WO2015008548A1 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2015008548A1 WO2015008548A1 PCT/JP2014/064597 JP2014064597W WO2015008548A1 WO 2015008548 A1 WO2015008548 A1 WO 2015008548A1 JP 2014064597 W JP2014064597 W JP 2014064597W WO 2015008548 A1 WO2015008548 A1 WO 2015008548A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- manufacturing
- mask
- semiconductor device
- nanowire
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 62
- 239000004065 semiconductor Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000005530 etching Methods 0.000 claims abstract description 27
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 2
- -1 polycrystal Si Inorganic materials 0.000 claims 1
- 239000002070 nanowire Substances 0.000 abstract description 77
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 20
- 229910052710 silicon Inorganic materials 0.000 description 20
- 239000010703 silicon Substances 0.000 description 20
- 238000001312 dry etching Methods 0.000 description 16
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001459 lithography Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 150000002366 halogen compounds Chemical class 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910004143 HfON Inorganic materials 0.000 description 1
- 229910003691 SiBr Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3083—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/3085—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3083—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/3086—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
- H01L29/0669—Nanowires or nanotubes
- H01L29/0673—Nanowires or nanotubes oriented parallel to a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/401—Multistep manufacturing processes
- H01L29/4011—Multistep manufacturing processes for data storage electrodes
- H01L29/40117—Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66439—Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66833—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/775—Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/792—Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
Definitions
- Embodiments described herein relate generally to a method for manufacturing a semiconductor device.
- a nanowire channel transistor (hereinafter also referred to as a nanowire transistor) capable of suppressing the short channel effect is used instead of a conventional planar transistor.
- the nanowire transistor includes a semiconductor layer including one or more nanowires made of silicon serving as a channel region, and a source region and a drain region that are connected to the nanowire on both sides in the extending direction of the nanowire and are wider than the nanowire.
- a gate insulating film is provided on the side and top surfaces of the nanowire, and a gate electrode is provided on the gate insulating film.
- a region having a gate electrode formed thereon operates as a channel region.
- the channel region has a thin line structure with a width (length in the gate width direction) of about 3 nm to 25 nm and a height of about 3 nm to 40 nm. Since the channel region is covered with the gate electrode, the gate electrode has strong dominance, and the short channel effect can be suppressed.
- a nanowire transistor is also referred to as a tri-gate transistor because a total of three surfaces, the upper surface and both side surfaces of the nanowire, function as channels.
- ⁇ Nanowire transistors are small in width and low in height, so the current flowing in one nanowire becomes small.
- a multi-finger structure in which a plurality of nanowires are provided in parallel between a source region and a drain region is used as a nanowire transistor.
- This multi-finger structure can reduce the footprint for reducing the interval (pitch) between nanowires.
- the gate dominating force increases as the nanowire width (the length in the direction perpendicular to the channel length direction) is reduced, this is effective for the short channel effect. Therefore, it is necessary to reduce the width of the nanowire and the pitch of the nanowire.
- This embodiment provides a method for manufacturing a semiconductor device capable of manufacturing a nanowire transistor having nanowires with a fine width and a narrow interval.
- the method of manufacturing a semiconductor device includes a step of forming a first mask extending in a first direction on a semiconductor layer, etching the semiconductor layer using the first mask, and extending in the first direction. Forming a convex first region having both side surfaces along the side and forming a second mask on the both side surfaces; and exposing the upper surface of the first region by removing the first mask; Etching the exposed upper surface to form second and third regions extending from the first region along the first direction.
- the top view of the semiconductor device manufactured by the manufacturing method of a 1st embodiment Sectional drawing in the gate length direction of the semiconductor device manufactured by the manufacturing method of 1st Embodiment. Sectional drawing in the gate width direction under the gate electrode of the semiconductor device manufactured by the manufacturing method of 1st Embodiment.
- the top view which shows the manufacturing process in the manufacturing method of 1st Embodiment.
- Sectional drawing which shows the manufacturing process in the manufacturing method of 1st Embodiment.
- Sectional drawing which shows the manufacturing process in the manufacturing method of 1st Embodiment Sectional drawing which shows the manufacturing process in the manufacturing method of 1st Embodiment.
- Sectional drawing which shows the manufacturing process in the manufacturing method of 1st Embodiment Sectional drawing which shows the manufacturing process in the manufacturing method of 1st Embodiment.
- FIGS. 9A to 9E are diagrams showing manufacturing steps of an experiment performed to explain the effects of the manufacturing method of the first embodiment.
- 10 is a photograph showing a cross section of a semiconductor device manufactured by the experiment shown in FIGS. Sectional drawing which shows the manufacturing process in the manufacturing method of 2nd Embodiment. Sectional drawing which shows the manufacturing process in the manufacturing method of 2nd Embodiment. Sectional drawing which shows the manufacturing process in the manufacturing method of 2nd Embodiment. Sectional drawing which shows the semiconductor device by 3rd Embodiment.
- FIGS A method for manufacturing the semiconductor device according to the first embodiment will be described.
- a semiconductor device manufactured by the manufacturing method of this embodiment is shown in FIGS.
- the semiconductor device 100 manufactured by the manufacturing method of this embodiment includes a nanowire transistor having a multi-finger structure.
- 1 is a top view of the semiconductor device 100
- FIG. 2 is a cross-sectional view taken along the cutting plane AA shown in FIG. 1
- FIG. 3 is a cutting plane BB shown in FIG. Sectional drawing at the time of cutting is shown.
- the section AA shows a section along the gate length direction
- the section BB shows a section along the gate width direction.
