WO2015010283A1 - 一种信号发送和接收的方法、装置及系统 - Google Patents

一种信号发送和接收的方法、装置及系统 Download PDF

Info

Publication number
WO2015010283A1
WO2015010283A1 PCT/CN2013/080026 CN2013080026W WO2015010283A1 WO 2015010283 A1 WO2015010283 A1 WO 2015010283A1 CN 2013080026 W CN2013080026 W CN 2013080026W WO 2015010283 A1 WO2015010283 A1 WO 2015010283A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
digital signal
analog
digital
analog signal
Prior art date
Application number
PCT/CN2013/080026
Other languages
English (en)
French (fr)
Inventor
周雷
彭桂开
王振平
湛永坚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13889847.3A priority Critical patent/EP3016303B1/en
Priority to CN201380002721.XA priority patent/CN104508999B/zh
Priority to PCT/CN2013/080026 priority patent/WO2015010283A1/zh
Priority to ES13889847T priority patent/ES2726624T3/es
Publication of WO2015010283A1 publication Critical patent/WO2015010283A1/zh
Priority to US15/004,627 priority patent/US10505636B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, device and system for transmitting and receiving signals. Background technique
  • PON Passive Optical Network
  • Gen fiber come direction on a plurality of user signals
  • the PON system uses two digital signal multiplexing transmission, as follows:
  • OLT Optical Line Terminate
  • ONUs Optical Network Units
  • ONT Optical Network Terminal
  • all ONUs can receive the same digital signal, but the ONU receives its own digital signal through filtering;
  • the occupation of the optical fiber is divided into different time periods according to a certain length of time. In each time period, only one ONU can occupy the optical fiber to send a digital signal to the OLT, and the remaining ONUs turn off the laser. That is to say, the OLT can only receive one digital signal sent by the ONU at the same time. If two ONUs simultaneously send digital signals to the OLT, the OLT cannot correctly receive the digital signals, and the uplink digital signals transmitted between different ONUs collide.
  • the up-conversion processing technology is used in the process of bandwidth compression of the Fibre Channel in the PON system, and the specific processing is as follows:
  • the OLT converts the received one-way digital signal into an I-channel digital signal and a Q-channel.
  • the digital signal is then processed into a digital signal by an I/Q modulator through an I/Q modulator, and the processed digital signal is loaded onto the optical signal, and then the optical signal is up-converted. After processing, it is sent to the ONU.
  • the embodiments of the present invention provide a method, a device, and a system for transmitting and receiving signals, which are used to solve the problems of poor quality and high implementation cost of digital signals existing in a PON network when transmitting signals in the prior art.
  • a method for transmitting a signal including:
  • the I channel analog signal and the Q channel analog signal are separately modulated onto two mutually perpendicular partial normal light signals;
  • the two mutually orthogonal normal light signals obtained by the modulation are combined into one optical signal, and then sent to the optical network unit ONU.
  • the first digital signal and the second digital signal are respectively converted into an I analog signal and a Q analog signal, which specifically include: using a code The multiplexed CDM modulation mode or the carrierless amplitude phase CAP modulation mode is used to convert the first digital signal and the second digital signal into an I digital signal and a Q digital signal, respectively, and use the number
  • the analog converter respectively converts the I digital signal and the Q digital signal The number is converted to an I analog signal and a Q analog signal; or
  • the first digital signal and the second digital signal are respectively converted into a first analog signal and a second analog signal by using a digital-to-analog converter, and adopt code division multiplexing CDM modulation mode or adopt carrierless amplitude
  • the first analog signal and the second analog signal are respectively converted into an I analog signal and a Q analog signal.
  • the first digital signal and the second digital signal are respectively converted into I digital signals by using a CAP modulation method.
  • Q digital signals including:
  • the first digital signal and the second digital signal are respectively subjected to an impulse response orthogonal filtering process, and respectively converted into an I digital signal and a Q digital signal;
  • the first analog signal and the second analog signal are respectively converted into an I analog signal and a Q analog signal by using a CAP modulation method, which specifically includes:
  • the first analog signal and the second analog signal are respectively subjected to orthogonal processing of impulse response, and respectively converted into an I analog signal and a Q analog signal.
  • a method for receiving a signal including:
  • the first digital signal and the second digital signal are combined into one digital signal and sent to the user terminal.
  • the I-channel analog signal and the Q-channel analog signal are respectively converted into a first digital signal and a second digital signal, which specifically include: The multiplexed CDM demodulation method, or the carrierless amplitude phase CAP demodulation method, converts the I analog signal and the Q analog signal into a first analog signal and a second analog signal, respectively, and adopts a mode
  • the digital converter respectively converts the first analog signal and the second analog signal
  • the number is converted into a first digital signal and a second digital signal; or
  • the analog-to-digital converter converts the I-channel analog signal and the Q-channel analog signal into an I-channel digital signal and a Q-channel digital signal, respectively, and adopts a code division multiplexing CDM demodulation method or a carrierless amplitude phase
  • the I digital signal and the Q digital signal are converted into a first digital signal and a second digital signal.
  • the I analog signal and the Q analog signal are separately converted into the first analog signal and the first by using a CAP demodulation method.
  • the two-way analog signal specifically includes:
  • the CAP demodulation method is used to convert the I digital signal and the Q digital signal into a first digital signal and a second digital signal, respectively, including:
  • the I-channel digital signal and the Q-channel digital signal are respectively converted into a first digital signal and a second digital signal by a pulse response orthogonal filtering process.
  • a signal sending apparatus including:
  • a receiver configured to split the received digital signal into a first digital signal and a second digital signal
  • a digital-to-analog orthogonal converter configured to convert the first digital signal and the second digital signal into an I-channel analog signal and a Q-channel analog signal, respectively;
  • a light modulator configured to respectively modulate the I road analog signal and the Q channel analog signal to two mutually perpendicular normal light signals
  • the polarization beam combiner is configured to synthesize the two mutually orthogonal normal light signals obtained by the modulation into one optical signal, and then send the signal to the optical network unit ONU.
  • the digital-to-analog orthogonal converter is specifically configured to: use a code division multiplexing CDM modulation mode, or use a carrierless amplitude phase CAP modulation mode,
  • the first digital signal and the second digital signal are respectively converted into an I digital signal and a Q digital signal, and the I digital signal and the Q digital signal are respectively converted into I Road analog signal and Q channel analog signal; or
  • the digital-to-analog orthogonal converter is specifically configured to: use the first digital signal and the second digital The signals are respectively subjected to impulse response orthogonal filtering processing, and respectively converted into I digital signals and Q digital signals; or, the first analog signals and the second analog signals are respectively subjected to orthogonal filtering by impulse response. Processing, respectively converted to I analog signal and Q analog signal.
  • a fourth aspect provides a signal receiving apparatus, including:
  • the photoelectric receiver is configured to receive an optical signal sent by the optical line terminal OLT, convert the received optical signal into one electrical signal, and split the electrical signal into an I analog signal and a Q analog signal. ;
  • an analog-to-digital non-orthogonal converter configured to convert the I-channel analog signal and the Q-channel analog signal into a first digital signal and a second digital signal, respectively;
  • a transmitter configured to synthesize the first digital signal and the second digital signal into one digital signal and send the signal to the user terminal.
  • the analog-to-digital non-orthogonal converter is specifically configured to: adopt code division multiplexing CDM demodulation mode, or adopt carrierless amplitude phase CAP demodulation mode, Converting the I road analog signal and the Q road analog signal into a first road analog signal and a second road analog signal, respectively, and converting the first road analog signal and the second road analog signal by using an analog to digital converter, respectively The first digital signal and the second digital signal; or an analog-to-digital converter respectively converts the I analog signal and the Q analog signal into an I digital signal and a Q digital signal, and uses The code division multiplexing CDM demodulation method or the carrierless amplitude phase CAP demodulation method converts the I channel digital signal and the Q channel digital signal into a first digital signal and a second digital signal.
  • the analog-to-digital non-orthogonal converter is specifically configured to: pass the I analog signal and the Q analog signal separately The pulse response orthogonal filtering process is converted into the first analog signal and the second analog signal; or, the I digital signal and the Q digital signal are respectively converted into the first digital by the impulse response orthogonal filtering process Signal and second digital signal.
  • the fifth aspect provides a passive optical network PON system, including: an optical line terminal OLT, an optical network unit ONU, and a passive optical splitter for connecting the OLT and the ONU, where the OLT A device according to any one of claims 7-9, the ONU comprising the device of any of claims 10-12.
  • a signal transmission method which divides a received digital signal into a first digital signal and a second digital signal, and then, the first digital signal and the second digital signal are respectively Converted to I analog signal and Q analog signal, and the positive I analog signal and the Q analog signal are respectively modulated onto two mutually perpendicular normal light signals, and then the two paths are perpendicular to each other.
  • the normal optical signal is combined to send an optical signal to the ONU; and a receiving method for receiving the signal, receiving an optical signal sent by the optical line terminal OLT, and then converting the received optical signal into an electrical signal, and
  • the electrical signal is split into an I analog signal and a Q analog signal; then, the I analog signal and the Q analog signal are respectively converted into a first digital signal and a second digital signal; finally, the first digital
  • the signal and the second digital signal are combined into one digital signal and sent to the user terminal, so that no up-conversion processing is required in the signal transmission process. Operation, ONU received optical signal is not distorted, thus, improve the quality of transmission signals to the ONU, in addition, do not need the upconversion processing apparatus, and therefore, further reduces the implementation costs.
  • FIG. 2A is a flowchart of an example of a first application scenario of signal transmission according to an embodiment of the present invention
  • FIG. 2B is a schematic diagram of a laser emitting light according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a second application scenario of signal transmission according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a third application scenario of signal transmission according to an embodiment of the present invention
  • FIG. 6 is a flow chart of control of signal reception in an embodiment of the present invention
  • FIG. 8 is a flowchart of an example of a second application scenario of signal reception according to an embodiment of the present invention
  • FIG. 8 is a flowchart of a second application scenario of signal reception according to an embodiment of the present invention
  • FIG. 10 is a flowchart of an example of a fourth application scenario for receiving a message according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram showing the functional structure of a signal transmitting apparatus according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing the functional structure of a signal receiving apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the functional structure of a PON system according to an embodiment of the present invention. detailed description
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association that describes an associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: eight exist alone, and both A and B exist separately. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the digital signal when transmitting the digital signal, the digital signal is split into the first digital signal. And the second digital signal, and then the first digital signal and the second digital signal are respectively converted into an I analog signal and a Q analog signal, and then the I analog signal and the Q analog signal are respectively modulated to Two mutually perpendicular normal light signals, and then two paths to each other
  • the vertical normal light signal is combined to send an optical signal to the ONU; after receiving a digital signal sent by the OLT, the received optical signal is converted into an electrical signal, and the electrical signal is split into an I-channel analog Signal and Q analog signal; Then, convert I analog signal and Q analog signal into first digital signal and second digital signal respectively; then combine the first digital signal and the second digital signal into one way
  • the digital signal is sent to the user terminal, so that the up-conversion technique is not required, thereby improving the quality of the digital signal transmitted to the ONU and reducing the implementation cost.
  • the detailed process of signal transmission is as follows, and there are multiple execution entities for signal transmission.
  • the following is an example in which the execution entity is an OLT:
  • Step 100 The OLT splits the received digital signal into a first digital signal and a second digital signal.
  • Step 110 The OLT converts the first digital signal and the second digital signal into an I-channel analog signal and a Q-channel analog signal, respectively.
  • Step 120 The OLT separately modulates the I road analog signal and the Q channel analog signal to two mutually perpendicular normal light signals;
  • Step 130 The OLT synthesizes two mutually orthogonal optical signals that are mutually orthogonal and normal, and then sends the optical signals to the ONU.
  • the OLT receives one digital signal sent by the core network.
  • the OLT splits the received digital signal into the first digital signal and the second digital signal.
  • the OLT can use the received digital signal to adopt QAM ( Quadrature Amplitude Modulation, split into the first digital signal and the second digital signal, or split the received digital signal into PAM (Pulse Amplitude Modulation) The first digital signal and the second digital signal.
  • QAM Quadrature Amplitude Modulation
  • PAM Pulse Amplitude Modulation
  • the digital signal is first divided into low speed by the serial/parallel conversion module.
  • IFFT inverse Fourier algorithm
  • the rate of a digital signal sent by the core network received by the OLT is 40 Gb/s.
  • the digital signal is divided into four low-speed parallel digital signals, and the rate of each digital signal is 10 Gb/ s, four parallel parallel digital signals of 10Gb/s are respectively subjected to 16-order QAM modulation, and become four parallel parallel digital signals with a rate of 2.5G/S, and then slow down again, and then, four parallel speeds.
  • the 2.5G/s digital signal distribution is processed by the IFFT module for inverse Fourier algorithm.
  • the parallel string module is combined into two parallel digital signals with a rate of 10Gb/s, that is, the output rate is 10Gb/s.
  • the digital signal and the second digital signal at a rate of 10 Gb/s.
  • the rate of a digital signal transmitted by the core network received by the OLT is 40 Gb/s.
  • the digital signal After passing through the serial/parallel conversion module, the digital signal is divided into two low-speed parallel digital signals, and the rate of each digital signal is 20 Gb/ s, two parallel digital signals with a rate of 20Gb/s and then 16th-order PAM modulation, respectively, to slow down again, into two parallel digital signals with a rate of 2.5G / S, that is, the first digital output
  • the rate of the signal and the second digital signal are respectively 2.5 G/s.
  • the first digital signal and the second digital signal when the first digital signal and the second digital signal are respectively converted into an I analog signal and a Q analog signal, the first digital signal and the second digital signal may be first converted into the first One analog signal and the second analog signal, and then the first analog signal and the second analog signal are converted into an I analog signal and a Q analog signal, or the first digital signal and the second digital signal The signal is converted into an I digital signal and a Q digital signal, and then the I digital signal and the Q digital signal are converted into an I analog signal and a Q analog signal.
