WO2013091238A1 - 光正交频分复用无源光网络的信号处理方法、设备及系统 - Google Patents

光正交频分复用无源光网络的信号处理方法、设备及系统 Download PDF

Info

Publication number
WO2013091238A1
WO2013091238A1 PCT/CN2011/084536 CN2011084536W WO2013091238A1 WO 2013091238 A1 WO2013091238 A1 WO 2013091238A1 CN 2011084536 W CN2011084536 W CN 2011084536W WO 2013091238 A1 WO2013091238 A1 WO 2013091238A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
onu
group
phase information
channel
Prior art date
Application number
PCT/CN2011/084536
Other languages
English (en)
French (fr)
Inventor
刘爽
张崇富
陈晨
黄建
Original Assignee
华为技术有限公司
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 电子科技大学 filed Critical 华为技术有限公司
Priority to PCT/CN2011/084536 priority Critical patent/WO2013091238A1/zh
Priority to CN201180003294.8A priority patent/CN102893628B/zh
Publication of WO2013091238A1 publication Critical patent/WO2013091238A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an optical orthogonal frequency division multiplexing passive optical network (Orthogonal
  • the prior art provides a QoS-based periodic polling dynamic bandwidth allocation algorithm in an OFDM-PON system, and an OLT (Optical Line Terminate) will be used each through an intra-priority and priority internal two-level dynamic bandwidth allocation mechanism.
  • the bandwidth information required by the ONU (Optical Network Unit) is dynamically allocated.
  • the OLT transmits a downlink input signal including bandwidth information required by the user to each ONU, due to the ONU and the OLT.
  • the quality of OFDM signals transmitted to different ONUs varies according to the difference between the distances and the types of services required by the ONUs.
  • the specific performance is PAPR (Peak to Average Power Ratio).
  • PAPR Peak to Average Power Ratio
  • B BER Bit Error Rate
  • an embodiment of the present invention provides a signal processing method, device, and system for an optical OFDM-PON.
  • the technical solution is as follows:
  • An OFDM-PON signal processing method for an optical orthogonal frequency division multiplexing passive optical network includes: the optical line terminal OLT acquires a downlink input signal, and performs preprocessing on the downlink input signal to generate mutual orthogonality And parallel N way first subcarrier signals, wherein N is a positive integer, and N is greater than or equal to 2;
  • the OLT adds corresponding phase information to the N-channel first sub-carrier signal to generate an N-channel second sub-carrier signal;
  • the OLT generates an analog optical orthogonal frequency division multiplexing OFDM signal according to the N second second carrier signal, and transmits the analog optical OFDM signal to the optical network unit ONU.
  • An OFDM-PON signal processing method for an optical orthogonal frequency division multiplexing passive optical network comprising: an optical network unit ONU receiving an analog optical orthogonal frequency division multiplexing OFDM signal transmitted by an optical line terminal OLT; The ONU generates an m-channel third sub-carrier signal according to the simulated optical OFDM signal, wherein the m-channel third sub-carrier signal is respectively added with corresponding phase information, where m is the number of sub-carriers corresponding to the ONU, m is a positive integer;
  • the ONU respectively removes phase information added on the third subcarrier signal of the m channel, and generates mutually orthogonal and parallel m channel fourth subcarrier signals;
  • the ONU preprocesses the fourth subcarrier signal of the m channel to generate a downlink output signal.
  • An optical line terminal OLT includes:
  • a pre-processing module configured to obtain a downlink input signal, and perform pre-processing on the downlink input signal to generate N-channel first sub-carrier signals that are orthogonal to each other, wherein N is a positive integer, and N is greater than or equal to 2;
  • An additional module configured to respectively add corresponding phase information to the N first first carrier signal to generate an N second subcarrier signal
  • a transmitting module configured to generate an analog optical orthogonal frequency division multiplexing OFDM signal according to the N second carrier signal, and transmit the analog optical OFDM signal to the optical network unit ONU.
  • An optical network unit ONU comprising:
  • a receiving module configured to receive an analog optical orthogonal frequency division multiplexing OFDM signal transmitted by the optical line terminal OLT, and a generating module, configured to generate an m-channel third sub-carrier signal according to the simulated optical OFDM signal, where the m Corresponding phase information is added to the third subcarrier signal, where m is the number of subcarriers corresponding to the ONU, and m is a positive integer;
  • a removing module configured to separately remove phase information added to the m-channel third sub-carrier signal, and generate mutually orthogonal and parallel m-channel fourth sub-carrier signals
  • An Orthogonal Frequency Division Multiplexing-Passive Optical Network OFDM-PON system includes one of the above optical line terminals OLT and at least one of the above optical network units ONU.
  • OLT preprocesses the downlink input signal to generate N a first subcarrier signal, respectively adding corresponding phase information to the N first subcarrier signals, generating N second subcarrier signals, and generating an analog optical OFDM signal according to the N second subcarrier signals And transmitting to the ONU, so that the initial phase distribution of all the second subcarrier signals is changed without changing the orthogonality between the second subcarrier signals of each channel, so that the analog optical OFDM signals transmitted to each ONU are The peak-to-peak ratio and the bit error rate are balanced, thereby improving the overall performance of the OFDM-PON system.
  • FIG. 1 is a flowchart of an embodiment of a signal processing method for an optical OFDM-PON according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of an embodiment of a signal processing method for an optical OFDM-PON according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram of signal interaction of an OFDM-PON system architecture according to Embodiment 3 of the present invention
  • FIG. 4 is a flowchart of an embodiment of a signal processing method for an optical OFDM-PON according to Embodiment 3 of the present invention
  • FIG. 5 is a schematic diagram of signal interaction of an OFDM-PON system architecture according to Embodiment 4 of the present invention
  • FIG. 6 is a flowchart of an embodiment of a signal processing method for an optical OFDM-PON according to Embodiment 4 of the present invention
  • FIG. 7 is a schematic diagram of bandwidth allocation according to Embodiment 5 of the present invention
  • FIG. 8 is a schematic diagram of signal interaction of an OFDM-PON system architecture according to Embodiment 5 of the present invention.
  • FIG. 9 is a flowchart of an embodiment of an optical OFDM-PON signal processing method according to Embodiment 5 of the present invention
  • FIG. 10 is a first schematic structural diagram of an optical line terminal OLT according to Embodiment 6 of the present invention
  • FIG. 11 is a second schematic structural diagram of an embodiment of an optical line terminal OLT according to Embodiment 6 of the present invention
  • FIG. 12 is a third schematic structural diagram of an optical line terminal OLT according to Embodiment 6 of the present invention
  • FIG. 15 is a schematic structural diagram of an embodiment of an OFDM-PON system for orthogonal frequency division multiplexing-passive optical network according to Embodiment 8 of the present invention
  • Embodiments of the present invention provide a signal processing method, device, and system for an optical OFDM-PON.
  • FIG. 1 is a flowchart of an embodiment of a signal processing method for optical 0FDM-P0N according to Embodiment 1 of the present invention.
  • the signal processing method includes:
  • the optical line terminal acquires a downlink input signal, and performs pre-processing on the downlink input signal to generate mutually orthogonal and parallel N-channel first sub-carrier signals, where N is a positive integer, and N is greater than or equal to 2.
  • S102 The OLT adds corresponding phase information to the N-channel first sub-carrier signal to generate an N-channel second sub-carrier signal.
  • the OLT generates an analog optical orthogonal frequency division multiplexing OFDM signal according to the N second second carrier signal, and transmits the simulated optical OFDM signal to the optical network unit ONU.
  • the OLT preprocesses the downlink input signal to generate N first subcarrier signals, and adds corresponding phase information to the N first subframe signals to generate N second subcarrier signals, and then Generating an analog optical OFDM signal according to the N second subcarrier signals and transmitting to the ONU, so that the initial phase of all the second subcarrier signals is changed without changing the orthogonality between each second subcarrier signal
  • the distribution condition balances the peak-to-amplitude ratio and the bit error rate of the analog optical OFDM signal transmitted to each ONU, thereby improving the overall performance of the OFDM-PON system.
  • FIG. 2 is a flowchart of an embodiment of a signal processing method for an optical OFDM-PON according to Embodiment 2 of the present invention.
  • the signal processing method includes:
  • the optical network unit ONU receives the analog optical orthogonal frequency division multiplexing OFDM signal transmitted by the optical line terminal OLT.
  • the ONU generates an m-channel third sub-carrier signal according to the simulated optical OFDM signal, where the m-channel third sub-carrier signal is respectively added with corresponding phase information, where m is a sub-carrier corresponding to the ONU.
  • the number, m is a positive integer.
  • the ONU separately removes phase information added to the third subcarrier signal of the m channel, and generates a fourth subcarrier signal of the m channel that is orthogonal to each other and parallel.
  • the ONU performs preprocessing on the fourth subcarrier signal of the m road to generate a downlink output signal.
  • the ONU receives the analog optical OFDM signal transmitted by the OLT, and generates an m-channel third sub-carrier signal according to the optical OFDM signal, wherein the m-channel third sub-carrier signal is respectively added with corresponding phase information;
  • the ONU then separately removes the phase information added to the m-channel third sub-carrier signal, and performs corresponding processing, and finally obtains the user data required by the ONU, that is, the downlink output signal, so that the downlink output signals finally obtained by the respective ONUs are obtained.
  • the peak-to-peak ratio and bit error rate are balanced, thereby improving the overall performance of the OFDM-PON system.
  • FIG. 3 is a schematic diagram of signal interaction of the OFDM-PON system architecture provided by Embodiment 3 of the present invention
  • the OLT terminal sequentially passes the downlink input signal through the first string and converts the module 1, the modulation module 2, the additional phase information module 3, the IFFT (Inverse Fast Fourier Transform) module 4, and the second The serial-to-parallel conversion module 5, the DAC (Digital to Analog Converter) module 6, and the Mach-Zehnder modulator 7 of the two arms generate an analog optical OFDM signal, and pass the analog optical OFDM signal through a first The optical circulator 8 enters the transmission into the fiber channel.
  • IFFT Inverse Fast Fourier Transform
  • the analog optical OFDM signal transmitted by the Fibre Channel is divided into n beams by a first optical splitter (Splitter) 9 and transmitted to n different ONUs by n optical fibers of different lengths respectively.
  • n is a positive integer.
  • the analog optical OFDM signal received by each ONU sequentially passes through the second optical circulator 10, the second optical beam splitter 11, the photodiode 12, and the ADC (Analog to Digital Converter) module 13, a three-string parallel conversion module 14, an FFT (Fast Fourier Transform) module 15, a phase information removing module 16, a demodulation module 17, and a fourth serial-to-parallel conversion module 18, generating a downlink output signal, that is, User data required by ONU.
  • ADC Analog to Digital Converter
  • FFT Fast Fourier Transform
  • FIG. 4 is a flowchart of an embodiment of a signal processing method for an optical OFDM-PON according to Embodiment 3 of the present invention.
  • the signal processing method includes:
  • the OLT acquires a downlink input signal, and performs pre-processing on the downlink input signal to generate N-channel first sub-carrier signals that are orthogonal to each other and parallel.
  • the OLT end first acquires a downlink input signal, where the downlink input signal may include bandwidth allocation information, but is not limited thereto, and details are not described herein again.
  • the first serial-to-parallel conversion module 1 receives the downlink input signal, performs serial-to-parallel conversion on the downlink input signal, generates a parallel N-channel first signal, and sends the N-channel first signal to the modulation Module 2, where N is a positive integer and ⁇ 2; the modulation module 2 is QPSK (Quadrature Phase Shift Keying) or
  • Modulation format such as QAM (Quadature Amplitude Modulation) modulates the N first signals onto mutually orthogonal N parallel subcarriers, generates N first subcarrier signals, and generates the N channels
  • QAM Quadadature Amplitude Modulation
  • the OLT adds different phase information to the N first first carrier signals, and generates N second subcarrier signals.
  • the OLT separately adds different phase information to the N first first carrier signals, specifically, the N digital phase shifters in the additional phase information module 3 respectively pair the N paths.
  • the subcarrier signals are appended with different phase information.
  • the additional phase information module 3 includes an N digital phase shifter, each digital phase shifter receives a first subcarrier signal, and adds phase information to the first subcarrier signal, wherein each digital phase shifter The additional phase information is different; thus, the initial phase distribution of the N first first carrier signal is changed without changing the orthogonality between the N first first carrier signals, thereby improving
  • the transmission performance of the corresponding subcarriers is such that the PAPR and BER of the OFDM signals transmitted to the respective ONUs are equalized.
  • the additional phase information module 3 respectively adds different phase information to the N first subcarrier signals, generates N second subcarrier signals, and sends the N second subcarrier signals to the IFFT.
  • Module 4 respectively adds different phase information to the N first subcarrier signals, generates N second subcarrier signals, and sends the N second subcarrier signals to the IFFT. Module 4.
  • the OLT generates an analog optical orthogonal frequency division multiplexing OFDM signal according to the N second second carrier signal, and transmits the analog optical OFDM signal to each ONU.
  • the IFFT module 4 performs an inverse fast Fourier transform on the N second subcarrier signals, and sends the inverse fast Fourier transformed N subcarrier signals to the first The second serial-to-parallel conversion module 5; the second serial-to-parallel conversion module 5 performs parallel-to-serial conversion on the N-channel second sub-carrier signals, generates two second signals, and sends the two second signals to the two Two DAC modules 6; the DAC module 6 performs digital-to-analog conversion on the second signal to generate an analog baseband optical OFDM signal, and transmits two analog baseband optical OFDM signals to the two arms Mach-Zehnder modulator 7; the dual-arm Mach-Zehnder modulator modulates two of the analog baseband optical OFDM signals onto an optical carrier to generate an analog optical OFDM signal; the simulated light
  • the OFDM signal is transmitted through the first optical circulator 8 into the fiber channel and transmitted to the respective ONUs.
  • the ONU receives the analog optical OFDM signal transmitted by the OLT.
  • the analog optical OFDM signal transmitted by the optical fiber channel is divided into n beams by the first optical splitter (Splitter) 9, respectively, and transmitted to n different by n optical fibers of different lengths.
  • the ONUs, the respective ONUs respectively receive the analog optical OFDM signals, where n is a positive integer.
  • the ONU generates an m-channel third sub-carrier signal according to the simulated optical OFDM signal, where the corresponding phase information is respectively added to the m-channel third sub-carrier signal.
  • Each of the ONUs respectively receives the analog optical OFDM signal
  • the i-th ONU of the n ONUs is taken as an example to describe the receiving process of the analog optical OFDM signal by the ONU, and the number of subcarriers corresponding to the i-th ONU is m. .
  • the analog optical OFDM signal first passes through the second optical circulator 10, and then the analog optical OFDM signal is split into two paths by the second optical beam splitter 11, one of which serves as an ONU user receiving signal input.
  • the second optical beam splitter 11 To the photodiode 12, the other channel is input to the IM (Intensity Modulator) as a carrier of the uplink input signal. 19.
  • the IM 19 is as shown in FIG.
  • the photodiode 12 converts the analog optical OFDM signal into an analog baseband OFDM signal of an electrical domain, and transmits the analog baseband OFDM signal to the ADC module 13; the ADC module 13 will simulate The baseband OFDM signal is subjected to analog-to-digital conversion to generate a digital baseband OFDM signal, and the digital baseband OFDM signal is sent to the third serial-to-parallel conversion module 14; the third serial-to-parallel conversion module 14 will be serial Converting the digital baseband OFDM signal into a parallel digital baseband OFDM signal, and transmitting the parallel digital baseband OFDM signal to the FFT module 15; the FFT module 15 performing the parallel digital baseband OFDM signal After the fast Fourier transform, the m-channel third sub-carrier signal carrying the downlink user data with different phase information is obtained, and the m-channel third sub-carrier signal is sent to the phase-removing information module. 16, where m is the number of subcarriers corresponding to the ONU, and m is a positive integer.
  • the ONU separately removes phase information added to the m-channel third sub-carrier signal, and generates mutually orthogonal and parallel m-channel fourth subcarrier signals.
  • the removing the phase information added to the m-channel third sub-carrier signal by the ONU includes: removing the phase information module 16 according to the phase information added on each third sub-carrier signal, respectively The phase information is added to each of the third subcarrier signals.
  • the phase removal information module 16 includes m digital phase shifters, and each of the third subcarrier signals in the m path respectively enters a digital phase shifter, and the digital phase shifter is attached to the OLT end. Additional phase information of the same size and opposite sign is used to remove additional phase information on each of the third subcarrier signals, thereby obtaining mutually orthogonal and parallel m fourth fourth carrier signals, and the m path The four subcarrier signals are sent to the demodulation module 17. Since the additional phase information on the m-channel third sub-carrier signal is different, the phase information added by the m digital phase shifters is also different.
  • the ONU performs preprocessing on the fourth subcarrier signal of the m channel to generate a downlink output signal.
  • the demodulation module 17 demodulates the m-channel fourth sub-carrier signal in a corresponding QPSK or QAM format, and the demodulated output m-channel parallel fourth sub-carrier signal passes the The parallel-to-serial conversion of the fourth serial-to-parallel conversion module 18 can be restored to the data required by the ONU user, that is, the downlink output signal.
  • the sensing information such as channel estimation and performance analysis obtained by each ONU is fed back to the OLT as an uplink input signal in a TDM (Time Division Multiplex) manner.
  • the i-th ONU is taken as an example for description.
  • the uplink input signal is loaded by an IM 19 to the carrier of the uplink input signal, where the carrier of the uplink input signal is split by the second optical beam in the downlink.
  • the device 11 is divided into an analog optical OFDM signal of one of the two paths; then the loaded upstream input signal is transmitted to the OLT by a second optical circulator 10 into the fiber channel.
  • Each of the n ONUs transmits its own perceptual information to the fiber optic letter in TDM mode.
  • the channel is transmitted to the OLT.
  • the analog optical signal loaded with the uplink input signal of the TDM format is directly entered into the uplink signal receiver 20 of the 0LT by a first optical circulator 8, as shown in FIG. 3, thereby performing the entire system as 0LT.
  • the OLT preprocesses the downlink input signal to generate N first subcarrier signals, and adds corresponding phase information to the N first subframe signals to generate N second subcarrier signals, and then Generating an analog optical OFDM signal according to the N second subcarrier signals and transmitting to the ONU, so that the initial phase of all the second subcarrier signals is changed without changing the orthogonality between each second subcarrier signal
  • the distribution condition balances the peak-to-amplitude ratio and the bit error rate of the analog optical OFDM signal transmitted to each ONU, thereby improving the overall performance of the OFDM-PON system.