- the nanowire transistor of the semiconductor device 100 includes a silicon region 4 provided on the silicon semiconductor layer 1.
- the silicon region 4 has a plurality of nanowire regions 2 arranged in parallel, and a source region 8 and a drain region 9 that are wider than each nanowire region 2 and provided on both sides of each nanowire region 2.
- Each nanowire region 2 is connected to a source region 8 and a drain region 9.
- Each nanowire region 2 is separated by an element isolation region 10.
- a gate insulating film 5 is provided so as to cover at least the upper surface of the nanowire region 2 along the direction from the source region 8 to the drain region 9, and the gate electrode 6 covers the gate insulating film 5. Is provided.
- Gate side walls 7 made of an insulator are provided on the side of the gate electrode 6 on the source region side and the drain region side.
- a region in which the gate electrode 6 is formed on the upper portion functions as the channel region 3.
- the channel region 3 of the nanowire region 2 has a thin wire structure (nanowire structure) having a width, that is, a length in the gate width direction of about 1 nm to 25 nm and a height of about 1 nm to 50 nm.
- FIG. 4 shows a top view of one manufacturing process
- FIG. 5 shows a cross-sectional view taken along a cutting plane CC (cross-section along the gate width direction) shown in FIG. 6 to 8 show CC cross-sectional views in other manufacturing steps.
- a mask 11 is formed on the silicon semiconductor layer 1.
- the mask 11 includes two or more first regions 12, and second and third regions 13 a and 13 b provided on both sides of the first region 12 and having a width wider than that of the first region 12.
- the second and third regions 13a and 13b are connected to the first region 12, respectively.
- the first region 12 corresponds to between the two nanowire regions 2, and the second and third regions 13a, 13b correspond to the source region 8 and the drain region 9, respectively.
- the mask 11 is formed using a normal lithography method or the like.
- the mask 11 for example, a material having an etching rate lower than that of silicon, for example, an insulating material is used, and the mask 11 is formed using a lithography method and dry etching, or formed using a lithography method and wet etching.
- the silicon half layer 1 is patterned by dry etching using the mask 11, so that the first region 22 and the second region wider than the first region 22 are formed in the silicon semiconductor layer 1.
- a convex silicon semiconductor region 4 having a region (not shown) is formed.
- a side surface 24 is formed in the first region 22, and a deposit or the like that is not shown adheres to the side surface 24.
- the gas species used for this etching contains a halogen compound. Examples of the halogen compound include SiF x , SiCl x , or SiBr x when the semiconductor layer 1 includes Si.
- the deposit includes at least one of 1) an element constituting the semiconductor layer 1, 2) an oxide of the element, and 3) a compound of the element and a halogen element contained in an etching gas. Following this etching, as shown in FIG. 7, the mask 11 is removed, and the upper surface 23 of the first region 22 is exposed.
- a second dry etching is performed.
- the first region 22 from which the mask 11 has been removed is divided into two nanowire regions 2 by etching the upper surface 23.
- Each of these nanowire regions 2 has two side surfaces, one side surface is a side surface 24 formed by the first etching, and the other side surface is a side surface 25 formed by the second etching.
- Deposits and the like from the first etching are attached to the side surface 24 formed by the first etching. Therefore, the deposit functions as a mask, and the etching rate of the side surface 24 is lower than that of the upper surface 23 etched for the first time by the second dry etching and the side surface 25 formed thereafter.
- the side surface 24 formed by the first etching is also etched by the second dry etching, but the etching rate is slower than the side surface 25 formed by the second etching. For this reason, as shown in FIG. 8, the depth formed by etching the side surface 24 is not very deep as compared with the depth formed by etching the side surface 25.
- the second dry etching the second region that is wider than the first region 22 and serves as the source and drain regions is uniformly etched so that the upper surface is lower than the upper surface of the nanowire region 2.
- the length (width) of the second region in the direction orthogonal to the first region 22 is preferably larger than 30 nm. If it is 30 nm or less, like the first region 22, it is divided into two regions by the second dry etching.
- the nanowire region 2 and the source and drain regions are formed at the same time.
- the source and drain regions may be formed.
- the first region 22 is first formed by dry etching using a mask, and after removing the mask, the first region 22 with the upper surface exposed is etched a second time to form two nanowire regions. To do. Thereafter, these nanowire regions are masked, and source and drain regions connected to both ends of these nanowire regions 2 are formed.
- an epitaxial growth method can be used to form these source and drain regions.
- an element isolation insulating film (not shown) is formed, and an element isolation region 10 (see FIGS. 1 and 3) is formed using CMP (Chemical Mechanical Planarization) and wet etching.
- CMP Chemical Mechanical Planarization
- a gate insulating film material and a gate electrode material are sequentially deposited.
- a high-k material can be used in addition to the silicon oxide film.
- the gate electrode material poly-Si, metal silicide, TiN, W, and TaC can be used, and a laminated film of poly-Si and metal can be used.
- the gate electrode is formed by patterning the gate electrode material.
- the source region 8 and the drain region 9 are formed by performing ion implantation.
- a gate sidewall is formed, and a nanowire transistor is formed.
- any of single crystal Si, polycrystalline Si, amorphous Si, and SiC can be used.
- an oxide film, a nitride film, a laminated film of an oxide film and a nitride film, or the like can be used.
- the nanowire region 2 in order to reduce parasitic resistance, after forming the nanowire region 2 made of silicon, the nanowire region 2 is epitaxially grown as a seed, and the upper surface of the nanowire region 2 other than the channel region 3 is formed. And epitaxial growth may be formed on the side surfaces.
