting the grating pitch and the pitch of the electron slit grating, An electrically controllable dynamic electronic slit grating is realized, which is described in detail later.
  • the width and the ratio of the light-shielding slit and the light-transmissive slit need to be adjusted according to the parameter configuration of the specific stereoscopic display device, and will not be described herein.
  • the second electrochromic structure 33 when an electric field is formed between the second upper electrode structure 32 and the second lower electrode structure 34, wherein the electrochromic material 334 is colored to be opaque, and in the opaque state, the light is not transmitted.
  • the electrochromic material 334 therein is decolored to become a transparent state, and in a transparent state, the light is transmitted.
  • the second electrochromic structure 33 includes a second electrochromic layer 331 (not shown), a second electrolyte layer 332 (not shown), and a second ion storage layer 333 (FIG.
  • the second electrochromic layer 331 is disposed inside the second upper electrode structure 32, and the second ion storage layer 333 is disposed inside the second lower electrode structure 34.
  • the second electrochromic structure 33 applies the second electrolyte layer 332 to supply ions stored in the second ion storage layer 333 to the second electrochromic layer 331 such that the second electrochromic layer 331 generates a reversible reaction of oxidation or reduction.
  • the color change occurs, including decoloration to a transparent state, transmission of light in a transparent state, or coloration to an opaque state, and no transmission of light in an opaque state.
  • the second electrochromic structure 33 further includes: a second ion storage layer 333 (not shown) disposed in this order, a second electrolyte layer 332 (not shown), and a second electrochromic layer 331 (
  • the second ion storage layer 333 is disposed inside the second upper electrode structure 32, and the second electrochromic layer 331 is disposed inside the second lower electrode structure 34.
  • the second electrochromic structure 33 applies the second electrolyte layer 332 to supply ions stored in the second ion storage layer 333 to the second electrochromic layer 331 such that the second electrochromic layer 331 generates a reversible reaction of oxidation or reduction.
  • the color change occurs, including decoloration to a transparent state, transmission of light in a transparent state, or coloration to an opaque state, and no transmission of light in an opaque state.
  • an electrochromic material 334 is included in the second electrochromic layer 331.
  • the second substrate 21 and the third substrate 35 may be made of a transparent transparent material such as transparent glass or quartz, or may be made of a soft transparent material such as plastic, as long as the light can be transmitted. List one by one.
  • the second upper electrode structure 32 and the second lower electrode structure 34 are made of a transparent conductive material, such as indium tin oxide or indium zinc oxide, which are not enumerated here.
  • the second electrochromic layer 331 may comprise: a printable electrochromic ink, or an electrochromic film, or an electrochromic glass, or an electrically controlled light transmissive film.
  • the second electrolyte layer 332 may include: a printable electrolyte ink.
  • the extending direction of the first strip electrode 241a is parallel to the extending direction of the second strip electrode 242a; the extending direction of the third strip electrode 341a is parallel to the extending direction of the fourth strip electrode 342a;
  • the extending direction of the shaped electrode 242a is perpendicular to the extending direction of the third strip electrode 341a or is set to a specific angle (for example, less than 90 degrees or greater than 90 degrees) according to actual needs, thereby achieving realization in the stereoscopic display device 100 of the present invention.
  • the electronic slit can also be adjusted according to the user's viewing position, and the three-dimensional stereoscopic display image visible to the naked eye can be displayed, so that the user can always obtain a good stereoscopic visual experience.
  • a driving voltage V1 is simultaneously applied, and a plurality of strip electrodes (for example, all of the first strips) are separately separated one by one.
  • the same zero voltage V0 or reference voltage Vref is simultaneously applied to the electrode 241a) and the first upper electrode structure 22.
  • a driving voltage V1 is simultaneously applied, and a plurality of strip electrodes (for example, all third strips) are additionally separated one by one.
  • the same zero voltage V0 or reference voltage Vref is simultaneously applied to the electrode 341a) and the second upper electrode structure 32.
  • the driving voltage V1 is simultaneously applied to all of the first strip electrodes 241a and the second strip electrode 242a is applied.
  • the third strip electrode 341a, the fourth strip electrode 342a, the second upper electrode structure 32, and the first upper electrode structure 22 are simultaneously applied with the same zero voltage V0 or reference voltage Vref.
  • the second substrate 25 and the first lower electrode structure 24 generate a light between the plurality of first strip electrodes 241a and the first upper electrode structure 22 which are separated one by one when the light propagates toward the first electrochromic structure 23.
  • a stronger electric field drives the electrochromic material 234 corresponding to the region to become opaque, and does not transmit light, and is formed as a light-shielding slit outside the first substrate 21;
  • Two strip electrode 242a Corresponding to rectangular areas, the light transmitted through the first electrochromic structure 23 electrically, a first upper electrode structure 22, the first substrate 21, the performance of the light transmissive slits formed in the first substrate 21 outside.
  • the light-shielding slits are alternately arranged with the light-transmissive slits, and function similarly to the conventional slit gratings, thereby forming a slit grating having a ratio of a light-shielding slit to a light-transmitting slit as shown in FIG. 7a of 1:1.
  • a driving voltage V1 is simultaneously applied to a plurality of strip electrodes (for example, all of the second strip electrodes 242a) separated one by one, and a plurality of strip electrodes (for example, all of the first strip electrodes 241a) and the plurality of strip electrodes are separated one by one.
  • the same zero voltage V0 or reference voltage Vref is simultaneously applied to an upper electrode structure 22.
  • a slit grating having a ratio of a light-shielding slit to a light-transmissive slit as shown in FIG. 7b can be formed, and the slit grating shown in FIG. 7b is equivalent to that shown in FIG. 7a.
  • the illustrated slit grating produces a displacement that moves half a pitch to the right.
  • the light-shielding slit and the light-transmitting slit can be moved to the left or right by any number of pitches, which will not be described herein.
  • the driving voltage V1 may be periodically applied to the adjacent two strip electrodes (ie, a first strip electrode 241a and a neighboring second strip electrode 242a).
  • the other strip electrode i.e., a first strip electrode 241a or a second strip electrode 242a
  • V0 or Vref a reference voltage
  • the ratio is a 2:1 slit grating.
  • the driving voltage V1 is simultaneously applied to all of the third strip electrodes 341a and the first strip electrode 241a is applied.
  • the second strip electrode 242a, the fourth strip electrode 342a, the second upper electrode structure 32, and the first upper electrode structure 22 are simultaneously applied with the same zero voltage V0 or reference voltage Vref.
  • the light sequentially passes through the third substrate 35 and the second lower electrode structure 34, and does not transmit through the second electrochromic structure 33, and appears to form a light shielding outside the first substrate 21.
  • a slit corresponding to the strip-shaped region of the fourth strip electrode 342a, the light sequentially passes through the third substrate 35, the second lower electrode structure 34, the second electrochromic structure 33, the second upper electrode structure 32, and the second substrate 25.
  • the first lower electrode structure 24, the first electrochromic structure 23, the first upper electrode structure 22, and the first substrate 21 are formed to form a light-transmissive slit outside the first substrate 21.
  • the light-shielding slits are alternately arranged with the light-transmissive slits, and function similarly to the conventional slit gratings, thereby forming a slit grating having a ratio of the light-shielding slits to the light-transmitting slits as shown in FIG. 8a.
  • a driving voltage V1 is simultaneously applied to a plurality of strip electrodes (for example, all of the fourth strip electrodes 342a) separated one by one, and a plurality of strip electrodes (for example, all of the third strip electrodes 341a) and the first
  • the same zero voltage V0 or reference voltage Vref is simultaneously applied to the two upper electrode structures 32.
  • a slit grating having a light-shielding slit and a light-transmissive slit ratio of 1:1 as shown in FIG. 8b can be formed, and the slit grating shown in FIG. 8b is equivalent to that shown in FIG. 8a.
  • the illustrated slit grating produces a displacement that moves half a pitch to the right.
  • the light-shielding slit and the light-transmitting slit can be moved to the left or right by any number of pitches, which will not be described herein.
  • the driving voltage V1 may be periodically applied to the adjacent two strip electrodes (ie, a third strip electrode 341a and a neighboring fourth strip electrode 342a).
  • the other strip electrode i.e., a third strip electrode 341a or a fourth strip electrode 342a
  • V0 or Vref a reference voltage
  • the ratio is a 2:1 slit grating.
  • the shading slit and the light transmission of the controllable slit grating 102 can be adjusted.
  • the specific parameters of the slit enable the user to always be in the best viewing position and improve the user's stereoscopic viewing experience.