  • the first analog signal and the second analog signal are converted into an I analog signal and a Q analog signal, or the first digital signal and the second digital signal are converted into an I digital signal.
  • digital signals with Q channels There are many ways to digital signals with Q channels. Alternatively, you can use CDM (Code Division Multiplexiing, modulation converts the first analog signal and the second analog signal into an I analog signal and a Q analog signal, or converts the first digital signal and the second digital signal into I Digital signal and Q digital signal; or CAP
  • Carrierless amplitude and phase modulation converts the first analog signal and the second analog signal into an I analog signal and a Q analog signal, or a first digital signal and a second digital signal Converted to I digital signal and Q digital signal; At the same time, convert the first digital signal and the second digital signal into the first analog signal and the second analog signal, or, the I digital signal and the Q road
  • a digital to analog converter can be used to respectively transmit the first digital signal and the second digital signal. The signal is converted into a first analog signal and a second analog signal, or the I digital signal and the Q digital signal are converted into an I analog signal and a Q analog signal.
  • 0LT uses CDM modulation to convert the first digital signal and the second digital signal into one digital signal and two digital digital signals.
  • 0LT will be the first digital signal and the first code word.
  • Multiplying the second digital signal is multiplied by the second code word to obtain an I digital signal and a Q digital signal, wherein the first code word and the second code word are mutually orthogonal code words, and the orthogonal code is Refers to two different codewords whose result of multiplication and accumulation is 0.
  • the length of the orthogonal code can be any length.
  • the I channel digital signal and the Q channel digital signal are respectively multiplied by the orthogonal codes cl and c2 to complete the CDM modulation, and the modulated signal is
  • the OLT uses the CDM modulation method to convert the first analog signal and the second analog signal into an I analog signal and a Q analog signal.
  • the 0LT will be the first analog signal and the first The first code word and the second code word are mutually orthogonal code words.
  • the I channel digital signal and the Q channel digital signal are orthogonalized by using CDM modulation
  • the I digital signal and the Q digital signal are orthogonalized by orthogonal code processing
  • the orthogonal code refers to two different code words whose multiplication and accumulation result is 0, and the length of the orthogonal code may be For any length, for example, 2bits (bytes), 3bits, 4 bits, and so on.
  • the OLT uses the CAP modulation method to convert the first digital signal and the second digital signal into an I digital signal and a Q digital signal. Alternatively, the OLT will use the first digital signal and the second digital signal.
  • the signals are respectively filtered by the impulse response orthogonally and converted into I digital signals and Q digital signals.
  • the OLT uses the CAP modulation method to convert the first analog signal and the second analog signal into an I analog signal and a Q analog signal.
  • the OLT will first simulate the signal and the first signal.
  • the two analog signals are respectively processed by the impulse response orthogonal filtering, and converted into an I analog signal and a Q analog signal.
  • the OLT adopts the QAM modulation method to split the received digital signal into the first digital signal and the second digital signal
  • the subsequent CDM modulation is split into the first digital signal and the second digital signal.
  • the digital signal is converted into an I digital signal and a Q digital signal, or, by CDM modulation, the first analog signal and the second analog signal are converted into an I analog signal and a Q analog signal;
  • the CAP modulation is used to convert the first digital signal and the second digital signal into I digital signals.
  • the signal and the Q digital signal, or CAP modulation are split into the first analog signal and the second analog signal into an I analog signal and a Q analog signal.
  • the laser when the OLT modulates the I channel analog signal and the Q channel analog signal to two mutually perpendicular normal light signals, the laser (Laser) is passed through a PBS (Polarization Beam Splitter). The emitted optical signal is converted into two mutually perpendicular positive-normal optical signals, and the OLT modulates the I-channel analog signal and the Q-channel analog signal to two mutually perpendicular normal-normal optical signals, and then passes PBC (Polarization Beam Combiner) combines two mutually perpendicular normal light signals into one optical signal and sends it to the ONU.
  • PBS Polarization Beam Splitter
  • Embodiment 1 (specifically shown in FIG. 2A) ⁇
  • Step 200 0LT divides a digital signal into four low-speed parallel four-way digital signals through a serial/parallel conversion module;
  • Step 210 The OLT performs each of the digital signals to perform m-th order QAM modulation to perform the speed reduction again;
  • Step 220 The OLT performs each of the digital signals after the speed reduction again by the IFFT module to perform an inverse Fourier algorithm
  • Step 230 The OLT combines the four digital signals into a first digital signal and a second digital signal.
  • Step 240 The OLT converts the first digital signal and the second digital signal into a first analog signal and a second analog signal by using a DAC method
  • Step 250 The OLT converts the first analog signal and the second analog signal into orthogonal codes, and converts them into I analog signals and Q analog signals.
  • Step 260 The OLT separately modulates the I channel analog signal and the Q channel analog signal to mutually perpendicular normal X-ray signals and the off-normal y-light signals;
  • the PBS decomposes an optical signal emitted by the Laser into a mutually perpendicular positive x-ray signal and a normal y optical signal (as shown in FIG. 2B), in order to make the off-normal X-ray signal and The optical power of the normal y optical signal is the same, and the polarization state of the optical signal emitted by the laser is 45 degrees from the main axis of the PBS.
  • the OLT passes the I analog signal and the Q analog signal through the optical modulator (Mod ) are respectively applied to mutually orthogonal X-ray signals and normal-normal y-light signals.
  • Step 270 The OLT combines the X-ray signal and the Y-light signal, which respectively include the I-channel analog signal and the Q-channel analog signal, into one optical signal, and then sends the signal to the ONU.
  • the mutually orthogonal X-ray signal and the N-ray signal of the normal state pass through the PBC to synthesize an optical signal.
  • Embodiment 2 (specifically shown in Figure 3):
  • Step 300 The OLT divides a digital signal into a low-speed parallel four-way through a serial/parallel conversion module. Digital signal;
  • Step 310 The OLT performs each of the digital signals to perform m-th order QAM modulation to perform the speed reduction again;
  • Step 320 The OLT performs each of the digital signals after the speed reduction again by the IFFT module to perform an inverse Fourier algorithm
  • Step 330 The OLT combines the four digital signals into a first digital signal and a second digital signal.
  • Step 340 The OLT multiplies the first digital signal and the second digital signal by orthogonal codes to perform orthogonal processing to obtain an I digital signal and a Q digital signal.
  • Step 350 The OLT converts the I digital signal and the Q digital signal into an I analog signal and a Q analog signal by using a DAC method;
  • Step 360 modulating the I channel analog signal and the Q channel analog signal to mutually perpendicular normal X-ray signals and the off-normal Y-light signals;
  • the PBS decomposes one optical signal emitted by the laser into mutually orthogonal normal X-ray signals and normal-normal y optical signals in order to make the off-normal X-ray signals and the off-normal state.
  • the optical power of the y optical signal is the same, and the polarization state of the optical signal emitted by the laser is 45 degrees from the main axis of the PBS.
  • the OLT loads the I analog signal and the Q analog signal through the optical modulator (Mod) respectively.
  • Step 370 The OLT combines the X-ray signal and the Y-light signal, which respectively include the I-channel analog signal and the Q-channel analog signal, into one optical signal, and then sends the signal to the ONU.
  • the mutually orthogonal X-ray signal and the N-ray signal of the normal state pass through the PBC to synthesize an optical signal.
  • Embodiment 3 (specifically shown in Figure 4):
  • Step 400 The OLT divides a digital signal into two low-speed parallel digital signals through a serial/parallel conversion module;
  • Step 410 The OLT processes the two digital signals by m-stage PAM modulation to generate a first digital signal and a second digital signal.
  • Step 430 The OLT converts the I digital signal and the Q digital signal into an I analog signal and a Q analog signal by using a DAC method;
  • Step 440 The OLT separately modulates the I channel analog signal and the Q channel analog signal to the mutually orthogonal normal X-ray signals and the off-normal Y-light signals;
  • the PBS decomposes one optical signal emitted by the laser into mutually orthogonal normal X-ray signals and normal-normal y optical signals in order to make the off-normal X-ray signals and the off-normal state.
  • the optical power of the y optical signal is the same, and the polarization state of the optical signal emitted by the laser is 45 degrees to the main axis of the PBS.
  • the OLT loads the I analog signal and the Q analog signal through the optical modulator (Mod) respectively.
  • Step 450 The OLT separately includes an X-ray signal and a Y-light signal of the normal analog signal and the Q-channel analog signal to synthesize one optical signal and then send the signal to the ONU.
  • the mutually orthogonal X-ray signal and the N-ray signal of the normal state pass through the PBC to synthesize an optical signal.
  • Embodiment 4 (specifically shown in Figure 5):
  • Step 500 The OLT divides a digital signal into a low-speed parallel first digital signal and a second digital signal through a serial/parallel conversion module;
  • Step 510 The OLT performs the m-th order PAM modulation on the first digital signal and the second digital signal respectively to perform a deceleration;
  • Step 520 The OLT converts the first digital signal and the second digital signal into a first analog signal and a second analog signal by using a DAC method;
  • Step 530 The OLT orthogonalizes the first analog signal and the second analog signal by orthogonally filtering the impulse response to obtain an I analog signal and a Q analog signal.
  • Step 540 The OLT separately modulates the I channel analog signal and the Q channel analog signal to mutually perpendicular normal X-ray signals and the off-normal Y-light signals;
  • the PBS decomposes one optical signal emitted by the Laser into mutual
  • the vertical off-normal X-ray signal and the off-normal y-optical signal are the same as the optical power of the off-normal X-ray signal and the off-normal y-light signal, and the polarization state of the optical signal emitted by the laser is
  • the main axis of the PBS is 45 degrees.
  • the OLT loads the I analog signal and the Q analog signal through the optical modulator (Mod) to the mutually orthogonal normal X-ray signals and the off-normal y optical signals.
  • Step 550 The OLT combines the X-ray signal and the Y-light signal, which respectively include the I-channel analog signal and the Q-channel analog signal, into one optical signal, and then sends the signal to the ONU.
  • the mutually orthogonal X-ray signal and the N-ray signal of the normal state pass through the PBC to synthesize an optical signal.
  • the present invention also provides a method for receiving a signal.
  • the detailed process of signal reception is as follows.
  • the execution subject is an ONU as an example: Step 600: ONU receives light An optical signal sent by the line terminal OLT;
  • Step 610 The ONU converts the received optical signal into one electrical signal, and splits the electrical signal into an I-channel analog signal and a Q-channel analog signal.
  • Step 620 The ONU converts the I channel analog signal and the Q channel analog signal into a first digital signal and a second digital signal, respectively;
  • Step 630 The ONU combines the first digital signal and the second digital signal into one digital signal and sends the digital signal to the user terminal.
  • the ONU when the ONU converts one optical signal into one electrical signal, first converts the received 0LT optical signal into one electrical signal through a PD (Photonic Detector), and then splits the electrical signal. It is an I analog signal and a Q analog signal.
  • PD Photonic Detector
  • the 0NU converts the I road analog signal and the Q channel analog signal into the first road digital signal and the second road digital signal respectively.
  • the I channel analog signal and the Q channel can be simulated first.
  • the signal is non-orthogonalized, converted into a first analog signal and a second analog signal, and then the first analog signal and the second analog signal are converted into a first digital signal and a second digital signal.
  • Road digital signal converts the I road analog signal and the Q channel analog signal into the first road digital signal and the second road digital signal.
  • the ONU non-orthogonalizes the I-channel analog signal and the Q-channel analog signal, and converts it into a first analog signal and a second analog signal, or an I digital signal and a Q digital signal.
  • the ONU uses CDM demodulation or CAP demodulation to non-orthogonalize the I analog signal and the Q analog signal. Converting to the first analog signal and the second analog signal, or converting the I digital signal and the Q digital signal into the first digital signal and the second digital signal.
  • the ONU converts the first analog signal and the second analog signal into a first digital signal and a second digital signal, or converts an I analog signal and a Q analog signal into an I digital signal and
  • ADC analog to digital converter
  • ADC analog to digital converter
  • 0NU uses CDM demodulation to non-orthogonalize the I channel analog signal and the Q channel analog signal, convert it into the first channel analog signal and the second channel analog signal, or, the I channel digital signal and the Q channel digital signal,
  • the I analog signal and the Q analog signal may be subjected to non-orthogonalization by corresponding orthogonal code processing, and converted into the first analog
  • the signal and the second analog signal, or the I digital signal and the Q digital signal are respectively processed by the corresponding orthogonal code, and converted into the first digital signal and the second digital signal.
  • 0NU uses CAP demodulation to non-orthogonalize the I analog signal and the Q analog signal, convert it into the first analog signal and the second analog signal, or convert the I digital signal and the Q digital signal.
  • the I analog signal and the Q analog signal may be separately subjected to filtering processing for non-orthogonalization, and converted into the first analog signal and the second circuit.
  • the analog signal, or the I digital signal and the Q digital signal are respectively subjected to filtering processing for non-orthogonalization, and converted into a first digital signal and a second digital signal.
  • Rxcl is sufficient.
  • Qxc2 is sufficient.
  • the manner in which the 0NU will be the first digital signal and the second digital signal there are a variety of options.
  • the ONU uses QAM demodulation to convert the first digital signal and the second digital signal into one digital signal.
  • the first digital signal and the digital signal can also be used in the PAM demodulation mode.
  • the second digital signal is converted into a digital signal.
  • the ONU converts the first digital signal and the second digital signal into one digital signal by using a QAM demodulation method
  • the first digital signal and the second digital signal are first passed through a serial/parallel conversion module. It is divided into high-speed parallel multi-channel digital signals, and transforms the time-domain waveform into frequency-domain data by FFT (Fourier Transform). Then, each digital signal QAM is demodulated and accelerated, and finally, multiple parallel high-speed digital signals are used.
  • the composite is formed into a high-speed digital signal, that is, the first digital signal and the second digital signal are converted into one digital signal.
  • the ONU converts the I channel analog signal and the Q channel analog signal into the first channel analog signal and the second channel analog signal by using the CDM demodulation method, or converts the I channel digital signal and the Q channel digital signal into the first
  • the ONU uses the QAM demodulation method to convert the received first digital signal and the second digital signal into at least one digital signal.
