WO2014082252A1 - 宽带接入方法及装置、系统 - Google Patents

宽带接入方法及装置、系统 Download PDF

Info

Publication number
WO2014082252A1
WO2014082252A1 PCT/CN2012/085541 CN2012085541W WO2014082252A1 WO 2014082252 A1 WO2014082252 A1 WO 2014082252A1 CN 2012085541 W CN2012085541 W CN 2012085541W WO 2014082252 A1 WO2014082252 A1 WO 2014082252A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
power line
communication protocol
line communication
protocol
Prior art date
Application number
PCT/CN2012/085541
Other languages
English (en)
French (fr)
Inventor
彭桂开
周雷
林华枫
湛永坚
隋猛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/085541 priority Critical patent/WO2014082252A1/zh
Priority to CN2012800023661A priority patent/CN103222250A/zh
Publication of WO2014082252A1 publication Critical patent/WO2014082252A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2898Subscriber equipments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5408Methods of transmitting or receiving signals via power distribution lines using protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines

Definitions

  • the present invention relates to communication technologies, and in particular, to a broadband access method, apparatus, and system. Background technique
  • an optical access system characterized by point-to-multipoint transmission for example, a Passive Optical Network (PON) system uses a trunk fiber, which can be divided into dozens or even more.
  • PON Passive Optical Network
  • Multi-channel fiber optic connection to user equipment can reduce network construction costs, and is the most cost-effective technical means for accessing FTTx (English: Fiber-to-the-x, FTTx).
  • Fiber to the Home based on PON technology is the ultimate goal of the access network.
  • the deployment of fiber to the home requires hole punching, difficult construction, and high cost. .
  • a common method is to combine the PON fiber deployed to the building with the power line communication (English: Power-Line Communication, PLC) cat (English: Modem) deployed at home for broadband access.
  • PLC Power-Line Communication
  • the existing PON And the PLC Modem broadband access system includes: two PLC Modem, respectively: a first PLC Modem and a second PLC Modem, one end of the first PLC Modem and an optical network terminal in the PON fiber (English: Optical Network Terminal, abbreviated as ONT) is connected through the Ethernet port (English: Ethernet), the other end of the first PLC Modem is connected to the power line in the home; the power line is connected to the second PLC Modem, and the second PLC Modem is connected to the power line at one end.
  • ONT Optical Network Terminal
  • the other end is connected to a user device such as a computer through an Ethernet port.
  • the ONT sends the data of the Ethernet protocol from the upper layer network to the first PLC Modem, and the first PLC Modem converts the data of the Ethernet protocol into the data of the PLC protocol, and sends the data of the converted PLC protocol to the first through the power line.
  • the second PLC Modem, the second PLC Modem converts the data of the PLC protocol into the data of the Ethernet protocol and sends it to the user equipment, thereby realizing the broadband access of the user equipment.
  • the invention provides a broadband access method, device and system, which can solve the problem that a high failure rate between the existing ONT and the first PLC Modem leads to a high broadband access failure rate.
  • the present invention provides a broadband access method for a wavelength division multiplexing-passive optical network system, including:
  • the data of the power line communication protocol of the analog signal is transmitted to the user equipment through the power communication cat.
  • the converting, by the optical line terminal, data of an Ethernet protocol into data of a power line communication protocol including:
  • the data is subjected to inverse Fourier transform, and the data of the power line communication protocol after the inverse Fourier transform is electrically and optically converted, and the data of the power line communication protocol of the optical signal is output.
  • the method further includes: converting, by the power communication cat, data of an Ethernet protocol sent by the user equipment into data of a power line communication protocol of an analog signal;
  • the data of the power line communication protocol of the optical signal is converted into data of the Ethernet protocol by the optical line terminal, and transmitted to the upper layer network.
  • the data of the power line communication protocol of the optical signal is converted into an Ethernet protocol by an optical line terminal
  • the data of the meeting including:
  • Data of the power line communication protocol of the optical signal is photoelectrically converted, and data of the photoelectrically converted power line communication protocol is restored in time domain data, and data of the power line communication protocol after time domain data recovery is performed by Fourier Transform and forward error correction solution encoding, outputting data of the Ethernet protocol.
  • the present invention provides an optical line terminal for use in a wavelength division multiplexing-passive optical network system, including:
  • An inverse Fourier transform module configured to inverse-Fourier transform data of an Ethernet protocol from an upper layer network into data of a power line communication protocol
  • the electro-optical conversion module is configured to electro-optically convert data of the inverse Fourier-transformed power line communication protocol, and output data of the power line communication protocol of the optical signal.
  • the optical line terminal further includes: a photoelectric conversion module, a power line for photoelectrically converting data of a power line communication protocol of an optical signal from the converter into an electrical signal Data of the communication protocol;
  • a Fourier transform module configured to perform time domain data recovery on the data of the photoelectrically converted power line communication protocol, and perform Fourier transform to data of the power line communication protocol after time domain data recovery to an Ethernet protocol data.
  • the optical line terminal further includes:
  • An encoding module configured to perform forward error correction coding on the data of the Ethernet protocol from an upper layer network
  • a modulation module configured to perform high-order modulation constellation mapping on data of the forward error-correction-coded Ethernet protocol of the encoding module, and transmit data of the Ethernet protocol after mapping the high-order modulated constellation map Performing an inverse Fourier transform on the inverse Fourier transform module;
  • the modulating module is further configured to perform high-order modulation demodulation on the data of the Ethernet protocol after the Fourier transform module is performed by the Fourier transform module;
  • the encoding module is further configured to perform forward error correction and de-encoding the data of the high-order modulation and demodulation Ethernet protocol of the modulation module, and decode the data of the Ethernet protocol after the forward error correction Transfer to the upper network.
  • the present invention provides a user side terminal for wavelength division multiplexing-passive An optical network system, comprising: a converter and a power communication cat, the converter and the power communication cat being connected by a power line;
  • the converter for performing photoelectric conversion and digital-to-analog conversion of data of a power line communication protocol of an optical signal from an optical line terminal, and outputting data of a power line communication protocol of an analog signal;
  • the power communication cat is configured to perform analog-to-digital conversion on data of a power line communication protocol of an analog signal output by the converter, and convert data of the analog-to-digital converted power line communication protocol into data of an Ethernet protocol, and then send the data to the user. device.
  • the power communication cat is further configured to convert data of an Ethernet protocol from the user equipment into data of a power line communication protocol, and convert the converted The data of the power line communication protocol is digital-to-analog converted, and the data of the power line communication protocol of the analog signal is output;
  • the converter is further configured to perform analog-to-digital conversion and electro-optical conversion on data of a power line communication protocol of an analog signal output by the power communication cat, and output data of a power line communication protocol of the optical signal.
  • the present invention provides a broadband access system, which is applied to a wavelength division multiplexing-passive optical network system, including: the optical line terminal and the user side terminal, wherein the optical line terminal passes through the arrayed waveguide grating and The user side terminal is connected.
