WO2015008335A1 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- WO2015008335A1 WO2015008335A1 PCT/JP2013/069320 JP2013069320W WO2015008335A1 WO 2015008335 A1 WO2015008335 A1 WO 2015008335A1 JP 2013069320 W JP2013069320 W JP 2013069320W WO 2015008335 A1 WO2015008335 A1 WO 2015008335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clock
- circuit
- signal
- semiconductor device
- enable
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 29
- 230000005856 abnormality Effects 0.000 claims abstract description 76
- 238000001514 detection method Methods 0.000 claims abstract description 72
- 230000001360 synchronised effect Effects 0.000 claims abstract description 5
- 239000000872 buffer Substances 0.000 claims description 17
- 230000002159 abnormal effect Effects 0.000 claims description 11
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 abstract 2
- 238000000034 method Methods 0.000 description 15
- 230000000630 rising effect Effects 0.000 description 15
- 238000004364 calculation method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 238000012795 verification Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 238000010206 sensitivity analysis Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000012966 insertion method Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/71—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
- G06F21/76—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information in application-specific integrated circuits [ASIC] or field-programmable devices, e.g. field-programmable gate arrays [FPGA] or programmable logic devices [PLD]
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09C—CIPHERING OR DECIPHERING APPARATUS FOR CRYPTOGRAPHIC OR OTHER PURPOSES INVOLVING THE NEED FOR SECRECY
- G09C1/00—Apparatus or methods whereby a given sequence of signs, e.g. an intelligible text, is transformed into an unintelligible sequence of signs by transposing the signs or groups of signs or by replacing them by others according to a predetermined system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/10—Protecting distributed programs or content, e.g. vending or licensing of copyrighted material ; Digital rights management [DRM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/44—Program or device authentication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/55—Detecting local intrusion or implementing counter-measures
- G06F21/56—Computer malware detection or handling, e.g. anti-virus arrangements
- G06F21/566—Dynamic detection, i.e. detection performed at run-time, e.g. emulation, suspicious activities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/002—Countermeasures against attacks on cryptographic mechanisms
- H04L9/004—Countermeasures against attacks on cryptographic mechanisms for fault attacks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/12—Details relating to cryptographic hardware or logic circuitry
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/34—Encoding or coding, e.g. Huffman coding or error correction
Definitions
- the present invention relates to a security device such as an authentication process or an encryption process, and relates to a semiconductor device for taking measures against a specific attack targeting the device.
- a major premise for executing the encryption algorithm and the authentication algorithm is that each device performs a “safe” calculation.
- “safe” means that it is difficult for anyone other than those who can use the device to read or tamper with key information.
- an implementation method is required in which the calculation contents are kept secret even for an attacker who intervenes in the device itself.
- fault attacks attempt to decrypt by deliberately inducing a calculation error in the embedded device (hereinafter, such attacks are referred to as “fault attacks”).
- fault attacks is a technique for inducing decryption by inducing a calculation error in a target circuit by a physical stimulus and observing the behavior.
- error insertion methods There are various error insertion methods, but a typical one is to insert a spike into a clock signal inputted to a circuit. Such clock signals including spikes are known to result in malfunction of the target circuit.
- Measure technologies have been devised for fault attacks. Countermeasure technologies are roughly classified into two. That is, (i) detection of calculation error and (ii) detection of abnormal state.
- the detection of calculation error is a method of finding a calculation error using verification or an error detection code, and interrupting or correcting the process. As an example of such a method, for example, Patent Document 1 is cited.
- the detection of the abnormal state (ii) is to detect an abnormal operating environment that may cause a calculation error by mounting a sensor or the like.
- Non-Patent Document 1 can be used to detect an abnormality in the clock signal
- Patent Document 2 can be used to detect laser irradiation.
- Non-Patent Document 2 describes that the error detection capability of Patent Document 1 is limited when two consecutive errors are inserted (timing double fault).
- Non-Patent Document 3 when an attack method called “failure sensitivity analysis” as described in Non-Patent Document 3 is used, it is known that an attack is possible even if a check is made.
- problem 1 There are two problems with countermeasures using verification / error detection codes.