  • the ONU adopts The CAP demodulation method converts the I channel analog signal and the Q channel analog signal into the first channel analog signal and the second channel analog signal, or converts the I channel digital signal and the Q channel digital signal into the first channel digital signal and the second channel.
  • the ONU uses the PAM demodulation method to convert the received first digital signal and the second digital signal into one digital signal.
  • the OLT uses a QAM modulation method to split a digital signal into a first digital signal and a second digital signal, and adopts a CDM modulation method to the first digital signal and the second digital signal, or
  • the ONU uses CDM demodulation to non-orthogonalize the I digital signal and the Q digital signal, or the I analog signal and the Q analog signal. Then, the first digital signal and the second digital signal are combined into one digital signal by QAM demodulation.
  • the OLT uses PAM modulation to split a digital signal into a first digital signal and a second digital signal, and uses a CAP modulation method to the first digital signal and the second digital signal, or the first path.
  • the ONU uses CAP.
  • the demodulation method non-orthogonalizes the I digital signal and the Q digital signal, or the I analog signal and the Q analog signal, and then uses the PAM demodulation method to convert the first digital signal and the second digital signal. The signal is converted to a digital signal.
  • Embodiment 5 (specifically shown in Figure 7):
  • Step 700 The ONU converts an received optical signal sent by the OLT into an electrical signal, and splits the obtained one electrical signal to obtain an I analog signal and a Q analog signal.
  • one of the optical signals in the step is synthesized by two mutually orthogonal positive optical signals respectively loading the I analog signal and the Q analog signal.
  • Step 710 The ONU uses the CDM method to non-orthogonalize the I analog signal and the Q analog signal into the first analog signal and the second analog signal.
  • the ONU uses the CDM method to non-orthogonalize the I-channel analog signal and the Q-channel analog signal, and converts it into the first analog signal and the second analog signal.
  • the ONU will simulate the I analog signal.
  • the Q-channel analog signals are respectively multiplied by the corresponding orthogonal codes, so that the I-channel analog signals and the Q-channel analog signals are non-orthogonalized, and converted into the first analog signal and the second analog signal.
  • Step 720 The ONU converts the first analog signal and the second analog signal into a first digital signal and a second digital signal by using an ADC method
  • Step 730 The ONU divides the first digital signal and the second digital signal into four low-speed parallel digital signals through a serial/parallel conversion module.
  • Step 740 The ONU separately performs m-th order QAM demodulation for each digital signal to accelerate again;
  • Step 750 Each digital signal that the ONU will speed up again is processed by the FFT module to perform a Fourier algorithm;
  • Step 760 The ONU combines the four digital signals into one digital signal.
  • the ONU can convert the obtained I-channel analog signal and Q-channel analog signal into an I-channel digital signal and a Q-channel digital signal, and then non-orthogonalize the I-channel digital signal and the Q-channel digital signal. Converted into a first digital signal and a second digital signal, as shown in the sixth embodiment: Embodiment 6 (specifically shown in Figure 8) ⁇
  • Step 800 The ONU converts an received optical signal sent by the OLT into an electrical signal, and splits the obtained one electrical signal to obtain an I analog signal and a Q analog signal.
  • one optical signal in the step is synthesized by two analog signals and two Q analog signals respectively loaded by two mutually orthogonal positive optical signals.
  • Step 810 The ONU converts the I channel analog signal and the Q channel analog signal into an I channel digital signal and a Q channel digital signal by using an ADC method;
  • Step 820 The ONU uses the CDM method to non-orthogonalize the I digital signal and the Q digital signal into a first digital signal and a second digital signal;
  • the ONU uses the CDM method to non-orthogonalize the I digital signal and the Q digital signal
  • the ONU multiplies the I digital signal and the Q digital signal by the corresponding orthogonal codes, respectively.
  • the I digital signal and the Q digital signal are non-orthogonalized and converted into a first digital signal and a second digital signal.
  • Step 830 dividing the I digital signal and the Q digital signal into low-speed parallel four-way digital signals by using a serial/parallel conversion module;
  • Step 840 Perform each step of the digital signal to perform m-th order QAM demodulation to speed up again;
  • Step 850 Perform each step of the digital signal after the speed increase again by the FFT module to perform a Fourier algorithm;
  • Step 860 Combine the four digital signals into one digital signal.
  • the ONU can use the CAP demodulation method to pair the I channel digital signal and the Q channel digital signal, or the I channel analog signal and the Q channel analog signal to be non-orthogonalized, as in the embodiment 7:
  • Embodiment 7 (specifically shown in Figure 9):
  • Step 900 The ONU converts the received optical signal sent by the OLT into an electrical signal, and decomposes the obtained one-way electrical signal to obtain the I-channel analog signal and the Q-channel analog signal.
  • one of the optical signals in the step is divided into two mutually orthogonal positive optical signals. Do not load the I channel analog signal and the Q channel analog signal synthesis.
  • Step 910 The ONU converts the I channel analog signal and the Q channel analog signal into an I channel digital signal and a Q channel digital signal by using an ADC method;
  • Step 920 The ONU uses the CAP method to non-normalize the I digital signal and the Q digital signal, and convert the first digital signal and the second digital signal into two;
  • the ONU when the ONU uses the CAP method to non-orthogonalize the I digital signal and the Q digital signal, the ONU may separately filter the I digital signal and the Q digital signal to make the I digital
  • the signal and the Q digital signal are non-orthogonal and converted into a first digital signal and a second digital signal.
  • Step 930 Perform the m-th order PAM demodulation on the first digital signal and the second digital signal respectively to speed up again;
  • Step 940 Combine the first digital signal and the second digital signal into one digital signal by using a parallel/serial conversion module.
  • Embodiment 8 (specifically shown in Figure 10):
  • Step 1000 The ONU converts the received optical signal sent by the OLT into an electrical signal, and decomposes the obtained one-way electrical signal to obtain the I-channel analog signal and the Q-channel analog signal.
  • one of the optical signals in the step is synthesized by two mutually orthogonal positive optical signals respectively loading the I analog signal and the Q analog signal.
  • Step 1010 The ONU uses the CAP method to non-orthogonalize the I analog signal and the Q analog signal into the first analog signal and the second analog signal.
  • the ONU when the ONU uses the CAP method to non-orthogonalize the I channel analog signal and the Q channel analog signal, the ONU may separately filter the I channel analog signal and the Q channel analog signal to make the I channel analog signal.
  • the Q-channel analog signal is non-orthogonal and converted into a first analog signal and a second analog signal.
  • Step 1020 The ONU uses an ADC method to convert the first analog signal and the second analog signal into a first digital signal and a second digital signal;
  • Step 1030 The ONU performs the m-th order PAM on the first digital signal and the second digital signal respectively. Demodulation to speed up again;
  • Step 1040 The ONU combines the first digital signal and the second digital signal into one digital signal by a parallel/serial conversion module.
  • an embodiment of the present invention provides a signal sending apparatus, where the apparatus mainly includes:
  • a receiver 1100 configured to split the received digital signal into a first digital signal and a second digital signal
  • a digital-to-analog orthogonal converter 1110 configured to convert the first digital signal and the second digital signal into an I-channel analog signal and a Q-channel analog signal, respectively;
  • the light modulator 1120 is configured to respectively modulate the I channel analog signal and the Q channel analog signal to two mutually perpendicular partial positive light words;
  • the polarization beam combiner 1130 is configured to synthesize two mutually orthogonal normal light signals obtained by the modulation into one optical signal, and then send the signal to the ONU.
  • the receiver 1100 is specifically configured to: split the received digital signal into a first digital signal and a second digital signal by using a QAM modulation method or a PAM modulation method.
  • the digital-to-analog orthogonal converter 1110 is specifically configured to: convert the first digital signal and the second digital signal into an I-channel number by using a CDM modulation method or a CAP modulation method.
  • Signal and Q digital signal and respectively convert I digital signal and Q digital signal into I analog signal and Q analog signal; or
  • the first analog signal and the second analog signal are respectively converted into an I analog signal and a Q analog signal.
  • the digital-to-analog orthogonal converter 1110 is specifically configured to: multiply the first digital signal by the first codeword, and multiply the second digital signal by the second codeword to obtain I. a digital signal and a Q digital signal, wherein the first codeword and the second codeword are mutually orthogonal codewords; or, The first analog signal is multiplied by the first codeword, and the second analog signal is multiplied by the second codeword to obtain an I digital signal and a Q digital signal, wherein the first codeword and the second codeword are mutually Orthogonal codewords.
  • the digital-to-analog orthogonal converter 1110 is specifically configured to: convert the first digital signal and the second digital signal to an impulse response orthogonal filtering process, and respectively convert the signal into an I-channel digital signal. And Q digital signal; or, the first analog signal and the second analog signal are respectively subjected to pulse response orthogonal filtering processing, and respectively converted into I analog signal and Q analog signal.
  • an embodiment of the present invention provides a signal receiving apparatus, which mainly includes:
  • the photoelectric receiver 1200 is configured to receive an optical signal sent by the OLT, convert the received optical signal into one electrical signal, and split the electrical signal into an I analog signal and a Q analog signal;
  • the converter 1210 is configured to convert the I channel analog signal and the Q channel analog signal into a first digital signal and a second digital signal, respectively;
  • the transmitter 1220 is configured to combine the first digital signal and the second digital signal into one digital signal and send the signal to the user terminal.
  • the analog-to-digital non-orthogonal converter 1210 is specifically configured to: convert the I analog signal and the Q analog signal into the first method by using the CDM demodulation method or the CAP demodulation method.
  • An analog signal and a second analog signal, and an analog-to-digital converter respectively converts the first analog signal and the second analog signal into a first digital signal and a second digital signal; or, using analog-to-digital conversion
  • the device converts the I channel analog signal and the Q channel analog signal into the I channel digital signal and the Q channel digital signal respectively, and uses the CDM demodulation method or the CAP demodulation method to convert the I channel digital signal and the Q channel digital signal into The first digital signal and the second digital signal.
  • the analog signal of the I channel is multiplied by the first codeword
  • the analog signal of the Q channel is multiplied by the second codeword to obtain the first analog signal and the second analog signal, respectively.
  • the first codeword is a codeword included in the I channel analog signal
  • the second codeword is a codeword included in the Q channel analog signal
  • the I channel digital signal is multiplied by the first codeword
  • the Q channel digital signal is Multiplying with the second codeword to obtain a first digital signal and a second digital signal, wherein the first codeword is a codeword included in the I channel digital signal, and the second codeword is included in the Q channel digital signal Codeword.
  • the I channel analog signal and the Q channel analog signal are respectively converted into the first channel analog signal and the second channel analog signal by using an impulse response orthogonal filtering process; or, the I channel digital signal is The digital signals of the Q and Q channels are respectively converted into the first digital signal and the second digital signal by orthogonal processing of the impulse response.
  • the transmitter 1220 is specifically configured to: use the QAM demodulation method, or use the PAM demodulation method to synthesize the I digital signal and the Q digital signal into one digital signal.
  • an embodiment of the present invention provides a PON system, where the system mainly includes: an OLT 1300, an ONU 1310, and a Splitter (passive optical splitter) 1320, where
  • the OLT 1300 may be the device shown in FIG. 11 and may include:
  • a receiver configured to split the received digital signal into a first digital signal and a second digital signal
  • a digital-to-analog orthogonal converter for converting the first digital signal and the second digital signal into an I-channel analog signal and a Q-channel analog signal, respectively;
  • a light modulator for modulating the I channel analog signal and the Q channel analog signal to two mutually orthogonal normal light signals
  • the polarization beam combiner is configured to synthesize two mutually orthogonal normal light signals obtained by the modulation into one optical signal, and then send the signals to the optical network unit ONU.
  • the ONU 1310 can be the device shown in Figure 12 and can include:
  • the photoelectric receiver is configured to receive an optical signal sent by the optical line terminal OLT, convert the received optical signal into one electrical signal, and split the electrical signal into an I analog signal and a Q analog signal;
  • An analog-to-digital non-orthogonal converter for converting an I-channel analog signal and a Q-channel analog signal into a first digital signal and a second digital signal, respectively;
  • the transmitter is configured to synthesize the first digital signal and the second digital signal into one digital signal and then send the signal to the user terminal.
  • the OLT 1300 and the ONU 1310 included in the PON system have other functions, and may specifically refer to all functions of the apparatus shown in FIG. 11 and all functions of the apparatus shown in FIG. 12, It will not be described in detail here.
  • all the splitters and all the optical fibers in the PON system form an ODN (Optical Distribution Network), and the PON system uses a single-fiber bidirectional transmission mechanism to transmit two optical fibers in one optical fiber. Waves of opposite directions and wavelengths, each wave carrying a digital signal in one direction.
  • ODN Optical Distribution Network
  • a method for transmitting and receiving a signal When transmitting a signal, a digital signal is received, and the digital signal is split into a first digital signal and a second digital signal. a signal, and then converting the first digital signal and the second digital signal into an I analog signal and a Q analog signal, respectively, and modulating the I analog signal and the Q analog signal to two mutually perpendicular
  • two mutually orthogonal normal light signals are combined into one optical signal and sent to the ONU; when receiving the signal, the received optical signal sent by the 0LT is converted into an electrical signal, and The electric signal is split into an I-channel analog signal and a Q-channel analog signal.
  • the 0NU splits the I-channel analog signal and the Q-channel analog signal into an I-channel digital signal and a Q-channel digital signal, and an I-channel digital signal and a Q-channel.
  • the digital signal is synthesized into one digital signal and then sent to the user terminal, so that in the process of signal transmission, it is not necessary to use the up-conversion processing technology, and the received optical signal does not Distortion is generated, thereby improving the quality of the transmitted digital signal, and at the same time, the up-conversion processing equipment is not required, and therefore, the implementation cost is also reduced.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the computer readable memory is stored in the computer readable memory.
  • the instructions in the production result include an article of manufacture of the instruction device that implements the functions in one or more blocks of the flowchart or in a flow or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions in one or more blocks of the flowchart or in a flow or block of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及移动通信技术领域,公开了一种信号发送和接收的方法、装置及系统,用以解决在传输信号时存在的数字信号质量较差、实现成本较高的问题,具体为:将接收到的一路数字信号拆分为第一路数字信号和第二路数字信号,然后,将第一路数字信号和第二路数字信号,分别转换为I路模拟信号和Q路模拟信号,并将I路模拟信号和Q路模拟信号,分别调制到两路互相垂直的偏正态的光信号上后,再将两路互相垂直的偏正态的光信号合成一路光信号发送至ONU,ONU再进行相应的解调发送至用户终端,这样,就解决了在传输信号时存在的数字信号质量较差、实现成本较高的问题。