  • the present invention transmits the data of the Ethernet protocol to the converter of the power line communication protocol, and then sends the data to the remote converter, and the converter only needs to perform photoelectric conversion and digital-to-analog conversion on the data of the power line communication protocol, and
  • the data of the digital-to-analog converted power line communication protocol is transmitted to the user equipment through the power communication cat.
  • the invention adopts the technical means for deploying the function of data protocol conversion to the optical line terminal of the central office, simplifies the function of the converter, reduces the protocol layer of the converter, thereby reducing the failure rate of the converter, and therefore, the broadband connection can be reduced. The failure rate of the entry.
  • FIG. 1 is a schematic flowchart of a broadband access method according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a broadband access method according to another embodiment of the present invention
  • FIG. 3 is a structural diagram of a broadband access system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the working principle of an optical line terminal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a working principle of a converter according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an optical line terminal according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a user-side terminal according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a broadband access system according to another embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the technical solution of the present invention can be applied to a point-to-multipoint wired communication network system based on a passive optical network (PON), especially for a wavelength division multiplexing-passive optical network (English: Wavelength Division Multiplex-Passive Optical Network) , referred to as WDM-PON) system.
  • PON passive optical network
  • WDM-PON wavelength division multiplexing-passive optical network
  • FIG. 1 is a schematic flowchart of a broadband access method according to an embodiment of the present disclosure. As shown in FIG. 1 , the broadband access method in this embodiment may include:
  • the optical line terminal performs forward error correction coding on the data of the Ethernet protocol, and performs high-order modulation constellation mapping on the data of the forward error correction encoded Ethernet protocol, and the constellation diagram of the high-order modulation
  • the data of the mapped Ethernet protocol is subjected to inverse Fourier transform, and the data of the power line communication protocol after the inverse Fourier transform is electrically and optically converted, and the data of the power line communication protocol of the optical signal is output.
  • FIG. 3 is a structural diagram of a broadband access system according to an embodiment of the present invention.
  • the system shown in FIG. 3 includes: an optical line terminal (English: Optical Line Terminal, OLT for short) Converter and power communication cat, wherein the converter can be an optical medium converter (English:
  • the power communication cat can be PLC Modem; wherein, the OLT is connected to the converter through the optical fiber, and the converter is connected to the power communication cat through the power line. It should be noted that the power communication cat passes the double The twisted wire is connected to the user equipment.
  • FIG. 4 is a schematic diagram showing the working principle of an optical line terminal according to an embodiment of the present invention.
  • FEC Forward Error Correction
  • Encoder Encoder
  • the mapper (English: Mapper) performs high-order modulation constellation mapping, for example, 256 Quadrature Amplitude Modulation (QAM), which maps the high-order modulated constellation map to the Ethernet protocol data.
  • QAM Quadrature Amplitude Modulation
  • Inverse Fast Fourier Transformer (IFFT) module performs inverse Fourier transform to PLC protocol data, which converts the frequency domain data symbols into time domain data symbols, and passes the PLC protocol data through the electro-optical converter.
  • E/0 (English: Electrical/Optical, referred to as E/0) for electro-optical conversion, ie, the electrical signal P
  • the data of the LC protocol is converted into the data of the PLC protocol of the optical signal, and the data of the PLC protocol after the electro-optic conversion is transmitted into the optical fiber of the central office by wavelength division multiplexing (WDM), and then the array waveguide is passed through the array waveguide.
  • WDM wavelength division multiplexing
  • the grating (English: Array Waveguide Grating, AWG for short) enters the main fiber, and then enters the branch fiber through the remote AWG to reach the converter.
  • FIG. 5 is a schematic diagram of the working principle of the converter in the embodiment of the present invention.
  • the specific implementation of step 102 is as follows:
  • the optical line terminal transmits the data of the PLC protocol of the optical signal, and transmits the optical fiber to the photoelectric conversion through the WDM of the OPMC.
  • 0/E performs photoelectric conversion, which converts the data of the PLC protocol of the optical signal into the data of the PLC protocol of the electrical signal; in order to accurately sample the OPMC, it is necessary to pass the data of the PLC protocol of the electrical signal to the CDR of the clock data restorer.
  • a digital-to-analog converter English: Digital Analog Converter, DAC for short
  • the power communication cat in this embodiment may specifically be a PLC Modem.
  • the PLC Modem receives the data of the PLC protocol of the analog signal sent by the OPMC through the power line, performs analog-to-digital conversion on the data of the power line communication protocol of the analog signal, and converts the data of the power line communication protocol after the analog-to-digital conversion into the data of the Ethernet protocol. Send to the user equipment over the twisted pair.
  • the PLC Modem performs analog-to-digital conversion on the data of the PLC protocol of the analog signal sent by the OPMC, and converts the data of the PLC protocol after the analog-to-digital conversion into the data of the Ethernet protocol, and then passes through the high-order
  • the demodulation of the modulation is followed by FEC de-encoding to perform coding error correction, and then the data of the error-corrected Ethernet protocol is transmitted to the user equipment.
  • the data of the protocol is sent to the remote converter, so that the remote converter only needs to perform photoelectric conversion and digital-to-analog conversion of the data of the PLC protocol, and the data of the PLC protocol after the digital-to-analog conversion is passed through the power communication cat.
  • the invention adopts the technical means for deploying the function of data protocol conversion to the optical line terminal of the central office, simplifies the function of the converter, reduces the protocol layer of the converter, thereby reducing the failure rate of the converter, and therefore, the broadband connection can be reduced.
  • the failure rate of the entry is not limited to the technical means for deploying the function of data protocol conversion to the optical line terminal of the central office.
  • the power supply to the converter can be powered by the power line already deployed in the home, so that no additional power is required to the converter, thus reducing the system's energy consumption.
  • FIG. 2 is a schematic flowchart of a broadband access method according to another embodiment of the present invention. As shown in FIG. 2, the method includes:
  • the PLC Modem when the PLC Modem receives the data of the Ethernet protocol sent by the user equipment through the twisted pair, the data of the Ethernet protocol is converted into the data of the power line communication protocol, and the converted The data of the power line communication protocol is digital-to-analog converted, the data of the power line communication protocol of the analog signal is output, and the data of the PLC protocol of the analog signal is transmitted to the converter through the power line.
  • the PLC Modem performs forward error correction FEC encoding on the data of the Ethernet protocol from the user equipment to improve the error correction capability, and performs high-order modulation constellation mapping on the data of the FEC encoded Ethernet protocol.
  • the data of the PLC protocol is sent to the OPMC via the power line.
  • 202. Perform, by the converter, analog-to-digital conversion and electro-optical conversion of data of the power line communication protocol of the analog signal, and output data of a power line communication protocol of the optical signal.
  • the data of the PLC protocol that the PLC Modem sends to the OPMC through the power line is the data of the PLC protocol of the analog signal.
  • the data of the PLC protocol of the analog signal is transmitted to the analog-to-digital converter (English: Analog Digital Converter, abbreviated as ADC) through the analog front end (English: Analog Front End, AFE) of the OPMC for analog-to-digital conversion.
  • ADC Analog Digital Converter
  • AFE Analog Front End