- the first problem is that multiple faults may not be detected. When a plurality of errors are inserted at the same time, not only the calculation to be protected but also the calculation of the verification / error detection code may be erroneous at the same time. As a result, there is a possibility that the situation that should be detected as an error is missed and the error detection fails.
- the second problem is that failure sensitivity analysis cannot be prevented.
- an attack is performed by analyzing an output including an error. Therefore, measures could be taken by detecting errors and suppressing the output of incorrect calculation results.
- failure sensitivity analysis uses only the information that the calculation is incorrect / not incorrect to perform an attack. Such information “incorrect / not erroneous” is output to the outside even when the verification / error detection code succeeds in error detection. For this reason, an attack is established even if a countermeasure using a verification / error detection code exists.
- FIG. 8 is an explanatory diagram showing a mechanism for bypassing the clock abnormality detection circuit in the prior art.
- a clock signal supplied from the outside of the chip is amplified by the clock distribution circuit 100 and supplied to each circuit.
- the clock abnormality detection circuit 101 is attached to one of the terminals of the clock distribution circuit 100.
- the protection target circuit 102 is connected to a terminal different from the clock abnormality detection circuit in the clock distribution circuit 100.
- the attacker applies a physical stimulus 103 to a part of the clock distribution circuit 100 by means such as laser irradiation.
- an abnormality can be caused in the clock of the protection target circuit 102 without stimulating the clock abnormality detection circuit 101.
- the clock supplied to the clock abnormality detection circuit 101 is normal, the abnormality cannot be detected.
- a circuit that operates in synchronization with a clock operates by detecting the rising edge, falling edge, or both of the clock signal.
- a conventional method for detecting an abnormality of a clock signal as described in Non-Patent Document 1 can operate only on one of rising and falling edges of the clock due to its configuration. For this reason, there is a problem that it cannot be applied to a circuit that uses both rising and falling edges of a clock signal.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a semiconductor device capable of detecting a local clock abnormality.
- a semiconductor device generates an enable signal that is a pulse train synchronized with a clock signal and supplies the enable signal to a protection target circuit, and an enable signal generated by the clock signal and the enable generation circuit And a first abnormality detection circuit that detects an abnormality in the clock timing due to the spike being introduced into the clock signal.
- a local clock abnormality is provided by having an abnormality detection circuit capable of detecting a spike introduced into a clock signal based on a logical operation between an enable signal synchronized with the clock signal and the clock signal itself. Can be obtained.
- FIG. 10 is an explanatory diagram showing a mechanism by which a clock abnormality detection circuit is bypassed in the conventional technology.
- FIG. 1 is a diagram illustrating one configuration of the semiconductor device according to the first embodiment of the present invention.
- the semiconductor device according to the first embodiment includes an enable generation circuit 10 and an abnormality detection circuit 20 (corresponding to a first abnormality detection circuit), and prevents malfunction of the protection target circuit 30 using them. Or detect.
- the protection target circuit 30 includes one or both of a register 31 that operates at the rising edge and a register 32 that operates at the falling edge.
- the register 31 operating at the rising edge is connected to the clock signal and the rising enable signal that are passed through the AND gate 3.
- the register 32 operating at the falling edge is connected to the clock signal and the falling enable signal that are passed through the AND gate 4.
- the rising enable signal and the falling enable signal are pulse trains generated by the enable generation circuit 10 in synchronization with the clock signal, and details will be described later.
- a clock signal is supplied to the enable generation circuit 10 and the abnormality detection circuit 20 from the outside via the clock buffers 1 and 2.
- the abnormality detection circuit 20 when a spike is inserted into the clock buffer 2, it can be detected by the abnormality detection circuit 20. Details of the abnormality prevention / detection method will be described later. Even when errors occur in both the clock buffers 1 and 2 at the same time, the same abnormality can be detected.
- FIG. 2 is a diagram for explaining the internal configuration and operation of the enable generation circuit 10 according to the first embodiment of the present invention.
- the enable generation circuit 10 includes registers 11 and 12, delay circuits 13 and 14, and XOR gates 15 and 16.
- the enable generation circuit 10 having such a configuration receives a clock signal from the outside and outputs a rising enable signal and a falling enable signal.
- the rising enable signal and the falling enable signal are pulse trains synchronized with the clock.