  • the dynamic scanning method is used to control the formation of the electronic slit grating 200, and the display driving method with time division and spatial division can improve the resolution of the stereoscopic display, that is, the resolution of the stereoscopic image can be consistent with the resolution of the display. Reduce the resolution loss of stereo images, greatly improve the stereo display quality and user experience.
  • the electronic slit can also be adjusted according to the user's viewing position, and the three-dimensional stereoscopic display image visible to the naked eye can be displayed to better realize the stereoscopic display, so that the user is always in the optimal viewing position, and the stereoscopic visual experience of the user is greatly improved.
  • FIG. 9 is a perspective exploded view of another embodiment of an electronic slit grating provided by the present invention. Since the electronic slit grating 400 of the present embodiment is similar in structure to the electronic slit grating 200 of the first embodiment shown in FIG. 4, FIG. 9 only indicates and explains the main differences thereof. Compared with the electronic slit grating 200 shown in FIG. 4, the electronic slit grating 400 mainly differs in that:
  • the first lower electrode structure 44 includes three stacked electrode layers which are stacked, and are referred to as a first electrode layer 441, a second electrode layer 442, and a third electrode layer 443, respectively.
  • the first electrode layer 441 is disposed adjacent to the first electrochromic structure 43
  • the third electrode layer 443 is disposed adjacent to the inner side of the second substrate 45
  • the second electrode layer 442 is disposed between the first electrode layer 441 and the third electrode layer 443 .
  • a planarized first insulating layer is disposed between the first electrode layer 441 and the second electrode layer 442.
  • a planarized second insulating layer 445 (not shown) is disposed between the second electrode layer 442 and the third electrode layer 443.
  • the first insulating layer 444 and the second insulating layer 445 may be made of silicon nitride or silicon oxide or other transparent material.
  • the second lower electrode structure 54 includes three electrode layers stacked in layers, which are denoted as a fourth electrode layer 541, a fifth electrode layer 542, and a sixth electrode layer 543, respectively.
  • the fourth electrode layer 541 is disposed adjacent to the second electrochromic structure 53
  • the sixth electrode layer 543 is disposed adjacent to the inner side of the third substrate 55
  • the fifth electrode layer 542 is disposed between the fourth electrode layer 541 and the sixth electrode layer 543 .
  • a planarized third insulating layer is disposed between the fourth electrode layer 541 and the fifth electrode layer 542.
  • a planarized fourth insulating layer 545 (not shown) is disposed between the fifth electrode layer 542 and the sixth electrode layer 543.
  • the third insulating layer 544 and the fourth insulating layer 545 may be made of silicon nitride or silicon oxide or other transparent material.
  • the first electrode layer 441 includes a plurality of parallel and spaced first strip electrodes 441a
  • the second electrode layer 442 includes a plurality of parallel and spaced second strip electrodes 442a
  • the third electrode layer 443 includes a plurality of A third strip electrode 443a arranged in parallel and spaced apart.
  • the fourth electrode layer 541 includes a plurality of parallel and spaced fourth strip electrodes 541a
  • the fifth electrode layer 542 includes a plurality of parallel and spaced fifth strip electrodes 542a
  • the sixth electrode layer 543 includes a plurality of A sixth strip electrode 543a arranged in parallel and spaced apart.
  • the first strip electrode 441a, the second strip electrode 442a, and the third strip electrode 443a have the same width and extend in the same direction.
  • two strip-shaped electrode widths are spaced between any adjacent first strip electrodes 441a or between second strip electrodes 442a or between the third strip electrodes 443a, and the second strip electrodes 442a and the third strip electrodes 443a is respectively moved to the right by a strip electrode width and the distance between the two strip electrodes with respect to the first strip electrode 441a, so that the edges thereof are aligned, thereby mutually complementing the gaps between the electrodes without causing overlap between each other, and avoiding Light leakage phenomenon when forming a light-shielding slit or a light-transmitting slit.
  • the fourth strip electrode 541a, the fifth strip electrode 542a, and the sixth strip electrode 543a have the same width and extend in the same direction. And two strip-shaped electrode widths are spaced between any adjacent fourth strip electrodes 541a or between fifth strip electrodes 542a or sixth strip electrodes 543a, and fifth strip electrodes 542a and sixth strip electrodes 543a is respectively moved to the right by a strip electrode width and a distance between the two strip electrodes with respect to the fourth strip electrode 541a, so that the edges thereof are aligned, thereby mutually complementing each other's gaps without causing overlap between each other, and avoiding Light leakage phenomenon when forming a light-shielding slit or a light-transmitting slit.
  • the extending direction of the first strip electrode 441a and the extending direction of the second strip electrode 442a are parallel to the extending direction of the third strip electrode 443a; the extending direction of the fourth strip electrode 541a and the fifth strip electrode
  • the extending direction of the 542a is parallel to the extending direction of the sixth strip electrode 543a; the extending direction of the third strip electrode 443a is perpendicular to the extending direction of the fourth strip electrode 541a or a specific angle is set according to actual needs (for example, less than 90 degrees or more than 90 degrees), so that when the stereoscopic display device 100 of the present invention is in the horizontal direction and the vertical direction, the electronic slit can be adjusted according to the user's viewing position, and the three-dimensional three-dimensional display can be displayed. Display images so that users always get a good stereoscopic experience.
  • first lower electrode structure 44 can also be divided into four layers, five layers, and the like as needed, similar to the above structure, and is not limited herein; the second lower electrode structure 54 can also be divided into four layers according to needs.
  • the five layers and the like are similar to the above structure and are not limited herein.
  • the driving method of the electronic slit grating 400 is similar to the driving method of the above-described electronic slit grating 200, and will not be described herein.
  • the first strip electrode 441a, the second strip electrode 442a, and the third strip electrode 443a have the same or similar structures and parameters, and are arranged parallel to each other, and adjacent Edge aligned or partially overlapping.
  • the first strip electrode 441a, the second strip electrode 442a, and the third strip electrode 443a can complement each other's gaps and cover the entire area on the plane projection, so that it is not necessary to be in the first
  • a light shielding strip is disposed between the strip electrode 441a, the second strip electrode 442a, and the third strip electrode 443a, and light leakage on the light shielding slit or the light transmission slit can be avoided, and at the same time, the three are the same or similar.
  • the structure and parameters provide more operating space for adjusting parameters such as the grid and pitch of the electronic slit grating 400, and further improve the quality of the electronic slit grating and the stereoscopic display device used therewith.
  • the fourth strip electrode 541a, the fifth strip electrode 542a, and the sixth strip electrode 543a have the same or similar structures and parameters, and are arranged parallel to each other, and adjacent thereto. Edge aligned or partially overlapping.
  • the fourth strip electrode 541a, the fifth strip electrode 542a, and the sixth strip electrode 543a can complement each other's gaps and cover the entire area on the plane projection, so that it is not necessary to be in the fourth A light shielding strip is disposed between the strip electrode 541a, the fifth strip electrode 542a, and the sixth strip electrode 543a, and light leakage on the light shielding slit or the light transmission slit can be avoided, and at the same time, the three are the same or similar.
  • the structure and parameters provide more operating space for adjusting parameters such as the grid and pitch of the electronic slit grating 400, and further improve the quality of the electronic slit grating and the stereoscopic display device used therewith.
  • the first embodiment of the present invention provides the first lower electrode structure 24, the second lower electrode structure 34, the first lower electrode structure 44, and the second lower electrode structure 54 of the electronic slit gratings 200, 400 as multiple layers.
  • the structure and the plurality of electrodes overlap each other or partially so that the lower electrode completely covers the first electrochromic structures 23, 43 and the second electrochromic structures 33, 53 in the region.
  • the parameters such as the grating pitch, the pitch, the slit width, and the position of the electronic slit gratings 200, 400 are adjusted according to actual stereoscopic display requirements, thereby achieving
  • the stereoscopic display device 100 of the present invention is in the horizontal screen direction and the vertical screen direction, the electronic slit can be adjusted according to the user's viewing position, and the three-dimensional stereoscopic display image visible to the naked eye can be displayed, so that the user can always obtain good stereoscopic vision.
  • the parameters such as the grating pitch, the pitch, the slit width, and the position of the electronic slit gratings 200, 400 are adjusted according to actual stereoscopic display requirements, thereby achieving
  • the electronic slit can be adjusted according to the user's viewing position, and the three-dimensional stereoscopic display image visible to the naked eye can be displayed, so that the user can always obtain good stereoscopic vision.