Description

一种信号发送和接收的方法、 装置及系统 技术领域
本发明涉及通信技术领域, 特别涉及一种信号发送和接收的方法、 装置 及系统。 背景技术
随着通信技术的发展, PON ( Passive Optical Network, 无源光网络) 系 统由于具有带宽大、 可扩展性好、 节省主干光纤、 免有源器件的维护和电耗, 及副覆盖范围广等优点, 在宽带接入领域的应用越来越广泛。
为了分离同一^ :艮光纤上多个用户的来去方向的信号, PON系统采用以下 两种复用技术传输数字信号, 具体如下:
在下行传输方向 (即光线路终端至光网络单元): OLT ( Optical Line Terminate, 光线路终端) 采用连续广播方式发送数字信号, 可以随时发送数 字信号给 ONU ( Optical Network Unit, 光网络单元) I ONT ( Optical Network Terminal, 光网络终端), 所有 ONU都能接收到相同的数字信号, 但是, ONU 通过过滤来接收属于自己的数字信号;
在上行传输方向 (即光网络单元至光线路终端): 把光纤的占用按照一定 时间长度分成不同时段, 在每一个时段, 只有一个 ONU能够占用光纤向 OLT 发送数字信号, 其余 ONU关闭激光器, 也就是说, OLT在同一时间只能接收 一个 ONU发送的数字信号, 如果两个 ONU同时向 OLT发送数字信号, 则 OLT 不能正确接收数字信号, 不同 ONU之间发送的上行数字信号发生冲突。
随着通信技术的发展, 高传输速率显得尤为重要, 系统升级会提高传输 速率, 但是, 传输速率的提高会占用更多的带宽, 而大带宽的情况下, 光电 器件成本较高, 目前, 为了降低提高传输速率后大带宽带来的高实现成本, 通常要将带宽进行压缩。 现有高速率升级方案中, 对 PON系统中的光纤信道进行带宽压缩的过程 中要釆用上变频处理技术, 具体处理为: OLT将接收到的一路数字信号转换 为 I路数字信号和 Q路数字信号,再将 I路数字信号和 Q路数字信号经过 I/Q 调制器处理成一路数字信号, 并将该处理后的一路数字信号加载到光信号上, 然后, 将该光信号经过上变频处理后发送至 ONU。
但是, 经过上变频技术处理后, 数字信号的速率非常高, 导致数字信号 的畸变较严重, 传输至 ONU侧的数字信号的质量较差, 同时, 上变频处理设 备的成本较高, 因此, 现有技术在传输信号时存在数字信号质量较差、 实现 成本较高的问题。 发明内容
本发明实施例提供一种信号发送和接收的方法、 装置及系统, 用以解决 现有技术中在 PON网络传输信号时存在的数字信号质量较差、 实现成本较高 的问题。
第一方面, 提供一种信号的发送方法, 包括:
将接收到的一路数字信号拆分为第一路数字信号和第二路数字信号; 将所述第一路数字信号和所述第二路数字信号,分别转换为 I路模拟信号 和 Q路模拟信号;
将所述 I路模拟信号和所述 Q路模拟信号, 分别调制到两路互相垂直的 偏正态光信号上;
将调制得到的所述两路互相垂直的偏正态光信号合成一路光信号后, 发 送至光网络单元 ONU。
结合第一方面, 在第一种可能的实现方式中, 将所述第一路数字信号和 所述第二路数字信号, 分别转换为 I路模拟信号和 Q路模拟信号, 具体包括: 采用码分复用 CDM调制方式,或者采用无载波幅度相位 CAP调制方式, 将所述第一路数字信号和所述第二路数字信号分别转换为 I路数字信号和 Q 路数字信号, 并釆用数模转换器分别将所述 I路数字信号和所述 Q路数字信 号分别转换为 I路模拟信号和 Q路模拟信号; 或者
釆用数模转换器分别将第一路数字信号和所述第二路数字信号转换为第 一路模拟信号和第二路模拟信号, 并采用码分复用 CDM调制方式, 或者采用 无载波幅度相位 CAP调制方式, 将所述第一路模拟信号和所述第二路模拟信 号分别转换为 I路模拟信号和 Q路模拟信号。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 采用 CAP调制方式将所述第一路数字信号和所述第二路数字信号分别转换为 I路数字信号和 Q路数字信号, 具体包括:
将所述第一路数字信号和所述第二路数字信号分别经过脉冲响应正交的 滤波处理, 分别转换为 I路数字信号和 Q路数字信号;
采用 CAP调制方式将所述第一路模拟信号和所述第二路模拟信号分别转 换为 I路模拟信号和 Q路模拟信号, 具体包括:
将所述第一路模拟信号和所述第二路模拟信号分别经过脉冲响应正交的 滤波处理, 分别转换为 I路模拟信号和 Q路模拟信号。
第二方面, 提供一种信号的接收方法, 包括:
接收光线路终端 OLT发送的一路光信号;
将接收到的所述一路光信号转换为一路电信号, 并将所述电信号拆分为 I 路模拟信号和 Q路模拟信号;
将所述 I路模拟信号和所述 Q路模拟信号分别转换为第一路数字信号和 第二路数字信号;
将所述第一路数字信号和所述第二路数字信号合成为一路数字信号后发 送至用户终端。
结合第二方面,在第一种可能的实现方式中, 将所述 I路模拟信号和所述 Q路模拟信号分别转换为第一路数字信号和第二路数字信号, 具体包括: 釆用码分复用 CDM解调方式,或者釆用无载波幅度相位 CAP解调方式, 将所述 I路模拟信号和 Q路模拟信号分别转换为第一路模拟信号和第二路模 拟信号, 并采用模数转换器分别将所述第一路模拟信号和所述第二路模拟信 号转换为第一路数字信号和第二路数字信号; 或者
釆用模数转换器分别将所述 I路模拟信号和所述 Q路模拟信号转换为 I 路数字信号和 Q路数字信号, 并采用码分复用 CDM解调方式, 或者采用无 载波幅度相位 CAP解调方式, 将所述 I路数字信号和所述 Q路数字信号转换 为第一路数字信号和第二路数字信号。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 采用 CAP解调方式将所述 I路模拟信号和 Q路模拟信号分别转换为第一路模 拟信号和第二路模拟信号, 具体包括:
将所述 I路模拟信号和 Q路模拟信号分别经过脉冲响应正交的滤波处理 转换为第一路模拟信号和第二路模拟信号; 或者
采用 CAP解调方式将所述 I路数字信号和 Q路数字信号分别转换为第一 路数字信号和第二路数字信号, 具体包括:
将所述 I路数字信号和 Q路数字信号分别经过脉冲响应正交的滤波处理 转换为第一路数字信号和第二路数字信号。
第三方面, 提供一种信号的发送装置, 包括:
接收机, 用于将接收到的一路数字信号拆分为第一路数字信号和第二路 数字信号;
数模正交转换器, 用于将所述第一路数字信号和所述第二路数字信号, 分别转换为 I路模拟信号和 Q路模拟信号;
光调制器, 用于将所述 I路模拟信号和所述 Q路模拟信号, 分别调制到 两路互相垂直的偏正态光信号上;
偏振合束器, 用于将调制得到的所述两路互相垂直的偏正态光信号合成 一路光信号后, 发送至光网絡单元 ONU。
结合第三方面, 在第一种可能的实现方式中, 所述数模正交转换器具体 用于: 釆用码分复用 CDM调制方式, 或者釆用无载波幅度相位 CAP调制方 式,将所述第一路数字信号和所述第二路数字信号分别转换为 I路数字信号和 Q路数字信号, 并分别将所述 I路数字信号和所述 Q路数字信号分别转换为 I 路模拟信号和 Q路模拟信号; 或者
分别将第一路数字信号和所述第二路数字信号转换为第一路模拟信号和 第二路模拟信号, 并采用码分复用 CDM调制方式, 或者采用无载波幅度相位 CAP 调制方式, 将所述第一路模拟信号和所述第二路模拟信号分别转换为 I 路模拟信号和 Q路模拟信号。
结合第三方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述数模正交转换器具体用于: 将所述第一路数字信号和所述第二路数字信 号分别经过脉冲响应正交的滤波处理, 分别转换为 I路数字信号和 Q路数字 信号; 或者, 将所述第一路模拟信号和所述第二路模拟信号分别经过脉冲响 应正交的滤波处理, 分别转换为 I路模拟信号和 Q路模拟信号。
第四方面, 提供一种信号的接收装置, 包括:
光电接收机, 用于接收光线路终端 OLT发送的一路光信号, 将接收到的 所述一路光信号转换为一路电信号,并将所述电信号拆分为 I路模拟信号和 Q 路模拟信号;
模数非正交转换器, 用于将所述 I路模拟信号和所述 Q路模拟信号分别 转换为第一路数字信号和第二路数字信号;
发射机, 用于将所述第一路数字信号和所述第二路数字信号合成为一路 数字信号后发送至用户终端。
结合第四方面, 在第一种可能的实现方式中, 所述模数非正交转换器具 体用于: 采用码分复用 CDM解调方式, 或者采用无载波幅度相位 CAP解调 方式, 将所述 I路模拟信号和 Q路模拟信号分别转换为第一路模拟信号和第 二路模拟信号, 并采用模数转换器分别将所述第一路模拟信号和所述第二路 模拟信号转换为第一路数字信号和第二路数字信号; 或者, 采用模数转换器 分别将所述 I路模拟信号和所述 Q路模拟信号转换为 I路数字信号和 Q路数 字信号, 并釆用码分复用 CDM解调方式, 或者釆用无载波幅度相位 CAP解 调方式, 将所述 I路数字信号和所述 Q路数字信号转换为第一路数字信号和 第二路数字信号。 结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述模数非正交转换器具体用于: 将所述 I路模拟信号和 Q路模拟信号分别 经过脉冲响应正交的滤波处理转换为第一路模拟信号和第二路模拟信号; 或 者, 将所述 I路数字信号和 Q路数字信号分别经过脉沖响应正交的滤波处理 转换为第一路数字信号和第二路数字信号。
第五方面, 提供一种无源光网络 PON系统, 包括: 光线路终端 OLT、 光 网絡单元 ONU , 及用于连接所述 OLT和所述 ONU的无源光分路器, 其中, 所述 OLT包括如权利要求 7-9任一项所述的装置,所述 ONU包括如权利 要求 10-12任一项所述的装置。
本发明实施例提供的具体技术方案如下:
本发明中, 提出一种信号的发送方法, 将接收到的一路数字信号拆分为 第一路数字信号和第二路数字信号, 然后, 将第一路数字信号和第二路数字 信号, 分别转换为 I路模拟信号和 Q路模拟信号, 并将正 I路模拟信号和 Q 路模拟信号, 分别调制到两路互相垂直的偏正态的光信号上后, 再将两路互 相垂直的偏正态的光信号合成一路光信号发送至 ONU; 及提出一种信号的接 收方法, 接收光线路终端 OLT发送的一路光信号, 接下来, 将接收到的一路 光信号转换为一路电信号, 并将电信号拆分为 I路模拟信号和 Q路模拟信号; 然后, 将 I路模拟信号和 Q路模拟信号分别转换为第一路数字信号和第二路 数字信号; 最后, 将第一路数字信号和第二路数字信号合成为一路数字信号 后发送至用户终端, 这样, 在信号传输的过程中, 不需要采用上变频处理技 术, ONU接收到的光信号不会产生畸变, 因此, 提高了传输至 ONU的信号 的质量, 此外, 不需要用到上变频处理设备, 因此, 还降低了实现成本。 附图说明
图 1为本发明实施例中信号发送的控制流程图;
图 2A为本发明实施例中信号发送的第一种应用场景示例流程图; 图 2B为本发明实施例中 Laser发射光线的示意图; 图 3为本发明实施例中信号发送的第二种应用场景示例流程图; 图 4为本发明实施例中信号发送的第三种应用场景示例流程图; 图 5为本发明实施例中信号发送的第四种应用场景示例流程图; 图 6为本发明实施例中信号接收的控制流程图;
图 Ί为本发明实施例中信号接收的第一种应用场景示例流程图; 图 8为本发明实施例中信号接收的第二种应用场景示例流程图; 图 9为本发明实施例中信号接收的第三种应用场景示例流程图; 图 10为本发明实施例中信接收的第四种应用场景示例流程图;
图 11为本发明实施例中信号的发送装置的功能结构示意图;
图 12为本发明实施例中信号的接收装置的功能结构示意图;
图 13为本发明实施例中 PON系统的功能结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