  • the ONU receives the analog optical OFDM signal transmitted by the OLT, and generates an m-channel third sub-carrier signal according to the optical OFDM signal, where the corresponding phase information is respectively added to the m-channel third sub-carrier signal; Then, the phase information added to the third subcarrier signal of the m channel is removed by adding the phase information with the same size and opposite sign on the OLT end, and the corresponding processing is performed to obtain the user data of the ONU requirement, that is, the downlink.
  • the output signal is such that the peak-to-level ratio and the bit error rate of the downlink output signals obtained by the respective ONUs are equalized, thereby improving the overall performance of the OFDM-PON system.
  • the OFDM-PON system pre-sets the ONU end according to the state of the ONU, and the OFDM-PON system divides the plurality of ONUs into M preset ONU groups, where M is a positive integer; specifically,
  • the preset ONU group includes: a first ONU group, wherein each ONU in the first ONU group is located in the same cell; or, a second ONU group, where each ONU in the second ONU group The required transmit optical power is located in the first preset range; or, the third ONU group, wherein the received optical power required by each of the ONUs in the third ONU group is located in the second preset range; or, the fourth An ONU group, where the service type required by each of the ONUs in the fourth ONU group belongs to a fourth preset range; wherein the first preset range, the second preset range, and the third pre- The set range and the fourth preset range are set by the OFDM-PON system.
  • the first ONU group as an example of the ONU group.
  • the preset ONU group in this embodiment is not limited thereto.
  • FIG. 5 is a schematic diagram of signal interaction of the OFDM-PON system architecture provided by Embodiment 4 of the present invention
  • the architecture of the PON system is similar to that of the OFDM-PON system shown in FIG. 3.
  • FIG. 5 and FIG. 3 The main differences between FIG. 5 and FIG. 3 are as follows: 1) The ONUs in FIG. 5 are grouped in advance. Setup, OFDM-PON The plurality of ONUs are divided into M preset ONU groups; the preset ONU group in FIG.
  • a grouping module 21 exists between the first serial-to-parallel conversion module 1 and the modulation module 2 in FIG. 5, and the grouping module 21 divides the N first signals into M groups, and the M group first signals and M The default 0NU group corresponds.
  • the digital phase shifter in the additional phase information module 3 in FIG. 5 is also pre-divided into M digital phase shifter groups, and the M digital phase shifter groups and the first group of the M group output by the modulation module 2 The carrier signal corresponds.
  • the ONU sensing information module 23 and the phase controller 24 are further included in FIG. 5, and the ONU sensing information module 23 is connected to the phase controller 24, and the phase controller 24 is connected to the additional phase information module 3.
  • FIG. 6 is a flowchart of an embodiment of a signal processing method for an optical OFDM-PON according to Embodiment 4 of the present invention.
  • the signal processing method includes:
  • the OLT acquires a downlink input signal, and performs pre-processing on the downlink input signal to generate N-channel first sub-carrier signals that are orthogonal to each other and parallel.
  • the OLT end first acquires a downlink input signal, where the downlink input signal may include bandwidth allocation information, but is not limited thereto, and details are not described herein again.
  • Performing pre-processing on the downlink input signal to generate mutually orthogonal and parallel N-channel first sub-carrier signals includes: performing serial-to-parallel conversion on the downlink input signals to generate parallel N-channel first signals, where N a positive integer, and N ⁇ 2; dividing the N first signal into M groups, wherein the M group first signals respectively correspond to M preset ONU groups, M is a positive integer, and ⁇ ; Transmitting a first signal to mutually parallel parallel N-channel subcarriers; generating a parallel M-group first sub-carrier signal, wherein the M-group first sub-carrier signal includes N first-subcarrier signals, and the N The first subcarrier signals of the path are orthogonal to each other.
  • the first serial-to-parallel conversion module 1 receives the downlink input signal, performs serial-to-parallel conversion on the downlink input signal, generates a parallel N-channel first signal, and sends the N-channel first signal to the packet module.
  • the grouping module 21 divides the first signal of the N channels into M groups, adds the label information to the first signals of the M group, and sends the first signal of the M group to the N roads to add the label information to
  • the modulation module 2 wherein the M group first signals respectively correspond to the M first ONU groups, and the label information includes the cell information to which the first signal belongs.
  • the first group in the first ONU group may be referred to as cell 1 for the same reason.
  • the i-th group in the first ONU group is simply referred to as cell i, where i is a positive integer; each cell includes at least one 0NU.
  • the modulation module 2 is QPSK (Quadature Phase Shift Keying) or QAM
  • the OLT adds corresponding phase information to the N-channel first sub-carrier signal to generate an N-channel second sub-carrier signal.
  • the OLT respectively adds corresponding phase information to the N first first carrier signals, and generates N second second carrier signals including: the OLT respectively pairs different first group of subcarrier signals in the M group Different phase information is added, and the phase information added by the first subcarrier signal of the same group in the M group is the same; the M group second subcarrier signal is generated, wherein the M group second subcarrier signal includes N second subcarriers signal.
  • the plurality of digital phase shifters in the additional phase information module 3 are also divided into M digital phase shifter groups in advance, and the M digital phase shifter groups and the M group first subcarrier signals are correspond.
  • Each of the digital phase shifter components corresponds to a downlink input signal required by the ONU in a cell, and the number of digital phase shifters in each digital phase shifter group is equal to the number of parallel subcarriers in the downlink input signal in the cell.
  • the digital phase shifter groups in the additional phase information module 3 can be attached to the same ONUs in the same cell. Phase information, and add different phase information for ONUs in different cells. Specifically, the subcarriers corresponding to the first subcarrier signals of the M group respectively enter one digital phase shifter in each digital phase shifter group and obtain a corresponding additional phase information; the subcarriers corresponding to each group of the first subcarrier signals are added. The same phase information; different sub-carriers corresponding to the first sub-carrier signal are added with different phase information.
  • the digital phase shifter group in the additional phase information module 3 can be based on the ONU user in each cell according to the phase controller 24.
  • the quality of the received signal is determined to add different phase information, that is, the additional operation of the phase information is unified management and operation by the phase controller 24; wherein the phase controller 24 is based on the sensing information of each ONU group transmitted by the ONU sensing information module 23. (Signal quality such as PAPR, BER, etc.), control the digital phase shifter group in the additional phase information module 3 and add corresponding phase information to different digital phase shifter groups according to a preset phase information addition algorithm. , equalizing the quality of the OFDM signals transmitted to the respective ONU groups.
  • the additional phase information module 3 transmits the M group second subcarrier signals to the IFFT module 4.
  • the OLT generates an analog optical orthogonal frequency division multiplexing OFDM signal according to the M group second subcarrier signal, and transmits the analog optical OFDM signal to each ONU.
  • the IFFT module 4 performs an inverse fast Fourier transform on the M sets of second subcarrier signals, and sends the fast Fourier inversely transformed M sets of second subcarrier signals to the first a second serial-to-parallel conversion module 5; the second serial-to-parallel conversion module 5 performs parallel-to-serial conversion on the M-group second sub-carrier signals to generate two second signals, and the Two second signals are respectively sent to the two DAC modules 6; the DAC module 6 performs digital-to-analog conversion on the second signal to generate an analog baseband optical OFDM signal, and two-way analog baseband light An OFDM signal is sent to the Mach-Zehnder modulator 7 of the two arms; the Mach-Zehnder modulator of the two arms modulates two analog baseband optical OFDM signals onto an optical carrier to generate simulated light The OFDM signal is transmitted to the respective ONUs through the first optical circulator 8 into the fiber channel.
  • the ONU receives the analog optical OFDM signal transmitted by the OLT.
  • the analog optical OFDM signal transmitted by the optical fiber channel is divided into M beams by the first optical splitter (Splitter) 9 and respectively transmitted to M different M fibers of different lengths.
  • the cell OFDM signal arriving at the cell i is taken as an example for description.
  • the analog optical OFDM signal after being split and optically transmitted by the first beam splitter 9 is used by the third optical beam splitter. 22 is divided into L beams, where L represents the number of ONUs in cell i; each of the ONUs in cell i receives the analog optical OFDM signals, respectively.
  • the ONU generates an m-channel third sub-carrier signal according to the simulated optical OFDM signal, wherein the m-channel third sub-carrier signal is respectively added with the same phase information.
  • the j-th ONU in the cell i is taken as an example to illustrate the process of receiving the analog optical OFDM signal by the ONU. It is assumed that the number of sub-carriers corresponding to each ONU in the cell i is m, where m is a positive integer.
  • the analog optical OFDM signal first passes through the second optical circulator 10, and then the analog optical OFDM signal is split into two paths by the second optical beam splitter 11, one of which serves as an ONU user receiving signal input.
  • the other path is input to an IM (Intensity Modulator) 19 as a carrier of the uplink input signal, and the IM 19 is as shown in FIG.
  • the photodiode 12 converts the analog optical OFDM signal into an analog baseband OFDM signal of an electrical domain, and transmits the analog baseband OFDM signal to the ADC module 13; the ADC module 13 will simulate The baseband OFDM signal is subjected to analog-to-digital conversion to generate a digital baseband OFDM signal, and the digital baseband OFDM signal is sent to the third serial-to-parallel conversion module 14; the third serial-to-parallel conversion module 14 will be serial Converting the digital baseband OFDM signal into a parallel digital baseband OFDM signal and transmitting the parallel digital baseband OFDM signal to an FFT module 15; the FFT module 15 performing the parallel digital baseband OFDM signal After the fast Fourier transform, the m-channel third sub-carrier signal carrying the downlink user data of the ONU user to which the same phase information is added is obtained, and the m-channel third sub-carrier signal is sent to the The phase information module 16 is removed.
  • the ONU separately removes phase information added on the m-channel third sub-carrier signal, and generates mutually orthogonal and parallel m-channel fourth sub-carrier signals.
  • phase information The method includes: removing the phase information module 16 to remove phase information added to the m-channel third sub-carrier signal according to the phase information added on the third sub-carrier signal.
  • the phase removal information module 16 includes m digital phase shifters, and each of the third subcarrier signals in the m path respectively enters a digital phase shifter, and the digital phase shifter is attached to the OLT end. Additional phase information of the same size and opposite sign is used to remove additional phase information on each of the third subcarrier signals, thereby obtaining mutually orthogonal and parallel m fourth fourth carrier signals, and the m path The four subcarrier signals are sent to the demodulation module 17. Since the additional phase information on the m-channel third sub-carrier signal is the same, the phase information added by the m digital phase shifters is also the same.
  • the ONU performs preprocessing on the fourth subcarrier signal of the m channel to generate a downlink output signal.
  • the demodulation module 17 demodulates the m-channel fourth sub-carrier signal in a corresponding QPSK or QAM format, and the demodulated output m-channel parallel fourth sub-carrier signal passes the The parallel-to-serial conversion of the fourth serial-to-parallel conversion module 18 can be restored to the data required by the ONU user, that is, the downlink output signal.
  • the sensing information such as channel estimation and performance analysis obtained by each ONU is fed back to the OLT as an uplink input signal in a TDM (Time Division Multiplex) manner.
  • the i-th ONU is taken as an example for description.
  • the uplink input signal is loaded by an IM 19 to the carrier of the uplink input signal, where the carrier of the uplink input signal is split by the second optical beam in the downlink.
  • the device 11 is divided into an analog optical OFDM signal of one of the two paths; then the loaded upstream input signal is transmitted to the OLT by a second optical circulator 10 into the fiber channel.
  • Each of the n ONUs transmits its own sensing information to the optical fiber channel to the OLT in a TDM manner.
  • the analog optical signal loaded with the uplink input signal of the TDM format is directly entered into the uplink signal receiver 20 of the OLT by a first optical circulator 8, as shown in FIG. 5, thereby performing the entire system as an OLT.
  • the OLT preprocesses the downlink input signal to generate N first subcarrier signals, and adds corresponding phase information to the N first subframe signals to generate N second subcarrier signals, and then Generating an analog optical OFDM signal according to the N second subcarrier signals and transmitting to the ONU, so that the initial phase of all the second subcarrier signals is changed without changing the orthogonality between each second subcarrier signal
  • the distribution condition balances the peak-to-amplitude ratio and the bit error rate of the analog optical OFDM signal transmitted to each ONU, thereby improving the overall performance of the OFDM-PON system.
  • the ONU receives the analog optical OFDM signal transmitted by the OLT, and generates an m-channel third sub-carrier signal according to the optical OFDM signal, where the corresponding phase information is respectively added to the m-channel third sub-carrier signal; Then, the phase information added to the third subcarrier signal of the m channel is removed by adding the phase information with the same size and opposite sign on the OLT end, and the corresponding processing is performed to obtain the user data of the ONU requirement, that is, the downlink. Lose The signal is output, so that the peak-to-level ratio and the bit error rate of the downlink output signals finally obtained by the respective ONUs are balanced, thereby improving the overall performance of the OFDM-PON system.
  • This embodiment can increase the flexibility of management and maintenance by grouping ONUs.
  • This embodiment employs a technique of ONU grouping and shared type additional phase information.
  • the OFDM-PON system performs the grouping of the ONUs in advance.
  • the grouping of the ONUs in this embodiment is similar to the setting of the ONUs in the fourth embodiment, and is not described here. For details, refer to the related description of Embodiment 4. .
  • the principle of the shared type of additional phase information technology is: Since all ONUs are divided into M groups according to their states (specific distances in this embodiment), not all ONU groups are transmitted during actual operation. The data quality can't meet the user's needs. It is most likely that the transmission performance of the ONU in one of the groups or groups is poor.
  • the additional phase information technology can be used, and the ONU in the group or groups of ONUs whose performance meets the user's requirements does not add phase information, so that all the ONU groups can share an additional phase information module, and the phase information needs to be added.
  • the ONU group allocates a digital phase shifter group, and does not assign a digital phase shifter group to the ONU group that does not need additional phase information and directly transmits it, that is, implements a shared mode of additional phase information technology for all ONU groups.
  • FIG. 7 is a schematic diagram of bandwidth allocation provided by Embodiment 5 of the present invention; specifically, according to different distances of all ONUs reaching the OLT.
  • the subcarrier band division that is, the bandwidth allocation is also determined according to the specific requirements of each group of ONUs.
  • Each group of ONUs individually corresponds to a fixed section of subcarriers in the entire frequency band, such as a first part of the corresponding subcarrier frequency band of all users in the cell 1 (bandwidth) 1, and a first part of the cell 2 corresponding to the subcarrier band of the cell 2, Band 2, And so on, until all the frequency bands are allocated to the n ONU groups, and the frequency bands corresponding to the respective cell users are mutually disjoint.
  • the following is a detailed description of the first ONU group by using the preset ONU group as an example, but the preset in this embodiment.
  • the ONU group is not limited to this.
  • FIG. 8 is a schematic diagram of signal interaction of the OFDM-PON system architecture provided by Embodiment 5 of the present invention
  • the PON system architecture is similar to the OFDM-PON system architecture shown in FIG. 5.
  • the main difference between FIG. 8 and FIG. 5 is: Replace the additional phase information module 3 in FIG. 5 with The shared type additional phase information module 30 of FIG.
  • the flow of the signal processing method provided in this embodiment may be specifically referred to FIG. 9.
  • FIG. 9 is a flowchart of an embodiment of a signal processing method for an optical OFDM-PON according to Embodiment 5 of the present invention.
  • the signal processing method includes:
  • the OLT acquires a downlink input signal, and performs pre-processing on the downlink input signal to generate N-channel first sub-carrier signals that are orthogonal to each other and parallel.
  • S501 is similar to S401 in Embodiment 4. For details, refer to the related description of Embodiment 4, and details are not described herein again.
  • S502 The OLT acquires control information sent by the phase controller.
  • the ONU sensing information module 23 receives a signal output by the FFT module 15 of the ONU, and the FFT module is
  • the output signal is processed accordingly to generate perceptual information, wherein the perceptual information includes channel estimation information and performance analysis information.
  • the phase controller 24 receives the sensing information of the ONU sensing information module 23, and generates control information according to the sensing information, where the control information includes: an ONU group that needs additional phase information and phase information that needs to be added, and does not need Dynamic allocation information of ONU groups and digital phase shifters with added phase information.
  • the phase controller 24 has previously set, according to the sensing information sent by the ONU sensing information module 23, whether the ONU group needs additional phase information, and what phase information is added if additional phase information is needed.
  • the specific algorithm the phase controller 24 only needs to perform corresponding analysis processing on the received ONU sensing information according to the above algorithm to generate control information; wherein the corresponding analysis processing includes: determining whether to add phase information to the ONU group If necessary, dynamically assign a phase shifter group to the ONU group and determine what phase information is attached. If not, do not assign the phase shifter group but let the group of ONU signals pass directly without any processing.
  • the OLT acquires a specified group that needs to add phase information in the M group according to the control information, and adds corresponding phase information to the specified group to generate M group second subcarrier information.
  • the shared type additional phase information module 30 acquires, according to the control information, a specified group of the M group that needs additional phase information and a group that does not need to add phase information in the M group; the shared type additional phase The information module 30 adds corresponding phase information to the specified group according to the control information, and directly transmits the group that does not need to add phase information to the IFFT module 4, thereby generating M groups of common N second subcarrier signals. And transmitting the M group second subcarrier signals to the IFFT module 4.