- the manufacturing method of the present embodiment it is possible to create a nanowire transistor having a fine width and a gorge pitch with the width of the first region 22 formed by lithography as a pitch.
- FIG. 9A is a flowchart showing the steps of the process of the experiment
- FIGS. 9B to 9E are cross-sectional views in the respective steps.
- a mask 32 is formed on the silicon layer, and first silicon RIE (Reactive ⁇ ⁇ Ion Etching) is performed on the silicon layer using the mask 32 to form a silicon region 30 having the shape shown in FIG. 9B. To do. Subsequently, as shown in FIG. 9C, the mask 32 is slimmed to form a mask 32a having a narrow width. Thereafter, second-stage RIE is performed on the silicon region 30 using the mask 32a to form the silicon layer 30a having the shape shown in FIG. Two nanowire regions 34a and 34b are formed in the silicon region 30a. Finally, as shown in FIG. 9E, the mask 32a is removed.
- first silicon RIE Reactive ⁇ ⁇ Ion Etching
- the left side surface 36 and the right side surface 38 are formed in the nanowire region 34a, and the right side surface 36 and the left side surface are formed in the nanowire region 34b.
- the side surface 36 is a surface formed by the first-stage and second-stage RIE, and the side surface 38 is a surface formed by the second-stage RIE.
- the comparison of the etching rates can be performed by comparing the outer side surface 36 processed by dry etching before slimming of the mask 32 and the inner side surface 38 processed by dry etching for the first time in the second stage.
- FIG. 10 shows a photograph obtained by observing the cross section of the silicon region 30a after performing the steps shown in FIGS. 9A to 9E with a scanning electron microscope.
- FIG. 10 shows that the surface 36 formed by performing both the first-stage RIE and the second-stage RIE and the surface 38 formed only by the second-stage RIE have different etching rates. It can be seen that the nanowire regions 34a and 34b are formed.
- the nanowire transistor having a narrow interval (pitch) between the nanowire regions 2 is formed. Can be obtained. That is, the interval between the nanowire regions 2 is the mask length, and the variation in the interval between the nanowire regions 2 is only affected by the variation in RIE processing. For this reason, variation can be reduced.
- the nanowire transistor can be formed using mask formation and two-step RIE processing, the number of processes can be reduced.
- the semiconductor device manufactured by the manufacturing method of the second embodiment has the same structure as the semiconductor device manufactured by the manufacturing method of the first embodiment.
- the manufacturing method of the second embodiment is performed in the same manner as the manufacturing method of the first embodiment up to the step shown in FIG. 6 of the manufacturing method according to the first embodiment. That is, the side surface 24 is formed in the first region 22 by etching using the mask 11. Immediately thereafter, the mask 11 is removed in the manufacturing method of the first embodiment, but in the manufacturing method of the second embodiment, the insulating layer 31 is formed on the side surface 24 without removing the mask 11 (FIG. 11).
- the insulating layer 31 preferably has a thickness that is removed by a second dry etching described later. For example, the thickness is preferably 2 nm or less, and more preferably 1 nm or less.
- the insulating layer 31 is formed by natural oxidation, thermal oxidation, or deposition.
- the mask 11 is removed as shown in FIG. Subsequently, a second dry etching is performed. Then, as shown in FIG. 13, since the insulating layer 31 and the silicon region 4 have different etching rates, the surface 24 on which the insulating layer 31 is formed is a surface 25 that is etched for the first time in the second dry etching step. The etching rate is lower than that. Therefore, the nanowire region 2 can be formed. Thereafter, a semiconductor device is manufactured using the same steps as those in the manufacturing method of the first embodiment. Note that the cross-sectional views shown in FIGS. 11 to 13 are cross-sectional views taken along the line CC described in the first embodiment.
- the nanowire transistor having a narrow interval (pitch) between the nanowire regions 2 is formed. Can be obtained. That is, the interval between the nanowire regions 2 is the mask length, and the variation in the interval between the nanowire regions 2 is only affected by the variation in RIE processing. For this reason, variation can be reduced.
- the nanowire transistor can be formed using mask formation and two-step RIE processing, the number of processes can be reduced.
- a semiconductor device according to the third embodiment is shown in FIG.
- the semiconductor device of the present embodiment is a semiconductor memory transistor having a plurality of nanowire regions 2, and includes the gate insulating film 5 and the gate electrode 6 of the semiconductor device shown in FIG. 3 manufactured by the manufacturing method of the first embodiment.
- the tunnel insulating film 43, the charge storage film 44, the block insulating film 45, and the control electrode 46 are replaced with a laminated film laminated in this order.
- the semiconductor device according to the third embodiment includes a plurality of nanowire regions 2 and is covered with a laminated film having a tunnel insulating film 43, a charge storage film 44, a block insulating film 45, and a control electrode 46 in each nanowire region 2. This portion becomes the channel region 3.
- a method of manufacturing a semiconductor device according to the third embodiment will be described with reference to FIGS.
- the manufacturing method of the third embodiment is the same as the manufacturing method of the first embodiment until the step of forming the element isolation region 10 in the manufacturing method of the first embodiment. That is, the nanowire region 2 having the side surface 24 and the side surface 25 is formed as shown in FIG. Thereafter, a part of the recess formed by these side surfaces 24 and 25 is filled with an insulating film to form the element isolation region 10. Subsequently, a tunnel insulating film 43, a charge storage film 44, and a block insulating film 45 are sequentially formed. Thereafter, the control electrode 46 is formed so as to cover the block insulating film 45.