另外, 本文中术语"系统"和"网络"在本文中常被可互换使用。 本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例 如, A和 /或 B, 可以表示: 单独存在八, 同时存在 A和 B, 单独存在 B这三 种情况。 另外, 本文中字符 "/" ,一般表示前后关联对象是一种 "或" 的关系。
为了解决现有技术中在传输信号时存在的数字信号质量较差、 实现成本 较高的问题, 本发明实施例中, 在发送数字信号时, 将该一路数字信号拆分 为第一路数字信号和第二路数字信号, 再将第一路数字信号和第二路数字信 号, 分别转换为 I路模拟信号和 Q路模拟信号, 然后, 将 I路模拟信号和 Q 路模拟信号, 分别调制到两路互相垂直的偏正态的光信号上, 再将两路互相 垂直的偏正态的光信号合成一路光信号发送至 ONU;在接收到 OLT发送的一 路数字信号后, 将接收到的一路光信号转换为一路电信号, 并将电信号拆分 为 I路模拟信号和 Q路模拟信号; 然后 , 将 I路模拟信号和 Q路模拟信号分 别转换为第一路数字信号和第二路数字信号; 再将第一路数字信号和第二路 数字信号合成为一路数字信号后发送至用户终端, 这样, 不需要釆用上变频 技术, 因此, 就提高了传输至 ONU的数字信号的质量, 还降低了实现成本。
下面结合附图对本发明可选的实施方式进行详细说明。
参阅图 1 所示, 本发明实施例中, 信号发送的详细流程如下, 信号发送 的执行主体有多种, 下面以执行主体为 OLT为例进行说明:
步骤 100: OLT将接收到的一路数字信号拆分为第一路数字信号和第二 路数字信号;
步骤 110: OLT将第一路数字信号和第二路数字信号, 分别转换为 I路模 拟信号和 Q路模拟信号;
步骤 120: OLT将 I路模拟信号和 Q路模拟信号, 分别调制到两路互相 垂直的偏正态的光信号;
步骤 130: OLT将调制得到的两路互相垂直的偏正态的光信号合成一路光 信号后, 发送至 ONU。
本发明实施例中, OLT接收到的一路数字信号的来源有多种, 例如, OLT 接收核心网发送的一路数字信号。
本发明实施例中, OLT将接收到的一路数字信号拆分为第一路数字信号 和第二路数字信号的方式有多种, 可选的, OLT可以将接收到的一路数字信 号采用 QAM ( Quadrature Amplitude Modulation, 相正交振幅调制) 方式拆分 为第一路数字信号和第二路数字信号, 也可以将接收到的一路数字信号采用 PAM ( Pulse Amplitude Modulation, 脉冲幅度调制)方式拆分为第一路数字信 号和第二路数字信号。
其中, OLT将接收到的一路数字信号采用 QAM方式拆分为第一路数字信 号和第二路数字信号时, 先通过串 /并变换模块将一路数字信号分成低速并行 的多路数字信号, 再将每一路低速的数字信号分别进行 m阶 QAM调制进行再 次降速, m阶 QAM调制, 是将 log2(m)个比特变成 1个符号来传输, 相当于将速 率降低了 log2(m)倍, 然后, 再将每一路数字信号通过 IFFT模块进行反傅立叶 算法 (IFFT ) 处理, 将频域数据变换成时域波形, 最后, 将多路并行的低速 数字信号复合成两路高速数字信号, 即输出第一路数字信号和第二路数字信 号。
例如, OLT接收到的核心网发送的的一路数字信号的速率为 40Gb/s, 该数 字信号经过串 /并变换模块后, 分成低速并行的四路数字信号, 每路数字信号 的速率为 10Gb/s, 四路并行的速率为 10Gb/s的数字信号再分别进行 16阶 QAM 调制, 变为四路并行的速率为 2.5G/S的数字信号, 进行再次降速, 然后, 四路 并行的速率为 2.5G/s的数字信号分布经过 IFFT模块进行反傅立叶算法处理,最 后,再经过并串模块复合成两路并行的速率为 10Gb/s的数字信号, 即输出速率 为 10Gb/s的第一路数字信号和速率为 10Gb/s的第二路数字信号。
例如, OLT接收到的核心网发送的的一路数字信号的速率为 40Gb/s, 该 数字信号经过串 /并变换模块后, 分成低速并行的两路数字信号, 每路数字信 号的速率为 20Gb/s, 两路并行的速率为 20Gb/s的数字信号再分别进行 16阶 PAM调制, 进行再次降速, 变为两路并行的速率为 2.5G/S的数字信号, 即输 出的第一路数字信号和第二路数字信号的速率分别为 2.5G/s。
本发明实施例中, 将第一路数字信号和第二路数字信号, 分别转换为 I 路模拟信号和 Q路模拟信号时, 可以先将第一路数字信号和第二路数字信号 转换为第一路模拟信号和第二路模拟信号, 再将第一路模拟信号和第二路模 拟信号转换为 I路模拟信号和 Q路模拟信号, 也可以先将第一路数字信号和 第二路数字信号转换为 I路数字信号和 Q路数字信号,再将 I路数字信号和 Q 路数字信号转换为 I路模拟信号和 Q路模拟信号。
本发明实施例中,将第一路模拟信号和第二路模拟信号转换为 I路模拟信 号和 Q路模拟信号, 或者, 将第一路数字信号和第二路数字信号转换为 I路 数字信号和 Q路数字信号的方式有多种, 可选的, 可以采用 CDM ( Code Division Multiplexiing, 码分复用)调制将第一路模拟信号和第二路模拟信号 转换为 I路模拟信号和 Q路模拟信号, 或者, 将第一路数字信号和第二路数 字信号转换为 I路数字信号和 Q路数字信号; 或者, 也可以采用 CAP
( Carrierless amplitude and phase, 无载波幅度相位 )调制将第一路模拟信号和 第二路模拟信号转换为 I路模拟信号和 Q路模拟信号, 或者, 将第一路数字 信号和第二路数字信号转换为 I路数字信号和 Q路数字信号; 同时, 将第一 路数字信号和第二路数字信号转换为第一路模拟信号和第二路模拟信号, 或 者, 将 I路数字信号和 Q路数字信号转换为 I路模拟信号和 Q路模拟信号的 方式也有多种, 可选的, 可以采用 DAC ( Digital to Analog Converter, 数模转 换器) 方式分别将第一路数字信号和第二路数字信号转换为第一路模拟信号 和第二路模拟信号,或者,将 I路数字信号和 Q路数字信号转换为 I路模拟信 号和 Q路模拟信号。
0LT 采用 CDM调制方式将第一路数字信号和第二路数字信号转换为 I 路数字信号和 Q路数字信号的方法有多种, 可选的, 0LT将第一路数字信号 与第一码字相乘, 第二路数字信号与第二码字相乘, 得到 I路数字信号和 Q 路数字信号, 其中, 第一码字与第二码字为相互正交的码字, 正交码是指乘 累加的结果为 0 的两个不同的码字, 正交码的长度可以为任意长度, 例如, 例如, 一组序列为 ( cl,c2,c3,c4 ) , cl=[l 1 1 1] , c2=[l -1 1 -1] , 由于 cl xc2=l l+l x ( -1 ) +1 χ 1+1 χ ( -1 ) =0, 则 cl与 c2为正交码。 I路数字信号和 Q 路数字信号分别与正交码 cl和 c2相乘, 完成 CDM调制, 调制后信号为
Figure imgf000012_0001
同理, OLT采用 CDM调制方式将第一路模拟信号和第二路模拟信号转换 为 I路模拟信号和 Q路模拟信号的方法有多种, 可选的, 0LT将第一路模拟 信号与第一码字相乘, 第二路模拟信号与第二码字相乘,得到 I路数字信号和 Q路数字信号, 其中, 第一码字与第二码字为相互正交的码字。
本发明实施例中,采用 CDM调制将 I路数字信号和 Q路数字信号正交化时, 可选的, 将 I路数字信号和 Q路数字信号分别经过正交码处理进行正交化, 正 交码是指乘累加的结果为 0的两个不同的码字, 正交码的长度可以为任意长 度, 例如, 2bits (字节) 、 3bits, 4 bits, 等等。
OLT采用 CAP调制方式将第一路数字信号和第二路数字信号转换为 I路 数字信号和 Q路数字信号的方式有多种, 可选的, OLT将第一路数字信号和 第二路数字信号分别经过脉冲响应正交的滤波处理,转换为 I路数字信号和 Q 路数字信号。
同理, OLT采用 CAP调制方式将第一路模拟信号和第二路模拟信号转换 为 I路模拟信号和 Q路模拟信号的方式有多种, 可选的, OLT将第一路模拟 信号和第二路模拟信号分别经过脉冲响应正交的滤波处理,转换为 I路模拟信 号和 Q路模拟信号。
本发明实施例中, OLT采用 QAM调制方式将接收到的一路数字信号拆 分为第一路数字信号和第二路数字信号时,后续采用 CDM调制将拆分为第一 路数字信号和第二路数字信号转换为 I路数字信号和 Q路数字信号, 或者, 釆用 CDM调制将拆分为第一路模拟信号和第二路模拟信号转换为 I路模拟信 号和 Q路模拟信号; OLT采用 PAM调制方式将接收到的一路数字信号拆分为 第一路数字信号和第二路数字信号时, 后续采用 CAP调制将拆分为第一路数 字信号和第二路数字信号转换为 I路数字信号和 Q路数字信号, 或者, 釆用 CAP调制将拆分为第一路模拟信号和第二路模拟信号转换为 I路模拟信号和 Q路模拟信号。
本发明实施例中, OLT将 I路模拟信号和 Q路模拟信号, 分别调制到两 路互相垂直的偏正态的光信号时, 通过 PBS ( Polarization Beam Splitter, 偏振 分束器)将 Laser (激光器)发出的一路光信号转换为两路互相垂直的偏正态 的光信号, OLT将 I路模拟信号和 Q路模拟信号, 分别调制到两路互相垂直 的偏正态的光信号上,再通过 PBC ( Polarization Beam Combiner,偏振合束器 ) 将两路互相垂直的偏正态的光信号合成为一路光信号, 发送至 ONU。
为了更好地理解本发明实施例, 以下给出具体应用场景, 针对信号的发 送过程, 做出进一步详细描述:
实施例一 (具体如图 2A所示 )··
步骤 200: 0LT通过串 /并变换模块将一路数字信号分成低速并行的四路 数字信号;
步骤 210: OLT将每一路数字信号分别进行 m阶 QAM调制进行再次降 速;
步骤 220: OLT将再次降速后的每一路数字信号通过 IFFT模块进行反傅 立叶算法处理;
步骤 230: OLT 将四路数字信号复合成第一路数字信号和第二路数字信 号;
步骤 240: OLT采用 DAC方式将第一路数字信号和第二路数字信号转换 为第一路模拟信号和第二路模拟信号;
步骤 250: OLT将转换为第一路模拟信号和第二路模拟信号分别与正交码 相乘, 转换为 I路模拟信号和 Q路模拟信号;
步骤 260: OLT将 I路模拟信号和 Q路模拟信号, 分别调制到互相垂直 的偏正态的 X光信号和偏正态的 y光信号上;
该步骤中, PBS将 Laser发出的一路光信号分解为互相垂直的偏正态的 x 光信号和偏正态的 y光信号 (如图 2B所示), 为了使偏正态的 X光信号和偏 正态的 y光信号的光功率相同, Laser发出的光信号的偏振态振动方向与 PBS 的主轴成 45度, 然后, OLT将的 I路模拟信号和 Q路模拟信号通过光调制器 ( Mod )分别加载到互相垂直的偏正态的 X光信号和偏正态的 y光信号上。
步骤 270: OLT将分别包含有 I路模拟信号和 Q路模拟信号的偏正态的 X 光信号和 Y光信号合成一路光信号后发送至 ONU。
该步骤中, 互相垂直的偏正态的 X光信号和偏正态的 Y光信号通过 PBC 后合成一路光信号。
实施例二 (具体如图 3所示):
步骤 300: OLT通过串 /并变换模块将一路数字信号分成低速并行的四路 数字信号;
步骤 310: OLT将每一路数字信号分别进行 m阶 QAM调制进行再次降 速;
步骤 320: OLT将再次降速后的每一路数字信号通过 IFFT模块进行反傅 立叶算法处理;
步骤 330: OLT 将四路数字信号复合成第一路数字信号和第二路数字信 号;
步骤 340: OLT将第一路数字信号和第二路数字信号分别与正交码相乘进 行正交化处理, 得到 I路数字信号和 Q路数字信号;