  • the electronic slit can be adjusted according to the user's viewing position, and

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种电子狭缝光栅、立体显示装置及其驱动方法,该驱动方法包括显示面板(101)显示同一场景的具有视差的左眼图像和右眼图像,和确定用户的立体观看位置,以及检测出所述显示面板(101)的显示方位,检测出所述显示面板(101)位于横屏或竖屏,最后调节电子狭缝光栅(102)遮光狭缝和透光狭缝,从而使观看者的左右眼分别对应观看到左眼图像和右眼图像,可以根据实际的立体显示需要,调节电子狭缝光栅如栅节、栅距等参数,达到实现在立体显示装置在横屏方向和竖屏方向上时,也能够根据用户观看位置的不同调整电子狭缝,显示裸眼可视的三维立体显示图像,更好的实现立体显示,使用户始终处于最佳的观看位置,大大提升用户的立体视觉体验。

Description

电子狭缝光栅、立体显示装置及其驱动方法
【技术领域】
本发明属于立体显示领域,尤其涉及一种电子狭缝光栅,还涉及一种应用电子狭缝光栅的立体显示装置及其驱动方法。
【背景技术】
人的左眼和右眼有间距,造成两眼的视角存在细微的差别,这样的差别会让左眼和右眼分别观察的景物有略微的视差,从而在人的大脑中形成立体图像。
一般的立体显示装置在观看时,需要佩戴立体眼镜,使得本来就戴有眼镜(如近视眼镜、老花眼镜等)的观看者,为了获得清晰的观看效果,需要将两付眼镜重叠,使得立体显示观看较为不便。此外,由于立体眼镜的两镜脚之间的宽度通常是固定的,这可能使得不同脸型的观看者,在佩戴立体眼镜时不能获得较佳的体验。因此,不需要佩戴立体眼镜的裸眼立体显示技术越来越为人们所关注。
裸眼式立体显示装置主要原理是在显示面板前设置光栅,例如狭缝光栅或柱面光栅,所述光栅将显示面板显示的至少两幅视差图像分别提供给观看者的左、右眼。
目前立体显示装置中应用的狭缝光栅一般为固定式光栅,即狭缝光栅的透光狭缝和遮光狭缝是固定的。这种固定是狭缝光栅在形成立体视觉时,其观看区域有严格的限定,超过此限定的区域,不能形成良好的立体视觉,极大地降低了用户的立体视觉体验,不利于立体显示技术的推广应用。
【发明内容】
为了至少部分解决以上问题,本发明提出了一种电子狭缝光栅、立体显示装置及其驱动方法。
本发明的目的在于提供一种电子狭缝光栅,包括:
依次层叠设置的第一基板、第一上电极结构、第一电致变色结构、第一下电极结构、第二基板、第二上电极结构、第二电致变色结构、第二下电极结构以及第三基板;
所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一电致变色结构;
所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二电致变色结构;
所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直。
优选的,任意条形电极与其近邻的另一层的条形电极的邻边对齐。
优选的,任意条形电极与其近邻的另一层的条形电极的邻边部分重叠。
优选的,任意条形电极与其近邻的另一层的条形电极的重叠区域为条形电极的宽度的十分之一至三分之一。
优选的,处于同一电极层的条形电极的宽度相同,其同一电极层中相邻的条形电极的间距相同。
优选的,所述第一下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置;
所述第二下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置。
优选的,所述第一下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置;
所述第二下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置。
优选的,在检测到立体显示装置位于横屏或竖屏时,通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整电子狭缝光栅所形成的遮光狭缝和透光狭缝的参数。
本发明的目的在于还提供一种立体显示装置,包括:
显示面板,用于显示同一场景的具有视差的左眼图像和右眼图像;
电子狭缝光栅,设置在显示面板的显示面上,所述液晶狭缝光栅包括依次层叠设置的第一基板、第一上电极结构、第一电致变色结构、第一下电极结构、第二基板、第二上电极结构、第二电致变色结构、第二下电极结构以及第三基板;所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一电致变色结构;所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二电致变色结构;所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直;
在检测到立体显示装置位于横屏或竖屏时,针对不同的观看位置,通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整电子狭缝光栅所形成的遮光狭缝和透光狭缝的参数,从而使观看者的左右眼对应观看到显示面板显示的左眼图像和右眼图像。
优选的,任意条形电极与其近邻的另一层的条形电极的邻边对齐。
优选的,任意条形电极与其近邻的另一层的条形电极的邻边部分重叠。
优选的,任意条形电极与其近邻的另一层的条形电极的重叠区域为条形电极的宽度的十分之一至三分之一。
优选的,处于同一电极层的条形电极的宽度相同,其同一电极层中相邻的条形电极的间距相同。
优选的,所述第一下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置;
所述第二下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置。
优选的,所述第一下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置;
所述第二下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置。
本发明的目的在于还提供一种立体显示装置的驱动方法,采用所述驱动方法的立体显示装置包括:
显示面板,用于显示同一场景的具有视差的左眼图像和右眼图像;
电子狭缝光栅,设置在显示面板的显示面上,所述液晶狭缝光栅包括依次层叠设置的第一基板、第一上电极结构、第一电致变色结构、第一下电极结构、第二基板、第二上电极结构、第二电致变色结构、第二下电极结构以及第三基板;所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一电致变色结构;所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二电致变色结构;所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直;
所述驱动方法包括:
显示面板显示同一场景的具有视差的左眼图像和右眼图像;
确定用户的立体观看位置;
通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整电子狭缝光栅所形成的遮光狭缝和透光狭缝的参数,从而使观看者的左右眼分别对应观看到左眼图像和右眼图像。
优选的,所述电子狭缝光栅的参数至少包括栅距、透光狭缝的宽度、透光狭缝的位置中的一个。
优选的,调节所述透光狭缝的位置的移动方向与观看者的观看位置的移动方向一致。
优选的,所述显示面板显示同一场景的具有视差的左眼图像和右眼图像的过程之后,所述确定用户的立体观看位置之前,还包括:
检测出所述显示面板的显示方位,检测出所述显示面板位于横屏或竖屏。
相较于现有技术,第一下电极结构包括多个电极层,每个电极层包括多个平行设置的条形电极,不同电极层上的条形电极可互相弥补彼此之间的间隙,在第一下基板的平面投影上覆盖完整的区域,从而不必在条形电极之间设置遮光带,也能避免在遮光狭缝或是透光狭缝上的漏光现象,进一步提升电子狭缝光栅的品质。
相较于现有技术,第二下电极结构包括多个电极层,每个电极层包括多个平行设置的条形电极,不同电极层上的条形电极可互相弥补彼此之间的间隙,在第二下基板的平面投影上覆盖完整的区域,从而不必在条形电极之间设置遮光带,也能避免在遮光狭缝或是透光狭缝上的漏光现象,进一步提升电子狭缝光栅的品质。
采用上述的配置和操作的立体显示装置,当立体显示装置的显示图像或用户的位置发生改变时,可以通过调节电子狭缝光栅的栅距、透光狭缝的宽度、透光狭缝的位置等具体参数,能够使用户始终处于最佳的观看位置,提高用户的立体观看体验,推动立体显示技术的推广及应用。
【附图说明】
图1为本发明提供的立体显示装置的一实施例的结构示意图;
图2为本发明提供的立体显示装置的一实施例另一种工作状态示意图;
图3为本发明提供的立体显示装置的一实施例另一种工作状态示意图;
图4为本发明提供的电子狭缝光栅的一实施例的立体分解示意图;