  • the second subcarrier signal further includes an additional phase label, wherein the additional phase label is formed by the phase controller according to the phase information added by the OLT end to the corresponding subcarrier frequency band of each ONU group, thereby It is convenient for the ONU to remove the added phase information.
  • the shared additional phase information module 30 only needs to be equipped with r digital shifts according to the control information.
  • Phase The group can be. If the r-group ONUs all need to perform additional phase information processing, respectively enter r digital phase shifter groups in the shared-type additional phase information module 30, and the r digital phase shifter groups complete the corresponding additional information processing process according to the control information. .
  • Each digital phase shifter group attaches the same phase information to the input first subcarrier signal, and the phase information is uniformly analyzed and judged by the control information.
  • this embodiment adopts a sharing mode of the additional phase information technology.
  • the shared additional phase information module only needs the first subcarrier that needs to add phase information.
  • the signal dynamically allocates a digital phase shifter group, and the first subcarrier signal that does not require additional phase information is not assigned a digital phase shifter group but is directly transmitted, so that the number of digital phase shifter groups is significantly reduced, simplifying the entire system
  • the complexity reduces hardware costs. For example, assuming that all subcarriers of an OFDM-PON system are equally allocated to each ONU group, and the number of subcarriers allocated by each group of ONUs is i, then one digital phase shifter is required in each digital phase shifter group.
  • the maximum number of ONU groups in the M group ONU that may need additional phase information processing is r, where r ⁇ M, and there are a total of i digital phase shifters in each digital phase shifter group, then the entire shared type is attached.
  • rXi digital phase shifters in the phase information module There are a total of rXi digital phase shifters in the phase information module, and the number of all subcarriers in the system is M ⁇ i, obviously r ⁇ i is much smaller than M ⁇ i.
  • the OLT generates an analog optical orthogonal frequency division multiplexing OFDM signal according to the M group second subcarrier signal, and transmits the analog optical OFDM signal to each ONU.
  • S504 is similar to S403 in Embodiment 4. For details, refer to the related description of Embodiment 4, and details are not described herein again.
  • the ONU receives the analog optical OFDM signal transmitted by the OLT.
  • S505 is similar to S404 in Embodiment 4. For details, refer to the related description of Embodiment 4, and details are not described herein again.
  • S506 The ONU generates an m-channel third sub-carrier signal according to the simulated optical OFDM signal, wherein the m-channel third sub-carrier signal is respectively added with the same phase information.
  • S506 is similar to S405 in Embodiment 4. For details, refer to the related description of Embodiment 4, and details are not described herein again.
  • S507 The ONU separately removes phase information added on the third subcarrier signal of the m channel, and generates a fourth subcarrier signal of the m channel that is orthogonal to each other and parallel.
  • the ONU when the m-channel third sub-carrier signal has an additional phase label, it indicates that the m-channel third sub-carrier signal is added with phase information, and correspondingly, the ONU removes the m respectively.
  • the additional phase information is added to the third subcarrier signal, and the processing flow of the ONU to remove the additional phase information on the third subcarrier signal of the m channel is similar to that of S406 in Embodiment 4. For details, refer to the embodiment. The related description of 4 will not be repeated here.
  • the m-channel third sub-carrier signal When the m-channel third sub-carrier signal does not have an additional phase label, it indicates that the added phase information on the m-channel third sub-carrier signal is zero, that is, there is no additional phase information, and there is no need to perform phase-removing information. Processing, directly performing subsequent processing.
  • S508 The ONU performs preprocessing on the m-th fourth sub-carrier signal to generate a downlink output signal.
  • S508 is similar to S407 in Embodiment 4. For details, refer to the related description of Embodiment 4, and details are not described herein again.
  • the sensing information such as channel estimation and performance analysis obtained by each ONU is fed back to the OLT as an uplink input signal in a TDM (Time Division Multiplex) manner.
  • the i-th ONU is taken as an example for description.
  • the uplink input signal is loaded by an IM 19 to the carrier of the uplink input signal, where the carrier of the uplink input signal is split by the second optical beam in the downlink.
  • the device 11 is divided into an analog optical OFDM signal of one of the two paths; then the loaded upstream input signal is transmitted to the OLT by a second optical circulator 10 into the fiber channel.
  • Each of the n ONUs transmits its own sensing information to the optical fiber channel to the OLT in a TDM manner.
  • the analog optical signal loaded with the uplink input signal of the TDM format is directly entered into the uplink signal receiver 20 of the OLT by a first optical circulator 8, as shown in FIG. 8, thereby performing the entire system as an OLT. The basis for management and maintenance.
  • the users of the five cells can be put in accordance with the above ONU grouping idea. They are divided into five groups, and the size of each group of ONUs is 8, 16, 32, 64 and 128 respectively.
  • the five sets of input signals are modulated into 512 parallel subcarriers that are orthogonal to each other in a modulation format such as QPSK or QAM.
  • a total of 512 channels of subcarriers carrying downlink data enter the shared additional phase information module.
  • the phase controller judges whether the user data required by each group of ONUs needs to perform additional phase information processing according to the sensing information from the ONU such as channel estimation and performance analysis.
  • the user data corresponding to the group of ONUs directly passes through the shared type additional phase information module without additional phase information processing; if a group of ONUs requires user data If the quality does not meet the needs of the user and needs to be improved, the user data corresponding to the group of ONUs should determine which appropriate phase information should be added according to the control information of the phase controller, and dynamically allocate each shift by the phase controller. The phaser thus achieves the insertion of the phase information.
  • the five groups of 512 subcarriers output from the shared additional phase information module are then subjected to fast inverse Fourier transform IFFT, and then subjected to serial-to-parallel conversion and digital-to-analog conversion to obtain an analog baseband OFDM signal.
  • the Mach-Zehnder modulator MZM with one arm can modulate the analog baseband OFDM signal onto the optical carrier to obtain an analog optical OFDM signal.
  • the simulated optical OFDM signal enters the fiber channel through an optical circulator Circulator. transmission.
  • the analog optical OFDM signal transmitted by the Fibre Channel is divided into five beams by an optical beam splitter Splitter, which are respectively transmitted to five different ONU groups by five optical fibers of different lengths.
  • Each ONU group receives a signal separately.
  • the first ONU in the first group of ONUs that is, 0NU1_1, is used as an example to describe the receiving process of the analog optical OFDM signal by the ONU. It is assumed that the number of subcarriers corresponding to the first group of ONUs is 32.
  • the simulated optical OFDM signal first passes through a Circulator, and then splits into two by a Splitter, one as the user receiving signal for optical OFDM demodulation, and the other as the carrier of the uplink input signal.
  • the analog optical OFDM signal that is received by the user is first input to a photodiode, and the analog OFDM signal of the optical domain is received and converted into an analog baseband OFDM signal of the electrical domain.
  • the analog baseband OFDM signal is then converted to a digital baseband OFDM signal by an analog-to-digital conversion ADC, which is then converted to a parallel digital baseband OFDM signal using serial-to-parallel conversion.
  • each subcarrier enters a phase shifter, and the phase information added by the OLT end is removed by adding a phase information of the same size and opposite sign to the 0NU end of the 0LT end, thereby obtaining subcarrier demodulation.
  • the 32-channel subcarrier signal carrying the downlink user data.
  • the 32-channel subcarrier signal is demodulated in the corresponding QPSK or QAM format, and the 32-channel parallel signal after demodulation is finally converted into the data required by the ONU user through serial-to-parallel conversion.
  • the sensing information such as channel estimation and performance analysis obtained by each ONU is fed back to the OLT as an uplink input signal in TDM mode.
  • the first ONU in the first group of ONUs that is, 0NU1_1, is taken as an example.
  • the uplink input signal is loaded into the downlink by the intensity modulator IM, and one of the two paths is split as an uplink input signal by the Splitter.
  • the carrier's analog optical OFDM signal is then entered into the fiber channel by a Circulator.
  • the five ONU groups transmit their own perception information to the Fibre Channel in TDM mode.
  • the analog optical signal loaded with the TDM format uplink input signal is directly entered into the uplink signal receiver by a Circulator, which serves as the basis for the OLT to manage and maintain the entire system.
  • the OLT preprocesses the downlink input signal to generate N first subcarrier signals, and adds corresponding phase information to the N first subframe signals to generate N second subcarrier signals, and then Generating an analog optical OFDM signal according to the N second subcarrier signals and transmitting to the ONU, so that the initial phase of all the second subcarrier signals is changed without changing the orthogonality between each second subcarrier signal
  • the distribution condition balances the peak-to-amplitude ratio and the bit error rate of the analog optical OFDM signal transmitted to each ONU, thereby improving the overall performance of the OFDM-PON system.
  • the ONU receives the analog optical OFDM signal transmitted by the OLT, and generates an m-channel third sub-carrier signal according to the optical OFDM signal, where the corresponding phase information is respectively added to the m-channel third sub-carrier signal; Then, the phase information added to the third subcarrier signal of the m channel is removed by adding the phase information with the same size and opposite sign on the OLT end, and the corresponding processing is performed to obtain the user data of the ONU requirement, that is, the downlink.
  • the output signal is such that the peak-to-level ratio and the bit error rate of the downlink output signals obtained by the respective ONUs are equalized, thereby improving the overall performance of the OFDM-PON system.
  • this embodiment can increase the flexibility of management and maintenance by grouping ONUs; the use of shared additional phase technology simplifies the complexity of the entire system and greatly reduces hardware costs.
  • FIG. 10 is a first structural schematic diagram of an embodiment of an optical line terminal OLT according to Embodiment 6 of the present invention.
  • the OLT includes:
  • the pre-processing module 101 is configured to obtain a downlink input signal, and perform pre-processing on the downlink input signal to generate mutually orthogonal and parallel N-channel first sub-carrier signals, where N is a positive integer, and N is greater than or equal to 2.
  • the function of the pre-processing module 101 may be implemented by the first serial-to-parallel conversion module 1 and the modulation module 2 in FIG. 3, or may be the first serial-to-parallel conversion module in FIG. 5 or FIG. 7. 1.
  • the grouping module 21 and the modulation module 2 are implemented.
  • the additional module 102 is configured to separately add corresponding phase information to the N first first carrier signals to generate N second second carrier signals.
  • the function of the additional module 102 may be implemented by the additional phase information module 3 described in FIG. 3 or FIG. 5, or by the shared type additional phase information module 30 of FIG.
  • the transmitting module 103 is configured to generate an analog optical orthogonal frequency division multiplexing OFDM signal according to the N second second carrier signal, and transmit the simulated optical OFDM signal to the optical network unit ONU.
  • the function of the transmission module 103 may be the IFFT module 4 described in FIG. 3 or FIG. 5 or FIG. 8 , the second serial-to-parallel conversion module 5 , the DAC module 6 , and the Mach-Zehnder of the two arms.
  • the modulator 7 and the first optical circulator 8 are implemented.
  • the additional module 102 includes: a first additional unit 1021, as shown in FIG. 11, FIG. 11 is a second schematic structural diagram of an optical line terminal OLT according to Embodiment 6 of the present invention;
  • the first adding unit 1021 is configured to respectively add different phase information to the N-channel first sub-carrier signal.
  • the function of the first additional unit 1021 can be implemented by the additional phase information module 3 described in FIG.
  • the pre-processing module 101 includes:
  • the serial to parallel conversion unit 1011 is configured to perform serial-to-parallel conversion on the downlink input signal to generate a parallel N-channel first signal.
  • the grouping unit 1012 is configured to divide the first signal of the N channel into M groups, wherein the first signals of the M group respectively correspond to M preset ONU groups, where M is a positive integer, and M ⁇ N.
  • the modulating unit 1013 is configured to modulate the M group of first signals onto parallel N-channel subcarriers that are orthogonal to each other.
  • a first generating unit 1014 configured to generate a parallel group M first subcarrier signal, where the M group first subcarrier
  • the wave signal includes N first first carrier signals, and the N first first carrier signals are orthogonal to each other.
  • the function of the serial to parallel conversion unit 1011 can be implemented by the first serial to parallel conversion module 1 in FIG. 5, and the function of the grouping unit 1012 can be implemented by the grouping module 21 in FIG.
  • the functions of the modulation unit 1013 and the first generation unit 1014 can be implemented by the modulation module 2 in FIG.
  • the preset ONU group includes:
  • each ONU in the first ONU group is located in the same cell;
  • each of the ONUs in the second ONU group requires an output optical power to be in a first preset range
  • a third ONU group wherein the received optical power required by each ONU in the third ONU group is located in a second preset range
  • a fourth ONU group where a service type required by each ONU in the fourth ONU group belongs to a fourth preset range.
  • the additional module 102 includes: a second adding unit 1022 and a second generating unit 1023.
  • FIG. 12 is an embodiment of an optical line terminal OLT according to Embodiment 6 of the present invention.
  • the third additional unit 1022 is configured to respectively add different phase information to the first subcarrier signals of different groups in the M group, and the phase information added by the first subcarrier signals of the same group in the M group is the same.
  • the second generating unit 1023 is configured to generate a M group second subcarrier signal, where the M group second subcarrier signal includes an N way second subcarrier signal.
  • the functions of the second additional unit 1022 and the second generating unit 1023 can be implemented by the additional phase information module 3 in Fig. 5.
  • the OLT further includes: an obtaining module 104, as shown in FIG. 13, FIG. 13 is a fourth structural diagram of an embodiment of an optical line terminal OLT according to Embodiment 6 of the present invention.
  • the obtaining module 104 is configured to acquire control information sent by the phase controller.
  • the function of the acquisition module 104 can be implemented by the shared type additional phase information module 30 of FIG.
  • the additional module 102 includes:
  • the third adding unit 1024 is configured to acquire, according to the control information, a specified group of the M group that needs to add phase information, and add corresponding phase information to the specified group.
  • the third generation module 1025 is configured to generate a M group second subcarrier signal, where the M group second subcarrier signal includes an N way second subcarrier signal.
  • the third additional unit 1024 and the third generating module 1025 may be implemented by the shared type additional phase information module 30 in FIG.
  • the OLT preprocesses the downlink input signal to generate N first subcarrier signals, and adds corresponding phase information to the N first subframe signals to generate N second subcarrier signals, and then Generating an analog optical OFDM signal according to the N second subcarrier signals and transmitting to the ONU, so that the initial phase of all the second subcarrier signals is changed without changing the orthogonality between each second subcarrier signal
  • the distribution condition balances the peak-to-amplitude ratio and the bit error rate of the analog optical OFDM signal transmitted to each ONU, thereby improving the overall performance of the OFDM-PON system.
  • FIG. 14 is a schematic structural diagram of an ONU embodiment of an optical network unit according to Embodiment 7 of the present invention.
  • the receiving module 141 is configured to receive an analog optical orthogonal frequency division multiplexing OFDM signal transmitted by the optical line terminal OLT.
  • the function of the receiving module 141 can be implemented by the second optical circulator 10 in Fig. 3 or Fig. 5 or Fig. 8.
  • a generating module 142 configured to generate, according to the simulated optical OFDM signal, an m-channel third sub-carrier signal, where the m-channel third sub-carrier signal is respectively added with corresponding phase information, where m is a sub-corresponding sub- The number of carriers, m is a positive integer.
  • the function of the generating module 142 may be performed by the second optical beam splitter 11 in the FIG. 3 or FIG. 5 or FIG. 8 , the photodiode 12 , the ADC module 13 , and the third serial-to-parallel conversion module. 14 and the FFT module 15 are implemented.
  • the removing module 143 is configured to separately remove phase information added to the m-channel third sub-carrier signal to generate mutually orthogonal and parallel m-channel fourth subcarrier signals.
  • the function of the removal module 143 can be implemented by the phase removal information module 16 of FIG. 3 or FIG. 5 or FIG.
  • the processing generation module 144 is configured to preprocess the fourth subcarrier signal of the m channel to generate a downlink output signal.
  • the function of the process generation module 144 can be implemented by the demodulation module 17 and the fourth serial to parallel conversion module 18 in FIG. 3 or FIG. 5 or FIG.
  • the removing module 143 includes: a first removing unit, configured to add, according to the third subcarrier signal of each channel, when the added phase information on each third subcarrier signal in the m path is different Phase information, respectively removing phase information added to each of the third subcarrier signals.
  • the function of the first removal unit can be implemented by removing the phase information module 16 as described in FIG.
  • the removing module 143 includes:
  • a second removing unit configured to remove the m channel third according to the phase information added on the third subcarrier signal when the phase information added to the third subcarrier signal in each of the m channels is the same Additional phase information on the subcarrier signal.
  • the function of the second removal unit can be implemented by removing the phase information module 16 as described in FIG. 5 or 8.
  • the ONU receives the analog optical OFDM signal transmitted by the OLT, and generates an m-channel third sub-carrier signal according to the optical OFDM signal, wherein the m-channel third sub-carrier signal is respectively added with corresponding phase information;
  • the ONU further removes the phase information attached to the m-channel third sub-carrier signal by adding the phase information of the same size and opposite sign on the OLT end, and performs corresponding processing, and finally obtains the user data required by the ONU. That is, the downlink output signal is such that the peak-to-level ratio and the bit error rate of the downlink output signals finally obtained by the respective ONUs are equalized, thereby improving the overall performance of the OFDM-PON system.
  • FIG. 15 is a schematic structural diagram of an embodiment of an OFDM-PON system for orthogonal frequency division multiplexing-passive optical network according to Embodiment 8 of the present invention
  • the OFDM-PON system includes: an optical line terminal OLT 10 And at least one optical network unit ONU 14.
  • the function of the OLT 10 is similar to that of the OLT in the embodiment 6.
  • the function of the ONU 14 is similar to that of the ONU described in Embodiment 7.
  • Embodiment 7 refer to the related description of Embodiment 7, and details are not described herein again.