- SiO 2 As the tunnel insulating film 43, SiO 2 , an alternate laminated film of Si and SiO 2 (specifically, SiO 2 —Si microcrystal—SiO 2 ), or an alternately laminated film of SiN and SiO 2 is used.
- charge storage film 44 SiN, HfO x , HfON, or a laminated film thereof is used.
- the block insulating film 45 SiO 2 , SiN, a high-k film (eg, HfO x ), or a laminated film thereof is used.
- the third embodiment can also provide a semiconductor device including nanowire transistors having a narrow interval (pitch) between the nanowire regions 2 as in the first or second embodiment. Further, variation can be reduced. Furthermore, since the nanowire transistor can be formed using mask formation and two-step RIE processing, the number of processes can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Plasma & Fusion (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Semiconductor Memories (AREA)
- Thin Film Transistor (AREA)
- Drying Of Semiconductors (AREA)
- Non-Volatile Memory (AREA)
Abstract
[課題]幅が微細でかつ間隔が狭いナノワイヤを有するナノワイヤトランジスタを製造することのできる半導体装置の製造方法を提供する。 [解決手段]実施形態による半導体装置の製造方法は、半導体層上に第1方向に延在する第1マスクを形成する工程と、前記第1マスクを用いて前記半導体層をエッチングし、前記第1方向に沿った両側面を有する凸形状の第1領域を形成するとともに前記両側面に第2マスクを形成する工程と、前記第1マスクを除去することにより前記第1領域の上面を露出する工程と、露出した前記上面をエッチングすることにより、前記第1領域から、前記第1方向に沿って延在する第2および第3領域を形成する工程と、を備えている。
Description
本発明の実施形態は、半導体装置の製造方法に関する。
ゲート長が30nm以下の極微細のMOSFETを実現するための構造として、従来の平面型トランジスタに代わって、短チャネル効果を抑制することの可能なナノワイヤ型チャネルトランジスタ(以下、ナノワイヤトランジスタともいう)が期待されている。このナノワイヤトランジスタは、チャネル領域となるシリコンからなる1つ以上のナノワイヤを含む半導体層と、このナノワイヤの延在する方向の両側に上記ナノワイヤに接続し、ナノワイヤよりも幅の広いソース領域およびドレイン領域とを備えている。そして、ナノワイヤの側面と上面にゲート絶縁膜が設けられ、このゲート絶縁膜上にゲート電極が設けられている。ナノワイヤ中で、上部にゲート電極が形成されている領域がチャネル領域として動作する。チャネル領域は幅(ゲート幅方向の長さ)が3nm~25nm程度、高さが3nm~40nm程度の細線構造を有している。チャネル領域がゲート電極に覆われているため、ゲート電極の支配力が強く、短チャネル効果を抑制することができる。ナノワイヤトランジスタは、ナノワイヤの上面と両側面の計3面がチャネルとして機能するため、トライゲートトランジスタとも呼ばれる。
ナノワイヤトランジスタは幅が小さく、高さも低いため一つのナノワイヤ中に流れる電流は小さくなってしまう。ドレイン電流を増加させるために、ナノワイヤトランジスタとして、ソース領域とドレイン領域との間に複数のナノワイヤが並列に設けられたマルチフィンガー構造が用いられる。このマルチフィンガー構造は、ナノワイヤ間の間隔(ピッチ)を小さくするフットプリントが小さくできる。また、ナノワイヤの幅(チャネル長方向に直交する方向の長さ)を小さくするほどゲート支配力が大きくなるため、短チャネル効果に対して有効である。そのため、ナノワイヤの幅およびナノワイヤのピッチを小さくする必要がある。
これまで、微細なナノワイヤの作成のために、露光によるパターニング後に、マスクを用いたウェットエッチング等によるスリミング法や、側壁転写を用いたダブルパターニング法が用いられている。しかし、スリミング法ではナノワイヤのピッチを小さくすることはできない。またダブルパターニング法では転写の回数に伴い、ばらつきやプロセスコストの増大が問題となっている。
本実施形態は、幅が微細でかつ間隔が狭いナノワイヤを有するナノワイヤトランジスタを製造することのできる半導体装置の製造方法を提供する。
本実施形態による半導体装置の製造方法は、半導体層上に第1方向に延在する第1マスクを形成する工程と、前記第1マスクを用いて前記半導体層をエッチングし、前記第1方向に沿った両側面を有する凸形状の第1領域を形成するとともに前記両側面に第2マスクを形成する工程と、前記第1マスクを除去することにより前記第1領域の上面を露出する工程と、露出した前記上面をエッチングすることにより、前記第1領域から、前記第1方向に沿って延在する第2および第3領域を形成する工程と、を備えている。
以下、図面を参照して実施形態について説明する。
(第1実施形態)
第1実施形態による半導体装置の製造方法について説明する。この実施形態の製造方法によって製造される半導体装置を図1乃至図3に示す。この実施形態の製造方法によって製造される半導体装置100は、マルチフィンガー構造を有するナノワイヤトランジスタを備えている。図1は、半導体装置100の上面図を示し、図2は、図1に示す切断面A-Aで切断した場合の断面図を示し、図3は、図1に示す切断面B-Bで切断した場合の断面図を示す。なお、断面A-Aはゲート長方向に沿った断面を示し、断面B-Bはゲート幅方向に沿った断面を示す。