图5为图4所示电子狭缝光栅的第一上电极结构和第一下电极结构的平面结构示意图;
图6为图4所示电子狭缝光栅的第二上电极结构和第二下电极结构的平面结构示意图;
图7a-7d为图4所示的电子狭缝光栅在立体显示装置位于横屏方向时所形成的四种工作状态示意图;
图8a-8d为图4所示的电子狭缝光栅在立体显示装置位于竖屏方向时所形成的四种工作状态示意图;
图9为本发明提供的电子狭缝光栅另一实施例的立体分解示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
请参见图1,图1为本发明提供的立体显示装置的一实施例的结构示意图,该立体显示装置100包括显示面板101以及设置在显示面板101显示面的可控狭缝光栅102。
显示面板101为平面显示装置,用于产生同一场景的具有视差的左眼图像L和右眼图像R,其中左眼图像L和右眼图像R例如可以分别为条形图像,并在水平方向相互交替的显示在显示面板101上。显示面板101例如可以是液晶显示装置、等离子显示装置、有机发光二极管显示装置、电致发光显示装置等,此处不再一一列举。
可控狭缝光栅102为狭缝式光栅,其可以受控制的在其特定位置形成遮光狭缝和透光狭缝,一般地可形成交替结构的透光狭缝和遮光狭缝,从而使观看者的左眼经过透光狭缝后,只能看到显示面板101上显示的左眼图像L,右眼只能看到显示面板101上显示的右眼图像R。由于左眼图像L和右眼图像R为同一场景的具有视差的图像,观看者根据左右眼接收到的不同的视差图像,产生立体视觉。
当观看者相对立体显示装置100移动一定的距离,例如在第一时刻,观看者在图1所示的位置,在第二时刻,观看者相对显示装置100向其中部移动一定距离,如图2所示的位置。此时,如果可控狭缝光栅102保持图1所示的透光狭缝和遮光狭缝,左右眼将不能看到对应的左眼图像L和右眼图像R,造成视觉混乱,无法形成立体视觉。此时通过调整可控狭缝光栅102的透光狭缝和遮光狭缝的位置,例如调整为图2所示的位置,即,可控狭缝光栅102的透光狭缝相对于显示面板101向其中部位置移动。经过调整,可以使当前位置的观看者的左眼仍然能够通过透光狭缝只看到显示面板101上显示的左眼图像L,同时右眼只能看到显示面板101上显示的右眼图像R。则此时,根据观看者的位置(即眼睛的位置)变化,相应改变可控狭缝光栅102的遮光狭缝和透光狭缝的位置,仍然能够保证观看者左右眼看到具有视差的左眼图像L和右眼图像R,保持较好的立体视觉。
同样的,如果此时观看者的眼睛继续移动的如图3所示的位置,可以继续调整可控狭缝光栅102的透光狭缝的位置向图2所示的右方向移动,仍然保持观看者左右眼看到具有视差的左眼图像L和右眼图像R,保持较好的立体视觉,提高观看者的立体观看体验。
由上述内容可知,一般的,在显示面板101上显示的左眼图像L和右眼图像R的位置未发生变化的时候,经过调整可控狭缝光栅102的透光狭缝和遮光狭缝的位置,能够一直保持观看者具有良好的立体视觉。一般地,透光狭缝的移动方向与观看者眼睛移动的方向是一致的,当然,如果显示面板101显示的左眼图像L和右眼图像R的产生了重新排列,也可能使透光狭缝的移动方向与观看者眼睛移动的移动方向不一致,甚至相反。总而言之,在具体的设计中,应当考虑到左、右眼图像的变化,合理地调整可控狭缝光栅102的透光狭缝和遮光狭缝位置,以观看者左右眼分别能够实时的观看到左眼图像L和右眼图像R为准。
另外,可控狭缝光栅102除了能够调整透光狭缝和遮光狭缝的位置,还可以调整透光狭缝和遮光狭缝的栅节、栅距、狭缝宽度等参数,以观看者左右眼分别能够实时的观看到左眼图像L和右眼图像R为准。
可控狭缝光栅102可以是电子狭缝光栅、电泳狭缝光栅、电润湿狭缝光栅等,在此不做具体限制。为了能够更好的说明本发明,本发明还提供一种电可控的电子狭缝光栅。
电子狭缝光栅可以包括两个间隔设置的电极结构以及电致变色结构。其中,电致变色结构设置于两个电极结构之间,电致变色结构包括电致变色材料。
在具体实施过程中,通过配置,该两个电极结构之间形成电场,电场使电致变色材料着色变成不透明状态,不透过光线,形成遮光狭缝;该两个电极结构之间未形成电场时,电致变色材料去色变成透明状态,透过光线,形成透光狭缝,从而形成具有狭缝作用的电子狭缝光栅。
请参见图4,图4为本发明提供的电子狭缝光栅的第一实施例的立体分解示意图。在本实施例中,电子狭缝光栅200按照图4所示的从上到下的顺序依次包括层叠设置的第一基板21、第一上电极结构22、第一电致变色结构23、第一下电极结构24、第二基板25、第二上电极结构32、第二电致变色结构33、第二下电极结构34以及第三基板35,具体结构和功能如下所述。
第一基板22和第二基板25相对平行设置,第一上电极结构22(也称公共电极)设置于第一基板22内侧,第一下电极结构24(驱动电极)设置于第二基板25内侧,从而使第一上电极结构22与第一下电极结构24相对设置,二者之间可形成电控电场。
第二基板25和第三基板35相对平行设置,第二上电极结构32(也称公共电极)设置于第二基板25外侧,第二下电极结构34(驱动电极)设置于第三基板35内侧,从而使第二上电极结构32与第二下电极结构34相对设置,二者之间可形成电控电场。
第一电致变色结构23设置于第一上电极结构22和第一下电极结构24之间,其内包括电致变色材料234(图中未标示)。
第二电致变色结构33设置于第二上电极结构32和第二下电极结构34之间,其内包括电致变色材料334。
请同时参见图5,图5是图4所示电子狭缝光栅200的第一上电极结构22和第一下电极结构24的平面结构示意图。其中,第一上电极结构22可以是面状电极,也可以根据实际需求制作成其他形状、多个分区设置等,本实施例以第一上电极结构22为面状电极举例说明。
第一下电极结构24包括至少两层电极层,本实施例以包含两个电极层举例说明,且两电极层分别记为第一电极层241和第二电极层242,其中第一电极层241临近第一电致变色结构23设置,第二电极层242临近第二基板25内侧设置。
第一电极层241包括多个平行设置的第一条形电极241a,多个第一条形电极241a交替间隔设置且相互电气隔离,并均沿第一延伸方向D1(即图4中垂直于纸面的方向)延伸。
第二电极层242包括多个平行设置的第二条形电极242a,多个第二条形电极242a交替间隔设置且相互电气隔离,并均沿第一延伸方向D1(即图4中垂直于纸面的方向)延伸。且第二条形电极242a所在的位置处于多个第一条形电极241a的间隔区间内,从而使多个第一条形电极241a和多个第二条形电极242a形成互补的关系,二者在第二基板25形成一个完整的无间隙(无缝)的投影面,可以完整覆盖该区域内的第一电致变色结构23。
一般的,第一条形电极241a与相邻的第二条形电极242a的邻边为对齐结构,这样尽量减少二者之间的电信号干扰,又可以使二者完整覆盖该区域内的第一电致变色结构23,避免形成电子狭缝时的漏光现象发生。同时由于制作工艺的限制,还可以使第一条形电极241a与相邻的第二条形电极242a相邻的边缘产生一定的重叠,例如重叠区域可以为第一条形电极241a或第二条形电极242a宽度的十分之一至三分之一。
进一步地,为使第一电极层241的第一条形电极241a之间和第二电极层242的第二条形电极242a彼此保持电气绝缘,第一电极层241和第二电极层242之间还设置有平坦化的绝缘层243(图中未标示),填充第一条形电极241a和第二条形电极242a之间的空间。绝缘层243可以由氮化硅或氧化硅或其他透明材料制成。
一般的,多个第一条形电极241a与多个第二条形电极242a具有相同的结构,为长、宽相同、间距相等的矩形条形电极,从而在形成遮光狭缝和透光狭缝的过程中具有更多的灵活性。例如在第一上电极结构22施加零电压V0或参考电压Vref,可以周期性的在相邻的若干条形电极241a/242a上施加驱动电压V1,用于形成遮光狭缝或透光狭缝,在其它的条形电极241a/242a上施加零电压V0或参考电压Vref,用于形成透光狭缝或遮光狭缝。通过改变形成遮光狭缝和透光狭缝的条形电极241a/242a的个数,可以改变遮光狭缝和透光狭缝的比例和宽度,从而调节电子狭缝光栅的栅节和栅距,实现电可控的动态电子狭缝光栅,此方法后文做详细描述。遮光狭缝与透光狭缝的宽度和比例需要根据具体的立体显示装置的参数配置来调整,在此不做赘述。
第一电致变色结构23,在第一上电极结构22与第一下电极结构24之间形成有电场时,其中的电致变色材料234着色变成不透明状态,在不透明状态时不透过光线;在第一上电极结构22与第一下电极结构24之间未形成电场时,其中的电致变色材料234去色变成透明状态,在透明状态时透过光线。
一般的,第一电致变色结构23包括:依次层叠设置的第一电致变色层231(图中未标示)、第一电解质层232(图中未标示)、第一离子存储层233(图中未标示),第一电致变色层231设置于第一上电极结构22内侧,第一离子存储层233设置于第一下电极结构24内侧。第一电致变色结构23应用第一电解质层232提供存储于第一离子存储层233中的离子给到第一电致变色层231,使得第一电致变色层231产生氧化或还原的可逆反应而产生颜色变化,包括去色变成透明状态,在透明状态时透过光线,或着色变成不透明状态,在不透明状态时不透过光线。