- a section in which both enable signals are both low is referred to as an invalid section
- a section in which one of the enable signals is high is referred to as a valid section.
- the ratio between the invalid period and the valid period is controlled by the delay time by the delay circuits 13 and 14.
- the delay circuits 13 and 14 can be configured by cascading buffers.
- the delay time can be designed according to the number of buffer stages to be connected.
- the delay time is designed according to the following requirements. First, the invalid interval is made longer than the maximum delay time of the protection target circuit 30.
- the effective section is designed to be as short as possible. Since the invalid interval is longer than the maximum delay time of the protection target circuit 30, it is ensured that the effective interval arrives after the operation of the protection target circuit 30 is completed.
- the enable generation circuit 10 can be replaced by a variable delay circuit.
- FIG. 3 is an explanatory diagram when an error occurs in the clock buffer 1 according to the first embodiment of the present invention.
- FIG. 4 is a diagram showing an internal configuration and operation of the abnormality detection circuit 20 according to the first embodiment of the present invention.
- the abnormality detection circuit 20 according to the first embodiment includes OR gates 21 and 22, registers 23 and 24, AND gates 25 and 26, and an OR gate 27.
- the abnormality detection circuit 20 receives the rising enable signal, the falling enable signal, and the clock signal, and outputs an alarm signal based on the comparison result.
- Anomaly detection is performed based on the constraint table shown in the lower part of FIG.
- the normal system is indicated by ⁇ and the abnormal system is indicated by ⁇ . That is, an input with a cross is generated only when an error is inserted. Therefore, an abnormal input can be detected by detecting an input with a cross.
- the abnormality detection circuit 20 shown in FIG. 4 is an example of a circuit configuration that performs such a detection operation.
- the configuration method using the OR gates 21 and 22 shown in FIG. 4 is an example of implementation, and can be replaced by another logic circuit having equivalent ability. Further, the outputs of the registers 23 and 24 are set to low at the time of reset, and continue to hold low as long as there is no abnormality. In the abnormal system, the outputs of the OR gates 21 and 22 are 1, and the values are taken into the registers 23 and 24.
- the outputs of the registers 23 and 24 are fed back to the clock ports of the registers 23 and 24 via the gates 25 and 26. As a result of this feedback, the registers 23 and 24 once hold “1” unless they are reset. As a result, the alarm signal is set high when an error occurs and remains high until a reset input is received. This property prevents erroneous detection by the abnormality detection circuit 20 due to multiple errors.
- the abnormality detection circuit that can detect the spike introduced in the invalid period from the enable signal generated in the enable generation circuit and the clock signal is provided. Furthermore, by designing the effective period as small as possible, it is possible to make it difficult to execute an attack that requires precise timing operation for spike introduction. As a result, a semiconductor device capable of detecting a local clock abnormality can be realized.
- FIG. 5 is a diagram illustrating one configuration of the semiconductor device according to the second embodiment of the present invention.
- the configuration of FIG. 5 in the second embodiment is obtained by adding an abnormality detection circuit 40 (corresponding to a second abnormality detection circuit) to the configuration of the first embodiment shown in FIG. Yes.
- an abnormality detection circuit 40 corresponding to a second abnormality detection circuit
- the effect of local clock abnormality countermeasures can be enhanced.
- the addition of the abnormality detection circuit 40 makes it possible to detect spikes during the effective period described with reference to FIG.
- the operation of the semiconductor device according to the second embodiment when a spike is introduced during the effective period will be described using the timing chart shown in the lower part of FIG.
- the spike introduced during the effective period corresponds to the input state of x in the constraint table shown in FIG. Therefore, even when the spike delivered to the clock buffer 1 (corresponding to the second clock buffer) is within the valid period, the abnormality detection circuit 40 can detect it.
- the alarm signal that is the output of the abnormality detection circuit 40, it is possible not only to increase the difficulty of error insertion but also to make it impossible.
- the second spike that can detect the spike introduced in the valid period is detected.
- An abnormality detection circuit is provided. As a result, it is possible to realize a semiconductor device capable of enhancing the effect of local clock abnormality detection as compared with the first embodiment.
- FIG. 6 is a diagram illustrating one configuration of the semiconductor device according to the third embodiment of the present invention.