Abstract

本发明实施例提供了一种光OFDM-PON的信号处理方法、设备及系统,涉及通信技术领域,所述信号处理方法包括:光线路终端OLT获取下行输入信号,对所述下行输入信号进行预处理,生成相互正交且并行的N路第一子载波信号,其中N为正整数,且N大于或等于2;所述OLT分别对所述N路第一子载波信号附加相应的相位信息,生成N路第二子载波信号;所述OLT根据所述N路第二子载波信号生成模拟的光正交频分复用OFDM信号,将所述模拟的光OFDM信号传输至光网络单元ONU。本发明提高了OFDM-PON系统的整体性能。

Description

光正交频分复用无源光网络的信号处理方法、 设备及系统 技术领域
本发明涉及通信技术领域, 特别涉及一种光正交频分复用无源光网络 (Orthogonal
Frequency Division Multiplexing Passive Optical Network, OFDM-PON) 的信号处理方法、 设 备及系统。
说 背景技术
目前信息化、 数字化、 全球化和网络化是信息社会的最重要特征。 通信网络作为信息 社会的主要载体, 是国家乃至全球最重要的基础设施之一。 随着宽带业务的迅猛发展和各 书
种新业务的不断涌现, 用户对网络接入宽带的需求大幅度增长。 包含语音、 数据、 视频和 其他潜在业务在内的宽带需求将超过 10Gbit/s, 传统的 PON (Passive Optical Network, 无源 光网络) 技术已经不能满足用户对网络接入宽带的需求, 在此基础上就出现了 OFDM-PON 技术。
现有技术提供了一种 OFDM-PON系统中基于 QoS的周期轮询动态带宽分配算法, 通 过优先级间和优先级内部二级动态带宽分配机制, OLT (Optical Line Terminate, 光线路终 端) 将每个 ONU ( Optical Network Unit, 光网络单元) 需求的带宽信息进行动态分配。
现有技术虽然解决了 OFDM-PON系统中每个 ONU需求的带宽信息的动态分配问题, 但是 OLT在将包含用户需求的带宽信息的下行输入信号传输至每个 ONU的过程中, 由于 ONU和 OLT之间距离的不同、 ONU所需的业务类型的不同等因素的影响,传输到不同 ONU 的 OFDM信号的质量各不相同, 具体体现为 PAPR (Peak to Average Power Ratio峰值平均 功率比, 简称峰平比) 禾 B BER (Bit Error Rate, 误码率) 等的不同, 使得不同 ONU的工作 性能高低不同, 从而降低了 OFDM-PON系统的整体性能。 发明内容
为了提高 OFDM-PON系统的整体性能, 本发明实施例提供了一种光 OFDM-PON的信 号处理方法、 设备及系统。 所述技术方案如下:
一种光正交频分复用无源光网络 OFDM-PON的信号处理方法, 所述方法包括: 光线路终端 OLT获取下行输入信号, 对所述下行输入信号进行预处理, 生成相互正交 且并行的 N路第一子载波信号, 其中 N为正整数, 且 N大于或等于 2;
所述 OLT分别对所述 N路第一子载波信号附加相应的相位信息,生成 N路第二子载波 信号;
所述 OLT根据所述 N路第二子载波信号生成模拟的光正交频分复用 OFDM信号, 将 所述模拟的光 OFDM信号传输至光网络单元 ONU。
一种光正交频分复用无源光网络 OFDM-PON的信号处理方法, 所述方法包括: 光网络单元 ONU接收光线路终端 OLT传输的模拟的光正交频分复用 OFDM信号; 所述 ONU根据所述模拟的光 OFDM信号生成 m路第三子载波信号, 其中所述 m路第 三子载波信号上分别附加了相应的相位信息, m为所述 ONU对应的子载波的数目, m为正 整数;
所述 ONU分别去除所述 m路第三子载波信号上附加的相位信息,生成相互正交且并行 的 m路第四子载波信号;
所述 ONU将所述 m路第四子载波信号进行预处理, 生成下行输出信号。
一种光线路终端 OLT, 包括:
预处理模块, 用于获取下行输入信号, 对所述下行输入信号进行预处理, 生成相互正 交且并行的 N路第一子载波信号, 其中 N为正整数, 且 N大于或等于 2;
附加模块, 用于分别对所述 N路第一子载波信号附加相应的相位信息, 生成 N路第二 子载波信号;
传输模块,用于根据所述 N路第二子载波信号生成模拟的光正交频分复用 OFDM信号, 将所述模拟的光 OFDM信号传输至光网络单元 ONU。
一种光网络单元 ONU, 包括:
接收模块, 用于接收光线路终端 OLT传输的模拟的光正交频分复用 OFDM信号; 生成模块, 用于根据所述模拟的光 OFDM信号生成 m路第三子载波信号, 其中所述 m 路第三子载波信号上分别附加了相应的相位信息, m为所述 ONU对应的子载波的数目, m 为正整数;
去除模块, 用于分别去除所述 m路第三子载波信号上附加的相位信息, 生成相互正交 且并行的 m路第四子载波信号;
处理生成模块, 用于将所述 m路第四子载波信号进行预处理, 生成下行输出信号。 一种正交频分复用 -无源光网络 OFDM-PON系统, 包括一个上述光线路终端 OLT和至 少一个上述光网络单元 ONU。
本发明实施例提供的技术方案的有益效果是: OLT将下行输入信号进行预处理后生成 N 路第一子载波信号, 分别对所述 N路第一子载波信号附加相应的相位信息, 生成 N路第二 子载波信号, 再根据所述 N路第二子载波信号生成模拟的光 OFDM信号并传输至 ONU, 使得在不改变每路第二子载波信号之间正交性的基础上改变所有第二子载波信号的初始相 位分布情况, 使得传输到每个 ONU的模拟的光 OFDM信号的峰平比和误码率均衡, 从而 提高了 OFDM-PON系统的整体性能。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本 领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的 附图。
图 1是本发明实施例 1提供的一种光 OFDM-PON的信号处理方法实施例的流程图; 图 2是本发明实施例 2提供的一种光 OFDM-PON的信号处理方法实施例的流程图; 图 3是本发明实施例 3提供的 OFDM-PON系统架构的信号交互示意图;
图 4是本发明实施例 3提供的一种光 OFDM-PON的信号处理方法实施例的流程图; 图 5是本发明实施例 4提供的 OFDM-PON系统架构的信号交互示意图;
图 6是本发明实施例 4提供的一种光 OFDM-PON的信号处理方法实施例的流程图; 图 7是本发明实施例 5提供的带宽分配示意图;
图 8是本发明实施例 5提供的 OFDM-PON系统架构的信号交互示意图;
图 9是本发明实施例 5提供的一种光 OFDM-PON的信号处理方法实施例的流程图; 图 10是本发明实施例 6提供的一种光线路终端 OLT实施例的第一结构示意图; 图 11是本发明实施例 6提供的一种光线路终端 OLT实施例的第二结构示意图; 图 12是本发明实施例 6提供的一种光线路终端 OLT实施例的第三结构示意图; 图 14是本发明实施例 7提供的一种光网络单元 ONU实施例的结构示意图; 图 15是本发明实施 8提供的一种正交频分复用 -无源光网络 OFDM-PON系统实施例的 结构示意图。 具体实施方式
本发明实施例提供一种光 OFDM-PON的信号处理方法、 设备及系统。
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。 实施例 1
参考图 1, 图 1是本发明实施例 1提供的一种光 0FDM-P0N的信号处理方法实施例的 流程图; 所述信号处理方法包括:
S101 : 光线路终端 OLT获取下行输入信号, 对所述下行输入信号进行预处理, 生成相 互正交且并行的 N路第一子载波信号, 其中 N为正整数, 且 N大于或等于 2。
S102: 所述 OLT分别对所述 N路第一子载波信号附加相应的相位信息, 生成 N路第二 子载波信号。
S103: 所述 OLT根据所述 N路第二子载波信号生成模拟的光正交频分复用 OFDM信 号, 将所述模拟的光 OFDM信号传输至光网络单元 ONU。
本实施例中, OLT将下行输入信号进行预处理后生成 N路第一子载波信号, 分别对所 述 N路第一子载波信号附加相应的相位信息, 生成 N路第二子载波信号, 再根据所述 N路 第二子载波信号生成模拟的光 OFDM信号并传输至 ONU,使得在不改变每路第二子载波信 号之间正交性的基础上改变所有第二子载波信号的初始相位分布情况, 使得传输到每个 ONU的模拟的光 OFDM信号的峰平比和误码率均衡, 从而提高了 OFDM-PON系统的整体 性能。 实施例 2
参考图 2, 图 2是本发明实施例 2提供的一种光 OFDM-PON的信号处理方法实施例的 流程图; 所述信号处理方法包括:
S201 : 光网络单元 ONU接收光线路终端 OLT传输的模拟的光正交频分复用 OFDM信 号。
S202: 所述 ONU根据所述模拟的光 OFDM信号生成 m路第三子载波信号, 其中所述 m路第三子载波信号上分别附加了相应的相位信息, m为所述 ONU对应的子载波的数目, m为正整数。
S203: 所述 ONU分别去除所述 m路第三子载波信号上附加的相位信息, 生成相互正 交且并行的 m路第四子载波信号。
S204: 所述 ONU将所述 m路第四子载波信号进行预处理, 生成下行输出信号。
本实施例中, ONU接收 OLT传输的模拟的光 OFDM信号, 根据所述光 OFDM信号生 成 m路第三子载波信号, 其中所述 m路第三子载波信号上分别附加了相应的相位信息; 所 述 ONU再分别去除所述 m路第三子载波信号上附加的相位信息,执行相应处理后,最后得 到所述 ONU需求的用户数据, 即下行输出信号, 使得各个 ONU最后得到的下行输出信号 的峰平比和误码率均衡, 从而提高了 OFDM-PON系统的整体性能。 实施例 3
本实施例中提供的信号处理方法基于如图 3所示的 OFDM-PON系统架构,其中图 3是 本发明实施例 3提供的 OFDM-PON系统架构的信号交互示意图; 如图 3所示, 在下行链路 中, OLT端将下行输入信号顺序经过第一串并转换模块 1、 调制模块 2、 附加相位信息模块 3、 IFFT (Inverse Fast Fourier Transform, 快速傅里叶反变换)模块 4、第二串并转换模块 5、 DAC (Digital to Analog Converter, 数模转换) 模块 6、 双臂的马赫-曾德尔调制器 7后生成 模拟的光 OFDM信号,将所述模拟的光 OFDM信号通过一个第一光环形器 8进入到光纤信 道中传输。在 OFDM-PON系统的 ONU端, 由光纤信道传输过来的模拟的光 OFDM信号由 第一光分束器(Splitter) 9分成 n束, 分别由不同长度的 n条光纤传送给 n个不同的 ONU, 其中 n为正整数。 每个 ONU将接收到的所述模拟的光 OFDM信号顺序经过第二光环形器 10、 第二光分束器 11、 光电二极管 12、 ADC (Analog to Digital Converter, 模数转换)模块 13、 第三串并转换模块 14、 FFT (Fast Fourier Transform, 快速傅里叶变换) 模块 15、 去除 相位信息模块 16、解调模块 17和第四串并转换模块 18后,生成下行输出信号,即所述 ONU 需求的用户数据。
本实施例中提供的所述信号处理方法的流程具体可参考图 4,图 4是本发明实施例 3提 供的一种光 OFDM-PON的信号处理方法实施例的流程图;
所述信号处理方法包括:
S301 : OLT 获取下行输入信号, 对所述下行输入信号进行预处理, 生成相互正交且并 行的 N路第一子载波信号。
此步骤中, 在下行链路中, OLT端首先获取下行输入信号, 其中所述下行输入信号中 可以包含带宽分配信息, 但并不局限于此, 在此不再赘述。
所述第一串并转换模块 1接收所述下行输入信号, 对所述下行输入信号进行串并转换, 生成并行的 N路第一信号, 并将所述 N路第一信号发送至所述调制模块 2, 其中 N为正整 数, 且 ≥2; 所述调制模块 2以 QPSK (Quadrature Phase Shift Keying, 四相相移键控)或
QAM ( Quadrature Amplitude Modulation, 正交幅度调制) 等调制格式将所述 N路第一信号 调制到相互正交的 N路并行子载波上, 生成 N路第一子载波信号, 并将所述 N路第一子载 波信号发送至所述附加相位信息模块 3。
S302: 所述 OLT分别对所述 N路第一子载波信号附加不同的相位信息, 生成 N路第二 子载波信号。 此步骤中, 所述 OLT分别对所述 N路第一子载波信号附加不同的相位信息, 具体地, 所述附加相位信息模块 3中的 N个数字移相器分别对所述 N路第一子载波信号附加不同的 相位信息。
所述附加相位信息模块 3包括 N数字移相器, 每个数字移相器接收一路第一子载波信 号, 并且对所述第一子载波信号进行相位信息的附加, 其中每个数字移相器附加的相位信 息均不同的; 这样在不改变所述 N路第一子载波信号之间正交性的基础上, 使得所述 N路 第一子载波信号的初始相位分布情况发生变化, 从而改善了对应子载波的传输性能, 使得 传输至各个 0NU的 OFDM信号的 PAPR和 BER均衡。
所述附加相位信息模块 3分别对所述 N路第一子载波信号附加不同的相位信息后, 生 成 N路第二子载波信号, 并将所述 N路第二子载波信号发送至所述 IFFT模块 4。
S303 : 所述 OLT根据所述 N路第二子载波信号生成模拟的光正交频分复用 OFDM信 号, 将所述模拟的光 OFDM信号传输至各个 ONU。
此步骤中, 所述 IFFT模块 4对所述 N路第二子载波信号进行快速傅里叶反变换, 将所 述快速傅里叶反变换后的 N路第二子载波信号发送至所述第二串并转换模块 5 ; 所述第二 串并转换模块 5对所述 N路第二子载波信号进行并串转换, 生成两路第二信号, 并将所述 两路第二信号分别发送至两个所述 DAC模块 6; 所述 DAC模块 6对所述第二信号进行数 模转换, 生成模拟的基带光 OFDM信号, 并将两路所述模拟的基带光 OFDM信号发送至所 述双臂的马赫-曾德尔调制器 7; 所述双臂的马赫-曾德尔调制器 Ί将两路所述模拟的基带光 OFDM信号调制到光载波上,生成模拟的光 OFDM信号;所述模拟的光 OFDM信号通过第 一光环形器 8进入到光纤信道中传输至各个 ONU。
S304: ONU接收 OLT传输的模拟的光 OFDM信号。
在 OFDM-PON系统的 ONU端,由光纤信道传输过来的模拟的光 OFDM信号由所述第 一光分束器 (Splitter) 9分成 n束, 分别由不同长度的 n条光纤传送给 n个不同的 ONU, 各个 ONU分别接收所述模拟的光 OFDM信号, 其中 n为正整数。
S305 : 所述 ONU根据所述模拟的光 OFDM信号生成 m路第三子载波信号, 其中所述 m路第三子载波信号上分别附加了相应的相位信息。
各个 ONU分别接收所述模拟的光 OFDM信号, 现以 n个 ONU中的第 i个 ONU为例 来说明 ONU对模拟的光 OFDM信号的接收过程,假设第 i个 ONU对应的子载波数目为 m。
所述模拟的光 OFDM信号首先经过所述第二光环形器 10,然后由所述第二光分束器 11 将所述模拟的光 OFDM信号分为两路, 其中一路作为 ONU用户接收信号输入至所述光电 二极管 12,另一路则作为上行输入信号的载波输入至 IM (Intensity Modulator,强度调制器) 19, 所述 IM 19如图 3所示。
所述光电二极管 12将所述模拟的光 OFDM信号转变成电域的模拟的基带 OFDM信号, 并将所述模拟的基带 OFDM信号发送至所述 ADC模块 13; 所述 ADC模块 13将所述模拟 的基带 OFDM信号进行模数转换,生成数字的基带 OFDM信号,并将所述数字的基带 OFDM 信号发送至所述第三串并转换模块 14;所述第三串并转换模块 14将串行的所述数字的基带 OFDM信号转换成并行的数字的基带 OFDM信号,并将所述并行的数字的基带 OFDM信号 发送至 FFT模块 15; 所述 FFT模块 15对所述并行的数字的基带 OFDM信号进行快速傅里 叶变换后,即可得到附加了不同的相位信息的携带了下行用户数据的 m路第三子载波信号, 并将所述 m路第三子载波信号发送至所述去除相位信息模块 16, 其中 m为所述 ONU对应 的子载波的数目, m为正整数。