一般的,第一电致变色结构23还包括:依次层叠设置的第一离子存储层233(图中未标示)、第一电解质层232(图中未标示)、第一电致变色层231(图中未标示),第一离子存储层233设置于第一上电极结构22内侧,第一电致变色层231设置于第一下电极结构24内侧。第一电致变色结构23应用第一电解质层232提供存储于第一离子存储层233中的离子给到第一电致变色层231,使得第一电致变色层231产生氧化或还原的可逆反应而产生颜色变化,包括去色变成透明状态,在透明状态时透过光线,或着色变成不透明状态,在不透明状态时不透过光线。
一般的,第一电致变色层231中包括电致变色材料234。
优选的,第一基板21和第二基板25可以是由透明玻璃、石英等硬质透明材料,也可以是由塑料等软质透明材料制成,只要使得光线能够透过即可,此处不一一列举。
优选的,第一上电极结构22和第一下电极结构24均为透明导电材料制成,譬如可为铟锡氧化物(Indium Tin Oxide,ITO)或铟锌氧化物(Indium Zinc Oxide,IZO),此处不一一列举。
优选的,第一电致变色层231可以包括:可印刷的电致变色油墨,或电致变色薄膜,或电致变色玻璃,或电控透光薄膜。
优选的,第一电解质层232可以包括:可印刷的电解质油墨。
请同时参见图6,图6是图4所示电子狭缝光栅200的第二上电极结构32和第二下电极结构34的平面结构示意图。其中,第二上电极结构32可以是面状电极,也可以根据实际需求制作成其他形状、多个分区设置等,本实施例以第二上电极结构32为面状电极举例说明。
第二下电极结构34包括至少两层电极层,本实施例以包含两个电极层举例说明,且两电极层分别记为第三电极层341和第四电极层342,其中第三电极层341临近第二电致变色结构33设置,第四电极层342临近第三基板35内侧设置。
第三电极层341包括多个平行设置的第三条形电极341a,多个第三条形电极341a交替间隔设置且相互电气隔离,并均沿第二延伸方向D2延伸。
第四电极层342包括多个平行设置的第四条形电极342a,多个第四条形电极342a交替间隔设置且相互电气隔离,并均沿第二延伸方向D2延伸。且第四条形电极342a所在的位置处于多个第三条形电极341a的间隔区间内,从而使多个第三条形电极341a和多个第四条形电极342a形成互补的关系,二者在第三基板35的形成一个完整的无间隙(无缝)的投影面,可以完整覆盖该区域内的第二电致变色结构33。
一般的,第三条形电极341a与相邻的第四条形电极342a的邻边为对齐结构,这样尽量减少二者之间的电信号干扰,又可以使二者完整覆盖该区域内的第二电致变色结构33,避免形成电子狭缝时的漏光现象发生。同时由于制作工艺的限制,还可以使第三条形电极341a与相邻的第四条形电极342a相邻的边缘产生一定的重叠,例如重叠区域可以为第三条形电极341a或第四条形电极342a宽度的十分之一至三分之一。
进一步地,为使第三电极层341的第三条形电极341a之间和第四电极层342的第四条形电极342a彼此保持电气绝缘,第三电极层341和第四电极层342之间还设置有平坦化的绝缘层343(图中未标示),填充第三条形电极341a和第四条形电极342a之间的空间。绝缘层343可以由氮化硅或氧化硅或其他透明材料制成。
一般的,多个第三条形电极341a与多个第四条形电极342a具有相同的结构,为长、宽相同、间距相等的矩形条形电极,从而在形成遮光狭缝和透光狭缝的过程中具有更多的灵活性。例如在第二上电极结构32施加零电压V0或参考电压Vref,可以周期性的在相邻的若干条形电极341a/342a上施加驱动电压V1,用于形成遮光狭缝或透光狭缝,在其它的条形电极341a/342a上施加零电压V0或参考电压Vref,用于形成透光狭缝或遮光狭缝。通过改变形成遮光狭缝和透光狭缝的条形电极341a/342a的个数,可以改变遮光狭缝和透光狭缝的比例和宽度,从而调节电子狭缝光栅的栅节和栅距,实现电可控的动态电子狭缝光栅,此方法后文做详细描述。遮光狭缝与透光狭缝的宽度和比例需要根据具体的立体显示装置的参数配置来调整,在此不做赘述。
第二电致变色结构33,在第二上电极结构32与第二下电极结构34之间形成有电场时,其中的电致变色材料334着色变成不透明状态,在不透明状态时不透过光线;在第二上电极结构32与第二下电极结构34之间未形成电场时,其中的电致变色材料334去色变成透明状态,在透明状态时透过光线。
一般的,第二电致变色结构33包括:依次层叠设置的第二电致变色层331(图中未标示)、第二电解质层332(图中未标示)、第二离子存储层333(图中未标示),第二电致变色层331设置于第二上电极结构32内侧,第二离子存储层333设置于第二下电极结构34内侧。第二电致变色结构33应用第二电解质层332提供存储于第二离子存储层333中的离子给到第二电致变色层331,使得第二电致变色层331产生氧化或还原的可逆反应而产生颜色变化,包括去色变成透明状态,在透明状态时透过光线,或着色变成不透明状态,在不透明状态时不透过光线。
一般的,第二电致变色结构33还包括:依次层叠设置的第二离子存储层333(图中未标示)、第二电解质层332(图中未标示)、第二电致变色层331(图中未标示),第二离子存储层333设置于第二上电极结构32内侧,第二电致变色层331设置于第二下电极结构34内侧。第二电致变色结构33应用第二电解质层332提供存储于第二离子存储层333中的离子给到第二电致变色层331,使得第二电致变色层331产生氧化或还原的可逆反应而产生颜色变化,包括去色变成透明状态,在透明状态时透过光线,或着色变成不透明状态,在不透明状态时不透过光线。
一般的,第二电致变色层331中包括电致变色材料334。
优选的,第二基板21和第三基板35可以是由透明玻璃、石英等硬质透明材料,也可以是由塑料等软质透明材料制成,只要使得光线能够透过即可,此处不一一列举。
优选的,第二上电极结构32和第二下电极结构34均为透明导电材料制成,譬如可为铟锡氧化物或铟锌氧化物,此处不一一列举。
优选的,第二电致变色层331可以包括:可印刷的电致变色油墨,或电致变色薄膜,或电致变色玻璃,或电控透光薄膜。
优选的,第二电解质层332可以包括:可印刷的电解质油墨。
优选的,第一条形电极241a的延伸方向与第二条形电极242a的延伸方向相平行;第三条形电极341a的延伸方向与第四条形电极342a的延伸方向相平行;第二条形电极242a的延伸方向与第三条形电极341a的延伸方向相垂直或根据实际需要设定特定的角度(例如小于90度或大于90度),从而达到实现在本发明的立体显示装置100在横屏方向和竖屏方向上时,也能够根据用户观看位置的不同调整电子狭缝,显示裸眼可视的三维立体显示图像,使用户始终能够得到良好的立体视觉体验。
以下具体介绍动态电子狭缝光栅功能的实现方法。
对于电子狭缝光栅200,当逐一相隔的多个条形电极(例如全部第二条形电极242a)上同时施加驱动电压V1,在另外逐一相隔的多个条形电极(例如全部第一条形电极241a)以及第一上电极结构22上同时施加相同的零电压V0或参考电压Vref。这样在逐一相隔的多个第二条形电极242a与第一上电极结构22之间产生一较强电场,该区域的电场驱动对应该区域的电致变色材料234着色变成不透明状态;另外逐一相隔的多个第一条形电极241a与第一上电极结构22之间无电场,电致变色材料234去色变成透明状态。
对于电子狭缝光栅200,当逐一相隔的多个条形电极(例如全部第四条形电极342a)上同时施加驱动电压V1,在另外逐一相隔的多个条形电极(例如全部第三条形电极341a)以及第二上电极结构32上同时施加相同的零电压V0或参考电压Vref。这样在逐一相隔的多个第四条形电极342a与第二上电极结构32之间产生一较强电场,该区域的电场驱动对应该区域的电致变色材料334着色变成不透明状态;另外逐一相隔的多个第三条形电极341a与第二上电极结构32之间无电场,电致变色材料334去色变成透明状态。
检测到立体显示装置100位于横屏方向时,当光线由第三基板35向第一基板21方向传播时,在全部第一条形电极241a上同时施加驱动电压V1以及在第二条形电极242a、第三条形电极341a、第四条形电极342a第二上电极结构32、第一上电极结构22上同时施加相同的零电压V0或参考电压Vref。这样在逐一相隔的多个第三条形电极341a与第二上电极结构32之间无电场,对应该区域的电致变色材料334去色变成透明状态,在逐一相隔的多个第四条形电极342a与第二上电极结构32之间无电场,对应该区域的电致变色材料334去色变成透明状态,在逐一相隔的多个第二条形电极242a与第一上电极结构22之间无电场,对应该区域的电致变色材料234去色变成透明状态,光线依次透过第三基板35、第二下电极结构34、第二电致变色结构33、第二上电极结构32、第二基板25、第一下电极结构24,在光线向第一电致变色结构23传播时,在逐一相隔的多个第一条形电极241a与第一上电极结构22之间产生一较强电场,该区域的电场驱动对应该区域的电致变色材料234着色变成不透明状态,不透过光线,表现为在第一基板21外形成遮光狭缝;在另外逐一相隔的多个第二条形电极242a对应的条形区域,光线透过第一电致变色结构23、第一上电极结构22、第一基板21,表现为在第一基板21外形成透光狭缝。遮光狭缝与透光狭缝交替排列,作用与常见的狭缝光栅相似,从而形成如图7a所示的遮光狭缝与透光狭缝比例为1:1的狭缝光栅。