- the third embodiment shows an example of a method for using an alarm signal.
- AND gates 5 and 6 are added to the abnormality detection circuit 20 (40).
- the AND gates 5 and 6 mask the input rising / falling enable signal with the alarm signal output from the abnormality detection circuit 20 (40).
- the abnormality detection circuit 20 (40) detects an abnormality
- the alarm signal is fixed high.
- the rising enable signal 'and the falling enable signal' which are the outputs of the AND gates 5 and 6 are fixed to zero.
- the protection target circuit 30 operating with the clock masked by the rising enable signal 'and the falling enable signal' cannot take in the value after the abnormality detection by the abnormality detection circuit 20 (40).
- the abnormality detection circuit 20 (40) and the protection target circuit 30 stop operating until a reset is input again. Thereby, the automatic stop of the protection target circuit 30 is achieved.
- the alarm signal output from the abnormality detection circuit 20 (40) can be effectively used with only a small number of circuits (AND gates 5 and 6).
- a simple circuit configuration can be used to mask the enable signal given to the protection target circuit using the alarm signal generated by the abnormality detection circuit.
- the protection target circuit can be automatically stopped when a spike is inserted into the clock signal.
- FIG. 7 is a diagram illustrating one configuration of the semiconductor device according to the fourth embodiment of the present invention.
- the abnormality detection circuit 20 is multiplexed in the configuration of the first embodiment shown in FIG. 1 or the configuration of the second embodiment shown in FIG. Corresponds to the case.
- the abnormality detection circuit group 20a in the fourth embodiment is configured by a plurality of abnormality detection circuits 20 (1) to 20 (N) (N is an integer of 2 or more).
- the abnormality detection circuit 20 described in the first to third embodiments detects an abnormal state and stores the result in a register. Therefore, an attacker who directly rewrites the register may be able to invalidate the result.
- the abnormality detection circuit group 20a has a plurality of abnormality detection circuits 20 (1) to 20 (N), and the abnormality detection circuit 20 is multiplexed. Yes. As a result, it is necessary for the attacker to mistake all the abnormality detection circuits, and as a result, the difficulty of the attack can be increased.
- the abnormality detection circuit is multiplexed.
- the difficulty of the attack can be increased, and a semiconductor device capable of detecting a local clock abnormality can be obtained and its reliability can be improved. it can.
- the present invention can be used at both edges, but can also be applied to a system using only one edge by using only the rising enable signal. Thereby, a plurality of protection objects can be protected by one type of circuit.
- the protection target circuit 30 can have a verification function as a countermeasure against a fault attack.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- Technology Law (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Virology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manipulation Of Pulses (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