S306: 所述 ONU分别去除所述 m路第三子载波信号上附加的相位信息, 生成相互正 交且并行的 m路第四子载波信号。
此步骤中, 所述 ONU分别去除所述 m路第三子载波信号上附加的相位信息包括: 所述去除相位信息模块 16根据所述每路第三子载波信号上附加的相位信息, 分别去除 所述每路第三子载波信号上附加的相位信息。
具体地, 所述去除相位信息模块 16中包含 m个数字移相器, m路中的每路第三子载波 信号分别进入一个数字移相器, 所述数字移相器通过附加一个与 OLT端附加的大小相同, 符号相反的相位信息来去除所述每路第三子载波信号上附加的相位信息, 从而得到相互正 交且并行的 m路第四子载波信号, 并将所述 m路第四子载波信号发送至所述解调模块 17。 由于所述 m路第三子载波信号上附加的相位信息不同, 因此所述 m个数字移相器附加的相 位信息的也不同。
S307: 所述 ONU将所述 m路第四子载波信号进行预处理, 生成下行输出信号。
此步骤中,所述解调模块 17将所述 m路第四子载波信号以对应的 QPSK或 QAM格式 进行解调,所述解调后输出的 m路并行的第四子载波信号经过所述第四串并转换模块 18的 并串转换即可恢复为所述 ONU用户需求的数据, 即下行输出信号。
本实施例中, 在上行链路中, 各个 ONU获得的信道估计、 性能分析等感知信息将作为 上行输入信号以 TDM (Time Division Multiplex, 时分复用) 的方式反馈给 OLT。 具体地, 还是以第 i个 ONU为例来说明, 首先上行输入信号由一个 IM 19加载到上行输入信号的载 波上, 其中所述上行输入信号的载波为下行链路中由第二光分束器 11分为两路中的其中一 路的模拟的光 OFDM信号;然后所述加载后的上行输入信号由一个第二光环形器 10进入光 纤信道传输至所述 OLT。 n个 ONU中以 TDM的方式分别将自己的感知信息发射到光纤信 道传输至所述 OLT。 在 OLT端, 加载了 TDM格式的上行输入信号的模拟光信号由一个第 一光环形器 8直接进入到所述 0LT的上行信号接收器 20, 如图 3所示, 从而作为 0LT对 整个系统进行管理和维护的依据。
本实施例中, OLT将下行输入信号进行预处理后生成 N路第一子载波信号, 分别对所 述 N路第一子载波信号附加相应的相位信息, 生成 N路第二子载波信号, 再根据所述 N路 第二子载波信号生成模拟的光 OFDM信号并传输至 ONU,使得在不改变每路第二子载波信 号之间正交性的基础上改变所有第二子载波信号的初始相位分布情况, 使得传输到每个 ONU的模拟的光 OFDM信号的峰平比和误码率均衡, 从而提高了 OFDM-PON系统的整体 性能。
此外, ONU接收 OLT传输的模拟的光 OFDM信号, 根据所述光 OFDM信号生成 m路 第三子载波信号, 其中所述 m路第三子载波信号上分别附加了相应的相位信息; 所述 ONU 再通过附加与 OLT端大小相同, 符号相反的相位信息的方法分别去除所述 m路第三子载波 信号上附加的相位信息, 执行相应处理后, 最后得到所述 ONU需求的用户数据, 即下行输 出信号, 使得各个 ONU最后得到的下行输出信号的峰平比和误码率均衡, 从而也提高了 OFDM-PON系统的整体性能。 实施例 4
本实施例中, OFDM-PON 系统根据 ONU 的状态对 ONU端预先进行了分组设置, OFDM-PON系统将多个 ONU分为 M个预设的 ONU组, 其中 M为正整数; 具体地, 所述 预设的 ONU组包括:第一 ONU组,其中所述第一 ONU组中的每个 ONU均位于同一小区; 或, 第二 ONU组, 其中所述第二 ONU组中的每个 ONU所需的发射光功率均位于第一预 设范围; 或, 第三 ONU组, 其中所述第三 ONU组中的每个 ONU所需的接收光功率均位 于第二预设范围; 或, 第四 ONU组, 其中所述第四 ONU组中的每个 ONU所需的业务类 型均属于第四预设范围; 其中所述第一预设范围、 所述第二预设范围、 所述第三预设范围 和所述第四预设范围由 OFDM-PON系统来设定。
下面以所述预设的 ONU组为第一 ONU组为例进行详细说明, 但是本实施例中预设的 ONU组并不局限于此。
本实施例中提供的信号处理方法基于如图 5所示的 OFDM-PON系统架构,其中图 5是 本发明实施例 4提供的 OFDM-PON系统架构的信号交互示意图; 图 5所示的 OFDM-PON 系统架构与图 3所示的 OFDM-PON系统架构类似, 具体可参照实施例 3的相关描述, 其中 图 5与图 3的主要区别点在于: 1 ) 图 5中的 ONU端预先进行了分组设置, OFDM-PON系 统将多个 ONU分为 M个预设的 ONU组; 图 5中的预设的 ONU组为 OFDM-PON系统按 照 ONU与 OLT的距离进行分组后的第一 ONU组, 其中所述第一 0NU组中的各个 ONU 位于同一小区。 2 ) 图 5中第一串并转换模块 1和调制模块 2之间还存在一个分组模块 21, 所述分组模块 21将 N路第一信号分为 M组, 所述 M组第一信号与 M个预设的 0NU组相 对应。 3 ) 图 5中的附加相位信息模块 3中的数字移相器也预先分成了 M个数字移相器组, 且所述 M个数字移相器组与调制模块 2输出的 M组第一子载波信号相对应。 4 ) 图 5中还 包括 0NU感知信息模块 23和相位控制器 24, 所述 0NU感知信息模块 23与所述相位控制 器 24相连, 所述相位控制器 24与所述附加相位信息模块 3相连。
本实施例中提供的所述信号处理方法的流程具体可参考图 6,图 6是本发明实施例 4提 供的一种光 OFDM-PON的信号处理方法实施例的流程图;
所述信号处理方法包括:
S401 : OLT 获取下行输入信号, 对所述下行输入信号进行预处理, 生成相互正交且并 行的 N路第一子载波信号。
此步骤中, 在下行链路中, OLT端首先获取下行输入信号, 其中所述下行输入信号中 可以包含带宽分配信息, 但并不局限于此, 在此不再赘述。
所述对所述下行输入信号进行预处理, 生成相互正交且并行的 N路第一子载波信号包 括- 对所述下行输入信号进行串并转换, 生成并行的 N路第一信号, 其中 N为正整数, 且 N≥2 ; 将所述 N路第一信号分为 M组, 其中 M组第一信号分别对应 M个预设 ONU组, M为正整数, 且 ≤ ; 将所述 M组第一信号调制到相互正交的并行的 N路子载波上; 生 成并行的 M组第一子载波信号, 其中所述 M组第一子载波信号包括 N路第一子载波信号, 且所述 N路第一子载波信号相互正交。
具体地, 第一串并转换模块 1 接收所述下行输入信号, 对所述下行输入信号进行串并 转换, 生成并行的 N路第一信号, 并将所述 N路第一信号发送至分组模块 21 ; 所述分组模 块 21将所述 N路第一信号分为 M组,将 M组第一信号分别添加标签信息,并将 M组共 N 路所述添加标签信息后的第一信号发送至调制模块 2, 其中 M组第一信号分别对应着 M个 第一 0NU组, 标签信息包括第一信号所属的小区信息。
为了方便描述, 可以将第一 0NU组中的第 1组简称小区 1, 同理, 将第一 0NU组中 的第 i组简称为小区 i, 其中 i为正整数; 每个小区中包括至少一个 0NU。
所述调制模块 2 以 QPSK ( Quadrature Phase Shift Keying, 四相相移键控) 或 QAM
( Quadrature Amplitude Modulation, 正交幅度调制) 等调制格式将所述 M组共 N路第一信 号调制到相互正交的 N路并行子载波上, 生成 M组共 N路第一子载波信号, 并将所述 M 组第一子载波信号发送至附加相位信息模块 3。
S402: 所述 OLT分别对所述 N路第一子载波信号附加相应的相位信息, 生成 N路第二 子载波信号。
此步骤中, 所述 OLT分别对所述 N路第一子载波信号附加相应的相位信息, 生成 N路 第二子载波信号包括- 所述 OLT分别对 M组中不同组的第一子载波信号附加不同的相位信息, 且 M组中同 一组的第一子载波信号附加的相位信息相同; 生成 M组第二子载波信号, 其中所述 M组第 二子载波信号包括 N路第二子载波信号。
具体地, 所述附加相位信息模块 3中的多个数字移相器也预先被分成了 M个数字移相 器组, 且所述 M个数字移相器组与 M组第一子载波信号相对应。其中每个数字移相器组分 别对应一个小区内 ONU所需求的下行输入信号,每个数字移相器组中数字移相器的数目等 于该小区内下行输入信号中并行子载波的数目。
因为每个第一 ONU组中的各个 ONU在同一小区内, 各个 ONU距离 OLT的距离相同 或相近,可以通过附加相位信息模块 3中的数字移相器组对位于同一小区内的各个 ONU附 加相同的相位信息, 且对于不同小区内的 ONU附加不同的相位信息。 具体地, M组第一子 载波信号对应的子载波分别进入各个数字移相器组中的一个数字移相器并获得一个相应的 附加相位信息; 每组第一子载波信号对应的子载波附加相同的相位信息; 不同组的第一子 载波信号对应的子载波附加不同的相位信息, 具体地, 附加相位信息模块 3 中的数字移相 器组可以根据相位控制器 24根据各个小区内 ONU用户接收到的信号的质量来确定附加不 同的相位信息, 即相位信息的附加操作有相位控制器 24进行统一管理和操作; 其中相位控 制器 24根据 ONU感知信息模块 23发送的各个 ONU组的感知信息 (信号质量如 PAPR、 BER等),对附加相位信息模块 3中的数字移相器组进行控制并根据预先设定好的相位信息 附加算法分别给不同的数字移相器组附加相应的相位信息, 使得传输至各个 ONU 组的 OFDM信号的质量均衡。
所述附加相位信息模块 3将所述 M组第二子载波信号发送至 IFFT模块 4。
S403: 所述 OLT根据所述 M组第二子载波信号生成模拟的光正交频分复用 OFDM信 号, 将所述模拟的光 OFDM信号传输至各个 ONU。
此步骤中,所述 IFFT模块 4对所述 M组第二子载波信号进行快速傅里叶反变换,将所 述快速傅里叶反变换后的 M组第二子载波信号发送至所述第二串并转换模块 5; 所述第二 串并转换模块 5对所述 M组第二子载波信号进行并串转换, 生成两路第二信号, 并将所述 两路第二信号分别发送至两个所述 DAC模块 6; 所述 DAC模块 6对所述第二信号进行数 模转换, 生成模拟的基带光 OFDM信号, 并将两路所述模拟的基带光 OFDM信号发送至所 述双臂的马赫-曾德尔调制器 7; 所述双臂的马赫-曾德尔调制器 Ί将两路所述模拟的基带光 OFDM信号调制到光载波上,生成模拟的光 OFDM信号;所述模拟的光 OFDM信号通过第 一光环形器 8进入到光纤信道中传输至各个 ONU。
S404: ONU接收 OLT传输的模拟的光 OFDM信号。
在 OFDM-PON系统的 ONU端,由光纤信道传输过来的模拟的光 OFDM信号由所述第 一光分束器 (Splitter) 9分成 M束, 分别由不同长度的 M条光纤传送给 M个不同的小区; 现以到达小区 i的模拟的光 OFDM信号为例进行说明, 经所述第一光分束器 9分束并光纤 传输后的所述模拟的光 OFDM信号由第三光分束器 22分成 L束, 其中 L表示小区 i中的 ONU的个数; 小区 i中的各个 ONU分别接收所述模拟的光 OFDM信号。
S405 : 所述 ONU根据所述模拟的光 OFDM信号生成 m路第三子载波信号, 其中所述 m路第三子载波信号上分别附加了相同的相位信息。
现以小区 i中的第 j个 ONU为例来说明 ONU对模拟的光 OFDM信号的接收过程,假设 小区 i中的各个 ONU对应的子载波数目为 m, 其中 m为正整数。
所述模拟的光 OFDM信号首先经过所述第二光环形器 10,然后由所述第二光分束器 11 将所述模拟的光 OFDM信号分为两路, 其中一路作为 ONU用户接收信号输入至所述光电 二极管 12,另一路则作为上行输入信号的载波输入至 IM (Intensity Modulator,强度调制器) 19, 所述 IM 19如图 5所示。
所述光电二极管 12将所述模拟的光 OFDM信号转变成电域的模拟的基带 OFDM信号, 并将所述模拟的基带 OFDM信号发送至所述 ADC模块 13 ; 所述 ADC模块 13将所述模拟 的基带 OFDM信号进行模数转换,生成数字的基带 OFDM信号,并将所述数字的基带 OFDM 信号发送至所述第三串并转换模块 14;所述第三串并转换模块 14将串行的所述数字的基带 OFDM信号转换成并行的数字的基带 OFDM信号,并将所述并行的数字的基带 OFDM信号 发送至 FFT模块 15 ; 所述 FFT模块 15对所述并行的数字的基带 OFDM信号进行快速傅里 叶变换后,即可得到附加了相同的相位信息的携带了所述 ONU用户的下行用户数据的 m路 第三子载波信号, 并将所述 m路第三子载波信号发送至所述去除相位信息模块 16。
S406: 所述 ONU分别去除所述 m路第三子载波信号上附加的相位信息, 生成相互正 交且并行的 m路第四子载波信号。
此步骤中, 由于所述 m路第三子载波信号上附加了相同的相位信息且携带了所述 ONU 用户的下行用户数据,因此所述 ONU分别去除所述 m路第三子载波信号上附加的相位信息 包括: 所述去除相位信息模块 16根据所述第三子载波信号上附加的相位信息, 分别去除所 述 m路第三子载波信号上附加的相位信息。
具体地, 所述去除相位信息模块 16中包含 m个数字移相器, m路中的每路第三子载波 信号分别进入一个数字移相器, 所述数字移相器通过附加一个与 OLT端附加的大小相同, 符号相反的相位信息来去除所述每路第三子载波信号上附加的相位信息, 从而得到相互正 交且并行的 m路第四子载波信号, 并将所述 m路第四子载波信号发送至所述解调模块 17。 由于所述 m路第三子载波信号上附加的相位信息相同, 因此所述 m个数字移相器附加的相 位信息的也相同。
S407: 所述 ONU将所述 m路第四子载波信号进行预处理, 生成下行输出信号。
此步骤中,所述解调模块 17将所述 m路第四子载波信号以对应的 QPSK或 QAM格式 进行解调,所述解调后输出的 m路并行的第四子载波信号经过所述第四串并转换模块 18的 并串转换即可恢复为所述 ONU用户需求的数据, 即下行输出信号。
本实施例中, 在上行链路中, 各个 ONU获得的信道估计、 性能分析等感知信息将作为 上行输入信号以 TDM (Time Division Multiplex, 时分复用) 的方式反馈给 OLT。 具体地, 还是以第 i个 ONU为例来说明, 首先上行输入信号由一个 IM 19加载到上行输入信号的载 波上, 其中所述上行输入信号的载波为下行链路中由第二光分束器 11分为两路中的其中一 路的模拟的光 OFDM信号;然后所述加载后的上行输入信号由一个第二光环形器 10进入光 纤信道传输至所述 OLT。 n个 ONU中以 TDM的方式分别将自己的感知信息发射到光纤信 道传输至所述 OLT。 在 OLT端, 加载了 TDM格式的上行输入信号的模拟光信号由一个第 一光环形器 8直接进入到所述 OLT的上行信号接收器 20, 如图 5所示, 从而作为 OLT对 整个系统进行管理和维护的依据。
本实施例中, OLT将下行输入信号进行预处理后生成 N路第一子载波信号, 分别对所 述 N路第一子载波信号附加相应的相位信息, 生成 N路第二子载波信号, 再根据所述 N路 第二子载波信号生成模拟的光 OFDM信号并传输至 ONU,使得在不改变每路第二子载波信 号之间正交性的基础上改变所有第二子载波信号的初始相位分布情况, 使得传输到每个 ONU的模拟的光 OFDM信号的峰平比和误码率均衡, 从而提高了 OFDM-PON系统的整体 性能。
此外, ONU接收 OLT传输的模拟的光 OFDM信号, 根据所述光 OFDM信号生成 m路 第三子载波信号, 其中所述 m路第三子载波信号上分别附加了相应的相位信息; 所述 ONU 再通过附加与 OLT端大小相同, 符号相反的相位信息的方法分别去除所述 m路第三子载波 信号上附加的相位信息, 执行相应处理后, 最后得到所述 ONU需求的用户数据, 即下行输 出信号, 使得各个 ONU最后得到的下行输出信号的峰平比和误码率均衡, 从而也提高了 OFDM-PON系统的整体性能。 本实施例通过对 ONU进行分组可以增加管理和维护的灵活 性。 实施例 5