步骤 350: OLT采用 DAC方式将 I路数字信号和 Q路数字信号转换为 I 路模拟信号和 Q路模拟信号;
步骤 360: 将 I路模拟信号和 Q路模拟信号, 分别调制到互相垂直的偏正 态的 X光信号和偏正态的 Y光信号上;
与步骤 260相同, 该步骤中, PBS将 Laser发出的一路光信号分解为互相 垂直的偏正态的 X光信号和偏正态的 y光信号为了使偏正态的 X光信号和偏 正态的 y光信号的光功率相同, Laser发出的光信号的偏振态振动方向与 PBS 的主轴成 45度, 然后, OLT将 I路模拟信号和 Q路模拟信号通过光调制器 ( Mod )分别加载到互相垂直的偏正态的 X光信号和偏正态的 y光信号上。
步骤 370: OLT将分别包含有 I路模拟信号和 Q路模拟信号的偏正态的 X 光信号和 Y光信号合成一路光信号后发送至 ONU。
该步骤中, 互相垂直的偏正态的 X光信号和偏正态的 Y光信号通过 PBC 后合成一路光信号。
实施例三 (具体如图 4所示):
步骤 400: OLT通过串 /并变换模块将一路数字信号分成低速并行的两路 数字信号;
步骤 410: OLT将两路数字信号分别进行 m阶 PAM调制进行处理后生成 第一路数字信号和第二路数字信号; 步骤 420: OLT将第一路数字信号和第二路数字信号分别经过脉沖响应正 交的滤波进行正交化处理, 得到 I路数字信号和 Q路数字信号;
步骤 430: OLT采用 DAC方式将 I路数字信号和 Q路数字信号转换为 I 路模拟信号和 Q路模拟信号;
步骤 440: OLT将 I路模拟信号和 Q路模拟信号, 分别调制到互相垂直 的偏正态的 X光信号和偏正态的 Y光信号上;
与步骤 260相同, 该步骤中, PBS将 Laser发出的一路光信号分解为互相 垂直的偏正态的 X光信号和偏正态的 y光信号为了使偏正态的 X光信号和偏 正态的 y光信号的光功率相同, Laser发出的光信号的偏振态振动方向与 PBS 的主轴成 45度, 然后, OLT将 I路模拟信号和 Q路模拟信号通过光调制器 ( Mod )分别加载到互相垂直的偏正态的 X光信号和偏正态的 y光信号上。
步骤 450: OLT分别包含有 I路模拟信号和 Q路模拟信号的偏正态的 X 光信号和 Y光信号合成一路光信号后发送至 ONU。
该步骤中, 互相垂直的偏正态的 X光信号和偏正态的 Y光信号通过 PBC 后合成一路光信号。
实施例四 (具体如图 5所示):
步骤 500: OLT通过串 /并变换模块将一路数字信号分成低速并行的第一 路数字信号和第二路数字信号;
步骤 510: OLT将第一路数字信号和第二路数字信号分别进行 m阶 PAM 调制, 进行降速;
步骤 520: OLT采用 DAC方式将第一路数字信号和第二路数字信号转换 为第一路模拟信号和第二路模拟信号;
步骤 530: OLT将第一路模拟信号和第二路模拟信号分别经过脉沖响应正 交的滤波进行正交化处理, 得到 I路模拟信号和 Q路模拟信号;
步骤 540: OLT将 I路模拟信号和 Q路模拟信号, 分别调制到互相垂直 的偏正态的 X光信号和偏正态的 Y光信号上;
与步骤 260相同, 该步骤中, PBS将 Laser发出的一路光信号分解为互相 垂直的偏正态的 X光信号和偏正态的 y光信号为了使偏正态的 X光信号和偏 正态的 y光信号的光功率相同, Laser发出的光信号的偏振态振动方向与 PBS 的主轴成 45度, 然后, OLT将 I路模拟信号和 Q路模拟信号通过光调制器 ( Mod )分别加载到互相垂直的偏正态的 X光信号和偏正态的 y光信号上。
步骤 550: OLT将分别包含有 I路模拟信号和 Q路模拟信号的偏正态的 X 光信号和 Y光信号合成一路光信号后发送至 ONU。
该步骤中, 互相垂直的偏正态的 X光信号和偏正态的 Y光信号通过 PBC 后合成一路光信号。
本发明还提出一种信号的接收方法, 参阅图 6 所示, 信号接收的详细流 程如下,信号接收的执行主体有多种,下面以执行主体为 ONU为例进行说明: 步骤 600: ONU接收光线路终端 OLT发送的一路光信号;
步骤 610: ONU将接收到的一路光信号转换为一路电信号, 并将电信号 拆分为 I路模拟信号和 Q路模拟信号;
步骤 620: ONU将 I路模拟信号和 Q路模拟信号分别转换为第一路数字 信号和第二路数字信号;
步骤 630: ONU将第一路数字信号和第二路数字信号合成为为一路数字 信号后发送至用户终端。
本发明实施例中, ONU将一路光信号转换为一路电信号时, 先通过 PD ( Photonic Detector, 光电接收机 )将接收到的 0LT发送一路光信号转换为一 路电信号, 再将电信号拆分为 I路模拟信号和 Q路模拟信号。
本发明实施例中, 0NU将 I路模拟信号和 Q路模拟信号分别转换为第 一路数字信号和第二路数字信号的方式有多种, 例如, 可以先将 I路模拟信号 和 Q路模拟信号进行非正交化, 转换为第一路模拟信号和第二路模拟信号, 然后, 再将第一路模拟信号和第二路模拟信号, 转换为第一路数字信号和第 二路数字信号;也可以先将 I路模拟信号和 Q路模拟信号转换为 I路数字信号 和 Q路数字信号, 然后, 再将 I路数字信号和 Q路数字信号, 转换为第一路 数字信号和第二路数字信号。 本发明实施例中, ONU将 I路模拟信号和 Q路模拟信号进行非正交化, 转换为第一路模拟信号和第二路模拟信号, 或者, 将 I路数字信号和 Q路数 字信号, 转换为第一路数字信号和第二路数字信号的方式有多种, 较佳的, ONU采用 CDM解调或者采用 CAP解调,将 I路模拟信号和 Q路模拟信号进 行非正交化, 转换为第一路模拟信号和第二路模拟信号, 或者, 将 I路数字信 号和 Q路数字信号, 转换为第一路数字信号和第二路数字信号。
同理, ONU将第一路模拟信号和第二路模拟信号, 转换为第一路数字信 号和第二路数字信号,或者,将 I路模拟信号和 Q路模拟信号转换为 I路数字 信号和 Q路数字信号的方式有多种, 可选的, 采用 ADC ( Analog to Digital Converter, 模数转换器) 方式分别将第一路模拟信号和第二路模拟信号, 转 换为第一路数字信号和第二路数字信号, 或者, 将 I路模拟信号和 Q路模拟 信号转换为 I路数字信号和 Q路数字信号。
其中, 0NU采用 CDM解调将 I路模拟信号和 Q路模拟信号进行非正交 化, 转换为第一路模拟信号和第二路模拟信号, 或者, 将 I路数字信号和 Q 路数字信号, 转换为第一路数字信号和第二路数字信号时, 可选的, 可以将 I 路模拟信号和 Q路模拟信号分别经过相应的正交码处理进行非正交化, 转换 为第一路模拟信号和第二路模拟信号, 或者, 将 I路数字信号和 Q路数字信 号分别经过相应的正交码处理, 转换为第一路数字信号和第二路数字信号。
0NU釆用 CAP解调将 I路模拟信号和 Q路模拟信号进行非正交化, 转 换为第一路模拟信号和第二路模拟信号, 或者, 将 I路数字信号和 Q路数字 信号, 转换为第一路数字信号和第二路数字信号时, 可选的, 可以将 I路模拟 信号和 Q路模拟信号分别经过滤波处理进行非正交化, 转换为第一路模拟信 号和第二路模拟信号, 或者, 将 I路数字信号和 Q路数字信号分别经过滤波 处理进行非正交化, 转换为第一路数字信号和第二路数字信号。
例如,从电信号 R=( Ixcl ) + ( Qxc2 )中解码得到 I路数字信号时,将 Rxcl 即可, 要得到 Q路数字信号时, 将 Rxc2即可。
本发明实施例中, 0NU将第一路数字信号和所述第二路数字信号的方式 有多种, 可选的, ONU采用 QAM解调方式将第一路数字信号和所述第二路 数字信号转换为一路数字信号, 也可以釆用 PAM解调方式将第一路数字信号 和所述第二路数字信号转换为一路数字信号。
其中, ONU采用 QAM解调方式将第一路数字信号和所述第二路数字信号 转换为一路数字信号时, 先通过串 /并变换模块将第一路数字信号和所述第二 路数字信号分成高速并行的多路数字信号, 并通过 FFT (傅立叶变换)将时域 波形变换成频域数据, 然后, 对每一路数字信号 QAM解调, 进行提速, 最后, 将多路并行的高速数字信号复合成一路高速数字信号, 即完成了第一路数字 信号和所述第二路数字信号转换为一路数字信号。
本发明实施例中, ONU采用 CDM解调方式将 I路模拟信号和 Q路模拟 信号转换为第一路模拟信号和第二路模拟信号, 或者将 I路数字信号和 Q路 数字信号转换为第一路数字信号和第二路数字信号时, 在后续过程中, ONU 采用 QAM解调方式将接收到的第一路数字信号和第二路数字信号至少转换 为一路数字信号, 同理, ONU采用 CAP解调方式将 I路模拟信号和 Q路模 拟信号转换为第一路模拟信号和第二路模拟信号, 或者将 I路数字信号和 Q 路数字信号转换为第一路数字信号和第二路数字信号时,在后续过程中 , ONU 采用 PAM解调方式将接收到的第一路数字信号和第二路数字信号转换为一路 数字信号。
本发明实施例中, OLT采用 QAM调制方式将一路数字信号拆分为第一 路数字信号和第二路数字信号,并采用 CDM调制方式对第一路数字信号和第 二路数字信号, 或者第一路模拟信号和第二路模拟信号进行正交化处理时, ONU采用 CDM解调方式对 I路数字信号和 Q路数字信号, 或者的 I路模拟 信号和 Q路模拟信号进行非正交化, 然后, 再采用 QAM解调方式将第一路 数字信号和第二路数字信号合成为一路数字信号。
同理, OLT釆用 PAM调制方式将一路数字信号拆分为第一路数字信号和 第二路数字信号,并采用 CAP调制方式对第一路数字信号和第二路数字信号, 或者第一路模拟信号和第二路模拟信号进行正交化处理时, ONU 采用 CAP 解调方式对 I路数字信号和 Q路数字信号, 或者 I路模拟信号和 Q路模拟信 号进行非正交化, 然后, 再釆用 PAM解调方式将第一路数字信号和第二路数 字信号转换为一路数字信号。
为了更好地理解本发明实施例, 以下给出具体应用场景, 针对信号的接 收过程, 做出进一步详细描述:
实施例五 (具体如图 7所示):
步骤 700: ONU将接收到的 OLT发送的一路光信号转换为一路电信号, 并从得到的一路电信号中拆分得到 I路模拟信号和 Q路模拟信号;
其中, 该步骤中的一路光信号, 是由两路互相垂直的偏正态的光信号分 别加载 I路模拟信号和 Q路模拟信号合成的。
步骤 710: ONU采用 CDM方式将 I路模拟信号和 Q路模拟信号进行非 正交化, 转换为将第一路模拟信号和第二路模拟信号;
该步骤中 , ONU采用 CDM方式将 I路模拟信号和 Q路模拟信号进行非 正交化, 转换为将第一路模拟信号和第二路模拟信号时, 可选的, ONU将 I 路模拟信号和 Q路模拟信号分别与相应的正交码相乘, 使 I路模拟信号和 Q 路模拟信号非正交化, 转换为将第一路模拟信号和第二路模拟信号。
步骤 720: ONU采用 ADC方式将第一路模拟信号和第二路模拟信号, 转 换为第一路数字信号和第二路数字信号;
步骤 730: ONU通过串 /并变换模块将第一路数字信号和第二路数字信号 分成低速并行的四路数字信号;
步骤 740: ONU将每一路数字信号分别进行 m阶 QAM解调进行再次提 速;
步骤 750: ONU将再次提速后的每一路数字信号通过 FFT模块进行傅立 叶算法处理;
步骤 760: ONU将四路数字信号复合成一路数字信号。
当然, ONU可以将获得的 I路模拟信号和 Q路模拟信号, 先转换为 I路 数字信号和 Q路数字信号,再将 I路数字信号和 Q路数字信号进行非正交化, 转换为第一路数字信号和第二路数字信号, 如实施例六所示: 实施例六 (具体如图 8所示 )··
步骤 800: ONU将接收到的 OLT发送的一路光信号转换为一路电信号 , 并从得到的一路电信号中拆分得到 I路模拟信号和 Q路模拟信号;
其中, 该步骤中的一路光信号, 是由两路互相垂直的偏正态的光信号分 别加载的 I路模拟信号和 Q路模拟信号合成的。
步骤 810: ONU采用 ADC方式将 I路模拟信号和 Q路模拟信号,转换为 I路数字信号和 Q路数字信号;