上記のように、対策技術は開発されているものの、既存の対策手法では防ぎきれないものが存在することが課題として残っている。(i)の計算誤りの検知については、特定の誤りを検出できない可能性がある。一例として、非特許文献2には、連続して2回の誤りを挿入する場合(タイミングダブルフォルト)、特許文献1の誤り検出能力が限定されることが記述されている。
(問題点1)検算・エラー検出符号では対抗できない攻撃法が存在する(多重故障、故障感度解析など)。
(問題点2)センサの迂回。
(問題点3)両エッジを使用することができない。
(問題点4)スタンダードセルを用いて構成できない。
図1は、本発明の実施の形態1における半導体装置の一構成を説明する図である。本実施の形態1における半導体装置は、イネーブル生成回路10、異常検出回路20(第1の異常検出回路に相当)を含んで構成されており、それらを用いて、保護対象回路30の誤動作を防止もしくは検出する。
本実施の形態2では、有効期間中のスパイク挿入を検出することのできる半導体装置の具体的な構成について説明する。
図5は、本発明の実施の形態2における半導体装置の一構成を説明する図である。本実施の形態2における図5の構成は、先の図1に示した実施の形態1の構成に対して、異常検出回路40(第2の異常検出回路に相当)を追加したものとなっている。このように異常検出回路(20、40)を複数持つことで、局所的なクロック異常対策の効果を高めることができる。具体的には、異常検出回路40の追加により、先の図3で説明した有効期間中のスパイクも検出できるようになる。
本実施の形態3では、異常検出回路20(あるいは異常検出回路40)の出力である警報信号を、保護対象回路30に与えるイネーブル信号に反映させる場合について説明する。
図6は、本発明の実施の形態3における半導体装置の一構成を説明する図である。本実施の形態3は、警報信号の使用方法の一例を示すものである。図6に示す本実施の形態3の構成では、異常検出回路20(40)に、ANDゲート5、6が追加されている。
本実施の形態4では、異常検出回路20を多重化することで、局所的なクロック異常対策の効果をより高める場合について説明する。
図7は、本発明の実施の形態4における半導体装置の一構成を説明する図である。本実施の形態4における図7の構成は、先の図1に示した実施の形態1の構成、あるいは先の図5に示した実施の形態2の構成において、異常検出回路20を多重化した場合に相当する。
Claims (6)
- クロック信号に同期したパルス列であるイネーブル信号を生成し、保護対象回路に対して前記イネーブル信号を供給するイネーブル生成回路と、
前記クロック信号と前記イネーブル生成回路で生成された前記イネーブル信号との比較に基づいて、前記クロック信号に対してスパイクが導入されたことによるクロックタイミングの異常を検出する第1の異常検出回路と
を備える半導体装置 - 請求項1に記載の半導体装置において、
前記イネーブル生成回路は、レジスタと遅延回路を含んで構成され、入力した前記クロック信号に同期し、所望のパルス幅を有するパルス列として前記イネーブル信号を生成する
半導体装置。 - 請求項1または2に記載の半導体装置において、
前記第1の異常検出回路は、前記クロックタイミングの異常を検出した際には、リセット信号を受信するまで異常状態を維持する警報信号を出力する
半導体装置。 - 請求項1から3のいずれか1項に記載の半導体装置において、
前記イネーブル発生回路に前記クロック信号を供給するための第1のクロックバッファと、
前記クロック信号を供給するために、前記第1のクロックバッファと並列に設けられた第2のクロックバッファと、
前記第2のクロックバッファから出力されたクロック信号と、前記イネーブル生成回路で生成された前記イネーブル信号との比較に基づいて、前記第2のクロックバッファを経由したクロック信号に対してスパイクが導入されたことによるクロックタイミングの異常を検出する第2の異常検出回路と
をさらに備える半導体装置。 - 請求項1から4のいずれか1項に記載の半導体装置において、
前記第1の異常検出回路は、前記クロックタイミングの異常を検出する回路が多重化して構成されている
半導体装置。 - 請求項3に記載の半導体装置において、
前記イネーブル生成回路で生成された前記イネーブル信号と、前記第1の異常検出回路で生成された前記警報信号との論理積により前記保護対象回路に供給するイネーブル信号を出力し、前記異常状態が維持されている間は、保護対象回路に対して供給する前記イネーブル信号を停止させるAND回路
をさらに備える半導体装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13889693.1A EP3024171A4 (en) | 2013-07-16 | 2013-07-16 | Semiconductor device |
CN201380078100.XA CN105379174B (zh) | 2013-07-16 | 2013-07-16 | 半导体装置 |
KR1020167003754A KR20160031533A (ko) | 2013-07-16 | 2013-07-16 | 반도체 장치 |
JP2015527087A JP5976220B2 (ja) | 2013-07-16 | 2013-07-16 | 半導体装置 |
PCT/JP2013/069320 WO2015008335A1 (ja) | 2013-07-16 | 2013-07-16 | 半導体装置 |
US14/898,876 US20160253524A1 (en) | 2013-07-16 | 2013-07-16 | Semiconductor device |
TW102140422A TWI516981B (zh) | 2013-07-16 | 2013-11-07 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/069320 WO2015008335A1 (ja) | 2013-07-16 | 2013-07-16 | 半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015008335A1 true WO2015008335A1 (ja) | 2015-01-22 |
Family
ID=52345831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/069320 WO2015008335A1 (ja) | 2013-07-16 | 2013-07-16 | 半導体装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160253524A1 (ja) |
EP (1) | EP3024171A4 (ja) |
JP (1) | JP5976220B2 (ja) |
KR (1) | KR20160031533A (ja) |
CN (1) | CN105379174B (ja) |
TW (1) | TWI516981B (ja) |
WO (1) | WO2015008335A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7001026B2 (ja) | 2018-09-05 | 2022-01-19 | 株式会社デンソー | 車両用通信装置 |
US11321457B2 (en) * | 2019-09-16 | 2022-05-03 | Nuvoton Technology Corporation | Data-sampling integrity check by sampling using flip-flops with relative delay |