第1実施形態による半導体装置の製造方法について説明する。この実施形態の製造方法によって製造される半導体装置を図1乃至図3に示す。この実施形態の製造方法によって製造される半導体装置100は、マルチフィンガー構造を有するナノワイヤトランジスタを備えている。図1は、半導体装置100の上面図を示し、図2は、図1に示す切断面A-Aで切断した場合の断面図を示し、図3は、図1に示す切断面B-Bで切断した場合の断面図を示す。なお、断面A-Aはゲート長方向に沿った断面を示し、断面B-Bはゲート幅方向に沿った断面を示す。
半導体装置100のナノワイヤトランジスタは、シリコン半導体層1上に設けられたシリコン領域4を備えている。このシリコン領域4は、並列に配置された複数のナノワイヤ領域2と、各ナノワイヤ領域2よりも幅が広くかつ各ナノワイヤ領域2の両側に設けられたソース領域8およびドレイン領域9と、を有する。各ナノワイヤ領域2はソース領域8およびドレイン領域9に接続する。各ナノワイヤ領域2は、素子分離領域10によって分離される。各ナノワイヤ領域2において、ソース領域8からドレイン領域9に向かう方向に沿った、ナノワイヤ領域2の少なくとも上面を覆うようにゲート絶縁膜5が設けられ、このゲート絶縁膜5を覆うようにゲート電極6が設けられている。このゲート電極6の、ソース領域側およびドレイン領域側の側部に絶縁体からなるゲート側壁7が設けられている。
このように構成されたナノワイヤ領域2においては、上部にゲート電極6が形成されている領域がチャネル領域3として機能する。ナノワイヤ領域2のチャネル領域3は幅、すなわちゲート幅方向の長さが1nm~25nm程度、高さが1nm~50nm程度の細線構造(ナノワイヤ構造)を有している。
次に、第1実施形態による半導体装置の製造方法について、図4乃至図8を参照して説明する。図4は一製造工程の上面図を示し、図5は図4に示す切断面C-C(ゲート幅方向に沿った断面)で切断した断面図を示す。図6乃至図8は他の製造工程におけるC-C断面図を示す。
まず、図4および図5に示すように、シリコン半導体層1上にマスク11を形成する。このマスク11は、2つ以上の第1領域12と、第1領域12の両側に設けられ第1領域12よりも幅が広い第2および第3領域13a、13bとを備えている。第2および第3領域13a、13bはそれぞれ、第1領域12に接続する。第1領域12が2つのナノワイヤ領域2間に対応し、第2および第3領域13a、13bがそれぞれソース領域8およびドレイン領域9に対応する。マスク11の形成は、通常のリソグラフィー法等を用いて行う。ここで、マスク11としては、例えばシリコンよりもエッチングレートの低い材料、例えば絶縁材料を用い、リソグラフィー法およびドライエッチングを用いて形成するか、またはリソグラフィー法およびウェットエッチングを用いて形成する。
次に、図6に示すように、ドライエッチングによってマスク11を利用してシリコン半層1のパターニングを行い、シリコン半導体層1に第1領域22およびこの第1領域22よりも幅の広い第2領域(図示せず)を有する凸形状のシリコン半導体領域4を形成する。このとき、第1領域22には側面24が形成され、この側面24には、図示しない、エッチングの際の堆積物等が付着する。このエッチングに用いられるガス種は、ハロゲン化合物を含む。このハロゲン化合物としては、半導体層1がSiを含む場合は、例えば、SiFx、SiClx、またはSiBrx等が挙げられる。上記堆積物は、1)半導体層1を構成する元素、2)この元素の酸化物、および3)上記元素とエッチングガスに含まれるハロゲン元素との化合物のうちの少なくとも1つを含む。このエッチングに続いて、図7に示すように、マスク11を除去し、第1領域22の上面23を露出する。
次に、図8に示すように、二度目のドライエッチングを行う。このとき、マスク11が除去された第1領域22は、上面23がエッチングされて2つのナノワイヤ領域2に分割される。これらのナノワイヤ領域2はそれぞれ2つの側面を有し、一方の側面が一度目のエッチングによって形成された側面24であり、他方の側面が二度目のエッチングによって形成された側面25である。一度目のエッチングによって形成された側面24には一度目のエッチングの際の堆積物等が付着している。このため、上記堆積物がマスクとして機能し、側面24は、二度目のドライエッチングで初めてエッチングされる上面23およびその後に形成される側面25に比べてエッチングレートが低下する。すなわち、一度目のエッチングで形成された側面24は二度目のドライエッチングによってもエッチングされるが、二度目のエッチングによって形成される側面25に比べてエッチング速度が遅い。このため、図8に示すように、側面24のエッチングによって形成される深さは、側面25のエッチングによって形成される深さに比べて非常に深くはない。なお、二度目のドライエッチングによって、第1領域22よりも幅の広い、ソースおよびドレイン領域となる第2領域は、一様にエッチングされて、上面がナノワイヤ領域2の上面よりも低くなる。また、第2領域は、第1領域22に直交する方向の長さ(幅)は、30nmよりも大きいことが好ましい。30nm以下であると、第1領域22と同様に、二度目のドライエッチングによって、2つの領域に分割される。
なお、本実施形態では、ナノワイヤ領域2とソースおよびドレイン領域を同時に形成したが、ナノワイヤ領域2を形成した後に、ソースおよびドレイン領域を形成するようにしてもよい。例えば、まず、マスクを用いてドライエッチングによって第1領域22を形成し、上記マスクを除去した後に、上面が露出した第1領域22に対して二度目のエッチングを行い、2つのナノワイヤ領域を形成する。その後、これらのナノワイヤ領域をマスクし、これらのナノワイヤ領域2の両端に接続するソースおよびドレイン領域を形成する。これらのソースおよびドレイン領域の形成には、例えばエピタキシャル成長法が用いることができる。
次に、素子分離用絶縁膜(図示せず)を形成し、CMP(Chemical Mechanical Planarization)とウェットエッチング等を用いて素子分離領域10(図1および図3参照)の形成を行う。続いて、ゲート絶縁膜材料およびゲート電極材料を順次堆積する。このときの、ゲート絶縁膜材料としてはシリコン酸化膜のほか、high-k材料を用いることができる。ゲート電極材料としては、ポリSi、メタルシリサイド、TiN、W、TaCを用いることができ、またポリSiと金属の積層膜を用いることができる。