步骤 820: ONU采用 CDM方式将 I路数字信号和 Q路数字信号进行非 正交化, 转换为第一路数字信号和第二路数字信号;
该步骤中, ONU采用 CDM方式将 I路数字信号和 Q路数字信号进行非 正交化时, 可选的, ONU将 I路数字信号和 Q路数字信号分别与相应的正交 码相乘, 使 I路数字信号和 Q路数字信号非正交化, 转换为第一路数字信号 和第二路数字信号。
步骤 830: 通过串 /并变换模块将 I路数字信号和 Q路数字信号分成低速 并行的四路数字信号;
步骤 840: 将每一路数字信号分别进行 m阶 QAM解调进行再次提速; 步骤 850: 将再次提速后的每一路数字信号通过 FFT模块进行傅立叶算 法处理;
步骤 860: 将四路数字信号复合成一路数字信号。
本发明实施例中, ONU可以采用 CAP解调方式对的 I路数字信号和 Q 路数字信号, 或者对 I路模拟信号和 Q路模拟信号进行非正交化, 具体如实 施例七:
实施例七 (具体如图 9所示):
步骤 900: ONU将接收到的 OLT发送的一路光信号转换为一路电信号, 并从得到的一路电信号中分解得到 I路模拟信号和 Q路模拟信号;
其中, 该步骤中的一路光信号, 是由两路互相垂直的偏正态的光信号分 别加载 I路模拟信号和 Q路模拟信号合成的。
步骤 910: ONU釆用 ADC方式将 I路模拟信号和 Q路模拟信号,转换为 I路数字信号和 Q路数字信号;
步骤 920: ONU采用 CAP方式将 I路数字信号和 Q路数字信号进行非正 交化, 转换为第一路数字信号和第二路数字信号;
该步骤中, ONU采用 CAP方式将的 I路数字信号和 Q路数字信号进行 非正交化时, 可选的, ONU将 I路数字信号和 Q路数字信号分别经过滤波处 理, 使 I路数字信号和 Q路数字信号非正交化, 转换为第一路数字信号和第 二路数字信号。
步骤 930: 将第一路数字信号和第二路数字信号分别进行 m阶 PAM解调 进行再次提速;
步骤 940: 通过并 /串变换模块将第一路数字信号和第二路数字信号复合 成一路数字信号。
实施例八(具体如图 10所示):
步骤 1000: ONU将接收到的 OLT发送的一路光信号转换为一路电信号, 并从得到的一路电信号中分解得到 I路模拟信号和 Q路模拟信号;
其中, 该步骤中的一路光信号, 是由两路互相垂直的偏正态的光信号分 别加载 I路模拟信号和 Q路模拟信号合成的。
步骤 1010: ONU釆用 CAP方式将 I路模拟信号和 Q路模拟信号进行非 正交化, 转换为第一路模拟信号和第二路模拟信号;
该步骤中, ONU采用 CAP方式将 I路模拟信号和 Q路模拟信号进行非 正交化时,可选的, ONU将 I路模拟信号和 Q路模拟信号分别经过滤波处理, 使 I路模拟信号和 Q路模拟信号非正交化, 转换为第一路模拟信号和第二路 模拟信号。
步骤 1020: ONU釆用 ADC方式将第一路模拟信号和第二路模拟信号, 转换为第一路数字信号和第二路数字信号;
步骤 1030: ONU将第一路数字信号和第二路数字信号分别进行 m阶 PAM 解调进行再次提速;
步骤 1040: ONU通过并 /串变换模块将第一路数字信号和第二路数字信 号复合成一路数字信号。
参阅图 11所示, 本发明实施例提供一种信号的发送装置, 该装置主要包 括:
接收机 1100 , 用于将接收到的一路数字信号拆分为第一路数字信号和第 二路数字信号;
数模正交转换器 1110, 用于将第一路数字信号和第二路数字信号, 分别 转换为 I路模拟信号和 Q路模拟信号;
光调制器 1120, 用于将 I路模拟信号和 Q路模拟信号, 分别调制到两路 互相垂直的偏正态光言号上;
偏振合束器 1130, 用于将调制得到的两路互相垂直的偏正态光信号合成 一路光信号后, 发送至 ONU。
可选的, 本发明实施例中, 接收机 1100具体用于: 采用 QAM调制方式、 或者釆用 PAM调制方式将接收到的一路数字信号拆分为第一路数字信号和第 二路数字信号。
可选的, 本发明实施例中, 数模正交转换器 1110具体用于: 采用 CDM 调制方式, 或者采用 CAP调制方式, 将第一路数字信号和第二路数字信号分 别转换为 I路数字信号和 Q路数字信号, 并分别将 I路数字信号和 Q路数字 信号分别转换为 I路模拟信号和 Q路模拟信号; 或者
分别将第一路数字信号和第二路数字信号转换为第一路模拟信号和第二 路模拟信号, 并采用码分复用 CDM调制方式, 或者釆用无载波的幅度和相位 CAP调制方式, 将第一路模拟信号和第二路模拟信号分别转换为 I路模拟信 号和 Q路模拟信号。
可选的, 本发明实施例中, 数模正交转换器 1110具体用于: 将第一路数 字信号与第一码字相乘, 第二路数字信号与第二码字相乘,得到 I路数字信号 和 Q路数字信号, 其中, 第一码字与第二码字为相互正交的码字; 或者, 将 第一路模拟信号与第一码字相乘, 第二路模拟信号与第二码字相乘, 得到 I 路数字信号和 Q路数字信号, 其中, 第一码字与第二码字为相互正交的码字。
可选的, 本发明实施例中, 数模正交转换器 1110具体用于: 将第一路数 字信号和第二路数字信号分别经过脉冲响应正交的滤波处理, 分别转换为 I 路数字信号和 Q路数字信号; 或者, 将第一路模拟信号和第二路模拟信号分 别经过脉冲响应正交的滤波处理, 分别转换为 I路模拟信号和 Q路模拟信号。
参阅图 12所示, 本发明实施例提供一种信号的接收装置, 该装置主要包 括:
光电接收机 1200 , 用于接收 OLT发送的一路光信号, 将接收到的一路光 信号转换为一路电信号, 并将电信号拆分为 I路模拟信号和 Q路模拟信号; 模数非正交转换器 1210, 用于将 I路模拟信号和 Q路模拟信号分别转换 为第一路数字信号和第二路数字信号;
发射机 1220 , 用于将第一路数字信号和第二路数字信号合成为一路数字 信号后发送至用户终端。
可选的, 本发明实施例中,模数非正交转换器 1210具体用于: 釆用 CDM 解调方式, 或者采用 CAP解调方式, 将 I路模拟信号和 Q路模拟信号分别转 换为第一路模拟信号和第二路模拟信号, 并采用模数转换器分别将第一路模 拟信号和第二路模拟信号转换为第一路数字信号和第二路数字信号; 或者, 采用模数转换器分别将 I路模拟信号和 Q路模拟信号转换为 I路数字信号和 Q 路数字信号, 并采用 CDM解调方式, 或者采用 CAP解调方式, 将 I路数字 信号和 Q路数字信号转换为第一路数字信号和第二路数字信号。
可选的, 本发明实施例中, 将 I路模拟信号与第一码字相乘, Q路模拟信 号与第二码字相乘, 分别得到第一路模拟信号和第二路模拟信号, 其中, 第 一码字为 I路模拟信号中包含的码字, 第二码字为 Q路模拟信号中包含的码 字; 或者, 将 I路数字信号与第一码字相乘, Q路数字信号与第二码字相乘, 得到第一路数字信号和第二路数字信号, 其中, 第一码字为 I路数字信号中包 含的码字, 第二码字为 Q路数字信号中包含的码字。 可选的, 本发明实施例中, 将 I路模拟信号和 Q路模拟信号分别经过脉 冲响应正交的滤波处理转换为第一路模拟信号和第二路模拟信号; 或者, 将 I 路数字信号和 Q路数字信号分别经过脉冲响应正交的滤波处理转换为第一路 数字信号和第二路数字信号。
可选的, 本发明实施例中, 发射机 1220具体用于: 釆用 QAM解调方式, 或者采用 PAM解调方式将 I路数字信号和 Q路数字信号合成为一路数字信号。
参阅图 13所示, 本发明实施例提供一种 PON系统, 该系统主要包括: OLT1300、 ONU1310及 Splitter (无源光分路器) 1320, 其中,
OLT1300可以为图 11所示的装置, 可以包括:
接收机, 用于将接收到的一路数字信号拆分为第一路数字信号和第二路 数字信号;
数模正交转换器, 用于将第一路数字信号和第二路数字信号, 分别转换 为 I路模拟信号和 Q路模拟信号;
光调制器, 用于将 I路模拟信号和 Q路模拟信号, 分别调制到两路互相 垂直的偏正态光信号上;
偏振合束器, 用于将调制得到的两路互相垂直的偏正态光信号合成一路 光信号后, 发送至光网络单元 ONU。
ONU1310可以为图 12所示的装置, 可以包括:
光电接收机, 用于接收光线路终端 OLT发送的一路光信号, 将接收到的 一路光信号转换为一路电信号, 并将电信号拆分为 I路模拟信号和 Q路模拟 信号;
模数非正交转换器, 用于将 I路模拟信号和 Q路模拟信号分别转换为第 一路数字信号和第二路数字信号;
发射机, 用于将第一路数字信号和第二路数字信号合成为一路数字信号 后发送至用户终端。
本发明实施例中, PON系统包括的 OLT1300、 ONU1310还有其他功能, 具体可以分别参照图 11所示装置的全部功能, 及图 12所示装置的全部功能, 在此不再进行 详述。
本发明实施例中, PON 统中的全部 Splitter和全部光纤组成 ODN( Optical Distribution Network, 光分配网络), 且 PON系统在传输过程中, 采用单纤双 向传输机制, 在一根光纤里传两个方向相反、 波长不同的波, 每个波承载一 个方向的数字信号。
综上所述, 本发明实施例中, 提出一种信号的发送及接收的方法, 在发 送信号时, 接收一路数字信号, 将该一路数字信号拆分为第一路数字信号和 第二路数字信号, 然后, 将第一路数字信号和第二路数字信号, 分别转换为 I 路模拟信号和 Q路模拟信号, 并将 I路模拟信号和 Q路模拟信号, 分别调制 到两路互相垂直的偏正态光信号上, 再将两路互相垂直的偏正态光信号合成 一路光信号后发送至 0NU; 在接收信号时, 将接收到的 0LT发送的一路光信 号转换为电信号, 并将电信号拆分为 I路模拟信号和 Q路模拟信号, 然后, 0NU将 I路模拟信号和 Q路模拟信号拆分为 I路数字信号和 Q路数字信号, 并将 I路数字信号和 Q路数字信号合成为一路数字信号后发送至用户终端, 这样, 在信号传输的过程中, 不需要釆用上变频处理技术, 接收到的光信号 不会产生畸变, 因此, 提高了传输的数字信号的质量, 同时, 不需要用到上 变频处理设备, 因此, 还降低了实现成本。
本发明是参照根据本发明实施例的方法、 设备(系统) 、 和计算机程序 产品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程 图和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流 程和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算 机、 嵌入式处理机或其它可编程数据处理设备的处理器以产生一个机器, 使 得通过计算机或其它可编程数据处理设备的处理器执行的指令产生用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其它可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中的功能。
这些计算机程序指令也可装载到计算机或其它可编程数据处理设备上, 使得在计算机或其它可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其它可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中的功能的步骤。
尽管已描述了本发明的上述实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括上述实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不 脱离本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变 型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型在内。