电子狭缝光栅配合显示面板实现立体显示的方法已为公众所知,在此不做赘述。
另外,在逐一相隔的多个条形电极(例如全部第二条形电极242a)上同时施加驱动电压V1,在另外逐一相隔的多个条形电极(例如全部第一条形电极241a)以及第一上电极结构22上同时施加相同的零电压V0或参考电压Vref。这样在逐一相隔的多个第二条形电极242a与第一上电极结构22之间产生一较强电场,该区域的电场驱动对应该区域的电致变色材料234着色变成不透明状态;另外逐一相隔的多个第一条形电极241a与第一上电极结构22之间无电场,对应该区域的电致变色材料234去色变成透明状态。
根据上述相同的光学原理,可以形成如图7b所示的遮光狭缝与透光狭缝比例为1:1的狭缝光栅,其特点在于,图7b所示的狭缝光栅相当于图7a所示的狭缝光栅产生了向右移动半个栅距的位移。通过类似方法,调节施加驱动电压的条形电极的位置,还可以使遮光狭缝和透光狭缝向左或向右移动任意多个栅距,在此不做赘述。
进一步地,如图7c所示,可以周期性的选择在相邻的两条条形电极(即一条第一条形电极241a和近邻的一条第二条形电极242a)施加驱动电压V1,在相邻的另一条条形电极(即一条第一条形电极241a或一条第二条形电极242a)施加参考电压V0或Vref,这样形成的图7c所示的遮光狭缝和透光狭缝的宽度比为2:1的狭缝光栅。
采用同样的方法,通过施加调整驱动电压V1的条形电极的数量,还可以产生如图7d所示的遮光狭缝和透光狭缝的宽度比为3:1或其他任意比例的狭缝光栅,在此不做赘述。
检测到立体显示装置100位于竖屏方向时,当光线由第三基板35向第一基板21方向传播时,在全部第三条形电极341a上同时施加驱动电压V1以及在第一条形电极241a、第二条形电极242a、第四条形电极342a、第二上电极结构32、第一上电极结构22上同时施加相同的零电压V0或参考电压Vref。这样在逐一相隔的多个第三条形电极341a与第二上电极结构32之间产生一较强电场,该区域的电场驱动对应该区域的电致变色材料334着色变成不透明状态,在逐一相隔的多个第四条形电极342a与第二上电极结构32之间无电场,对应该区域的电致变色材料334去色变成透明状态,在逐一相隔的多个第一条形电极241a与第一上电极结构22之间无电场,对应该区域的电致变色材料234去色变成透明状态,在逐一相隔的多个第二条形电极242a与第一上电极结构22之间无电场,对应该区域的电致变色材料234去色变成透明状态。对应于第三条形电极341a的条形区域,光线依次透过第三基板35、第二下电极结构34,不透过第二电致变色结构33,表现为在第一基板21外形成遮光狭缝;对应于第四条形电极342a的条形区域,光线依次透过第三基板35、第二下电极结构34、第二电致变色结构33、第二上电极结构32、第二基板25、第一下电极结构24、第一电致变色结构23、第一上电极结构22、第一基板21,表现为在第一基板21外形成透光狭缝。遮光狭缝与透光狭缝交替排列,作用与常见的狭缝光栅相似,从而形成如图8a所示的遮光狭缝与透光狭缝比例为1:1的狭缝光栅。
电子狭缝光栅配合显示面板实现立体显示的方法已为公众所知,在此不做赘述。
另外,在逐一相隔的多个条形电极(例如全部第四条形电极342a)上同时施加驱动电压V1,在另外逐一相隔的多个条形电极(例如全部第三条形电极341a)以及第二上电极结构32上同时施加相同的零电压V0或参考电压Vref。这样在逐一相隔的多个第四条形电极342a与第二上电极结构32之间产生一较强电场,该区域的电场驱动对应该区域的电致变色材料334着色变成不透明状态;另外逐一相隔的多个第三条形电极341a与第二上电极结构32之间无电场,对应该区域的电致变色材料334去色变成透明状态。
根据上述相同的光学原理,可以形成如图8b所示的遮光狭缝与透光狭缝比例为1:1的狭缝光栅,其特点在于,图8b所示的狭缝光栅相当于图8a所示的狭缝光栅产生了向右移动半个栅距的位移。通过类似方法,调节施加驱动电压的条形电极的位置,还可以使遮光狭缝和透光狭缝向左或向右移动任意多个栅距,在此不做赘述。
进一步地,如图8c所示,可以周期性的选择在相邻的两条条形电极(即一条第三条形电极341a和近邻的一条第四条形电极342a)施加驱动电压V1,在相邻的另一条条形电极(即一条第三条形电极341a或一条第四条形电极342a)施加参考电压V0或Vref,这样形成的图8c所示的遮光狭缝和透光狭缝的宽度比为2:1的狭缝光栅。
采用同样的方法,通过施加调整驱动电压V1的条形电极的数量,还可以产生如图8d所示的遮光狭缝和透光狭缝的宽度比为3:1或其他任意比例的狭缝光栅,在此不做赘述。
采用上述的配置和操作,在立体显示中具有很重要的应用,即,当立体显示装置的显示图像或用户的位置发生改变时,可以通过调节可控狭缝光栅102的遮光狭缝和透光狭缝的具体参数,能够使用户始终处于最佳的观看位置,提高用户的立体观看体验。
同时,采用动态扫描的方法控制电子狭缝光栅200的形成,配合时间分割和空间分割的显示驱动方法,可以提高立体显示的分辨率,即,立体图像的分辨率可以和显示器的分辨率一致,减少立体图像的分辨率损失,大大提升立体显示品质和用户体验。
综上所述,通过调节施加驱动电压V1和参考电压Vref的第一条形电极241a、第二条形电极242a、第三条形电极341a和第四条形电极342a的个数和位置,可以根据实际的立体显示需要,调节电子狭缝光栅200如栅节、栅距、周期、狭缝宽度等参数,从而达到实现在本发明的立体显示装置100在横屏方向和竖屏方向上时,也能够根据用户观看位置的不同调整电子狭缝,显示裸眼可视的三维立体显示图像,更好的实现立体显示,使用户始终处于最佳的观看位置,大大提升了用户的立体视觉体验。
请参见图9,图9为本发明提供的电子狭缝光栅另一实施例的立体分解示意图。由于本实施例的电子狭缝光栅400与图4所示的第一实施例中的电子狭缝光栅200结构类似,图9仅对其主要不同之处进行标示和说明。与图4所示的电子狭缝光栅200相比,电子狭缝光栅400主要不同之处在于:
第一下电极结构44包括层叠设置的三层电极层,分别记为第一电极层441、第二电极层442和第三电极层443。其中第一电极层441临近第一电致变色结构43设置,第三电极层443临近第二基板45内侧设置,第二电极层442设置于第一电极层441和第三电极层443之间。进一步的,为使第一电极层441、第二电极层442和第三电极层443之间保持电气绝缘,第一电极层441和第二电极层442之间设置有平坦化的第一绝缘层444(图中未标示),第二电极层442和第三电极层443之间设置有平坦化的第二绝缘层445(图中未标示)。第一绝缘层444和第二绝缘层445可以由氮化硅或氧化硅或其他透明材料制成。
第二下电极结构54包括层叠设置的三层电极层,分别记为第四电极层541、第五电极层542和第六电极层543。其中第四电极层541临近第二电致变色结构53设置,第六电极层543临近第三基板55内侧设置,第五电极层542设置于第四电极层541和第六电极层543之间。进一步的,为使第四电极层541、第五电极层542和第六电极层543之间保持电气绝缘,第四电极层541和第五电极层542之间设置有平坦化的第三绝缘层544(图中未标示),第五电极层542和第六电极层543之间设置有平坦化的第四绝缘层545(图中未标示)。第三绝缘层544和第四绝缘层545可以由氮化硅或氧化硅或其他透明材料制成。
同样的,第一电极层441包括多个平行且间隔设置的第一条形电极441a,第二电极层442包括多个平行且间隔设置的第二条形电极442a,第三电极层443包括多个平行且间隔设置的第三条形电极443a。
同样的,第四电极层541包括多个平行且间隔设置的第四条形电极541a,第五电极层542包括多个平行且间隔设置的第五条形电极542a,第六电极层543包括多个平行且间隔设置的第六条形电极543a。
一般的,第一条形电极441a、第二条形电极442a、第三条形电极443a具有相同的宽度,且沿同一方向延伸。且任意相邻的第一条形电极441a之间或第二条形电极442a之间或第三条形电极443a之间间距两个条形电极宽度,且第二条形电极442a和第三条形电极443a分别相对第一条形电极441a向右移动一个条形电极宽度和两个条形电极的距离,使其边缘对齐,从而彼此互相弥补电极之间的间隙同时不造成彼此之间的重叠,避免在形成遮光狭缝或透光狭缝时的漏光现象。
一般的,第四条形电极541a、第五条形电极542a、第六条形电极543a具有相同的宽度,且沿同一方向延伸。且任意相邻的第四条形电极541a之间或第五条形电极542a之间或第六条形电极543a之间间距两个条形电极宽度,且第五条形电极542a和第六条形电极543a分别相对第四条形电极541a向右移动一个条形电极宽度和两个条形电极的距离,使其边缘对齐,从而彼此互相弥补电极之间的间隙同时不造成彼此之间的重叠,避免在形成遮光狭缝或透光狭缝时的漏光现象。