本实施例采用了 ONU分组和共享型的附加相位信息的技术。 其中 OFDM-PON系统对 ONU端预先进行了分组设置,本实施例中对 ONU的分组设置与实施例 4中对 ONU的分组 设置类似, 在此不再赘述, 具体可参见实施例 4 的相关描述。 所述共享型的附加相位信息 技术的原理为: 由于所有的 ONU根据其状态 (在本实施例中特指距离) 被分成了 M组, 然而在实际工作过程中并不是全部的 ONU组传输的数据质量都无法满足用户的需求,最有 可能只是其中的某一组或者某几组中的 ONU的传输性能较差, 因而只需要对性能无法满足 用户需求的那一组或几组中的 ONU采用附加相位信息技术即可,对于性能满足用户需求的 ONU那一组或几组中的 ONU不附加相位信息,于是可以让全部的 ONU组共享使用一个附 加相位信息模块, 对需要附加相位信息的 ONU组分配数字移相器组, 对不需要附加相位信 息的 ONU组不分配数字移相器组并直接传输, 即对所有 ONU组实现附加相位信息技术的 共享模式。
各个 ONU实现分组设置后, 对各个 ONU组进行有效带宽的分配, 如图 7所示, 其中 图 7是本发明实施例 5提供的带宽分配示意图; 具体地, 根据所有 ONU到达 OLT的不同 距离的 ONU分组情况, 将全部的子载波频带分别分配给各个 ONU组, 当所有 ONU的分 组情况确定后, 子载波频带的划分即带宽分配也根据各组 ONU的具体需求确定下来了。各 组 ONU单独对应整个频带中固定的一段子载波,如位于小区 1的所有用户对应子载波频带 的第一部分 Band (带宽) 1, 位于小区 2的所有用户对应子载波频带的第一部分 Band 2, 依次类推, 直到全部频带都被分配给这 n个 ONU组, 并且各个小区用户所对应的那段频带 是互不相交的。
下面以所述预设的 ONU组为第一 ONU组为例进行详细说明, 但是本实施例中预设的
ONU组并不局限于此。
本实施例中提供的信号处理方法基于如图 8所示的 OFDM-PON系统架构,其中图 8是 本发明实施例 5提供的 OFDM-PON系统架构的信号交互示意图; 图 8所示的 OFDM-PON 系统架构与图 5所示的 OFDM-PON系统架构类似, 具体可参照实施例 4的相关描述, 其中 图 8与图 5的主要区别点在于: 将图 5中的附加相位信息模块 3替换成图 8的共享型附加 相位信息模块 30。 本实施例中提供的所述信号处理方法的流程具体可参考图 9,图 9是本发明实施例 5提 供的一种光 OFDM-PON的信号处理方法实施例的流程图;
所述信号处理方法包括:
S501 : OLT 获取下行输入信号, 对所述下行输入信号进行预处理, 生成相互正交且并 行的 N路第一子载波信号。
S501与实施例 4中的 S401类似, 具体可参见实施例 4的相关描述, 在此不再赘述。 S502: 所述 OLT获取相位控制器发送的控制信息。
所述 ONU感知信息模块 23接收 ONU的 FFT模块 15输出的信号, 对所述 FFT模块
15 输出的信号进行相应处理, 生成感知信息, 其中所述感知信息包括信道估计信息和性能 分析信息。
所述相位控制器 24接收所述 ONU感知信息模块 23的感知信息,根据所述感知信息生 成控制信息,其中所述控制信息包括:需要附加相位信息的 ONU组和需要附加的相位信息、 不需要附加相位信息的 ONU组和数字移相器的动态分配信息。
具体地,所述相位控制器 24中预先已设定有根据 ONU感知信息模块 23发送的感知信 息来判断该 ONU组是否需要附加相位信息以及若需要附加相位信息则该附加什么样的相位 信息的具体算法, 相位控制器 24只需要要根据上述算法对接收到的 ONU感知信息进行相 应的分析处理, 生成控制信息; 其中所述相应的分析处理包括: 可判断是否要给该 ONU组 附加相位信息,若需要则动态分配一个移相器组给该 ONU组并判断附加什么样的相位信息, 若不需要则不分配移相器组而是让该组 ONU信号直接通过而不做任何处理。
S503: 所述 OLT根据所述控制信息, 获取所述 M组中需要附加相位信息的指定组并对 所述指定组附加相应的相位信息, 生成 M组第二子载波信息。
此步骤中,共享型附加相位信息模块 30根据所述控制信息,获取所述 M组中需要附加 相位信息的指定组和所述 M组中不需要附加相位信息的组; 所述共享型附加相位信息模块 30根据所述控制信息对所述指定组附加相应的相位信息, 并直接将所述不需要附加相位信 息的组透传至 IFFT模块 4, 从而生成 M组共 N路第二子载波信号, 并将所述 M组第二子 载波信号发送至 IFFT模块 4。
其中, 所述第二子载波信号中还包括附加相位标签, 其中所述附加相位标签由所述相 位控制器根据 OLT端对各个 ONU组对应子载波频带附加的相位信息的情况制作而成, 从 而方便 ONU端移除附加了的相位信息。
假设 OFDM-PON系统中设定的 M个 ONU组中会出现性能较差现象的 ONU组共有 r 个, r显然小于 M, 则共享型附加相位信息模块 30根据控制信息只需要配备 r个数字移相 器组即可。 若 r组 ONU全部需要进行附加相位信息处理, 则分别进入共享型附加相位信息 模块 30中的 r个数字移相器组, r个数字移相器组根据控制信息完成相应的附加信息的处理 过程。 每个数字移相器组对输入的第一子载波信号附件一个相同的相位信息, 且所述相位 信息由控制信息进行统一的分析和判断。
相比较实施例 3 的附加相位信息技术的非共享模式, 本实施例采用附加相位信息技术 的共享模式, 本实施例中所述共享型附加相位信息模块只对需要附加相位信息的第一子载 波信号动态分配数字移相器组, 对于不需要附加相位信息的第一子载波信号不分配数字移 相器组而是直接将其传输, 使得数字移相器组的数目明显减少, 简化了整个系统的复杂度, 降低了硬件成本。 例如, 假设 OFDM-PON系统的所有子载波平均分配给各个 ONU组, 每 组 ONU分配到的子载波数目为 i, 则每个数字移相器组中就需要 i个数字移相器。 根据以 上假设, M组 ONU中可能需要进行附加相位信息处理的 ONU组最多为 r个, 其中 r < M, 而每个数字移相器组中共有 i个数字移相器, 则整个共享型附加相位信息模块中一共有 rXi 个数字移相器, 而系统中所有的子载波数目为 M <i, 显然 r <i远小于 M <i。
S504: 所述 OLT根据所述 M组第二子载波信号生成模拟的光正交频分复用 OFDM信 号, 将所述模拟的光 OFDM信号传输至各个 ONU。
S504与实施例 4中的 S403类似, 具体可参见实施例 4的相关描述, 在此不再赘述。
S505: ONU接收 OLT传输的模拟的光 OFDM信号。
S505与实施例 4中的 S404类似, 具体可参见实施例 4的相关描述, 在此不再赘述。 S506: 所述 ONU根据所述模拟的光 OFDM信号生成 m路第三子载波信号, 其中所述 m路第三子载波信号上分别附加了相同的相位信息。
S506与实施例 4中的 S405类似, 具体可参见实施例 4的相关描述, 在此不再赘述。 S507: 所述 ONU分别去除所述 m路第三子载波信号上附加的相位信息, 生成相互正 交且并行的 m路第四子载波信号。
此步骤中, 当所述 m路第三子载波信号上的具有附加相位标签时, 则表示所述 m路第 三子载波信号上附加了相位信息,相应的,所述 ONU分别去除所述 m路第三子载波信号上 附加的相位信息,其中所述 ONU分别去除所述 m路第三子载波信号上附加的相位信息的处 理流程与与实施例 4中的 S406类似, 具体可参见实施例 4的相关描述, 在此不再赘述。 当 所述 m路第三子载波信号上的不具有附加相位标签时, 则表示所述 m路第三子载波信号上 附加的相位信息为零, 即没有附加相位信息, 则无需执行去除相位信息的处理, 直接执行 后续处理。
S508: 所述 ONU将所述 m路第四子载波信号进行预处理, 生成下行输出信号。 S508与实施例 4中的 S407类似, 具体可参见实施例 4的相关描述, 在此不再赘述。 本实施例中, 在上行链路中, 各个 ONU获得的信道估计、 性能分析等感知信息将作为 上行输入信号以 TDM (Time Division Multiplex, 时分复用) 的方式反馈给 OLT。 具体地, 还是以第 i个 ONU为例来说明, 首先上行输入信号由一个 IM 19加载到上行输入信号的载 波上, 其中所述上行输入信号的载波为下行链路中由第二光分束器 11分为两路中的其中一 路的模拟的光 OFDM信号;然后所述加载后的上行输入信号由一个第二光环形器 10进入光 纤信道传输至所述 OLT。 n个 ONU中以 TDM的方式分别将自己的感知信息发射到光纤信 道传输至所述 OLT。 在 OLT端, 加载了 TDM格式的上行输入信号的模拟光信号由一个第 一光环形器 8直接进入到所述 OLT的上行信号接收器 20, 如图 8所示, 从而作为 OLT对 整个系统进行管理和维护的依据。
下面以一个具体例子为例来详细描述一下本实施例中的信号处理方法。
假设所有的用户分布在五个不同的小区, 这五个小区中宽带接入用户的数量分别为 8、 16、 32、 64和 128, 则按照上述 ONU分组思想即可把这五个小区的用户分别分为五组, 每 组 ONU的规模分别为 8、 16、 32、 64和 128。
假设系统提供的子载波一共有 512路,在下行链路中,这五组输入信号以 QPSK或 QAM 等调制格式调制到相互正交的 512路并行子载波上。 完成了子载波调制之后, 五组共 512 路携带了下行数据的子载波进入共享型附加相位信息模块。 在共享型附加相位信息模块中, 相位控制器则是根据信道估计、 性能分析等来自 ONU的感知信息来判断各组 ONU需求的 用户数据是否需要进行附加相位信息处理。如果某组 ONU需求的用户数据的质量已经符合 该用户的需求,则该组 ONU对应的用户数据直接通过共享型附加相位信息模块而无需进行 附加相位信息处理; 如果某组 ONU需求的用户数据的质量不符合该用户的需求, 需要进行 一定的改善,则该组 ONU对应的用户数据要根据相位控制器的控制信息来确定应该附加何 种合适的相位信息, 并由相位控制器动态分配各个移相器从而实现该相位信息的插入。
从共享型附加相位信息模块输出的五组共 512路子载波随后做快速傅里叶逆变换 IFFT, 再经过串并变换和数模变换后就得到了模拟的基带 OFDM信号。利用一个双臂的马赫 -曾德 尔调制器 MZM可以将模拟的基带 OFDM信号调制到光载波上, 从而得到模拟的光 OFDM 信号, 最后模拟的光 OFDM信号通过一个光环形器 Circulator进入到光纤信道中传输。
在 OFDM-PON系统的 ONU端,由光纤信道传输过来的模拟的光 OFDM信号由一个光 分束器 Splitter分为五束,分别由不同长度的五条光纤传送给五个不同的 ONU组。各个 ONU 组分别接收信号, 现以第一组 ONU中的第 1个 ONU即 0NU1_1为例来说明 ONU对模拟 的光 OFDM信号的接收过程, 假设第 1组 ONU对应的子载波数目为 32。 模拟的光 OFDM信号首先经过一个 Circulator, 然后由一个 Splitter分为两路, 一路作 为用户接收信号进行光 OFDM的解调, 另一路则作为上行输入信号的载波。 作为用户接收 信号的那一路模拟的光 OFDM信号先输入到一个光电二极管,将光域的模拟 OFDM信号接 收下来并转变为电域的模拟基带 OFDM信号。 模拟基带 OFDM信号再经过一个模数变换 ADC,从而转换为数字的基带 OFDM信号,接着利用串并转换将串行的数字基带 OFDM信 号转换为并行的数字基带 OFDM信号。 对并行的数字基带 OFDM信号做快速傅里叶变换 FFT, 即可得到附加了相位信息的携带了下行用户数据的 32路子载波, 再将这 32路子载波 输入由 32个数字移相器组成的去除相位信息模块, 每路子载波进入一个移相器, 通过附加 一个与 0LT端该组 0NU附加的大小相同、 符号相反的相位信息来移除 OLT端附加的相位 信息, 从而得到可以进行子载波解调的携带了下行用户数据的 32路子载波信号。 这 32路 子载波信号以对应的 QPSK或 QAM格式进行解调, 解调完输出的 32路并行信号最后经过 串并转换即可恢复为该 ONU用户所需求的数据了。
在上行链路中, 各个 ONU获得的信道估计、 性能分析等感知信息将作为上行输入信号 以 TDM的方式反馈给 OLT。还是以第一组 ONU中的第 1个 ONU即 0NU1_1为例来说明, 首先上行输入信号由一个强度调制器 IM,加载到下行链路中由 Splitter分为两路中的其中一 路作为上行输入信号载波的模拟的光 OFDM信号上, 然后由一个 Circulator进入光纤信道。 五个 ONU组以 TDM的方式分别将自己的感知信息发射到光纤信道。 在 OLT端, 加载了 TDM格式的上行输入信号的模拟光信号由一个 Circulator直接进入到上行信号接收器, 从 而作为 OLT对整个系统进行管理和维护的依据。
本实施例中, OLT将下行输入信号进行预处理后生成 N路第一子载波信号, 分别对所 述 N路第一子载波信号附加相应的相位信息, 生成 N路第二子载波信号, 再根据所述 N路 第二子载波信号生成模拟的光 OFDM信号并传输至 ONU,使得在不改变每路第二子载波信 号之间正交性的基础上改变所有第二子载波信号的初始相位分布情况, 使得传输到每个 ONU的模拟的光 OFDM信号的峰平比和误码率均衡, 从而提高了 OFDM-PON系统的整体 性能。
此外, ONU接收 OLT传输的模拟的光 OFDM信号, 根据所述光 OFDM信号生成 m路 第三子载波信号, 其中所述 m路第三子载波信号上分别附加了相应的相位信息; 所述 ONU 再通过附加与 OLT端大小相同, 符号相反的相位信息的方法分别去除所述 m路第三子载波 信号上附加的相位信息, 执行相应处理后, 最后得到所述 ONU需求的用户数据, 即下行输 出信号, 使得各个 ONU最后得到的下行输出信号的峰平比和误码率均衡, 从而也提高了 OFDM-PON系统的整体性能。 此外, 本实施例通过对 ONU进行分组可以增加管理和维护的灵活性; 采用共享型附加 相位技术简化了整个系统的复杂度, 大大降低了硬件成本。 实施例 6
参考图 10, 图 10是本发明实施例 6提供的一种光线路终端 OLT实施例的第一结构示 意图; 所述 OLT包括:
预处理模块 101, 用于获取下行输入信号, 对所述下行输入信号进行预处理, 生成相互 正交且并行的 N路第一子载波信号, 其中 N为正整数, 且 N大于或等于 2。
其中所述预处理模块 101的功能可以由图 3中所述第一串并转换模块 1和所述调制模 块 2来实现, 也可以由图 5或图 7中的所述第一串并转换模块 1、 所述分组模块 21和所述 调制模块 2来实现。
附加模块 102, 用于分别对所述 N路第一子载波信号附加相应的相位信息, 生成 N路 第二子载波信号。
其中所述附加模块 102的功能可以由图 3或图 5中所述附加相位信息模块 3来实现, 也可以由图 8中的所述共享型附加相位信息模块 30来实现。
传输模块 103, 用于根据所述 N路第二子载波信号生成模拟的光正交频分复用 OFDM 信号, 将所述模拟的光 OFDM信号传输至光网络单元 ONU。
其中所述传输模块 103的功能可以由图 3或图 5或图 8中所述 IFFT模块 4、 所述第二 串并转换模块 5、 所述 DAC模块 6、 所述双臂的马赫-曾德尔调制器 7和所述第一光环形器 8来实现。
其中, 所述附加模块 102包括: 第一附加单元 1021, 如图 11所示, 图 11是本发明实 施例 6提供的一种光线路终端 OLT实施例的第二结构示意图;
所述第一附加单元 1021, 用于分别对所述 N路第一子载波信号附加不同的相位信息。 所述第一附加单元 1021的功能可以由图 3中所述附加相位信息模块 3来实现。
在本实施例的另一实施方式中, 所述预处理模块 101包括:
串并转换单元 1011, 用于对所述下行输入信号进行串并转换, 生成并行的 N路第一信 号。
分组单元 1012, 用于将所述 N路第一信号分为 M组, 其中 M组第一信号分别对应 M 个预设 ONU组, M为正整数, 且 M≤N。
调制单元 1013, 用于将所述 M组第一信号调制到相互正交的并行的 N路子载波上。 第一生成单元 1014, 用于生成并行的 M组第一子载波信号, 其中所述 M组第一子载 波信号包括 N路第一子载波信号, 且所述 N路第一子载波信号相互正交。