  • the optical line terminal photoelectrically converts the data of the PLC protocol
  • the data of the PLC protocol after the photoelectric conversion is restored in time domain data
  • the data of the PLC protocol after the time domain data recovery is performed.
  • the middle leaf is transformed into the data of the Ethernet protocol.
  • the data of the Fourier-transformed Ethernet protocol is forward-corrected and decoded, and then sent to the upper layer network.
  • the photoelectric conversion is first performed through the 0/E module, and the data of the PLC protocol of the optical signal is converted into electricity.
  • the data of the PLC protocol of the signal, and then the data of the PLC protocol of the electrical signal is subjected to time domain data recovery by a clock data recovery device (English: Clock Data Recover, CDR for short), and then subjected to Fourier transform FFT module for Fuli.
  • the leaf is transformed into the data of the Ethernet protocol, and the data of the transformed Ethernet protocol is demodulated by a demodulation (English: Demodulator) module, and then FEC solution is performed by FEC decoding (English: Decoder) module.
  • the code is finally sent to the upper layer network through the Ethernet PHY.
  • the data is converted into the data of the Ethernet protocol and then sent to the upper layer network.
  • the invention uses the technical means of deploying the function of data protocol conversion to the optical line terminal of the central office, which simplifies the function of the converter and reduces the protocol layer of the converter. Thereby reducing the failure rate of the converter, and therefore, the broadband connection can be reduced The failure rate of the entry.
  • the power supply to the converter can be powered by the power line already deployed in the home, so that no additional power is required to the converter, thus reducing the system's energy consumption.
  • FIG. 6 is a schematic structural diagram of an optical line terminal according to another embodiment of the present invention. As shown in FIG. 6, the optical line terminal includes:
  • An inverse Fourier transform module 61 configured to inverse-Fourier transform data of an Ethernet protocol from an upper layer network into data of a power line communication protocol;
  • the electro-optical conversion module 62 is configured to perform electro-optical conversion on data of the inverse Fourier-transformed power line communication protocol, and output data of the power line communication protocol of the optical signal.
  • the optical line terminal further includes:
  • a photoelectric conversion module 63 data of a power line communication protocol for photoelectrically converting data of a power line communication protocol of an optical signal from the converter into an electrical signal;
  • a Fourier transform module 64 configured to perform time domain data recovery on the data of the photoelectrically converted power line communication protocol, and perform Fourier transform to data of the power line communication protocol after the time domain data is restored to an Ethernet protocol.
  • the optical line terminal further includes:
  • the encoding module 65 is configured to perform forward error correction coding on the data of the Ethernet protocol from the upper layer network.
  • the modulation module 66 is configured to perform high-order modulation constellation mapping on the data of the Ethernet protocol forward error-correction encoded by the encoding module, and map the data of the Ethernet protocol after mapping the high-order modulation constellation Transmitting to the inverse Fourier transform module for performing an inverse Fourier transform;
  • the modulation module 66 is further configured to perform high-order modulation demodulation on the data of the Ethernet protocol after the Fourier transform module is subjected to Fourier transform;
  • the encoding module 65 is further configured to perform forward error correction and de-encoding the data of the high-order modulation and demodulation Ethernet protocol of the modulation module, and transmit the data of the forward-correction-decoded Ethernet protocol.
  • the data of the protocol is sent to the remote converter, so that the remote converter only needs to perform photoelectric conversion and digital-to-analog conversion of the data of the PLC protocol, and the data of the PLC protocol after the digital-to-analog conversion is passed through the power communication cat. Sent to the user device. Further, the embodiment of the present invention can also pass the light of the central office.
  • the line terminal converts the data of the PLC protocol sent from the user equipment sent by the remote converter to the data of the Ethernet protocol, and then sends the data to the upper layer network. Since the present invention uses the technical means of deploying the function of data protocol conversion to the optical line terminal of the central office, the converter function is simplified, the protocol layer of the converter is reduced, and the failure rate of the converter can be reduced, thereby reducing the bandwidth. The failure rate of access.
  • FIG. 7 is a schematic structural diagram of a user-side terminal according to another embodiment of the present invention. As shown in FIG. 7, the user-side terminal includes: a converter 71 and a power communication cat 72, and the converter and the power communication cat pass a power line Connection
  • a converter 71 for performing photoelectric conversion and digital-to-analog conversion of data of a power line communication protocol of an optical signal from an optical line terminal, and outputting data of a power line communication protocol of the analog signal;
  • a power communication cat 72 configured to perform analog-to-digital conversion on data of a power line communication protocol of an analog signal output by the converter, and convert data of the analog-to-digital converted power line communication protocol into data of an Ethernet protocol, and then send the data to the user equipment .
  • the power communication cat 72 is further configured to convert data from the Ethernet protocol of the user equipment into data of a power line communication protocol, perform digital-to-analog conversion of the converted power line communication protocol data, and output simulation. Data of the power line communication protocol of the signal;
  • the converter 71 is further configured to perform analog-to-digital conversion and electro-optical conversion on data of a power line communication protocol of an analog signal output by the power communication cat, and output data of a power line communication protocol of the optical signal.
  • the data of the protocol is sent to the remote converter, so that the remote converter only needs to perform photoelectric conversion and digital-to-analog conversion of the data of the PLC protocol, and the data of the PLC protocol after the digital-to-analog conversion is passed through the power communication cat. Sent to the user device. Further, in the embodiment of the present invention, the data of the PLC protocol sent by the remote device from the user equipment is converted into the data of the Ethernet protocol by the optical line terminal of the central office, and then sent to the upper layer network.
  • the converter function is simplified, the protocol layer of the converter is reduced, and the failure rate of the converter can be reduced, thereby reducing the bandwidth.
  • the failure rate of access Since the present invention uses the technical means of deploying the function of data protocol conversion to the optical line terminal of the central office, the converter function is simplified, the protocol layer of the converter is reduced, and the failure rate of the converter can be reduced, thereby reducing the bandwidth. The failure rate of access.
  • FIG. 8 is a schematic structural diagram of a broadband access system according to another embodiment of the present invention. As shown in FIG. 8, the system includes: an optical line terminal 81 and a user side terminal 82, and the optical line terminal passes through an arrayed waveguide grating and The user side terminal is connected;
  • the optical line terminal 81 is the optical line terminal provided in the embodiment shown in FIG. 6, and the user side terminal 82 is the user side terminal provided in the embodiment shown in FIG.
  • Related descriptions of the provided optical line terminal and the user side terminal provided in the embodiment shown in FIG. 7 are not described herein again.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional units are stored in a storage medium and include a number of instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform some of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a mobile hard disk, a read-only memory (English: Read-Only Memory, ROM for short), a random access memory (English: Random Access Memory, RAM for short), a magnetic disk or an optical disk, and the like. The medium of the code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明实施例提供宽带接入方法及装置、系统,应用于波分多路复用-无源光网络系统,本发明实施例通过光线路终端将以太网协议的数据转换为电力线通信协议的数据;通过转换器将所述转换后的电力线通信协议的数据进行光电转换和数模转换,输出模拟信号的电力线通信协议的数据;将所述模拟信号的电力线通信协议的数据通过电力通信猫发送给用户设备。能够降低转换器的故障率,从而降低宽带接入的故障率,降低系统能耗。