JP7366822B2 (ja) | 2020-03-30 | 2023-10-23 | ダイハツ工業株式会社 | 樹脂外板の接着構造 |
CN112069763B (zh) * | 2020-09-29 | 2022-11-29 | 上海兆芯集成电路有限公司 | 修正电路的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63310211A (ja) | 1987-06-12 | 1988-12-19 | Nec Corp | クロック障害検出回路 |
JP2002135970A (ja) * | 2000-06-30 | 2002-05-10 | St Microelectronics Sa | 保護装置を備えた集積回路 |
JP2004206680A (ja) | 2002-12-13 | 2004-07-22 | Renesas Technology Corp | 半導体集積回路及びicカード |
JP2009027472A (ja) * | 2007-07-19 | 2009-02-05 | Toshiba Corp | 暗号演算装置 |
JP2009278576A (ja) | 2008-05-19 | 2009-11-26 | National Institute Of Advanced Industrial & Technology | 誤り検出機能を備える、符号化又は復号処理のための回路構成 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1926241A3 (en) * | 1998-06-03 | 2009-03-11 | Cryptography Research Inc. | Using unpredictable information to minimize leakage from smartcards and other cryptosystems |
US6553496B1 (en) * | 1999-02-01 | 2003-04-22 | Koninklijke Philips Electronics N.V. | Integration of security modules on an integrated circuit |
JP4748929B2 (ja) * | 2003-08-28 | 2011-08-17 | パナソニック株式会社 | 保護回路および半導体装置 |
CN100406689C (zh) * | 2004-04-27 | 2008-07-30 | 三菱扶桑卡客车公司 | 内燃机的可变气门机构 |
CN101276298B (zh) * | 2008-04-01 | 2010-06-02 | 中国科学院计算技术研究所 | 一种fpga电路故障检测装置 |
US7999559B2 (en) * | 2008-12-29 | 2011-08-16 | Infineon Technologies Ag | Digital fault detection circuit and method |
EP2326042B1 (fr) * | 2009-11-18 | 2013-04-03 | STMicroelectronics (Rousset) SAS | Procédé de détection d'une attaque par injection de fautes |
EP2369622B1 (fr) * | 2010-03-24 | 2015-10-14 | STMicroelectronics Rousset SAS | Procédé et dispositif de contremesure contre une attaque par injection d'erreur dans un microcircuit électronique |
KR101977733B1 (ko) * | 2012-07-12 | 2019-05-13 | 삼성전자주식회사 | 오류 기반 공격의 검출 방법 |
-
2013
- 2013-07-16 JP JP2015527087A patent/JP5976220B2/ja active Active
- 2013-07-16 CN CN201380078100.XA patent/CN105379174B/zh active Active
- 2013-07-16 EP EP13889693.1A patent/EP3024171A4/en not_active Ceased
- 2013-07-16 KR KR1020167003754A patent/KR20160031533A/ko not_active Application Discontinuation
- 2013-07-16 WO PCT/JP2013/069320 patent/WO2015008335A1/ja active Application Filing
- 2013-07-16 US US14/898,876 patent/US20160253524A1/en not_active Abandoned
- 2013-11-07 TW TW102140422A patent/TWI516981B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63310211A (ja) | 1987-06-12 | 1988-12-19 | Nec Corp | クロック障害検出回路 |
JP2002135970A (ja) * | 2000-06-30 | 2002-05-10 | St Microelectronics Sa | 保護装置を備えた集積回路 |
JP2004206680A (ja) | 2002-12-13 | 2004-07-22 | Renesas Technology Corp | 半導体集積回路及びicカード |
JP2009027472A (ja) * | 2007-07-19 | 2009-02-05 | Toshiba Corp | 暗号演算装置 |
JP2009278576A (ja) | 2008-05-19 | 2009-11-26 | National Institute Of Advanced Industrial & Technology | 誤り検出機能を備える、符号化又は復号処理のための回路構成 |
Non-Patent Citations (4)
Title |
---|
N. SELMANE; S. BHASIN; S. GUILLEY; T. GRABA; J.-L. DANGER: "WDDL is Protected against Setup Time Violation Attacks", FDTC, 2009 |
SHO ENDO ET AL.: "Kosho Kando Inpei no Tameno Koritsuteki na Taisaku to sono Hyoka", 2013 NEN SYMPOSIUM ON CRYPTOGRAPHY AND INFORMATION SECURITY SCIS2013, vol. 1E1-5, 25 January 2013 (2013-01-25), pages 1 - 8, XP008182702 * |