Claims

权 利 要 求
1、 一种信号的发送方法, 其特征在于, 包括:
将接收到的一路数字信号拆分为第一路数字信号和第二路数字信号; 将所述第一路数字信号和所述第二路数字信号,分别转换为 I路模拟信号 和 Q路模拟信号;
将所述 I路模拟信号和所述 Q路模拟信号, 分别调制到两路互相垂直的 偏正态光信号上;
将调制得到的所述两路互相垂直的偏正态光信号合成一路光信号后, 发 送至光网络单元 ONU。
2、 如权利要求 1所述的方法, 其特征在于, 将所述第一路数字信号和所 述第二路数字信号, 分别转换为 I路模拟信号和 Q路模拟信号, 具体包括: 采用码分复用 CDM调制方式,或者采用无载波幅度相位 CAP调制方式, 将所述第一路数字信号和所述第二路数字信号分别转换为 I路数字信号和 Q 路数字信号, 并釆用数模转换器分别将所述 I路数字信号和所述 Q路数字信 号分别转换为 I路模拟信号和 Q路模拟信号; 或者
采用数模转换器分别将第一路数字信号和所述第二路数字信号转换为第 一路模拟信号和第二路模拟信号, 并釆用码分复用 CDM调制方式, 或者釆用 无载波幅度相位 CAP调制方式, 将所述第一路模拟信号和所述第二路模拟信 号分别转换为 I路模拟信号和 Q路模拟信号。
3、 如权利要求 2所述的方法, 其特征在于, 采用 CAP调制方式将所述 第一路数字信号和所述第二路数字信号分别转换为 I路数字信号和 Q路数字 信号, 具体包括:
将所述第一路数字信号和所述第二路数字信号分别经过脉沖响应正交的 滤波处理, 分别转换为 I路数字信号和 Q路数字信号;
采用 CAP调制方式将所述第一路模拟信号和所述第二路模拟信号分别转 换为 I路模拟信号和 Q路模拟信号, 具体包括: 将所述第一路模拟信号和所述第二路模拟信号分别经过脉沖响应正交的 滤波处理, 分别转换为 I路模拟信号和 Q路模拟信号。
4、 一种信号的接收方法, 其特征在于, 包括:
接收光线路终端 OLT发送的一路光信号;
将接收到的所述一路光信号转换为一路电信号, 并将所述电信号拆分为 I 路模拟信号和 Q路模拟信号;
将所述 I路模拟信号和所述 Q路模拟信号分别转换为第一路数字信号和 第二路数字信号;
将所述第一路数字信号和所述第二路数字信号合成为一路数字信号后发 送至用户终端。
5、 如权利要求 4所述的方法, 其特征在于, 将所述 I路模拟信号和所述 Q路模拟信号分别转换为第一路数字信号和第二路数字信号, 具体包括: 采用码分复用 CDM解调方式,或者采用无载波幅度相位 CAP解调方式, 将所述 I路模拟信号和 Q路模拟信号分别转换为第一路模拟信号和第二路模 拟信号, 并釆用模数转换器分别将所述第一路模拟信号和所述第二路模拟信 号转换为第一路数字信号和第二路数字信号; 或者
采用模数转换器分别将所述 I路模拟信号和所述 Q路模拟信号转换为 I 路数字信号和 Q路数字信号, 并釆用码分复用 CDM解调方式, 或者釆用无 载波幅度相位 CAP解调方式, 将所述 I路数字信号和所述 Q路数字信号转换 为第一路数字信号和第二路数字信号。
6、 如权利要求 5所述的方法, 其特征在于, 采用 CAP解调方式将所述 I 路模拟信号和 Q路模拟信号分别转换为第一路模拟信号和第二路模拟信号, 具体包括:
将所述 I路模拟信号和 Q路模拟信号分别经过脉冲响应正交的滤波处理 转换为第一路模拟信号和第二路模拟信号; 或者
采用 CAP解调方式将所述 I路数字信号和 Q路数字信号分别转换为第一 路数字信号和第二路数字信号, 具体包括: 将所述 I路数字信号和 Q路数字信号分别经过脉沖响应正交的滤波处理 转换为第一路数字信号和第二路数字信号。
7、 一种信号的发送装置, 其特征在于, 包括:
接收机, 用于将接收到的一路数字信号拆分为第一路数字信号和第二路 数字信号;
数模正交转换器, 用于将所述第一路数字信号和所述第二路数字信号, 分别转换为 I路模拟信号和 Q路模拟信号;
光调制器, 用于将所述 I路模拟信号和所述 Q路模拟信号, 分别调制到 两路互相垂直的偏正态光信号上;
偏振合束器, 用于将调制得到的所述两路互相垂直的偏正态光信号合成 一路光信号后, 发送至光网络单元 ONU。
8、 如权利要求 7所述的装置, 其特征在于, 所述数模正交转换器具体用 于: 采用码分复用 CDM调制方式, 或者采用无载波幅度相位 CAP调制方式, 将所述第一路数字信号和所述第二路数字信号分别转换为 I路数字信号和 Q 路数字信号, 并分别将所述 I路数字信号和所述 Q路数字信号分别转换为 I 路模拟信号和 Q路模拟信号; 或者
分别将第一路数字信号和所述第二路数字信号转换为第一路模拟信号和 第二路模拟信号, 并釆用码分复用 CDM调制方式, 或者釆用无载波幅度相位 CAP 调制方式, 将所述第一路模拟信号和所述第二路模拟信号分别转换为 I 路模拟信号和 Q路模拟信号。
9、 如权利要求 8所述的装置, 其特征在于, 所述数模正交转换器具体用 于: 将所述第一路数字信号和所述第二路数字信号分别经过脉冲响应正交的 滤波处理, 分别转换为 I路数字信号和 Q路数字信号; 或者, 将所述第一路 模拟信号和所述第二路模拟信号分别经过脉冲响应正交的滤波处理, 分别转 换为 I路模拟信号和 Q路模拟信号。
10、 一种信号的接收装置, 其特征在于, 包括:
光电接收机, 用于接收光线路终端 OLT发送的一路光信号, 将接收到的 所述一路光信号转换为一路电信号,并将所述电信号拆分为 I路模拟信号和 Q 路模拟信号;
模数非正交转换器, 用于将所述 I路模拟信号和所述 Q路模拟信号分别 转换为第一路数字信号和第二路数字信号;
发射机, 用于将所述第一路数字信号和所述第二路数字信号合成为一路 数字信号后发送至用户终端。
11、 如权利要求 10所述的装置, 其特征在于, 所述模数非正交转换器具 体用于: 采用码分复用 CDM解调方式, 或者采用无载波幅度相位 CAP解调 方式, 将所述 I路模拟信号和 Q路模拟信号分别转换为第一路模拟信号和第 二路模拟信号, 并采用模数转换器分别将所述第一路模拟信号和所述第二路 模拟信号转换为第一路数字信号和第二路数字信号; 或者, 采用模数转换器 分别将所述 I路模拟信号和所述 Q路模拟信号转换为 I路数字信号和 Q路数 字信号, 并采用码分复用 CDM解调方式, 或者采用无载波幅度相位 CAP解 调方式, 将所述 I路数字信号和所述 Q路数字信号转换为第一路数字信号和 第二路数字信号。
12、 如权利要求 11所述的装置, 其特征在于, 所述模数非正交转换器具 体用于: 将所述 I路模拟信号和 Q路模拟信号分别经过脉冲响应正交的滤波 处理转换为第一路模拟信号和第二路模拟信号; 或者, 将所述 I路数字信号和 Q路数字信号分别经过脉冲响应正交的滤波处理转换为第一路数字信号和第 二路数字信号。
13、 一种无源光网络 PON系统, 其特征在于, 包括: 光线路终端 OLT、 光网络单元 ONU,及用于连接所述 OLT和所述 ONU的无源光分路器,其中, 所述 OLT包括如权利要求 7-9任一项所述的装置,所述 ONU包括如权利 要求 10-12任一项所述的装置。
PCT/CN2013/080026 2013-07-24 2013-07-24 一种信号发送和接收的方法、装置及系统 WO2015010283A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13889847.3A EP3016303B1 (en) 2013-07-24 2013-07-24 Method, device, and system for sending and receiving signal
CN201380002721.XA CN104508999B (zh) 2013-07-24 2013-07-24 一种信号发送和接收的方法、装置及系统
PCT/CN2013/080026 WO2015010283A1 (zh) 2013-07-24 2013-07-24 一种信号发送和接收的方法、装置及系统
ES13889847T ES2726624T3 (es) 2013-07-24 2013-07-24 Método, dispositivo y sistema para el envío y la recepción de una señal
US15/004,627 US10505636B2 (en) 2013-07-24 2016-01-22 Methods and apparatuses for sending and receiving signal, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080026 WO2015010283A1 (zh) 2013-07-24 2013-07-24 一种信号发送和接收的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/004,627 Continuation US10505636B2 (en) 2013-07-24 2016-01-22 Methods and apparatuses for sending and receiving signal, and system

Publications (1)

Publication Number Publication Date
WO2015010283A1 true WO2015010283A1 (zh) 2015-01-29

Family

ID=52392598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080026 WO2015010283A1 (zh) 2013-07-24 2013-07-24 一种信号发送和接收的方法、装置及系统

Country Status (5)

Country Link
US (1) US10505636B2 (zh)
EP (1) EP3016303B1 (zh)
CN (1) CN104508999B (zh)
ES (1) ES2726624T3 (zh)
WO (1) WO2015010283A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106453194A (zh) * 2016-10-19 2017-02-22 华中科技大学 一种非正交多维无载波幅度相位调制技术传输信号的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015010283A1 (zh) * 2013-07-24 2015-01-29 华为技术有限公司 一种信号发送和接收的方法、装置及系统
CN109428649B (zh) 2017-09-01 2021-07-16 华为技术有限公司 光信号传输系统及光信号传输方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043269A (zh) * 2006-03-22 2007-09-26 富士通株式会社 I-q正交调制发射机及其i-q路间相位偏置的监测装置和方法
CN101640820A (zh) * 2009-09-04 2010-02-03 北京大学 一种正交频分复用无源光网络
CN101807955A (zh) * 2009-02-12 2010-08-18 北京邮电大学 I-q调制发射机和控制i-q路间相位偏置的方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809069A (en) * 1996-07-19 1998-09-15 Texas Instruments Incorporated Frequency-domain carrierless AM-PM demodulator
KR100478130B1 (ko) 1996-10-11 2005-03-24 톰슨 콘슈머 일렉트로닉스, 인코포레이티드 반송파 없는 진폭/위상 변조 신호를 위한 수신기와 신호 수신 및 신호 처리 방법
WO2007123366A2 (en) * 2006-04-25 2007-11-01 Lg Electronics Inc. A method of configuring multiuser packet and a structure thereof in a wireless communication system
EP2026520A1 (en) * 2007-08-17 2009-02-18 Nokia Siemens Networks Oy Method and arrangement for transmitting an optical OFDM-signal
US20090097852A1 (en) * 2007-10-08 2009-04-16 Nec Laboratories America 10 Gbps OFDMA-PON
US8184973B2 (en) * 2008-02-13 2012-05-22 Nec Laboratories America, Inc. Direct detection for receiving polarization multiplexing signals
US8537745B2 (en) * 2008-06-02 2013-09-17 Qualcomm Incorporated Multiplexing arrangements for multiple receive antennas
US20100027994A1 (en) * 2008-07-31 2010-02-04 Nec Laboratories America, Inc. Phase Modulation Of An Optical Orthogonal Frequency Division Multiplexing Signal
US20100086303A1 (en) * 2008-10-02 2010-04-08 Nec Laboratories America Inc High speed polmux-ofdm using dual-polmux carriers and direct detection
US8204377B2 (en) * 2008-10-23 2012-06-19 Alcatel Lucent System, method and apparatus for joint self phase modulation compensation for coherent optical polarization-division-multiplexed orthogonal-frequency division-multiplexing systems
CN101771491A (zh) * 2008-12-30 2010-07-07 华为技术有限公司 一种偏振复用与解复用的方法、装置和系统
US7907649B2 (en) * 2009-03-12 2011-03-15 Emcore Corporation Bias signal generation for a laser transmitter in a passive optical network
CN101938676B (zh) * 2009-06-29 2014-11-05 中兴通讯股份有限公司 以太无源光网络系统及其光功率预算方法
US8218979B2 (en) * 2009-06-30 2012-07-10 Alcatel Lucent System, method and apparatus for coherent optical OFDM
US8472813B2 (en) * 2010-06-18 2013-06-25 Nec Laboratories America, Inc. Computationally-efficient MIMO equalization algorithm for high-speed, real-time, adaptive polarization multiplexed (POLMUX) OFDM transmission with direct detection
US9008512B2 (en) * 2010-06-22 2015-04-14 Technion Research And Development Foundation Ltd. Optical network unit, optical access network and a method for exchanging information
US8768175B2 (en) * 2010-10-01 2014-07-01 Nec Laboratories America, Inc. Four-dimensional optical multiband-OFDM for beyond 1.4Tb/s serial optical transmission
JP5683237B2 (ja) * 2010-11-29 2015-03-11 株式会社日立製作所 偏波多重光伝送システム、偏波多重光送信器及び偏波多重光受信器
US8437644B2 (en) * 2011-02-23 2013-05-07 Tyco Electronics Subsea Communications Llc Vestigial phase shift keying modulation and systems and methods incorporating same
CN102439876B (zh) * 2011-09-15 2015-01-07 华为技术有限公司 信号发送方法、接收方法、无源光网络pon设备和系统
US8934786B2 (en) * 2011-09-16 2015-01-13 Alcatel Lucent Communication through pre-dispersion-compensated phase-conjugated optical variants
CN102714553B (zh) * 2012-03-21 2015-01-28 华为技术有限公司 信号处理方法、光接收机以及光网络系统
ES2629316T3 (es) * 2012-03-31 2017-08-08 Huawei Technologies Co., Ltd. Método, dispositivo y sistema para procesar una señal de red óptica
US20130272721A1 (en) * 2012-04-13 2013-10-17 Alcatel-Lucent Usa, Inc. Optical network device employing three-level duobinary modulation and method of use thereof
US9184847B2 (en) * 2012-05-16 2015-11-10 Futurewei Technologies, Inc. Dynamic bandwidth assignment in hybrid access network with passive optical network and another medium
US8923706B2 (en) * 2012-07-24 2014-12-30 Alcatel Lucent Frequency equalization for an optical transmitter
JP2014096663A (ja) * 2012-11-08 2014-05-22 Fujitsu Ltd 光伝送システム、光送信器、光受信器及び光伝送方法
KR20140093099A (ko) * 2013-01-17 2014-07-25 한국전자통신연구원 광망 종단장치 및 광회선단말을 포함하는 직교 주파수 분할 다중접속 수동형 광가입자망
WO2015010283A1 (zh) * 2013-07-24 2015-01-29 华为技术有限公司 一种信号发送和接收的方法、装置及系统
US9735863B2 (en) * 2013-10-02 2017-08-15 Nec Corporation Low-latency synchronous clock distribution and recovery for high-speed OFMDA-based mobile backhaul

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043269A (zh) * 2006-03-22 2007-09-26 富士通株式会社 I-q正交调制发射机及其i-q路间相位偏置的监测装置和方法
CN101807955A (zh) * 2009-02-12 2010-08-18 北京邮电大学 I-q调制发射机和控制i-q路间相位偏置的方法
CN101640820A (zh) * 2009-09-04 2010-02-03 北京大学 一种正交频分复用无源光网络

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3016303A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106453194A (zh) * 2016-10-19 2017-02-22 华中科技大学 一种非正交多维无载波幅度相位调制技术传输信号的方法

Also Published As

Publication number Publication date
EP3016303B1 (en) 2019-03-27
CN104508999A (zh) 2015-04-08
EP3016303A4 (en) 2016-07-20
EP3016303A1 (en) 2016-05-04
US10505636B2 (en) 2019-12-10
ES2726624T3 (es) 2019-10-08
CN104508999B (zh) 2017-02-01
US20160142143A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
CN107113059B (zh) 利用多调制的离散多音调传输方法和系统
CN101714971B (zh) 无源光网络通信方法及系统、光网络单元和光线路终端
CN1883144B (zh) 生成光副载波复用信号的装置和方法
WO2014079237A1 (zh) 光纤网络的发送、接收、通信系统及信号的调制方法
JP5843336B2 (ja) 高次変調を用いた複数の非同期データストリームの伝達
WO2019042371A1 (zh) 光信号传输系统及光信号传输方法
CN105281862A (zh) 一种偏振复用直接检测系统及方法
Lin et al. Experimental demonstration of an NOMA-PON with single carrier transmission
CN102036134A (zh) 基于正交频分复用的汇聚式光接入网系统和方法
CN103297169A (zh) 基于梳状光源再生技术的ofdm-pon长距离传输方法
CN111130650B (zh) 强度调制直接接收的光信号生成方法、接收方法及设备
CN104010233A (zh) 一种基于rosa的偏振复用相干检测无源光网络
US10505636B2 (en) Methods and apparatuses for sending and receiving signal, and system
Qiu et al. OFDM-PON optical fiber access technologies
WO2013091238A1 (zh) 光正交频分复用无源光网络的信号处理方法、设备及系统
CN108600127B (zh) 一种基于脉冲交叠的超奈奎斯特的通信系统及方法
CN104104638A (zh) 无源光网络的通信方法和设备
CN105578316B (zh) 一种ocdma和ofdm混合的无源光网络系统
CN205378159U (zh) 一种ocdma和ofdm混合的无源光网络系统
CN103516428A (zh) 光纤传输系统与方法
WO2014090043A1 (zh) Ofdm-pon系统及时钟信号的发送和提取方法
CN102769594B (zh) 一种降低光ofdm信号峰均比的收发通信装置
WO2014082252A1 (zh) 宽带接入方法及装置、系统
CN105763964B (zh) 应用于ofdm-pon的通信方法、装置及系统
Jiang et al. Experimental demonstration of SCFDMA-PON with source-free ONUs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013889847

Country of ref document: EP