Description

宽带接入方法及装置、 系统
技术领域 本发明涉及通信技术, 尤其涉及宽带接入方法及装置、 系统。 背景技术
在有线通信系统中, 以点到多点传输为特征的光接入系统, 例如, 无源 光网络(英文: Passive Optical Network, 简称 PON ) 系统用一根主干光纤, 即可分成数十甚至更多路光纤连接用户设备, 能够降低建网成本, 是光纤接 入 FTTx (英文: Fiber-to-the-x, 简称 FTTx )最为经济有效的技术手段。
基于 PON技术的光纤到户(英文: Fiber To The Home, 简称 FTTH)是接 入网的终极目标, 但从现有环境来看, 把光纤部署到家, 需要打洞穿孔, 施 工困难, 且成本高。
一种常用的方法是将部署到楼的 PON 光纤结合家里已经部署的电力线 通信 (英文: Power-Line Communication, 简称 PLC) 猫 (英文: Modem )进 行宽带接入, 具体实现时, 现有的 PON和 PLC Modem的宽带接入系统中包 括: 两个 PLC Modem, 分别为: 第一 PLC Modem和第二 PLC Modem, 所述 第一 PLC Modem的一端和 PON光纤中的光网络终端(英文: Optical Network Terminal, 简称 ONT )之间通过以太网端口 (英文: Ethernet )连接, 第一 PLC Modem的另一端连接到家庭中的电力线;通过电力线再连接到第二 PLC Modem,第二 PLC Modem的一端连接电力线,另一端通过 Ethernet端口连接 到电脑等用户设备。 其中, ONT将来自上层网络的以太网协议的数据发送给 第一 PLC Modem,第一 PLC Modem将以太网协议的数据转换为 PLC协议的 数据, 将转换后的 PLC协议的数据通过电力线发送给第二 PLC Modem, 第 二 PLC Modem将 PLC协议的数据转换为以太网协议的数据并发送给用户设 备, 从而实现用户设备的宽带接入。
上述基于第一 PLC Modern, ONT和第二 PLC Modem进行以太网协议数 据和 PLC协议数据的转换的 PON+PLC Modem的宽带接入技术中,为了实现 第一 PLC Modem与 ONT之间的以太网协议数据和 PLC协议数据的转换,需 要在第一 PLC Modem与 ONT之间配置多个协议层以支持上述功能, 然而, 在第一 PLC Modem与 ONT之间存在多个协议层时, 会导致远端节点 ONT 和第一 PLC Modem之间的高故障率,进而导致宽带接入的高故障率,使得该 网络维护困难、 用户体验差。 发明内容
本发明提供宽带接入方法及装置、 系统, 能够解决现有的 ONT 和第一 PLC Modem之间的高故障率导致宽带接入故障率高的问题。
第一方面, 本发明提供了一种宽带接入方法, 应用于波分多路复用 -无源 光网络系统, 包括:
通过光线路终端将以太网协议的数据转换为电力线通信协议的数据; 通过转换器将所述转换后的电力线通信协议的数据进行光电转换和数模 转换, 输出模拟信号的电力线通信协议的数据;
将所述模拟信号的电力线通信协议的数据通过电力通信猫发送给用户设 备。
基于第一方面, 在第一种可能的实现方式中, 所述通过光线路终端将以 太网协议的数据转换为电力线通信协议的数据, 包括:
将所述以太网协议的数据进行前向纠错编码 ,将前向纠错编码后的以太 网协议的数据进行高阶调制的星座图映射, 将高阶调制的星座图映射后的以 太网协议的数据进行反傅里叶变换, 将反傅里叶变换后的电力线通信协议的 数据进行电光转换, 输出光信号的电力线通信协议的数据。
基于第一方面, 在第二种可能的实现方式中, 所述方法还包括: 通过所述电力通信猫将用户设备发送的以太网协议的数据转换为模拟 信号的电力线通信协议的数据;
通过所述转换器将所述模拟信号的电力线通信协议的数据进行模数转 换和电光转换, 输出光信号的电力线通信协议的数据;
通过所述光线路终端将所述光信号的电力线通信协议的数据转换为以 太网协议的数据, 并发送给上层网络。
基于第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述通过光线路终端将所述光信号的电力线通信协议的数据转换为以太网协 议的数据, 包括:
将所述光信号的电力线通信协议的数据进行光电转换,并将光电转换后 的电力线通信协议的数据进行时域数据恢复, 将时域数据恢复后的所述电力 线通信协议的数据进行傅里叶变换和前向纠错解编码, 输出所述以太网协议 的数据。
第二方面, 本发明提供了一种光线路终端, 应用于波分多路复用 -无源 光网络系统, 包括:
反傅里叶变换模块,用于将来自上层网络的以太网协议的数据进行反傅 里叶变换为电力线通信协议的数据;
电光转换模块,用于将反傅里叶变换后的电力线通信协议的数据进行电 光转换, 输出光信号的电力线通信协议的数据。
基于第二方面, 在第一种可能的实现方式中, 所述光线路终端还包括: 光电转换模块,用于将来自转换器的光信号的电力线通信协议的数据进 行光电转换为电信号的电力线通信协议的数据;
傅里叶变换模块,用于将所述光电转换后的电力线通信协议的数据进行 时域数据恢复, 将时域数据恢复后的所述电力线通信协议的数据进行傅里叶 变换为以太网协议的数据。
基于第二方面以及第二方面的第一种可能的实现方式,在第二种可能的 实现方式中, 所述光线路终端还包括:
编码模块,用于将来自上层网络的所述以太网协议的数据进行前向纠错 编码;
调制模块,用于将所述编码模块前向纠错编码后的以太网协议的数据进 行高阶调制的星座图映射, 并将所述高阶调制的星座图映射后的以太网协议 的数据传输给所述反傅里叶变换模块进行反傅里叶变换;
所述调制模块,还用于将所述傅里叶变换模块进行傅里叶变换后的以太 网协议的数据进行高阶调制的解调;
所述编码模块,还用于将所述调制模块高阶调制解调后的以太网协议的 数据进行前向纠错解编码, 并将所述前向纠错解编码后的以太网协议的数据 传输给上层网络。
第三方面, 本发明提供了一种用户侧终端, 应用于波分多路复用 -无源 光网络系统, 包括: 转换器和电力通信猫, 所述转换器与所述电力通信猫通 过电力线连接;
所述转换器,用于将来自光线路终端的光信号的电力线通信协议的数据 进行光电转换和数模转换 , 输出模拟信号的电力线通信协议的数据;
所述电力通信猫,用于将所述转换器输出的模拟信号的电力线通信协议 的数据进行模数转换, 将模数转换后的电力线通信协议的数据转换为以太网 协议的数据后发送给用户设备。
基于第三方面, 在第一种可能的实现方式中, 所述电力通信猫, 还用于 将来自所述用户设备的以太网协议的数据转换为电力线通信协议的数据, 将 所述转换后的电力线通信协议的数据进行数模转换, 输出模拟信号的电力线 通信协议的数据;
所述转换器 ,还用于将所述电力通信猫输出的模拟信号的电力线通信协 议的数据进行模数转换和电光转换, 输出光信号的电力线通信协议的数据。
第四方面, 本发明提供了一种宽带接入系统, 应用于波分多路复用-无 源光网络系统, 包括: 上述光线路终端和用户侧终端, 所述光线路终端通过 阵列波导光栅与所述用户侧终端连接。
由上述技术方案可知,本发明通过将以太网协议的数据转换为电力线通 信协议的数据后发送给远端的转换器, 转换器只需要将电力线通信协议的数 据进行光电转换和数模转换, 并将数模转换后的电力线通信协议的数据通过 电力通信猫发送给用户设备。 本发明釆用将数据协议转换的功能部署到局端 的光线路终端的技术手段, 简化了转换器功能, 减少了转换器的协议层, 从 而可以减少转换器的故障率, 因此, 可以降低宽带接入的故障率。