优选的,第一条形电极441a的延伸方向与第二条形电极442a的延伸方向与第三条形电极443a的延伸方向相平行;第四条形电极541a的延伸方向与第五条形电极542a的延伸方向与第六条形电极543a的延伸方向相平行;第三条形电极443a的延伸方向与第四条形电极541a的延伸方向相垂直或根据实际需要设定特定的角度(例如小于90度或大于90度),从而达到实现在本发明的立体显示装置100在横屏方向和竖屏方向上时,也能够根据用户观看位置的不同调整电子狭缝,显示裸眼可视的三维立体显示图像,使用户始终能够得到良好的立体视觉体验。
可以理解的是,第一下电极结构44还可以根据需要分为四层、五层等多层类似上述结构,在此不受限制;第二下电极结构54也可以根据需要分为四层、五层等多层类似上述结构,在此不受限制。
电子狭缝光栅400的驱动方法与上述电子狭缝光栅200的驱动方法相似,在此不再赘述。
与图4所示的电子狭缝光栅200功能类似,第一条形电极441a、第二条形电极442a、第三条形电极443a具有相同或相似的结构和参数,彼此相互平行设置,且邻边对齐或有部分重叠。由于处于不同的层上,第一条形电极441a、第二条形电极442a、第三条形电极443a可互相弥补彼此之间的间隙,在平面投影上覆盖完整的区域,从而不必在第一条形电极441a、第二条形电极442a、第三条形电极443a之间设置遮光带,也能避免在遮光狭缝或是透光狭缝上的漏光现象,同时,三者相同或相似的结构和参数为调节电子狭缝光栅400的栅节和栅距等参数提供更多的操作空间,进一步提升电子狭缝光栅以及与其配合使用的立体显示装置的品质。
与图4所示的电子狭缝光栅200功能类似,第四条形电极541a、第五条形电极542a、第六条形电极543a具有相同或相似的结构和参数,彼此相互平行设置,且邻边对齐或有部分重叠。由于处于不同的层上,第四条形电极541a、第五条形电极542a、第六条形电极543a可互相弥补彼此之间的间隙,在平面投影上覆盖完整的区域,从而不必在第四条形电极541a、第五条形电极542a、第六条形电极543a之间设置遮光带,也能避免在遮光狭缝或是透光狭缝上的漏光现象,同时,三者相同或相似的结构和参数为调节电子狭缝光栅400的栅节和栅距等参数提供更多的操作空间,进一步提升电子狭缝光栅以及与其配合使用的立体显示装置的品质。
综上所述,本发明实施例通过将电子狭缝光栅200、400的第一下电极结构24、第二下电极结构34、第一下电极结构44、第二下电极结构54设置为多层结构,且多层电极之间相互对其或部分重叠,从而使下电极完整的覆盖所在区域的第一电致变色结构23、43,第二电致变色结构33、53。通过调节驱动电压V1和参考电压Vref的条形电极数量和位置,根据实际的立体显示需要,调节电子狭缝光栅200、400的栅节、栅距、缝宽、位置等参数,从而达到实现在本发明的立体显示装置100在横屏方向和竖屏方向上时,也能够根据用户观看位置的不同调整电子狭缝,显示裸眼可视的三维立体显示图像,使用户始终能够得到良好的立体视觉体验。
在上述实施例中,仅对本发明进行了示范性描述,但是本领域技术人员在阅读本专利申请后可以在不脱离本发明的精神和范围的情况下对本发明进行各种修改。

Claims (19)

  1. 一种电子狭缝光栅,其特征在于,包括:
    依次层叠设置的第一基板、第一上电极结构、第一电致变色结构、第一下电极结构、第二基板、第二上电极结构、第二电致变色结构、第二下电极结构以及第三基板;
    所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一电致变色结构;
    所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二电致变色结构;
    所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直。
  2. 如权利要求1所述的电子狭缝光栅,其特征在于,任意条形电极与其近邻的另一层的条形电极的邻边对齐。
  3. 如权利要求1所述的电子狭缝光栅,其特征在于,任意条形电极与其近邻的另一层的条形电极的邻边部分重叠。
  4. 如权利要求3所述的电子狭缝光栅,其特征在于,任意条形电极与其近邻的另一层的条形电极的重叠区域为条形电极的宽度的十分之一至三分之一。
  5. 如权利要求1所述的电子狭缝光栅,其特征在于,处于同一电极层的条形电极的宽度相同,其同一电极层中相邻的条形电极的间距相同。
  6. 如权利要求1所述的电子狭缝光栅,其特征在于,所述第一下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置;
    所述第二下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置。
  7. 如权利要求1所述的电子狭缝光栅,其特征在于,所述第一下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置;
    所述第二下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置。
  8. 如权利要求1所述的电子狭缝光栅,其特征在于,在检测到立体显示装置位于横屏或竖屏时,通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整电子狭缝光栅所形成的遮光狭缝和透光狭缝的参数。
  9. 一种立体显示装置,其特征在于,包括:
    显示面板,用于显示同一场景的具有视差的左眼图像和右眼图像;
    电子狭缝光栅,设置在显示面板的显示面上,所述液晶狭缝光栅包括依次层叠设置的第一基板、第一上电极结构、第一电致变色结构、第一下电极结构、第二基板、第二上电极结构、第二电致变色结构、第二下电极结构以及第三基板;所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一电致变色结构;所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二电致变色结构;所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直;
    在检测到立体显示装置位于横屏或竖屏时,针对不同的观看位置,通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整电子狭缝光栅所形成的遮光狭缝和透光狭缝的参数,从而使观看者的左右眼对应观看到显示面板显示的左眼图像和右眼图像。
  10. 如权利要求9所述的立体显示装置,其特征在于,任意条形电极与其近邻的另一层的条形电极的邻边对齐。
  11. 如权利要求9所述的立体显示装置,其特征在于,任意条形电极与其近邻的另一层的条形电极的邻边部分重叠。
  12. 如权利要求11所述的立体显示装置,其特征在于,任意条形电极与其近邻的另一层的条形电极的重叠区域为条形电极的宽度的十分之一至三分之一。
  13. 如权利要求9所述的立体显示装置,其特征在于,处于同一电极层的条形电极的宽度相同,其同一电极层中相邻的条形电极的间距相同。
  14. 如权利要求9所述的立体显示装置,其特征在于,所述第一下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置;
    所述第二下电极结构包括两层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极之间的间距等于所述条形电极的宽度,处于同一电极层的条形电极对应另一层条形电极之间的间隙而相互交替设置。
  15. 如权利要求9所述的立体显示装置,其特征在于,所述第一下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置;
    所述第二下电极结构包括三层电极层,任意条形电极的宽度相等,且同一电极层的相邻条形电极的间距等于所述条形电极的宽度的两倍,处于同一层的条形电极对应其他电极层中的条形电极之间的间隙而相互交替设置。
  16. 一种立体显示装置的驱动方法,其特征在于,采用所述驱动方法的立体显示装置包括:
    显示面板,用于显示同一场景的具有视差的左眼图像和右眼图像;
    电子狭缝光栅,设置在显示面板的显示面上,所述液晶狭缝光栅包括依次层叠设置的第一基板、第一上电极结构、第一电致变色结构、第一下电极结构、第二基板、第二上电极结构、第二电致变色结构、第二下电极结构以及第三基板;所述第一下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第一下基板上的投影为无缝投影,完整覆盖该投影区域对应的第一电致变色结构;所述第二下电极结构包括至少两层电极层,且每一电极层均包括多个沿同一方向延伸的条形电极,所述至少两层电极层中的条形电极彼此相互平行、间隔且电气绝缘设置,处于不同电极层的条形电极对应彼此之间的间隙而相互交替设置,使所述多个条形电极在所述第二下基板上的投影为无缝投影,完整覆盖该投影区域对应的第二电致变色结构;所述第一下电极结构所包括的条形电极的延伸方向与所述第二下电极结构所包括的条形电极的延伸方向相垂直;
    所述驱动方法包括:
    显示面板显示同一场景的具有视差的左眼图像和右眼图像;
    确定用户的立体观看位置;