以後、ゲート電極材料をパターニングしてゲート電極を形成する。続いて、イオン注入を行うことによりソース領域8およびドレイン領域9を形成する。その後、ゲート側壁を形成し、ナノワイヤトランジスタを作成する。
シリコン半導体層1としては、単結晶Si、多結晶Si、非晶質Si、SiCのいずれかを用いることができる。
ゲート側壁としては酸化膜、窒化膜、あるいは酸化膜と窒化膜の積層膜等を用いることができる。
なお、ナノワイヤ領域2におけるチャネル領域3以外の領域は寄生抵抗低減のために、シリコンからなるナノワイヤ領域2を形成後に、このナノワイヤ領域2を種としてエピタキシャル成長させ、チャネル領域3以外のナノワイヤ領域2の上面および側面にエピタキシャル成長を形成してもよい。
本実施形態の製造方法によれば、リソグラフィー法で形成された第1領域22の幅をピッチとする、微細な幅、峡ピッチのナノワイヤトランジスタの作成が可能となる。
また、本製造方法によれば、側壁転写法等のような転写をする工程がないため、加工によるばらつきを抑制することができる。
ここで、本実施形態の製造方法における一度目にドライエッチングによって形成された面と、ドライエッチングを行っていない面について、二度目のドライエッチングを行った場合、エッチングレートが異なることを実験で確認したので、この実験について図9(a)乃至9(e)を参照して説明する。図9(a)は上記実験のプロセスの工程を示すフローチャートであり、図9(b)乃至9(e)は、各工程における断面図である。
まず、シリコン層上にマスク32を形成し、このマスク32を用いて上記シリコン層に1段階目のRIE(Reactive Ion Etching)を行い、図9(b)に示す形状を有するシリコン領域30を形成する。続いて、図9(c)に示すように、マスク32をスリミングし、幅を狭くしたマスク32aを形成する。その後、マスク32aを用いてシリコン領域30に2段階目のRIEを行い、図9(d)に示す形状のシリコン層30aを形成する。このシリコン領域30aには、2つのナノワイヤ領域34a、34bが形成される。最後に図9(e)に示すように、マスク32aを除去する。これにより、ナノワイヤ領域34aには左側の側面36と右側の側面38とが形成され、ナノワイヤ領域34bには右側の側面36と左側の側面が形成される。側面36は1段階目と2段階目のRIEによって形成された面であり、側面38は2段階目のRIEによって形成された面である。
エッチングレートの比較はマスク32のスリミング前にドライエッチングにより加工された外側の側面36と、二段階目に初めてドライエッチングにより加工される内側の側面38との比較により行うことができる。
図9(a)乃至9(e)に示した工程を行った後のシリコン領域30aの断面を走査型電子顕微鏡によって観察して得られた写真を図10に示す。この図10から、一段階目のRIEと二段階目のRIEの両方を行って形成された面36と、二段階目のRIEのみで形成された面38とのエッチングレートが異なることにより、両側にナノワイヤ領域34a、34bが形成されていることがわかる。
以上説明したように、本実施形態によれば、微細なマスク11によって覆われた第1領域22から2つのナノワイヤ領域2が形成されるため、ナノワイヤ領域2間の間隔(ピッチ)が狭いナノワイヤトランジスタを備えた半導体装置を得ることができる。すなわち、ナノワイヤ領域2間の間隔はマスク長となり、ナノワイヤ領域2間の間隔のばらつきは、RIE加工のばらつきの影響を受けるだけである。このため、ばらつきを小さくすることができる。また、マスクの形成と、2段階のRIE加工とを用いてナノワイヤトランジスタを形成することが可能となるので、プロセス数を少なくすることができる。
(第2実施形態)
第2実施形態による半導体装置の製造方法について図11乃至図13を参照して説明する。第2実施形態の製造方法によって製造された半導体装置は、第1実施形態の製造方法によって製造された半導体装置と同一の構造を有している。
第2実施形態による半導体装置の製造方法について図11乃至図13を参照して説明する。第2実施形態の製造方法によって製造された半導体装置は、第1実施形態の製造方法によって製造された半導体装置と同一の構造を有している。
この第2実施形態の製造方法は、第1実施形態による製造方法の図6に示す工程までは第1実施形態の製造方法と同様に行う。すなわち、マスク11を利用してエッチングすることにより、第1領域22に側面24が形成される。その直後、第1実施形態の製造方法ではマスク11を除去したが、第2実施形態の製造方法においては、マスク11を除去せずに、側面24に絶縁層31を形成する(図11)。この絶縁層31は、後述する二度目のドライエッチングによって除去される厚さであることが好ましい。例えば厚さを2nm以下にすることが好ましく、1nm以下であるとさらに好ましい。絶縁層31は自然酸化、熱酸化、または堆積によって形成する。
次に、図12に示すようにマスク11を除去する。続いて、二度目のドライエッチングを行う。すると、図13に示すように、絶縁層31とシリコン領域4とではエッチングレートが異なるために、絶縁層31が形成されている面24は、二度目のドライエッチング工程で初めてエッチングされる面25に比べてエッチングレート低下する。そのため、ナノワイヤ領域2が形成可能となる。その後、第1実施形態の製造方法と同じ工程を用いて半導体装置を製造する。なお、図11乃至図13に示す断面図は、第1実施形態で説明したC-C線で切断した断面図である。
以上説明したように、本実施形態によれば、微細なマスク11によって覆われた第1領域22から2つのナノワイヤ領域2が形成されるため、ナノワイヤ領域2間の間隔(ピッチ)が狭いナノワイヤトランジスタを備えた半導体装置を得ることができる。すなわち、ナノワイヤ領域2間の間隔はマスク長となり、ナノワイヤ領域2間の間隔のばらつきは、RIE加工のばらつきの影響を受けるだけである。このため、ばらつきを小さくすることができる。また、マスクの形成と、2段階のRIE加工とを用いてナノワイヤトランジスタを形成することが可能となるので、プロセス数を少なくすることができる。
(第3実施形態)
第3実施形態による半導体装置を図14に示す。本実施形態の半導体装置は、複数のナノワイヤ領域2を備えた半導体メモリトランジスタであって、第1実施形態の製造方法によって製造される図3に示す半導体装置のゲート絶縁膜5およびゲート電極6を、トンネル絶縁膜43、電荷蓄積膜44、ブロック絶縁膜45、および制御電極46がこの順序で積層された積層膜によって置き換えた構成を有している。この第3実施形態の半導体装置は、複数のナノワイヤ領域2を備え、各ナノワイヤ領域2の、トンネル絶縁膜43、電荷蓄積膜44、ブロック絶縁膜45、および制御電極46を有する積層膜で覆われた部分がチャネル領域3となる。