同时, 转换器的供电可以由已经部署在家庭中的电力线进行供电, 因此, 不需要对转换器进行额外的供电, 因此, 可以降低系统的能耗。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 1为本发明一实施例提供的宽带接入方法的流程示意图; 图 2为本发明另一实施例提供的宽带接入方法的流程示意图;
图 3为本发明实施例应用的宽带接入系统架构图;
图 4为本发明实施例中光线路终端的工作原理示意图;
图 5为本发明实施例中转换器的工作原理示意图;
图 6为本发明另一实施例提供的光线路终端的结构示意图;
图 7为本发明另一实施例提供的用户侧终端的结构示意图;
图 8为本发明另一实施例提供的宽带接入系统的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于基于无源光纤网络 PON的点到多点的 有线通信网络系统, 尤其是应用于波分多路复用 -无源光网络(英文: Wavelength Division Multiplex-Passive Optical Network, 简称 WDM-PON)系 统。
图 1为本发明一实施例提供的宽带接入方法的流程示意图,如图 1所示, 本实施例的宽带接入方法可以包括:
101、 通过光线路终端将以太网协议的数据转换为电力线通信协议的数 据。
具体地, 光线路终端将所述以太网协议的数据进行前向纠错编码, 将前 向纠错编码后的以太网协议的数据进行高阶调制的星座图映射, 将高阶调制 的星座图映射后的以太网协议的数据进行反傅里叶变换, 将反傅里叶变换后 的电力线通信协议的数据进行电光转换, 输出光信号的电力线通信协议的数 据。
具体实现时, 图 3为本发明实施例应用的宽带接入系统架构图, 如图 3 所示的系统, 包括: 光线路终端(英文: Optical Line Terminal, 简称 OLT ) 、 转换器和电力通信猫, 其中, 转换器具体可以为光电介质转换器 (英文:
Optical-Power line Media Converter, 简称 OPMC ) , 电力通信猫具体可以为 PLC Modem; 其中, OLT通过光纤与转换器连接, 转换器通过电力线与电力 通信猫连接, 需要说明的是, 电力通信猫通过双绞线与用户设备连接。
图 4为本发明实施例中光线路终端的工作原理示意图, 如图 4所示, 当 上层网络发送的以太网协议的数据到达光线路终端的以太网(英文: Ethernet ) 的物理层(英文: Physical Layer,简称 PHY )时,经过前向纠错 (英文: Forward Error Correction, 简称 FEC)编码(英文: Encoder )模块进行 FEC编码, 以 提高纠错能力,将 FEC编码后的以太网协议的数据经过映射器(英文: Mapper ) 进行高阶调制的星座图映射, 例如, 256正交幅度调制 (英文: Quadrature Amplitude Modulation , 简称 QAM) , 将高阶调制的星座图映射后以太网协议 的数据进行反傅里叶变换 (英文: Inverse Fast Fourier Transformer , 简称 IFFT) 模块进行反傅里叶变换为 PLC协议的数据, 即将频域数据符号变换为时域数 据符号, 将 PLC协议的数据经过电光转换器 E/0(英文: Electrical/Optical, 简 称 E/0)进行电光转换, 即将电信号的 PLC协议的数据转换为光信号的 PLC 协议的数据, 将电光转换后的 PLC 协议的数据通过波分多路复用 (英文: Wavelength Division Multiplex , 简称 WDM)射入局端的光纤 , 再经过阵列波 导光栅 (英文: Array Waveguide Grating, 简称 AWG)进入主光纤, 然后再通 过远端的 AWG进入分支光纤, 到达转换器。
102、 通过转换器将所述转换后的电力线通信协议的数据进行光电转换 和数模转换 , 输出模拟信号的电力线通信协议的数据。
图 5为本发明实施例中转换器的工作原理示意图,如图 5所示,步骤 102 的具体实现为: 光线路终端发送的是光信号的 PLC协议的数据, 通过 OPMC 的 WDM传输给光电转换器 0/E进行光电转换,即将光信号的 PLC协议的数 据转换为电信号的 PLC协议的数据; 为了进行 OPMC准确釆样,需要将电信 号的 PLC协议的数据通过时钟数据恢复器 CDR, 以恢复数据的时钟;将时域 数据恢复后的 PLC 协议的数据通过数模转换器 (英文: Digital Analog Converter, 简称 DAC)进行数模转换, 输出模拟信号的 PLC协议的数据。
103、将所述模拟信号的电力线通信协议的数据通过电力通信猫发送给用 户设备。 如图 3 所示, 本实施例中的电力通信猫具体可以为 PLC Modem。 PLC Modem通过电力线接收到 OPMC发送的模拟信号的 PLC协议的数据, 对模 拟信号的电力线通信协议的数据进行模数转换, 将模数转换后的电力线通信 协议的数据转换为以太网协议的数据后通过双绞线发送给用户设备。 具体实 现时, 例如, PLC Modem将 OPMC发送的模拟信号的 PLC协议的数据进行 模数转换, 将模数转换后的 PLC协议的数据通过傅里叶变换为以太网协议的 数据, 再经过高阶调制的解调, 之后经过 FEC解编码进行编码纠错, 然后, 将编码纠错后的以太网协议的数据发送给用户设备。 协议的数据后发送给远端的转换器, 使得远端的转换器只需要将 PLC协议的 数据进行光电转换和数模转换, 并将数模转换后的所述 PLC协议的数据通过 电力通信猫发送给用户设备。 本发明釆用将数据协议转换的功能部署到局端 的光线路终端的技术手段, 简化了转换器功能, 减少了转换器的协议层, 从 而可以减少转换器的故障率, 因此, 可以降低宽带接入的故障率。
同时, 转换器的供电可以由已经部署在家庭中的电力线进行供电, 因此, 不需要对转换器进行额外的供电, 因此, 可以降低系统的能耗。
图 2为本发明另一实施例提供的宽带接入方法的流程示意图;如图 2所 示, 包括:
201、 通过所述电力通信猫将用户设备发送的以太网协议的数据转换为 模拟信号的电力线通信协议的数据。
具体实现时, 如图 3所示, PLC Modem通过双绞线接收到用户设备发送 的以太网协议的数据时, 将所述以太网协议的数据转换为电力线通信协议的 数据, 将所述转换后的电力线通信协议的数据进行数模转换, 输出模拟信号 的电力线通信协议的数据, 并通过电力线将模拟信号的 PLC协议的数据传输 给转换器。 具体实现时, 例如, PLC Modem将来自用户设备的以太网协议的 数据进行前向纠错 FEC编码, 以提高纠错能力,将 FEC编码后的以太网协议 的数据进行高阶调制的星座图映射, 将高阶调制的星座图映射后以太网协议 的数据进行反傅里叶变换变换为 PLC协议的数据,将 PLC协议的数据经过数 模转换为模拟信号的 PLC协议的数据,然后将模拟信号的 PLC协议的数据通 过电力线发送给 OPMC。 202、 通过所述转换器将所述模拟信号的电力线通信协议的数据进行模 数转换和电光转换, 输出光信号的电力线通信协议的数据。