    通过配置所述第一下电极结构所包括的条形电极与所述第一上电极结构之间的电场和配置所述第二下电极结构所包括的条形电极与所述第二上电极结构之间的电场,以调整电子狭缝光栅所形成的遮光狭缝和透光狭缝的参数,从而使观看者的左右眼分别对应观看到左眼图像和右眼图像。
  17. 如权利要求16所述的立体显示装置的驱动方法,其特征在于,所述电子狭缝光栅的参数至少包括栅距、透光狭缝的宽度、透光狭缝的位置中的一个。
  18. 如权利要求17所述的立体显示装置的驱动方法,其特征在于,调节所述透光狭缝的位置的移动方向与观看者的观看位置的移动方向一致。
  19. 如权利要求16所述的立体显示装置的驱动方法,其特征在于,所述显示面板显示同一场景的具有视差的左眼图像和右眼图像的过程之后,所述确定用户的立体观看位置之前,还包括:
    检测出所述显示面板的显示方位,检测出所述显示面板位于横屏或竖屏。
PCT/CN2014/082896 2013-08-09 2014-07-24 电子狭缝光栅、立体显示装置及其驱动方法 WO2015018284A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310347305.5A CN103995411A (zh) 2013-08-09 2013-08-09 电子狭缝光栅、立体显示装置及其驱动方法
CN201310347305.5 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015018284A1 true WO2015018284A1 (zh) 2015-02-12

Family

ID=51309619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082896 WO2015018284A1 (zh) 2013-08-09 2014-07-24 电子狭缝光栅、立体显示装置及其驱动方法

Country Status (2)

Country Link
CN (1) CN103995411A (zh)
WO (1) WO2015018284A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223704B (zh) * 2015-11-02 2016-11-16 京东方科技集团股份有限公司 一种三维显示系统及显示方法
CN105959674A (zh) * 2016-05-20 2016-09-21 京东方科技集团股份有限公司 3d显示装置及3d显示方法
CN106405852B (zh) * 2016-11-22 2018-11-13 宁波视睿迪光电有限公司 裸眼3d显示装置及控制方法
CN108873362A (zh) * 2018-07-03 2018-11-23 京东方科技集团股份有限公司 3d显示器及3d观看系统
CN109752856B (zh) * 2019-03-08 2022-08-12 京东方科技集团股份有限公司 数字微流器件、制作方法、裸眼三维显示装置和显示方法
CN111929958B (zh) * 2020-08-14 2022-03-25 昆山龙腾光电股份有限公司 单双视场可切换的显示面板、控制方法及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197904A (ja) * 1997-01-06 1998-07-31 Sony Corp 光学素子
TWM371902U (en) * 2009-04-27 2010-01-01 Chunghwa Picture Tubes Ltd 2D/3D display device
US20120081773A1 (en) * 2010-10-05 2012-04-05 J Touch Corporation Electrochromic unit and stereo image display device having the same
CN202750185U (zh) * 2012-05-25 2013-02-20 深圳市亿思达显示科技有限公司 立体显示装置
CN202956572U (zh) * 2012-10-26 2013-05-29 深圳市亿思达显示科技有限公司 3d显示手机皮
CN203490443U (zh) * 2013-08-09 2014-03-19 深圳市亿思达显示科技有限公司 电子狭缝光栅、立体显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080114310A (ko) * 2007-06-27 2008-12-31 삼성모바일디스플레이주식회사 전자 영상 기기
CN102566060B (zh) * 2010-12-31 2015-06-10 京东方科技集团股份有限公司 视差挡板、显示面板及视差挡板的制备方法
CN202306062U (zh) * 2011-09-14 2012-07-04 天马微电子股份有限公司 液晶狭缝光栅及立体显示装置
CN202631856U (zh) * 2012-04-19 2012-12-26 深圳市亿思达显示科技有限公司 立体显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197904A (ja) * 1997-01-06 1998-07-31 Sony Corp 光学素子
TWM371902U (en) * 2009-04-27 2010-01-01 Chunghwa Picture Tubes Ltd 2D/3D display device
US20120081773A1 (en) * 2010-10-05 2012-04-05 J Touch Corporation Electrochromic unit and stereo image display device having the same
CN202750185U (zh) * 2012-05-25 2013-02-20 深圳市亿思达显示科技有限公司 立体显示装置
CN202956572U (zh) * 2012-10-26 2013-05-29 深圳市亿思达显示科技有限公司 3d显示手机皮
CN203490443U (zh) * 2013-08-09 2014-03-19 深圳市亿思达显示科技有限公司 电子狭缝光栅、立体显示装置

Also Published As

Publication number Publication date
CN103995411A (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
WO2015010573A1 (zh) 液晶狭缝光栅、立体显示装置及其驱动方法
WO2015000448A1 (zh) 液晶狭缝光栅、立体显示装置及其驱动方法
WO2015018284A1 (zh) 电子狭缝光栅、立体显示装置及其驱动方法
WO2012044130A2 (ko) 배리어를 이용하는 3d 디스플레이 장치 및 그 구동 방법
TWI414846B (zh) 可切換二維顯示模式與三維顯示模式之顯示裝置及其液晶透鏡
WO2015018283A1 (zh) 电子狭缝光栅、立体显示装置及其驱动方法
KR101476884B1 (ko) 패럴랙스 배리어 타입의 입체영상 표시장치
TWI439730B (zh) 視差控制元件及其應用
CN104216129B (zh) 一种显示面板和显示装置
US20090002267A1 (en) Electronic display
WO2013174249A1 (zh) 立体显示装置
WO2012053874A2 (ko) 입체 디스플레이 시스템과 그 시스템에 사용되는 안경 및 그 디스플레이 방법
KR100580632B1 (ko) 2차원과 3차원 영상을 선택적으로 표시할 수 있는디스플레이
CN203433240U (zh) 液晶狭缝光栅、立体显示装置
CN103676166A (zh) 三维图像显示装置
TW201407193A (zh) 立體影像顯示器及立體影像顯示裝置
CN203433242U (zh) 液晶狭缝光栅、立体显示装置
WO2013174248A1 (zh) 立体显示装置
KR100852006B1 (ko) 표시패널 및 이를 구비한 입체영상 표시장치
TW201539040A (zh) 立體顯示裝置
JP2005010302A (ja) 表示装置
KR20130064325A (ko) 입체 영상 표시용 패럴랙스 배리어 및 이를 이용한 표시 장치
KR101580362B1 (ko) 시차 장벽 및 디스플레이 장치
CN110047900A (zh) 显示面板和电子设备
WO2016019592A1 (zh) 裸眼3d显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833836

Country of ref document: EP

Kind code of ref document: A1