第3実施形態による半導体装置を図14に示す。本実施形態の半導体装置は、複数のナノワイヤ領域2を備えた半導体メモリトランジスタであって、第1実施形態の製造方法によって製造される図3に示す半導体装置のゲート絶縁膜5およびゲート電極6を、トンネル絶縁膜43、電荷蓄積膜44、ブロック絶縁膜45、および制御電極46がこの順序で積層された積層膜によって置き換えた構成を有している。この第3実施形態の半導体装置は、複数のナノワイヤ領域2を備え、各ナノワイヤ領域2の、トンネル絶縁膜43、電荷蓄積膜44、ブロック絶縁膜45、および制御電極46を有する積層膜で覆われた部分がチャネル領域3となる。
第3実施形態による半導体装置の製造方法について図8および図14を参照して説明する。第3実施形態の製造方法は、第1実施形態の製造方法において、素子分離領域10を形成する工程までは、第1実施形態の製造方法と同じように行う。すなわち、図8に示すように側面24および側面25を有するナノワイヤ領域2を形成する。その後、これらの側面24、25によって形成される凹部の一部を絶縁膜で埋め込み、素子分離領域10を形成する。続いて、トンネル絶縁膜43、電荷蓄積膜44、およびブロック絶縁膜45を順次形成する。その後、ブロック絶縁膜45を覆うように制御電極46を形成する。
トンネル絶縁膜43としては、SiO2、またはSiとSiO2の交互積層膜(具体的にはSiO2-Si微結晶-SiO2)、SiNとSiO2の交互積層膜が用いられる。
電荷蓄積膜44としては、SiN、HfOx、HfON、またはこれらの積層膜が用いられる。
ブロック絶縁膜45としては、SiO2、SiN、high-k膜(例えば、HfOx等)、またはこれらの積層膜が用いられる。
なお、この第3実施形態の半導体装置のナノワイヤ領域2の形成に、第1実施形態で説明した製造工程を用いたが、第2実施形態で説明した製造工程を用いてもよい。
以上説明したように、第3実施形態も第1または第2実施形態と同様に、ナノワイヤ領域2間の間隔(ピッチ)が狭いナノワイヤトランジスタを備えた半導体装置を得ることができる。また、ばらつきを小さくすることができる。更に、マスクの形成と、2段階のRIE加工とを用いてナノワイヤトランジスタを形成することが可能となるので、プロセス数を少なくすることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
Claims (9)
- 半導体層上に第1方向に延在する第1マスクを形成する工程と、
前記第1マスクを用いて前記半導体層をエッチングし、前記第1方向に沿った両側面を有する凸形状の第1領域を形成するとともに前記両側面に第2マスクを形成する工程と、 前記第1マスクを除去することにより前記第1領域の上面を露出する工程と、
露出した前記上面をエッチングすることにより、前記第1領域から、前記第1方向に沿って延在する第2および第3領域を形成する工程と、
を備えている半導体装置の製造方法。 - 前記第2マスクは、前記半導体層をエッチングする際に生じた堆積物である請求項1記載の半導体装置の製造方法。
- 前記第1マスクを除去する前に、前記第1領域の両側面に絶縁層を形成する工程を更に備えた請求項1記載の半導体装置の製造方法。
- 前記第1方向に交差する第2方向に延在しかつ前記第2および第3領域のそれぞれの一方の端部に接続する第4領域および前記第2方向に延在しかつ前記第2および第3領域のそれぞれの他方の端部に接続する第5領域を形成する工程を、更に備えている請求項1記載の半導体装置の製造方法。
- 前記第4および第5領域の形成は、前記第1領域を形成するときに行われる請求項4記載の半導体装置の製造方法。
- 前記第4および第5領域の形成は、前記第2および第3領域の形成後に行われる請求項4記載の半導体装置の製造方法。
- 前記第2および第3領域を覆う第1絶縁膜、電極膜を順次形成する工程を更に備えた請求項4記載の半導体装置の製造方法。
- 前記第2および第3領域を覆う第1絶縁膜、電荷蓄積膜、第2絶縁膜、電極膜を順次形成する工程を更に備えた請求項4記載の半導体装置の製造方法。
- 前記半導体層は、単結晶Si、多結晶Si、非晶質Si、SiCのいずれかである請求項1記載の半導体装置の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-147937 | 2013-07-16 | ||
JP2013147937A JP2015023060A (ja) | 2013-07-16 | 2013-07-16 | 半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015008548A1 true WO2015008548A1 (ja) | 2015-01-22 |
Family
ID=52346022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064597 WO2015008548A1 (ja) | 2013-07-16 | 2014-06-02 | 半導体装置の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015023060A (ja) |
WO (1) | WO2015008548A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI799938B (zh) * | 2016-03-15 | 2023-04-21 | 瑞典商阿力克斯實驗室公司 | 選擇性蝕刻奈米結構之方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63226930A (ja) * | 1987-03-16 | 1988-09-21 | Nec Corp | 半導体装置の製造方法 |
JPH0653488A (ja) * | 1992-07-30 | 1994-02-25 | Nippon Steel Corp | 半導体装置およびその製造方法 |
JPH1079504A (ja) * | 1996-09-05 | 1998-03-24 | Sony Corp | 量子細線デバイス及びその製造方法 |
JP2000286245A (ja) * | 1999-03-31 | 2000-10-13 | Toyota Central Res & Dev Lab Inc | 半導体装置及び半導体装置の製造方法 |