如图 3所示的系统架构图和如图 5所示转换器的工作原理示意图, 步骤 202在具体实现时, PLC Modem通过电力线发送给 OPMC的 PLC协议的数 据是模拟信号的 PLC协议的数据 ,该模拟信号的 PLC协议的数据通过 OPMC 的模拟前端 (英文: Analog Front End , 简称 AFE)后传输给模数转换器 (英文: Analog Digital Converter, 简称 ADC)进行模数字转换, 需要说明的是, 为了 和局端的光线路终端 OLT的 CDR进行同步, 需要在 OPMC分出一路 CDR 给 ADC进行触发釆样,也就是说,将模数转换后的 PLC协议的数据通过 CDR 进行时域数据恢复, 然后通过 E/0模块进行电光转换, 将电光转换后的 PLC 协议的数据通过 WDM进入分支光纤, 再经过远端 AWG、 主干光纤、 局端 AWG、 局端光纤, 传输给光线路终端 OLT。
203、 通过所述光线路终端将所述光信号的电力线通信协议的数据转换 为以太网协议的数据, 并发送给上层网络。
具体地, 光线路终端将所述 PLC协议的数据进行光电转后, 将光电转 后的所述 PLC协议的数据进行时域数据恢复,将时域数据恢复后的所述 PLC 协议的数据进行傅里叶变换为以太网协议的数据。 将傅里叶变换后的以太网 协议的数据进行前向纠错解编码后发送给上层网络。
具体实现时如图 3和图 4所示,当来自 OPMC的光信号的 PLC协议的数 据进入 OLT的 WDM后,首先经过 0/E模块进行光电转换,将光信号的 PLC 协议的数据变换为电信号的的 PLC协议的数据,然后将电信号的的 PLC协议 的数据经过时钟数据恢复器 (英文: Clock Data Recover, 简称 CDR)进行时域 数据恢复, 然后通过傅里叶变换 FFT模块进行傅里叶变换为以太网协议的数 据, 再将变换后的以太网协议的数据经过解调 (英文: Demodulator )模块进 行高阶调制的解调, 之后经过 FEC解编码(英文: Decoder )模块进行 FEC 解编码, 最后通过 Ethernet PHY发送到上层网络中。 的数据转换为以太网协议的数据后发送给上层网络, 本发明釆用将数据协议 转换的功能部署到局端的光线路终端的技术手段, 简化了转换器功能, 减少 了转换器的协议层, 从而可以减少转换器的故障率, 因此, 可以降低宽带接 入的故障率。
同时, 转换器的供电可以由已经部署在家庭中的电力线进行供电, 因此, 不需要对转换器进行额外的供电, 因此, 可以降低系统的能耗。
图 6为本发明另一实施例提供的光线路终端的结构示意图;如图 6所示, 光线路终端包括:
反傅里叶变换模块 61 , 用于将来自上层网络的以太网协议的数据进行 反傅里叶变换为电力线通信协议的数据;
电光转换模块 62, 用于将反傅里叶变换后的电力线通信协议的数据进 行电光转换, 输出光信号的电力线通信协议的数据。
举例来说, 所述光线路终端还包括:
光电转换模块 63 , 用于将来自转换器的光信号的电力线通信协议的数 据进行光电转换为电信号的电力线通信协议的数据;
傅里叶变换模块 64, 用于将所述光电转换后的电力线通信协议的数据 进行时域数据恢复, 将时域数据恢复后的所述电力线通信协议的数据进行傅 里叶变换为以太网协议的数据;
举例来说, 所述光线路终端还包括:
编码模块 65 , 用于将来自上层网络的所述以太网协议的数据进行前向 纠错编码;
调制模块 66, 用于将所述编码模块前向纠错编码后的以太网协议的数 据进行高阶调制的星座图映射, 并将所述高阶调制的星座图映射后的以太网 协议的数据传输给所述反傅里叶变换模块进行反傅里叶变换;
调制模块 66, 还用于将所述傅里叶变换模块进行傅里叶变换后的以太 网协议的数据进行高阶调制的解调;
编码模块 65 , 还用于将所述调制模块高阶调制解调后的以太网协议的 数据进行前向纠错解编码, 并将所述前向纠错解编码后的以太网协议的数据 传输给上层网络。 协议的数据后发送给远端的转换器, 使得远端的转换器只需要将 PLC协议的 数据进行光电转换和数模转换, 并将数模转换后的所述 PLC协议的数据通过 电力通信猫发送给用户设备。 进一步地, 本发明实施例还可以通过局端的光 线路终端将远端的转换器发送的来自用户设备的 PLC协议的数据转换为以太 网协议的数据后发送给上层网络。 由于本发明釆用将数据协议转换的功能部 署到局端的光线路终端的技术手段, 简化了转换器功能, 减少了转换器的协 议层, 从而可以减少转换器的故障率, 因此, 可以降低宽带接入的故障率。
图 7为本发明另一实施例提供的用户侧终端的结构示意图;如图 7所示, 用户侧终端包括: 转换器 71 和电力通信猫 72, 所述转换器与所述电力通信 猫通过电力线连接;
转换器 71 , 用于将来自光线路终端的光信号的电力线通信协议的数据 进行光电转换和数模转换 , 输出模拟信号的电力线通信协议的数据;
电力通信猫 72, 用于将所述转换器输出的模拟信号的电力线通信协议的 数据进行模数转换, 将模数转换后的电力线通信协议的数据转换为以太网协 议的数据后发送给用户设备。
举例来说, 电力通信猫 72, 还用于将来自所述用户设备的以太网协议 的数据转换为电力线通信协议的数据, 将所述转换后的电力线通信协议的数 据进行数模转换, 输出模拟信号的电力线通信协议的数据;
转换器 71 , 还用于将所述电力通信猫输出的模拟信号的电力线通信协 议的数据进行模数转换和电光转换, 输出光信号的电力线通信协议的数据。 协议的数据后发送给远端的转换器, 使得远端的转换器只需要将 PLC协议的 数据进行光电转换和数模转换, 并将数模转换后的所述 PLC协议的数据通过 电力通信猫发送给用户设备。 进一步地, 本发明实施例还可以通过局端的光 线路终端将远端的转换器发送的来自用户设备的 PLC协议的数据转换为以太 网协议的数据后发送给上层网络。 由于本发明釆用将数据协议转换的功能部 署到局端的光线路终端的技术手段, 简化了转换器功能, 减少了转换器的协 议层, 从而可以减少转换器的故障率, 因此, 可以降低宽带接入的故障率。
图 8为本发明另一实施例提供的宽带接入系统的结构示意图, 如图 8所 示, 所述系统包括: 光线路终端 81和用户侧终端 82, 所述光线路终端通过 阵列波导光栅与所述用户侧终端连接;
其中, 光线路终端 81为图 6所示实施例提供的光线路终端, 用户侧终 端 82为图 7所示实施例提供的用户侧终端,详细内容参考图 6所示实施例提 供的光线路终端和图 7所示实施例提供的用户侧终端中的相关描述, 不再赘 述。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统, 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用硬件加软件 功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算机 可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例所述方法的部分步骤。 而前述的存储介质包括: 移动 硬盘、 只读存储器(英文: Read-Only Memory, 简称 ROM ) 、 随机存取存储 器(英文: Random Access Memory, 简称 RAM )、 磁碟或者光盘等各种可以 存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的保护范围。