T. SUGAWARA; N. HOMMA; T. AOKI; A. SATOH: "High-performance Architecture for Concurrent Error Detection for AES Processors", IEICE TRANS. FUNDAMENTALS OF ELECTRONICS, COMMUNICATIONS AND COMPUTER SCIENCES, vol. E94-A, no. 10, October 2011 (2011-10-01), pages 1971 - 1980, XP001570650, DOI: doi:10.1587/transfun.E94.A.1971 |
Y LI; K. SAKIYAMA; S. GOMISAWA; T. FUKUNAGA; J. TAKAHASHI; K. OHTA: "Fault Sensitivity Analysis", CHES, 2010, pages 320 - 334 |
Also Published As
Publication number | Publication date |
---|---|
JP5976220B2 (ja) | 2016-08-23 |
CN105379174B (zh) | 2018-09-28 |
KR20160031533A (ko) | 2016-03-22 |
JPWO2015008335A1 (ja) | 2017-03-02 |
EP3024171A4 (en) | 2017-03-08 |
CN105379174A (zh) | 2016-03-02 |
EP3024171A1 (en) | 2016-05-25 |
TWI516981B (zh) | 2016-01-11 |
US20160253524A1 (en) | 2016-09-01 |
TW201504846A (zh) | 2015-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Francq et al. | Introduction to hardware Trojan detection methods | |
Lin et al. | Trojan side-channels: Lightweight hardware trojans through side-channel engineering | |
Jacob et al. | Hardware Trojans: current challenges and approaches | |
US9836611B1 (en) | Verifying the integrity of a computing platform | |
Yu et al. | Exploiting error control approaches for hardware trojans on network-on-chip links | |
JP5976220B2 (ja) | 半導体装置 | |
US11403428B2 (en) | Protecting integrity of log data | |
Bedoui et al. | An improvement of both security and reliability for AES implementations | |
Agoyan et al. | Design and characterisation of an AES chip embedding countermeasures | |
Al-Anwar et al. | Hardware Trojan detection methodology for FPGA | |
Saß et al. | Oops..! I Glitched It Again! How to {Multi-Glitch} the {Glitching-Protections} on {ARM}{TrustZone-M} | |
Dofe et al. | Strengthening SIMON implementation against intelligent fault attacks | |
Igarashi et al. | Concurrent faulty clock detection for crypto circuits against clock glitch based DFA | |
Sami et al. | Advancing Trustworthiness in System-in-Package: A Novel Root-of-Trust Hardware Security Module for Heterogeneous Integration | |
Guo et al. | EOP: An encryption-obfuscation solution for protecting PCBs against tampering and reverse engineering | |
Monjur et al. | Hardware Security Risks and Threat Analyses in Advanced Manufacturing Industry | |
US20140223568A1 (en) | Method for securely checking a code | |
Yu et al. | Investigating reliability and security of integrated circuits and systems | |
Bu et al. | SRASA: A generalized theoretical framework for security and reliability analysis in computing systems | |
Breier et al. | Introduction to fault analysis in cryptography | |
Köylü et al. | Exploiting PUF variation to detect fault injection attacks | |
Shao et al. | Fast and automatic security test on cryptographic ICs against fault injection attacks based on design for security test | |
Lee et al. | DTR-SHIELD: Mutual Synchronization for Protecting against DoS Attacks on the SHIELD Protocol with AES-CTR Mode | |
Wang et al. | A secure scan architecture using parallel latch-based lock | |
US20240169098A1 (en) | Secure Chip-Wide Transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13889693 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015527087 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14898876 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013889693 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167003754 Country of ref document: KR Kind code of ref document: A |