JP2005528810A (ja) * | 2002-08-23 | 2005-09-22 | インテル コーポレイション | トリゲート・デバイス及び製造方法 |
-
2013
- 2013-07-16 JP JP2013147937A patent/JP2015023060A/ja not_active Abandoned
-
2014
- 2014-06-02 WO PCT/JP2014/064597 patent/WO2015008548A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63226930A (ja) * | 1987-03-16 | 1988-09-21 | Nec Corp | 半導体装置の製造方法 |
JPH0653488A (ja) * | 1992-07-30 | 1994-02-25 | Nippon Steel Corp | 半導体装置およびその製造方法 |
JPH1079504A (ja) * | 1996-09-05 | 1998-03-24 | Sony Corp | 量子細線デバイス及びその製造方法 |
JP2000286245A (ja) * | 1999-03-31 | 2000-10-13 | Toyota Central Res & Dev Lab Inc | 半導体装置及び半導体装置の製造方法 |
JP2005528810A (ja) * | 2002-08-23 | 2005-09-22 | インテル コーポレイション | トリゲート・デバイス及び製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2015023060A (ja) | 2015-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6951903B2 (ja) | 半導体素子のための拡張領域 | |
TWI524531B (zh) | 鰭型場效電晶體與半導體裝置之製造方法 | |
TWI458096B (zh) | 半導體裝置及其製造方法 | |
CN103177950B (zh) | 制造鳍器件的结构和方法 | |
US7947589B2 (en) | FinFET formation with a thermal oxide spacer hard mask formed from crystalline silicon layer | |
TWI728413B (zh) | 半導體裝置與半導體結構之形成方法、以及半導體裝置 | |
TWI598946B (zh) | 半導體裝置與其製造方法 | |
TWI643345B (zh) | 用於非平面電晶體之鎢閘極技術(四) | |
US8912056B2 (en) | Dual epitaxial integration for FinFETS | |
JP6688301B2 (ja) | トランジスタ・デバイス内に置換金属ゲートを製造する方法、フィン電界効果トランジスタデバイスおよびその製造方法 | |
US10854452B2 (en) | Method of manufacturing semiconductor devices | |
US10032774B2 (en) | Semiconductor device and manufacture method thereof | |
US20170194462A1 (en) | Semiconductor fins for finfet devices and sidewall image transfer (sit) processes for manufacturing the same | |
US10483377B2 (en) | Devices and methods of forming unmerged epitaxy for FinFet device | |
JP6173083B2 (ja) | 電界効果半導体デバイスを製造する方法 | |
US9984931B2 (en) | Semiconductor device, method of fabricating the same, and patterning method | |
US10276573B2 (en) | FinFET including tunable fin height and tunable fin width ratio | |
US20140199845A1 (en) | Selective removal of gate structure sidewall(s) to facilitate sidewall spacer protection | |
US9793378B2 (en) | Fin field effect transistor device with reduced overlap capacitance and enhanced mechanical stability | |
US9331159B1 (en) | Fabricating transistor(s) with raised active regions having angled upper surfaces | |
US20160086952A1 (en) | Preventing epi damage for cap nitride strip scheme in a fin-shaped field effect transistor (finfet) device | |
US11037788B2 (en) | Integration of device regions | |
TW201742125A (zh) | 半導體裝置及其製作方法 | |
WO2015008548A1 (ja) | 半導体装置の製造方法 | |
US9911825B2 (en) | Integrated circuits with spacer chamfering and methods of spacer chamfering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14826208 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14826208 Country of ref document: EP Kind code of ref document: A1 |