Claims

权 利 要求 书
1、 一种宽带接入方法, 应用于波分多路复用 -无源光网络系统, 其特征 在于, 包括:
通过光线路终端将以太网协议的数据转换为电力线通信协议的数据; 通过转换器将所述转换后的电力线通信协议的数据进行光电转换和数模 转换, 输出模拟信号的电力线通信协议的数据;
将所述模拟信号的电力线通信协议的数据通过电力通信猫发送给用户设 备。
2、 根据权利要求 1所述的方法, 其特征在于, 所述通过光线路终端将 以太网协议的数据转换为电力线通信协议的数据, 包括:
将所述以太网协议的数据进行前向纠错编码 ,将前向纠错编码后的以太 网协议的数据进行高阶调制的星座图映射, 将高阶调制的星座图映射后的以 太网协议的数据进行反傅里叶变换, 将反傅里叶变换后的电力线通信协议的 数据进行电光转换, 输出光信号的电力线通信协议的数据。
3、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 通过所述电力通信猫将用户设备发送的以太网协议的数据转换为模拟 信号的电力线通信协议的数据;
通过所述转换器将所述模拟信号的电力线通信协议的数据进行模数转 换和电光转换, 输出光信号的电力线通信协议的数据;
通过所述光线路终端将所述光信号的电力线通信协议的数据转换为以 太网协议的数据, 并发送给上层网络。
4、 根据权利要求 3所述的方法, 其特征在于, 所述通过光线路终端将 所述光信号的电力线通信协议的数据转换为以太网协议的数据, 包括:
将所述光信号的电力线通信协议的数据进行光电转换,并将光电转换后 的电力线通信协议的数据进行时域数据恢复, 将时域数据恢复后的所述电力 线通信协议的数据进行傅里叶变换和前向纠错解编码, 输出所述以太网协议 的数据。
5、 一种光线路终端, 应用于波分多路复用 -无源光网络系统, 其特征在 于, 包括:
反傅里叶变换模块,用于将来自上层网络的以太网协议的数据进行反傅 里叶变换为电力线通信协议的数据;
电光转换模块,用于将反傅里叶变换后的电力线通信协议的数据进行电 光转换, 输出光信号的电力线通信协议的数据。
6、 根据权利要求 5所述的光线路终端, 其特征在于, 所述光线路终端 还包括:
光电转换模块,用于将来自转换器的光信号的电力线通信协议的数据进 行光电转换为电信号的电力线通信协议的数据;
傅里叶变换模块,用于将所述光电转换后的电力线通信协议的数据进行 时域数据恢复, 将时域数据恢复后的所述电力线通信协议的数据进行傅里叶 变换为以太网协议的数据。
7、 根据权利要求 5或 6所述的光线路终端, 其特征在于, 所述光线路 终端还包括:
编码模块,用于将来自上层网络的所述以太网协议的数据进行前向纠错 编码;
调制模块,用于将所述编码模块前向纠错编码后的以太网协议的数据进 行高阶调制的星座图映射, 并将所述高阶调制的星座图映射后的以太网协议 的数据传输给所述反傅里叶变换模块进行反傅里叶变换;
所述调制模块,还用于将所述傅里叶变换模块进行傅里叶变换后的以太 网协议的数据进行高阶调制的解调;
所述编码模块,还用于将所述调制模块高阶调制解调后的以太网协议的 数据进行前向纠错解编码, 并将所述前向纠错解编码后的以太网协议的数据 传输给上层网络。
8、 一种用户侧终端, 应用于波分多路复用 -无源光网络系统, 其特征在 于, 包括: 转换器和电力通信猫, 所述转换器与所述电力通信猫通过电力线 连接;
所述转换器,用于将来自光线路终端的光信号的电力线通信协议的数据 进行光电转换和数模转换, 输出模拟信号的电力线通信协议的数据;
所述电力通信猫 ,用于将所述转换器输出的模拟信号的电力线通信协议 的数据进行模数转换, 将模数转换后的电力线通信协议的数据转换为以太网 协议的数据后发送给用户设备。
9、 根据权利要求 8所述的用户侧终端, 其特征在于, 所述电力通信猫, 还用于将来自所述用户设备的以太网协议的数据转换为电力线通信协议的数 据, 将所述转换后的电力线通信协议的数据进行数模转换, 输出模拟信号的 电力线通信协议的数据;
所述转换器,还用于将所述电力通信猫输出的模拟信号的电力线通信协 议的数据进行模数转换和电光转换, 输出光信号的电力线通信协议的数据。
10、 一种宽带接入系统, 应用于波分多路复用 -无源光网络系统, 其特 征在于, 包括: 光线路终端和用户侧终端, 所述光线路终端通过阵列波导光 栅与所述用户侧终端连接;
所述光线路终端为如权利要求 5-7任一项所述的光线路终端;
所述用户侧终端为如权利要求 8-9任一项所述的用户侧终端。
PCT/CN2012/085541 2012-11-29 2012-11-29 宽带接入方法及装置、系统 WO2014082252A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/085541 WO2014082252A1 (zh) 2012-11-29 2012-11-29 宽带接入方法及装置、系统
CN2012800023661A CN103222250A (zh) 2012-11-29 2012-11-29 宽带接入方法及装置、系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085541 WO2014082252A1 (zh) 2012-11-29 2012-11-29 宽带接入方法及装置、系统