其中所述串并转换单元 1011的功能可以由图 5中的所述第一串并转换模块 1来实现, 所述分组单元 1012的功能可以由图 5中的所述分组模块 21来实现, 所述调制单元 1013和 所述第一生成单元 1014的的功能可以由图 5中的所述调制模块 2来实现。
其中, 所述预设 ONU组包括:
第一 ONU组, 其中所述第一 ONU组中的每个 ONU均位于同一小区;
或, 第二 ONU组, 其中所述第二 ONU组中的每个 ONU所需的发射光功率均位于第 一预设范围;
或, 第三 ONU组, 其中所述第三 ONU组中的每个 ONU所需的接收光功率均位于第 二预设范围;
或, 第四 ONU组, 其中所述第四 ONU组中的每个 ONU所需的业务类型均属于第四 预设范围。
进一步地, 所述所述附加模块 102包括: 第二附加单元 1022和第二生成单元 1023, 如 图 12所示,图 12是本发明实施例 6提供的一种光线路终端 OLT实施例的第三结构示意图; 第二附加单元 1022,用于分别对 M组中不同组的第一子载波信号附加不同的相位信息, 且 M组中同一组的第一子载波信号附加的相位信息相同。
第二生成单元 1023, 用于生成 M组第二子载波信号, 其中所述 M组第二子载波信号 包括 N路第二子载波信号。
所述第二附加单元 1022和所述第二生成单元 1023的功能可以由图 5中的所述附加相 位信息模块 3来实现。
进一步地, 所述 OLT进一步包括: 获取模块 104, 如图 13所示, 图 13是本发明实施 例 6提供的一种光线路终端 OLT实施例的第四结构示意图;
所述获取模块 104, 用于获取相位控制器发送的控制信息。
所述获取模块 104的功能可以由图 8中的所述共享型附加相位信息模块 30来实现。 相应的, 所述附加模块 102包括:
第三附加单元 1024, 用于根据所述控制信息, 获取所述 M组中需要附加相位信息的指 定组并对所述指定组附加相应的相位信息。
第三生成模块 1025, 用于生成 M组第二子载波信号, 其中所述 M组第二子载波信号 包括 N路第二子载波信号。
所述第三附加单元 1024和所述第三生成模块 1025可以由图 8中的所述共享型附加相 位信息模块 30来实现。 本实施例中, OLT将下行输入信号进行预处理后生成 N路第一子载波信号, 分别对所 述 N路第一子载波信号附加相应的相位信息, 生成 N路第二子载波信号, 再根据所述 N路 第二子载波信号生成模拟的光 OFDM信号并传输至 ONU,使得在不改变每路第二子载波信 号之间正交性的基础上改变所有第二子载波信号的初始相位分布情况, 使得传输到每个 ONU的模拟的光 OFDM信号的峰平比和误码率均衡, 从而提高了 OFDM-PON系统的整体 性能。 实施例 7
参考图 14,图 14是本发明实施例 7提供的一种光网络单元 ONU实施例的结构示意图; 所述 ONU包括:
接收模块 141, 用于接收光线路终端 OLT传输的模拟的光正交频分复用 OFDM信号。 其中所述接收模块 141的功能可以由图 3或图 5或图 8中的所述第二光环形器 10来实 现。
生成模块 142, 用于根据所述模拟的光 OFDM信号生成 m路第三子载波信号, 其中所 述 m路第三子载波信号上分别附加了相应的相位信息, m为所述 ONU对应的子载波的数 目, m为正整数。
其中所述生成模块 142的功能可以由图 3或图 5或图 8中的所述第二光分束器 11、 所 述光电二极管 12、 所述 ADC模块 13、 所述第三串并转换模块 14和所述 FFT模块 15来实 现。
去除模块 143, 用于分别去除所述 m路第三子载波信号上附加的相位信息, 生成相互 正交且并行的 m路第四子载波信号。
其中所述去除模块 143的功能可以由图 3或图 5或图 8中的所述去除相位信息模块 16 来实现。
处理生成模块 144, 用于将所述 m路第四子载波信号进行预处理, 生成下行输出信号。 其中所述处理生成模块 144的功能可以由图 3或图 5或图 8中的所述解调模块 17和所 述第四串并转换模块 18来实现。
其中, 所述去除模块 143包括- 第一去除单元, 用于当所述 m路中每路第三子载波信号上附加的相位信息不同时, 根 据所述每路第三子载波信号上附加的相位信息, 分别去除所述每路第三子载波信号上附加 的相位信息。
其中所述第一去除单元的功能可以由图 3中所述去除相位信息模块 16来实现。 或者, 所述去除模块 143包括:
第二去除单元, 用于当所述 m路中每路第三子载波信号上附加的相位信息相同时, 根 据所述第三子载波信号上附加的相位信息, 分别去除所述 m路第三子载波信号上附加的相 位信息。
其中所述第二去除单元的功能可以由图 5或图 8中所述去除相位信息模块 16来实现。 本实施例中, ONU接收 OLT传输的模拟的光 OFDM信号, 根据所述光 OFDM信号生 成 m路第三子载波信号, 其中所述 m路第三子载波信号上分别附加了相应的相位信息; 所 述 ONU再通过附加与 OLT端大小相同, 符号相反的相位信息的方法分别去除所述 m路第 三子载波信号上附加的相位信息, 执行相应处理后, 最后得到所述 ONU需求的用户数据, 即下行输出信号, 使得各个 ONU最后得到的下行输出信号的峰平比和误码率均衡, 从而也 提高了 OFDM-PON系统的整体性能。 实施例 8
参考图 15,图 15是本发明实施 8提供的一种正交频分复用 -无源光网络 OFDM-PON系 统实施例的结构示意图; 所述 OFDM-PON系统包括: 一个光线路终端 OLT 10和至少一个 光网络单元 ONU 14。 其中所述 OLT 10的功能与实施例 6中所述 OLT的功能相似, 具体可 参照实施例 6的相关描述,在此不再赘述。每个所述 ONU 14的功能与实施例 7中所述 ONU 的功能相似, 具体可参照实施例 7的相关描述, 在此不再赘述。 需要说明的是, 本说明书中的各个实施例均采用递进的方式描述, 每个实施例重点说 明的都是与其他实施例的不同之处, 各个实施例之间相同相似的部分互相参见即可。 对于 装置类实施例而言, 由于其与方法实施例基本相似, 所以描述的比较简单, 相关之处参见 方法实施例的部分说明即可。
需要说明的是, 在本文中, 诸如第一和第二等之类的关系术语仅仅用来将一个实体或 者操作与另一个实体或操作区分开来, 而不一定要求或者暗示这些实体或操作之间存在任 何这种实际的关系或者顺序。 而且, 术语"包括"、 "包含"或者其任何其他变体意在涵盖非排 他性的包含, 从而使得包括一系列要素的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、 方法、 物品或者设备所 固有的要素。在没有更多限制的情况下, 由语句 "包括一个 ...... "限定的要素, 并不排除在包 括所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完 成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储 介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种光正交频分复用无源光网络 OFDM-PON的信号处理方法, 其特征在于, 所述方 法包括:
光线路终端 0LT获取下行输入信号, 对所述下行输入信号进行预处理, 生成相互正交且 并行的 N路第一子载波信号, 其中 N为正整数, 且 N大于或等于 2;
所述 OLT分别对所述 N路第一子载波信号附加相应的相位信息, 生成 N路第二子载波 信号;
所述 OLT根据所述 N路第二子载波信号生成模拟的光正交频分复用 OFDM信号, 将所 述模拟的光 OFDM信号传输至光网络单元 ONU。
2、 根据权利要求 1所述的方法, 其特征在于, 所述 OLT分别对所述 N路第一子载波信 号附加相应的相位信息包括:
所述 OLT分别对所述 N路第一子载波信号附加不同的相位信息。
3、根据权利要求 1所述的方法,其特征在于,所述对所述下行输入信号进行预处理包括: 对所述下行输入信号进行串并转换, 生成并行的 N路第一信号;
将所述 N路第一信号分为 M组, 其中 M组第一信号分别对应 M个预设 ONU组, M为 正整数, 且 M≤N ;
将所述 M组第一信号调制到相互正交的并行的 N路子载波上;
所述生成相互正交且并行的 N路第一子载波信号具体为:
生成并行的 M组第一子载波信号, 其中所述 M组第一子载波信号包括 N路第一子载波 信号, 且所述 N路第一子载波信号相互正交。
4、 根据权利要求 3所述的方法, 其特征在于, 所述预设 0NU组包括:
第一 0NU组, 其中所述第一 0NU组中的每个 0NU均位于同一小区;
或, 第二 0NU组, 其中所述第二 0NU组中的每个 0NU所需的发射光功率均位于第一 预设范围;
或, 第三 0NU组, 其中所述第三 0NU组中的每个 0NU所需的接收光功率均位于第二 预设范围; 或, 第四 ONU组, 其中所述第四 ONU组中的每个 ONU所需的业务类型均属于第四预 设范围。
5、 根据权利要求 3所述的方法, 其特征在于, 所述 OLT分别对所述 N路第一子载波信 号附加相应的相位信息包括:
所述 OLT分别对 M组中不同组的第一子载波信号附加不同的相位信息, 且 M组中同一 组的第一子载波信号附加的相位信息相同;
所述生成 N路第二子载波信号包括:
生成 M组第二子载波信号, 其中所述 M组第二子载波信号包括 N路第二子载波信号。
6、 根据权利要求 3所述的方法, 其特征在于, 所述 OLT分别对所述 N路第一子载波信 号附加相应的相位信息之前, 进一步包括:
所述 OLT获取相位控制器发送的控制信息;
所述 OLT分别对所述 N路第一子载波信号附加相应的相位信息, 生成 N路第二子载波 信号包括- 所述 OLT根据所述控制信息, 获取所述 M组中需要附加相位信息的指定组并对所述指 定组附加相应的相位信息;
生成 M组第二子载波信号, 其中所述 M组第二子载波信号包括 N路第二子载波信号。
7、 一种光正交频分复用无源光网络 OFDM-PON的信号处理方法, 其特征在于, 所述方 法包括:
光网络单元 ONU接收光线路终端 OLT传输的模拟的光正交频分复用 OFDM信号; 所述 ONU根据所述模拟的光 OFDM信号生成 m路第三子载波信号,其中所述 m路第三 子载波信号上分别附加了相应的相位信息, m为所述 ONU对应的子载波的数目, m为正整 数;
所述 ONU分别去除所述 m路第三子载波信号上附加的相位信息, 生成相互正交且并行 的 m路第四子载波信号;
所述 ONU将所述 m路第四子载波信号进行预处理, 生成下行输出信号。
8、 根据权利要求 7所述的方法, 其特征在于, 当所述 m路中每路第三子载波信号上附 加的相位信息不同时,所述 ONU分别去除所述 m路第三子载波信号上附加的相位信息包括: 所述 ONU根据所述每路第三子载波信号上附加的相位信息, 分别去除所述每路第三子 载波信号上附加的相位信息。
9、 根据权利要求 7所述的方法, 其特征在于, 当所述 m路中每路第三子载波信号上附 加的相位信息相同时,所述 ONU分别去除所述 m路第三子载波信号上附加的相位信息包括: 所述 ONU根据所述第三子载波信号上附加的相位信息, 分别去除所述 m路第三子载波 信号上附加的相位信息。
10、 一种光线路终端 OLT, 其特征在于, 包括:
预处理模块, 用于获取下行输入信号, 对所述下行输入信号进行预处理, 生成相互正交 且并行的 N路第一子载波信号, 其中 N为正整数, 且 N大于或等于 2;
附加模块, 用于分别对所述 N路第一子载波信号附加相应的相位信息, 生成 N路第二子 载波信号;
传输模块, 用于根据所述 N路第二子载波信号生成模拟的光正交频分复用 OFDM信号, 将所述模拟的光 OFDM信号传输至光网络单元 ONU。
11、 根据权利要求 10所述的 OLT, 其特征在于, 所述附加模块包括:
第一附加单元, 用于分别对所述 N路第一子载波信号附加不同的相位信息。
12、 根据权利要求 10所述的 OLT, 其特征在于, 所述预处理模块包括:
串并转换单元, 用于对所述下行输入信号进行串并转换, 生成并行的 N路第一信号; 分组单元, 用于将所述 N路第一信号分为 M组, 其中 M组第一信号分别对应 M个预设
ONU组, M为正整数, 且 M≤N ;
调制单元, 用于将所述 M组第一信号调制到相互正交的并行的 N路子载波上; 第一生成单元, 用于生成并行的 M组第一子载波信号, 其中所述 M组第一子载波信号 包括 N路第一子载波信号, 且所述 N路第一子载波信号相互正交。
13、 根据权利要求 12所述的 OLT, 其特征在于, 所述预设 ONU组包括:
第一 ONU组, 其中所述第一 ONU组中的每个 ONU均位于同一小区; 或, 第二 ONU组, 其中所述第二 ONU组中的每个 ONU所需的发射光功率均位于第一 预设范围;
或, 第三 ONU组, 其中所述第三 ONU组中的每个 ONU所需的接收光功率均位于第二 预设范围;
或, 第四 ONU组, 其中所述第四 ONU组中的每个 ONU所需的业务类型均属于第四预 设范围。
14、 根据权利要求 12所述的 OLT, 其特征在于, 所述附加模块包括:
第二附加单元, 用于分别对 M组中不同组的第一子载波信号附加不同的相位信息, 且 M 组中同一组的第一子载波信号附加的相位信息相同;
第二生成单元, 用于生成 M组第二子载波信号, 其中所述 M组第二子载波信号包括 N 路第二子载波信号。
15、 根据权利要求 12所述的 OLT, 其特征在于, 进一步包括:
获取模块, 用于获取相位控制器发送的控制信息;
所述附加模块包括- 第三附加单元, 用于根据所述控制信息, 获取所述 M组中需要附加相位信息的指定组并 对所述指定组附加相应的相位信息;
第三生成模块, 用于生成 M组第二子载波信号, 其中所述 M组第二子载波信号包括 N 路第二子载波信号。
16、 一种光网络单元 ONU, 其特征在于, 包括:
接收模块, 用于接收光线路终端 OLT传输的模拟的光正交频分复用 OFDM信号; 生成模块, 用于根据所述模拟的光 OFDM信号生成 m路第三子载波信号, 其中所述 m 路第三子载波信号上分别附加了相应的相位信息, m为所述 ONU对应的子载波的数目, m 为正整数;
去除模块, 用于分别去除所述 m路第三子载波信号上附加的相位信息, 生成相互正交且 并行的 m路第四子载波信号;
处理生成模块, 用于将所述 m路第四子载波信号进行预处理, 生成下行输出信号。
17、 根据权利要求 16所述的 ONU, 其特征在于, 所述去除模块包括:
第一去除单元, 用于当所述 m路中每路第三子载波信号上附加的相位信息不同时, 根据 所述每路第三子载波信号上附加的相位信息, 分别去除所述每路第三子载波信号上附加的相 位信息。
18、 根据权利要求 16所述的 ONU, 其特征在于, 所述去除模块包括:
第二去除单元, 用于当所述 m路中每路第三子载波信号上附加的相位信息相同时, 根据 所述第三子载波信号上附加的相位信息, 分别去除所述 m路第三子载波信号上附加的相位信 息。
19、 一种正交频分复用 -无源光网络 OFDM-PON系统, 其特征在于, 包括一个如权利要 求 10-15任一项所述的光线路终端 OLT和至少一个如权利要求 16-18任一项所述的光网络单 元 ONU。
PCT/CN2011/084536 2011-12-23 2011-12-23 光正交频分复用无源光网络的信号处理方法、设备及系统 WO2013091238A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/084536 WO2013091238A1 (zh) 2011-12-23 2011-12-23 光正交频分复用无源光网络的信号处理方法、设备及系统
CN201180003294.8A CN102893628B (zh) 2011-12-23 2011-12-23 光正交频分复用无源光网络的信号处理方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/084536 WO2013091238A1 (zh) 2011-12-23 2011-12-23 光正交频分复用无源光网络的信号处理方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2013091238A1 true WO2013091238A1 (zh) 2013-06-27

Family

ID=47535609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084536 WO2013091238A1 (zh) 2011-12-23 2011-12-23 光正交频分复用无源光网络的信号处理方法、设备及系统

Country Status (2)

Country Link
CN (1) CN102893628B (zh)
WO (1) WO2013091238A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117979B (zh) * 2013-01-29 2013-09-18 华中科技大学 一种无源光接入网络用户上行信号传输方法及其系统
WO2016065537A1 (zh) 2014-10-28 2016-05-06 华为技术有限公司 一种注册方法、设备及系统
CN105763964B (zh) * 2014-12-19 2020-04-21 中兴通讯股份有限公司 应用于ofdm-pon的通信方法、装置及系统
CN104618295A (zh) * 2015-02-06 2015-05-13 上海交通大学 基于灵活带宽分配的正交频分多址无源光网络

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640820A (zh) * 2009-09-04 2010-02-03 北京大学 一种正交频分复用无源光网络
CN101714971A (zh) * 2009-12-22 2010-05-26 北京邮电大学 无源光网络通信方法及系统、光网络单元和光线路终端
WO2010075886A1 (en) * 2008-12-30 2010-07-08 Nokia Siemens Networks Oy Method and arrangement for transmitting signals in a point to multipoint network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340692B2 (ja) * 2007-02-02 2009-10-07 株式会社日立コミュニケーションテクノロジー 受動光網システムおよびその運用方法
JP4820791B2 (ja) * 2007-09-21 2011-11-24 株式会社日立製作所 パッシブ光ネットワークシステムおよびレンジング方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010075886A1 (en) * 2008-12-30 2010-07-08 Nokia Siemens Networks Oy Method and arrangement for transmitting signals in a point to multipoint network
CN101640820A (zh) * 2009-09-04 2010-02-03 北京大学 一种正交频分复用无源光网络
CN101714971A (zh) * 2009-12-22 2010-05-26 北京邮电大学 无源光网络通信方法及系统、光网络单元和光线路终端

Also Published As

Publication number Publication date
CN102893628B (zh) 2015-08-26
CN102893628A (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
Liu et al. Efficient mobile fronthaul via DSP-based channel aggregation
CN104683277B (zh) 接收、发送装置及方法,前置电路、调制器和收发系统
CN102687475B (zh) 用于在光学网络部件中处理数据的方法以及光学网络部件
US9118436B2 (en) PON system and subcarrier assigning method
CN103109476B (zh) 无源光网络通信方法和系统、光线路终端
US20090097852A1 (en) 10 Gbps OFDMA-PON
WO2014079237A1 (zh) 光纤网络的发送、接收、通信系统及信号的调制方法
KR20140093099A (ko) 광망 종단장치 및 광회선단말을 포함하는 직교 주파수 분할 다중접속 수동형 광가입자망
CN103297169B (zh) 基于梳状光源再生技术的ofdm-pon长距离传输方法
CN102035789A (zh) 基于光正交频分复用动态分配的无源接入网系统和方法
CN102098105A (zh) 一种自适应调制的光纤通信的方法及系统
CN105264853A (zh) 一种应用于无源光网络pon通信的方法、装置及系统
WO2014032268A1 (zh) 一种训练序列生成方法、训练序列生成装置及光通信系统
CN104010233B (zh) 一种基于rsoa的偏振复用相干检测无源光网络
CN103581770A (zh) 基于单载波频分复用的无源光网络信号处理方法与系统
CN101997769A (zh) 基于ofdm的多边带多子载波分配技术的无源光网络系统
WO2013091238A1 (zh) 光正交频分复用无源光网络的信号处理方法、设备及系统
CN102892050A (zh) 光ofdm无源接入网中基于偏振复用的onu构建方法
Qiu et al. OFDM-PON optical fiber access technologies
Jin et al. Experimental demonstrations of hybrid OFDM-digital filter multiple access PONs
CN104935383A (zh) 基于滤波器多载波调制的副载波复用光网络上行传输系统
Coura et al. A bandwidth scalable OFDM passive optical network for future access network
CN104936047A (zh) 基于滤波器多载波调制技术的无源光网络上行传输系统
WO2015010283A1 (zh) 一种信号发送和接收的方法、装置及系统
CN103516428A (zh) 光纤传输系统与方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003294.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878092

Country of ref document: EP

Kind code of ref document: A1