Publications (1)

Publication Number Publication Date
WO2014082252A1 true WO2014082252A1 (zh) 2014-06-05

Family

ID=48818205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085541 WO2014082252A1 (zh) 2012-11-29 2012-11-29 宽带接入方法及装置、系统

Country Status (2)

Country Link
CN (1) CN103222250A (zh)
WO (1) WO2014082252A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113541A (zh) * 2014-07-16 2014-10-22 云南电力试验研究院(集团)有限公司电力研究院 一种电力通讯规约转换一体化集成装置系统
CN104468508A (zh) * 2014-10-29 2015-03-25 云南电网公司电力科学研究院 一种自适配规约转换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633038A (zh) * 2004-12-23 2005-06-29 深圳市佳音达通讯电子技术有限公司 低压配电及电力线通信一体化的方法和系统
CN1937435A (zh) * 2006-09-30 2007-03-28 东南大学 电力线通信系统的数字信号处理方法
CN101316257A (zh) * 2007-05-31 2008-12-03 华为技术有限公司 数字用户线接入复用器、光网络单元、光线路终端和基站
CN101945309A (zh) * 2010-09-02 2011-01-12 李淑英 无源光网络结合电力线载波实现双向通讯的方法、系统和装置
CN102082714A (zh) * 2010-12-28 2011-06-01 华东师范大学 一种含有电力载波模块的以太网无源光网络装置及其信号传输方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633038A (zh) * 2004-12-23 2005-06-29 深圳市佳音达通讯电子技术有限公司 低压配电及电力线通信一体化的方法和系统
CN1937435A (zh) * 2006-09-30 2007-03-28 东南大学 电力线通信系统的数字信号处理方法
CN101316257A (zh) * 2007-05-31 2008-12-03 华为技术有限公司 数字用户线接入复用器、光网络单元、光线路终端和基站
CN101945309A (zh) * 2010-09-02 2011-01-12 李淑英 无源光网络结合电力线载波实现双向通讯的方法、系统和装置
CN102082714A (zh) * 2010-12-28 2011-06-01 华东师范大学 一种含有电力载波模块的以太网无源光网络装置及其信号传输方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113541A (zh) * 2014-07-16 2014-10-22 云南电力试验研究院(集团)有限公司电力研究院 一种电力通讯规约转换一体化集成装置系统
CN104468508A (zh) * 2014-10-29 2015-03-25 云南电网公司电力科学研究院 一种自适配规约转换器

Also Published As

Publication number Publication date
CN103222250A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
Liu Enabling optical network technologies for 5G and beyond
WO2014079237A1 (zh) 光纤网络的发送、接收、通信系统及信号的调制方法
EP2421280B1 (en) Cost effective multi-rate upstream for 10GEPON based on high efficiency coding
US9344195B2 (en) Multiple level signaling for passive optical networks
JP5843336B2 (ja) 高次変調を用いた複数の非同期データストリームの伝達
US20140101512A1 (en) Adaptive ldpc-coded multidimensional spatial-mimo multiband generalized ofdm
RU2676406C1 (ru) Способ и устройство для исправления ошибок и пассивная оптическая сеть
WO2011130982A1 (zh) 基于光码分多址复用的无源光网络系统及光线路终端
CN1725721A (zh) 一种基于光码分多址复用技术的无源光网络
CN105409163A (zh) 一种通信的方法、装置及系统
CN104010233B (zh) 一种基于rsoa的偏振复用相干检测无源光网络
EP2161943B1 (en) Method for remotely managing devices, devices and systems related thereto
WO2014082252A1 (zh) 宽带接入方法及装置、系统
CN104038463B (zh) 基于四维动态资源分配的光接入网络系统
CN105359433B (zh) 一种通信方法、装置及系统
US9602213B2 (en) System and method of extending time division passive optical network services to plastic optical fiber in the home
Jiang et al. Flexible filter bank multi-carriers PON based on two-dimensional multiple probabilistic shaping distribution
CN104104638A (zh) 无源光网络的通信方法和设备
CN105578316B (zh) 一种ocdma和ofdm混合的无源光网络系统
US20160142143A1 (en) Methods and apparatuses for sending and receiving signal, and system
CN205378159U (zh) 一种ocdma和ofdm混合的无源光网络系统
WO2016144949A1 (en) Circuit and method for optical bit interleaving in a passive optical network using multi-level signals
JP4477680B2 (ja) 加入者宅側光回線終端装置
WO2014090043A1 (zh) Ofdm-pon系统及时钟信号的发送和提取方法
JP4505350B2 (ja) 通信システムおよび通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889341

Country of ref document: EP

Kind code of ref document: A1